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PREFACE

Geophysical fluid mechanics (GFM) is a branch of theoretical physics concerned with natural fluid
motion on a rotating and gravitating planet or star, making use of concepts and methods from
classical continuum mechanics and thermodynamics. The primary inspiration for the subject
comes from the motion of fluids in the earth’s atmosphere and ocean, though the principles
and methods are also applicable to extra-terrestrial planetary fluid flows. Geophysical fluids
are in near rigid-body motion with the rotating planet, thus prompting a description from
the rotating (non-inertial) planetary reference frame. Body forces from gravity plus planetary
rotation (Coriolis and centrifugal) are fundamental features of the motion, as are contact forces
from stresses (pressure and friction). We limit attention to the motion of a single phase of matter
(gas or liquid), with the study of multiphase geophysical fluid mechanics, which is relevant to a
moist atmosphere, outside our scope. Electromagnetic forces, important for the study of plasmas
and astrophysical fluid motions, are also ignored.

Geophysical fluid flows manifest over a huge range of space and time scales, with linear
and nonlinear interactions transferring information across these scales. Physical insights into
such flows typically result from examining a hierarchy of conceptual models using a variety of
methods and perspectives. Some models are formulated within the context of a perfect fluid
comprising a single material constituent with fundamental processes limited to the reversible
and mechanical. Some models consider constant density fluids, as commonly considered in
classical hydrodynamics. Other models are posed using a real fluid that is comprised of multiple
matter constituents exposed to irreversible process such as mixing of momentum through viscous
friction, mixing of matter through matter diffusion, and/or the mixing of enthalpy through
conduction. Some models ignore rotation, and thus tacitly apply to flows with length scales too
short to feel the Coriolis acceleration, whereas others ignore buoyancy to focus on the dynamics
of a homogeneous rotating fluid.

We develop geophysical fluid mechanics from a mathematical physics perspective, with a
grounding in fundamentals offering a robust and versatile framework for exploring the gamut
of special cases and approximations encountered in applications. Topics are approached by
establishing general principles prior to the examination of case studies. Consistent with this
approach, our treatment focuses on developing the mechanics of geophysical fluid motion,
with that focus supporting theoretical explorations that often extend beyond that required for
phenomenological purposes. Correspondingly, we embrace the opportunity to examine physics
through multiple lenses that render a variety of complementary insights. In a nutshell, if a
physical system can be formulated and analyzed in more than one way, then we do so if it
enhances pedagogy and exposes layers of understanding. As a result, brevity is sacrificed to
support exposition and exploration.

The presentation is based on the premise that skills in theoretical physics are optimally taught
by nurturing physical reasoning, with physical reasoning supported by mathematical precision
coupled to the elucidation of concepts using words and pictures. Correspondingly, the presentation
is both deductive and descriptive. The deductive approach supports a precise understanding
through the use of elementary physical notions that are expressed mathematically. The descriptive
approach builds skills in reasoning along with the ability to articulate physical ideas using words
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and pictures that complement the maths. Readers are supported by development of salient
physical concepts and mathematical methods in the process of building understanding. With
sufficient study, this book should be accessible to the advanced undergraduate student or
entering graduate student in fields such as applied mathematics, astrophysics, atmospheric
physics, engineering, geophysics, ocean physics, planetary physics, and theoretical physics.

We generally offer details to mathematical derivations. Doing so nurtures the mathematical
skills required for the budding theorist, with the reader strongly encouraged to work through
the various derivations to fully embrace each detail and concept. Exposing mathematical details
also helps to unpack many of the physical concepts encapsulated by equations. It is notable
that the concepts encountered in this book generally accord with common experience, thus
affording a means to check on the validity of the maths. Furthermore, as we are studying physics,
mathematical equations must satisfy dimensional consistency, with this constraint offering the
physicist a powerful tool for exposing spurious mathematical statements.

We consider this book’s intellectual journey as one taken together by the author and reader,
thus motivating use of the first person plural pronouns we and us. We furthermore cultivate the
deductive and descriptive approaches by embracing the synergism between physics and maths,
whereby physics informs the maths and maths reveals the physics. This synergism is facilitated
by a presentation style inspired by Mermin (1989), who identified the following characteristics
for the clear articulation of mathematical physics.

• rule 1: All displayed equations are given numbers to facilitate cross-referencing. Addi-
tionally, any equation supporting another equation or a discussion is itself afforded an
equation number.

• rule 2: Cross-referenced equations are referred to by their equation number as well as
descriptive phrases or names (e.g., “the vector-invariant velocity equation (40.33)” rather
than “equation (40.33)”). Coupling maths to words supports learning and reduces the
need to flip pages to view the cited equation.

• rule 3: Equations are part of the prose and are thus subject to punctuation.

Concerning the book’s title
The study of rotating and stratified geophysical fluid motion largely started in the first half
of the 20th century, and has evolved much over its history. During recent decades the study
has seen particular evolution through deepening physical foundations, refining mathematical
formulations, increasing the intellectual and predictive value of numerical simulations, extending
applications across terrestrial and planetary systems, and expanding observational and laboratory
measurements and techniques. What has emerged is a recognition that a fruitful study of rotating
and stratified fluid flows makes use of ideas that go beyond the traditional notions of geophysical
fluid dynamics (GFD). A contemporary practitioner develops insights by weaving together
concepts and tools from mathematics, classical mechanics, fluid mechanics, thermodynamics,
scalar mechanics, numerical simulations, laboratory experiments, field measurements, and data
science. Acknowledging this broadening of the practice motivates the term mechanics in this
book’s title, rather than the more focused dynamics. It is a minor change in verbiage that
reflects a broadening of the perspective pursued here.

Two pillars of theoretical geophysical fluid mechanics
We conceive of two pillars to theoretical geophysical fluid mechanics that are synergistic, thus
offering lessons, guidance, and feedback to the other. The elements pillar of geophysical fluid
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mechanics comprises the physical and mathematical formulation of conceptual models used to
garner insight into rotating and stratified fluid motion. This pillar is concerned with setting
the stage by deductively and descriptively exposing how physical concepts are mathematically
expressed to describe geophysical fluid flows. We provide a thorough treatment of the element
pillar in part since it is commonly offered only a terse treatment in other books. We emphasize
that the elements pillar is far more than equation manipulation, although one certainly must
become adept at that task. Instead, at its core, the elements pillar allows the physicist to
reveal the fundamental physical concepts in a precise mathematical manner. Doing so supports
understanding while building the foundations for applications encountered in the emergent
phenomena pillar. The emergent phenomena pillar of geophysical fluid mechanics studies
solutions to equations that describe phenomena, such as waves, instabilities, turbulence, and
general circulation, all of which emerge from the fundamental equations based on first principles.
These phenomena can emerge in manners that are far from simple to understand deductively,
particularly when considering nonlinear behavior such as turbulence. Our treatment of the
emergent pillar is limited to waves and instabilities, all of which are treated using the methods
of linear mathematical physics.1

Some themes found in this book
This book covers a number of topics in theoretical geophysical fluid mechanics. Throughout, we
encounter a number of themes that appear in various guises, with the following offering a brief
survey.

Causation and budgets

A great deal of this book is concerned with deriving and understanding equations that describe
the evolution of fluid properties, with such equations (differential or integral) derived from
physical principles such as Newton’s laws of motion, Hamilton’s principle of stationary action,
Noether’s theorem, thermodynamic laws, mass conservation, and vorticity mechanics. These
budget equations form the theoretical foundation of continuum mechanics. As part of this
development we often seek information about what causes fluid motion, making use of a variety
of kinematic and mathematical frameworks. The causality question is posed when studying the
equation of motion, which says that acceleration (motion) arises from a net force (the cause of
motion). Even though seemingly a clear decomposition of cause and effect, this fundamental
statement of Newtonian mechanics offers little more than the definition of a force. We break
the self-referential loop, and thus make physical progress, after specifying the nature of the
force (e.g., gravitational, electromagnetic), as well as by offering properties of these forces as per
Newton’s third law (the action/reaction law).2

In geophysical fluid mechanics, we sometimes refer to time evolving budget equations as
evolution equations or, more commonly, prognostic equations, with terms in the prognostic
equation referred to as time tendencies. For prognostic equations, knowledge of the processes
contributing to the net time tendency enables a prediction of flow properties. The question arises
how to practically determine the tendencies acting in the fluid, particularly when tendencies are
generally dependent on the flow itself. This question is not always simple to answer. Such is the
complexity and beauty inherent in nonlinear field theories such as fluid mechanics, where cause
and effect are intrinsically coupled.

1The further one moves along the axis of nonlinearity, the more Sisyphean the task of connecting fundamental
processes to emergent phenomena. This perspective is lucidly discussed by Anderson (1972).

2For more on this perspective of Newton’s laws, see Chapter 1 of Symon (1971) or Chapter 2 of Marion and
Thornton (1988).
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We can sometimes make progress by turning the problem around, whereby kinematic
knowledge of the motion offers inferential knowledge of the processes contributing to the motion.
This situation is exemplified by pressure forces acting within a non-divergent flow whereby
pressure provides the force that acts, instantaneously and globally, to maintain the constraint
that the velocity is non-divergent.3 We may also make use of constraints that restrict the flow
in manners that assist in prediction and understanding.

Constraints

Determining the forces, either directly or indirectly, provides physical insight into the cause of
fluid flow and its changes. This approach is sometimes referred to a momentum-based viewpoint
since it is based on working directly with the momentum equation (i.e., Newton’s second law of
motion). However, we are commonly unable to deduce the forces due to complexities inherent in
nonlinear field theories. Furthermore, there are many occasions when we are simply uninterested
in the forces. In these cases, we are motivated to use constraints that can allow us to sidestep
forces but still garner insights into the motion.

One example of a constraint concerns the inability of fluid to flow through a solid static
material boundary. To understand how this constraint impacts the macroscopic fluid motion,
we do not need to understand details of the electromagnetic forces that underlie the resistance,
at an atomic level, to this motion. Instead, we simply impose the kinematic boundary condition
whereby the component of the velocity that is normal to the boundary vanishes at the boundary.
The forces active within the fluid, no matter what flavor they may take, are constrained to
respect the kinematic boundary condition. Another example concerns the study of vorticity
developed in Part VII of this book. A variety of vorticity constraints offer the means to deduce
flow properties without determining forces. Indeed, the vorticity-based viewpoint often provides a
framework that is more versatile in practice than the momentum-based approach, thus prompting
the importance of vortex mechanics in this book.

Associations and balances

Besides seeking causal relations pointing toward the future, many basic questions of fluid
mechanics arise either instantaneously, as in the constraints maintaining non-divergent flows, or
when the flow is steady, in which case properties at each point in space have no time dependence.
In steady flows, the net acceleration, and hence the net force, vanish at each point within the
fluid, although the fluid itself can still be moving (steady flows are not necessarily static). For
steady flows we are unconcerned with causality since time changes have been removed. In this
manner, the steady state equations are diagnostic rather than prognostic. Diagnostic relations
thus provide mechanical statements about associations between physical processes that manifest
as balances. The geostrophic balance is the canonical association in geophysical fluid mechanics,
where the horizontal Coriolis force is balanced by the horizontal pressure gradient force. Another
balance concerns the vertical pressure gradient and its near balance with the weight of fluid above
a point in the fluid, with this hydrostatic balance approximately maintained at the large scale
even for moving geophysical fluids. Further associations arise when studying steady vorticity
balances, with the Sverdrup balance a key example that is commonly used in ocean circulation
theory.

We summarize the above by saying that diagnostic equations are concerned with the way
things are, whereas prognostic equations point to how things will be. So although a predictive
theory requires prognostic equations that manifest causal relations, an understanding of how

3For non-divergent flow, pressure acts as the Lagrange multiplier enforcing flow non-divergence. See Section
48.2 for details.
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fluid motion appears, and in particular how it is constrained, is revealed by studying diagnostic
relations that expose associations through balances.

Mathematical transformations between kinematic perspectives

Geophysical fluid flows are complex. Hence, it proves useful to avail ourselves of a variety of
methods and perspectives that support a mechanistic description of the motion. Many methods
are associated with distinct kinematic lenses that reveal particular facets of the flow that might
be less visible using alternative lenses. Examples include the Eulerian (spatial) and Lagrangian
(material) kinematics used throughout fluid mechanics; the dual position space (x-space) and
wavevector space (k-space) used for wave mechanics; the variety of vertical coordinates used for
vertically stratified flows; and the analysis of motion in property spaces exemplified by watermass
or thermodynamic analysis. We make use of these perspectives throughout this book, and offer
the mathematical tools needed to transform between them.

Newtonian mechanics and Hamilton’s principle

Throughout this book we pursue the maxim: If there is more than one way to formulate a problem,
then pursue them! A canonical example concerns the complementary perspectives available from
Newtonian mechanics and Hamilton’s principle of stationary action. Each offers consistent results
yet approaches mechanics from fundamentally distinct conceptual and operational perspectives.
In a Newtonian approach to fluid mechanics, governing differential equations are formulated
using a continuum version of Newton’s law of motion, in which forces (causes) and accelerations
(effects) are articulated as a means to understand and predict the flow. The alternative approach
of Hamilton’s principle of stationary action approaches mechanics via a variational formulation
involving the action. Hamilton’s principle says that the action functional is extremized by
the physically realized system. The action is the space-time integral of the difference between
kinetic and potential/internal energies, and by extremizing the action we reveal the governing
Euler-Lagrange differential equations. The Euler-Lagrange equations are identical to Newton’s
equations for those cases where Newton’s equations are available,4 and yet the route to deriving
these equations is very distinct. It is by pursuing these disinct paths that we uncover new
insights and develop distinct tools for analysis.

Hamilton’s principle is not typically covered in fluid mechanics books. This absence contrasts
to its ubiquity of Hamilton’s principle in other areas of theoretical physics. There are historical
reasons for this disconnect, some of which are discussed in the introduction to Part IX of this
book. We have chosen to include facets of Hamilton’s principle in this book with the hope
that doing so partially remedies the disconnect.5 More specifically, we include Hamilton’s
principle since it provides novel perspectives on the fundamental equations of geophysical fluid
mechanics, and renders insights and tools for the study of emergent phenomena such as waves
and instabilities. The reader interested in a serious pursuit of theoretical mechanics should, at
some point, make friends with Hamilton’s principle. The effort is nontrivial as it requires brain
muscles not exercised when studying Newtonian mechanics. But the conceptual and technical
payoff is significant.

4Hamilton’s principle yields the Maxwell’s equations of electromagnetism. Indeed, it is used throughout
modern physics in areas far beyond those of Newtonian mechanics.

5There certainly are examples where Hamilton’s principle is discussed in fluid mechanics books, with Salmon
(1998), Olbers et al. (2012), and Badin and Crisciani (2018) notable examples that have inspired this author.
Even so, these books remain the exception rather than the norm. As a result, the broader geophysical fluid
mechanics community, even those pursuing theoretical aspects, are largely unaware of the beauty and power
of Hamilton’s principle. This situation contrasts to nearly every other area of mechanics, in which Hamilton’s
principle is a central part of the theoretical development.
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Non-dimensionalization and scale analysis

Mathematical symbols describing a physical system generally have physical dimensions. Examin-
ing the physical dimensions of an equation supports an understanding of the physical content of
the equation, and provides a powerful means to identify errors in mathematical manipulations.
It is for this reason that we prefer to expose physical dimensions throughout this book, rather
than the alternative approach of working predominantly with non-dimensional equations. Even
so, scale analysis, as realized through non-dimensionalization, offers an essential tool for deriving
mathematical equations used to describe particular flow regimes.

There are two general types of dimensional scales that we use to non-dimensionalize a
mathematical physics equation. The first is the external scale, with examples in this book being
the gravitational acceleration, Coriolis parameter, and specified background or reference state.
External scales are set by the geophysical parameter regime in which the flow occurs, and as such
they are under direct control of the theorist. The second is the emergent scale, which emerges
from the flow itself. Emergent scales, such as the length scale and velocity scale of the flow,
are specified by the subjective interest of the physicist though they are not under their direct
control. That is, we choose to focus on flows with a particular scale for purposes of examining
the corresponding equations that describe that flow regime. A key example concerns our study
of planetary geostrophy and quasi-geostrophy in Part VIII of this book, where we choose to
focus on flows of a particular scale where the Coriolis acceleration is of leading order importance.

We thus consider the operational aspects of scale analysis to be largely subjective in nature.
Namely, we approach the analysis with a subjective bias towards the flow regime of interest,
which in turn affects choices for non-dimensional parameters that lead to the corresponding
asymptotic equations that describe the regime. Hence, scale analysis is deductive while being
strongly guided by our subjective interests.

Geophysical Fluid Mechanics and Climate Science
Fluid mechanics has a history of applications that span science and engineering, from blood
flow to the stability of stars and the evolution of galaxies. A key 21st century application of
geophysical fluid mechanics concerns the questions of earth system science associated with the
uncontrolled greenhouse gas experiment pursued by industrialized civilization’s carbon centered
energy use. Leading order questions about climate warming have been sufficiently addressed to
recognize that the planet has reached a crisis point threatening many features of the biosphere.
Even so, mechanistic answers to a number of questions remain at the cutting edge of research.
What will happen to the atmospheric jet stream and storm tracks in a world without summer
Arctic sea ice? Will tropical storms be more powerful in a warmer world? What are the patterns
for coastal sea level rise and their connections to large-scale ocean circulation? What are the
key processes acting to bring relatively warm ocean waters to the base of high latitude ice
shelves? How stable are the ocean and atmosphere’s large-scale overturning circulations and their
associated heat transport? Are there feasible and sustainable climate intervention options that
equitably reduce the negative impacts of climate warming without introducing new problems?
These questions, and countless others, constitute key intellectual challenges of climate science in
particular and Earth system science more generally.

Numerical circulation models, observational field campaigns (both in situ and remote), and
laboratory experiments, are core platforms for Earth system science. Many of these platforms
have reached a level of maturity allowing them to vividly reveal details of the complex and
multi-scaled nature of planetary fluid flow. Geophysical fluid mechanics is key to the design of
observational field campaigns and novel laboratory and numerical experiments, and it provides
the intellectual framework for developing mechanistic analyses and robust interpretations of
measurements and simulations. In this way, geophysical fluid mechanics furthers predictive
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capability for weather and climate forecast systems and it enhances confidence in projections for
future climate. In a world of increasingly large volumes of simulated and measured data, we
conjecture that the marriage of fundamental physical theory to data science tools will enable the
significant science and engineering advances needed to address key questions of Earth system
science.

About the cover

I took the cover photo of an iceberg, ocean, clouds, and sea bird (can you find the bird?) in the
Orkney Passage region of the Southern Ocean during a research cruise from March-May 2017
aboard the British ship James Clark Ross. I am grateful to Alberto Naveira Garabato, the chief
scientist on this cruise, for taking me to this amazing part of the planet. Although I largely
pursue theoretical research, experiences with seagoing field research have greatly enhanced my
scientific viewpoint and profoundly deepened a connection to the natural forces and phenomena
that are in part described by geophysical fluid mechanics.

Gratitudes

This book greatly benefited from interactions with students in the Princeton University Atmo-
spheric and Oceanic Sciences Program. In particular, parts of this book serve as the basis for
the two-semester graduate course, AOS 571 and AOS 572, as well as for a variety of special
topics classes (AOS/GEO 585) and lecture series. Further inspiration was offered by students,
postdocs, and fellow researchers and scholars encountered on my path. I also thank those who
provided specific suggestions, corrections, and comments on various drafts of this book, whose
names are too many to list.

I am grateful for having been part of the unique research and learning environment cultivated
at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), where I worked from 1993 until
2025, as well as Princeton University’s Atmospheric and Oceanic Sciences (AOS) program, where
I have taught and mentored since 2014. The focus of my research concerns ocean physics and
the ocean’s role in climate. The community at GFDL and Princeton AOS provide an ideal
setting for those interested in broadening scientific perspectives while diving deep into particular
research areas. As part of my research and mentoring in this community, I have encountered
thinkers whose style, questions, and insights have taken root in my work. This work has also
afforded me the opportunity to travel the world to interact with colleagues whose wisdom and
love of the scientific endeavor are infectious and inspiring. Throughout these interactions, I
have entered into trusting and non-judgmental spaces where deep learning and understanding
arise. Partaking in these spaces, where heart and mind meld, has been among the most fulfilling
experiences of my life.

Developing a book of this nature is a not a simple endeavor. It starts modestly, grows over
time, and eventually becomes a passion and obsession. I was particularly drawn to writing
during the COVID-19 pandemic that kept the world largely sequestered at home, and I am
grateful that my life situation allowed for this work to safely flourish during these otherwise
very difficult times. Writing this book has been an exercise in rational thought that exemplifies
the maxim “to write is to learn”, as articulated by Zinnser (1993). It was furthermore fed by
spiritual food from meditation, yoga, family, and community. In particular, each step of this
project was supported by my wife, Adi, and our son, Francisco. I am deeply grateful for their
patience and trust as I satisfied the goal of writing this book through countless nights, weekends,
and holidays. I treasure being part of this family and I dedicate this work to you two amazing
human beings.
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Caveats and limitations
This book remains a work in progress not yet ready for publication. There are many loose threads
detailed at the start of many chapters. In addition, here are items targeted for completion prior
to release of this book to a publisher.

• Mathematical topics

– linear operator theory

– Cartesian, cylindrical, and spherical harmonics

– Lie derivative following Section F.3 of Tromp (2025a)

– Frenet-Serret equations for three-dimensional flow as in Section 15.3.4 of Dahlen and
Tromp (1998).

• Application of Hamilton’s principle

– Referential flow using Hamilton’s principle

– waves and mean flow interactions

– shallow water and Hamilton’s principle

– semi-geostrophy and Hamilton’s principle

– quasi-geostrophy and Hamilton’s principle

– Ray theory using Hamilton’s principle as in Tracy et al. (2014)

• Wave mechanics

– equatorial shallow water waves

– Rossby wave packets and motion in non-homogeneous background

– Laplace’s tidal equations and spherical harmonnics

• Flow stability

– Charney problem of baroclinic instability

– Arnold’s stability theorem

– Rayleigh-Benard convection

• Miscellaneous

– More exercises

– More figures

– Continued refinement to notation

– Continued scrutiny from readers

– Glossary for this chapter, similar to that done by Thorne and Blandford (2017),
placed at the end of each chapter. Besides defining the terms, point to the section
where the term is defined and used more thoroughly. Have a bold index term for the
glossary entries. Build a full book glossary from the chapter glossaries.
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A GUIDE TO THIS BOOK

No book is an island, with this book generously making use of other books, review articles,
research papers, and online tutorials. Many readers find value in studying a subject from a
variety of perspectives and voices, thus justifying the proliferation of books with overlapping
subject matter. Sometimes it is merely one or two sentences that allow for an idea or concept to
click within the reader’s brain, whereas other topics require the full gamut of detailed derivations
and discussions coming from multiple voices. For these reasons we provide pointers to written
and/or video presentations that offer supportive views on material in this book. Many further
resources are available through a quick internet search.

There is no pretense that any reader will penetrate all topics in this book, nor read this
book cover-to-cover. This recognition is particularly apparent in a world where research and
educational agendas often spread rather than focus attention. Hence, an attempt has been made
to facilitate picking up this book at a variety of starting points. For that purpose, each chapter
is written in a reasonably self-contained manner and with a brief guide at the start of each
chapter listing pre-requisite material. As such, some equations and derivations are reproduced in
more than one place, thus obviating the need to back reference. Certainly each chapter cannot
be fully self-contained since this is a book with material building from earlier chapters. We thus
make generous use of cross-referencing to point out allied material treated elsewhere in the book.

Organization
This book is organized into parts according to their particular focus, with each chapter starting
with a brief guide to the material and pointing to dependencies to other chapters. Some chapters
focus on topics required for a basic understanding of the subject and offer exercises to test that
understanding. Other chapters offer monograph style topics that further the foundations and
exemplify applications largely taken from a selection of the author’s research interests. Not all
topics are treated equally, with some topics probed deeply whereas others are given little more
than a superficial treatment. Indeed, there are even more topics that are omitted. Each of these
shortcomings reflect on the author’s limited energy and experience, rather than a judgement of
importance for any given topic.

mathematical methods and concepts

In Part I of this book, we study a suite of mathematical topics that are of use for studying
geophysical fluid mechanics. These chapters concern topics found in applied mathematics and/or
mathematical physics texts. However, we approach the material with a distinctively geophysical
fluid mechanics perspective. Many readers can skim these chapters without sacrificing too much
from later chapters, assuming they have a working knowledge of Cartesian tensors (Chapter 1)
as well as vector differential and integral calculus (Chapter 2). Where unfamiliar mathematics
topics arise in later chapters, the reader is encouraged to return to this part of the book to help
develop the necessary skills.

The chapters in this part of the book serve the needs of readers aiming for mathematical
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acuity in a physical setting. Quite simply, mathematics is the best language for doing theoretical
physics such as that developed in this book. So although we do not argue that all of the
mathematical apparatus studied here are indispensible for “getting an answer”, the physicist
finds merit in developing a well honed mathematical brain by nurturing efficient, and often
elegant, ways to think about physics. Those aiming to become a practitioner of geophysical fluid
mechanics will benefit from a variety of mathematical methods such as those offered in this part
of the book.

classical mechanics

In Part II we survey topics in classical mechanics with a distinctively geophysical fluids perspective.
Here we encounter the motion of particles moving around a rotating planet using methods
from both Newtonian mechanics and Lagrangian mechanics, as well as notions from classical
field theory that form the foundation for continuum mechanics and wave mechanics. Many
students entering a course on geophysical fluid mechanics have just a cursory exposure to classical
mechanics, so that material in Part II aims to partially remedy this limited exposure.

kinematics of fluid flow

Mechanics is comprised of kinematics (the study of intrinsic properties of motion) and dynamics
(the study of forces and energies causing motion). In Part III we initiate a study of fluid
mechanics by focusing on the kinematics of fluid flow and matter transported by that flow. Our
treatment exposes both the Eulerian and Lagrangian viewpoints and emphasizes the variety of
kinematic notions and tools key to describing fluid motion. We also encounter facets of material
transport as described by the tracer equation, thus laying the foundation for tracer mechanics
pursued in Part XIII. Fluid flow, and the transport of matter within that flow, have many
features fundamentally distinct from point particle and rigid body motion, and it takes practice
to intellectually digest these differences.

Quite often a course in geophysical fluid mechanics skims over fluid kinematics, preferring
instead to focus on dynamics. Indeed, some kinematic topics can seem esoteric on first encounter,
particularly the study of Lagrangian kinematics. However, an incomplete understanding of fluid
kinematics can lead to difficulties appreciating facets of fluid dynamics. The reader is thus
encouraged to fully study the kinematics chapters, and to revisit the material as the needs arise
in later chapters.

thermodynamics

We study equilibrium thermodynamics in Part IV of this book, assuming little to no prior
exposure to the subject. We pay particular attention to the role of gravity in modifying the
treatment of thermodynamic equilibrium states, with gravity an essential facet of geophysical
fluids and yet a force commonly ignored in standard treatments. However, we ignore phase
transitions, thus making this part of the book a mere introduction to the study of a moist
atmosphere. A reader can skip this part of the book with minimal disruption to later chapters.
Even so, thermodynamics is an incredibly rich subject that is central to how we think about
geophysical flows, in particular how energy moves through fluid systems. We thus consider
thermodynamics forms a central pillar in our treatment of geophysical fluid mechanics.

dynamics of geophysical fluid flow

In Part V we encounter the foundational topics of geophysical fluid dynamics. Within these
chapters we study how Newton’s laws of mechanics and the principles of thermodynamics are
used to describe fluid motion on a rotating and gravitating planet. We approach the subject by
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focusing on how forces that act on fluid elements lead to accelerations and thus to motion. These
forces act both throughout the volume of a fluid element (body forces from gravity, Coriolis,
and centrifugal) as well as on the boundary of a fluid element (contact forces from pressure and
friction). We also complement the Newtonian approach, which focuses on forces, with Hamilton’s
Principle, which focuses on energy.

shallow water mechanics

In Part VI we study the mechanics of a shallow water fluid, with a shallow water fluid comprised
of hydrostatically balanced homogeneous fluid layers. The layers are also typically assumed
to be immiscible, so that interactions between layers occur only via mechanical forces from
pressure acting at the layer interfaces. The shallow water fluid allows us to focus on rotation and
stratification without the complexities of vertically continuous stratification and thermodynamics.
Many physical insights garnered by studying shallow water fluids extend to more realistic fluids,
thus making the shallow water model very popular among theorists and teachers. Indeed, Zeitlin
(2018) provides an example of just how far one can go in understanding geophysical fluids with
shallow water theory.

vorticity and potential vorticity

In Part VII we develop the concepts of vorticity and potential vorticity. Vorticity plays a role in
the motion of all geophysical fluids since motion on a rotating planet provides a nonzero planetary
vorticity even to fluids at rest on the planet. This feature of geophysical fluids contrasts to many
other areas of fluid mechanics, where irrotational flows are commonly encountered. Potential
vorticity is a strategically chosen component of the vorticity vector that melds mechanics
(vorticity) to thermodynamics (stratification). Material conservation properties of potential
vorticity are striking and render important constraints on fluid motion. Indeed, perhaps the
most practical reason to study vorticity concerns the various constraints imposed on the flow
moving on a rotating and gravitating planet. These constraints provide conceptual insights and
predictive power.

nearly geostrophic balanced flows

Balanced models are introduced in Part VIII, with our attention limited to the shallow water and
continuously stratified versions of quasi-geostrophy and planetary geostrophy. Balanced models
generally remove the horizontally divergent motions associated with gravity waves, thus allowing
a focus on the large-scale vortical motions. Balanced models have a rich history among theoretical
geophysical fluid studies, providing insights into both laminar oceanic flows through planetary
geostrophy, and wave-turbulent atmospheric and oceanic flows through quasi-geostrophy.

linear wave mechanics

In Part X we study a variety of geophysical waves and associated mathematical methods used for
their characterization. We include waves not commonly included in a book on geophysical fluids,
such as sound and capillary waves, with these waves included due to their ubiquity in the natural
environment as well as their pedagogical value. Most focus, however, is given to waves arising
from the Coriolis acceleration (inertial waves, planetary Rossby waves, topographic Rossby waves)
and gravitational acceleration (surface gravity waves, internal gravity waves). Furthermore,
we study linear waves and their corresponding wave packets, first studying their behavior in
a homogeneous background environment where Fourier methods are available. Thereafter, we
introduce the methods needed to study linear waves on a gently varying background, including
the methods of geometrical optics and wave action where Fourier methods are not suited.
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flow instabilities

In Part XI we study instabilities that arise in geophysical fluid motions. We distinguish two
classes of fluid instabilities: local or parcel instabilities versus global or wave instabilities. Local
instabilities are afforded a local necessary and sufficient condition to determine whether the fluid
base state is unstable to perturbations. In contrast, global instabilities arise from the constructive
interference of waves and so involve the solution of an eigenvalue problem to determine properties
of unstable waves. At most, a necessary condition can be derived to determine whether a global
instability exists. Our study of fluid instabilities introduces a suite of case studies that foster
analysis and conceptual methods to establish a foundation for further study. Geophysical fluid
instability analysis remains an active area of research, with insights into the suite of primary
and secondary instabilities providing compelling stories for how the ocean and atmosphere work.

generalized vertical coordinates

In Part XII we provide a thorough and unified treatment of the generalized vertical coordinate
description of geophysical fluid mechanics. The chapters dive into details of the maths, kinematics,
dynamics, and applications. This material is central to many current research activities, including
subgrid scale parameterizations and the design of numerical atmosphere and ocean models.

scalar fields

For Part XIII of this book, we unpack the mechanics of scalar fields with a focus mostly on the
ocean. Here we consider active tracers (temperature and salinity), passive tracers, and buoyancy.
Much of this study forms the basis of tracer mechanics, which has proven very important for the
ocean since it is generally very difficult to measure vector fields such as velocity and vorticity,
whereas tracer distributions are far more readily measured. We also consider facets of sea level
analysis in this part of the book.

Written and spoken communication
To thrive in research and teaching requires one to master elements of both written and spoken
communication. Here we offer a few pointers.

clear thinking leads to clear communication

Clear communication is the sign of clear thinking. Some people communicate better in writing,
where one has the opportunity to carefully organize thoughts and refine the writing style. Others
are better at speaking, where spontaneous and interactive reflections and experience can bolster
the clarity of a presentation.

As inspiration for both the clear and obscure, pick up one a textbook or lecture notes and
analyze the presentation for clarity. Where is the presentation confusing? Where is the material
crystal clear? Then pick up a journal article and perform the same analysis. What is appealing?
What is unappealing? Then go to the internet and find a science or engineering lecture, old or
new. What makes the speaker engaging and clear, or boring and obscure?

Empathy is key

Empathy is a basic facet of effective communication and teaching, where the writer, speaker, or
teacher places their mind inside that of an interested and smart reader or listener. Identify with
their quest to understand new ideas and to comprehend the foundations and assumptions. Are
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the assumptions justified based on the audience? How compelling is the scientific story? Are
missing steps crucial to understanding or easily dispensed with for streamlining the presentation?

clarity helps, but some material is just tough

Although poor communication hinders our ability to digest new ideas and concepts, it is also
important to appreciate that some material is tough no matter how well it is communicated.
We should aim to make a subject matter as simple as possible, but not simpler (paraphrasing
Einstein). Furthermore, it sometimes takes a few generations of teaching before some scientific
material can be sufficiently digested to allow for the core conceptual nuggets to be revealed. As an
example, try reading Newton or Maxwell’s original works as compared to a modern presentation
of Classical Mechanics or Electromagnetism. So as we strive for clear communication, we cannot
presume that clarity is sufficient to remove the struggles everyone experiences when learning.

Pointers on physics problem solving
Most people are not born with a priori physics problem solving skills. Rather, it takes extensive
practice to develop the necessary brain muscle. Here are some general pointers to keep in mind
when diving into a physics problem, whether it is for a class or the basis of a broader research
question.

check for dimensional consistency

The symbols we use in mathematical physics correspond to geometrical objects (e.g., points,
vectors, tensors) describing a physical concept (e.g., position in space, velocity, temperature,
angular momentum, stress). Hence, the symbols generally carry physical dimensions. The
physical dimensions we are concerned with in this book are length (L), time (T), mass (M),
and temperature. We do not consider electromagnetism. Physical dimensions of the equations
must be self-consistent. For example, if one writes an equation A = B, where A and B have
different physical dimensions, then the equation makes no sense physically. Something is wrong.
Although not always sufficient to uncover errors, dimensional analysis is an incredibly powerful
necessary step in debugging the maths.

check for tensorial consistency

In the same way that mathematical equations in physics need to maintain dimensional consistency,
they must also respect tensor rules. For example, the equation A = B makes mathematical
sense if A and B are both scalars. Likewise, A = B makes sense if A and B are both vectors.
However, if both A and B are vectors, then the equation A = ∇·B does not make sense because
the left hand side is a vector and the right hand side is a scalar. A more subtle example is when
A is a vector yet B is an axial vector. In this case, A remains invariant under a change from
right hand to left hand coordinates whereas B flips sign. Maintaining basic tensorial rules can
be considered the next level of sophistication beyond dimensional analysis.

use words and pictures

Words and pictures are important elements in explaining a physical concept and/or a problem in
physics. Hence, it is good practice to liberally sprinkle sentences in between the key equations
for the purpose of explaining what the maths means using clear English. Here are some practical
payoffs to the student for this style of presentation.
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• The process of explaining the maths using words and pictures requires one to dive deeper
into the logic of a physics problem. Doing so often reveals weak points, incomplete or
unmentioned assumptions, and errors. This process is a very important learning stage in
preparing to stand in front of an audience to present results and to answer questions. It is
a key facet of research and teaching.

• Physics teachers are often more forgiving of math errors if you convince the teacher that
you have a sensible physical understanding of the problem. Plain English and pictures are
very useful means for this purpose.

there is often more than one path to a solution

In physics, there is often more than one path to a solution to a problem or the formulation
of a concept. Pursuing distinct paths offers novel physical and mathematical insights, exposes
otherwise hidden assumptions, and simply allows one to double-check the veracity of a solution.
Some of the most profound advances in physics came from pursuing distinct formulations. One
example concerns the distinct formulation of mechanics offered by Newton (1642-1746), and
then later by Lagrange (1736-1813) and then Hamilton (1805-1865). Had Lagrange or Hamilton
rested on the merits of their predecessors, we may well have had a very different intellectual
evolution of 19th and 20th century physics.
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PRINCETON UNIVERSITY AOS 571 AND AOS 572

Princeton University’s AOS 571 and AOS 572 are two courses that focus on geophysical
fluid mechanics. The first semester, AOS 571, is concerned with developing conceptual and
mathematical foundations of the subject by studying elemental features of planetary fluid motion,
and by providing a mathematical physics basis for understanding these patterns. The second
semester, AOS 572, makes use of the foundations from AOS 571 to study emergent phenomena
arising from waves and instabilities.

details of your teacher and the course

Dr. Stephen M. Griffies
SMG@princeton.edu

https://stephengriffies.github.io/

Worked homeworks to be uploaded onto Canvas before class on the due-day.
Class materials are enabled via Canvas.
Class communication is enabled via Ed Discussion.
AOS 571 class lectures were recorded during Covid shutdown (autumn 2020),
and they are available on Canvas.

.1 Class structure and expectations
Our goal for this two-semester sequence of courses is develop an understanding of basic geophysical
fluid mechanics, and in doing so to learn how to formulate and to solve problems. To help reach
these goals, we study selected chapters from this book. Note that you will be expected to read
far more material than covered in class.

As with any other topic in physics, garnering an understanding and appreciation of geophysical
fluid mechanics can require effort and practice. To help that process, you are expected to read
the assigned material, work through the derivations, and hand-in homework exercises. You
will have many opportunities to develop the necessary brain muscle assuming you maintain the
discipline to keep up with the material. Please ask questions, preferably in class, when you are
unsure of anything.

cultivating a safe space for healthy learning

A fundamental feature of any class concerns the learning environment. My aim as class teacher
is to foster an inclusive, friendly, generous, patient, and non-judgmental space for learning.
Key principles that support this space include equity, diversity and inclusion, each of which
are intrinsically valuable and an essential feature of ethical research and education. We also
acknowledge and honor past generations whose efforts, some of which were garnered through
force and oppression, have led to the rewarding environment in Princeton where we study
and conduct research. It is our sincere hope that practicing the above principles will support
present and future generations in a way that helps to heal past injustices. Cultivating this
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.2. SOME POINTERS FOR THE PROBLEM SETS

safe and grateful space supports deep learning while genuinely appreciating contributions from
individuals without regard to race, ethnicity, culture, religion, sexual orientation, gender identity
and expression, physical ability, age, socioeconomic status or nationality. As a participant in
this space, we each celebrate diversity and nurture an inclusive and friendly community that is
optimized for shared learning and mutual understanding.

For many, this class will require a tremendous amount of effort. It will require much focus
and energy to master the material even for those with an established background. Regardless
your background, talents, or interests, I am here to help. So please reach out if you are struggling.
I also encourage you to develop working relations with your classmates. Homework exercises
can be done collaboratively, and working with others offers great opportunities for learning.

Even if you prefer to work alone, I ask that you develop some form of a relation with one
or more of your classmates. Part of this recommendation is based on the need to informally
monitor our mutual health, particularly given that graduate school can be stressful. Even so, it
can be a time for building deep friendships and community as we share in the process of learning
how to thrive as budding researchers and scholars.

class lectures and class book

The class lectures closely follow selected material from Griffies (2025). Prior to each class, you
are expected to read through the assigned sections and view the assigned videos. During class we
will discuss salient points from the readings and videos. To allow sufficient time for interactive
discussion and questions, not all of the assigned reading material will be directly covered in
class. Hence, you are expected to read and to understand more material than is covered on the
chalkboard. Correspondingly, you are welcome to bring any questions related to the reading to
the class, even if the material was not covered in class.

The pace of the lectures will be gauged by questions during the class and my sense for how
well you are grokking the material. You are encouraged to follow lectures by having a copy of
the class book on-hand, preferably electronically to conserve paper.

please disconnect electronics from internet during class

To support your learning and teaching experience, and those of your classmates, please ensure
that you turn all electronic devices into airplane mode so that you are not tempted to divert
attention to non-class issues. To get the most from the lectures and class time requires focused
attention and active participation.

.2 Some pointers for the problem sets
Here we consider some context for the class problem sets, which are an important part of learning
the material.

aim for a balance between thorough and brief

There is often a conflict between showing full mastery of a problem and keeping the solution
write-up brief. In general, there is no need to re-derive equations already presented in the book.
Proper referencing of the equation is all that you need; i.e., tell me something like “starting from
equation (X.YY) from Griffies book draft dated DD.MM.YY.” Additionally, when presenting
a derivation, you may choose to show just the key steps rather than all intermediate steps.
Determining what is a “key” step is largely up to you, but it should be something you learn to
do in time. Nonetheless, you are encouraged to show more than one approach to a solution.
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.2. SOME POINTERS FOR THE PROBLEM SETS

questions for points of clarification

Questions for points of clarification will be entertained if you feel the problem is ill-posed or if
you are totally lost. Email through Ed Discussion is the most efficient means to communicate
to me. Responses will generally be sent back through Ed Discussion so that all students can
see the response, thus keeping everyone with the same information. Correspondingly, questions
within 24 hours of the deadline are generally not entertained so to ensure that all students have
time to see the response.

mistakes offer important opportunities for learning

Everyone makes mistakes, some more than others. The toughest part is the self-imposed shame
or embarrassment. Please try to keep a positive mind about your mistakes. As you will discover,
mistakes offer significant opportunities for learning. I am a poster-child for this process!

So do not be overly anxious if you find many marks on your homeworks and exams. Rather,
aim to use mistakes as learning opportunities. That is how life in academics (life in general!)
works. Furthermore, be completely honest with yourself to candidly identify weaknesses. I will
do my best to work personally with you if something remains uncertain or you feel there is a
weakness in your skills that needs some extra help. Please seek help should you wish it. And
finally, please do question my marks should you feel they are unfair or incorrect. I am prone to
mistakes in my grading.

presentation of the solution: please use LATEX

Please write clearly and legibly. I strongly encourage you to learn and to use LATEX as this
mark-up language is an indispensible tool for writing documents with or without mathematics.
Indeed, LATEX is required for all AOS 572 assignments, so it is wise to start using it for AOS
571. If you choose to hand-write your solutions, then please ensure that the equations and words
are clearly written. In my experience, sloppy hand-writing generally leads to graders who are
less forgiving of errors. You must convince the grader that you understand the solution and
present the maths in a legible manner.

deadlines are strict in order to be fair to everyone

Please do your best to be on time with handing in homeworks and exams, with disasters, personal
tragedy, and significant accidents the only excuses for late assignments. Fairness to those meeting
the deadlines is the fundamental reason to insist on this rule. Additionally, I generally aim to
grade the homework soon after everyone hands it in, and then to provide solutions for quick
feedback. Doing so helps to identify issues and obstacles sooner rather than later. If someone is
given extra time, then that delays the feedback time, thus eating into the learning experience
for everyone else.

In brief: a homework problem will receive zero credit if handed in late, with rare
exceptions.

general rubric for marking your work

Problem sets are marked using the following general rules, with grading less forgiving as the
class progresses through the year. The following mistakes are marked by an increasing amount
moving through the list.
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.3. COURSE MATERIAL AND STRATEGIES FOR THRIVING

points about grading your work

1. sign errors: Sign errors are a nuisance. We all must spend time to uncover them.
One means of detecting errors is to try explaining the maths to yourself or someone
else. Does the result make sense? If not, then perhaps there is a sign error. I am
generally not too upset with sign errors if they have minimal physical relevance.
But when they indicate a physical misconception then I will mark it more harshly.

2. math errors: Math errors, such as those associated with basic calculus mistakes,
are generally marked.

3. dimensional and tensorial errors: I am relatively unforgiving of dimensional
mistakes and tensorial inconsistencies.

4. physically missing the point: Evidence of physically missing the point will
generally invoke the most negative marks depending on the depth of the misconcep-
tion. The best way to convince me you grasp the basic physics is to use words and
pictures. If the maths is missing or totally wrong, but you present some sensible
words and pictures, then that will help earn some credit.

.3 Course material and strategies for thriving

The course material consists of a class book plus a selection of online videos. Ideally, the book
material is to be read and the videos viewed prior to each class. Salient points related to the
material will be presented during class on the chalkboard, along with further discussion and
questions. We will not cover all the material in class that is expected to be learned as part of
the reading assignments and problem sets. Since there is no laboratory portion of this class,
it is very important to view the various videos linked to each lecture. More generally, you are
strongly encouraged to peruse this library of classic videos that have stood the test of time for
their pedagogy on various topics in fluid mechanics. Additionally, the Homsy Multi-media Fluid
Mechanics lectures offer an incredibly valuable tool for basic fluid mechanics concepts. The full
content of Homsy is available online through the Princeton University library.
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.4. GRADES FOR AOS 571

strategies for thriving in this course

• essentials from Prof. Bazett for the start of the semester

– View this 12-minute lecture on study tips.

– View this 12-minute lecture on how to learn effectively.

– View this 19-minute lecture on how to write LATEX documents using Overleaf.

• prior to each class

– Review material from previous lecture (5 to 10 minutes).

– View assigned videos (5 to 45 minutes).

– Read assigned class book sections (30-120 minutes).

• after each class

– Reread class book material and review assigned videos.

– Identify questions for class discussion or during Q & A session.

– As needed, view recorded class lecture from 2020 to fill in gaps.

– Work assigned exercises alone and then gather with classmates to discuss and
complete.

• questions: Address questions by reaching out during class, after class, during office
hours, during group gatherings, or via Ed Discussion. There are no silly questions!

.4 Grades for AOS 571

AOS 571 class grade = problem sets (75%) + final exam (25%)

Worked problem sets are due on Canvas prior to the start of class when they are due. Each
problem set normally is allocated one week for completion, unless otherwise noted. Students
can make use of any resources for solving problem sets, including other people. Clarification of
questions can also be obtained via email to me. If you find a solution from a source other than
your own head, then be sure that you fully understand both the essence and the detail of the
solution. Although you are encouraged to discuss the problems with other students, you are
cheating yourself if you merely parrot another person’s answer without fully grokking it yourself.

There is no pretense that the exercises offered in class are clearly formulated. Indeed, a
certain degree of ambiguity reflects the status quo in research, where formulating a novel and
insightful question is generally the most difficult part of the research process. Additionally,
the solutions may not be 100% correct or ideal from a pedagogical perspective. Rather, they
represent a work in progress. If mistakes or ambiguities are found, then please share your
questions and concerns.

There is a takehome final exam during exam period. You are asked to do the work as a
solo student, with no help or consultation from another human. However, you can make use of
books, notes, online resources, etc. The questions are generally taken from published papers
with relevant references provided to the student.
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.5. AOS 571 COURSE OUTLINE

.5 AOS 571 course outline
Here we offer specifics of the course material covered during AOS 571. There are 24 class lecture
periods of 80-90 minutes each. Most of the following topics take a full class, though some are
shorter and some are longer.

0. Lecture-0 consists of pre-class study of the course introduction and mathematics refresher.
It is assumed that each student knows this material when starting the first lecture, so
please be prepared. And yes, there is a lot of pre-class reading. But for many, this reading
will be review from previous classes and so it should be relatively simple.

• Watch this 9-minute video from Prof. Hall introducing some basic images from
terrestrial fluid flows.

• Watch this 16-minute video from 3Blue1Brown on the divergence and curl operations
with examples taken from fluid mechanics.

• Read the preface to this book.

• Read Chapter 1 on Cartesian tensors.

• Read Chapter 2 on vector calculus.

• Read Chapter 11 on Newtonian particle mechanics.

• Read Chapter 16 on the continuum approximation used for describing fluids as a
continuous media.

1. Geophysical particle mechanics

• Chapter 13: kinematics of a particle moving around a rotating sphere, including
position, velocity, acceleration, Cartesian and spherical coordinates, rotating reference
frame, Coriolis acceleration, planetary centrifugal acceleration

• Chapter 13: dynamics of a particle moving around a rotating sphere using Newton’s
equation of motion, rotating reference frames, gravitational geopotential

• Watch the first 5-minutes from this UCLA Spin Lab video on Coriolis effect.

• Exercises 11.1, 13.3, 13.4, 13.7.

2. Symmetries, conservation laws, and constrained motion

• Chapter 14: mechanical energy, potential momentum, inertial oscillations, axial
angular momentum

• Exercises 14.1 and 14.2.

3. Fluid kinematics

• Chapter 17: Eulerian and Lagrangian fluid kinematics, Galilean invariance, material
time derivative, flow lines

• 4-minute video on Eulerian and Lagrangian descriptions from Prof. Hogg

• 27-minute video on Eulerian and Lagrangian descriptions from Prof. Lumley.

• Exercises 17.2, 17.4, and 17.7.

4. Mass conservation

• Chapter 19: continuity equation, mass budget for fluid elements and finite regions,
kinematic boundary conditions
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.5. AOS 571 COURSE OUTLINE

• 5-minute video on mass conservation from Prof. Hogg.

• Exercises 19.1, 19.2, 19.3, and 19.4

5. Tracer conservation

• Chapter 20: barycentric velocity, tracer equation, budgets for infinitesimal fluid ele-
ments, budgets for finite fluid regions, Leibniz-Reynolds transport theorem, boundary
conditions

6. Kinematics of non-divergent flows

• Chapter 21: scalar streamfunction, vector streamfunction, area and volume conserva-
tion, meridional-depth overturning circulation

• 4-minute video on streamlines from Prof. Hogg.

• Exercises 21.4, 21.5, 21.6, 21.8, 21.9

7. Momentum dynamics

• Chapter 24: momentum dynamics, accelerations, contact forces, body forces, special
forms of the momentum equation, axial angular momentum

• 6-minute video on momentum from Prof. Hogg.

• Exercises 24.2, 24.4 and 24.7

8. Stress in fluids

• Chapter 25: stresses and the stress tensor, linear momentum budget, relating stress
to strain, form stress, boundary conditions

• 2.5-minute video on stress and strain from Prof. Hogg.

• 8-minute video on stress from Prof. Hogg.

• Exercise 25.1

9. Energy dynamics and filtered equations

• Chapter 26: kinetic energy, gravitational potential energy

• 8-minute video on hydrostatic pressure from Prof. Hogg.

• Exercises 26.2, 26.3, and 26.6.

10. Pressure in fluids

• Chapter 27: primitive equations, hydrostatic approximation, hydrostatic pressure

• Chapter 28: pressure form stress

• Exercises 27.1, 27.2

11. The Boussinesq ocean

• Chapter 29: oceanic Boussinesq approximation, hydrostatic scaling, pressure and
non-divergent velocity

• Exercises 29.2, 29.4, 29.5

12. Buoyancy

• Chapter 30: Archimedes’ principle, buoyancy, stratification, gravitational stability,
mass density for perfect and realistic fluids
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.5. AOS 571 COURSE OUTLINE

• 49-minute video from Prof. Lewin for an overview of buoyancy as well as other features
of fluid mechanics.

• Exercises 30.1, 30.4

13. Geostrophic mechanics

• Chapter 31: Rossby number, geostrophy, planetary geostrophic equations, Taylor-
Proudman, thermal wind, isopycnal form stress

• 30-minute video from Prof. Fultz for an overview of rotating fluids.

• 4-minute video from the UCLA SpinLab for examples of Taylor columns.

• Exercises 31.1, 31.2

14. Natural coordinates and Ekman mechanics

• Chapter 32: natural coordinates for horizontal (tangent plane) flow; centripetal,
centrifugal, and Coriolis accelerations; exact geostrophic flow; inertial motion of fluid
particles; cyclostrophic balance; gradient wind balance

• Chapter 33 on Ekman mechanics: natural coordinates, spiral motion across isobars,
non-dimensionalization and the Ekman number, net mass transport

• Start around the 23-minute mark of this video from Prof. Fultz for his discussion of
Ekman layers.

• Exercises 33.1, 33.2

15. Formulation of shallow water models

• Chapter 35: thickness equation, momentum equation, reduced gravity model, stacked
shallow water layers, shallow water layer in a rotating tank

• 30-minute video on shallow water model from Prof. Hall.

• Exercises 35.1, 35.5

16. Shallow water dynamics

• Chapter 36: geostrophy, thermal wind, form stress, mechanical energy including
available potential energy

• Exercises 36.2, 36.7, 36.8

17. Vorticity and circulation

• Chapter 37: vorticity and circulation

• 23-minute video on vorticity from Prof. Shapiro (part 1 of 2)

• Exercises 37.2, 37.3, 37.4, 37.5, 37.6.

18. Two-dimensional non-divergent barotropic vorticity model

• Chapter 38: two-dimensional barotropic vorticity model; properties of this model.

• Exercises 38.5, 38.6

19. Shallow water vorticity and potential vorticity

• Chapter 39: shallow water vorticity and potential vorticity

• Exercises 39.3, 39.4
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20. Vorticity mechanics

• Chapter 40: vortex lines and tubes, Kelvin’s circulation theorem, mechanics of
baroclinicity, stretching and twisting of vortex lines, β-effect

• 21-minute video on vorticity from Prof. Shapiro (part 2 of 2).

• 5-minute video on vortex rings and Helmholtz’s theorems from the Physics Girl.

• Exercises 40.4, 40.5, 40.8, 40.11

21. Potential vorticity mechanics

• Chapter 41: Ertel potential vorticity, PV evolution with friction and other irreversible
processes.

• Exercise 41.1

22. Balanced models I (single layer)

• Chapter 43: Buckingham’s Π theorem, asymptotic expansion in terms of small Rossby
number, shallow water planetary geostrophy and quasi-geostrophy

23. Balanced models II (continuous stratification)

• Chapter 44: asymptotic derivation of continuously stratified planetary geostrophy
and properties of these equations.

• Chapter 45: asymptotic derivation of continuously stratified quas-geostrophy and
properties of these equations.

.6 Grades for AOS 572

AOS 572 class grade = problem sets (60%) + final report/presentation (40%)

The style of the problem sets is just as in AOS 571, but with one important addition:

all problem sets must be prepared using LATEX.

This requirement supports your skills in preparing scientific documents using LATEX, preferably
making use of your Princeton Overleaf account. It will also prepare you for the written report.

Rather than a final exam, you will prepare a final project for AOS 572. The project consists
of a written report on a non-original topic (i.e., it is not research) and a corresponding tutorial
presentation emphasizing a portion of the written report. The topic of the final project is to
be decided by the student and teacher and it concerns a topic directly related to waves and/or
instabilities, with the topic chosen no later than mid-term. The topic either is one that is not
covered in the class, or one that is pursued in much more depth than covered in class. Grades
are based on mastery of the subject, skills at pedagogically communicating the subject using
written and oral methods, and ability to answer fair questions from anyone in the audience.

Here are further details for the project.

• written report = 30% of class grade

1. The report surveys the physics and maths of the chosen topic in a manner allowing
it to be taught to AOS 572 students. There should be deductive/pedagogical math
derivations along with physical principles and connections to topics in other AOS
classes. Citations should be given for all sources.
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2. The report is not original research. Rather, it represents an intelletually digested view
of a topic from the literature that is pedagogically connected to material covered in
the class.

3. The report is not purely descriptive. Instead, it must meld the three pieces of clear
mathematical physics: words, equations, and schematics.

4. Figures can be original or taken from other books and papers.

5. The report must be typeset in LATEX using Overleaf and using the provided LATEX
template.

6. The report should be no less than 20 pages (excluding references), and no more than
30 pages total.

7. A thorough report draft (via Overleaf) is due no later than one week prior to the oral
presentation, thus allowing the teacher to offer feedback to be addressed in the final
draft.

8. Start writing soon after the middle of the semester. Homework assignments will
lighten then (though not vanish) to allow time for the report.

9. Feel free to discuss with others the content of the report. However, 100% of the
writing and presentation must originate from each respective student. Do not use use
any generative artificial intelligence for generating the report.

10. Refer to Mermin (1989) and Griffies et al (2013) for specific pointers on writing styles.
Marks will be taken off when ignoring these styles.

11. Grading rubric

(a) intro/background (20)

(b) concepts/methods (60)

(c) pedagogy/clarity/style (20)

• oral presentation = 10% of class grade

1. The presentation is to the full class (and any interested visitors) using a chalkboard
with zero electronic media (i.e., no slides and no videos). Eliminating all electronic
media focuses efforts on the intellectual content of the report and the presentation
rather than tweaking presentation aesthetics. It also provides important experience
for working on the chalkboard rather than “hiding” behind electronic slides.

2. The presentation should be designed to last 15 minutes without interruptions. It is
not simple to stand in front of a class and convey information. So you are strongly
encouraged to practice the presentation beforehand to optimize time and clarity.

3. The 15 minute presentation is not intended to cover the full written report. Rather,
the purpose is to teach the class just one or two key concepts from the report. Teaching
requires a tremendous amount of study and practice. Be humble with goals for the
15 minute lecture.

4. After the presentation, 15 minutes is then devoted to questions from students, visitors,
and the teacher.

5. All students must be present for all presentations.

• grading rubric

1. intro/background (20)

2. concepts/methods (20)
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3. pedagogy/speaking skills (20)

4. understanding: presentation (20)

5. understanding: questions (20)

.7 AOS 572 course outline
Here we offer specifics of the course material covered during AOS 572, which is roughly organized
as 2/3-waves and 1/3-instabilities.

1. Fourier analysis

• Chapter 8: Fourier analysis

• This video, also from 3Blue1Brown provides a visual introduction to Fourier trans-
forms.

• This video from 3Blue1Brown provides a visual introduction to Fourier series.

• Exercises 8.1 and 8.2

2. Plane waves and wave packets

• Chapter 49

• Exercises 49.1, 49.3, 49.4.

3. Acoustic waves

• Chapter 51

• The second half of this video offers an introduction to acoustic waves.

• Exercises 51.1, 51.2

4. Surface gravity and capillary waves (Part I)

• Chapter 52

• Exercises 52.2, 52.3

5. Surface gravity and capillary waves (Part II)

• Chapter 52

• Exercises 52.5, 52.7

6. Inertial waves

• Chapter 53

7. Two-dimensional barotropic Rossby waves I

• Chapter 54

• Exercises 54.1 and 54.2

8. Two-dimensional barotropic Rossby waves II

• Chapter 54

9. Shallow water waves I

• Chapter 55
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• The first half of this video offers an introduction to shallow water waves.

• Exercises 55.1 and 55.5

10. Shallow water waves II

• Chapter 55

• 14-minute video on gravity waves from Prof. N. Hall

• Exercises 56.1 and 56.2

11. Internal gravity waves I

• Chapter 57

• Tank experiment from Prof. Peter Rhines’ lab

• Simulations from Prof. Dale Durran

12. Internal gravity waves II

• Chapter 57

• Exercise 57.1

13. Forced internal gravity waves

• Chapter 58

• Exercises 58.1 and 58.2

14. Centrifugal instability

• Chapter 59

• Sections 17.1 and 17.2 of Cushman-Roisin and Beckers (2011)

15. Inertial instability and symmetric instability

• Chapter 59

• Section 17.2 of Cushman-Roisin and Beckers (2011)

• Exercises 59.1, 59.2 and 59.3

16. Rayleigh-Taylor instability

• Chapter 60

• Wikipedia for Rayleigh-Taylor

17. Kelvin-Helmholtz instability

• Chapter 60

• Sections 9.1 of Vallis (2017)

• Wikipedia for Kelvin-Helmholtz

18. Horizontal shear instability I

• Section 54.5

• Chapter 61

• Section 3.12 of Smyth and Carpenter (2019)

• Sections 9.2-9.3 of Vallis (2017)
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• Chapter 10 of Cushman-Roisin and Beckers (2011)

19. Horizontal shear instability II

• Chapter 61

• Section 3.12 of Smyth and Carpenter (2019)

• Sections 9.2-9.3 of Vallis (2017)

• Chapter 10 of Cushman-Roisin and Beckers (2011)

• Exercise 61.2

20. Stratified shear instability

• Chapter 61

• Section 11.7 of Kundu et al. (2016)

• Sections 14.1 and 14.3 of Cushman-Roisin and Beckers (2011)

• Chapter 4 of Smyth and Carpenter (2019)

21. Quasi-geostrophic waves

• Chapter 62

• Chapter 8 of Smyth and Carpenter (2019)

• Sections 9.4-9.8 of Vallis (2017)

• Sections 17.3-17.6 of Cushman-Roisin and Beckers (2011)

• Rotating tank experiment from Prof. Wing

• Rotating tank experiment from MIT

22. Baroclinic instability II

• Chapter 62

• Chapter 8 of Smyth and Carpenter (2019)

• Sections 9.4-9.8 of Vallis (2017)

• Sections 17.3-17.6 of Cushman-Roisin and Beckers (2011)

23. Baroclinic instability III

• Chapter 62

• Chapter 8 of Smyth and Carpenter (2019)

• Sections 9.4-9.8 of Vallis (2017)

• Sections 17.3-17.6 of Cushman-Roisin and Beckers (2011)

24. A survey of turbulence

• Chapters 11 and 12 of Vallis (2017)

• Turbulence and the 5/3 spectrum from 3Blue1Brown

• Rayleigh-Bernard convection generated turbulence as simulated using Dedelas

• 3d turbulence video from Prof. Stewart

• MicroHH simulations

• Steve Brunton lecture
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• Decaying two dimensional turbulence

• Forced two dimensional turbulence from Prof. Ed Zaron

• Two dimensional turbulence and cascade from Prof. Ryan Abernathey

• Shallow water turbulence from Prof. Ed Zaron

• Geostrophic turbulence from Prof. Bill Young

• CM2.6 surface temperature simulation

• Neverworld2 shallow water simulations
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Part I

Mathematical methods

1



We assume that readers of this book have a wide range of prior exposure to and penchant
for mathematical physics. For example, many graduate students in the atmospheric and oceanic
sciences might have seen elements of vector calculus during their first and/or second year of
undergraduate studies (or perhaps even in high school), but may have used these methods
only sporadically in subsequent years. This situation is distinct from those having a degree in
physics or engineering, whose mathematical training is nurtured throughout their undergraduate
and graduate years. Those not having received a thorough mathematical physics/engineering
undergraduate training must fill gaps to intellectually digest the physics in this book. This
situation motivates writing the chapters in this part of the book, which offers an eclectic suite of
mathematical concepts and tools to help in the study and practice of geophysical fluid mechanics.

Concerning the value and importance of mathematical physics

When considering the impressive skill of numerical simulations of geophysical flows now
common in the 21st century, the analytical training received by a 20th century theoretical
scientist and engineer may seem like an unnecessary relic. Why bother to become adept at
the huge variety of methods and tricks for deriving and/or analytically solving equations of
mathematical physics? One answer is simply that such knowledge and skills provide a wealth
of fundamental physical understanding. Namely, mathematics remains the most precise and
powerful language of physics. So anyone presuming to do physical science or engineering must
have some level of skills in mathematics. Quite simply, to sidestep a training in mathematical
methods risks missing a huge opportunity to grok the physics. Namely, conceptual insights
arise from the use of mathematics to expose the physical and geometrical meaning of physics
equations, even for those equations that cannot be analytically solved. From this perspective,
we propose that there is a growing, not declining, need for practitioners to understand the
physical principles and mathematical methods at the heart of the compelling pictures generated
by ever-increasingly powerful computers, satellites, and in situ measures of geophysical fluid
flows.

The depth to which one can pursue mathematical physics goes far beyond that presented in
this book. For example, a modern mathematical treatment of continuum mechanics makes use of
differential geometry and differential forms as presented in such books as Schutz (1980), Frankel
(2004), and Tromp (2025a). However, to develop familiarity and trust with differential forms
requires a nontrivial intellectual investment. At best, we offer glimpses of that approach through
forays into tensor analysis, with pointers to such approaches in the literature to motivate the
interested reader to dive deeper by accessing the literature.

physics provides relations between geometric objects

Mathematical objects of use for the study of fluid mechanics include scalar fields (e.g.,
temperature, mass density, specific entropy), vector fields (e.g., velocity, vorticity), and second
order tensor fields (e.g., diffusion tensor, stress tensor, moment of inertia tensor). These and
other fields have a value at each point in the continuous space and time used in continuum
mechanics. Furthermore, their existence is independent of the arbitrary coordinate choices used
for the mathematical description. In the study of geophysical fluid mechanics, we use physical
principles to develop differential equations relating geometric objects referred to here as tensors.
Mathematical tools of analysis are then used to compute the numbers required to compare
with experiments and field measurements, and to formulate discrete equations for numerical
simulations.

Our perspective can be summarized by “physics as geometry”, which forms a foundation to
theoretical physics such as that detailed in Thorne and Blandford (2017) and Tromp (2025a).
This perspective has both conceptual and practical use for our study throughout this book. In
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this part of the book we develop certain mathematical tools of geometry and analysis that are
later used to formulate theoretical geophysical fluid equations and conceptual models. Our aim
is to develop mathematics to help both pack and unpack the physics encapsulated by equations,
pictures, and words. This aim extends to those cases where closed form analytical solutions are
unavailable, which is the norm for nonlinear field theories such as fluid mechanics or even in
many cases when the equations are linearized. Such qualitative and conceptual tools are of great
value for the analysis of numerical simulations and field measurements.

tensor analysis and geophysical fluid mechanics

There are many occasions where a geophysical fluid system is more physically transparent
when using a particular coordinate description or reference frame. However, there is no a priori
coordinate choice that fits all cases. Thus, being adept at transforming from one mathematical
description to another eases the study and pays huge dividends to the practioner. Tensor analysis
is the proven means for systematically performing such transformations, thus motivating its use
in fluid mechanics and other areas of continuum mechanics. In its more abstract realization via
differential (or exterior) forms (not pursued in this book), tensor analysis provides the means to
mathematically express physical ideas without any display of coordinate artefacts, thus exposing
the underlying physical and mathematical essence.

The following offers an incomplete list of geophysical fluid systems where various coordinate
descriptions or reference frames are encountered, and thus where tensor analysis can be put
to use. Granted, many of these physical systems can be studied without the formalism of
tensor analysis. However, by doing so one often encounters clumsy manipulations that obfuscate
the underlying physical concepts. Indeed, imagine the tedium required to write continuous
field equations in multiple dimensions prior to vector analysis.6 That situation is akin to the
tedium and awkward nature required to work across multiple coordinate systems and reference
frames absent the formalism of tensor analysis. Hence, an adept use of vector analysis and its
generalization to tensor analysis reveals how maths can inform the physics and how physics can
is embodied by the maths.

• relating eulerian and lagrangian kinematics: There is a duality in fluid kinematics
between Eulerian and Lagrangian descriptions of fluid motion. To develop an understanding
of this duality we make use of tensor analysis to facilitate the transformation between the
two kinematic descriptions. Whereas Cartesian coordinates offer a complete description for
Eulerian kinematics, Lagrangian kinematics requires general tensor analysis (Chapters 3
and 4) since fluid particles deform with the fluid motion and thus render a non-orthogonal
coordinate description.

For many purposes in continuum mechanics, one can pursue a description of motion without
the choice of an origin, thus making use of some general results from differential geometry
and tensor analysis. Our pursuit is less ambitious since we always have in mind a fluid
system on a rotating planet or laboratory placed in a background Euclidean space with
universal Newtonian time. Hence, for our puposes we acknowledge that there is a natural
origin for a spatial description (e.g., planetary center or fixed location in the laboratory).

• approximately spherical planet: Geophysical fluids move on an approximately
spherical planet, making spherical coordinates the preferred choice for studying planetary
flows.7 The surface of a sphere is non-Euclidean object that is embedded in a background

6The original treatment of electrodynamics by Maxwell was before the notations of vector analysis were
invented by Gibbs, Heaviside, and others. Hence, reading Maxwell’s original maths is, by today’s standards,
tedious and challenging.

7Staniforth (2022) provides compelling arguments for moving beyond spherical coordinates for realistic
atmospheric and oceanic modeling.
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Euclidean space. We make use of tensor methods to transform between planetary Cartesian
coordinates (origin at the center of the planet) and spherical coordinates. Notably, spherical
coordinates are locally orthogonal, so that one can, if desired, make use of spherical
coordinates without the machinery of tensor analysis. Even so, having two ways to develop
the spherical equations provides useful pedagogy when learning tensor analysis since results
are readily checked with prior experience.

• rotating tank: Rotating laboratory fluids move in a circular tank, with cylindrical
polar coordinates respecting symmetry of the domain. We make use of tensor methods to
transform between Cartesian and cylindrical polar coordinates when considering rotating
tank systems. Cylindrical polar coordinates are locally orthogonal, so that the comments
above about spherical coordinates also hold here.

• rotating reference frame: Geophysical fluids move around a rotating earth and
the fluid maintains a nearly rigid-body motion. Terrestrial observers also move in near
rigid-body motion with the planet. We are thus motivated to study geophysical fluids from
a rotating reference frame. We use rudimentary tensor methods to transform between a
fixed inertial frame and the non-inertial rotating reference frame, with this transformation
revealing non-inertial accelerations (planetary Coriolis and planetary centrifugal) that
impact on the observed fluid flow.

• Galilean transformations: Geophysical fluids move in a space-time defined by univer-
sal Newtonian time (all clocks measure same time) and Euclidean space, with the product
of these two defining Galilean space-time. When studying fluid motion it can be convenient
to move from one Galilean reference frame to another, with the movement referred to as a
Galilean transformation. Tensor methods are quite useful to develop the mathematical
relations between two Galilean reference frames.

• stratified fluids and generalized vertical coordinates: Geophysical fluids move
in a gravitational field that acts to stratify the fluid according to its local buoyancy (high
buoyancy fluid sits above low buoyancy fluid). When there is a one-to-one invertible
relation between the height and the buoyancy, then it can be useful to describe the vertical
position of a fluid element according to its buoyancy rather than its height. This buoyancy
or “isopycnal” vertical coordinate choice leads to a non-orthogonal coordinate description of
the fluid motion. There are other vertical coordinates that can be of use for other situations,
such as the terrain following coordinates commonly used for atmospheric simulations and
coastal ocean models. Transforming between Cartesian coordinates and such generalized
vertical coordinates is greatly facilitated by the use of general tensor analysis.

Our use of tensor analysis is minimized both to reduce the necessary mathematical overhead
for the reader, and because much of the physics in this book is suitably displayed with Cartesian
coordinates, in which case tensor analysis and vector calculus are nearly identical. Furthermore,
even in those cases where tensor analysis has an obvious benefit, such as the generalized vertical
coordinates of Part XII, we do not pursue the full power of tensor analysis since doing so requires
more development of the mathematical formalism than warranted for this book.

summary of the math chapters

Some of the chapters in this part of the book are essential for nearly all subsequent chapters
(e.g., Chapters 1 and 2), with the bulk of this book accessible to those with a strong undergraduate
training in multivariate calculus and the rudiments of analytic geometry. Other chapters target
those interested in penetrating various special topics presented in this book. Readers are
encouraged to take a close look at each chapter if only to know where to find topics of use later
in the book or later in one’s career.

page 4 of 2158 geophysical fluid mechanics



.7. AOS 572 COURSE OUTLINE

• cartesian tensor algebra: Chapter 1 is a synopsis of Cartesian tensor analysis. This
topic provides a systematization of ideas from Cartesian geometry and linear algebra.
Material in this chapter is essential for nearly every topic in this book.

• cartesian tensor calculus: Chapter 2 extends the algebraic ideas from Chapter 1 to
differential and integral calculus. This chapter provides a resume of multivariate or vector
calculus of use for fluid mechanics. Material in this chapter is essential for nearly every
topic in this book.

• general tensor introduction: Chapter 3 provides an introduction to general tensor
analysis and its applications to geophysical fluids. The discussion is accessible to anyone
who has read Chapters 1 and 2, as it builds directly from that earlier discussion. Chapter
3 is highly recommended for all readers of this book, even for those who do not wish to
study details of general tensors in Chapter 4.

• general tensor analysis: Chapter 4 extends the Cartesian tensor algebra and calculus
from Chapters 1 and 2 to allow for arbitrary, or general, coordinates. This chapter is
essential for the mathematics underlying non-Cartesian coordinates, such as spherical
coordinates, generalized vertical coordinates (Part XII of this book), and Lagrangian/-
material coordinates (e.g., Chapters 17 and 18). Note that we retain the assumption
that all tensors are embedded within a background Euclidean space, which offers some
simplification relative to that needed to study topics such as general relativity.

• partial differential equations: Chapter 6 provides a summary of linear partial
differential equations (PDEs) commonly encountered in mathematical physics. Even
though the equations of fluid mechanics are nonlinear, their linear counterparts offer much
insight into fluid behavior, with particular applications to the study of waves, instabilities,
and tracer transport.

• Dirac delta: Chapter 7 develops properties of the Dirac delta generalized function, which
provides one of the most magical tools available for the theorist. The Dirac delta has
particular use in the study of Fourier analysis and Green’s functions.

• fourier analysis: Chapter 8 summarizes salient points from Fourier series and Fourier
transforms. We make particular use of Fourier analysis in the study of wave mechanics in
Part X of this book.

• green’s functions: Chapter 9 surveys Green’s function methods used to solve linear
partial differential equations. Green’s function methods build on the superposition principle
possessed by linear systems, and they foster insights into both the mathematical and
physical content of linear differential equations.

• variational calculus: Chapter 10 offers an introduction to the calculus of variations,
which proves of great use for our study of mechanics via Hamilton’s Principle.

• geometry of curves and surfaces: Chapter 5 introduces rudimentary differential
geometry used to characterize curves (such as fluid particle trajectories) and surfaces (such
as isopycnals) embedded in a background Euclidean space. Here we encounter such notions
as normal and tangent directions as well as the curvature of a surface.

In closing this introduction, we quote from page 1 of the classical text on theoretical physics
by Morse and Feshbach (1953). Their perspective and goals have inspired and guided the
chapters in this part of the book.
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Our task in this book is to discuss the mathematical techniques which are useful
in the calculation and analysis of the various types of fields occurring in modern
physical theory. Emphasis will be given primarily to the exposition of the interrelation
between the equations and physical properties of the fields, and at times details of the
mathematical rigor will be sacrified when it might interfere with the clarification of
the physical background. Mathematical rigor is important and cannot be neglected,
but the theoretical physicist must first gain a thorough understanding of the physical
implications of the symbolic tools [they are] using before formal rigor can be of help.
Other volumes are available which provide the rigor; this book will have fulfilled its
purpose if it provides physical insight into the manifold field equations which occur
in modern theory, together with a comprehension of the physical meaning behind
the various mathematical techniques employed for their solution.
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Chapter 1

TENSOR ALGEBRA

A mathematical study of geophysical fluid flow makes use of Galilean relativity, which is built
from Newtonian universal time (all clocks in the universe measure the same time) and flat
Euclidean space (the intrinsic curvature vanishes). This Galilean space-time structure induces the
familiar Euclidean norm or metric when measuring the spatial distance between two points. That
is, the Euclidean space measures distance using Pythagorus’ theorem. This Pythagorean method
to measure distance holds even when the points are restricted to non-Euclidean manifolds (e.g.,
point on a sphere or points on an arbitrary surface such as a constant buoyancy surface), so long
as those manifolds are embedded within the Euclidean background space. We can thus make
use of Cartesian coordinates as the starting point for a mathematical formulation of geophysical
fluid mechanics, whether using Eulerian or Lagrangian kinematics (Chapters 17 and 18) or
generalized vertical coordinates (Part XII).

Tensors are geometric objects that have no concern for coordinate system nor origin. As
noted above, we are concerned with tensors living in three-dimensional Euclidean space as well
as tensors living on a non-Euclidean manifold (e.g., a sphere or an isopycnal) that is embedded
within Euclidean space. The study of Cartesian tensors restricts attention to tensors described by
Cartesian coordinates in Euclidean space, or for tensors on flat surfaces embedded in Euclidean
space. The isomorphism between three-dimensional Euclidean space and the space of three-
dimensional real numbers allows one to associate each point of Euclidean space, x ∈ E3, with
unique Cartesian coordinates, x ∈ R3, for that point. This isomorphism renders a connection
between geometry and analysis, thus offering two perspectives on the equations of mathematical
physics.

Transformations to alternative coordinates are made if they offer insight to symmetry of
the flow and/or the geometry of the space on which the flow occurs. For Cartesian coordinate
systems with the same origins and of equivalent handedness, such transformations are related by
rotations, which are orthogonal transformations. More general transformations to non-Cartesian
coordinates are the topic of general tensor analysis, with details provided in Chapters 3 and 4.

In this chapter we introduce tensor analysis with a focus on algebraic relations. Our treatment
shares much with the mathematical physics literature, such as Chapter 2 of Aris (1962), Chapter
1 of Segel (1987), and Chapter 2 of Lovelock and Rund (1989) (whose use the term affine tensors
rather than Cartesian tensors). Additionally, we provide a particular emphasis on the distinction
between tensors as geometric objects versus their subjective representations using coordinates,
with this emphasis of fundamental importance particularly when working with general tensors.
We also introduce the notion of a one-form as a tensor that is dual to vectors, and in turn
we distinguish covariant and contravariant tensor representations. The distinctions between
one-forms and vectors are not central to this book, since the two representations are connected
through the metric tensor, which we always assume is available for our use.

The extra bit of formalism associated with covariant and contravariant tensor representations
is not needed for Cartesian tensors, so that most textbook treatments of Cartesian tensors ignore
it. However, it serves our purpose to smooth the transition to the general tensors studied in
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Chapters 3 and 4. Indeed, for that purpose we typically write gab as the representation of the
metric tensor, which for Cartesian tensors reduces to the Kronecker symbol, gab = δab.

chapter guide

This chapter is a prerequisite for nearly every chapter to follow. It should be accessible to
those having a working knowledge of linear algebra.

We make use of covariant index notation for the representation of tensors (indices placed
downstairs), as well as the contravariant index notation (indices placed upstairs).a For
Cartesian coordinates in Euclidean space, there is no numerical distinction between
covariant and contravariant index placements (see Section 1.4.5). Even so, we make
use of the covariant/contravariant notation in anticipation of its use for general tensors
in Chapters 3 and 4 (see in particular Section 3.5). This notation also facilitates the
Einstein summation convention, in which repeated indices are summed over their range.
So although this chapter focuses on Cartesian tensors, we keep our eye on their more
general cousins, with a particular aim to reveal those assumptions suited to Cartesian
tensor analysis yet that are unsuited to general tensor analysis.

aThe mnemonic “co-low” helps remember the index placement.
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1.1 Loose ends
• Move from δab to gab so to get used to the general coordinates. That will make life easier
when move to chapters 3 and 4.

1.2 Points, positions, and notation

Consider a point, P ∈ E3, living in three-dimensional Euclidean space. As a geometric object, a
point has an existence that is independent of any coordinate representation. Now let x be the
position for this point relative to an arbitrary origin. Once an origin is fixed, the position, x,
also has an existence that is independent of coordinates, and so we consider x ∈ E3. Namely, the
position for a point in Euclidean space is a line segment with an arrow pointing from the origin
to the point. In this manner, the point, P, and its position, x, have no concern for coordinate
systems. Even so, to make use of geometric objects for analysis requires specifying a set of
coordinates, and in this chapter we focus on Cartesian coordinates.

1.2.1 Cartesian representation of the position
The isomorphism between Euclidean space and the real numbers allows us to associate a unique
Cartesian coordinate representation, x ∈ R3, for the position of every point in Euclidean space.
We write this Cartesian coordinate representation as

x = x̂x+ ŷ y + ẑ z x ∈ E3 (1.1a)

x = (x, y, z) x ∈ R3. (1.1b)

These equations state that each position, x ∈ E3, has a unique coordinate representation, x ∈ R3,
with the coordinate representation written here using three-dimensional Cartesian coordinates.
A Cartesian coordinate representation is provided by an ordered triplet of real numbers, (x, y, z).
Each element of the triplet measures the coordinate distance (with physical dimensions of length)
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z

y

x

x

P

Figure 1.1: An arbitrary point in Euclidean space, P ∈ E3, has an objective existence independent of a subjective
choice of coordinate system used to describe its position. Its position, x, relative to a chosen origin has an existence
independent of the orientation of the coordinate system. The position is here represented by a right-handed
Cartesian coordinate system according to x = x̂x+ ŷ y+ ẑ z, with the coordinate representation, x = (x, y, z) ∈ R3.
The Cartesian basis vectors are given by the normalized triplet of unit vectors (x̂, ŷ, ẑ). There is a continuous
infinity of possible Cartesian coordinate systems that are rotated with respect to the one shown here.

along the axes defined by their corresponding Cartesian unit vectors, (x̂, ŷ, ẑ), with these unit
vectors pointing in directions of increasing coordinate values. The Cartesian unit vectors are a
right-handed set of linearly independent vectors that form a basis for three dimensional Euclidean
space.1 As such, the position for any point in Euclidean space can be represented in terms of
these three basis vectors.

1.2.2 A soft convention for upright versus slanted notation

We use an upright symbol for a geometric object living in Euclidean space. The position, x ∈ E3,
is an example (in LATEX, the upright is written \mathbf{x}), as are the tensors introduced later.
The corresponding slanted symbol is used for a coordinate representation of the position, x, or
of a tensor, with coordinate representations living in the space of real numbers (using LATEX, the
slanted boldface is written {\bm x}). Each coordinate representation is realized by specifying
a subjectively chosen set of coordinates. For this chapter the coordinates are Cartesian with
x ∈ R3 and with each coordinate having a physical dimension of length. So in summary, the
upright notation is used for the position and for tensors, and the slanted notation is used for
their coordinate representations.

The distinction between an upright and slanted version of a symbol is fundamental con-
ceptually, in that it distinguishes tensors as geometric objects from their coordinate specific
representations. Even so, the distinction is not critical in practice since an equation can be
generalized from a specific set of coordinates (e.g., Cartesian) to arbitrary coordinates, so long
as the equation respects the tensor rules discussed in Section 3.1.2.

1.2.3 Indices and Einstein’s summation convention

Coordinate representations of the position and of tensors require indices to distinguish the
various objects that appear in tensor analysis. The practioner of tensor analysis becomes quite
adept with the rules of index gymnastics, and we nurture the necessary brain-muscle in this
chapter.2 The choice for where to place indices follows a convention that originates from that
used for the position. This convention then sets the stage for subsequent usage with tensors.

1The unit vectors are sometimes denoted (î, ĵ, k̂) in the literature. We do not use that notation in this book.
2See Section 3.5 for a summary of the rules.
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We choose to write the coordinate representation of the position as

x = x̂x1 + ŷ x2 + ẑ x3 =

3∑
a=1

ea x
a = ea x

a, (1.2)

with the superscripts acting as tensor labels rather than as multiplicative powers. The final
equality in equation (1.2) introduced the Einstein summation convention, in which we drop the
summation symbol while repeated indices are summed over their range. Although seemingly
trivial, the summation convention proves central to a variety of tensor manipulations, and so it
is important to make friends with it. The second equality in equation (1.2) introduced a generic
notation for the basis vectors

e1 = x̂ and e2 = ŷ and e3 = ẑ, (1.3)

with this notation allowing us to succinctly write the coordinate representation as x = ea x
a.

We emphasize that the indices denote components of a specific coordinate representation,
xa = (x1, x2, x3), as well as members from the set of basis vectors, ea = (e1, e2, e3). These
labels are not multiplicative powers nor partial derivative operations.3 Furthermore, placement
of the downstairs tensor indices on the basis vectors pairs with the upstairs indices placed on
the coordinate representations of the position. Such index placements establish a convention
that is used for tensors.

1.2.4 Alternative Cartesian coordinates

We have thus far written x as the Cartesian coordinate representation of the position, x. Now
consider an alternative Cartesian coordinate system in which the position is represented by x.
In Section 1.10 we work through the mathematics of the transformation between the two sets
of Cartesian coordinates, x and x. For now we use the existence of this alternative coordinate
system to exemplify the distinction between a geometric object (e.g., the position), versus
its coordinate representation. Namely, the position for a particular point in space, x, can be
represented in either of the following equivalent manners

x =

3∑
a=1

ea x
a with x = (x1, x2, x3) (1.4a)

x =

3∑
a=1

ea x
a with x = (x1, x2, x3). (1.4b)

That is, the position, x, points from the origin to the point P, and it can be represented using
any number of Cartesian coordinates, with two such coordinates here written as x and x. Since
both coordinate sets are Cartesian, their respective basis vectors, ea, and ea, are orthonormal.

1.3 Tensors

We extend the study of points and their positions in Section 1.2 to now consider tensors as
geometrical objects that live in E3 or a suitable submanifold. Just like the position for a point,
each tensor has a coordinate representation that allows for its use in analysis. Importantly, a

3In this book we generally eschew the notation where partial derivatives are denoted by a subscript. One
exception occurs in our discussion of the evolution of mass density in Sections 72.2 and 72.3.
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tensor has no dependence on either the choice for coordinates nor the choice for origin.4 In
this section we introduce the Kronecker tensor, which is the unit tensor, as well as vectors and
one-forms.

1.3.1 Kronecker (unit) tensor
The Cartesian basis vectors each have unit magnitude (normalized), meaning that their scalar
products satisfy5

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1, (1.5)

which can be written more generally as

ea · eb = δab, (1.6)

with δab the Kronecker symbols, which form the (0, 2) Cartesian representation of the Kronecker
tensor, also known as the unit tensor, which is given by6

ea · eb = δab =

{
1 if a = b
0 if a ̸= b.

(1.7)

As seen in Section 1.4, the Kronecker tensor provides the Cartesian coordinate representation of
the metric tensor for Euclidean space. In Section 4.1 we introduce alternative representations
for the metric based on the use of general coordinates.

Use of a hat over a vector in equation (1.3) signifies that the vector is normalized to unity.
For Cartesian coordinates we generally work with the normalized basis vectors (1.3), or their
orthogonal transformations related by a rotation (Section 1.10). Indeed, a normalized vector can
change only through rotation since by definition it remains of unit norm and so cannot change
its magnitude (see Section 2.1.4). For general tensors, we sometimes find it more convenient
to work with unnormalized basis vectors. Hence, the basis vectors, ea, are not assumed to be
normalized and so are not adorned with a hat.

1.3.2 Vectors as tensors
The position, x, identifies locations in space relative to a chosen origin, and it is commonly
referred to as the position vector. However, we reserve the term “vector” for a particular
example of geometric objects (i.e., tensors) that are independent of coordinates as well as origin.
Geometrically, we define a vector as a line segment with an arrow that points in a particular
direction. In this manner, a vector has no concern for any subjectively chosen origin. We
encounter a number of vectors in physics, such as the velocity, acceleration, and force.

It is notable that the velocity is the time derivative of the position of a point particle that
moves through space, and the acceleration is the second time derivative. Taking a time derivative
of the position removes dependence on the origin. So although the position of a point particle is
not a tensor, its time derivative is a first order tensor, as is the acceleration. This result hints at
the nature of vectors as living in the tangent space to points on a manifold, which is a concept
we return to in Section 4.2.3 when studying general tensors.7

4The position, x, depends on the arbitrarily chosen origin. Consequently, the position is not a vector (a first
order tensor). This distinction is easily forgotten since the position is often referred to as the “position vector”.
See Section 1.3.2 for more on this point.

5The Cartesian scalar (or dot or inner) product is discussed more formally in Section 1.4.
6The notation (0, 2) signifies the number of upstairs or contravariant indices, 0 here, and the number of

downstairs or covariant indices, 2 here.
7The flow map or motion field introduced in Section 18.2 is the generalization of position and trajectory to

continuum matter. Like the position, the flow map is not a tensor, though its time derivative, the velocity field, is
a tensor.
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Following the notation for the position and its coordinate representation, we use an upright
bold symbol, F, for a vector and write its coordinate representations with a slanted F :

F = F a ea ∈ E3 and F = (F 1, F 2, F 3) ∈ R3. (1.8)

The coordinate components, (F 1, F 2, F 3) are dependent on the choice for coordinate basis
vectors. As there is one index on the components of a vector, they are referred to as first order
tensors. Furthermore, the contravariant representation of a first order tensor (i.e., as a vector) is
referred to as its (1, 0) representation.

1.3.3 One-forms as the dual to vectors
Equation (1.8) represents the first order tensor, F, in terms of a suite of basis vectors, ea, and
the contravariant coordinate representation, F a. We define one-forms as the duals to vectors in
a manner analogous to how row and column vectors are dual objects in linear algebra.8 We do so
by introducing a basis of one-forms, written as ea, with the upstairs index chosen to distinguish
from the downstairs index used for the vector basis, ea. Following Figure 2.8 of Misner et al.
(1973) and Figure C.6 of Tromp (2025a), we offer the following geometric interpretation of a
basis of one-forms as a dual to a basis of vectors. Namely, a particular member of a vector basis
corresponds geometrically to a unit length line segment with an arrow pointing in the direction of
increasing coordinate value. A member of a one-form basis has the dual geometric interpretation
as a surface or sheet whose outward normal direction is given by the corresponding basis vector.

Equation (1.8) offers a coordinate representation of a first order tensor in terms of a vector
basis, ea. If we insist on a tensor as a geometric object, then we can also represent the same
tensor in terms of a set of basis one-forms, in which case

F = Fa e
a ∈ E3. (1.9)

We say that the first order tensor, F, is here represented in terms of a one-form basis, ea, with the
covariant expansion coefficients, Fa, providing the corresponding (0, 1) coordinate representation
of the tensor.

1.3.4 Scalar product and the duality condition
Using the language of Misner et al. (1973), we say that a one-form eats a vector to produce a
scalar. Equivalently, a vector eats a one-form and also produces the same scalar. We realize
this machine analogy by defining the scalar product as follows.9 Namely, we define a scalar
product between a first order tensor represented as a vector, F = F a ea, and a first order tensor
represented as a one-form, G = Ga e

a, as

F ·G = (F a ea) · (Gb eb) = F aGb (ea · eb). (1.10)

To proceed, assume the vector basis and one-form basis satisfy the following duality condition

ea · eb = δa
b = δba. (1.11)

8The introduction of one-forms has little practical motivation for Cartesian tensors since there are no numerical
distinctions between one-forms and vectors (as shown in Section 1.4.5). So why add this extra bit of formalism?
It turns out that one-forms are needed when working with general tensors, with the associated formalism further
detailed and motivated in Section 4.2. We introduce the extra baggage in the study of Cartesian tensors to
anticipate the treatment with general tensors. It also offers a means to help keep track of the index notation. The
added formalism is not onerous after a bit of head-scratching, and it is well worth the price in support of the
transition to general tensors.

9Section 4.2 furthers this approach and offers a bit more clarity. Here we are a bit informal in order to avoid
going too deep into the flowering weeds.
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We here introduced δa
b = δba, which is the representation of the Kronecker delta where one

index is downstairs and the other is upstairs. In Cartesian tensors, this representation of the
Kronecker tensor is numerically identical to δab introduced by equation (1.7)

δab = δa
b = δba =

{
1 a = b
0 a ̸= b.

(1.12)

Furthermore, the identity δa
b = δba means that the Kronecker tensor is symmetric; i.e., swapping

which index comes first (i.e., rows and columns when expressed as a matrix) does not alter the
tensor.10 Making use of duality condition leads to the equivalent expressions of a scalar product
between a vector and one-form

F ·G = (F a ea) · (Gb eb) = F aGb ea · eb = F aGb δa
b = F aGa. (1.13)

The result is indeed a scalar since the indices are contracted. Returning to the geometric picture
from Section 1.3.3, the duality condition (1.11) says that the scalar product of a vector basis
element and one-form basis element equals to unity if the vector basis is the outward normal to
the one-form basis, whereas the scalar product is zero otherwise.

1.4 Distance and metric

In defining the Cartesian unit vectors, (x̂, ŷ, ẑ), to have unit magnitudes, we presumed knowledge
of how to measure the magnitude of a vector. We here make this notion precise.

1.4.1 Distance between points

Consider two points in Euclidean space, P and P + dP, where the differential, d, symbolizes a
small increment in space. These two points are specified by their respective positions, x and
x+ dx. Representing these positions using a particular set of Cartesian coordinates renders

x = x = xa ea and x+ dx = (xa + dxa) ea. (1.14)

Euclidean space is afforded a metric whereby the squared distance between two points is measured
via Pythagoras’ theorem

[distance(P,P+ dP)]2 = (x+ dx− x) · (x+ dx− x) definition of distance (1.15a)

= dxa dxb (ea · eb) coordinate representation (1.15b)

= dxa dxb δab basis orthonormality (1.6) (1.15c)

= (dx1)2 + (dx2)2 + (dx3)2 expanding the sum (1.15d)

= (dx)2 + (dy)2 + (dz)2 use familiar x, y, z notation. (1.15e)

Evidently, the Kronecker or unit tensor, I, which has Cartesian coordinate representation δab,
provides the means to compute distances in Euclidean space when using Cartesian coordinates.
We thus say that the Kronecker delta provides the Cartesian representation of the Euclidean
metric tensor.

10The duality condition (1.11) is analogous to the orthogonality between a row vector basis and column vector
basis.
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1.4.2 Use of more general notation for the metric tensor

The Kronecker symbols, δab, are but one of the many representations available for the metric
tensor applicable to Euclidean space. We encounter a number of other representations when
using, for example, spherical coordinates, cylindrical polar coordinates, generalized vertical
coordinates, and Lagrangian coordinates. For these other coordinates we need a more general
expression for the metric. For this purpose we write the metric tensor representation as gab, so
that

gab
Cartesian

= δab for Euclidean space with Cartesian coordinates. (1.16)

Although we are mostly concerned in this chapter with Cartesian tensors, we introduce the more
general expression for the metric tensor to readily expose those results that hold for general
tensors.

1.4.3 Magnitude of a vector

By defining the distance between two points, we now have the means to define the squared
magnitude of an arbitrary vector

|F|2 = F · F = F a F b (ea · eb) = F a F b gab
Cartesian

=

3∑
a=1

F a F a, (1.17)

with the final equality holding for Cartesian tensors with gab = δab. Correspondingly, we have
the scalar product between two vectors

F ·G = F aGb (ea · eb) = F aGb gab
Cartesian

=
3∑

a=1

F aGa, (1.18)

which we already encountered in Section 1.3.4. Given our expression for the scalar product and
the magnitude of vectors, we can introduce a geometrical interpretation by defining the angle
between the vectors according to

cosϑ ≡ F ·G
|F| |G| =

F aGb gab√
F c F d gcd

√
GeGf gef

. (1.19)

Though a bit pedantic, the use of distinct indices within each of the terms emphasizes that
each of the scalar products is self-contained. We illustrate this equation in Figure 1.2 for
Cartesian coordinates. It is useful to verify that this definition is consistent with −1 ≤ cosϑ ≤ 1.
Furthermore, note that this definition of an angle between two vectors makes use of the metric
tensor, thus emphasizing that angles on a manifold, just like distances, require a metric.11

1.4.4 Relating covariant and contravariant tensor representations

When a manifold has a metric tensor, then we can seamlessly transfer between the covariant and
contravariant representation of a tensor. In this manner, the metric tensor links the one-forms

11This point about the need for a metric tensor might seem pedantic to those having only worked with
Euclidean space with Cartesian coordinates, where the formalism of linear algebra and calculus tacitly builds in
the Kronecker metric from the start. However, the study of calculus can be generalized to differential manifolds
that have no metric. For example, the mathematics of thermodynamics is based on differential manifolds that
have no metric, and thus no sense for distance or angles between two points in thermodynamic space (see Schutz
(1980) and Frankel (2004) for discussions). Nurser et al. (2022) offer another example for studies of fluid motion
in continuous property spaces rather than Euclidean space.
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F

G
ϑ

F ·G = |F| |G| cosϑ

Figure 1.2: Illustrating the geometry of the scalar product (also known as the dot product or inner product)
between two arbitrary vectors, F ·G = |F | |G| cosϑ.

and vectors so to make their distinction important conceptually yet unimportant in practice.
We here introduce the formalism for this conversion.12

The operational means to convert between the covariant to contravariant expressions of a
tensor arises through contraction of a tensor with the metric tensor, where contraction refers
to summation over a common index. For Cartesian coordinates on Euclidean space, we saw in
Section 1.4 that the metric tensor is represented by the Kronecker tensor. To raise and lower
indices on Cartesian tensors, one contracts with the metric tensor, so that, for example,

F = F a ea contravariant representation (1.20a)

= (gab Fb) (gac e
c) raise/lower indices with metric, gab and its inverse, gab (1.20b)

= gab gac Fb e
c rearrange (1.20c)

= Fa e
a gab gac = δbc. (1.20d)

For the case of Cartesian tensors, with gab
Cartesian

= δab and gab
Cartesian

= δab, these relations are no
more than a repackaging of results already presented in earlier subsections. But what we have
identified here is the role of the metric tensor in moving an index from downstairs to upstairs,
and that is what we mean by converting between the covariant and contravariant representations.
This operation holds for any representation of the metric, as indicated here by use of gab and its
inverse, gab. In particular, we can trivially move an index up if contracted with another index
that moves down, so that the scalar product is given by the equivalent expressions

F ·G = F aGa = FaG
a. (1.21)

Again, all of these manipulations hold for general coordinates when using a general coordinate
representation of the metric tensor.

1.4.5 Covariant and contravariant are identical for Cartesian tensors

As seen in Section 1.4.1, the Kronecker tensor is the metric tensor for Euclidean space using
Cartesian coordinates. As a result, there is no distinction for Cartesian tensors between covariant,
contravariant, one-form, etc. For example, consider the identity

Fa = δab F
b, (1.22)

which is how we lower an index to obtain the covariant representation, Fa, from the contarco-
variant representation, F b. Since δab vanishes unless a = b, where it equals unity, we have, for

12The conversion is superfluous for Cartesian tensors since there is no distinction between covariant and
contravariant, which is exhibited in Section 1.4.5. Even so, let us agree to play the game in support of the general
tensor case where the distinction is important.
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each index a, the following identity
Fa = F a. (1.23)

This identity holds for all Cartesian tensors, such as the basis vectors and basis one-forms are
identical

e1 = e
1 = x̂ and e2 = e

2 = ŷ and e3 = e
3 = ẑ. (1.24)

Hence, there is no need to distinguish upstairs and downstairs indices when working with
Cartesian tensors. Even so, we continue to play the game given the need for a distinction when
considering general tensors.

1.5 Tensor fields
To make use of tensor analysis for studying continuum mechanics requires the use of tensor
fields, with a tensor field providing a tensor at each point in space and time. Space and time
relations between tensor fields arise from physical theories expressed by differential and integral
equations.

1.5.1 Scalar fields
A physical scalar field, F, provides a number with physical dimensions at each point in space
and time. Example physical scalar fields encountered in this book include temperature, mass
density, buoyancy, salinity, humidity, and mechanical energy. Consider a point, P ∈ E3, that has
a position, x. The scalar field, F, has a value written

F(x, t) = scalar property, F, evaluated at position x and time instance t. (1.25)

Now choose a particular set of spatial coordinates, x ∈ R3. The scalar field, F, as sampled at a
point represented by coordinates x and at time t, is specified by evaluating a function

F (x, t) = property F measured using coordinates x and time t. (1.26)

As per the notational convention introduced in Section 1.2.2, we here use the upright, F, for the
scalar field, whereas the slanted, F , symbolizes the scalar field represented by a scalar function
that depends on the chosen Cartesian space coordinates.

Bringing equations (1.25) and (1.26) together, we say that with x as the Cartesian coordinate
expression for the position, x, then

F (x, t) = F(x, t) with x the coordinate representation of x. (1.27)

If we instead choose another set of coordinates, x, then the property F sampled at a spatial
point represented by coordinates x is specified by another function,

F (x, t) = property F representated by coordinates x and time t. (1.28)

If the two sets of Cartesian coordinates represent the same position, x, then

F(x, t) = F (x, t) = F (x, t). (1.29)

The distinction between a scalar field, F(x, t), and scalar function, F (x, t), is conceptually
fundamental. Even so, in practice the distinction is somewhat pedantic, and so it will be ignored
when it is safe to do so.
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1.5.2 Vector fields

The vector field, F(x, t), provides a vector at each point in space, indicated by the position,
x, and each instance in time, t. Example vector fields considered in this book include velocity,
acceleration, and forces. Choosing a particular coordinate representation of a vector field leads
to the representation

F(x, t) = F (x, t). (1.30)

The right hand side provides a vector function, F , that represents the vector field, F, with
the vector function specific to the chosen Cartesian coordinates, x. Another set of Cartesian
coordinates, x, generally requires a distinct vector function, F , that renders an alternative
representation of the vector field F(x, t),

F(x, t) = F (x, t). (1.31)

Just as found for scalar fields in equation (1.29), we have the identity for vector fields and their
vector function representations

F(x, t) = F (x, t) = F (x, t). (1.32)

In Section 1.10 we detail the mechanics of how to transform coordinate components of the
vector field written using two sets of Cartesian coordinates, and in Chapter 4 we do the same for
general coordinates. Each component, F a, of a vector field, when written in terms of a particular
set of coordinates, is itself a function of those coordinates

F (x, t) = F a(x, t) ea. (1.33)

However, each component function, F a(x, t), cannot be considered a scalar field since the vector
components transform according to the coordinate transformation rules detailed in Section 1.10,
with these transformation rules distinct from those holding for a scalar field. This point is very
basic to tensor analysis, and yet it can be readily overlooked upon first encounter.

1.6 Second order tensors and tensor products

The metric tensor, stress tensor (Chapter 24), moment of inertia tensor (Section 37.9.4) and
diffusion tensor (Chapter 69) are examples of second order tensors encountered in this book.
Second order tensors have a coordinate representation given by any of the equivalent expressions

T = T ab ea ⊗ eb = T ab ea ⊗ eb = Ta
b ea ⊗ eb = Tab e

a ⊗ eb, (1.34)

with T ab, T ab, Ta
b, and Tab the variety of coordinate representations of the second order tensor,

T. This expression for a general second order tensor allows us to write the Kronecker or unit
tensor in the form

I = δab ea ⊗ eb = δab ea ⊗ eb = δa
b ea ⊗ eb = δab e

a ⊗ eb, (1.35)

as well as the metric tensor

g = gab ea ⊗ eb = gab ea ⊗ eb = ga
b ea ⊗ eb = gab e

a ⊗ eb, (1.36)

where the metric and its inverse satisfy the identities

gac gcb = gab = δab and gac gcb = ga
b = δa

b. (1.37)
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Notably, there is not a scalar product between the basis vectors in equations (1.34) or (1.35).
Rather, the ⊗ symbol represents the tensor product of the basis vectors and/or basis one-forms.
The tensor product generalizes the outer product of linear algebra, with components given by

(ea ⊗ eb)ij = (ea)i (eb)j . (1.38)

1.6.1 Three representations of a second order tensor
Equation (1.34) provides three distinct representations for the second order tensor. We define
these representations as

T♮ = T ab ea ⊗ eb = Ta
b ea ⊗ eb natural or (1, 1) representation (1.39a)

T♯ = T ab ea ⊗ eb sharp or (2, 0) representation (1.39b)

T♭ = Tab e
a ⊗ eb flat or (0, 2) representation. (1.39c)

1.6.2 More on the tensor product
Consider two arbitrary vectors, A and B, and form a second order tensor by taking their tensor
product

A⊗B = AaBb ea ⊗ eb = AaBb ea ⊗ eb = AaB
b ea ⊗ eb. (1.40)

It can prove useful to organize elements of the tensor product for a particular coordinate
representation according to the rules of matrix multiplication

A⊗B =

 A1

A2

A3

 [B1 B2 B3] =

 A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

 . (1.41)

This example makes it clear that the tensor product between two tensors is not commutative,

A⊗B ̸= B⊗A, (1.42)

but instead it satisfies
(A⊗B)T = B⊗A, (1.43)

where the T superscript is the transpose operation (swapping index locations). Likewise, consid-
ering the horizontal basis vectors for Cartesian coordinates renders the following tensor products

e1 ⊗ e1 = x̂⊗ x̂ =

 1 0 0
0 0 0
0 0 0

 e2 ⊗ e2 = ŷ ⊗ ŷ =

 0 0 0
0 1 0
0 0 0

 (1.44a)

e1 ⊗ e2 = x̂⊗ ŷ =

 0 1 0
0 0 0
0 0 0

 e2 ⊗ e1 = ŷ ⊗ x̂ =

 0 0 0
1 0 0
0 0 0

 , (1.44b)

and similar results when including e3 = ẑ.

1.7 Vector cross product
The vector cross product provides a means to measure area associated with two vectors and
to specify the orientation of that area. Note that when the vectors have physical dimensions
distinct from length, then their vector cross product is not the area as a squared length. Even
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so, the geometric interpretation remains, only with the physical dimensions adjusted accordingly.
We here introduce the vector cross product, focusing on the Cartesian expression. We require a
bit more nuance for the case of general tensors, with details presented in Section 4.8. Even so,
the algebraic relations derived here also hold for general tensors.

1.7.1 Orienting an area via the Levi-Civita tensor

Consider a flat plane defined by any two of the Cartesian basis vectors, ea and eb where a ̸= b.
We seek a means to specify what side of the plane is up and what side is down. Doing so allows
us to orient objects within space.13 Notably, there is no objective means for this specification,
since “up” and “down” are subject to our chosen orientation. Therefore, we must choose a
convention. For that purpose, we follow the right hand rule, in which the out-stretched thumb,
index, and middle fingers of the right hand orient the three Cartesian basis vectors.

We algebraically specify the right hand rule for the basis vectors through the relation

ea × eb = ϵabc e
c. (1.45)

The left hand side introduces the vector cross product of two basis vectors, with the × symbol
used for the product. The right hand side identifies the vector cross product as a one-form. That
is, as seen in Section 1.7.4, the cross product of two (1, 0) tensors produces a (0, 1) tensor.

The cross product (1.45) introduced the Levi-Civita tensor, whose Cartesian components are
given by the totally anti-symmetric permutation symbol

ϵ123 = 1 (1.46a)

ϵabc =


1, even permutation of abc (123, 312, 231)

−1, odd permutation of abc (321, 132, 213)

0, all other abc.

(1.46b)

Exchanging any two indices is an odd permutation and results in a sign swap

ϵabc = −ϵbac = −ϵacb =⇒ ϵ123 = −ϵ213. (1.47)

In contrast, the cycling of indices is an even permutation and it preserves the sign

ϵabc = ϵcab = ϵbca =⇒ ϵ123 = ϵ312 = ϵ231. (1.48)

Correspondingly, the vector cross product changes sign when its elements are commuted

ea × eb = ϵabc e
c = −ϵbac ec = −eb × ea. (1.49)

1.7.2 Axial (or pseudo) vector

The vector cross product defines a one-form whose coordinate representation changes its sign
upon changing from a right handed to left handed orientation of the coordinate system. One
often sees the term axial vectors or pseudo vectors used for this one-form. The angular velocity
is a prominent pseudo vector encountered in this book.

13There are surfaces, such as the Möbius strip and Klein bottle, that are not orientable. We only consider
orientiable surfaces in this book.
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1.7.3 Orthogonality relations between cross products
The permutation symbol ensures that ea × eb is orthogonal to both ea and eb. To prove this
property we write

ea · (ea × eb) = ea · ϵabc ec equation (1.45) (1.50a)

= ϵabc δa
c duality (1.11) (1.50b)

= 0 ϵabc δa
c = 0. (1.50c)

The final equality holds since ϵabc = −ϵcba whereas δac = δca, with a vanishing double contraction
of an anti-symmetric tensor and a symmetric tensor.14 The same procedure shows that eb · (ea×
eb) = 0. Hence, the one-form defined by the vector cross product of two vectors is orthogonal
to both of the vectors. Evidently, the vector cross product is oriented orthogonal to the plane
defined by the two vectors, with a direction determined by the right hand rule.

1.7.4 Vector product of two arbitrary vectors
The expression (1.45) for the vector product of two basis vectors renders the vector product of
two arbitrary vectors

P×Q = P a ea × Qb eb (1.51a)

= P aQb ea × eb (1.51b)

= P aQb ϵabc e
c (1.51c)

= (P 2Q3 − P 3Q2) e1 + (P 3Q1 − P 1Q3) e2 + (P 1Q2 − P 2Q1) e3. (1.51d)

For a particular representation, we can write the vector product in the form of a determinant

P ×Q = det

 e1 e2 e3

P 1 P 2 P 3

Q1 Q2 Q3

 . (1.52)

As with the basis vectors, the vector product is orthogonal to both of the individual vectors,
such as

P · (P×Q) = (P d ed) · (P aQb ϵabc ec) (1.53a)

= P a P dQb ϵabc δ
c
d (1.53b)

= P a P cQb ϵabc (1.53c)

= 0, (1.53d)

where the final equality follows since the product, P c P a, is symmetric on the labels ac (P c P a =
P a P c), whereas ϵabc is anti-symmetric on these same labels.

1.7.5 Geometric interpretation of the vector cross product
The expression (1.51d) leads to the identity

|P×Q|2 = |P|2 |Q|2 − (P ·Q)2 (1.54a)

= |P|2 |Q|2 (1− cos2 ϑ) (1.54b)

= |P|2 |Q|2 sin2 ϑ, (1.54c)

14We further illustrate this property for matrices in Exercise 1.2.
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P×Q

Q

P

ϑ

Figure 1.3: The magnitude of the vector product between two vectors is given by the product of their magnitudes
and the sine of the angle between them, |P × Q| = |P| |Q| sinϑ. This magnitude equals to the area of the
parallelogram formed by the two vectors. The vector cross product is a one-form that is directed perpendicular to
the plane determined by the two vectors and oriented according to the right hand rule. The right hand rule is
found by placing the fingers of the right hand along the first vector, P. Closing the fingers in the direction of the
second vector, Q (as here depicted by the arrow on the arc for the angle ϑ), then ensures that the thumb provides
the orientation for the vector cross product, P×Q.

where we used the scalar product expression (1.19) to introduce the angle subtended by the two
vectors. Trigonometry indicates that the area of the parallelogram defined by the two vectors, P
and Q, is given by |P| |Q| sinϑ. Hence, the vector cross product has a magnitude given by this
area

area(P,Q) = |P| |Q| sinϑ = |P×Q|. (1.55)

Since P×Q is a one-form orthogonal to the plane defined by P and Q, we can write the vector
product in the purely geometric manner

P×Q = n̂ area(P,Q) = n̂ |P| |Q| sinϑ, (1.56)

where n̂ is a unit normal one-form (also known as the normal direction) that points normal to
the area and in a direction given by the right hand rule. This formula is illustrated in Figure 1.3.

1.7.6 Decomposing the vector cross product
To further our geometric interpretation of the vector cross product using Cartesian coordinates,
let P be the vertical unit vector, P = ẑ. The vector cross product then produces

Qẑ⊥ = ẑ ×Q (1.57a)

= ẑ × [Q− (ẑ ·Q) ẑ] (1.57b)

= (ẑ × x̂) (x̂ ·Q) + (ẑ × ŷ) (ŷ ·Q) (1.57c)

= ŷ (x̂ ·Q)− x̂ (ŷ ·Q). (1.57d)

By construction, Qẑ⊥ is in the horizontal plane and it is perpendicular to the horizontal projection
of Q

Qẑ⊥ · ẑ = 0 and Qẑ⊥ ·Q = 0 =⇒ Qẑ⊥ · [Q− (ẑ ·Q) ẑ] = 0. (1.58)

Hence, Qẑ⊥ is geometrically computed by rotating the horizontal component of Q by π/2 radians
counter-clockwise about the ẑ axis. That interpretation holds for all coordinate directions:

x̂×Q = ẑ (ŷ ·Q)− ŷ (ẑ ·Q) = project Q to y-z plane + rotate π/2 CCW around x̂ (1.59a)
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ŷ ×Q = x̂ (ẑ ·Q)− ẑ (x̂ ·Q) = project Q to z-x plane + rotate π/2 CCW around ŷ (1.59b)

ẑ ×Q = ŷ (x̂ ·Q)− x̂ (ŷ ·Q) = project Q to x-y plane + rotate π/2 CCW around ẑ. (1.59c)

This geometric interpretation may appear a bit arcane. However, it serves to couple the analytical
to the geometrical, and so supports our understanding. We also encounter it in various guises
particularly when studying vorticity in Part VII of this book.

1.8 Measuring volume
The vector cross product offers a means to measure area defined by two vectors. We now see
how it can be of use to measure the volume determined by three non-parallel vectors. This result
has particular relevance to the volume element used for integration over space. As for the vector
cross product in Section 1.7, we require a bit more nuance for the case of general tensors and
present details in Section 4.5. So the material in the present section assumes Cartesian tensors.

1.8.1 Volume defined by three vectors
Consider the scalar product of an arbitrary vector, R, with the vector product of two vectors,
(P ×Q) ·R. This scalar product projects that portion of the vector, R, onto the direction
parallel to the normal to the plane defined by P ×Q. Given that |P ×Q| is the area of the
parallelogram defined by P and Q, we see that (P×Q) ·R is the volume of the parallelepiped
defined by the three vectors.

The sign of the volume depends on the orientation of the three vectors, P, Q and R. We
assign a convention so that the volume is positive if the vectors are oriented in a right hand
sense. Ignoring this convention, we can simply place an absolute value around the triple product
to ensure a positive volume.

R

P×Q

Q

P

Figure 1.4: Three linearly independent vectors determine a volume given by |(P×Q) ·R| = |(R×P) ·Q| =
|(Q×R) ·P|. We see this identity geometrically by noting that the area of the base is given by |P×Q|, so that
the volume of the parallelepiped is given by the base area times the height, |(P×Q) ·R|. Cyclic permutation
then leads to the equality with the other two expressions.

We prove cyclic symmetry of (P×Q) ·R through the following manipulations

(P×Q) ·R = (P a ea ×Qb eb) ·Rd ed expose coordinates and basis vectors (1.60a)

= P aQb (ea × eb) ·Rd ed rearrange (1.60b)
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= P aQb (ϵabc e
c) · edRd vector product as per equation (1.45) (1.60c)

= P aQb ϵabc (e
c · ed)Rd rearrange (1.60d)

= P aQb ϵabc δ
c
dR

d duality: ec · ed = δcd = δd
c (1.60e)

= P aQb ϵabcR
c d index is contracted: δcdR

d = Rc (1.60f)

= Rc P aQb ϵabc rearrange (1.60g)

= Ra P bQc ϵbca relabel: a→ b and b→ c and c→ a (1.60h)

= Ra P bQc ϵabc even permutation: ϵbca = ϵabc (1.60i)

= (R×P) ·Q redintroduce boldface notation. (1.60j)

This identity yields the geometric result illustrated in Figure 1.4

volume(P,Q,R) = (P×Q) ·R = (R×P) ·Q = (Q×R) ·P. (1.61)

1.8.2 Cartesian volume element for integration

We need the volume of an infinitesimal region when performing an integration over space. When
making use of Cartesian coordinates we need the volume of a rectangular prism defined by
infinitesimal distances along each of the Cartesian coordinate axes. We thus set

P = x̂ dx and Q = ŷ dy and R = ẑ dz, (1.62)

in which case the volume element is

dV = (P×Q) ·R = dx dy dz (x̂× ŷ) · ẑ = dx dy dz. (1.63)

This expression for the volume element could have been written down without the formalism of
a vector triple product. However, in Chapter 3 we find the expression, (P×Q) ·R, provides a
useful starting point to derive the volume element using arbitrary coordinates.

1.8.3 n−space volumes and the Levi-Civita tensor

Let us now combine the geometric specification (1.56) of the vector product as a means to
measure area, with the algebraic specification (1.51d), and do so by writing

2-volume = ϵ(P,Q) = ϵab P
aQb = det

[
P 1 Q1

P 2 Q2

]
. (1.64)

In this equation, ϵab is the totally anti-symmetric second order tensor, whose Cartesian component
expression can be organized as a 2× 2 matrix[

ϵ11 ϵ12
ϵ21 ϵ22

]
=

[
0 1
−1 0

]
. (1.65)

In words, the first equality in equation (1.64) states that the ϵ-tensor in two dimensions takes
two vectors as its argument and produces a 2-volume (i.e., an area). The three dimensional
generalization yields

3-volume = ϵ(P,Q,R) = ϵabc P
aQbRc = det

 P 1 Q1 R1

P 2 Q2 R2

P 3 Q3 R3

 . (1.66)
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Suppressing the first vector argument in the 3-volume produces the surface area one-form defined
by the other two vectors

surface area one-form = ϵ( ,Q,R). (1.67)

By construction, the vectorial surface area is orthogonal to both Q and R since

ϵ(Q,Q,R) = ϵ(R,Q,R) = 0. (1.68)

1.9 Practice with the Cartesian Levi-Civita tensor

The Levi-Civita tensor is a versatile tool for deriving identities in tensor algebra. We illustrated
some of these features in the previous discussion and here illustrate some more, assuming
Cartesian tensors. These examples, and others in this chapter, generally expose elements of the
index gymnastics involved with tensor manipulations. A bit of practice readily allows one to
skip many of the steps that are exposed in the following.

1.9.1 Contractions of the Levi-Civita tensor

Explicit substitution readily verifies that the identity

δdf ϵbcf ϵaed = ϵbc
d ϵaed = δba δce − δbe δca. (1.69)

If c = e then this identity reduces to

ϵbe
d ϵaed = 2 δba. (1.70)

We make use of these, and related, identities throughout this book.

1.9.2 Double vector product

The triple cross product can be derived according to

P× (Q×R) = P aQbRc ea × (eb × ec) (1.71a)

= P aQbRc ea × (ϵbcd e
d) (1.71b)

= P aQbRc ϵbcd ea × ef δdf (1.71c)

= P aQbRc ϵbcd δ
df ϵafg e

g (1.71d)

= P aQbRc ϵbc
f ϵfga e

g (1.71e)

= P aQbRc (δbg δca − δba δcg) eg (1.71f)

= (P ·R)Q− (P ·Q)R, (1.71g)

where we used

ϵbcd δ
df ϵafg = δdf ϵdbc ϵafg = ϵf bc ϵafg = ϵf bc ϵfga = δbg δca − δba δcg, (1.72)

which corresponds to the identity (1.69).
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1.9.3 Scalar product of two vector products
We make further use of the Levi-Civita identity (1.69) to derive the following identity for the
scalar product of two vector cross products

(P×Q) · (R× S) = (ϵabc P
aQb) (ϵdef R

d Se) ec · ef (1.73a)

= P aQbRd Se δcf ϵabc ϵdef (1.73b)

= (P ·R) (Q · S)− (P · S) (Q ·R). (1.73c)

1.10 Transforming the representations of Cartesian tensors
The Cartesian basis vectors are mutually orthogonal, and once their orientation is chosen they are
fixed in space. However, the choice of orientation is arbitrary.15 We can consider an alternative
specification to the Cartesian basis vectors by performing a linear transformation according to

ea = Ra
a ea. (1.74)

This expression introduced components to the transformation matrix, Ra
a, that moves tensors

between the unbarred and the barred Cartesian coordinates. In Cartesian tensor analysis, the
transformation is independent of space. The transformation matrix is a function of space and
time for the general tensors. Even so, much of the formalism developed here has a straightforward
generalization to the general tensors considered in Chapter 4.

Although the transformation in equation (1.74) carries two indices, it is not a tensor. Instead,
it is a matrix operator used to transform from one set of basis vectors to another.16 Indeed, the
slightly rightward placement of the lower index for the transformation in equation (1.74) is a
convention used to express the transformation as a matrix

Ra
a ←→ R =


R1

1 R1
2 R1

3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3

 . (1.75)

Note that typically we dispense with the double-headed arrow correspondence symbol, and
simply think of Ra

a as R. In that way we have the transpose of the transformation written as

(RT)aa = Ra
a =


R1

1 R2
1 R3

1

R1
2 R2

2 R3
2

R1
3 R2

3 R3
3

 . (1.76)

We have occasion to work with the transpose transformation matrix since, as we show in
Section 1.10.2, transformations between Cartesian coordinates with orthonormal basis vectors
are orthogonal transformations, which means that the inverse of the transformation matrix
equals to the transpose.

1.10.1 Inverse transformation
Assuming the transformation is invertible leads to the inverse transformation

ea = (R−1)aa ea. (1.77)

15The choice for origin is also arbitrary. Here we assume the origins to be the same, so that it is only the
orientation that differs between the two Cartesian coordinate systems.

16We have more to say about the distinction between a matrix and tensor in Section 1.10.7.
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As a self-consistency check we combine this relation with equation (1.74) to render

ea = (R−1)aa ea = (R−1)aaR
c
a ec. (1.78)

This relation holds since
(R−1)aaR

c
a = δca, (1.79)

or as a matrix identity
R−1R = I. (1.80)

1.10.2 Orthogonal transformation

We now assume that the two sets of Cartesian basis vectors are orthonormal, which leads to the
following constraint on the transformation matrix

δab = ea · eb (1.81a)

= Ra
a ea ·Rb

b eb relate barred to unbarred basis vectors (1.81b)

= Ra
aR

b
b ea · eb rearrange (1.81c)

= Ra
aR

b
b δab orthonormality of basis vectors (1.81d)

= (RT)a
a δabR

b
b rearrangement, (1.81e)

where RT is the transpose of the transformation matrix whose components are (note the
positioning of the indices as per equation (1.76))

(RT)a
a = Ra

a. (1.82)

Written as a matrix equation, the identity (1.81e) means that

RT R = I. (1.83)

This identity defines an orthogonal transformation, whereby the inverse matrix equals to the
matrix transpose

R−1 = RT. (1.84)

Consequently, the Cartesian basis vectors transform under rotations according to

ea = Ra
a ea and ea = (RT)aa ea. (1.85)

These transformation rules have implications for how components to vectors and tensors trans-
form.

1.10.3 Geometric interpretation of orthogonal transformations

Orthogonal transformations convert one set of Cartesian coordinates to another. Geometrically,
an orthogonal transformation corresponds to a rotation so long as the determinant of the
transformation is +1, with Figure 1.5 illustrating this axis rotation in two dimensions.17 For
this two dimensional example, the rotation matrix can be written in terms of the cosine of the

17If the determinant of the transformation is −1, then the transformation involves a reflection in addition to a
rotation, with the reflection changing the handedness of the basis vectors. We only consider right handed basis
vectors in this book, so that we only consider orthogonal transformations of Cartesian tensors.
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Figure 1.5: Counter-clockwise rotation through an angle ϑ of a right-handed horizontal Cartesian axes.

angles between the unit vectors; i.e., the direction cosines

Ra
a =

[
cosϑ sinϑ
− sinϑ cosϑ

]
=

[
cosϑ cos(π/2− ϑ)

cos(π/2 + ϑ) cosϑ

]
=

[
e1 · e1 e1 · e2
e2 · e2 e2 · e2

]
. (1.86)

The final form of the rotation matrix reveals that it is built from the projection of the rotated
basis vectors onto the original basis vectors. This result holds for rotations in three dimensions
as well, thus leading to

Ra
a =

 e1 · e1 e1 · e2 e1 · e3
e2 · e1 e2 · e2 e2 · e3
e3 · e1 e3 · e2 e3 · e3

 . (1.87)

With the basis vectors all normalized, elements of the rotation matrix are given by the cosine of
the angle between the respective basis vectors. As such, one sometimes refers to this rotation
matrix as the direction cosines matrix.

1.10.4 Transforming the coordinate representation of a vector

We introduced the transformation (1.77) according to how it acts on the basis vectors. Now
consider how it acts on the coordinate representation of an arbitrary vector, as revealed by
moving around brackets

P = P a ea = P a (RT)aa ea ≡ P a ea. (1.88)

The second equality made use of equation (1.85) for the transformation of the basis vector
under an orthogonal transformation. The final equality reveals the transformation of the vector
components according to

P a = P a (RT)aa = P aRa
a. (1.89)

1.10.5 Invariance of the scalar product

The above properties of an orthogonal transformation ensure that the scalar product takes on
the same form regardless the choice of Cartesian coordinates

P ·Q = P aQb δab expose tensor indices & Kronecker delta (1.90a)
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= P aQb ea · eb orthonormal basis vectors: ea · eb = δab (1.90b)

= P aQb (RT)aa ea · (RT)bb eb rotate basis vectors to barred frame (1.90c)

= P a (RT)aaQ
b (RT)bb ea · eb rearrange (1.90d)

= P aQb ea · eb transform vector components (1.88) (1.90e)

= P aQb δab orthonormal basis vectors: ea · eb = δab. (1.90f)

1.10.6 Transforming the coordinate representation of a second order tensor
We determine how the Cartesian coordinate components of a second order tensor, T ab, transform
by following the now familiar procedure for transforming the basis vectors. The key new facet is
that we now have two basis vectors to carry around rather than just one

T = T ab ea ⊗ eb expose indices and basis vectors (1.91a)

= T ab (RT)aa ea ⊗ (RT)bb eb rotate basis vectors to barred frame (1.91b)

= T ab (RT)aa (R
T)bb ea ⊗ eb rearrange (1.91c)

≡ T ab ea ⊗ eb define transformed tensor components. (1.91d)

The final equality introduced the transformed components to the second order tensor

T ab = T ab (RT)aa (R
T)bb. (1.92)

Transformation of the (1, 1) representation of a second order tensor is given by

T ab = T ab (R
T)aa R

b
b, (1.93)

which compares to equation (1.92) for the fully contravariant representation, T ab. The trans-
formation of the components to higher order tensors follows analogously by carrying around
further basis vectors or basis one-forms.

1.10.7 Distinguishing between tensors and matrices
Matrices are useful for organizing the coordinate components to a tensor. For example, the
coordinate components to a first-order tensor (a vector)

F = F 1 e1 + F 2 e2 + F 3 e3, (1.94)

can be organized into a row vector

F = (F 1, F 2, F 3). (1.95)

We are justified in assigning the name “vector” in this context since we know that the array
elements comprise the coordinate representation of the vector, F. However, if we just see an
array of numbers, say (Q1, Q2, Q3), on its own, then we generally have no idea whether the
elements of that array are related to each other, or if the list is just an ordering of numbers. If
merely a list of numbers, then nothing necessarily changes when we alter coordinates. But if the
array is the coordinate representation of a vector, then we know that the elements of the row
vector are related, and we know how they change when the coordinates are rotated.

Consider two examples of objects that are not tensors. First, the rotation matrix, Ra
a, has

elements built from the direction cosines according to equation (1.87). Although carrying two
indices, this matrix is not the coordinate representation of a second order tensor. Rather, it is
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simply the matrix used to transform the components of tensors from one coordinate system to
another. The rotation matrix is not a geometric object like a vector or tensor, but it is an ordered
array that contains information for how a coordinate transformation alters the representation of
geometric objects.

Although jumping ahead somewhat, we mention one further example encountered when
studying general tensors in Chapter 4. Namely, the Christoffel symbols in Section 4.11.1 are
built from the spatial derivatives of the basis vectors. Although these derivatives are zero for
Cartesian basis vectors, they are not necessarily zero when using general coordinates. The
Christoffel symbols carry three indices, and yet they are not elements of a third order tensor
since they do not transform as elements to a tensor. One way to understand this property is
to note that a tensor that vanishes in one coordinate system is zero for all coordinate systems.
It turns out that all of the Christoffel symbols vanish for Euclidean space using Cartesian
coordinates, because the Cartesian basis vectors are spatially constant. However, there are some
nonzero Christoffel symbols when representing Euclidean space with spherical coordinates or
other general coordinates. By this example, we conclude that the Christoffel symbols cannot be
components of a tensor.

The key point we re-emphasize is that a tensor is a geometric object that can be represented
using any arbitrary set of coordinates. Since the tensor has an objective existence independent
of coordinates, its coordinate components are constrained to transform in a precise manner
when changing coordinates. These properties of tensors are generally not shared with arbitrary
matrices, hence the importance of making the distinction between tensors and matrices.

1.11 Homogeneity and isotropy of second order tensors

We have many occasions to consider symmetry properties of tensor fields, with homogeneity
and isotropy two such properties. When developing these properties for second order Cartesian
tensors, we make use of the (1, 1) tensor representation

T ab = T ac gcb, (1.96)

which is the natural representation of a second order tensor (Section 1.6.1). We also follow this
approach in Section 1.12 when decomposing a second order tensor into its irreducible parts.18

1.11.1 Transpose of a second order tensor

When represented as a matrix, the transpose of a second order tensor is obtained by swapping
the rows and columns. In a similar manner we generate the transpose through the following

Ta
b = (T ba)

T = gac T
c
d gdb = gac T

cb (1.97a)

T ba = (Ta
b)T = gbc Tc

d gda = T bd gda. (1.97b)

The transpose for the sharp and flat representations of the second order tensor follow a bit more
simply

(T ab)T = T ba and (Tab)
T = Tba. (1.98)

18We certainly can perform such decompositions with other representations of a tensor. But we choose to focus
on the (1, 1) representation here.
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1.11.2 Trace of a tensor

The trace of a second order tensor is given by the contraction

trace(T) = T ac gca = T aa = T 1
1 + T 2

2 + T 3
3, (1.99)

which is the sum of the diagonal components of the natural representation.

1.11.3 Homogeneous tensors

A tensor field is homogeneous if it possesses the same value at each point in space. For example,
a uniform temperature field is homogeneous, as is a uniform velocity field. As defined, a
homogeneous tensor field has no spatial dependence and thus it does not provide any means to
distinguish points in space. Likewise, a time independent tensor is said to be homogeneous in
time.

1.11.4 Isotropic tensors

A tensor field is isotropic if its representation remains independent of coordinate basis. A scalar
tensor is, by definition, isotropic since it has no information about spatial directions. A nonzero
vector field cannot be isotropic since it points in a particular direction and so its representation
is dependent on the orientation of the basis vectors.

A second order Cartesian tensor, J, is isotropic if its components are unchanged when
undergoing rotation, so that

Jab = JabR
b
b (R

T)aa ≡ Jab, (1.100)

where we used equation (1.93) for the component transformation. For nonzero tensors, equation
(1.100) is satisfied only if we can write

Jab = λ δab, (1.101)

with λ an arbitrary scalar. We verify this property through noting that

δabR
b
b (R

T)aa = Ra
b (R

T)aa = δab, (1.102)

where the final equality made use of orthogonality of the rotation matrix. Hence, the most
general second order isotropic tensor is proportional to the Kronecker (identity) tensor.

1.11.5 Decomposition into isotropic and anisotropic tensors

We often find it useful to decompose an arbitrary second order tensor into its anisotropic and
isotropic components according to

T ab = T ab −
T pp δ

a
b

N︸ ︷︷ ︸
anisotropic

+
T pp δ

a
b

N︸ ︷︷ ︸
isotropic

(1.103)

where
N = δpp (1.104)

is the number of space dimensions, which equals to the trace of the Kronecker tensor. By extract-
ing the isotropic portion, we know that the remaining portion is anisotropic by construction.
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1.12 Irreducible parts of a second order tensor
Second order tensors have nine degrees of freedom when working in N = 3 dimensional space. It
can be useful to decompose these tensors into their irreducible tensorial parts as presented here,
with these parts generally representing distinct kinematic properties that help to understand
the physical nature of the tensor. The decomposition shares much with the decomposition into
anisotropic and isotropic tensors in Section 1.11.5, and with the following results holding for
general tensors.

Any second order tensor can be decomposed into its symmetric and anti-symmetric parts
according to

T = (T+TT)/2 + (T−TT)/2 = S+A. (1.105)

Working with the components in the (1, 1) representation of the tensor leads to

T ab = (T ab + Tb
a)/2︸ ︷︷ ︸

symmetric

+(T ab − Tba)/2︸ ︷︷ ︸
anti-symmetric

≡ Sab +Aab. (1.106)

The symmetric tensor, S, is so-named because it satisfies

S = ST ←→ Sab = Sb
a. (1.107)

That is, swapping rows and columns leaves elements of a symmetric tensor unchanged. In three
space dimensions, a symmetric second order tensor has six (rather than nine) degrees of freedom.
The anti-symmetric tensor (also called the skew-symmetric tensor) satisfies

A = −AT ←→ Aab = −Aba, (1.108)

which means it has three degrees of freedom (for N = 3 space dimensions) and has zero elements
along its diagonal

A1
1 = A2

2 = A3
3 = 0. (1.109)

The final irreducible part of a tensor is the trace, which we introduced in Section 1.11.2 and it is
given by the sum of the diagonal elements

T aa = T 1
1 + T 2

2 + T 3
3 = Saa, (1.110)

with the second equality following since the skew symmetric tensor, A, has zero for its diagonal
elements. We are thus led to the irreducible decomposition of an arbitrary second order tensor

T ab = Spp δ
a
b/N︸ ︷︷ ︸

trace

+ (Sab − Spp δab/N)︸ ︷︷ ︸
deviator

+ Aab︸︷︷︸
skew

. (1.111)

The combination,
(Sdev)ab = Sab − Spp δab/N, (1.112)

is known as the deviatoric tensor or deviator, which, by construction, has zero trace

(Sdev)aa = 0. (1.113)

1.13 Dot and double-dot notation for contractions
As seen many times in this chapter, we often use a dot notation for the contraction of two first
order tensors, such as for the scalar product, F ·G, encountered in equation (1.13). The are
additional occasions to contract higher order tensors, yet in this case we must follow a convention
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to know what indices participate in the contraction. Following Tromp (2025a) and others, we
define the dot as a contraction between the last index of the first tensor and the first index of
the second tensor. For example, let T be a second order tensor and A a first order tensor. Their
dot product is thus equal to a first order tensor

T ·A = F , (1.114)

which can be written in components as

T abA
b = T abAb = F a. (1.115)

Alternatively, consider the dot product, A · T = G, which has components

Ab Tb
a = Ab (T ab)

T = Ab (T
ab)T = Ab T

ba = Ga. (1.116)

Evidently, F = G, only if the second order tensor is symmetric, T = T T.
There are occasions in which it is of interest to contract both indices between two second

order tensors, in which we make use of the colon with the following index convention

D : T = Dab Tab = Dab T
ab. (1.117)

This double contraction is most commonly performed between two symmetric tensors, in which
case ordering of the indices does not matter.

1.14 Exercises
exercise 1.1: Product of symmetric matrices
Let A = AT and B = BT be two symmetric matrices. Under what condition is their product
also symmetric: AB = (AB)T?

exercise 1.2: Product of symmetric and anti-symmetric matrices and tensors
Let A = −AT be an anti-symmetric matrix, and S = ST be a symmetric matrix. Show that the
trace of their product vanishes: trace(AS) = 0. Alternatively, in terms of tensors, show that the
double contraction of an anti-symmetric tensor with a symmetric tensor vanishes: Amn Smn = 0.

exercise 1.3: Projection operator
Consider an arbitrary direction in space specified by the unit direction, n̂, with components, n̂a.
Define the symmetric tensor

Pab = gab − n̂a n̂b, (1.118)

so that
Pab T

bc = Ta
c − T bc n̂a n̂b. (1.119)

Show that Pab T
bc is the projection of T onto the plane perpendicular to the direction n̂. Do so

by showing that
Pab T

bc (gad n̂d) = 0 ∀ c. (1.120)

This result motivates referring to Pab as a projection operator.
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Chapter 2

CARTESIAN VECTOR CALCULUS

This chapter presents elements of differential and integral calculus. We build from the tensor
algebra of Chapter 1 to here develop elements of Cartesian tensor calculus, also known as vector
calculus.

chapter guide

The material in this chapter can be found in various forms in nearly all books on calculus
with analytic geometry. Particular treatments, with applications to physics, are given in
the following. Recall from Chapter 1 that we are mindful of the distinction between a
tensor and its coordinate representation. We retain that distinction in this chapter, though
mostly focus on particular Cartesian coordinate representations since we are concerned
with analytical/operational aspects of tensor fields.

• Feynman Lectures: Chapters 2 and 3 in Volume II of the Feynman Lectures
offers insightful discussions of vector differential calculus. Although written for
students of electrodynamics, many of Feynman’s examples are drawn from fluid
mechanics.

• Div, Grad, Curl and all That (Schey, 2004): This text presents the methods
and theorems of vector calculus in a manner that greatly assists the development of
intuition.

• Chapter 2 in Segel (1987) provides a lucid review of vector calculus using Cartesian
tensors.

• Theory and Problems of Vector Analysis (Spiegel , 1974a): This “Schaum’s
Outline Series” book has nearly 500 worked exercises and provides a useful resource
to develop problem solving in vector calculus. Some of the exercises in Section 2.9
at the end of this chapter are drawn from Spiegel (1974a).

• This video from 3Blue1Brown provides some compelling graphics to support intuition
for the divergence and curl operators.

• This Youtube channel from Steve Brunton offers some pedagogical lectures on vector
calculus.

2.1 Gradient of a scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.1 Direction of steepest ascent . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Tangent to an isosurface . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.3 Unit normal to an isosurface . . . . . . . . . . . . . . . . . . . . . 38
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2.7.1 An example rectangular volume . . . . . . . . . . . . . . . . . . . 51
2.7.2 Gradient theorem for the volume integral of scalar fields . . . . . 52
2.7.3 Surface integral of the outward unit normal . . . . . . . . . . . . 52
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2.7.5 First and second form of Green’s identities . . . . . . . . . . . . . 53
2.7.6 Integral of a curl over a closed surface . . . . . . . . . . . . . . . 53
2.7.7 The domain integral of a non-divergent Cartesian vector field . . 54
2.7.8 Gradient tensor theorem for ∇⊗ F . . . . . . . . . . . . . . . . . 55

2.8 Exact and inexact differentials . . . . . . . . . . . . . . . . . . . . . . . . 55
2.8.1 Exact differentials . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8.2 Inexact differentials . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.8.3 Integrating factors . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8.4 An example using the velocity field . . . . . . . . . . . . . . . . . 57
2.8.5 Heuristic physics of exact and inexact differential operations . . . 57

2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 Gradient of a scalar field
Consider a real valued scalar field defined on Euclidean space that is a function of Cartesian
coordinates, ψ(x). We can estimate the value of the field at an adjacent point an infinitesimal
distance away, x+ dx, through use of a truncated Taylor series

ψ(x+ dx) = ψ(x) +
∂ψ

∂x1
dx1 +

∂ψ

∂x2
dx2 +

∂ψ

∂x3
dx3 +O (dx · dx) (2.1a)

≈ [1 + dxa ∂a]ψ(x), (2.1b)

where we dropped higher order terms to reach the final approximate expression. We also
introduced the shorthand notation for the partial derivative operator

∂a =
∂

∂xa
, (2.2)
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y

x

ŝ

n̂ψ(x, y)

Figure 2.1: Contours of a scalar field ψ(x, y) = −x2/2 − y2. At any point in space, the gradient, ∇ψ =
−(x x̂+ 2 y ŷ), points in the direction of steepest increase (ascent) and orients the unit normal, n̂ = |∇ψ|−1 ∇ψ.
The unit tangent, ŝ, points in a direction tangent to a ψ isosurface so that it is everywhere orthogonal to the
direction of steepest ascent: n̂ · ŝ = 0. We follow the convention in which the unit normal is oriented to the left of
the unit tangent when facing in the tangent direction.

which is a notation used throughout this book. Notice how the index on the partial derivative
naturally sits downstairs, in the covariant position. We can thus introduce the Cartesian gradient
operator according to

∇ = x̂ ∂x + ŷ ∂y + ẑ ∂z = e
a ∂a, (2.3)

in which case
ψ(x+ dx) ≈ (1 + dx · ∇)ψ(x). (2.4)

The second equality in equation (2.3) made use of the basis one-forms in Cartesian coordinates
from Section 1.3.3. Evidently, the gradient operator naturally appears as a one-form.

2.1.1 Direction of steepest ascent

Using the approximate relation (2.4), and the geometric expression (1.19) for the scalar product,
renders

ψ(x+ dx)− ψ(x) ≈ |dx| |∇ψ| cosϑ, (2.5)

where ϑ is the angle between the differential increment, dx, and the gradient, ∇ψ. Orienting
the increment dx so that ϑ = 0 ensures that ψ(x+ dx)− ψ(x) is maximal. Consequently, ∇ψ
points in the direction of steepest ascent across constant ψ isosurfaces (Figure 2.1). The opposite
direction is that of steepest descent, where ϑ = π.

2.1.2 Tangent to an isosurface

Consider a family of isosurfaces defined by points satisfying

ψ(x) = constant. (2.6)

Figure 2.1 shows a two dimensional example where the isosurfaces are lines where ψ is a constant.
As another example, consider ψ(x) = ψ(r), where r2 = x · x is the squared radius of a sphere.
Isosurfaces for this spherically symmetric function are spherical surfaces of radius r.

In general, moving along an isosurface keeps the scalar field unchanged. Let ŝ have magnitude
unity and point in the direction tangent to the isosurface at any point determined by the Cartesian
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m̂

m̂+ δm̂

δm̂

Figure 2.2: The infinitesimal change to a unit direction, δm̂, is orthogonal to itself: δm̂ · m̂ = 0. The reason
is that the unit direction is constrained to retain its unit length, so that the only way that it can change is to
change its direction. In this image we have |m̂+ δm̂| = |m̂| = 1, which requires δm̂ · m̂ = 0. Evidently, δm̂ is
orthogonal to m̂ in the limit that δm̂ gets tiny.

coordinate, x. By construction1

ψ(x+ ŝds)− ψ(x) = 0, (2.7)

where ds is an infinitesimal arc length along the tangent direction. In words, this identity says
that if we move an infinitesimal distance in the direction tangent to the isosurface, then the
function ψ does not change its value. Now expanding this identity in a Taylor series leads to the
vanishing of the tangential partial derivative

ŝ · ∇ψ = ∂sψ = 0. (2.8)

That is, isosurfaces of a function ψ are defined by directions along which the partial derivative of
the function vanishes. For the spherically symmetric function, ψ(x) = ψ(r), the tangent vector
points in either of the two angular directions along the spherical surface.

2.1.3 Unit normal to an isosurface

We may normalize the direction of maximal ascent, in which case we define the unit normal (a
one-form)

n̂ = |∇ψ|−1∇ψ. (2.9)

By construction, the gradient computed in the n̂ direction yields the maximum change for the
function so that the normal derivative is given by

n̂ · ∇ψ = |∇ψ|. (2.10)

For the spherically symmetric example,

n̂ =
x

|x| = r̂, (2.11)

where r̂ is the unit vector pointing radially outward from the origin. In this case the normal
derivative is equal to the radial derivative

n̂ · ∇ψ = ∂rψ spherically symmetric ψ. (2.12)

2.1.4 Unit directions change only via rotation

Consider an arbitrary unit direction, m̂, that is generally a function of space. The unit direction
has unit magnitude,

m̂ · m̂ = 1, (2.13)

1Sometimes in this book we write t̂ for the unit tangent.
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with this property holding at each point in space. Unit directions can only be modified through
changes in their orientation since their magnitude is everywhere fixed at unity. Hence, they
differ in space only through rotations. An important consequence of this property is that the
infinitesimal spatial change to a unit direction is perpendicular to unit direction itself (see Figure
2.2). We see this property through considering an arbitrary infinitesimal change, symbolized by
δ, in which

0 = δ(1) = δ (m̂ · m̂) = 2 m̂ · δm̂. (2.14)

In Section 11.2, we formally show that the constraint

δm̂ · m̂ = 0 (2.15)

means that unit direction changes can only arise from rotations. Even so, the above assertion
should make intuitive sense, with Figure 2.2 illustrating this property.

2.1.5 Showing that δn̂ · n̂ = 0

As an illustration of the constraint (2.15), we verify that it holds for the special case of a unit
normal defined according to equation (2.9) for surfaces of constant scalar field

n̂ = |∇ψ|−1∇ψ. (2.16)

The proof follows first by writing

δn̂ = |∇ψ|−1 [δ(∇ψ)− n̂ δ|∇ψ|] , (2.17)

so that

|∇ψ| n̂ · δn̂ = n̂ · δ(∇ψ)− δ(|∇ψ|) = ∇ψ · δ(∇ψ)|∇ψ| − δ|∇ψ|. (2.18)

We now make use of the identity

δ(|∇ψ|) = δ(
√
∇ψ · ∇ψ) = 1

2
√∇ψ · ∇ψδ(∇ψ · ∇ψ) =

∇ψ · δ(∇ψ)
|∇ψ| , (2.19)

in which case we have shown that δn̂ · n̂ = 0.

2.1.6 Notation for the derivative operators
The discussion in this section made use of the Cartesian partial derivative operator, ∂a, as well
as the gradient operator, ∇. The Cartesian gradient operator becomes the covariant gradient
operator when moving to general tensors, with the covariant gradient also written as ∇. When
acting on first or higher order tensors, the covariant gradient picks up some extra terms beyond
the familiar partial derivatives. To facilitate a translation of the equations in this chapter to
those in general tensors, we commonly make use of the ∇a symbol rather than ∂a. Again, they
are identical for Cartesian tensors.

2.2 Divergence of a vector field
The divergence of a vector field, F, is the scalar product of the gradient operator with the vector

div(F) = ∇ · F = ∇aF a

> 0⇒ diverging vector field

< 0⇒ converging vector field

= 0⇒ divergence-free (or non-divergent) vector field.

(2.20)
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Figure 2.3: Two vector fields with a non-zero horizontal divergence. Left panel: The vector field F = x x̂+ y ŷ
has a spatially constant positive divergence at each point with ∇ · F = 2. We thus say that the vector field is
“diverging from each point.” Right panel: with the opposite sign, the vector field G = −F = −x x̂ − y ŷ has
a spatially constant negative divergence at each point with ∇ · G = −2. We thus say that the vector field is
“converging to each point.” Note that these two vector fields have zero curl, ∇× F = ∇×G = 0.

If the vector field in the surrounding neighborhood of a point is directed away from that point,
then the vector field is diverging as if there is a source at the point (Figure 2.3). In this case the
divergence of the vector field is positive. The converse occurs for a vector field converging to a
point as if there is a sink.

If the vector field under consideration is the velocity field of a moving fluid, then these
considerations are directly related to the conservation of matter that we study in Chapter 19.
That discussion motivates us to consider a positive divergence for a vector field as representing
the creation of “stuff” at a point where there is a positive divergence. Again for the case of a
fluid velocity, there is a net divergence if more fluid leaves a point than enters, and the converse
holds if the velocity field is converging. We further discuss these ideas as part of our study of
the divergence theorem in Section 2.7.

2.2.1 Divergence of a scalar field times a vector field

We have many opportunities to make use of properties of the divergence operator following from
application of the chain rule. For example, use of the chain rule indicates that the divergence of
a scalar field times a vector field is given by

∇ · (ϕF) = ∇a(ϕF a) (2.21a)

= F a∇aϕ+ ϕ∇aF a (2.21b)

= F · ∇ϕ+ ϕ∇ · F. (2.21c)

2.2.2 Laplacian of a scalar field

The Laplacian of a scalar field is the divergence of the gradient

∇2ψ = ∇ · ∇ψ. (2.22)

Scalar fields that have a vanishing Laplacian are said to be harmonic

∇2ψ = 0 harmonic function. (2.23)

The name harmonic originates from the relation of harmonic functions to characteristic vibrational
modes of a taut string such as those found on musical instruments (when played with skill).
Furthermore, harmonic functions play a central role in complex analysis.
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Figure 2.4: A horizontal vector field with a constant curl and zero divergence. Left panel: F = −y x̂ + x ŷ,
=⇒ ∇× F = 2 ẑ and ∇ · F = 0. Right panel: G = −F so that ∇×G = −2 ẑ.

2.3 Curl of a vector field
The curl characterizes how a vector field spins around each point in space. For example, in Part
VII of this book we study the vorticity field, which is the curl of the velocity.

2.3.1 Computing the curl
We measure the curl of a vector by computing the cross product of the gradient operator with
the vector field. Hence, just like the cross product from Section 1.7, the curl is specified by both
a magnitude and a direction

curl(F) = ∇× F (2.24a)

= ea∇a × eb F b coordinate representation (2.24b)

= ea ×∇a (eb F b) move derivative operator (2.24c)

= (ea × eb)∇aF b + F b (ea ×∇aeb) product rule (2.24d)

= (ea × eb)∇aF b ∇aeb = 0 for Cartesian coordinates (2.24e)

= δad (ed × eb)∇aF b δad ed = e
a = 0 (2.24f)

= (ϵdbg∇d F b) eg δad∇a = ∇d. (2.24g)

To reach this result we set ∇aeb = 0 since the Cartesian basis vectors are spatially constant.2

We also made use of the relation (1.45) for the cross product of basis vectors. Expanding the
final expression, using the Cartesian identity ∇d = ∇d = ∂d, leads to

curl(F ) = ∇× F =

[
∂F 3

∂x2
− ∂F 2

∂x3

]
e1 +

[
∂F 1

∂x3
− ∂F 3

∂x1

]
e2 +

[
∂F 2

∂x1
− ∂F 1

∂x2

]
e3, (2.25)

which can also be written as a determinant

∇× F = det

 e1 e2 e3

∂1 ∂2 ∂3
F 1 F 2 F 3

 . (2.26)

The horizontal vector field F = x x̂+y ŷ shown in Figure 2.3 has zero curl yet non-zero divergence.
Figure 2.4 shows another vector field, F = −y x̂+ x ŷ, with zero divergence yet nonzero curl

2Basis vectors corresponding to non-Cartesian coordinates are spatially dependent (see Chapters 3 and 4).
However, they do have a zero covariant gradient, so that the manipulations here quite closely resemble those for
general tensors.
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Figure 2.5: A horizontal vector field with a zero curl, where F = −∇ψ with the scalar potential given by
ψ = sin(x/10) sin(y/10).

∇× F = 2 ẑ. We encounter this vector again in Section 37.6, where we see that it corresponds
to the velocity of fluid undergoing a rigid-body motion in a rotating reference frame, and with
its curl measuring the vorticity induced by the rotation.

2.3.2 Curl-free vector fields

There are some cases of physically relevant vector fields that have a vanishing curl

∇× F = 0. (2.27)

We sometimes refer to such curl-free vectors as irrotational. In fluid mechanics a curl-free velocity
field has zero vorticity, which is a property maintained by linear gravity waves in the absence of
rotation (Section 55.5). We illustrate a curl-free vector field in Figure 2.5.

The curl of a gradient vanishes, which follows from

∇×∇ψ = ea∇a × eb∇bψ = (ea × eb)∇a∇bψ = 0, (2.28)

where the final equality follows since ea × eb is anti-symmetric on the labels ab

ea × eb = −eb × ea, (2.29)

whereas ∇a∇b is symmetric on these labels

∇a∇b = ∇b∇a. (2.30)

This property allows us to introduce a scalar field whose gradient equals to the curl-free vector
field

F = −∇ψ scalar potential. (2.31)

The scalar ψ is known as the scalar potential. We may be familiar with the scalar potential for
the gravitational force, in which ψ is called the gravitational potential (see Section 13.10 and
Chapter 34).

2.3.3 Vector fields that are both curl-free and divergence-free

Consider a vector field that has zero curl and zero divergence. The curl-free property means that

∇× F = 0 =⇒ F = −∇ψ. (2.32)
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The divergence-free property means that ψ is a harmonic function (Section 2.2.2)

∇ · ∇ψ = ∇2ψ = 0. (2.33)

The velocity field arising from a linear non-rotating gravity wave (Section 55.5) in a Boussinesq
fluid (Section 29.1) maintains zero vorticity and zero divergence. Furthermore, curl-free and
divergence-free velocity fields are commonly encountered in engineering applications such as
aerodynamics (e.g., see Acheson (1990) for many elementary examples).

2.3.4 Practice deriving identities involving the curl

We close this section by deriving a suite of identities involving the curl operator. These identities
arise in various places within this book, particulely when developing dynamical equations for
vorticity. Furthermore, by making use of the rules for general tensor analysis developed in
Chapters 3 and 4, these identities take on the same form regardless the coordinate choice. The
derivations are presented in detail to facilitate understanding of the various steps involving index
gymnastics. After some practice, many of the steps can be readily skipped.

Vanishing divergence of the curl

Making use of equation (2.24g) for the curl leads to its zero divergence

∇ · (∇× F) = ea∇a · [ϵdbg∇d F b) eg] equation (2.24g) (2.34a)

= ea · eg ϵdbg∇a∇d F b ∇a · (ϵdbg eg) = 0 (2.34b)

= δag ϵdbg∇a∇d F b orthonormality, ea · eg = δag (2.34c)

= (ϵdbg∇g∇d)F b δag∇a = ∇g (2.34d)

= 0 ϵdbg∇g∇d = 0. (2.34e)

The final equality holds since ∇g∇d is symmetric on the indices, gd, whereas ϵdbg is anti-
symmetric on these same two indices.

Divergence of the cross product of two gradients vanishes

In a similar manner we find that the divergence acting on the cross product of two gradients
vanishes:

∇ · (∇ϕ×∇ψ) = ea∇a · (eb∇bϕ× ec∇cψ) introduce basis one-forms and indices (2.35a)

= ea · (eb × ec)∇a (∇bϕ ∇cψ) ∇aeb = 0 (2.35b)

= ϵabc∇a (∇bϕ ∇cψ) ea · (eb × ec) = ea · ϵbcd ed = ϵbca = ϵabc

(2.35c)

= 0, (2.35d)

where the result vanishes since ∇a∇bϕ and ∇a∇cψ are both symmetric on their indices, whereas
ϵabc is anti-symmetric on these indices. This derivation can be streamlined by dropping the basis
vectors and basis one-forms:

∇ · (∇ϕ×∇ψ) = ∇a(ϵabc∇bϕ∇cψ) = ϵabc (∇abϕ∇cψ +∇bϕ∇acψ) = 0. (2.36)
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Divergence of a cross product

The divergence of a cross product is determined through the following manipulations:

∇ · (F×E) = ea∇a · (F b eb × Ec ec) expose indices and basis vectors (2.37a)

= ea · (eb × ec)∇a(F bEc) ∇aeb = 0 (2.37b)

= ea · (ϵbcd ed)∇a(F bEc) cross product equation (1.45) (2.37c)

= δad ϵbcd∇a(F bEc) orthonormality, δad = ea · ed (2.37d)

= ϵbcd∇d(F bEc) raise index: δad∇a = ∇d (2.37e)

= ϵbcd (F
b∇dEc + Ec∇dF b) product rule (2.37f)

= −F · (∇×E) +E · (∇× F) equation (2.24g) for curl. (2.37g)

Curl of a scalar times a vector

The curl of a scalar times a vector, ψF, is determined by

∇× (ψF) = ϵdbg∇d(ψ F b) eg equation (2.24g) for curl (2.38a)

= eg ϵdbg [(∇dψ)F b + ψ∇dF b] zero derivative for basis one-forms and ϵ (2.38b)

= ψ∇× F+∇ψ × F reintroduce boldface notation. (2.38c)

Curl of a cross product

The curl of a cross product of two vectors is given by

∇× (F×E) = ea∇a × (eb F
b × ecEc) (2.39a)

= ea × (eb × ec)∇a(F bEc) (2.39b)

= ea × (ϵbcd e
d)∇a(F bEc) (2.39c)

= ϵade ϵbcd ee∇a(F bEc) (2.39d)

= −ϵaed ϵbcd ee∇a(F bEc) (2.39e)

= −(δab δec − δac δeb) ee∇a(F bEc) (2.39f)

= (−δab ec + δac eb)∇a(F bEc) (2.39g)

= F (∇ ·E) + (E · ∇)F−E (∇ · F)− (F · ∇)E, (2.39h)

where we made use of the identity (1.69) for the contraction of two Levi-Civita tensors.

Curl of a curl

The curl of a curl is given by

∇× (∇× F) = ea × (eb × ec)∇a∇b F c. (2.40)

The double cross product is computed by

ea × (eb × ec) = δcd e
a × (eb × ed) (2.41a)

= δcd ϵ
bde ea × ee (2.41b)

= δcd δ
af ϵbde ϵfeg e

g (2.41c)

= δcd δ
af (−δbf δdg + δbg δ

d
f ) e

g (2.41d)
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= −δab ec + δac e
b, (2.41e)

where we made use of the identity (1.69) for the contraction of two Levi-Civita tensors. We are
then left with

∇× (∇× F) = (−δab ec + δac e
b)∇a∇b F c (2.42a)

= −∇b∇b(ec F c) +∇c (eb∇bF c) (2.42b)

= −∇2F+∇(∇ · F). (2.42c)

This identity is particularly useful for non-divergent vector fields, in which

∇× (∇× F) = −∇2F if ∇ · F = 0. (2.43)

Relating advection, curl, and kinetic energy

We apply some of the previous results to derive a relation required to derive the vorticity equation
(Section 40.3.1). In particular, we show that

(v · ∇)v = ω × v +∇(v · v)/2, (2.44)

where
ω = ∇× v (2.45)

is the vorticity, v · v/2 is the kinetic energy per mass, and v is the fluid velocity field. Revealing
a large number of the steps leads to3

ω × v = (∇× v)× v ω = ∇× v (2.46a)

= (ea∇a × eb vb)× ec vc expand v and ∇ (2.46b)

= −ec × (ea × eb) (∇avb) vc rearrange (2.46c)

= (−δcb ea + δac eb) (∇avb) vc identity (2.41e) (2.46d)

= −vb∇vb + vc∇c (eb vb) contract some indices (2.46e)

= (v · ∇)v −∇(v · v/2) contract remaining indices and rearrange. (2.46f)

2.4 Path integral of a scalar function
Consider the integral of a scalar function, ψ, over an arbitrary one-dimensional path in space, C

I =

ˆ B

A
ψ(α) dα. (2.47)

Since any path is a one-dimensional curve, a point along the path can be specified by a single
parameter, denoted here by α with endpoints α = A and α = B.4 We now consider some explicit
examples of how to parameterize a curve to thus enable an explicit evaluation of the integral.5

3See Section 4.4.4 of Griffies (2004) for an alternative derivation.
4We have more to say about the geometry of paths in Sections 5.1 and 5.2.
5In the more general language of differential forms, the evaluation of a path integral requires one to parameterize

points along the path so to then write the path integral as a Riemann integral. This process is known as pulling
back the path integral to a Riemann integral. Shifrin (2004) provies a treatment accessible to those having studied
undergraduate calculus.
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2.4.1 Cartesian coordinates

Lay down a Cartesian coordinate system with an arbitrary origin, in which case the Cartesian
coordinate representation of a point along the path is written

x(α) = x̂x(α) + ŷ y(α) + ẑ z(α), (2.48)

along with the endpoints along the path

x(A) = xA and x(B) = xB. (2.49)

In this way the path integral is written

I =

ˆ B

A
ψ(α) dα =

ˆ B

A
ψ[x(α)] dα. (2.50)

To bring the integral (2.50) fully into a Cartesian parameterized form requires a coordinate
transformation from α to x along the curve. For this purpose, consider two points on the path
that are separated by an infinitesimal parameter difference, in which the difference in their
Cartesian coordinates is given by

dx = x(α+ dα)− x(α) = dx

dα
dα. (2.51)

We thus have

(dα)2 =
dx · dx

dx/dα · dx/dα. (2.52)

Assuming dα > 0 then leads to the integral (2.50) taking on the rather clumsy, but nonetheless
general, form

I =

ˆ B

A
ψ(α) dα =

ˆ B

A
ψ[x(α)] dα =

ˆ B

A
ψ[x(α)]

√
dx · dx

dx/dα · dx/dα. (2.53)

2.4.2 Arc length parameterization

Now consider a common special case for path parameterization where α = s is the arc length
along the path6

I =

ˆ B

A
ψ(α) dα =

ˆ sB

sA

ψ[x(s)] ds. (2.54)

For Euclidean space using Cartesian coordinates, the differential increment of arc length is given
by

ds =
√
dx · dx. (2.55)

Inserting x(s) into this expression renders

ds =
√
dx · dx = ds

√
dx

ds
· dx
ds
. (2.56)

This expression is self-consistent if √
dx

ds
· dx
ds

= 1, (2.57)

6We offer a more focused discussion of curves and tangents in Section 5.2.1 (see in particular equation (5.9)).
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xA

x(α)

xB

Figure 2.6: A linear path, x(α) extending from xA to xB can be parameterized by a non-dimensional parameter
α ∈ [0, 1] via x(α) = xA + (xB − xA)α. Alternatively, it can be parameterized by the arc-length along the path
via x(s) = xA + ŝ s with s ∈ [0, L], L = |xB − xA|, and ŝ the unit tangent vector pointing from xA to xB .

which is merely a rewrite of the defining expression (2.55). Note that the derivative of the curve
with respect to the arc-length, dx/ds, defines a unit tangent vector to the curve

ŝ =
dx

ds
=⇒ ŝ · ŝ = 1. (2.58)

2.4.3 Linear path example

As a specific example, consider a straight line between two points, xA and xB, as in Figure 2.6.
We can parameterize the line using a dimensionless parameter α according to

x(α) = xA + (xB − xA)α α ∈ [0, 1]. (2.59)

Alternatively, we can parameterize using the arc length

x(s) = xA + ŝ s s ∈ [0, L], (2.60)

where L =
´ B
A ds = |xB − xA| is the total arc length of the line, and where ŝ is the unit tangent

vector pointing along the path from xA to xB

ŝ =
x′(s)

|x′(s)| =
xB − xA
|xB − xA|

. (2.61)

As defined we have |x′(s)| = |ŝ| = 1, so that the path integral is given by

I =

ˆ
C

ψ(α) dα =

ˆ L

0
ψ[x(s)] ds. (2.62)

2.5 Path integral of a vector field

Generalizing to a vector field, F(x), we could conceivably integrate each component of the vector
along the curve independently, making use of the approach for scalars functions in Section 2.4.
In practice, however, that quantity rarely appears in physics.7 Instead, we more commonly wish
to integrate that component of F that projects onto a curve

ˆ
C

F · dx =

ˆ
C

F · dx
ds

ds =

ˆ
C

F · ŝ ds, (2.63)

7The mathematical reason it does not appear is that for a general manifold, the addition of vectors is only
defined locally within a tangent space. This limitation prevents us from integrating general tensors over a volume.
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where ŝ = dx/ds is tangent to the curve given by equation (2.58). A common example for the
path integral of a vector concerns the work performed by a force field applied to a physical
system that is moving along a path (this example is studied in Section 11.1.4).

2.5.1 Circulation

For the case of a closed curve or a circuit (see Section 5.1), we refer to the path integral as the
circulation and use the convention of putting an arrowed circle on the integral sign

circulation of vector field =

‰
C

F · dx. (2.64)

The arrow indicates that we conventionally traverse the closed path in a counter-clockwise (right
hand) manner when looking down on the path from above. Note that by choosing a viewpoint as
“above”, we necessarily allow for an unambiguous definition of “counter-clockwise”, thus chosing
an orientation.

2.5.2 Circulation example

Consider the vector field, F, expressed using Cartesian coordinates by the following vector
function

F (x) = −y x̂+ x ŷ, (2.65)

as shown in Figure 2.4. What is the circulation computed around a circle of radius r whose
center is the origin? To compute this circulation we make use of plane polar coordinates, in
which x = r cosα and y = r sinα, with α ∈ [0, 2π] the polar angle measured from the positive
x-axis. The position of a point on the circle is thus written x(α) = r (x̂ cosα+ ŷ sinα), and
the tangent to the circle is dx(α)/dα = r (−x̂ sinα+ ŷ cosα). The integrand to the circulation
(2.63) is given by

F · dx(α)
dα

= r (y sinα+ x cosα) = r2. (2.66)

Hence, the circulation around the constant radius circle is twice the area of the circle

‰
C

F · dx = 2π r2. (2.67)

We apply this result in Section 40.6.2 to geophysical fluids when computing the vorticity induced
by the rotating planet.

2.5.3 Fundamental theorem of calculus

The special case of F = −∇ψ for a scalar field ψ recovers the fundamental theorem of calculus

ψ(xB)− ψ(xA) =
ˆ xB

xA

dψ =

ˆ xB

xA

∇ψ · dx. (2.68)

It follows that for any closed curve with xA = xB, the circulation of ∇ψ vanishes

‰
C

dψ =

‰
C

∇ψ · dx = 0. (2.69)
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S
C = ∂S

dS

n̂

ŝ∇× F

Figure 2.7: Illustrating the geometry of Stokes’ theorem (2.70). The unit outward normal, n̂, points outward
from the surface, S, thus defining the positive or up direction. The integrand (∇× F ) · n̂ is the projection of
the curl of a vector field onto the surface outward normal. The boundary of the area, C = ∂S, is traversed
counterclockwise following the unit tangent vector, ŝ, when computing the circulation. Counter-clockwise is
oriented relative to the positive side of the surface as defined by the outward normal.

2.6 Stokes’ curl theorem

Stokes’ curl theorem relates the integral of a vector field, projected onto the tangent of a
boundary around an orientable surface, to the integral of the unit normal projected onto the
curl of the vector over the area of the surface.8 The geometry of Stokes’ theorem is illustrated
in Figure 2.7. This theorem is used extensively in our study of circulation and vorticity in Part
VII of this book.

2.6.1 Statement of Stokes’ theorem

For an oriented9 two-dimensional surface, S, with a closed boundary, ∂S, Stokes’ theorem says
that the circulation around the boundary equals to the area integrated curl projected onto the
surface outward unit normal ‰

∂S
F · dx =

ˆ
S

(∇× F) · n̂dS. (2.70)

In this equation,

dx =
dx

ds
ds = ŝds (2.71)

is the vector line element along the closed path (circuit), ŝ is the unit tangent vector along the
path, and s is the arc-distance along the path. For the surface integral we have the outward
unit normal, n̂, and dS is the infinitesimal surface area element. The orientation of the outward
normal determines, through the right hand rule, the counter-clockwise direction for the path
integral.

8As noted in a footnote on page 13 of Truesdell (1954), Lord Kelvin and later Hankel independently discovered
what we here refer to as Stokes’ theorem. Stokes’ name became attached to the theorem since he included its
derivation on an examination for students.

9For a surface to be orientable means that we can unambiguously describe its two sides, thus allowing us to
determine a positive (top) side and negative (bottom) side. We are here only concerned with surfaces that are
orientable, thus precluding non-orientable surfaces such as the Möbius strip.

CHAPTER 2. CARTESIAN VECTOR CALCULUS page 49 of 2158



2.7. GAUSS’S DIVERGENCE THEOREM

2.6.2 Stokes’ theorem for a rectangular region

To build experience with Stokes’ theorem, consider the case of a rectangle in the x-y plane with
dimensions Lx and Ly, and make use of Cartesian coordinates. In this case the outward normal
is n̂ = ẑ, so that

(∇× F ) · ẑ =
∂F 2

∂x
− ∂F 1

∂y
, (2.72)

in which case the right hand side of Stokes’ theorem reduces to

ˆ
S

(∇× F ) · n̂dS =

ˆ Lx

0

ˆ Ly

0

(
∂F 2

∂x
− ∂F 1

∂y

)
dx dy. (2.73)

Integration around the rectangle then leads to a direct verification of Stokes’ theorem

ˆ Lx

0

ˆ Ly

0

(
∂F 2

∂x
− ∂F 1

∂y

)
dx dy =

ˆ Ly

0
F 2(x, y)

∣∣∣∣x=Lx

x=0

dy −
ˆ Lx

0
F 1(x, y)

∣∣∣∣y=Ly

y=0

dx (2.74a)

=

ˆ Lx

0
F 1(x, 0) dx+

ˆ Ly

0
F 2(Lx, y) dy +

ˆ 0

Lx

F 1(x, Ly) dx+

ˆ 0

Ly

F 2(0, y) dy (2.74b)

=

‰
∂S
F · dx. (2.74c)

We can generalize this result to verify Stokes’ theorem for an arbitrary surface. We do so by
breaking the surface into a lattice of tiny rectangles. Integrating around the tiny rectangles
and summing their contributions leads to a cancellation of the line integrals over all interior
boundaries. The cancellation occurs since an internal edge of a rectangle is integrated once
in each direction thus cancelling its contribution. The only nonzero contribution comes from
integration over the boundary, ∂S.

2.6.3 Stokes’ theorem for a second order tensor

We now prove an expression of Stokes’ theorem that holds for second order tensors. For this
purpose, write the vector, F, as

F = c ·T, (2.75)

where c is a spatially constant vector and T is a second order tensor. We thus have the curl
given by

∇× F = ∇× (c ·T) = (∇×T) · c, (2.76)

so that Stokes’ theorem (2.70) takes the form[ˆ
S

(∇×T) · n̂dS

]
· c =

[‰
∂S

T · dx
]
· c. (2.77)

Since c is an arbitrary constant vector, this equality holds in general

ˆ
S

(∇×T) · n̂dS =

‰
∂S

T · dx. (2.78)

In Section 2.7 we make use of a similar trick with constant vectors to derive corollaries to the
divergence theorem.
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S = ∂R

R

n̂

F

Figure 2.8: Illustrating the geometry of Gauss’s divergence theorem for an ellipsoidal volume, R, with closed
boundary surface, S = ∂R. The outward unit normal along the boundary, n̂, is projected onto the vector field, F,
via the scalar product, F · n̂. Gauss’s divergence theorem says that integrating F · n̂ over the closed boundary
surface, S, yields the same answer as computing the volume integral of the divergence, ∇ · F, over the closed
region, R, bounded by the closed surface S.

2.7 Gauss’s divergence theorem
For a continuously differentiable vector field F, Gauss’s divergence theorem states that

ˆ
R

∇ · FdV =

˛
∂R

F · n̂dS, (2.79)

where n̂ is the outward unit normal to the boundary surface, ∂R, and dS is the surface area
element on the boundary. In words, the left hand side of Gauss’s theorem is the volume integral
of the divergence of a continuously differentiable vector field over a connected volume, R. The
right hand side is the unit normal projection of the vector field that is area integrated over the
closed surface, ∂R, bounding the volume. We follow the convention that

¸
∂R refers to a surface

integral over a closed surface that bounds a volume. This notation contrasts with the surface
integral,

´
S
, that generally does not enclose a volume. Figure 2.8 illustrates the geometry of

Gauss’s divergence theorem. In physics jargon, we say that the divergence of a vector field, ∇·F,
integrated over a volume equals to the flux of that vector field, F · n̂, integrated over the area
bounding the volume.

2.7.1 An example rectangular volume
To build intuition for Gauss’s divergence theorem, consider a rectangular volume with dimensions
Lx, Ly, and Lz and make use of Cartesian coordinates. The volume integral on the left hand
side of equation (2.79) gives

ˆ
R

[
∂F 1

∂x
+
∂F 2

∂y
+
∂F 3

∂z

]
dx dy dz. (2.80)

Focusing on just the leftmost term, integration in x gives

ˆ
R

∂F 1

∂x
dx dy dz =

ˆ y=Ly

y=0

ˆ z=Lz

z=0
[F 1(Lx, y, z)− F 1(0, y, z)] dy dz (2.81a)

=

ˆ
S1+S2

F · n̂dS, (2.81b)

where S1 is the rectangle’s face with outward unit normal n̂ = x̂ and S2 is the rectangle’s face
with unit normal n̂ = −x̂. Repeating this procedure on the other terms in equation (2.80) gives
the area integrated flux through the full boundary. To verify the theorem for a general volume
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V , we take the approach used to prove Stokes’ theorem. First, divide the volume into many
rectangular sub-volumes. Then apply the above result to each sub-volume and sum up the result.
The area integrated fluxes through internal rectangular faces cancel exactly. Therefore, the sum
of all the area integrated fluxes equals to just the flux integrated over the external boundary,
thus yielding the divergence theorem.

2.7.2 Gradient theorem for the volume integral of scalar fields

We consider various corollaries of the divergence theorem, the first of which arises from considering
the special case of a vector field F = ϕ c with c an arbitrary constant vector. Substitution into
the divergence theorem (2.79) yields

˛
∂R
ϕ c · n̂dS =

ˆ
R

∇ · (ϕ c) dV. (2.82)

Pulling the constant vector out of the integrals and rearrangement leads to

c ·
[˛

∂R
ϕ n̂dS −

ˆ
R

∇ϕ dV
]
= 0. (2.83)

Since c is an arbitrary constant vector, this equality is generally true if and only if

˛
∂R
ϕ n̂dS =

ˆ
R

∇ϕ dV. (2.84)

In words, this result says that the integral of a scalar field over the boundary of a closed surface,
when weighted by the outward unit normal to the surface, equals to the volume integral of the
gradient of the scalar field integrated over the region bounded by the closed surface. We make
use of this result in Section 24.2.3 when studying how stresses contribute to the motion of a
fluid element, with particular application to the case of pressure.

2.7.3 Surface integral of the outward unit normal

A corollary of equation (2.84) can be found by setting the scalar field, ϕ, to a constant so that
∇ϕ = 0. We thus find that the area integral of the outward unit normal vanishes when integrated
over the surface of a closed volume ˛

∂R
n̂dS = 0. (2.85)

This identity also holds for two-dimensions, so that the outward normal has a zero line integral
around a closed curve.

An example of the identity (2.85) can be seen by integrating over a closed rectangular volume,
whereby the area integrals cancel component-wise. Another example is the sphere, where n̂ = r̂
is the radial outward unit vector, so that integration of the radial unit vector over the spherical
surface identically vanishes. For some purposes we can take equation (2.85) as the definition of
a simply closed volume (or simply closed curve for the two dimensional case).

2.7.4 Integral of the curl of a vector field

Another identity follows from Gauss’s theorem by setting

F = c× v (2.86)
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where c is a constant vector. As a result,

∇ · F = −c · (∇× v), (2.87)

which follows from the identity (2.37g). We are thus led to the following identities

ˆ
R

∇ · FdV = −c ·
ˆ
R

∇× v dV equation (2.87) (2.88a)

=

˛
∂R

(c× v) · n̂dS divergence theorem (2.79) (2.88b)

= c ·
˛
∂R

(v × n̂) dS since c is a constant. (2.88c)

Since these identities hold for arbitrary c, we are led to

ˆ
R

(∇× v) dV =

˛
∂R

(n̂× v) dS. (2.89)

2.7.5 First and second form of Green’s identities
The further corollary to the divergence theorem arises from considering another special vector
field

F = ψ∇ϕ, (2.90)

with ψ and ϕ scalar fields. Substitution into the divergence theorem (2.79) leads to

˛
∂R
ψ
∂ϕ

∂n
dS =

ˆ
R

[∇ψ · ∇ϕ+ ψ∇2ϕ] dV Green’s first integral identity. (2.91)

We can make this result more symmetric by swapping ψ and ϕ and then subtracting, to render

˛
∂R

[
ψ
∂ϕ

∂n
− ϕ ∂ψ

∂n

]
dS =

ˆ
R

[ψ∇2ϕ− ϕ∇2ψ] dV Green’s second integral identity. (2.92)

Setting ϕ = 1 yields

˛
∂R

∂ψ

∂n
dS =

ˆ
R

∇2ψ dV ⇐⇒
˛
∂R
∇ψ · n̂dS =

ˆ
R

∇ · ∇ψ dV. (2.93)

We make use of these identities in Chapter 9 when studying the Green’s function method for
solving linear partial differential equations.

2.7.6 Integral of a curl over a closed surface
Application of Gauss’s divergence theorem leads us to conclude that the following integral
vanishes ˛

∂R
(∇× F) · n̂dS =

ˆ
R

∇ · (∇× F) dV = 0, (2.94)

where the final equality follows since the divergence of a curl vanishes. Hence, the integral of the
unit normal projection of the curl of a vector field, as computed over an oriented closed surface,
vanishes. We can understand this result geometrically by splitting the closed volume into two
regions and then applying Stokes’ theorem separately to the two regions (see Figure 2.9)

˛
∂R

(∇× F) · n̂dS =

ˆ
S1

(∇× F) · n̂dS1 +

ˆ
S2

(∇× F) · n̂dS2 (2.95a)
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S1

S2

n̂1

n̂2

n̂2

n̂1

Figure 2.9: The integral of the unit normal component of the curl of a function vanishes when integrated over
an oriented closed surface, ∂R, which forms the boundary to a closed volume, R. This result follows from both
Gauss’s divergence theorem as well as Stokes’ curl theorem. For Gauss’s theorem we find

¸
∂R

(∇×F) · n̂dS =´
R
∇ · (∇ × F) dV = 0, which follows since the divergence of the curl vanishes. For Stokes’ theorem we split

the closed volume into two so that its boundary surface has also been split into two, ∂R = S1 + S2. Separately
applying Stokes’ theorem to S1 and S2 leads to the calculation of the circulation around the common boundary
along the equatorial plane. Since orientation of the outward unit normal along the equatorial plane is opposite for
the two regions, the two circulations exactly cancel since they are computed in opposite directions.

=

‰
∂S1

F · dx−
‰
∂S2

F · dx (2.95b)

= 0. (2.95c)

The minus sign appearing in front of

∂S2

occurs since the orientation of the circulation integral

is opposite that for

∂S1

. We are thus left with a cancellation of the circulations. When applied
to the vorticity of fluid flow (Chapter 37), we see that

˛
∂R
ω · n̂dS =

ˆ
R

∇ · ω dV = 0, (2.96)

where ω = ∇× v is the vorticity and v is the fluid velocity.

2.7.7 The domain integral of a non-divergent Cartesian vector field

Consider a vector field that has zero divergence everywhere within a domain, R. Consequently,´
R
∇ · F dV =

¸
∂R F · n̂ dS = 0. Now what can we say about

´
R
F dV ? One might be tempted

to say that it vanishes. But that is generally an incorrect statement as we now show.10

Making use of Cartesian coordinates, and the non-divergence property, know that

0 =

ˆ
R

xa∇ · F dV =

ˆ
R

[∇ · (xa F )− F a] dV, (2.97)

where we used ∂bx
a = δab. Use of the divergence theorem leads to

ˆ
R

F a dV =

ˆ
R

∇ · (xa F ) dV =

˛
∂R
xa (n̂ · F ) dS. (2.98)

The right hand side does not generally vanish since n̂ ·F does not generally vanish at each point
along ∂R. Hence, we find that

´
R
F dV = 0 only for those domains where n̂ · F = 0 at each

point along ∂R.

10As a technical note, we observe that the integral of a vector field is only well defined in Euclidean space and
using Cartesian coordinates. A general manifold requires extra formalism for the purpose of comparing vectors at
two different points.
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2.7.8 Gradient tensor theorem for ∇⊗ F
Certain elements from Stokes’ theorem in Section 2.6 and the divergence theorem from Section
2.7 can be summarized in the following gradient tensor theorem that originates from Gibbs
(1884) (equation (2), page 65, §161), and has been further discussed by Lilly et al. (2024) for
applications in fluid mechanics. For this purpose, recall the definition of the tensor product from
Section 1.6. We are led to the tensor product of the gradient operator and a vector field, here
using Cartesian coordinates

∇⊗ F = ea∂a ⊗ eb F b = (ea ⊗ eb) ∂aF b. (2.99)

Integrating over a domain leads to

ˆ
R

∇⊗ F dV =

ˆ
R

ea∂a ⊗ eb F b dV expose tensor indices (2.100a)

=

ˆ
R

∂a(e
a ⊗ eb F b) dV Cartesian basis is constant (2.100b)

=

[ˆ
R

∂a(e
a F b) dV

]
⊗ eb Cartesian basis is constant (2.100c)

=

[˛
∂R
n̂a e

a F b dS

]
⊗ eb divergence theorem (2.100d)

=

˛
∂R
n̂a e

a ⊗ eb F b dS Cartesian basis is constant (2.100e)

=

˛
∂R
n̂⊗ F dS boldface notation. (2.100f)

Use of the divergence theorem in equation (2.100d) is an application of the scalar gradient
theorem (2.84) separately to each component of F b, so that

˛
∂R
F b n̂dS =

ˆ
R

∇F b dV. (2.101)

The assumption of Cartesian tensors is seemingly basic to the above derivation of the gradient
tensor theorem ˆ

R

∇⊗ F dV =

˛
∂R
n̂⊗ FdS. (2.102)

In fact, when making use of the covariant derivative of a vector as defined in Section 4.11,
as well as the metricity condition from Section 4.13, the derivation also follows for arbitrary
coordinates. The only modification is to interpret the derivative operator, ∇, as a covariant
derivative operator rather than a partial derivative operator. However, while offering a variety of
uses of the gradient tensor theorem for fluids moving on flat surfaces and described by arbitrary
coordinates, Lilly et al. (2024) also shows that the theorem cannot be generalized to arbitrary
curved surfaces.

2.8 Exact and inexact differentials
Thus far in this chapter all differentials have been exact. However, the thermodynamics discussed
in Part IV makes use of both exact and inexact differentials. We here introduce the mathematics
of such differentials. Our focus concerns differentials taken between space points, though we
note that in some applications it may be appropriate to consider space-time displacements.
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2.8.1 Exact differentials

Consider an arbitrary scalar function of space, F (x). A differential increment for that function,
computed between two close points x and x+ dx, is given by

dF (x) = F (x+ dx)− F (x) (2.103a)

= dx · ∇F, (2.103b)

where we dropped higher order terms due to the infinitesimal nature of the increments. It follows
that we can determine the finite increment between two points through integration

F (xB)− F (xA) =
ˆ xB

xA

dF (x) =

ˆ xB

xA

dx · ∇F. (2.104)

These results are familiar from elementary calculus, with the increment dF given by equation
(2.103b) termed an exact differential. Importantly, the finite increment, F (xB)−F (xA), depends
only on the endpoint values of F . It does not depend on the path taken to go from xA to xB.
Correspondingly, the integral of an exact differential vanishes when computed around a closed
loop ˛

dF = 0. (2.105)

2.8.2 Inexact differentials

Consider a differential expression written as

A · dx = Adx+B dy + C dz, (2.106)

where A = A x̂+B ŷ + C ẑ is an arbitrary vector here represented using Cartesian coordinates.
If ∇×A = 0, then A can be written as the gradient of a scalar

∇×A = 0 =⇒ A = ∇F, (2.107)

in which case we have an exact differential expression

A · dx = ∇F · dx = dF. (2.108)

That is, the differential dF = A · dx is exact if

∇×A = 0 =⇒ dF = A · dx exact differential. (2.109)

If ∇×A ̸= 0, then A · dx is termed an inexact differential. We make use of the following
notation for inexact differentials,

d̄G = A · dx, (2.110)

(note the symbol d̄ for the inexact differential). Notably, the path integral of an inexact differential
depends on the path taken between the endpoints. Correspondingly, the integral of an inexact
differential around a closed loop does not generally vanish

˛
d̄G ̸= 0. (2.111)
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2.8.3 Integrating factors

Consider again the inexact differential, d̄G = A · dx, and assume there exists a scalar function,
ϕ, so that the product, ϕ−1 d̄G, is exact. For ϕ to exist it must be such that

∇× (Aϕ−1) = 0. (2.112)

Consequently, we can write
A = ϕ∇F, (2.113)

so that
d̄G = A · dx = ϕ∇F · dx = ϕ dF. (2.114)

The function, ϕ, is known as an integrating factor. As seen in our study of thermodynamics in
Chapter 22 (see in particular Section 22.2.3), pressure is the integrating factor for mechanical
work, temperature is the integrating factor for heating, and the chemical potential is the
integrating factor for chemical work.

2.8.4 An example using the velocity field

Consider the scalar product, v ·dx, where v is the velocity field for a fluid and dx is a differential
increment in space directed along a path. Furthermore, introduce the curl of the velocity, which
defines the vorticity (Section 37.2) ω = ∇×v. For cases where the vorticity vanishes, ω = 0, then
dΨ = v · dx is an exact differential. Consequently, Stokes’ theorem means that the circulation
vanishes for an irrotational velocity field computed around an arbitrary closed loop (Section
37.4)

C ≡
‰
∂S

v · dx =

ˆ
S
ω · n̂dS = 0. (2.115)

Another way to see this result is to note that a vanishing curl means that the velocity field can
be expressed as the gradient of a scalar, v = ∇ψ, so that dΨ = ∇ψ · dx, which is manifestly
exact.

2.8.5 Heuristic physics of exact and inexact differential operations

Consider a hiker climbing a mountain. The mechanical work, which is force applied over a
distance, is a function of the path taken. Some paths are smooth and well marked, whereas
others are rough and poorly marked. Likewise, the frictional heating (of the hiker’s feet, for
example) depend on details of the path (and the shoes!). So although the start and finish points
are fixed, the work exerted and heat generated in going between these points is a function of the
path.

In contrast, the change in gravitational potential energy between the start and finish points
is a function only of the elevation difference between the start and finish points. It does not
depend on the path between the points. So the gravitational potential energy increment between
the two points is an exact differential, with the potential energy for each point a function of the
elevation at the point.

The First Law of thermodynamics, studied in Part IV, states that the sum of path-dependent
processes (work and heat) used in going from one thermodynamic state to another equals to
the difference in the internal energy between the two states. That is, the sum of the inexact
differentials for heat and work equal to the exact differential for internal energy.
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2.9 Exercises
Throughout these exercises we consider a point whose position vector, relative to an arbitrary
origin, is represented using Cartesian coordinates according to

x = x x̂+ y ŷ + z ẑ (2.116)

and whose squared distance from the origin is

r2 = x · x = x2 + y2 + z2. (2.117)

exercise 2.1: practice with the gradient operator
Prove the following identities:

(a) ∇(|x|) = x |x|−1 ≡ r̂

(b) ∇ ln |x| = x |x|−2 = r̂ |x|−1

(c) ∇|x|−1 = −x |x|−3 = −r̂ |x|−2.

exercise 2.2: practice with the Laplacian operator
Show that the Laplacian of the function

ψ =
z x2

r2
(2.118)

is given by

∇2ψ =
2 z (r2 − 5x2)

r4
. (2.119)

Perform the proof using both Cartesian coordinates as well as spherical coordinates (see Figure
4.3), making use of the following expressions for Laplacian operator acting on a scalar field

∇2ψ(x, y, z) =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(2.120a)

∇2ψ(λ, ϕ, r) =
1

r2 cosϕ

[
1

cosϕ

∂2ψ

∂λ2
+

∂

∂ϕ

(
cosϕ

∂ψ

∂ϕ

)
+ cosϕ

∂

∂r

(
r2
∂ϕ

∂r

)]
. (2.120b)

exercise 2.3: more practice with operators
Prove the following identities with r ̸= 0:

(a) ∇2r−1 = 0

(b) ∇ · (x/r3) = 0

(c) ∇ · (A× x) = x · (∇×A) for an arbitrary vector field A(x).

(d) ∇× [x f(r)] = 0 for an arbitrary function f(r) = f(|x|).

exercise 2.4: rigid-body rotation
Define a velocity field according to

v = Ω× x (2.121)

with Ω a spatially constant angular rotation velocity (e.g., rotation of the earth). This velocity
field describes rigid-body rotation as discussed in Section 37.6. Show that 2Ω = ∇× v. See also
Exercise 37.2.
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exercise 2.5: divergence-free and irrotational vector
Let Φ be a harmonic function so that ∇2Φ = 0. Show that v = −∇Φ satisfies

(a) ∇ · v = 0

(b) ∇× v = 0.

In this way we prove that all harmonic scalar fields correspond to a divergence-free and curl-free
vector field.

exercise 2.6: Conservative vector field and scalar potential
Show that the curl, ∇× F , of the following vector field vanishes

F = 2x z x̂+ 2 y z2 ŷ + (x2 + 2 y2 z − 1) ẑ. (2.122)

Hence, deduce that F is a conservative vector field, meaning that it can be written as the
gradient of a scalar potential ψ according to F = −∇ψ, where (to within an arbitrary constant)

ψ = −[x2 z + (y z)2 − z]. (2.123)

exercise 2.7: Product rule identities
Prove the following identities with F a Cartesian vector in R3:

(a) F = ∂n (F
n x)− x∇ · F

(b) 2Fm = [x× (∇× F )]m − ∂m(x · F ) +∇ · (xFm).

Make use of Cartesian tensors and show all relevant steps, including use of the Levi-Civita tensor
from Section 1.7.1 for the cross-product.

As discussed in Section 12.4.1 of Bühler (2014a), these product rule identities have use for
the study of impulses imparted by a body force per volume, F , to a fluid on an unbounded
domain where the force has compact support (i.e., the force vanishes outside a finite domain).
In that case the above product rule identities allow us to make use of the corresponding integral
identities ˆ

F dV = −
ˆ
x∇ · F dV =

1

2

ˆ
x× (∇× F ) dV. (2.124)

exercise 2.8: Beltrami flow
Beltrami flow is defined by velocity and vorticity fields satisfying

∇ · v = 0 (2.125a)

ω = ∇× v = λv (2.125b)

where λ is a constant with dimensions of inverse length. Show that the following velocity field is
a Beltrami flow

v = (A sin z + C cos y) x̂+ (B sinx+A cos z) ŷ + (C sin y +B cosx) ẑ, (2.126)

where A,B,C are constants with dimensions of length per time. Hint: the solution follows
directly from computing

λu = ∂yw − ∂zv and λ v = ∂zu− ∂xw and λw = ∂xv − ∂yu. (2.127)

exercise 2.9: practice with path integrals
Consider the vector field written using Cartesian coordinates,

F = x y2 x̂+ 2 ŷ + x ẑ. (2.128)
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Let L be a path parameterized by

x = c t y = c/t z = d t ∈ [1, 2], (2.129)

where c and d are constants. Show that the following identities hold

ˆ
L

F dt = c3 ln 2 x̂+ 2 ŷ +
3 c

2
ẑ (2.130a)

ˆ
L

F dy = −3 c4

8
x̂− c ŷ − c2 ln 2ẑ (2.130b)

ˆ
L

F · dx = c4 ln 2− c, (2.130c)

where dx = x̂ dx+ ŷ dy + ẑ dz. Although all three integrals are computed along the same path,
they are not necessarily of the same type. In particular, the first two integrals are vector fields,
whereas the third integral is a scalar.

exercise 2.10: Stokes’ theorem on a plane
Show that

I =

‰
∂S

[
y (4x2 + y2) dx+ x (2x2 + 3 y2) dy

]
=
π

2
b a3 (2.131)

when integrating around the boundary of an ellipse S defined by

x2

a2
+
y2

b2
= 1, (2.132)

where a, b are constants. Hint: make use of Stokes’ theorem on a plane, otherwise known as
Green’s Theorem. Also make use of the substitution x = a cosϕ and the identity

ˆ 0

π
sin2(2ϕ) dϕ = −π

2
. (2.133)

exercise 2.11: practice with Gauss’s divergence theorem
We here demonstrate the validity of Gauss’s divergence theorem for a particular vector field

F =
αx

(r2 + a2)3/2
, (2.134)

where α and a are constants and r2 = x · x is the squared radial distance to a point. Using
fluid mechanics jargon, we think of F as a matter flux with physical dimensions of M L−2 T−1

(mass length−2 time−1). Now compute the transport of F through a spherical surface, S, of
radius |x| = a

√
3

Φ =

˛
|x|=a

√
3
F · n̂dS =

3π α
√
3

2
. (2.135)

With F a matter flux then Φ has physical dimensions of M T−1, so that it is the mass transport
through the spherical surface. Next, show that this transport is equal to the integral of the
divergence over the volume of the sphere

Φ =

ˆ
|x|=a

√
3
∇ · F dV. (2.136)
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We thus verify, for this particular vector field, the divergence theorem

ˆ
R

∇ · F dV =

˛
∂R
F · n̂dS, (2.137)

where n̂ is the outward unit normal on the bounding surface S.

exercise 2.12: more practice with Gauss’s divergence theorem
Prove the following identities, which are readily shown using Gauss’s divergence theorem.

(a)
¸
∂R x · n̂ dS = 3

´
R
dV = 3V , where R is a closed region bounded by ∂R and with volume´

R
dV = V .

(b)
¸
∂R(n̂× F ) dS =

´
R
∇× F dV , for an arbitrary vector field F and with n̂ the outward

unit normal on the bounding surface ∂R. Hint: in a manner similar to the result shown in
Section 2.7.2, make use of Gauss’s theorem with A = F ×C where C is a constant vector.

(c) Let ∂R be a closed surface bounding a volume R, and let x denote the position vector of
a point measured from an arbitrary origin. Prove the following

˛
∂R

n̂ · x
r3

dS =

{
0 if the origin lies outside of ∂R
4π if the origin lies inside of ∂R.

(2.138)
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Chapter 3

GENERAL TENSORS IN BRIEF

Vector calculus, as formalized by the Cartesian tensor analysis of Chapters 1 and 2, is sufficient
for many areas of geophysical fluid mechanics. However, there are a number of applications
where general tensors helps the physics to shine through the maths. We are thus motivated
to move beyond Cartesian tensor analysis to here consider general tensors, thus enabling a
more versatile and precise mathematical formalism. Besides enhancing our tools for geophysical
fluid mechanics, general tensor analysis is found throughout physics so that understanding the
formalism, if only its rudiments, can greatly help to understand the broader physics literature.

Geophysical fluid mechanics applications require only a modest level of new formalism in the
transition from Cartesian tensors to general tensors. The following reasons support a somewhat
minimalist use of general tensor analysis and differential geometry.

• Geophysical fluids are embedded within the same Euclidean space used for Newtonian
particle mechanics (Chapter 11). Notably, Euclidean space has zero intrinsic curvature so
we say that it is a flat space. So although we are concerned with fluid motion on curved
static manifolds (e.g., spherical planets); motion on curved and fluctuating manifolds (e.g.,
Lagrangian coordinates, also isopycnal coordinates); and in describing motion using non-
orthogonal coordinates (e.g., generalized vertical coordinates), the fluid remains embedded
within a background Euclidean space. Through that embedding, the local geometry inherits
features from the Euclidean space. In particular, we continue to measure distance between
points in space via the Pythagorean theorem and the associated Kronecker metric, δij .

• We make use of universal Newtonian time. Hence, time is measured the same by all
observers and reference frames. So although the spatial coordinates used by geophysical
fluid mechanics can be a function of time, the time coordinate is always independent of
space.

• We assume that the position of a fluid particle is described by a vector extending from an
origin, typically assumed to be the center of the planet. In so doing, we retain the notion
of a position as a directed line segment starting from an origin, just as for Cartesian tensor
analysis in Section 1.2. Alternative treatments dispense with the notion of an origin and
corresponding position vector. Instead, these treatments generalize the concept of a vector
to a directed partial derivative operator. We briefly motivate this generalization in Section
3.4.3.1 Such treatments are essential in some areas of continuum mechanics, particularly
when working with arbitrary manifolds where there is no special point that can serve as
the origin. Even so, we retain the notion of an origin for our purposes since it is needed
to discuss motion on a rotating planet. Namely, on a rotating planet the planet’s center

1For a thorough discussion of this general approach to defining vectors and tensors, the reader can refer to
one of the many books on mathematical physics, such as Schutz (1980) (see his Section 2.7) or Frankel (2004)
(see his Section 1.3). Additionally, Tromp (2025b) as well as the appendices to Tromp (2025a) provide a treament
focused on applications to continuum mechanics.
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provides a natural coordinate origin and the rotational axis breaks the isotropy of space.
It follows that to understand the planetary Coriolis acceleration and planetary centrifugal
acceleration, which arise from a rotating terrestrial observer’s description of planetary fluid
motion, requires an acknowledgement of the rotational axis and planetary center.

Each of these features of the space and time used for geophysical fluid mechanics means that
our mathematical needs are less than the general relativist who studies fluids moving in strong
gravity fields and/or over galactic distances. Even so, we do need some of the tools, and that is
the goal for this chapter as well as Chapter 4.

reader’s guide to this chapter
This brief chapter offers an overview sufficient to appreciate why we need general tensors

for certain subjects in this book. We do so by offering a conceptual platform for general
tensor analysis, with details presented in Chapter 4. We focus on tensor analysis on spatial
manifolds endowed with a metric, thus touching on the rudiments of Riemannian differential
geometry. Furthermore, we restrict attention to manifolds embedded in Euclidean space, thus
providing a natural extension of the Cartesian tensor analysis from Chapters 1 and 2.

3.1 Covariance as coordinate invariance . . . . . . . . . . . . . . . . . . . . . 64
3.1.1 Covariance versus covariant . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Tensor operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Points, trajectories, and coordinates . . . . . . . . . . . . . . . . . . . . . 66
3.2.1 Time as a parameter and time as a coordinate . . . . . . . . . . . 67
3.2.2 The importance of index placement . . . . . . . . . . . . . . . . . 67

3.3 Example coordinate descriptions . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Locally orthogonal coordinates . . . . . . . . . . . . . . . . . . . 68
3.3.2 Isopycnal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.3 Lagrangian or material coordinates . . . . . . . . . . . . . . . . . 69
3.3.4 Tracer coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.5 Coordinates are not tensors . . . . . . . . . . . . . . . . . . . . . 69

3.4 The velocity vector and basis vectors . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Coordinate representation . . . . . . . . . . . . . . . . . . . . . . 70
3.4.2 Basis vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Vector fields living on a tangent space . . . . . . . . . . . . . . . 71
3.4.4 Concerning basis vectors as differential operators . . . . . . . . . 71

3.5 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.1 Covariant, contravariant, and Einstein summation . . . . . . . . 71
3.5.2 Upright and slanted notation . . . . . . . . . . . . . . . . . . . . 72
3.5.3 Physical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.4 Space-time notation . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Covariance as coordinate invariance
Physical relations are independent of subjective choices for their mathematical representations.
This principle motivates us to seek mathematical expressions between objects whose meaning
transcends a particular coordinate representation. At its most basic level, there is no a priori
notion of the underlying geometry, with an insistence on such generalities leading to general
relativity and the notion of general covariance. General covariance means that the physical
equations take on the same form regardless the coordinates, even though when unpacked into
coordinate components the terms in these equations generally are effected by coordinate choice.
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We do not need general covariance in this book, given that we work on a background Euclidean
space on which the fluid moves, and we make use of a universal Newtonian time measured by all
observers. That is, we work with Galilean space-time. Nonetheless, within the restricted class of
Galilean space-time, we do insist that the mathematical expression of a physical relation in an
inertial reference frame be independent of the coordinate choice.

We refer to the above property of the physical equations as Galilean covariance, or more
specifically coordinate invariance. This property is ensured when the equations of mathematical
physics are relations between geometric objects such as points, vectors, and tensors. We thus
focus in this chapter and in Chapter 4 with the operational goal of laying down the foundations
for expressing the continuum equations of fluid mechanics in a form that exposes their underlying
geometric foundation. Doing so allows us to avoid being distracted by coordinate dependent
statements, while also offering a framework for the practice of using specific coordinates as well
as non-inertial reference frames.

Although physics does not care about coordinates, physicists often do. Namely, it is
convenient, and sometimes necessary, to work with specific coordinates suited to the symmetry
of the physical system, particularly when comparing theory to experiment or when coding a
numerical model. After deriving a physical law in one set of coordinates, it is often of interest to
establish the form of the law in another set of coordinates. How does the physical law, typically
represented as a differential equation, transform into other coordinates? So long as the equations
are written in a proper tensorial form then the equations are form invariant. What constitutes
“proper tensorial form” is a topic for this chapter and Chapter 4.

When the equations do not manifest form invariance (i.e., covariance), then that signals
either a mistake or, more relevant to our study, a subjective view that arises when describing
motion from a non-inertial reference frame. In Part II, we study the accelerations that result
from viewing physical systems from a non-inertial reference frame, with such accelerations
(planetary centrifugal and planetary Coriolis) fundamental to geophysical fluid mechanics. For
this chapter and Chapter 4, we focus on coordinate invariance as a statement that the equations
look the same regardless the choice of coordinates. Consequently, “physics as geometry” has
a major practical implication. Namely, we can establish the validity of a physical relation in
any convenient set of coordinates (including Cartesian), and then extend that relation to all
coordinates so long as we respect the basic rules of tensor analysis.

3.1.1 Covariance versus covariant
The term covariance is here used as a noun, referring to the coordinate invariant form of
equations. In traditional tensor analysis we also make use of covariant as an adjective, which
refers to how a particular coordinate representation of a tensor transforms under coordinate
changes (i.e., covariant labels are downstairs). The two uses are readily confused, particularly
when encountering the covariant derivative in Chapter 4, which can have either a covariant or
contra-variant tensor representation. It is referred to as the covariant derivative since it remains
invariant under coordinate transformations.

It is unfortunate that we do not have two distinct names for these terms, though note that
context and experience serve to clarify their uses. We also note that the older use of covariant
(i.e.,for a downstairs tensor label) is becoming far less common in modern treatments. For this
book, we retain the usage only where convenient.

3.1.2 Tensor operations
Extending a mathematical equation to all coordinates requires the equations to respect certain
tensor rules. In brief, all tensor indices are properly matched and each derivative is covariant
as specified in Section 4.10. In chapter 4, we provide the details needed to understand general
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coordinate invariance. In this chapter we outline the procedure. The elegance and power rendered
by coordinate invariance is the key reason that tensor analysis is ubiquitous in theoretical physics.

To ensure an equation respects coordinate invariance requires us to understand certain
properties of tensors and operations with tensors that produce components of new tensors. We
here summarize the specific properties characterizing coordinate invariance (taken after page
153 of Schutz , 1985):

1. Manipulations of tensor components are called permissible tensor operations if they produce
components of new tensors. The following are permissible operations:

(a) Multiplication of a tensor by a scalar produces a new tensor of the same type.

(b) Addition of components of two tensors of the same type gives components of a new
tensor of the same type. In particular, only tensors of the same type can be equal.

(c) Multiplication of components of two tensors of arbitrary type gives components of a
new tensor whose type is given by the sum of the types for the individual tensors.
This operation is called the outer product or tensor product and is denoted by the
operator ⊗. For example, A⊗B is a second order tensor built from the outer product
of two vectors, A and B. The discussion in Section 1.6 of tensor products largely
holds for general tensors as well.

(d) Covariant differentiation (Sections 4.10 and 4.11) increases by one the order of a
tensor, with the covariant derivative operator denoted by ∇.

(e) Contraction on a pair of indices of the components of a tensor reduces by one the
order of a tensor.

(f) A corollary of the multiplication rule is that if the inner product of two objects yields
a tensor, and if one of these objects is itself a tensor then so too is the other. This
result is known as the quotient rule.

2. If two tensors of the same type have equal components in a given coordinate system, then
they have equal components in all coordinate systems. Hence, the tensors are identical.
As a corollary, if a tensor is zero in one coordinate system, then it is zero in all coordinate
systems. Conversely, if an object vanishes in one set of coordinates but is nonzero in
another, then that object is not a tensor.

3. If a mathematical equation consists of tensors combined only by the permissible tensor
operations, and if the equation is true in one coordinate system, then it is true in any
coordinate system. If the equations involve covariant derivatives, then the equations
remain form invariant under changes in coordinates. For the partial differential equations
of geophysical fluid mechanics, covariant differentiation is the key to coordinate invariance.

3.1.3 Comments
The remainder of this chapter, as well as Chapter 4, we provide details needed for unpacking
the notions of coordinate invariance and specifying particular tensor operations. Even without
penetrating these details, the reader should be able to appreciate why coordinate invariance is
so central to physics.

3.2 Points, trajectories, and coordinates
Consider a point in space, P, at a particular time, τ . If this point represents the position of a
point particle that moves, then as time increases the point traces out a curve in space-time. We
call that curve the trajectory of the particle. In general, a trajectory through space-time could be
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determined by a point particle satisfying Newton’s laws, as discussed in Chapter 11. Or it could
be that of a fluid particle within a continuum, whose motion defines the Lagrangian reference
frame (Section 17.2). Or it could trace the path of something else such as a fish, balloon, boat, or
airplane. As the trajectory is a one-dimensional curve, it is specified mathematically by a single
parameter (see Section 5.2.1). We choose the time measured by an observer on the trajectory
for this parameter. This time is referred to as proper time in special relativity. Yet since we are
working with Newtonian time, there is no ambiguity concerning past, present, and future. In
this manner, time is monotonically increasing and it has the same value at all points in space.

A point in the fluid as well as the trajectory in space-time are both geometric objects that exist
independently of any coordinate representation. Even so, we find the need to represent points,
trajectories, vectors, and other geometric objects using coordinates. For example, coordinates
are needed to make quantitative statements about fluid flow in relation to observers. What is its
speed and direction relative to a chosen reference frame? What is the distance from an origin or
from another particle?

3.2.1 Time as a parameter and time as a coordinate

In special and general relativity, there is a mixing of space and time that warrants the use of
four-dimensional space-time tensor analysis. In contrast, for classical mechanics forming the
foundation of geophysical fluid mechanics, time is a monotonically increasing parameter that is
numerically the same value throughout all of space. We thus make use of the same universal (or
Newtonian) time since the fluid velocity and wave speeds are far smaller than the speed of light.
Hence, for our studies we generally restrict attention to the space + time formalism of classical
mechanics rather than the space-time formalism of relativity. Even so, we have some occasions
for using the space-time formalism, such as mentioned in Section 3.5.4.

The time parameter, τ , specifies a point along a trajectory in space. When making use of
Lagrangian methods for fluid mechanics, we refer to τ as T , the Lagrangian time coordinate. An
alternative measure of time is given by t, which measures time at positions fixed throughout
space. This time is the Eulerian time coordinate of fluid mechanics, which is the time measured
by a fixed laboratory reference frame.

This distinction between the two times is pedantic given that τ = T = t (up to a constant
offset) in the Galilean relativity considered in this book. Nonetheless, it is convenient to make
the distinction when measuring how fluid properties change since these changes are subject to
motion of the observer. For example, changes following a trajectory, found by computing the
trajectory time derivative ∂/∂τ = ∂/∂T , are generally distinct from changes found by computing
the time derivative ∂/∂t, in which the spatial coordinates are held fixed.

When the trajectory is defined by a fluid particle, we refer to ∂/∂T as the material or
Lagrangian time derivative. This time derivative is the same as when working with Newtonian
particle mechanics as in Chapter 11. In contrast, if the spatial coordinates are fixed in space,
then ∂/∂t is an Eulerian time derivative. When alternative spatial coordinates are used, some
of which can move (see Section 3.2.2), then ∂/∂t can be a mixture of Lagrangian and Eulerian
or perhaps neither. We return to these time derivatives in Section 17.4 when discussing fluid
kinematics.

3.2.2 The importance of index placement

In Chapters 1 and 2 we introduced the covariant (downstairs) and contravariant (upstairs)
representation of Cartesian tensors. That distinction is unimportant for Cartesian tensors since
the Cartesian representation of the metric tensor is given by the Kronecker symbol, δab. In
contrast, for general tensors the position of a tensor label has significance.
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We are inspired by the choice for index placement by the placement of indices on coordinates.
For that purpose we choose to express each of the coordinates in an ordered list according to

ξα = (ξ0, ξ1, ξ2, ξ3), (3.1)

with ξα representing a generalized coordinate. The α index is a coordinate label; it is not an
exponent or power. We use a convention whereby Greek labels run from α = 0, 1, 2, 3 with
α = 0 the time coordinate and α = a = 1, 2, 3 the three labels for locating a point in space. The
following shorthand notations are commonly used in this book

ξα = (ξ0, ξ1, ξ2, ξ3) = (ξ0, ξa) = (ξ0, ξ). (3.2)

3.3 Example coordinate descriptions

We here offer coordinate examples used for describing geophysical fluid systems. As the time
coordinate remains universal in our study, the following is only concerned with the spatial
coordinates, a = 1, 2, 3.

3.3.1 Locally orthogonal coordinates

In Sections 4.21, 4.22, and 4.23 we detail three sets of commonly used locally orthogonal
coordinates: Cartesian, cylindrical-polar, and spherical. In Cartesian coordinates, (x, y, z), the
position vector for a point in space is written

x = x x̂+ y ŷ + z ẑ Cartesian. (3.3)

For spherical coordinates, (λ, ϕ, r), the position vector is (see Figure 4.3)

x = r r̂ spherical, (3.4)

and cylindrical-polar coordinates, (r, ϑ, z), (see Figure 4.2) we have

x = r r̂ + z ẑ cylindrical-polar. (3.5)

Note that in spherical coordinates, r is the distance from the origin to the point and r̂ points
from the origin to the point. In contrast, for cylindrical-polar coordinates, r is the distance from
the z-axis and r̂ is the horizontal vector pointing from the z-axis to the point. Each of these
coordinate representations identify positions in space relative to a fixed coordinate origin.

As shown in Section 3.4, Cartesian coordinates have basis vectors that maintain a fixed
direction throughout space. This feature lends simplicity to Cartesian coordinates and its
corresponding Cartesian tensor analysis (Chapters 1 and 2). In contrast, the spherical basis
vectors are spatially dependent. Likewise, the radial and angular basis vectors for polar cylindrical
coordinates are spatially dependent, whereas the vertical direction is the same as the Cartesian
vertical direction. Additionally, the spherical and cylindrical coordinates do not all have the
same physical dimensions. Each of these features of spherical and cylindrical coordinates places
them outside the purview of Cartesian tensor analysis.

3.3.2 Isopycnal coordinates

In geophysical fluids that are stably stratified in the vertical, it is common to measure the vertical
position of a fluid element by specifying its entropy, buoyancy, or potential density depending
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on the application. We generically write these isentropic, buoyancy, or isopycnal coordinates as

ξa = (x, y, b) with b = b(x, y, z, t) isopycnal coordinates, (3.6)

where b = b(x, y, z, t) is a generic symbol for entropy, buoyancy, or potential density. Entropy,
buoyancy, and potential density are materially invariant for perfect fluid flow (flow absent
irreversible processes such as mixing or heating). Hence, all fluid particle motion occurs on
surfaces of constant b. Under such perfect fluid conditions, isopycnal coordinates are of great
use for describing fluid mechanics of stably stratified geophysical flows.2

The isopycnal coordinates are generally not orthogonal since the direction normal to a
buoyancy surface is not generally vertical. Hence, even if the horizontal coordinates are
Cartesian, the use of b to measure the vertical precludes the use of Cartesian tensor analysis.
Furthermore, we note the distinct physical dimensions of the three spatial coordinates (x, y, b),
again necessitating the use of general tensor analysis. We develop the mathematical physics of
such generalized vertical coordinate descriptions in Part XII of this book.

3.3.3 Lagrangian or material coordinates
We can conceive of a fluid as a continuum of fluid particles that are distinguished by continuum
marker coordinates or labels. The initial position for a fluid particle offers a suitable (and
common) choice for these material coordinates. The fluid dynamical equations of motion (i.e.,
Newton’s Law of motion) can be formulated using material coordinates so long as the material
coordinate maintains a 1-to-1 invertible relation to points in space. This kinematical framework
is termed Lagrangian or material. The resulting dynamical equations share much in common
with Newtonian particle mechanics, though with the added feature of contact forces acting
between the fluid elements. We introduce Lagrangian coordinates in Section 17.1.2 and further
develop their formalism in Chapter 18. Lagrangian descriptions are then used throughout this
book. Transformations between material coordinates and spatial coordinates are facilitated by
the methods of general tensor analysis.

3.3.4 Tracer coordinates
Consider a triplet of linearly independent tracer concentrations, Ca = Ca(x, y, z, t), that spans
R3. Hence, at any point in space there is a unique intersection of three tracer isosurfaces, so
that we can uniquely determine a point in space by specifying the value for the three tracer
concentrations. Correspondingly, we can use tracer concentrations as the spatial coordinates

ξa = (C1, C2, C3). (3.7)

In some cases there are only two linearly independent tracers, in which case the two may be used
in combination with a third spatial coordinate such as depth or pressure. Furthermore, the case
of one tracer coordinate formally reduces to the isopycnal coordinate system from Section 3.3.2.3

3.3.5 Coordinates are not tensors
When labels are placed on a coordinate, such as in equation (3.2), we do not refer to a as a
tensor index. Rather, a is simply a label that delineates the spatial coordinates. We make this
distinction in nomenclature since, as noted in Section 1.3.2, coordinates are not tensors. Rather,

2We can make use of the isopycnal coordinate system to determine the vertical position so long as there is a
one-to-one invertible relation between z and b at each horizontal point and at each time instance.

3See Nurser et al. (2022) for a description of fluid flow in the space defined by arbitrary continuous properties
such as tracers.
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coordinates specify the location of points in space, whereas tensors are geometric objects that
live in that space.

We can transform coordinates from one form to another, with those coordinate transforma-
tions inducing changes to the representation of tensors. Cartesian coordinate transformations
are restricted to rigid rotations; i.e., all Cartesian coordinate transformations result in the same
rotation of the Cartesian coordinates at each point in space. Hence, coordinate transformations
between Cartesian coordinates are linear transformations. In contrast, coordinate transforma-
tions can generally be nonlinear, such as the transformation between Cartesian and spherical
coordinates. Nonlinear coordinate transformations require the tools of general tensor analysis to
transform the coordinate representation of tensors.

3.4 The velocity vector and basis vectors
Consider two points in space, P(τ−∆τ/2) and P(τ+∆τ/2) that sit along a particular trajectory
separated by an infinitesimal time increment, dτ . Let x(τ −∆τ/2) and x(τ +∆τ/2) be the
corresponding position, so that the velocity for this trajectory is defined by

v(τ) = lim
∆τ→0

x(τ +∆τ/2)− x(τ −∆τ/2)

∆τ
=

dx(τ)

dτ
. (3.8)

The velocity points in the direction determined by the difference between two points on a
trajectory, in the limit as the time separation between the points vanishes. Consequently, the
velocity points in a direction tangent to the trajectory. Notably, the above definition for the
velocity makes no use of coordinates and it is independent of any choice for origin used to define
the position, x. Hence, the velocity is determined by geometry of the trajectory and specification
of the trajectory’s time parameter. Evidently, velocity is fundamentally an arrow with a length
and direction. That is, the velocity is a geometric object that we refer to as the velocity vector,
and as such it is a tensor.

3.4.1 Coordinate representation
Assume a choice for an arbitrary set of spatial coordinates, ξa, to represent points in space.
These coordinates are used to measure the spatial position of the trajectory according to

P(τ) = x(τ) = x[ξa(τ)], (3.9)

where ξa(τ) is the spatial coordinate position on the trajectory at time τ . This coordinate
representation for the trajectory induces a coordinate representation for the velocity through
use of the chain rule

v(τ) =
dx(τ)

dτ
=

dξa

dτ

∂x

∂ξa
≡ va ea. (3.10)

The expansion coefficients

va =
dξa

dτ
(3.11)

provide a representation for the velocity vector, v(τ), within the coordinate system, ξa.

3.4.2 Basis vectors
As seen by equation (3.10), for each number, va, there is a corresponding basis vector, ea, whose
value at the point x = P is given by

ea(P) =
∂x

∂ξa
. (3.12)
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The basis vectors are generally a function of space and time, with Cartesian coordinates a
notable exception, whose basis vectors are space-time constants.

3.4.3 Vector fields living on a tangent space

The definition of velocity as a vector tangent to the trajectory is a general property of all vectors.
Namely, a vector at a point on a manifold lives within the tangent space to the manifold, with
a distinct tangent space defined at each point of the manifold.4 So although we started by
considering the position of two points relative to an origin, as afforded by Euclidean space, we
do not need two points nor do we need an origin to define a vector. Instead, we simply consider
a vector at a point on a manifold to be an object defined within the tangent space at the point.
In this manner we can dispense with an origin when defining vectors, but in so doing we must
be careful when comparing vectors living on a curved manifold. Namely, the comparison of two
vectors (e.g., their sums or integrals) can only occur when they live in the same tangent space.
So before comparing two vectors, they must be brought to the same tangent space so they can
be compared. Herein lies the fundamental reason for extending the partial derivative operator
to a covariant derivative when acting on vectors and higher order tensors.

3.4.4 Concerning basis vectors as differential operators

Throughout this section we used nomenclature consistent with Section 2.3 of Misner et al. (1973),
Tromp (2025b), and appendix C.3 of Tromp (2025a). A slight modification of this nomenclature,
commonly found in the mathematical physics literature (e.g., Sections 2.7 and 2.8 of Schutz
(1980)), abstracts the identity (3.12) to identify the basis vector as the partial derivative

ea =
∂

∂ξa
not used in this book. (3.13)

Identifying basis vectors as partial derivative operators emphasizes the ability to define a vector
without the need to specify an origin. However, care should be exercised when using this
identification for applications in physics. Namely, dropping P changes the physical dimensions
of the basis vectors relative to the definition (3.12). For example, the Cartesian basis vectors,
ea(P) = ∂ax, are the dimensionless unit vectors x̂, ŷ, ẑ. In contrast, the alternative basis vectors,
ea = ∂a, have dimension of inverse length. For dimensional consistency with the treatment in
Cartesian tensors, we consider the basis vectors to be the partial derivative operator acting on a
point on the manifold as in equation (3.12), rather than the partial derivative operators as in
equation (3.13).

3.5 Notational conventions
We here summarize notational conventions associated with tensor manipulations, sometimes
referred to as index gymnastics. Many of these conventions are familiar from our study of
Cartesian tensors in Chapters 1 and 2, so that the presentation here is relatively terse.

3.5.1 Covariant, contravariant, and Einstein summation

For general tensors, the Einstein summation convention assumes that tensor labels (also called
tensor indices) are summed over their range when a lower covariant index matches an upper

4The tangent bundle is the collection of all tangent spaces for each point of a manifold. A vector field maps
each point of a manifold to the tangent bundle.

CHAPTER 3. GENERAL TENSORS IN BRIEF page 71 of 2158



3.5. NOTATIONAL CONVENTIONS

contravariant index. In this way we have an arbitrary vector represented as

F =

3∑
a=1

F a ea = F a ea. (3.14)

By extension, the placement of tensor labels (covariant versus contravariant) has specific meaning
in general tensor analysis. In particular, it is necessary to ensure conservation of indices across
an equal sign, balancing across both upstairs (contravariant) indices and downstairs (covariant)
indices.

The names covariant and contravariant originate from their relation to the labels placed
on a coordinate basis vectors (Section 3.4.2), and thus how they change under coordinate
transformations relative to how basis vectors change (Section 4.1). The covariant tensor label
accords with the downstairs label placement for a coordinate basis, whereas the upstairs
contravariant label is contrary to the coordinate basis (e.g., see Section 2.26 of Schutz (1980). A
useful mneumonic is “co-low” to signal that the covariant label is downstairs (“low”).

Although we make use of the names covariant and contravariant when useful, these terms are
used infrequently in modern tensor analysis, which instead considers tensors as geometric objects
and so it is not primarily concerned with the coordinate representations of tensors. Additionally,
when allowing for a metric tensor (Section 4.1), then the metric can move tensor indices up and
down, thus blurring the distinction between covariant and contravariant representations.

3.5.2 Upright and slanted notation
As detailed in Section 1.2.2 we use a bold upright symbol for a geometric object living in Euclidean
space. The position, x ∈ E3, is an example, as are tensors written as F. In contrast, a slanted
bold symbol is used for a coordinate representation of the position, x, or of a tensor, F , with
coordinate representations living in the space of real numbers. Each coordinate representation is
realized by specifying a subjectively chosen set of coordinates. The tensor does not change when
changing coordinates, but rather its coordinate representation changes. Tensor analysis provides
a systematic means to transform coordinate representations.

The upright versus slanted notation is fundamental conceptually, since it is important to
appreciate that tensors are geometric objects that are not subject to the whims of a particular
coordinate choice. Correspondingly, physically robust differential and integral equations are
coordinate invariant. Even so, the upright-slanted notation can be softly adhered to without
much cause for concern, so long as we are careful to write the coordinate equations using rules
of tensor analysis. In that case, the coordinate equations are unaltered in form when changing
coordinates; i.e., they are tensor equations. Developing a practical and conceptual understanding
of what careful means in this context requires the tensor analysis material presented in Chapter
4.

3.5.3 Physical dimensions
When representing a tensor, such as a vector, in terms of a particular coordinate basis,

F = F a ea, (3.15)

the physical dimensions of the basis vectors, ea, determine those of the coordinate representation,
F a. For Cartesian coordinates, the basis vectors are each non-dimensional, so that the physical
dimensions of the coordinate representation, F a, equal to those of the vector, F. However, for
other coordinate choices, the basis vectors can carry distinct physical dimensions, thus affecting
the dimensions of the coordinate representation. This point is often ignored in the mathematics
literature, where physical dimensions are of no concern. Hence, care should be exercised when
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translating math equations to a physics application. In this book, we are concerned with physics,
so that mathematical equations must have physically consistent dimensions. Indeed, checking
for dimensional consistency is a very useful means to find bugs in mathematical manipulations.

3.5.4 Space-time notation
As introduced in Section 3.2.2, we make use of a Greek label when incorporating time to the
tensor indices, with α = 0 denoting the time coordinate. Time is universal in the Newtonian
world of geophysical fluid mechanics, so that the time coordinate is independent of space.
However, many spatial coordinates are functions of both space and time. Therefore, the time
derivative of a tensor field computed in one set of spatial coordinates generally differs from
another set of spatial coordinates.

Following equation (3.2) used for coordinates, we make use of the following index notation
and ordered list for contravariant components of space-time 4-vectors

Fα = (F 0, F 1, F 2, F 3) = (F 0, F a) = (F 0,F ). (3.16)

In Cartesian coordinates, the time component of the velocity 4-vector is unity

vα = (1, v1, v2, v3) = (1, va) = (1,v) 4-velocity in arbitrary coordinates. (3.17)

There are a variety of points in this book where the space-time formalism is paerticularly
convenient. For example, we use the space-time formalism in Section 4.9 when performing the
transformation of partial derivatives, and we use this formalism in Section 17.5 for Galilean
transformation and Section 17.6 for the transformation of the material time operator. This
notation is especially useful when studying field theory and Hamilton’s principle in Part IX of
this book.

We emphasize that throughout this book, the time coordinate is not a function of space,
which is required since we use universal Newtonian time. For strictly Eulerian coordinates
(coordinates fixed in space), the space coordinates are not functions of time. However, the we do
sometimes allow for the space coordinates to be functions of time, such as when using generalized
vertical coordinates in Part XII of this book.
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Chapter 4

GENERAL TENSORS

In this chapter we generalize the tensor algebra of Chapter 1 and vector calculus of Chapter 2
to general tensors. Our focus concerns tensor analysis needed to describe the physics of particles
and continua embedded in a background Euclidean space. This restricted generalization is
sufficient for purposes in geophysical fluid mechanics (see the start of Chapter 3 for more on this
point). Furthermore, since time remains universal, our main focus concerns space tensors. Even
so, we do find occasion to make use of Galilean space-time tensors, such as when considering a
space-time transformation of the partial time derivative operator (Section 4.9), where the time
derivative cares about the motion of space coordinates even though the time itself is universal.
We also make use of space-time tensors for much of our study of Hamilton’s principle in Part IX
of this book.

The tensor analysis from Chapters 1 2 was largely focused on Cartesian tensors. Cartesian
tensor analysis provides a systematic formulation of vector analysis, with the Euclidean metric
provided by the Kronecker delta (i.e., the unit tensor) forming the foundation for Cartesian
tensors. Here, we extend the formalism by allowing for an arbitrary spatial metric (still embedded
in a background Euclidean space), and in so doing penetrate a bit into the world of Riemannian
differential geometry.

reader’s guide to this chapter
This chapter is necessary for understanding the mathematics of Lagrangian fluid kinematics

(Part III of this book), generalized vertical coordinates in Part XII of this book (Chapters
64, and 65), as well as general curvilinear coordinates such as cylindrical-polar and spherical
(Sections 4.22 and 4.23). Otherwise, this chapter can be skimmed on first reading and returned
to later when the need arises. Some material in this chapter is an updated version of Chapters
20 and 21 from Griffies (2004). Other resources include the treatment of tensors for fluid
mechanics as given by Aris (1962), the physics treatment of Thorne and Blandford (2017)
and the continuum mechanics treatment of Tromp (2025a) and Tromp (2025b).

Note that a mathematically deductive approach to tensor analysis first considers calculus
on differential manifolds that are not endowed with a metric. That study constitutes the
subject matter of differential forms through use of exterior calculus. This topic is beyond our
scope, with the interested reader encouraged to study Frankel (2012).
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4.1 The metric tensor and coordinate transformations

In the study of fluid mechanics we find the need to measure the distance between two points in
space at a particular time instance. Since we assume all points live on a smooth and orientable
manifold (e.g., a sphere, an isopycnal in a stably stratified fluid, the Lagrangian manifold defined
by fluid particle labels), it is sufficient to consider the distance between two infinitesimally close
points and use integration to measure finite distances. The measurement of distance requires a
metric tensor, which is the subject of this section.

4.1.1 Cartesian coordinates in Euclidean space

Consider a Cartesian coordinate representation for the spatial position of two points, with point
P having space coordinates ξa = xa and the other point Q an infinitesimal distance away at
xa + dxa. Furthermore, let

dx = dxa ea (4.1)

be the infinitesimal space vector pointing from P to Q. Since the space is Euclidean, the squared
distance between the two points is based on the Euclidean norm; i.e., the familiar scalar or dot
product (Section 1.4)

ds2 = dx · dx = ea · eb dxadxb = δab dx
adxb. (4.2)

In this expression,
(ds)2 ≡ ds2 (4.3)

is the squared infinitesimal arc-length separating the two points. The Kronecker symbol, δab, is
symmetric

δab = δba, (4.4)

and vanishes when a ̸= b and is unity when a = b

δab =

{
0 if a ̸= b
1 if a = b.

(4.5)

The Kronecker symbol is a representation of the unit tensor.
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4.1.2 The metric as a symmetric second order tensor
As defined by equation (4.2), δab forms the Cartesian representation of the metric tensor for
Euclidean space. The metric is a second order tensor, meaning that its coordinate representation
carries two tensor labels. Contracting the metric tensor with two vectors leads to a number,
namely the squared distance between the two points. Hence, the metric establishes the means
to measure the distance between two points that live on a manifold.

We write this distance-measuring property of the metric tensor in a geometric manner
through

distance(P,Q) =
√

g(P,Q). (4.6)

Here, g is the metric tensor with coordinate representation gab and P, Q are infinitesimally close
vectors with coordinate representations

P = ξa ea and Q = P+ dξa ea. (4.7)

Equation (4.6) indicates that the metric tensor takes two vectors as argument and produces a
scalar. Furthermore, since

distance(P,Q) = distance(Q,P) ≥ 0, (4.8)

the metric tensor is a symmetric and positive tensor that produces zero only when P = Q.

4.1.3 Coordinate representation of the metric tensor
Given the geometric expression (4.6) for the metric, we determine its representation in an
arbitrary coordinate system by considering the squared distance between the coordinate basis
vectors

distance(ea, eb) =
√

g(ea, eb). (4.9)

This relation determines the coordinate components of the metric tensor

g(ea, eb) ≡ gab. (4.10)

Furthermore, for a manifold embedded in Euclidean space (as considered in this book) this
relation is written

gab = ea · eb =
3∑
i=1

(ea)i (eb)i. (4.11)

In this manner, we see that the metric tensor components are determined by computing the
Euclidean scalar product between the basis vectors. We also see that if the basis vectors are
orthogonal, then the metric tensor coordinate representation has vanishing components for a ̸= b.

4.1.4 Transforming the coordinate representation of the metric tensor
We find opportunities to represent the metric tensor in various coordinate systems. Here, we
consider the transformation from Cartesian coordinates, ξa = xa, to arbitrary coordinates, ξa.
Use of the chain rule along with index gymnastics leads to the equivalent expression for the
squared infinitesimal distance between two points

ds2 = δab dξ
a dξb squared distance with Cartesian coordinates (4.12a)

= δab
∂ξa

∂ξa
∂ξb

∂ξb
dξa dξb chain rule to new coordinates (4.12b)

≡ δabΛaa Λbb dξa dξb define the transformation matrix, Λ (4.12c)
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≡ gab dξ
a dξb, define the new coordinate components, gab, (4.12d)

where
gab = δab Λ

a
a Λ

b
b (4.13)

defines the components to the metric tensor as represented by the coordinates ξa.

In equation (4.12c) we introduced elements to the transformation matrix

Λaa =
∂ξa

∂ξa
. (4.14)

This matrix of partial derivatives has a non-zero entry when a coordinate in one representation
changes while moving along the direction of a coordinate in the other representation. As for any
partial derivative, the complement coordinates are held fixed when performing the derivative.
Although carrying indices, the numbers Λaa are not components of a tensor. Instead, they are
components of a matrix used to transform tensor representations from one coordinate system to
another. Organized as a matrix, we follow a convention whereby the row is denoted by the label
closest to Λ, here being a, whereas the column is denoted by the label furthest from Λ, here
dnoted by a, so that

Λaa =

 (∂ξ1/∂ξ1)2,3 (∂ξ1/∂ξ2)1,3 (∂ξ1/∂ξ3)1,2
(∂ξ2/∂ξ1)2,3 (∂ξ2/∂ξ2)1,3 (∂ξ2/∂ξ3)1,2
(∂ξ3/∂ξ1)2,3 (∂ξ3/∂ξ2)1,3 (∂ξ3/∂ξ3)1,2

 . (4.15)

Again, the lower index is displaced to the right to delineate which index refers to the column.
The extra labels denote those coordinates held fixed when performing the partial derivatives.
The transformation matrix is nonsingular for one-to-one invertible coordinate transformations,
in which case its determinant, called the Jacobian of the transformation, is nonvanishing and
single signed. Finally, we sometimes find it useful to write the un-barred coordinates as an
ordered list in a column, ξ = (ξ1, ξ2, ξ3)T , in which case the transformation matrix takes on the
abbreviated form

Λaa =
[
(∂ξ/∂ξ1)2,3 (∂ξ/∂ξ2)1,3 (∂ξ/∂ξ3)1,2

]
. (4.16)

Use of this expression for the transformation matrix leads to the arbitrary coordinate represen-
tation of the metric tensor

gab = ea · eb =



∂ξ

∂ξ1
· ∂ξ
∂ξ1

∂ξ

∂ξ1
· ∂ξ
∂ξ2

∂ξ

∂ξ1
· ∂ξ
∂ξ3

∂ξ

∂ξ2
· ∂ξ
∂ξ1

∂ξ

∂ξ2
· ∂ξ
∂ξ2

∂ξ

∂ξ2
· ∂ξ
∂ξ3

∂ξ

∂ξ3
· ∂ξ
∂ξ1

∂ξ

∂ξ3
· ∂ξ
∂ξ2

∂ξ

∂ξ3
· ∂ξ
∂ξ3

 . (4.17)

The dot appearing in this equation is the usual Cartesian scalar product, which we are afforded
since the background space is Euclidean.

So in summary, the transformation matrix is the central tool needed for the practical use
of tensor analysis. It is defined by the partial derivatives of one coordinate with respect to
another. The transformation matrix is not a tensor and so it is not a geometric object. Rather,
it is dependent on how the two coordinate systems are related, and it provides the means to
transform coordinate representations of tensors between these coordinates. Given our assumption
of motion in the background Euclidean space, we commonly assume one of the two coordinates
to be Cartesian. Yet this assumption is certainly not necessary.
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4.1.5 Basis vectors

We transform the basis vectors from Cartesian into arbitrary coordinates through the transfor-
mation

ea = Λaa ea. (4.18)

Use of the transformation matrix (4.16) renders the arbitrary coordinate basis vectors

e1 =
∂ξ

∂ξ1
and e2 =

∂ξ

∂ξ2
and e3 =

∂ξ

∂ξ3
, (4.19)

which corresponds to the metric tensor written as in equation (4.17).

4.1.6 Finite distance between points

Once the metric is determined, the distance along a curve between two finitely separated points
is given by integration

L =

ˆ √
ds2 =

ˆ φ2

φ1

∣∣∣∣gab dξadφ

dξb

dφ

∣∣∣∣1/2 dφ, (4.20)

where φ is a parameter specifying the curve (e.g., the arc length as in Section 2.4), with φ1 and
φ2 specifying the endpoints of the curve.

4.2 One-forms

The metric tensor, g, is a function of two vectors, so that when the metric eats the two vectors
the result is the scalar distance between the vectors (equation (4.6))

distance(A,B) =
√

g(A,B). (4.21)

What if the metric only eats one vector? The resulting geometric object is known as a one-form

Ã ≡ g(A, ), (4.22)

with the tilde used to distinguish a one-form from a vector.

4.2.1 Coordinate representation of a one-form

We can determine the coordinate representation of a one-form by eating a basis vector

Ã(eb) = g(A, eb) = g(Aa ea, eb) = g(ea, eb)A
a = gabA

a. (4.23)

To reach this result we pulled the coordinate representation Aa outside of the metric tensor since
the tensor eats vectors rather than numbers. This equation defines the coordinate representation
of the one-form, Ã, in terms of its dual vector, A, and the metric tensor

Ab = gabA
a. (4.24)

Evidently, the metric tensor provides the means to lower an index on the representation of a
vector, thus producing the representation of a one-form. It is this seamless transition between
one-forms and vectors that motivates us to drop the tilde notation on the one-form.
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4.2.2 Basis one-forms and the duality condition
Just as for vectors, we find use for a basis of one-forms to specify their coordinate representation.
The basis of one-forms, ea, are defined through the duality condition (sometimes referred to as
the bi-orthogonality relation)

g(ea, eb) = e
a · eb = δab, (4.25)

where
δab = gac gcb (4.26)

are components to the Kronecker tensor, taking the value of unity when a = b and zero otherwise

δab =

 1 0 0
0 1 0
0 0 1

 . (4.27)

Note that it is only for Cartesian coordinates that we have

δac = gab δbc Cartesian coordinates, (4.28)

which follows since gab = δab in Cartesian coordinates (recall Section 1.3.4).

We can obtain an explicit expression for the basis one-forms in arbitrary coordinates by
transforming from Cartesian coordinates through use of the inverse transformation

ea = Λaa e
a, (4.29)

which renders

e1 = x̂
∂ξ1

∂x
+ ŷ

∂ξ1

∂y
+ ẑ

∂ξ1

∂z
= ∇ξ1 (4.30a)

e2 = x̂
∂ξ2

∂x
+ ŷ

∂ξ2

∂y
+ ẑ

∂ξ2

∂z
= ∇ξ2 (4.30b)

e3 = x̂
∂ξ3

∂x
+ ŷ

∂ξ3

∂y
+ ẑ

∂ξ3

∂z
= ∇ξ3. (4.30c)

In Section 4.9.3 we verify that the basis one-forms satisfy the duality condition (4.25) with the
basis vectors

ea · eb = δab. (4.31)

4.2.3 Metric as a mapping between vectors and one-forms

We can contract the expression (4.24) with components of the inverse metric tensor, gab, to
render

gabAb = gab gbcA
c = δacA

c = Aa. (4.32)

This identity, as well as equation (4.24), show that the metric provides a map between coordinate
representations of one-forms and vectors.

To every vector there is a corresponding one-form. We say that the one-forms and vectors are
dual, with the mapping between one-forms and vectors rendered by the metric tensor. Abstractly,
we say that a vector at a point on a manifold lives on the tangent space at that point, whereas
its one-form dual lives on the cotangent space. The metric tensor provides a link between the
tangent space and cotangent space. This link blurs the distinction between one-forms and
vectors, and more generally between covariant and contra-variant representations of tensors. For
Cartesian tensor analysis, the duality between one-forms and vectors is the duality between
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row vectors and column vectors. Furthermore, as for Cartesian tensors, we construct an inner
product by contracting one-forms and vectors to produce a scalar. Finally, the duality relation
given by equation (4.24) offers us the means to raise and lower tensor indices in a manner akin
to the transpose operation in linear algebra that produces a row vector from a column vector.

4.2.4 Transformation of the coordinate representation

The transformation matrix (4.14) provides the means to convert any arbitrary coordinate
representation of a tensor from one coordinate system to another. For example, consider the
coordinate representation of a vector, which is realized by letting the vector eat one of the basis
one-forms

A(ea) = Aa. (4.33)

Now consider another coordinate system with basis one-forms ea, so that the vector has a
representation

A(ea) = Aa. (4.34)

Transforming the basis one-form using the transformation matrix leads to

Aa = A(ea) = A(Λaa e
a) = ΛaaA(ea) = ΛaaA

a. (4.35)

The transformation of an arbitrary one-form representation takes place with the inverse trans-
formation matrix

Aa = A(ea) = A(Λaa ea) = ΛaaA(ea) = ΛaaAa. (4.36)

4.2.5 Arbitrary coordinate representation of inverse metric

The inverse metric tensor has an arbitrary coordinate representation given by

gab = ea · eb =

 ∇ξ1 · ∇ξ1 ∇ξ1 · ∇ξ2 ∇ξ1 · ∇ξ3
∇ξ2 · ∇ξ1 ∇ξ2 · ∇ξ2 ∇ξ2 · ∇ξ3
∇ξ3 · ∇ξ1 ∇ξ3 · ∇ξ2 ∇ξ3 · ∇ξ3

 . (4.37)

Proof that gab gbc = δac requires use of the chain rule relations derived in Section 4.9.3.

4.3 Scalar product

In Section 1.4.3 we defined the scalar product between two Cartesian vectors. The natural
generalization is given by

P ·Q = P aQb ea · eb = P aQb gab = P aQa = PbQ
b, (4.38)

where the second equality made use of the metric tensor coordinate representation given by
equation (4.11). We can conceive of the scalar product in a somewhat more general manner by
recalling that a one-form, P operates on a vector, Q, and conversely, a vector operates on a
one-form. Exposing components leads to

P(Q) = P(Qa ea) = QaP(ea) = Qa Pa, (4.39)

which equals to
Q(P) = Q(Pa e

a) = PaQ(ea) = PaQ
a. (4.40)
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The scalar product is invariant to coordinate changes, as seen through

Q(P) = Q(Pa e
a) = PaQ

a = Q(Pa e
a) = PaQ

a. (4.41)

The invariance is also revealed by working just with the coordinate representations and introducing
the transformation matrix elements

PaQ
a = (Λaa Pa) (Λ

a
bQ

b) = Λaa Λ
a
b PaQ

b = δab PaQ
b = PaQ

a. (4.42)

4.4 Worked example: oblique coordinates

φ

<latexit sha1_base64="7u/jgNWScJlgvQF9nIpzrNBNEUA=">AAACMnicbVDLSgMxFM3UV62vqks3wSK4KjNVqhuh6MZlBfuAzjBk0kwbmswMSUaow/yHH+Larf6C7sSV4EeYmZZiWy8ETs65597keBGjUpnmu1FYWV1b3yhulra2d3b3yvsHbRnGApMWDlkouh6ShNGAtBRVjHQjQRD3GOl4o5tM7zwQIWkY3KtxRByOBgH1KUZKU265ltgehyR1k7MUXsHZzQ61Kxuq+Uywh0jl4mPqlitm1cwLLgNrCipgWk23/G33QxxzEijMkJQ9y4yUkyChKGYkLdmxJBHCIzQgPQ0DxIl0kvxvKTzRTB/6odAnUDBn/zoSxKUcc093cqSGclHLyP+0Xqz8SyehQRQrEuDJIj9mUIUwCwr2qSBYsbEGCAuq3wrxEAmElY5zbovHZwt0NtZiEsugXata9Wr97rzSuJ6mVARH4BicAgtcgAa4BU3QAhg8gRfwCt6MZ+PD+DS+Jq0FY+o5BHNl/PwCHNqqSA==</latexit>

e3 = e3 = ẑ

<latexit sha1_base64="GA8lvW65H1yDQX9mIirVggvHrvQ=">AAACGXicbVDLSsNAFJ3UV62vqCtxM1gEVyURqW6EohuXFewDmhAm00k7dCYJMxOxhOCHuHar3+BO3LryE/wLp2kQ23pg4HDOvZw7x48ZlcqyvozS0vLK6lp5vbKxubW9Y+7utWWUCExaOGKR6PpIEkZD0lJUMdKNBUHcZ6Tjj64nfueeCEmj8E6NY+JyNAhpQDFSWvLMg9TxOSSZl9oZvITOEKlcecg8s2rVrBxwkdgFqYICTc/8dvoRTjgJFWZIyp5txcpNkVAUM5JVnESSGOERGpCepiHiRLpp/oUMHmulD4NI6BcqmKt/N1LEpRxzX09ypIZy3puI/3m9RAUXbkrDOFEkxNOgIGFQRXDSB+xTQbBiY00QFlTfCvEQCYSVbm0mxee/Abobe76JRdI+rdn1Wv32rNq4Kloqg0NwBE6ADc5BA9yAJmgBDB7BM3gBr8aT8Wa8Gx/T0ZJR7OyDGRifPwLDn+M=</latexit>

e1 = x̂

<latexit sha1_base64="Yd7SvcIQkfARg/3c6iqib5dXDA8=">AAACF3icbVBPS8MwHE3nvzn/VT148BIcgqfRikyPQy8eJ7g5WEtJs3QLS5qSpMIo/SCevepn8CZePfoR/BamWxG3+YPA4733y0temDCqtON8WZWV1bX1jepmbWt7Z3fP3j/oKpFKTDpYMCF7IVKE0Zh0NNWM9BJJEA8ZeQjHN4X+8EikoiK+15OE+BwNYxpRjLShAvso80IOSR5knjC+4prMzXMY2HWn4UwHLgO3BHVQTjuwv72BwCknscYMKdV3nUT7GZKaYkbympcqkiA8RkPSNzBGnCg/m34gh6eGGcBISHNiDafs340McaUmPDROjvRILWoF+Z/WT3V05Wc0TlJNYjwLilIGtYBFG3BAJcGaTQxAWFLzVohHSCKsTWdzKSH/DTDduItNLIPuecNtNpp3F/XWddlSFRyDE3AGXHAJWuAWtEEHYJCDZ/ACXq0n6816tz5m1opV7hyCubE+fwC8zZ/W</latexit>e1

Figure 4.1: Oblique basis vectors for the x-z plane where e1 = e1 cosφ+ e3 sinφ and e3 = e3, with e1 = x̂ and
e3 = ẑ. These coordinate basis vectors are related to those used for generalized vertical coordinates shown in the
left panel of Figure 63.2.

We pause in the development to exemplify some of the formalism for oblique coordinates for
the x-z plane as specified by the basis vectors

e1 = e1 cosφ+ e3 sinφ = x̂ cosφ+ ẑ sinφ and e3 = e3 = ẑ. (4.43)

The oblique coordinate basis vectors, ea, are orthogonal when the angle φ = 0, π; otherwise they
are non-orthogonal. Also note that if φ = π/2, 3π/2 then e1 = ±e3, in which case the vectors
no longer form a basis for the x-z plane. So in the following we assume φ ∈ (−π/2, π/2). These
coordinates are oriented so that they correspond to the generalized vertical coordinate basis
vectors depicted in Figure 63.2. Finally, for the purposes of this section we ignore the 2 direction
and just work within the x-z plane. Hence, tensor indices carry values 1 and 3 with 2 ignored.

4.4.1 Turning the crank

We here exhibit the results of turning the crank for the oblique coordinates.

Transformation matrix and its inverse

We can construct the transformation matrix through ea = Λaa ea, and use of the coordinate
basis definition (4.43)

e1 = Λ1
1 e1 + Λ3

1 e3 =⇒ Λ1
1 = cosφ, Λ3

1 = sinφ (4.44a)

e3 = Λ1
3 e1 + Λ3

3 e3 =⇒ Λ1
3 = 0, Λ3

3 = 1, (4.44b)

so that the transformation matrix is

Λaa =

[
Λ1

1 Λ1
3

Λ3
1 Λ3

3

]
=

[
cosφ 0
sinφ 1

]
, (4.45)
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and a matrix inversion yields the inverse transformation matrix

Λaa =

[
Λ1

1 Λ1
3

Λ3
1 Λ3

3

]
=

1

cosφ

[
1 0
− sinφ cosφ

]
. (4.46)

Basis one-forms

The basis one-forms using oblique coordinates are determined by

ea = Λaa e
a = Λa1 e

1 + Λa3 e
3 (4.47)

with e1 = x̂ and e3 = ẑ for Cartesian coordinates. Making use of the inverse transformation
matrix (4.46) leads to

e1 = Λ1
1 e

1 + Λ1
3 e

3 =
x̂

cosφ
(4.48a)

e3 = Λ3
1 e

1 + Λ3
3 e

3 = −x̂ tanφ+ ẑ. (4.48b)

We can readily verify the bi-orthogonality relation (4.25) whereby

ea · eb = δba. (4.49)

Representing a vector

The inverse transformation matrix (4.46) can be used to relate the Cartesian coordinate repre-
sentation of an arbitrary vector, P = P a ea, to the oblique coordinate representation, P = P a ea.
Doing so leads to the contravariant components written using oblique coordinates

P a = Λaa P
a = Λa1 P

1 + Λa3 P
3 =⇒ P 1 =

1

cosφ
P 1 and P 3 = − tanφP 1 + P 3. (4.50)

Likewise, the covariant representation can be found by using the transformation matrix (4.45)
to render

Pa = Λaa Pa = Λ1
a P1 + Λ3

a P3 =⇒ P1 = P1 cosφ+ P3 sinφ and P3 = P3, (4.51)

where P a = Pa for the Cartesian coordinate representation.

Representing the metric tensor

The covariant representation of the metric tensor is given by

ga b = δab Λ
a
a Λ

b
b =

[
g11 g13
g31 g33

]
=

[
1 sinφ
sinφ 1

]
, (4.52)

and its inverse is

ga b = δab Λaa Λ
b
b =

[
g11 g13

g31 g33

]
=

1

(cosφ)2

[
1 − sinφ
− sinφ 1

]
. (4.53)
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Squared magnitude

The squared magnitude of a vector is given by

P ·P = gab P
a P b (4.54a)

= Pb P
b (4.54b)

= (P1 cosφ+ P3 sinφ)
1

cosφ
P 1 + P3 (P

3 − tanφP 1) (4.54c)

= P1 P
1 + P3 P

3 (4.54d)

= δab P
a P b. (4.54e)

4.4.2 Comments
Oblique coordinate offer a pedagogical step towards the more complex case of generalized vertical
coordinates studied in Chapter 63. Indeed, much of the tensor algebra needed for generalized
vertical coordinates is concisely summarized in the above steps using oblique coordinates.

4.5 Volume element and the Jacobian of transformation
Recall from Section 1.8.2 that we derived an expression for the volume of an infinitesimal region
of Euclidean space, R3, using Cartesian coordinates

dV = dx dy dz (x̂× ŷ) · ẑ = dx dy dz. (4.55)

This volume element is used for integrating over a region of R3 when using Cartesian coordinates.
We now generalize this result to arbitrary coordinates.

4.5.1 Jacobian of transformation

From multi-variate calculus, the relation between dξ1 dξ2 dξ3 and dξ1 dξ2 dξ3 for two sets of
coordinates is given by

dξ1 dξ2 dξ3 =
∂ξ

∂ξ
dξ1 dξ2 dξ3 (4.56a)

=
∂(ξ1, ξ2, ξ3)

∂(ξ1, ξ2, ξ3)
dξ1 dξ2 dξ3 (4.56b)

=

[
∂ξ

∂ξ1
× ∂ξ

∂ξ2

]
· ∂ξ
∂ξ3

dξ1 dξ2 dξ3 (4.56c)

= det(Λaa) dξ
1 dξ2 dξ3, (4.56d)

where det(Λaa) is the determinant of the transformation matrix, also known as the Jacobian of
transformation. The transformation is well defined so long as the Jacobian does not vanish. We
maintain labels on the transformation matrix inside the determinant symbol to help indicate the
sense for the transformation. This notation also helps maintain proper conservation of tensor
indices.

4.5.2 Jacobian related to the determinant of the metric
Recall the expression (4.12d) for the transformation of the metric

gab = ΛaaΛ
b
b gab = (ΛT)a

a gab Λ
b
b. (4.57)
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Taking determinants of both sides yields1

det(gab) = det((ΛT)a
a) det(gab) det(Λ

b
b) = [det(Λ)]2 det(gab). (4.58)

To reach this result we used the property of determinants that det(AB) = det(A) det(B) for
any two matrices, and determinant of a matrix equals to the determinant of its transpose so
that, det(ΛT) = det(Λ). Consequently,

det(Λaa) =

√
det(gab)√
det(gab)

. (4.59)

4.5.3 Invariant/covariant volume element

Equation (4.59) leads to the equivalent expressions for the volume element

dV ≡
√

det(gab) dξ
1 dξ2 dξ3 =

√
det(gab) dξ

1 dξ2 dξ3. (4.60)

This relation provides a general coordinate expression for the volume element, which we refer to
as the invariant volume element, or equivalently the covariant volume element. For the special
case when the unbarred coordinates are Cartesian, gab = δab, so that det(gab) = 1 and

det(Λaa) =
√

det(gab) unbarred coordinates are Cartesian. (4.61)

This is a rather useful expression for our purposes, since we can always use Cartesian as the
unbarred coordinates given that geophysical fluids move in a background Euclidean space.

We find that
√
det(gab) appears throughout general tensor analysis, so that it is useful to

introduce the shorthand
g =

√
det(gab). (4.62)

The indices are mere placeholders and play no role in the summation convention.

4.6 The permutation symbol and the determinant
As discussed in Section 1.7.1, the Cartesian components of the Levi-Civita tensor are given
by the permutation symbol, ϵabc. To help determine the general coordinate representation of
the Levi-Civita tensor, we here develop some identities satisfied by the determinant of the
transformation matrix.

4.6.1 Connecting the permutation symbol to the determinant

Consider a two-dimensional space with a transformation matrix Λaa between two sets of
coordinates. The determinant of the transformation is given by

det(Λaa) = Λ1
1 Λ

2
2 − Λ1

2 Λ
2
1. (4.63)

Introducing the permutation symbol ϵab allows us to write this expression in a more tidy manner

det(Λaa) = ϵab Λ
a
1 Λ

b
2 (4.64)

1Note that we leave the indices exposed on the metric tensor when inside of the determinant operator. These
indices are not subject to index conservation, with the determinant a number and so carrying no indices. Rather,
the indices are kept around to remind us what coordinates are used to represent the metric tensor.
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with
ϵ12 = 1 and ϵ21 = −1. (4.65)

The permutation symbol is defined to have numerically the same values whether the labels are
raised or lowered: ϵab = ϵab.

We can generalize the above to any number of dimensions, each of which adds one more
label to the permutation symbol and one more number added to the permutation string. We
already encountered the three dimensional version in Section 1.7.1 when discussing the vector
cross product, in which case the permutation symbol is

ϵ123 = 1 (4.66a)

ϵabc =


0 if any two labels are the same,
1 if a, b, c is an even permutation of 1, 2, 3,
−1 if a, b, c is an odd permutation of 1, 2, 3.

(4.66b)

Likewise, the determinant of the transformation matrix takes the form

det(Λaa) =
∂ξ

∂ξ
=
∂(ξ1, ξ2, ξ3)

∂(ξ1, ξ2, ξ3)
= ϵabc Λ

a
1 Λ

b
2 Λ

c
3. (4.67)

4.6.2 Further identities satisfied by the determinant

The following identity in two dimensions can be readily verified through enumeration

ϵab Λ
a
a Λ

b
b = ϵab det(Λ

a
a), (4.68)

which follows directly from the definition of the determinant and can be explicity verified so
long as we assume the permutation symbol, ϵab, is numerically identical to ϵab. Now contract

both sides of this relation with ϵab to isolate the determinant

1

2
ϵab ϵab Λ

a
a Λ

b
b = det(Λaa), (4.69)

where we used
ϵab ϵab = ϵ12 ϵ12 + ϵ21 ϵ21 = 2. (4.70)

The three dimensional version takes the form

ϵabc Λ
a
a Λ

b
b Λ

c
c = ϵabc det(Λ

a
a), (4.71)

so that
1

3!
ϵabc ϵabc Λ

a
a Λ

b
b Λ

c
c = det(Λaa). (4.72)

The identity (4.72) is an elegant means to write the determinant and it serves many needs.
Here is another relation that can be of use

Λaa det(Λ
a
a) =

1

2!
ϵabc ϵabc Λ

b
b Λ

c
c. (4.73)

The right hand side is (−1)a+a times the determinant of the 2× 2 matrix built from excluding
the a and a elements from Λaa, with this reduced determinant known as the cofactor. To prove
equation (4.73) we contract both sides by Λaa and use the identity Λaa Λ

a
a = 3, in which case

we recover the expression for the determinant in equation (4.72).
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4.6.3 Derivative of the Jacobian with respect to a matrix element

In the study of Hamilton’s principle for fluid mechanics in Chapter 47, we have the need
to compute the derivative of the Jacobian determinant with respect to an element of the
transformation matrix. For this purpose we make use of the identity

∂Λaa
∂Λdd

= δad δ
d
a, (4.74)

which then leads to

∂ det(Λaa)

∂Λdd
=

1

3!
ϵabc ϵabc

∂

∂Λdd

[
Λaa Λ

b
b Λ

c
c

]
=

1

2
ϵdbc ϵdbc Λ

b
b Λ

c
c = Λdd det(Λaa), (4.75)

where the final equality made use of equation (4.73). Evidently, the derivative of the determinant
with respect to a matrix element equals to the determinant multiplied by the element of the
inverse matrix.

4.6.4 Product of two Jacobians

Consider the case of two coordinate transformations that are each 1-to-1 and invertible. Summa-
rize these transformations as

ξa → ξa
′ → ξa, (4.76)

with the corresponding transformation matrices written

Λa
′
a =

∂ξa
′

∂ξa
and Λaa′ =

∂ξa

∂ξa′
and Λaa =

∂ξa

∂ξa
. (4.77)

We now prove the very useful chain rule formula for determinants

det(Λa
′
a) det(Λ

a
a′) = det(Λaa). (4.78)

To prove this identity, consider the two-dimensional case, where we have

det(Λa
′
a) det(Λ

a
a′) = (1/4) (Λ1′

1 Λ
2′
2−Λ1′

2 Λ
2′
1)(Λ

1
1′ Λ

2
2′−Λ1

2′ Λ
2
1′) = (1/2) (Λ1

1 Λ
2
2−Λ1

2 Λ
2
1) = det(Λaa),

(4.79)
where we made use of the chain rule identity

∂x1
′

∂x1
∂x1

∂x1′
= −∂x

1

∂x1
, (4.80)

and its analogs with the other indices. The proof extends to any number of dimensions, and we
make particular use of it when working with particle relabeling symmetry in Section 47.7.

4.7 The Levi-Civita tensor and the volume element

The metric tensor introduced in Section 4.1 provides a means to measure distance between two
points. The Levi-Civita tensor allows us to compute volumes (or areas for two dimensional
manifolds). We make particular use of this tensor to compute the volume element used for
integration. This section generalizes the Cartesian coordinate discussion provided in Section
1.8.3.
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4.7.1 General coordinate representation of the Levi-Civita tensor

The relation (4.68) indicates that the permutation symbol, ϵab, does not transform as the
components to a second order covariant tensor, unless the determinant of the transformation is
unity. The same can be said for the permutation symbol, ϵabc, with equation (4.71) indicating
that it does not transform as the components to a third order covariant tensor, unless the
determinant of the transformation is unity. Unit determinants occur for special transformations,
such as rotations (i.e., Cartesian to Cartesian coordinate transformation as in Chapter 1) and
the identity transformation. Indeed, we have already noted that the permutation symbol has
the same representation regardless the coordinate choice. As we now show, the permutation
symbol is the Cartesian coordinate representation of the Levi-Civita tensor.

The above relations for the determinant motivate us to introduce the general coordinate
form of the Levi-Civita tensor

εabc ≡
√
det(gab) ϵabc. (4.81)

We highlight the distinct symbols in this definition, with ε the Levi-Civita tensor and ϵ the
permutation symbol. By construction, the components to the Levi-Civita tensor transform as

Λaa Λ
b
b Λ

c
c εabc = Λaa Λ

b
b Λ

c
c

√
det(gab) ϵabc (4.82a)

=
√
det(gab) ϵabc det(Λ

a
a) (4.82b)

=
√
det(gab) ϵabc (4.82c)

= εabc, (4.82d)

where equations (4.59) and (4.81) were used. Therefore, εabc transforms as components to a
third order covariant tensor (a (0, 3) tensor). Likewise,

εabc =
ϵabc√
det(gab)

(4.83)

transforms as the components to a third order contravariant tensor (a (3, 0) tensor). These
transformation rules allow us to identify ε as a tensor rather than just a combination of numbers.

4.7.2 The volume element

As a third order tensor, the Levi-Civita tensor takes three vectors as its argument. In particular,
for three infinitesimal vectors we have

ε(e1 dξ
1, e2 dξ

2, e3 dξ
3) = dξ1 dξ2 dξ3 ε(e1, e2, e3) (4.84a)

= dξ1 dξ2 dξ3 ε123 (4.84b)

= dξ1 dξ2 dξ3
√

det(gab) ϵ123 (4.84c)

= dV, (4.84d)

where we used equation (4.60) for the final step. This result means that geometrically, the
Levi-Civita tensor measures the volume defined by three vectors

ε(A,B,C) = volume(A,B,C). (4.85)

This interpretation accords with the Cartesian coordinate discussion of the Levi-Civita tensor in
Section 1.8.3.
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4.8 Vector cross product

The vector cross product of two Cartesian basis vectors yields the third, so that

x̂× ŷ = ẑ and cyclic permutations. (4.86)

The coordinate invariant generalization of this relation is given by

ea × eb ≡ εabc ec. (4.87)

As defined, the vector cross product of two vectors leads to a one-form. We are thus led to the
general coordinate expression for the vector cross product of two arbitrary vectors

P×Q = P aQb ea × eb (4.88a)

= P aQb εabc e
c. (4.88b)

4.9 Coordinate transformation of partial derivatives

Throughout this book, the background space is Euclidean and time is universal (i.e., we maintain
the notion of absolute simultaneity). We are thus concerned with space tensors rather than the
space-time tensors of special and general relativity. Nonetheless, our description of space generally
makes use of curved generalized vertical coordinate surfaces that are time dependent. Curved
surfaces motivate the use of general tensors. Time dependence of these surfaces motivates
a space-time formulation (Section 3.5.4), in particular for the purpose of transforming the
partial time derivative operator. In this section we establish some properties of the space-time
transformation matrix and then make use of this matrix for transforming space and time partial
time derivatives. We have further use of a space-time formulation in Sections 17.5 and 17.6, also
for considering the transformation of partial derivatives.

4.9.1 The space-time transformation matrix

As discussed in Section 4.1.4, transformations between coordinate representations are enabled
by the transformation matrix built from partial derivatives of the coordinate transformations.
The transformation matrix with a universal Newtonian time plus spatial coordinates (that are
functions of space and time) takes on the form

Λαα =
∂ξα

∂ξα
=



∂ξ0

∂ξ0
∂ξ0

∂ξ1
∂ξ0

∂ξ2
∂ξ0

∂ξ3

∂ξ1

∂ξ0
∂ξ1

∂ξ1
∂ξ1

∂ξ2
∂ξ1

∂ξ3

∂ξ2

∂ξ0
∂ξ2

∂ξ1
∂ξ2

∂ξ2
∂ξ2

∂ξ3

∂ξ3

∂ξ0
∂ξ3

∂ξ1
∂ξ3

∂ξ2
∂ξ3

∂ξ3


=



1 0 0 0
∂ξ1

∂ξ0
∂ξ1

∂ξ1
∂ξ1

∂ξ2
∂ξ1

∂ξ3

∂ξ2

∂ξ0
∂ξ2

∂ξ1
∂ξ2

∂ξ2
∂ξ2

∂ξ3

∂ξ3

∂ξ0
∂ξ3

∂ξ1
∂ξ3

∂ξ2
∂ξ3

∂ξ3


. (4.89)

The final equality made use of our assumption that ξ0 = ξ0 since the time coordinate remains
universal. Hence, when computing ∂ξ0/∂ξa we keep ξ0 fixed so that the derivative vanishes as
in the specific case of [

∂ξ0

∂ξ1

]
ξ0,ξ2,ξ3

=

[
∂ξ0

∂ξ1

]
ξ0,ξ2,ξ3

= 0. (4.90)
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Zero elements in the first row of the transformation matrix (4.89) reveals that time is not a
function of space

∂ξ0

∂ξa
= 0, (4.91)

which is expected since we are assuming universal Newtonian time in which time is independent
of space. In contrast, nonzero elements in the first column indicate that our description of space
is generally a function of time

∂ξa

∂ξ0
̸= 0. (4.92)

We see the same overall structure in the inverse space-time transformation matrix

Λαα =
∂ξα

∂ξα
=



∂ξ0

∂ξ0
∂ξ0

∂ξ1
∂ξ0

∂ξ2
∂ξ0

∂ξ3

∂ξ1

∂ξ0
∂ξ1

∂ξ1
∂ξ1

∂ξ2
∂ξ1

∂ξ3

∂ξ2

∂ξ0
∂ξ2

∂ξ1
∂ξ2

∂ξ2
∂ξ2

∂ξ3

∂ξ3

∂ξ0
∂ξ3

∂ξ1
∂ξ3

∂ξ2
∂ξ3

∂ξ3


=



1 0 0 0

∂ξ1

∂ξ0
∂ξ1

∂ξ1
∂ξ1

∂ξ2
∂ξ1

∂ξ3

∂ξ2

∂ξ0
∂ξ2

∂ξ1
∂ξ2

∂ξ2
∂ξ2

∂ξ3

∂ξ3

∂ξ0
∂ξ3

∂ξ1
∂ξ3

∂ξ2
∂ξ3

∂ξ3


. (4.93)

4.9.2 Determinant of the transformation matrix
The determinant of the space-time transformation and its inverse remains identical to the
determinant of their purely space portions

det(Λαα) = det(Λaa) and det(Λαα) = det(Λaa), (4.94)

which follows since the first row in both transformations has only a single non-zero value, Λ0
0 = 1

and Λ0
0 = 1. Hence, the relations developed in Sections 4.5 and 4.6 for the volume element and

Jacobian of transformation remain unchanged when adding the universal time coordinate.

4.9.3 Multiplying the transformation matrix and its inverse
We here verify that the transformation matrix (4.89) indeed has its inverse given by (4.93). For
this purpose we must prove the space-time duality relations

δαβ = Λαβ Λ
β
β and δαβ = Λαβ Λ

β
β, (4.95)

where δαβ and δαβ are components to the identity tensor. The proof relies on writing the
space-time coordinate transformation as a composite function

ξα = ξα(ξα) = ξα[ξα(ξβ)]. (4.96)

Taking partial derivatives and using the chain rule renders

δαβ =
∂ξα

∂ξβ
=
∂ξα

∂ξα
∂ξα

∂ξβ
= Λαα Λ

α
β and δαβ =

∂ξα

∂ξβ
=
∂ξα

∂ξα
∂ξα

∂ξβ
= Λαα Λ

α
β. (4.97)

Furthermore, the space subcomponents decouple from time, which can be seen by considering a
few representative cases

1 = δ00 = Λ0
α Λ

α
0 = Λ0

0 Λ
0
0 (4.98a)
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1 = δ11 = Λ1
α Λ

α
1 = Λ1

a Λ
a
1 (4.98b)

0 = δ01 = Λ0
α Λ

α
1 = Λ0

0 Λ
0
1 (4.98c)

0 = δ12 = Λ1
α Λ

α
2 = Λ1

a Λ
a
2. (4.98d)

Consequently, the spatial components satisfy

δab = Λab Λ
b
b and δab = Λab Λ

b
b, (4.99)

which allows for a splitting of the spatial components from the time component.

4.9.4 Transformation of space and time partial derivatives
Application of the chain rule leads to the transformation of the partial derivative operator

∂α =
∂

∂ξα
=
∂ξα

∂ξα
∂

∂ξα
= Λαα ∂α. (4.100)

Extracting the time and space components from the transformation matrix (4.89) yields

∂0 = Λα0 ∂α = ∂0 + Λa0 ∂a (4.101a)

∂a = Λαa ∂α = Λaa ∂a. (4.101b)

Notably, the time derivative operator in one coordinate system transforms into both space and
time derivative operators in the new coordinate system. We expect this result since the time
derivative in one coordinate system is computed with its spatial coordinates held fixed, but these
coordinates are generally moving with respect to the other coordinate system. In contrast, the
spatial components to the partial derivative operator transform among just the other spatial
components; there is no mixing with the time derivative operator. This property of the spatial
derivative operator follows from the use of universal Newtonian time. It allows us to focus on
space tensors in the following sections.

4.10 Covariant derivative of a scalar
In this section and quite a few that follow it, we study the covariant derivative operator, which,
as we will see, provides the means to take derivatives of tensors on a curved space. Operationally,
we return to a focus on space tensor analysis by considering the contraction of spatial components
to the partial derivative operator with the basis of one-forms. This contraction renders the
geometric expression of the gradient operator acting on a scalar tensor

grad(F) = ∇F = ea ∂aF = ea ∂aF. (4.102)

This expression motivates us to define the covariant derivative operator

∇ = ea ∂a, (4.103)

so that we refer to equation (4.102) as either the gradient acting on a scalar or the covariant
derivative acting on a scalar.

4.11 Covariant derivative of a vector
The covariant derivative operator can act on a vector, in which case we consider ∇F. To perform
calculations requires us to unpack the manifestly covariant expression ∇F by introducing a
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4.11. COVARIANT DERIVATIVE OF A VECTOR

coordinate representation
∇F = (eb ∂b) (F

a ea). (4.104)

4.11.1 Derivative of a vector and Christoffel symbols

The chain rule leads to the expression for the partial derivative operator acting on a vector field

∂bF = ∂b(ea F
a) coordinate representation of the vector F (4.105a)

= (∂b F
a) ea + F a ∂b ea chain rule (4.105b)

= (∂b F
a) ea + F a Γcba ec define Christoffel symbols (4.105c)

= (∂b F
a + F c Γabc) ea reorganize (4.105d)

≡ (∇bF a) ea covariant derivative acting on vector component. (4.105e)

In the third equality we introduced the Christoffel symbols

∂b ea ≡ Γcba ec. (4.106)

The Christoffel symbols carry information about the partial derivatives of the basis vectors. They
vanish in Cartesian coordinates yet are generally nonzero. In the final equality we introduced
components to the covariant derivative acting on the vector components

∇bF a ≡ ∂bF a + Γabc F
c. (4.107)

Contracting ∂bF with the basis one-form eb leads to the coordinate invariant expression for the
covariant derivative of a vector field

∇F = eb (∂b F ) = (eb∇b F a) ea. (4.108)

4.11.2 An alternative derivation

A heuristic explanation of these ideas follows by applying the elementary calculus notions to a
vector field F as represented by arbitrary coordinates ξa, in which case

∂bF = lim
∆→0

F (x+∆eb)− F (x)

∆
, (4.109)

where x = ea ξ
a is the representation of the position for an arbitrary point and eb specifies the

direction for computing the partial derivative. The basis vectors, ea, are spatially independent
for Cartesian coordinates, so that the derivative of a vector is computed merely by taking the
derivative of each Cartesian component

∂bF = (∂bF
a) ea Cartesian coordinates. (4.110)

However, for general coordinates both the vector components and the basis vectors are spatially
dependent, in which case

F (x+∆eb)− F (x) = [F a +∆ ∂bF
a] [ea +∆ ∂b ea]− F a ea (4.111a)

= ∆ ∂b(F
a ea) +O(∆2). (4.111b)

This is the same result as found in the first step of the chain rule used in equation (4.105a).
Following through that derivation then leads to the same coordinate expression for the covariant
derivative acting on a vector field.
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4.11.3 Christoffel symbols as the metric connection

Recall from elementary calculus that the derivative of a function is computed by comparing
the function at two points in space, dividing by the distance between those points, and taking
the limit as the points get infinitesimally close. This operation is well defined for scalar fields
on arbitrary manifolds. However, it is problematic for vectors since the vectors live on distinct
tangent spaces and so cannot be directly compared (see Section 3.4 for more on tangent spaces).
For example, how do we compare two vectors at distinct points on a sphere? To do so we must
provide a method to move one vector to the position of the other before comparing. As seen
through the above discussion of covariant derivative of a vector, the Christoffel symbols provide
the means to move vectors. Namely, they connect the two vectors by carrying information about
how the basis vectors change in space. It is for this reason that some refer to the Christoffel
symbols as the metric connection or the connection coefficients.

The Christoffel symbols are coordinate dependent. For example, the Christoffel symbols all
vanish in Euclidean space when using Cartesian coordinates, whereas they are nonzero with
other coordinates. As discussed in Section 3.1, a tensor that vanishes in one coordinate system
remains zero for all coordinate systems. We thus conclude that the Christoffel symbols are not
components to a tensor. Rather, they carry information regarding the partial derivatives of the
coordinate basis vectors and as such they are fundamentally tied to a chosen coordinate system.

4.11.4 Transformation of the Christoffel symbols

We noted above that the Christoffel symbols do not transform as components to a tensor.
We here derive just how the Christoffel symbols transform under coordinate transformations.
For that purpose, note that the covariant derivative of a vector defines a tensor, so that its
components must transform according to

∇bF a = ΛbbΛ
a
a∇bF a. (4.112)

We expand the left hand side according to

∇bF a = ∂b F
a + Γa

bc
F c (4.113a)

= ∂b (Λ
a
a F

a) + Γa
bc
Λca F

a (4.113b)

= (∂b Λ
a
a + Λaa ∂b + Γa

bc
Λca)F

a (4.113c)

= (∂b Λ
a
a + Λaa Λ

b
b ∂b + Γa

bc
Λca)F

a (4.113d)

The expanded right hand side of equation (4.112) is given by

ΛbbΛ
a
a∇bF a = ΛbbΛ

a
a (∂bF

a + Γabc F
c). (4.114)

Notice how the ΛbbΛ
a
a ∂bF

a term cancels from equation (4.113d), thus rendering

∂b Λ
a
a F

a + Γa
bc
Λca F

a = ΛbbΛ
a
a Γ

a
bc F

c (4.115)

Relabeling the tensor indices on the right hand side term and rearranging leads to

(∂b Λ
a
a + Γa

bc
Λca − ΛbbΛ

a
d Γ

d
ba)F

a = 0. (4.116)

This equality holds for all vectors, so that we have the identity satisfied by the Christoffel
symbols and the transformation matrix

∂b Λ
a
a + Γa

bc
Λca = Λbb Λ

a
d Γ

d
ba. (4.117)

page 94 of 2158 geophysical fluid mechanics



4.12. COVARIANT DERIVATIVE OF A ONE-FORM

Finally, we can contract with Λad to render

Γa
bd

= Λad Λ
b
b Λ

a
d Γ

d
ba − Λad ∂b Λ

a
a. (4.118)

The presence of a nonzero term, Λad ∂b Λ
a
a, means that Γa

bd
does not transform as components

to a tensor.

4.12 Covariant derivative of a one-form
The product of a one-form and a vector is a scalar. As seen in Section 4.10, the covariant
derivative of a scalar field is given by the gradient operator

∇(E · F) = eb ∂b (Ea F a). (4.119)

Expanding the partial derivative yields

∂b(Ea F
a) = F a ∂bEa + Ea ∂bF

a (4.120a)

= F a ∂bEa + Ea (∇bF a − ΓabcF
c) (4.120b)

= F a(∂bEa − ΓcbaEc) + Ea∇bF a (4.120c)

≡ F a∇bEa + Ea∇bF a. (4.120d)

The last equality defines the covariant derivative when acting on the components to a one form

∇bEa = ∂bEa − ΓcbaEc, (4.121)

which leads to the coordinate invariant expression for the covariant derivative of a one-form

∇E = (eb ∂b)E = (eb∇bEa) ea. (4.122)

4.13 Covariant derivative of the metric tensor
When written in Cartesian coordinates, the covariant derivative of components to the metric
tensor for Euclidean space vanishes,

∇cgab = ∇cδab = 0, (4.123)

because the Cartesian representation of the metric is the unit tensor, δab, in which case all
Christoffel symbols vanish. Previous results establish the tensorial nature of the covariant
derivative. Hence, ∇cgab = 0 is a valid result for all coordinates. This result is often called
the metricity condition. It represents a self-consistency condition required for the manifolds
considered in this book. Importantly, it holds only so long as the covariant derivative and the
metric tensor are represented by the same coordinates. Namely, if we consider an alternative
coordinate system to represent the covariant derivative, say ∇c, then we generally have ∇cgab ̸= 0.

4.14 Christoffel symbols in terms of the metric tensor
We can develop an expression for the covariant derivative when acting on the components to
a second order tensor. When applied to the metric tensor, its vanishing covariant derivative
(equation (4.123)) then leads to the identity

0 = ∇cgab = ∂cgab − Γdca gdb − Γdcb gad. (4.124)
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We can solve this equation for the Christoffel symbols

Γcab =
1

2
gcd (∂b gda + ∂a gdb − ∂d gab). (4.125)

This expression exhibits the symmetry property of the lower two indices on the Christoffel
symbols

Γcab = Γcba. (4.126)

This symmetry property holds for for spaces with zero torsion, such as the Euclidean space
considered in this book.

As an aside, we remark on the notation used for the Christoffel symbols. For that purpose,
introduce the torsion tensor,

Tab
c = Γcab − Γcba. (4.127)

For Euclidean space the torsion tensor vanishes identically, and this property holds for manifolds
embedded in Euclidean space that inherit the connection properties of Euclidean space. That
is, no matter what coordinates we use, each element of the torsion tensor is zero, Tab

c = 0.
Having Tab

c = 0 for all coordinates assures us that the torsion is indeed a tensor. As a tensor we
make use of the tensor notation with the upstairs c on the torsion tensor displaced to the right,
Tab

c. In contrast, the non-tensorial Christoffel symbols have the c vertically aligned and so not
displaced. This purposeful usage of notation is indicative of tensor analysis.

4.15 Covariant divergence of a vector
The covariant divergence of the components to a vector results in a scalar

∇aF a = ∂aF
a + ΓaabF

b. (4.128)

We now bring this expression into a form more convenient for practical calculations.

4.15.1 Contraction of the Christoffel symbols
Expression (4.125) for the Christoffel symbols yields the contraction

Γaab =
1

2
gad(∂b gda + ∂a gdb − ∂d gab) =

1

2
gad ∂b gad (4.129)

where symmetry of both the metric tensor and its inverse was used.

4.15.2 Exponential of the determinant
For the matrix representation of a symmetric positive definite tensor, such as the metric tensor,
we can write

det(A) = eln det(A) identity (4.130a)

= eln(ΠiΛi) determinant related to product of eigenvalues (4.130b)

= eΣi ln Λi identity (4.130c)

= eTr(lnA) sum of eigenvalues related to trace of matrix. (4.130d)

Each of these identities is trivial to verify using a set of coordinates in which the matrix is
diagonal. For any symmetric and positive definite matrix, such a set of coordinates always exists,
in which case

∂c ln det(A) = ∂c[Tr(lnA)] = Tr(∂c lnA) = Tr(A−1∂cA). (4.131)
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With A now set equal to the metric tensor, gab, this result yields

∂c ln det(gab) = gab ∂c gab (4.132)

which in turn yields for the contracted Christoffel symbol

Γaac = ∂c ln(
√

det(gab)) = ∂c ln g. (4.133)

This result brings the covariant divergence of a vector to the form

∇ · F = ∇a F a = ∂aF
a + F a ∂a ln g = g−1 ∂a(gF

a). (4.134)

This is a very convenient result. In particular, it only requires partial derivatives in the chosen
coordinate system, with all the coordinate dependent properties summarized by g =

√
det(gab).

4.16 Covariant Laplacian of a scalar

Making use of equation (4.134) with

F a = gab ∂bψ (4.135)

leads to the covariant Laplacian of a scalar field

∇a (gab ∂b ψ) =
1√

det(gab)
∂a [
√

det(gab) gab ∂bψ] = g−1 ∂a (g gab ∂bψ). (4.136)

This expression is fundamental to the evolution of scalar fields under the impacts from diffusion
(Chapter 69).

4.17 Covariant divergence of a second order tensor

We find many occasions to compute the covariant divergence a second order tensor, such as the
stress tensor appearing in the momentum equation (Chapter 24) or the eddy transport tensor
appearing in the tracer equation (Chapter 71). Following the methods used for derivating the
covariant derivative of a vector in Section 4.11 (see also Section 21.6 of Griffies (2004)), we have
the covariant divergence of the (2, 0) (sharp) representation of a second order tensor

∇aT ab = ∂aT
ab + Γbad T

da + Γaad T
bd. (4.137)

It is convenient to split the tensor components into the symmetric and antisymmetric parts

Sab = (T ab + T ba)/2 and Rab = (T ab − T ba)/2. (4.138)

The covariant divergence of the symmetric components is

∇aSab = g−1∂a(gS
ab) + Γbad S

ad, (4.139)

where we used equation (4.133) for the contraction of the Christoffel symbol. For the anti-
symmetric tensor, the ΓbadR

ad term drops out since Γbad is symmetric on the indices a, d, whereas
Rad is anti-symmetric. We are thus led to the covariant divergence of an anti-symmetric tensor

∇aRab = g−1 ∂a(gR
ab). (4.140)
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This relation is analogous to the covariant divergence of a vector given by equation (4.134). In
particular, the vector components

F b ≡ ∇aRab (4.141)

are divergence-free since

∇bF b = g−1 ∂b(gF
b) = g−1 ∂b(g∇aRab) = g−1 ∂b∂a(gR

ab) = 0, (4.142)

which follows from anti-symmetry of the components Rab under interchange of a, b and symmetry
of ∂b∂a.

4.18 Covariant curl of a vector
The Levi-Civita tensor from Section 4.7

εabc =
√
det(gab) ϵabc = g ϵabc, (4.143)

as well as its inverse
εabc = (1/

√
det(gab)) ϵ

abc = (1/g) ϵabc, (4.144)

are useful in generalizing the curl operation from Cartesian coordinates in Euclidean space to
arbitrary coordinates on a curved manifold embedded in Euclidean space. For this purpose we
define the covariant curl according to the coordinate invariant expression

curl(F ) = ea ε
abc (∇bFc) = ea εabc (∇bF c). (4.145)

This expression simplifies by making use of equation (4.121) for the covariant derivative, ∇b Fc =
∂bFc − Γacb Fa. Conveniently, the contraction εabc Γacb vanishes identically since εabc = −εacb
whereas Γacb = Γabc. Hence, we are left with a general expression for the covariant curl that
involves just the partial derivatives

curl(F ) = ea ε
abc ∂bFc = ea ε

abc ∂b(gcdF
d) = ea (1/g) ϵ

abc ∂b(gcdF
d), (4.146)

where the second equality made use of the identity Fc = gcdF d.

4.19 Gauss’s divergence theorem
The integral theorems from Cartesian vector analysis transform in a straightforward manner
to arbitrary coordinates in arbitrary smooth and oriented spaces. An easy way to prove the
theorems is to invoke the ideas of general coordinate invariance from Section 3.1, in which the
integral theorems are written in a tensorially proper manner with partial derivatives changed to
covariant derivatives. The divergence theorem offers a particularly simple example. For this
purpose, make use of the volume element (4.60)

dV =
√

det(gab) dξ
1 dξ2 dξ3, (4.147)

multiplied by the covariant divergence (4.134). Hence, the volume integral of the divergence is
given by ˆ

R

(∇a F a) dV =

ˆ
R

∂a[
√
det(gab)F

a] dξ1 dξ2 dξ3 =

˛
∂R
F a n̂a dS. (4.148)

In this equation, n̂ is the outward normal one-form for the boundary, ∂R, with dS the invariant
area element on the boundary, and n̂a the covariant components of the outward normal.

page 98 of 2158 geophysical fluid mechanics



4.20. STOKES’ CURL THEOREM

4.20 Stokes’ curl theorem
The Cartesian form of Stokes’ Theorem from Section 2.6 is generalized in a manner similar to
the divergence theorem ‰

∂S
F · dx =

ˆ
S

curl(F ) · n̂dS, (4.149)

where dx is the vector line element along the path and ∂S is the closed path defining the
boundary to a simply connected two-dimensional surface, S. For the circulation on the left hand
side we have

F · dx = F a ea · eb dxb = Fb dx
b = Fb dξ

b. (4.150)

For the curl on the right hand side we have

curl(F ) · n̂ = εabc (∂bFc) ea · n̂ = εabc (∂bFc) n̂a = εabc (∂bFc) n̂a, (4.151)

thus leading to the expression of Stokes’ theorem in arbitrary coordinates

‰
∂S
Fb dξ

b =

ˆ
S

εabc (∂bFc) n̂a dS. (4.152)

4.21 Summary of Cartesian coordinates
Whenever developing a general tensor relation it is useful to check its validity by considering
Cartesian coordinates, in which case we can make use of familiar rules from vector calculus. We
here summarize some results from our discussion of Cartesian tensors in Chapters 1 and 2.

4.21.1 The basics
We start by expressing the trajectory of a point through space in the following equivalent forms

x(τ) = e1 x(τ) + e2 y(τ) + e3 z(τ) = x̂x(τ) + ŷ y(τ) + ẑ z(τ) (4.153)

with the basis vectors written

e1 = x̂ and e2 = ŷ and e3 = ẑ. (4.154)

The orthogonal unit vectors for Cartesian coordinates are normalized so that

e1 · e1 = e2 · e2 = e3 · e3 = 1. (4.155)

Furthermore, the basis vectors are identical to the basis one-forms

e1 = e
1 = x̂ and e2 = e

2 = ŷ and e3 = e
3 = ẑ, (4.156)

in which we see there is no importance placed on whether a tensor index is up or down. Since
the Cartesian basis vectors are independent of both space and time, we compute the coordinate
representation of the velocity vector through taking the time derivative as

v(τ) =
dx

dτ
, (4.157)

which takes on the expanded expressions

v(τ) = e1
dx(τ)

dτ
+ e2

dy(τ)

dτ
+ e3

dz(τ)

dτ
(4.158a)
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= x̂ v1(τ) + ŷ v2(τ) + ẑ v3(τ). (4.158b)

= x̂u(τ) + ŷ v(τ) + ẑw(τ), (4.158c)

where (u, v, w) is the notation commonly used in this book for the three velocity components.

4.21.2 Concerning the horizontal gradient operator
Geophysical fluids are affected by gravity, and gravity breaks the spatial symmetry between the
locally vertical (i.e., radial) and horizontal (i.e., local tangent plane) for fluid motion on a planet.
We have thus many occasions where the horizontal is treated distinctly from the vertical. For
that purpose we often find it useful to decompose the gradient operator into its horizontal and
vertical components, writing the operator in one of the following manners

∇ = ∇h +∇z = ∇h + ẑ ∂z, (4.159)

where the horizontal gradient operator, using Cartesian coordinates, is

∇h = x̂∇x + ŷ∇y. (4.160)

In earlier drafts of this book, as well as in many publications, we find the horizontal gradient
operator written as ∇z rather than ∇h. In this alternative notation, the subscript z indicates
that the derivative acts along surfaces of constant z. However, this notation is easily confused
in this book. In particular, the ∇ operator has tensor labels that distinguish its components,
in which case the vertical component to the Cartesian gradient operator is ∇z = ẑ ∂z. Herein
lies the source of much confusion. To avoid that confusion we have chosen to use the ∇h in this
book for the horizontal gradient operator. To further reduce potential for confusion, we make
use of the upright and sans serif h label. This label is not a tensor index but instead indicates
that the operator is computed along a locally constant horizontal direction, and so is part of
the operator’s name. The h label is also placed quite close to the ∇ symbol, nearly attached, in
order to further distinguish it from a tensor index.

4.21.3 Summary
In Cartesian coordinates, mathematical operators and integral theorems take their familiar form
from vector calculus. We here list those encountered throughout this book.

x = (x1, x2, x3) = (x, y, z) Cartesian coordinates (4.161)

F = x̂F 1 + ŷF 2 + ẑF 3 = x̂F1 + ŷF2 + ẑF3 covariant = contravariant (4.162)

∂

∂xa
= ∂a or (∂x, ∂y, ∂z) partial derivative operator (4.163)

∇ = x̂ ∂x + ŷ ∂y + ẑ ∂z gradient = covariant derivative (4.164)

∇h = x̂ ∂x + ŷ ∂y horizontal gradient operator (4.165)

∇ · F = ∂xF
x + ∂yF

y + ∂zF
z divergence of a vector (4.166)

∇h · F = ∂xF
x + ∂yF

y horizontal divergence of a vector (4.167)

(∇× F )a = ϵabc ∂
bF c components to the curl (4.168)

∇ · ∇ψ = ∇2ψ = (∂xx + ∂yy + ∂zz)ψ Laplacian of a scalar (4.169)ˆ
R

∇ · F dV =

˛
∂R
F · n̂dS Gauss’s divergence theorem (4.170)

‰
∂S
F · dx =

ˆ
S

(∇× F ) · n̂dS. Stokes’ curl theorem. (4.171)
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4.22 Summary of cylindrical-polar coordinates

Many physical systems exhibit circular symmetry in two-dimensions or cylindrical symmetry
in three-dimensions. Motion of liquid in a rotating circular tank provides the primary physical
example encountered in this book. In the following, we emulate the discussion presented for
the spherical coordinates in Section 4.23, here focusing on the cylindrical-polar coordinates
shown in Figure 4.2. Our task is somewhat simpler than for the spherical coordinates since the
vertical/axial position, z, remains unchanged from its Cartesian value. In a slight corruption of
notation, we use the symbol r for the radial distance from the vertical axis in cylindrical-polar
coordinates (Figure 4.2), which is distinct from the radial distance, r, used to measure the
distance from the origin in spherical coordinates (Figure 4.3).2

x
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rϑ

Figure 4.2: This schematic illustrates the geometry and notation for cylindrical-polar coordinates. The Cartesian
triad of orthonormal basis vectors, (x̂, ŷ, ẑ) points along the orthogonal axes. The cylindrical-polar triad of
orthonormal basis vectors, (r̂, ϑ̂, ẑ), makes use of the radial unit vector r̂, which points outward from the vertical
axis, the angular unit vector ϑ̂, which points in the counter-clockwise direction around the circle, and the vertical
unit vector ẑ. Note that the radial unit vector used for cylindrical-polar coordinates is distinct from that radial
vector used in spherical coordinates shown in Figure 4.3.

The coordinate transformation between Cartesian coordinates and cylindrical-polar coordi-
nates is given by

x = r cosϑ ≡ ξ1 cos ξ2 (4.172a)

y = r sinϑ ≡ ξ1 sin ξ2 (4.172b)

z = ξ3. (4.172c)

The radial coordinate for cylindrical-polar coordinates

r =
√
x2 + y2 (4.173)

measures the distance from the vertical z-axis, and the angular coordinate 0 ≤ ϑ ≤ 2π measures
the angle counter-clockwise from the positive x-axis. We introduce the unbarred and barred
labels for the Cartesian and cylindrical polar coordinates

(x, y, z) = (ξ1, ξ2, ξ3) ≡ ξa and (r, ϑ, z) = (ξ1, ξ2, ξ3) ≡ ξa. (4.174)

2Many mathematics texts use ρ for the cylindrical radial distance. We choose not to follow that convention,
since ρ is reserved in this book for mass density.
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Although the vertical coordinate, z, remains the same in both Cartesian and cylindrical-polar
coordinates, and it is orthogonal to the other coordinates, we find it useful to introduce a distinct
symbols, ξ3 and ξ3, to specify what other coordinates are held fixed when performing partial
derivative operations.

4.22.1 Cartesian and cylindrical-polar transformation
The coordinate transformation (4.172a)-(4.172c) leads to the transformation matrix

Λaa =

 ∂ξ1/∂ξ1 ∂ξ1/∂ξ2 ∂ξ1/∂ξ3

∂ξ2/∂ξ1 ∂ξ2/∂ξ2 ∂ξ2/∂ξ3

∂ξ3/∂ξ1 ∂ξ3/∂ξ2 ∂ξ3/∂ξ3

 =

 cosϑ −r sinϑ 0
sinϑ r cosϑ 0
0 0 1

 (4.175)

and the inverse transformation is given by

Λaa =
1

r

 r cosϑ r sinϑ 0
− sinϑ cosϑ 0

0 0 r

 . (4.176)

The determinant of the transformation (Jacobian) is given by

det(Λaa) = r, (4.177)

which vanishes along the vertical axis, which is where the transformation is singular. Otherwise,
the coordinate transformation is one-to-one and invertible.

4.22.2 Basis vectors
The cylindrical-polar coordinate basis vectors, ea, are related to the Cartesian coordinate basis
vectors, ea, through the transformation ea = Λaa ea. The transformation matrix (4.175) leads
to

er = x̂ cosϑ+ ŷ sinϑ (4.178a)

eϑ = r (−x̂ sinϑ+ ŷ cosϑ) (4.178b)

ez = ẑ. (4.178c)

It is convenient to introduce the following orthonormal unit vectors (r̂, ϑ̂, ẑ), which point in
directions of increasing r, ϑ, and z, and which are related to the basis vectors via

er = r̂ and eϑ = r ϑ̂ and ez = ẑ, (4.179)

along with the inverse relations

x̂ = r̂ cosϑ− ϑ̂ sinϑ (4.180a)

ŷ = r̂ sinϑ+ ϑ̂ cosϑ (4.180b)

ẑ = ẑ. (4.180c)

4.22.3 Basis one-forms
Since cylindrical-polar coordinates are orthogonal, we can readily derive the one-form basis
through inverting the vector basis

er = r̂ and eϑ = r−1ϑ̂ and ez = ẑ, (4.181)
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which satisfy the duality condition (Section 4.2.2)

eb · ea = δba. (4.182)

4.22.4 Position and velocity

In cylindrical-polar coordinates, the position of a point is specified by the radial position plus
the vertical position

x(τ) = r er + z ez. (4.183)

The velocity requires all three coordinates since the radial basis vector is a function of the
angular positions, which are in turn functions of time. Use of the chain rule renders

v(τ) =
dx

dτ
(4.184a)

= er
dr

dτ
+ r

der
dτ

+ ez
dz

dτ
(4.184b)

= er
dr

dτ
+ r

∂er
∂ϑ

dϑ

dτ
+ ez

dz

dτ
(4.184c)

= er
dr

dτ
+ eϑ

dϑ

dτ
+ ez

dz

dτ
(4.184d)

= er v
r + eϑ v

ϑ + ez v
z. (4.184e)

To reach this result we made use of the identity

eϑ = r
∂er
∂ϑ

= r ϑ̂. (4.185)

4.22.5 Metric tensor

Cylindrical-polar coordinates are orthogonal with the metric tensor and its inverse represented
by the diagonal matrices

gab = ea · eb =

 1 0 0
0 r2 0
0 0 1

 and gab = ea · eb =

 1 0 0
0 r−2 0
0 0 1

 . (4.186)

4.22.6 Volume element and Levi-Civita tensor

The square root of the determinant of the metric tensor written in cylindrical-polar coordinates
(from equation (4.186)) is given by √

det(gab) = r (4.187)

so that the volume element is
dV = r dr dϑ dz. (4.188)

The covariant Levi-Civita tensor has the cylindrical-polar representation

εabc = r ϵabc. (4.189)
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4.22.7 Vector cross product of basis vectors

As a check on the formalism for vector cross products, let us verify the relation (4.87) for the
cross product of two basis vectors using cylindrical-polar coordinates

ea × eb = εabc e
c =⇒ ea × eb = r ϵabc e

c. (4.190)

Making use of the cylindrical-polar coordinate basis vectors and one-forms renders

er × eϑ = r (r̂ × ϑ̂) = r ez = εrϑz e
z (4.191a)

eϑ × ez = r (ϑ̂× ẑ) = r r̂ = r er = εϑzr e
r (4.191b)

ez × er = ẑ × r̂ = ϑ̂ = r eϑ = εzrϑ e
ϑ. (4.191c)

To reach these results we made use of the cross products for the unit vectors

r̂ × ϑ̂ = ẑ and ϑ̂× ẑ = r̂ and ẑ × r̂ = ϑ̂. (4.192)

4.22.8 Components of a vector field

A vector field, F, has Cartesian components, F a, related to its cylindrical-polar components,
F a, via the transformation matrix, F a = Λaa F

a. This transformation leads to

F 1 = F x cosϑ+ F y sinϑ (4.193a)

F 2 = r−1 [−F x sinϑ+ F y cosϑ] (4.193b)

F 3 = F z. (4.193c)

Introducing the cylindrical-polar unit vectors (4.179) leads to the more tidy expressions

F 1 = r̂ · F (4.194a)

r F 2 = ϑ̂ · F (4.194b)

F 3 = ẑ · F , (4.194c)

where F is the Cartesian representation of the vector.

4.22.9 Differential operators

In cylindrical-polar coordinates, the gradient operator ∇ = ea∂a is given by

∇ = r̂
∂

∂r
+
ϑ̂

r

∂

∂ϑ
+ ẑ

∂

∂z
(4.195)

and the covariant divergence of a vector field is

∇aF a = r−1 ∂a (r F
a) (4.196a)

= r−1
(
∂r[r F

1] + ∂ϑ[r F
2] + ∂z[r F

3]
)

(4.196b)

=
1

r

∂(r r̂ · F )

∂r
+

1

r

∂ (ϑ̂ · F )

∂ϑ
+
∂(ẑ · F )

∂z
, (4.196c)
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where F is the Cartesian coordinate representation. The covariant Laplacian of a scalar,
∇2ψ = ∇ · ∇ψ, is

∇2ψ = ∇ ·
[
r̂
∂ψ

∂r
+
ϑ̂

r

∂ψ

∂ϑ
+ ẑ

∂ψ

∂z

]
(4.197a)

=
1

r

∂

∂r

[
r
∂ψ

∂r

]
+

1

r2
∂2ψ

∂ϑ2
+
∂2ψ

∂z2
. (4.197b)

The covariant curl (Section 4.18) is

(curlF)1 = r−1 [∂ϑ F
3 − ∂z (r2 F 2)] (4.198a)

(curlF)2 = r−1 [∂z F
1 − ∂r F 3] (4.198b)

(curlF)3 = r−1 [∂r (r
2 F 2)− ∂ϑ F 1)], (4.198c)

which can be written more conventionally as

(curlF)1 =
1

r

∂(ẑ · F )

∂ϑ
− ∂(ϑ̂ · F )

∂z
(4.199a)

r (curlF)2 =
∂(r̂ · F )

∂z
− ∂(ẑ · F )

∂r
(4.199b)

(curlF)3 =
1

r

∂(r ϑ̂ · F )

∂r
− 1

r

∂(r̂ · F )

∂ϑ
. (4.199c)

4.22.10 Summary
We here summarize the cylindrical coordinate version of some common mathematical operators.

(r, ϑ, z) = (x1, x2, x3) (4.200)

F 1 = r̂ · F r F 2 = ϑ̂ · F F 3 = ẑ · F (4.201)

∇ = r̂
∂

∂r
+
ϑ̂

r

∂

∂ϑ
+ ẑ

∂

∂z
(4.202)

∇aF a =
1

r

∂(r r̂ · F )

∂r
+

1

r

∂ (ϑ̂ · F )

∂ϑ
+
∂(ẑ · F )

∂z
. (4.203)

∇2ψ =
1

r

∂

∂r

[
r
∂ψ

∂r

]
+

1

r2
∂2ψ

∂ϑ2
+
∂2ψ

∂z2
(4.204)

(∇× F )a = εabc∂bF
c see equations (4.198a)− (4.198c) (4.205)

4.23 Summary of spherical coordinates
We now consider spherical coordinates defined by Figure 4.3 and related to Cartesian coordinates
through the coordinate transformation3

x = r cosϕ cosλ (4.206a)

y = r cosϕ sinλ (4.206b)

z = r sinϕ. (4.206c)

3Figure 4.3 depicts a rotating spherical planet. We here focus on the coordinate transformations when applied
within the non-inertial rotating reference frame of a terrestrial observer. Connections to observers in an inertial
non-rotating reference frame are studied in Chapter 13.
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The radial coordinate
r = |x| =

√
x · x =

√
x2 + y2 + z2 (4.207)

measures the distance from the center of the sphere to the position of the point. The spherical
angle coordinates,

0 ≤ λ ≤ 2π longitude (4.208)

−π/2 ≤ ϕ ≤ π/2 latitude, (4.209)

specify the longitude, measuring the radians of the position east of the prime meridian, and
latitude, measuring the radians north (ϕ > 0) or south (ϕ < 0) from the equator. To streamline
notation in the following, we introduce the unbarred and barred labels for the Cartesian and
spherical coordinates, respectively

(x, y, z) = (ξ1, ξ2, ξ3) ≡ ξa and (λ, ϕ, r) = (ξ1, ξ2, ξ3) ≡ ξa. (4.210)

ẑ

ŷ

x̂

r̂
φ̂

λ̂

r

φ

λ

Ω = Ω ẑ

south pole

north pole

equator

Figure 4.3: Geometry and notation for motion around a rotating sphere. For geophysical applications, the
sphere rotates counter-clockwise when looking down from the north polar axis and it has an angular speed Ω. The
planetary Cartesian triad of orthonormal basis vectors, (x̂, ŷ, ẑ) points along the orthogonal axes and rotates with
the sphere. The planetary spherical triad (also rotating with the sphere) of orthonormal basis vectors, (λ̂, ϕ̂, r̂),
makes use of the longitudinal unit vector λ̂, which points in the longitudinal direction (positive eastward), the
latitudinal unit vector ϕ̂, which points in the latitudinal direction (positive northward) and the radial unit vector
r̂, which point in the radial direction (positive away from the center).

4.23.1 Cartesian and spherical transformation

Following the general discussion in Section 4.1.4, we consider the infinitesimal distance along
one of the Cartesian coordinate axes, dξa. The chain rule allows us to relate this distance to
those along the axes of the spherical coordinate system

dξa =
∂ξa

∂ξa
dξa = Λaa dξ

a. (4.211)
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The partial derivatives ∂ξa/∂ξa form components to the transformation matrix that transforms
between coordinate representations. For the coordinate transformation (4.206a)-(4.206c), the
transformation matrix is given by

Λaa =

 ∂ξ1/∂ξ1 ∂ξ1/∂ξ2 ∂ξ1/∂ξ3

∂ξ2/∂ξ1 ∂ξ2/∂ξ2 ∂ξ2/∂ξ3

∂ξ3/∂ξ1 ∂ξ3/∂ξ2 ∂ξ3/∂ξ3

 =

 −r cosϕ sinλ −r sinϕ cosλ cosϕ cosλ
r cosϕ cosλ −r sinϕ sinλ cosϕ sinλ

0 r cosϕ sinϕ

 .
(4.212)

The determinant of the transformation (Jacobian) is given by

det(Λaa) = r2 cosϕ. (4.213)

The Jacobian vanishes at the north and south poles (ϕ = ±π/2), where the transformation is
singular. Otherwise, the transformation is one-to-one and invertible. Methods familiar from
linear algebra render the inverse transformation matrix

Λaa =
1

r2 cosϕ

 −r sinλ r cosλ 0
−r cosϕ sinϕ cosλ −r cosϕ sinϕ sinλ r cos2 ϕ
r2 cos2 ϕ cosλ r2 cos2 ϕ sinλ r2 cosϕ sinϕ

 , (4.214)

so that
Λaa Λ

a
b = δab and Λab Λ

b
b = δab. (4.215)

4.23.2 Basis vectors

The spherical coordinate basis vectors, ea, are related to the Cartesian coordinate basis vectors,
ea, through the transformation

ea = Λaa ea. (4.216)

The transformation matrix (4.212) leads to

eλ = r cosϕ (−x̂ sinλ+ ŷ cosλ) (4.217a)

eϕ = r(−x̂ sinϕ cosλ− ŷ sinϕ sinλ+ ẑ cosϕ) (4.217b)

er = x̂ cosϕ cosλ+ ŷ cosϕ sinλ+ ẑ sinϕ. (4.217c)

It is convenient to introduce the orthonormal unit vectors, (λ̂, ϕ̂, r̂), which point in directions of
increasing λ, ϕ, and r, so that the basis vectors are written

eλ = r cosϕ λ̂ and eϕ = r ϕ̂ and er = r̂, (4.218)

in which case we have the relations

λ̂ = −x̂ sinλ+ ŷ cosλ (4.219a)

ϕ̂ = −x̂ cosλ sinϕ− ŷ sinλ sinϕ+ ẑ cosϕ (4.219b)

r̂ = x̂ cosλ cosϕ+ ŷ sinλ cosϕ+ ẑ sinϕ (4.219c)

along with their inverse

x̂ = −λ̂ sinλ− ϕ̂ cosλ sinϕ+ r̂ cosλ cosϕ (4.220a)

ŷ = λ̂ cosλ− ϕ̂ sinλ sinϕ+ r̂ sinλ cosϕ (4.220b)

ẑ = ϕ̂ cosϕ+ r̂ sinϕ. (4.220c)
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4.23.3 Basis one-forms

Since spherical coordinates are locally orthogonal, we can readily derive the one-form basis
through inverting the vector basis

eλ = (r cosϕ)−1 λ̂ and eϕ = r−1ϕ̂ and er = r̂, (4.221)

which satisfy the duality condition (bi-orthogonality relation) with the basis vectors (Section
4.2.2)

eb · ea = δba. (4.222)

4.23.4 Position and velocity

In spherical coordinates, the position of a point is fully specified by the radial position

x(τ) = r er = r r̂. (4.223)

However, the velocity requires all three spherical coordinates since the radial basis vector is a
function of the angular positions, which are functions of time. Use of the chain rule renders

v(τ) =
dx(τ)

dτ
(4.224a)

= er
dr

dτ
+ r

der
dτ

(4.224b)

= er
dr

dτ
+ r

∂er
∂λ

dλ

dτ
+ r

∂er
∂ϕ

dϕ

dτ
(4.224c)

≡ er
dr

dτ
+ eλ

dλ

dτ
+ eϕ

dϕ

dτ
(4.224d)

= er v
r + eλ v

λ + eϕ v
ϕ. (4.224e)

To reach this result we made use of the identities satisfied by the spherical basis vectors

eλ = r
∂er
∂λ

and eϕ = r
∂er
∂ϕ

, (4.225)

which can be readily verified by equations (4.217a)-(4.217c).

4.23.5 Metric tensor

Since spherical coordinates are orthogonal, the metric tensor is diagonal and it is given by

gab = ea · eb =

 (r cosϕ)2 0 0
0 r2 0
0 0 1

 , (4.226)

along with the inverse metric tensor

gab = ea · eb =

 (r cosϕ)−2 0 0
0 r−2 0
0 0 1

 . (4.227)
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Volume element and Levi-Civita tensor

The square root of the determinant of the metric tensor written in spherical coordinates (from
equation (4.226)) is given by √

det(gab) = r2 cosϕ (4.228)

so that the volume element is
dV = r2 cosϕ dr dλ dϕ. (4.229)

The covariant Levi-Civita tensor has the spherical representation

εabc = (r2 cosϕ) ϵabc, (4.230)

where ϵabc are components to the permutation symbol (i.e., the Cartesian components to the
Levi-Civita tensor) from Section 1.7.1.

Vector cross product of basis vectors

As a check on the formalism for cross products, let us verify the relation (4.87) for the vector
cross product of two basis vectors using spherical coordinates

ea × eb = εabc e
c =⇒ ea × eb = (r2 cosϕ)ϵabc e

c. (4.231)

Making use of the spherical coordinate basis vectors and one-forms renders

er × eλ = (r cosϕ) (r̂ × λ̂) = (r cosϕ) ϕ̂ = (r2 cosϕ) eϕ = εrλϕ e
ϕ (4.232a)

eλ × eϕ = (r2 cosϕ) (λ̂× ϕ̂) = (r2 cosϕ) r̂ = (r2 cosϕ) er = ελϕr e
r (4.232b)

eϕ × er = r (ϕ̂× r̂) = r λ̂ = (r2 cosϕ) eλ = εϕrλ e
λ. (4.232c)

To reach these results we made use of the cross products for the spherical coordinate unit vectors

r̂ × λ̂ = ϕ̂ and λ̂× ϕ̂ = r̂ and ϕ̂× r̂ = λ̂. (4.233)

4.23.6 Components of a vector field

A vector field, F, has Cartesian components, F a, related to its spherical components, F a, via
the transformation matrix, F a = Λaa F

a. This transformation leads to

F 1 = (r cosϕ)−1 [−F x sinλ+ F y cosλ] (4.234a)

F 2 = r−1 [−F x sinϕ cosλ− F y sinϕ sinλ+ F z cosϕ] (4.234b)

F 3 = F x cosϕ cosλ+ F y cosϕ sinλ+ F z sinϕ. (4.234c)

Making use of the spherical unit vector (4.219a)-(4.219c) leads to the more tidy relations

(r cosϕ)F 1 = λ̂ · F (4.235a)

r F 2 = ϕ̂ · F (4.235b)

F 3 = r̂ · F , (4.235c)

where F = F a ea is the Cartesian representation.
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4.23.7 Differential operators
In spherical coordinates the gradient operator ∇ = ea∂a takes on the form

∇ = λ̂ (r cosϕ)−1 ∂λ + ϕ̂ r
−1 ∂ϕ + r̂ ∂r, (4.236)

and the covariant divergence of a vector field is given by

∇aF a = (r2 cosϕ)−1∂a[r
2 cosϕF a] (4.237a)

= (r2 cosϕ)−1
(
∂λ[r

2 cosϕF 1] + ∂ϕ[r
2 cosϕF 2] + ∂r[r

2 cosϕF 3]
)

(4.237b)

=
1

r cosϕ

∂(λ̂ · F )

∂λ
+

1

r cosϕ

∂ (ϕ̂ · F cosϕ)

∂ϕ
+

1

r2
∂ (r̂ · F r2)

∂r
. (4.237c)

The covariant Laplacian of a scalar, ∇2ψ = ∇ · ∇ψ, is given by

∇2ψ = ∇ ·
[
λ̂ (r cosϕ)−1 ∂λψ + ϕ̂ r−1 ∂ϕψ + r̂ ∂rψ

]
(4.238a)

=
1

(r cosϕ)2
∂2ψ

∂λ2
+

1

r2 cosϕ

∂

∂ϕ

[
cosϕ

∂ψ

∂ϕ

]
+

1

r2
∂

∂r

[
r2
∂ψ

∂r

]
. (4.238b)

The covariant curl (Section 4.18) takes the form

(curlF )1 = (r2 cosϕ)−1 [∂ϕ F
3 − ∂r (r2 F 2)] (4.239a)

(curlF )2 = (r2 cosϕ)−1 [∂r (r
2 cos2 ϕF 1)− ∂λ F 3] (4.239b)

(curlF )3 = (r2 cosϕ)−1 [∂λ (r
2 F 2)− ∂ϕ (r2 cos2 ϕF 1)], (4.239c)

which can be written in the more conventional form4

r cosϕ (curlF )1 =
1

r

[
∂(r̂ · F )

∂ϕ
− ∂(r ϕ̂ · F )

∂r

]
(4.240a)

r (curlF )2 =
1

r

[
∂(r λ̂ · F )

∂r
− 1

cosϕ

∂(r̂ · F )

∂λ

]
(4.240b)

(curlF )3 =
1

r cosϕ

[
∂(ϕ̂ · F )

∂λ
− ∂(cosϕ λ̂ · F )

∂ϕ

]
. (4.240c)

4.23.8 Summary
We here summarize the spherical coordinate version of some common mathematical operators:

(λ, ϕ, r) = (x1, x2, x3) (4.241)

(r cosϕ)F 1 = λ̂ · F r F 2 = ϕ̂ · F F 3 = r̂ · F (4.242)

∇ = λ̂ (r cosϕ)−1 ∂λ + ϕ̂ r
−1 ∂ϕ + r̂ ∂r (4.243)

∇h = λ̂ (r cosϕ)−1 ∂λ + ϕ̂ r
−1 ∂ϕ (4.244)

∇aF a =
1

r cosϕ

∂(λ̂ · F )

∂λ
+

1

r cosϕ

∂ (ϕ̂ · F cosϕ)

∂ϕ
+

1

r2
∂ (r̂ · F r2)

∂r
(4.245)

∇2ψ =
1

(r cosϕ)2
∂2ψ

∂λ2
+

1

r2 cosϕ

∂

∂ϕ

[
cosϕ

∂ψ

∂ϕ

]
+

1

r2
∂

∂r

[
r2
∂ψ

∂r

]
(4.246)

4Equations (4.240a)-(4.240c) correspond to equation (2.33) of Vallis (2017).
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(∇× F )a = εabc∂bF
c see equations (4.240a)− (4.240c). (4.247)

4.24 General orthogonal coordinates
We can generalize the spherical and cylindrical-polar coordinates by considering a nonsingular
and orthogonal set of coordinates defined such that the metric tensor takes on the diagonal form

gab = ea · eb =

 h1 0 0
0 h2 0
0 0 h3

 , (4.248)

where ha > 0 are “stretching” functions. The corresponding volume element is expressed as

dV = h1 h2 h3 dξ
1 dξ2 dξ3. (4.249)

These generalized orthogonal curvilinear coordinates have a corresponding orthogonal set of basis
vectors

ea = ha ê(a) no implied sum. (4.250)

The objects ê(a) are the dimensionless unit directions. The corresponding one-form basis is given
by

ea = (ha)
−1 ê(a). (4.251)

The index on the unit directions is enclosed in parentheses to advertise that it is not tensorial;
i.e., the unit directions do not transform as tensors. Rather, the functions ha carry the tensorial
properties of the basis vectors ea. Results for the trajectory and velocity are straightforward
generalizations of the spherical results in Section 4.23 and cylindrical-polar results from Section
4.22. A detailed presentation of generalized orthogonal coordinates is found in Section 21.11 of
Griffies (2004), with these coordinates commonly used for ocean and atmospheric models.

4.25 Comments on gradient operators
A feature common to non-Cartesian coordinates concerns the presence of spatially dependent
factors in front of certain components of the gradient operators. Indeed, recall the gradient for
the three coordinates discussed in this chapter:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
Cartesian (4.252a)

∇ = r̂
∂

∂r
+
ϑ̂

r

∂

∂ϑ
+ ẑ

∂

∂z
cylindrical-polar (4.252b)

∇ =
λ̂

r cosϕ

∂

∂λ
+
ϕ̂

r

∂

∂ϕ
+ r̂

∂

∂r
spherical, (4.252c)

where we recall that r for the spherical coordinates measures the distance from the origin, whereas
r for cylindrical-polar coordinates measures the distance from the vertical axis. Observe the r−1

dependence for the angular components of the gradient for both spherical and cylindrical-polar
coordinates. This dependence arises since as r increases, the surfaces of constant r become
flatter, a result of their larger radius of curvature.

To further help understand the meaning of the r−1 factor, consider two points with the same r
but distinct angular coordinates. As r increases, so too does the distance between the two points,
even though their angular positions remain unchanged. Speaking prosaically, this property is
why the outer portion of a pizza pie is bigger than the inner portion. Correspondingly, when
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measuring the derivative of a function in the angular direction, that derivative must be weighted
by r−1 to account for the difference in the arc-distance (more precisely the geodesic distance)
between the two points. The same idea explains the cosϕ factor on the longitudinal derivative
in spherical coordinates. Each of these notions are encapsulated in the spatial dependence of the
basis vectors for non-Cartesian coordinates.

A practical implication of the r and r cosϕ factors appearing in the gradient operators arises
when performing a vertical integral of the fluid mechanical equations. Such integrals are often
used to study reduced order versions of the full three-dimensional equations. But to be used
in practice, such integrals must be done either with Cartesian coordinates or for those cases
where it is acceptable to set the r−1 factor to a constant, such as occurs for the shallow fluid
approximation discussed in Section 27.1.2. Indeed, the vertically integrated equations are of most
practical use only when making a shallow fluid approximation. If this point seems obscure now,
it will be clarified when studying the depth integrated mechanical energy in Section 27.1.6, the
depth integrated momentum equation in Section 28.4, the depth integrated angular momentum
equation in Section 28.5, and the depth integrated vorticity equations in Sections 44.3, 44.5, and
44.6.
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Chapter 5

CURVES AND SURFACES

We encounter curves and surfaces throughout the study of geophysical fluid mechanics, with fluid
particle pathlines through space-time and isopycnal/isentropic surfaces providing two examples.
Indeed, curves and surfaces are encountered throughout physics. Hence, there is a well developed
mathematical framework to describe the geometric properties of these objects. Our goal in this
chapter is to introduce some of the basics of curves and surfaces embedded in Euclidean space.

Although the curves and surfaces of geophysical fluid mechanics are commonly moving as
part of the fluid flow, we are concerned in this chapter with describing their instantaneous spatial
properties. Hence, time does not appear in this chapter. Furthermore, although curves and
surfaces can overturn and intersect themselves, we restrict attention to orientable curves and
surfaces whose normal direction has a nonzero projection onto the vertical; i.e., they have no
overhangs and no wrapping (Figure 5.1). This constraint is satisfied by the surfaces of constant
generalized vertical coordinates (e.g., isopycnal surfaces) considered in Chapter 63 and in many
other places in this book. It allows us to make use of coordinates known as the Monge gauge in
condensed matter physics.

reader’s guide to this chapter
This chapter requires an understanding of the Cartesian calculus of Chapter 2. The

differential geometry presented here is mostly written at the level of undergraduate calculus,
so that it can be readily skipped for those recalling the basic ideas and formula. The interested
reader can find far more development by studying a variety of mathematical physics texts
that discuss geometry. One point of direct connection is provided by the physics of fluctuating
membranes as discussed in Section 10.4 of the condensed matter physics textbook from
Chaikin and Lubensky (1995).
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5.1. DEFINITIONS AND NOTATION

5.1 Definitions and notation
The basic notions of curves and surfaces embedded in Euclidean space are rather intuitive.
Nonetheless, it is important to be precise in our usage. For this purpose we here offer some
notation and definitions.

5.1.1 Definitions

We assume the notion of a curve and surface embedded in Euclidean space to be self-evident,
offering analytical expressions for curves in Section 5.2 and surfaces in Section 5.3. Given such,
we here define some related notions used in our study of fluid mechanics.

• orientable: An orientable curve is a curve that allows for normal and tangent directions
to specify directions and sides to the curve. Likewise, an orientable surface has two sides,
allowing one to choose a positive side and a negative side. A Möbius strip is the canonical
surface that is not orientable since it only has one side. Likewise, the boundary of a Möbius
strip is a non-orientable curve. We only consider orientable objects in this book.

• path or contour: A path or contour is a continuous piecewise smooth oriented curve. A
simple path or simple contour does not cross itself. We already encountered contours when
considering path integrals in Chapter 2.

• circuit: A circuit is a path that closes, and a simple circuit is a circuit that does not
cross itself. Finally, a reducible circuit is a circuit that can be continuously deformed to a
point within the domain without leaving the domain. For example, a circuit within the
ocean that encloses an island or continent cannot be deformed to a point since doing so
requires the circuit to cross onto land and thus to leave the ocean.

5.1.2 Notation

In this chapter we write the Cartesian position of a point on a surface as

S = x x̂+ y ŷ + η(x, y) ẑ position on surface, (5.1)

with the vertical position written as

z = η(x, y) vertical position on surface. (5.2)

If we are instead referring to a point on a planar curve in the x-z-plane, then we drop the
y-dependence to have

S = x x̂+ η(x) ẑ position on planar curve. (5.3)

Time dependence is dropped throughout this chapter since we focus on the spatial geometry of
curves and surfaces at a particular time instance.

We assume the outward normal direction on the curve or the surface has a nonzero projection
into the vertical as shown in Figure 5.1. Indeed, we are only able to write the vertical position
as z = η(x, y) so long as there are no overturns in the surface, in which case the outward unit
normal direction is

n̂ =
∇(z − η)
|∇(z − η)| =

ẑ −∇η√
1 + |∇η|2

. (5.4)

Figure 5.2 provides an example surface along with the notation.
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x

z

x

z

z = η(x)n̂

n̂

Figure 5.1: Two sample curves on the x-z plane. The left panel shows a curve whose outward unit normal, n̂,
encounters points where n̂ · ẑ = 0 and where n̂ · ẑ changes sign. This curve, and its generalization to a surface,
are not treated in this chapter. The right panel shows a more gently undulating curve where n̂ · ẑ ̸= 0 everywhere,
and thus where n̂ · ẑ is single signed. For curves such as the right panel, we can express the vertical position as a
1-to-1 function of the horizontal position, z = η(x). Again, this curve has its natural generalization to a gently
undulating surface whereby z = η(x, y) provides a unique mapping between horizontal position and vertical. The
assumption regarding no overhanging curves and surfaces is consistent with our study of surfaces defined by a
constant generalized vertical coordinate (e.g., isopycnals or isentropes) in Chapter 63.

x

z
z = η(x, y)

y

S

Figure 5.2: Example two-dimensional surface embedded in Euclidean space. The position of a point on the
surface is given by the Cartesian position vector S = x x̂+ y ŷ + η(x, y) ẑ. The relation z = η(x, y) provides a
1-to-1 mapping between the horizontal position and the vertical position of a point on the surface. Correspondingly,
the surface is uniquely specified by finding the envelope of points where z − η(x, y) = 0. The lightly shaded region
represents the projection of the curved surface onto the flat horizontal x-y plane below.

5.1.3 Surfaces with x = γ(y, z) or y = ψ(x, z)

We generally find it most useful to specify a point on a surface according to equation (5.1),
whereby we write z = η(x, y) for the vertical position as a function of the horizontal position.
This approach is typical for our applications since the surfaces we encounter most commonly
in stratified geophysical flows have a normal direction that has a non-zero projection into the
ẑ direction. However, there are occasions where it is more convenient to define a point on a
surface according to

S = γ(y, z) x̂+ y ŷ + z ẑ alternative specification. (5.5)

Here, we specify the x position on the surface as a function of y and z via the function γ(y, z).
The unit normal is thus specified by

n̂ =
∇(x− γ)
|∇(x = γ)| =

x̂− ŷ ∂yγ − ẑ ∂zγ
1 +

√
(∂yγ)2 + (∂zγ)2

. (5.6)
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Hence, this specification is useful for those surfaces with normal direction having a non-zero
x̂ component everywhere on the surface, in which case we are afforded the ability to define
γ(y, z). Alternatively, if the surface instead has a normal direction with a non-zero ŷ component
everywhere, then we would find it more suitable to define a point on the surface according to

S = x x̂+ ψ(x, z) ŷ + z ẑ, (5.7)

where y = ψ(x, z) provides the y position of a point on the surface as a function of x, z.

For the remainder of this chapter we return to the specification (5.1) whereby z = η(x, y).
However, there are occasions when we find it more suitable to define the surface using either
equation (5.5) or (5.7). For example, we make use of the specification (5.5) in Section 21.7 when
studying the meridional-depth overturning streamfunction.

5.2 Planar curves in 2D Euclidan space

We here describe the geometry of a curve on the x-z-plane (a planar curve) as depicted in
Figure 5.3. These curves are one-dimensional objects living in a two-dimensional Euclidean
space. Extensions to curves on non-Euclidean surfaces, such as the sphere or an isopycnal, are
straightforward when those surfaces are embedded in the background Euclidean space assumed
in this book.

5.2.1 Differential increments along the curve

As a one-dimensional geometric object, an arbitrary curve can be parameterized by a single
coordinate, referred to here as φ. Let S(φ) specify the position of a point along the curve.
Correspondingly, the differential increment between two infinitesimally close points on the curve
is given by

S(φ+ dφ)− S(φ) = dS =
dS

dφ
dφ ≡ tdφ, (5.8)

where

t =
dS

dφ
(5.9)

is tangent to the curve. If φ = s is the arc length along the curve, then t = t̂ is a unt vector

t̂ · t̂ = dS

ds
· dS
ds

= 1. (5.10)

In some treatments in this book we also write

ŝ = t̂ (5.11)

to correspond to s for arc length. Recall we made use of the arc length along a curve in Section
2.4 when describing path integration.

5.2.2 Length along the curve

As in equation (5.3) we can represent the position of a point along the curve using Cartesian
coordinates

S = x x̂+ η(x) ẑ. (5.12)
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x

z

xA xB

z = η(x)

S = x x̂ + η(x) ̂z

̂t

n̂.
Figure 5.3: An orientable path in the x-z plane defined by a planar curve that does not intersect itself. The
Cartesian position of a point on the curve is given by S = x x̂ + η(x) ẑ, where z = η(x) provides the vertical
position of the point as a function of the horizontal position. The projection of the curve onto the horizontal x-axis
occupies a range xA ≤ x ≤ xB . One way to define the curve is by finding the envelope of points where z−η(x) = 0,
in which case we can readily find the unit normal direction pointing upward as n̂ = ∇(z − η)/|∇(z − η)| =
[ẑ − (dη/dx) x̂] [1 + (dη/dx)2 ]−1/2, and the unit tangent vector t̂ = [x̂+ (dη/dx) ẑ] [1 + (dη/dx)2 ]−1/2.

Hence, letting φ = x parameterize the curve leads to the representation of the tangent direction

t =
dS

dx
= x̂+

dη

dx
ẑ, (5.13)

which has the magnitude
t · t = 1 + (dη/dx)2, (5.14)

so that the unit tangent vector is

t̂ =
x̂+ (dη/dx) ẑ√
1 + (dη/dx)2

. (5.15)

Likewise, the curve’s unit normal vector is given by

n̂ =
∇(z − η)
|∇(z − η)| =

ẑ − (dη/dx) x̂√
1 + (dη/dx)2

, (5.16)

with orthogonality manifest
t̂ · n̂ = 0. (5.17)

The squared length of an infinitesimal segment along the curve is given by

(ds)2 = dS · dS =

[
dS

dx
· dS
dx

]
dx dx, (5.18)

so that the finite length of the curve is determined by the integral

L =

ˆ L

0
ds =

ˆ xB

xA

|dS/dx|dx =

ˆ xB

xA

√
1 + (dη/dx)2 dx, (5.19)

where xA ≤ x ≤ xB is the range over which x runs for the projection of the curve onto the x-axis
(see Figure 5.3).
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5.2.3 Curvature of a curve
Curvature measures the amount that the unit normal changes along the curve. For a planar
curve, the curvature at a point equals to the inverse radius of a circle that shares the same
tangent plane to the curve at the point (see Figure 5.4). We refer to the radius as the radius
of curvature and the corresponding circle as the curvature circle. To formulate an analytic
expression for the radius of curvature at a point on a curve, orient the Cartesian coordinate axes
so that the point is at the origin and the tangent plane sits along the x-axis as in Figure 5.4.
Consequently, the outward unit normal, n̂, is parallel to the ẑ direction.

A Taylor series expansion about the origin tells us that the vertical position of a point along
the curve and near to the origin can be written

η(x) = η(0) + x

[
dη

dx

]
x=0

+
x2

2

[
d2η

dx2

]
x=0

+O(x3) (5.20a)

=
x2

2

[
d2η

dx2

]
x=0

+O(x3). (5.20b)

This result follows since we placed the origin so that η(0) = 0, and aligned the x-axis so that it
is tangent at the origin, in which case dη/dx = 0 at x = 0. Hence, η has a quadratic behavior
near the origin.

R. x

z
z = η(x)

P

ϑ

Figure 5.4: The radius of curvature at a point on a curve, P , equals to the radius of the curvature circle that
shares the same tangent plane as the curve at the point P . When constructing the curvature circle we make use of
the angle, ϑ, to measure the height of a point along the circle, h(x) = R (1− cosϑ) ≈ Rϑ2/2 ≈ x2/(2R). Setting
R−1 = d2η/dx2 provides a second order accurate fit of the curvature circle to the curve at the point P .

Now place a circle with center along the z-axis so that it is tangent to the curve at the
origin, as depicted in Figure 5.4. What is the radius, R, of the circle that best fits the curve
at the origin? To answer this question note that the height of a point on the circle is given
by h(x) = R (1− cosϑ), where ϑ = 0 for a point at the origin and ϑ = π at the diametrically
opposite point. For small ϑ this height takes the form

h(x) ≈ R [1− 1 + ϑ2/2] = x2/(2R), (5.21)

where ϑ = x/R near the origin. For the height of a point on the curve (equation (5.20b)) to
match the height along the circle, to second order accuracy, requires us to set the circle’s radius
to

1

R
=

d2η

dx2
. (5.22)

Equation (5.22) thus provides an expression for the radius of curvature, R, whose inverse is the
curvature

curvature =
1

R
. (5.23)

This result supports our expectation that the second derivative measures the curvature. As the
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radius, R, gets larger, the curvature decreases, which means that local regions along the circle
appear more flat. In the opposite limit the curvature grows as R decreases. Note that we could
have chosen to orient the circle on the opposite side of the tangent (on the convex side), in which
case the radius of curvature is negative. That is, R > 0 when the unit normal points towards
the concave side (side where the curve rises towards n̂), whereas R < 0 when the unit normal
points towards the convex side (side where the curve falls away from n̂).

In closing this section we note that

−∇ · n̂ =
d2η/dx2

[1 + (dη/dx)2 ]3/2
. (5.24)

When evaluated at the point of interest along the curve, we set dη/dx = 0 so that

−∇ · n̂ =
d2η

dx2
=

1

R
. (5.25)

This result supports our earlier statement that curvature measures the change in the normal
direction along the curve. In fact, the identity

−∇ · n̂ =
1

R
(5.26)

holds for an arbitrary point along the curve since it is a coordinate invariant statement.

Equation (5.25) provides a useful means to check the sign of the radius of curvature. Namely,
the point of interest in Figure 5.4 is a local minimum, so that d2η/dx2 > 0 and the radius of
curvature is thus positive, R > 0. In contrast, the radius of curvature is negative at points where
d2η/dx2 < 0.

5.3 Surfaces embedded in 3D Euclidean space
We now extend the previous discussion to a two-dimensional surface embedded in three-
dimensional Euclidean space such as in Figure 5.2. In general, a 2D surface in 3D space
can be parameterized by two variables, φ1 and φ2, so that infinitesimal increments along the
surface satisfy

dS =
∂S

∂φ1
dφ1 +

∂S

∂φ2
dφ2 = t1 dφ1 + t2 dφ2. (5.27)

The vectors t1 and t2 are tangent to the surface at the point (φ1, φ2), and yet they are not
generally orthogonal to one another.

Making use of the Cartesian expression (5.1)

S = x x̂+ y ŷ + η(x, y) ẑ (5.28)

brings the two tangent directions and the unit tangent directions into the form

t1 =
∂S

∂x
= x̂+

∂η

∂x
ẑ and t̂1 =

x̂+ (∂η/∂x) ẑ√
1 + (∂η/∂x)2

(5.29a)

t2 =
∂S

∂y
= ŷ +

∂η

∂y
ẑ and t̂2 =

ŷ + (∂η/∂y) ẑ√
1 + (∂η/∂y)2

. (5.29b)

Likewise, the surface unit normal vector is given by

n̂ =
∇(z − η)
|∇(z − η)| =

ẑ −∇η
|ẑ −∇η| =

ẑ −∇η√
1 + |∇η|2

, (5.30)
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and it is straightforward to show orthogonality with the two tangent vectors

t̂1 · n̂ = t̂2 · n̂ = 0. (5.31)

5.3.1 Area on the surface
Recall from Section 1.7.5 that the magnitude of a vector product of two vectors equals to the
area of the parallelogram subtended by the vectors. Hence, the area of an infinitesimal surface
element with sides dφ1 and dφ2 is given by

dS =

∣∣∣∣ ∂S∂φ1
× ∂S

∂φ2

∣∣∣∣dφ1 dφ2. (5.32)

Making use of Cartesian coordinates brings the area element to

dS =
√

1 + |∇η|2 dx dy =
√
1 + |∇η|2 dA, (5.33)

where
dA = dx dy (5.34)

is the area of the surface projected onto the horizontal plane. Hence, the area of a finite region
is given by the integral

S =

ˆ
dS =

ˆ
|∇(z − η)|dA =

ˆ √
1 + |∇η|2 dx dy, (5.35)

where the second and third integrals extend over the region defined by the projection of the
surface onto the horizontal (see Figure 5.2).

5.3.2 Curvature of a surface
We now seek an expression for the curvature of a point on the surface. Since the surface has
two dimensions, we expect the curvature to be measured by two numbers rather than the single
curvature for the curve discussed in Section 5.2.3. The method for developing the curvature is
analogous to that used for a curve, yet with a bit more mathematics needed to allow for the
extra dimension. Figure 5.5 depicts the situation.

n̂

t1
t2𝒯 .

P

Figure 5.5: Depicting the elements needed to construct the curvature of a surface at an arbitrary point, P . The
local unit normal direction is given by n̂, along with the two tangent vectors t1 and t2. The tangent vectors
span the space of the tangent plane, T, shown as a flat surface that is tangent at the chosen point on the surface.
In this case the surface falls away from the normal direction, as per a convex surface, so that the two radii of
curvature are negative. Other surfaces can be concave, whereby both radii of curvature are positive, or hyperbolic
(saddle), whereby one is positive and another negative.
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Let x = (x1, x2) = (x, y) be Cartesian coordinates on a tangent plane local to an arbitrary
point on the surface, with the origin of the coordinate system taken at the point. Near to the
point, we can estimate the vertical distance of a point on the surface from the tangent plane
according to the quadratic form

η ≈ 1

2
xm Cmn xn, (5.36)

where C is the matrix of second partial derivatives evaluated at the point

C =


∂2η

∂x21

∂2η

∂x1∂x2
∂2η

∂x1∂x2

∂2η

∂x22

 . (5.37)

As a symmetric matrix, C is diagonalizable and it has two eigenvalues, R−1
1 and R−1

2 , along with
its associated eigenvectors, c1 and c2. The quadratic form (5.36) can thus be written as

η ≈ 1

2
R−1

1 (x · c1)2 +
1

2
R−1

2 (x · c2)2. (5.38)

R1 and R2 are the principle radii of curvature for the surface at the point P . They correspond,
respectively, to the radii of the curvature circles in the n̂-c1 and n̂-c2 planes. If the radius of
curvature, Rm, is positive, then the surface curves towards n̂ along the n̂-ci plane, and conversely
if Rm is negative. The surface takes the shape of a saddle when the two radii of curvature have
opposite signs.

There are two scalar invariants of the matrix C that commonly arise in applications.

• Tr(C) = R−1
1 + R−1

2 , which is twice the mean curvature for the surface. With the unit
normal vector given by equation (5.4), one can show that

−∇ · n̂ =
∇2η

[1 + (∇η)2 ]3/2 . (5.39)

A bit of algebra leads us to conclude that

−∇ · n̂ =
∇2η

[1 + (∇η)2 ]3/2 =
1

R1
+

1

R2
, (5.40)

for any point along the surface, thus generalizing the result (5.25) found for a curve.
Furthermore, if |∇η| ≪ 1 then we have

∇2η ≈ 1

R1
+

1

R2
, (5.41)

with this result proving useful in the study of surface tension in Section 25.11.

• det(C) = 1/(R1R2) is known as the Gaussian curvature, which is the product of the two
curvatures.

5.3.3 Curves on the surface z = η(x, y)

We now consider a curve, as in Section 5.2, defined along a two dimensional surface, z = η(x, y),
with the curve defined by lines of constant z = η(x, y). For example, if η(x, y) is the solid earth
topography, then lines of constant η are contours of constant topography. By definition, these
contours have no projection into the vertical direction (i.e., they do not go uphill or downhill),
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t̂

Figure 5.6: Geometry depicting a contour along a particular line of constant z = η(x, y), such as for a constant
elevation path along a mountain or valley. The along-contour unit tangent direction is t̂ = dx/ds, with s the
arc length along the contour. The unit normal direction pointing to the left of the contour direction is n̂, with
n̂ · t̂ = 0 and t̂× n̂ = ẑ. Both n̂ and t̂ are horizontal unit vectors.

and they are determined by
dη = 0 = ∇η · dx, (5.42)

where dx = x̂dx + ŷ dy is the horizontal space increment along the contour. Following the
introduction of arc length in Section 5.2.1, we write

dη = 0 = ∇η · dx = ∇η · dx
ds

ds = ∇η · t̂ ds, (5.43)

where t̂ is a unit vector pointing in the direction of the contour. To build an orthogonal triad of
coordinates, we then define an orthogonal unit vector, n̂, that points to the left of the contour
direction so that

n̂ · t̂ = 0 and t̂× n̂ = ẑ, (5.44)

as depicted in Figure 5.6. We provide an example use of this formalism in Exercise 5.1.

5.4 Exercises

exercise 5.1: Jacobian evaluated along a contour
Consider the vector cross product of two functions, ψ(x, y) and Q(x, y)

ẑ · (∇ψ ×∇Q) = ∂xψ ∂yQ− ∂yψ ∂xQ ≡ J(ψ,Q), (5.45)

where the final equality defined the Jacobian operator. Show that when evaluated along a
contour of constant Q, the Jacobian is given by

J(ψ,Q) = −(n̂ · ∇Q) (t̂ · ∇ψ) (5.46)

where t̂ is the unit tangent along the contour and n̂ is a unit vector pointing to the left of the
tangent (e.g., see Figure 5.6).

exercise 5.2: Curvature of a circle
Make use of equation (5.26), as well as the polar coordinates from Section 4.22, to show that for

page 122 of 2158 geophysical fluid mechanics



5.4. EXERCISES

a circle of radius r we have

−∇ · n̂ =
1

r
, (5.47)

where n̂ = −r̂ points to the left when moving around the circle in a counterclockwise direction.
Hence, the radius of curvature for the circle equals to the circle’s radius.
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Chapter 6

LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Fluid mechanics is a classical field theory whose mathematical description involves partial
differential equations (PDEs). Although most of these partial differential equations are nonlinear,
some are linear. Regardless, an understanding of linear partial differential equations provides
useful insights into the physics and maths of geophysical fluids. For this purpose, we here explore
the rudiments of linear partial differential equations.

chapter guide

This chapter renders an appreciation for the mathematical structure and physical behavior
of many equations encountered in geophysical fluid mechanics. Indeed, it is remarkable
how useful it is, both mathematically and physically, to develop a basic understanding
of linear partial differential equations. Furthermore, those aiming to develop solution
methods, either analytical or numerical, should have a working knowledge of this chapter
along with the Green’s function method detailed in Chapter 9. Throughout this chapter
we assume Cartesian coordinates.

There are many resources devoted to the theory and application of partial differential
equations throughout physics, engineering, and applied mathematics. Chapter 8 of Hilde-
brand (1976) offers a pedagogical starting point whereas Stakgold (2000a,b) thoroughly
develops the theory and methods available for boundary value problems encountered
in physics. Duchateau and Zachmann (1986) concisely summarize partial differential
equations and provide nearly 300 worked exercises, with much of the presentation in this
chapter following their treatment.
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6.1 Loose threads
• Exercises that illustrate the separation of variables method.

• Discuss the notion of spherical harmonics and cylindrical harmonics.

6.2 The advection equation
Consider a tracer concentration, C, which for present purposes is a scalar field that is a function
of space and time. As derived in Section 69.3, the tracer concentration in the absence of diffusion
satisfies the advection equation

(∂t + v · ∇)C = 0. (6.1)

The space and time derivatives acting on C are both first order, indicating that the advection
equation is a first order partial differential equation. It is a nonlinear partial differential equation
for those active tracers such as temperature, where active tracers affect the velocity, v, through
changes to density and hence to pressure. In contrast, the advection equation is linear for passive
tracers (e.g., colored dye, dust), which are tracers whose effects on velocity are negligible (Section
20.1.5). We limit the present discussion to passive tracers so that the advection equation is
linear.

6.2.1 Constant advection velocity
Consider one space dimension and let the advection velocity be constant in space and time,

(∂t + U ∂x)C = 0, (6.2)

where U is a constant velocity in the x̂ direction. An inspired guess reveals that

C(x, t) = Γ(α) = Γ(x− Ut) (6.3)

is a general solution to equation (6.2). Here, Γ is an arbitrary differentiable function that is
determined by the initial conditions of the tracer field. Furthermore, there is only one argument
to Γ, here written as α = x − Ut. As discussed in Section 6.3, α = x − Ut is referred to as a
characteristic curve for the constant speed one-dimensional advection equation.
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Verification of the solution (6.3) is readily found by noting

∂C

∂x
=

dΓ(α)

dα

∂α

∂x
= Γ′(α)

∂(x− Ut)
∂x

= Γ′ (6.4a)

∂C

∂t
=

dΓ(α)

dα

∂α

∂t
= Γ′(α)

∂(x− Ut)
∂t

= −Γ′ U. (6.4b)

We have thus verified that

(∂t + v · ∇)C = −Γ′ U + U Γ′ = 0. (6.5)

The functional dependence,

C(x, t) = Γ(α) = Γ(x− Ut), (6.6)

reveals that as time progresses with U > 0, an observer that moves in the positive x̂ direction
with a speed U maintains a constant value for the tracer concentration. This behavior means
that the tracer concentration is transported by advection with a speed U without changing its
structure. We illustrate this behavior in Figure 6.1.

C

x

C(x, t0)

C

x

C(x, t > t0)
U > 0

Figure 6.1: Illustrating the advection of a scalar field resulting from a constant advection velocity v = U x̂ with
U > 0. The initially square pulse of tracer concentration is translated, unchanged, by the constant advection
velocity.

6.2.2 Arbitrary functions resulting from PDEs
As revealed from the above example, the solution to a partial differential equation is typically
given in terms of an arbitrary function with a specified dependence on the independent variables.
The function itself is unspecified without additional information from initial and/or boundary
conditions. For example, consider an initial tracer concentration in the form of a sine-wave

C(x, t = 0) = C0 sin(k x), (6.7)

with k a wavenumber (dimensions of inverse length), and allow the domain to be infinite in
extent (no boundaries). When advected by a constant advection velocity, the solution to the
advection equation is a tracer concentration in the form of a sine-wave moving in the positive x̂
direction with speed U

C(x, t) = C0 sin[k (x− Ut)]. (6.8)

The arbitrary functional degree of freedom is a generalization of the case with ordinary differential
equations, whose solutions are determined up to constants that are specified by initial and/or
boundary conditions.

6.2.3 Further study
Advection plays a fundamental role in the transport of matter, energy, and momentum within
fluids. As seen in our discussion of fluid kinematics in Chapter 17, advection appears in the fluid
mechanical equations when viewing the fluid from the fixed laboratory or Eulerian reference
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frame. We thus encounter advection throughout this book, with further development of the
physics in Section 69.3 and mathematics in Section 69.4.

6.3 Characteristic curves for first order PDEs

The advection equation is the canonical first order partial differential equation commonly found
in fluid mechanics. A more general form for a first order partial differential equation in one
space dimension is given by1

P (x, t, ψ) ∂xψ +Q(x, t, ψ) ∂tψ = R(x, t, ψ), (6.9)

where P , Q, and R are arbitrary smooth functions, x, t are the independent variables, and ψ is
the unknown dependent function. This partial differential equation is linear if P , Q, and R are
independent of ψ, and quasi-linear if P and Q are independent of ψ and R is at most a linear
function of ψ. In this section we develop a formalism that determines the functional dependence
of solutions to these partial differential equations. This method of characteristics is quite useful
for exposing general properties of the solutions, even for those cases where the solution is not
analytically available.

6.3.1 General formulation

In the first order partial differential equation given by equation (6.9), assume there is a functional
relation

Υ(x, t, ψ) = constant (6.10)

that determines the dependent function, ψ, consistent with equation (6.9). We refer to Υ as an
integral surface that specifies a solution to the partial differential equation. If Υ specifies an
integral surface, it must satisfy

dΥ = 0 =
∂Υ

∂x
dx+

∂Υ

∂t
dt+

∂Υ

∂ψ
dψ, (6.11)

which holds since the differential of a constant vanishes. For the two dependent variables, x and
t, the condition (6.11) leads to the differential constraints

dΥ

dt
= 0 =

∂Υ

∂ψ

∂ψ

∂t
+
∂Υ

∂t
(6.12a)

dΥ

dx
= 0 =

∂Υ

∂ψ

∂ψ

∂x
+
∂Υ

∂x
. (6.12b)

Assuming ∂Υ/∂ψ ̸= 0 allows us to write

∂ψ

∂t
= − ∂Υ/∂t

∂Υ/∂ψ
and

∂ψ

∂x
= − ∂Υ/∂x

∂Υ/∂ψ
(6.13)

so that the first order partial differential equation (6.9) takes on the equivalent form

P
∂Υ

∂x
+Q

∂Υ

∂t
+R

∂Υ

∂ψ
= 0. (6.14)

1Much from this section is taken from Section 8.2 of Hildebrand (1976).
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Through this construct we have symmetrized the appearance of the functions P,Q,R appearing
in the partial differential equation (6.9). Consistency of equation (6.14) with

dΥ =
∂Υ

∂x
dx+

∂Υ

∂t
dt+

∂Υ

∂ψ
dψ = 0, (6.15)

requires
P = ρdx and Q = ρdt and R = ρdψ, (6.16)

for some non-dimensional function, ρ(x, t, ψ). Eliminating the unknown function ρ renders the
ordinary differential equations

dx

P
=

dt

Q
=

dψ

R
. (6.17)

Paths in (x, t, ψ) space that satisfy these differential equations are known as characteristic curves.
Note that if any one of the functions P , Q, or R vanish, then we merely remove that term from
these relations.

6.3.2 Examples
We now determine characteristic curves for some specific examples. First consider the linear
homogeneous advection equation with constant advection speed

U
∂ψ

∂x
+
∂ψ

∂t
= 0, (6.18)

in which we identify P = U , Q = 1, and R = 0. The single ordinary differential equation defining
the characteristic curve is given by

dx

U
=

dt

1
, (6.19)

so that characteristics are given by the family of space-time lines

d(x− U t) = 0 =⇒ x− U t = α, (6.20)

with α an arbitrary constant. These lines determine the paths in space-time along which
advective signals are transmitted.

Now add a constant source to the linear advection equation

U
∂ψ

∂x
+
∂ψ

∂t
= R. (6.21)

The two ordinary differential equations defining the characteristic curve are

dx

U
=

dt

1
=

dψ

R
. (6.22)

In addition to the relation x− U t = α1 determined from the homogeneous case, we also have
ψ−R t = α2 for α2 an arbitrary constant. Hence, the characteristic equations render the general
solution of the form

Γ[x− U t, ψ −R t] = constant, (6.23)

for Γ an arbitrary function. One example solution is given by

ψ = f(x− U t) +R t, (6.24)

for an arbitrary smooth function, f . This solution has the form of a traveling signal, f(x− U t),
plus a linear signal, R t.
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For the final example, consider the linear advection equation with non-constant coefficients
and non-constant source

x
∂ψ

∂x
+ t

∂ψ

∂t
= ψ, (6.25)

in which the ordinary differential equations determining the characteristics are given by

dx

x
=

dt

t
=

dψ

ψ
. (6.26)

The first equality leads to the identity

d(lnx) = d(ln t) =⇒ t/x = α1. (6.27)

Similarly, by equating the first and third terms in equation (6.26) we have

ψ/x = α2. (6.28)

Hence, the general solution of the partial differential equation (6.25) is given by e

Γ(t/x, ψ/x) = 0⇒ ψ = xF (t/x) (6.29)

for an arbitrary smooth function F .

6.4 Classifying second order partial differential equations

There are many second order partial differential equations appearing in fluid mechanics, a general
form of which in one space dimension is given by

A
∂2ψ

∂x2
+B

∂2ψ

∂x∂t
+ C

∂2ψ

∂t2
= Λ. (6.30)

For linear partial differential equations, A,B,C are arbitrary functions of space and time that are
independent of ψ. Furthermore, Λ is a function of space and time and at most a linear function of
ψ and its derivatives. The most general solution to a linear partial differential equation consists
of the sum of any particular solution and a solution to the homogeneous problem (where Λ = 0).

The terms involving second derivatives in equation (6.30) determine the character of the
solutions, with importance placed on the sign of the discriminant B2 − 4AC. By analogy with
conic sections we classify second order partial differential equations as follows:

PDE form =


hyperbolic B2 − 4AC > 0
elliptic B2 − 4AC < 0
parabolic B2 − 4AC = 0.

(6.31)

We can further motivate this terminology by considering the case of a homogeneous constant
coefficient partial differential equation and an assumed solution of the form

ψ(x, t) = f(mx+ t). (6.32)

Plugging into the second order partial differential equation (6.30) with Λ = 0 leads to

Am2 +Bm+ C = 0. (6.33)

The two solutions, m1 and m2, are both real for the hyperbolic case, conjugate complex for the
elliptic case, and a perfect square for the parabolic case.
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6.5 Elliptic partial differential equations

The elliptic case from Section 6.4 has discriminant B2 − 4AC < 0, in which case there are two
imaginary characteristics. The canonical example elliptic equation is Laplace’s equation

(∂xx + ∂yy)ψ = 0, (6.34)

where we converted from the time coordinate, t, to the space coordinate y. Formally, this
transition is realized by setting t = i y, where i =

√
−1. Laplace’s equation is satisfied by time-

independent (i.e., steady state) solutions to the heat/diffusion equation (Section 6.6). Another
common elliptic equation is Poisson’s equation, which results from adding a source to Laplace’s
equation

(∂xx + ∂yy)ψ = Λ. (6.35)

As a frequent shorthand, we define the Laplacian operator (for three space-dimensions)

∇2 = ∂xx + ∂yy + ∂zz. (6.36)

This expression generalizes to arbitrary coordinates (e.g., see Sections 4.22, and 4.23 for cylindrical
and spherical coordinate examples).

As there is no time in the Laplace and Poisson equations, information is transmitted
instantaneously so that the structure of the solution is determined by boundary conditions or
boundary data. Strictly speaking, instantaneous information transfer is not physical since all
physical signals have a finite propagation speed no greater than the speed of light. However, an
infinite speed can be a useful mathematical construct motivated by the physics. For example,
acoustic signals (Chapter 51) propagate in fluids much faster than other waves and fluid particle
speeds. For many purposes of large-scale planetary fluid mechanics, it is suitable to assume
acoustic speeds are infinite, and in so doing we filter or remove acoustic modes from of the
dynamical equations.2 In the process, the hyperbolic equation describing acoustic waves is
converted into an elliptic equation.

6.5.1 Harmonic functions

Solutions to Laplace’s equation, ∇2ψ = 0, are known as harmonic functions. The name
“harmonic” originates from the study of fundamental modes of oscillation, such as arise from
musical instruments or more generally the motion of linear oscillators. Such fundamental modes
are solutions to the Laplace equation with boundary conditions depending on the instrument.
On domains with certain symmetries, the solution to Laplace’s equation can be written in terms
of the sine and cosine trignometric functions. Notably, these functions are solutions to the
one-dimensional Helmholtz equation (see Section 6.7.3), or equivalently to the simple harmonic
oscillator equation (see Section 15.6). As a result, the sine and cosine functions, though not
satisfying Laplace’s equation, provide building blocks to the harmonic functions that do satisfy
Laplace’s equation.

Here are some example harmonic functions for two space dimensions:

ψ = x3 − 3x y2 ψ = ln(x2 + y2) ψ = eγ x cos(γ y) ψ = a x+ b y, (6.37)

2A scuba diver feeling the beat of a ship underwater, or an audience member at a rock concert may question
why we wish to filter out acoustic waves from the dynamics. Even so, in Chapter 51 we see that acoustic energy
is in fact tiny relative to planetary waves and gravity waves, and utterly negligible for studies of large scale
geophysical fluid motions.
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with arbitrary constants a, b, γ. Furthermore, with

∇2(ψ ϕ) = ψ∇2ϕ+ 2∇ϕ · ∇ψ + ϕ∇2ψ, (6.38)

we see that the product of two harmonic functions (∇2ψ = ∇2ϕ = 0) is itself harmonic if
and only if their gradients are orthogonal, ∇ψ · ∇ϕ = 0. In the remainder of this section we
present some properties of harmonic functions and develop self-consistency for the boundary
data appearing in the Laplacian boundary value problem defined by equations (6.41a)-(6.41b)
stated below.

6.5.2 Mean value property of harmonic functions
Harmonic functions possess a remarkable mean value property, which we prove in Section 9.3.10
using methods from Green’s function theory. Here, we consider its implications.

The mean value property says that the value of a harmonic function, ψ, at a point x0 within
an open region of R equals to the average of ψ taken over the surface of a sphere within R that
is centered at x0. In equations this property states that

ψ(x0) =

¸
SR
ψ(x) dS¸
SR

dS
, (6.39)

where SR is a sphere with radius R centered at x0 with “area” given by

˛
SR

dS =

{
2πR n = 2 space dimensions
4πR2 n = 3 space dimensions.

(6.40)

We illustrate this property in Figure 6.2.
The mean-value property of harmonic functions holds anywhere within the domain where

∇2ψ = 0, so long as the sphere is fully contained within that domain. It implies that there
can be no extrema of ψ within the domain, since if there was an extrema then it could not
satisfy the mean-value property. Hence, all extrema of harmonic functions live on the domain
boundary. This property lends mathematical support for considering harmonic functions to be
solutions to continuous physical systems that are in equilibrium or a steady state. As a physical
example, consider a temperature field, T (x), in a region with zero heat sources and zero fluid
flow. As shown in Section 68.3.4, the steady state temperature satisfies ∇2T = 0, and as such it
is harmonic and hence has no extrema within the domain.

.
𝒮R
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∮
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Figure 6.2: The value of a harmonic function at a point x0 equals to the area average of the function over a
sphere of arbitrary radius (so long as ∇2ψ = 0 inside the sphere) centered at x0. We here illustrate this property
for 3-dimensions, but it holds for arbitrary space dimensions.
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6.5.3 Laplace’s boundary value problem
Laplace’s equation requires boundary conditions to fully specify the harmonic function. We here
consider Laplace’s boundary value problem in the form

∇2ψ = 0 x ∈ R (6.41a)

αψ + β n̂ · ∇ψ = σ x ∈ ∂R, (6.41b)

where R is a smooth and simply connected volume, ∂R is the boundary surface enclosing R

with outward unit normal, n̂, and with α, β, and σ given boundary data functions.

We can establish constraints on the boundary conditions that lead to a self-consistent
Laplacian boundary value problem (6.41a)-(6.41b). We do so through the use of Gauss’s
divergence theorem (Section 2.7) in which integration over the full domain leads to

0 =

ˆ
R

∇2ψ dV =

˛
∂R
n̂ · ∇ψ dS. (6.42)

In physical applications the boundary condition (6.41b) usually appears with either α = 0 or
β = 0, and these two cases are associated with distinct self-consistency constraints.

Dirichlet boundary condition

The case with β = 0 is referred to as a Dirichlet boundary condition whereby

ψ = σ x ∈ ∂R, (6.43)

where we set α = 1 without loss of generality. In this case all boundary data result in a
self-consistent Laplacian boundary value problem so there is no constraint on σ. Thinking
again about temperature, this boundary condition specifies the temperature on the domain
boundary to equal T = σ, with all boundary functions σ consistent with a harmonic temperature
distribution within the domain interior.

Neumann boundary condition

The case with α = 0 results in a Neumann boundary condition. Without loss of generality we set
β = 1 and reach the following self-consistency condition

˛
∂R
σ dS = 0. (6.44)

A self-consistent boundary condition for Laplace’s equation with the Neumann boundary condi-
tion must satisfy this surface integral constraint. For the temperature example, this boundary
condition says that to realize a steady state harmonic temperature distribution within a region,
we can at most apply a zero area averaged boundary heating. If the boundary constraint (6.44)
is not satisfied, then the interior temperature field cannot be harmonic so that it will not be in a
steady state.

6.5.4 Poisson’s equation
The generic boundary value problem for Poisson’s equation takes on the form

∇2ψ = Λ x ∈ R (6.45a)

αψ + β n̂ · ∇ψ = σ x ∈ ∂R, (6.45b)
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where Λ(x) is a specified source function. We here present, without proof, some general properties
of solutions to Poisson’s equation and develop self-consistency conditions for the boundary data
appearing in equation (6.45b).

6.5.5 Extended max-min principle for Poisson’s equation

A subharmonic function, ψ, satisfies the Poisson equation with a non-negative source

∇2ψ = Λ ≥ 0 x ∈ R. (6.46)

Here, the source function makes the curvature of a subharmonic function positive. Correspond-
ingly, every point within R satisfies the minimum principle

ψ(x0) ≤
¸
SR
ψ(x) dS¸
SR

dS
, (6.47)

for spheres, SR, that are fully within R and where ∇2ψ = Λ. The signs switch for superharmonic
functions whereby ∇2ψ ≤ 0 for x ∈ R

Returning to the temperature example, consider a temperature field in a region with a
positive heat source, Λ > 0. The steady state temperature in the presence of zero fluid flow
satisfies Poisson’s equation ∇2T = Λ ≥ 0 for regions with the heat source. The minimum
principle (6.47) means that the temperature at any point within the heating region is less than
the temperature averaged over a sphere centered on the point, so long as the sphere remains
within the region of heating. It is only in the absence of a heat source or sink, where ∇2T = 0,
that we recover the mean-value property of harmonic functions given by equation (6.39).

6.5.6 Poisson’s boundary value problem

We follow the method in Section 6.5.3 to develop constraints on the boundary conditions applied
as part of the Poisson boundary value problem (6.45a)-(6.45b). Use of Gauss’s divergence
theorem leads to the constraint ˛

∂R
n̂ · ∇ψ dS =

ˆ
R

ΛdV. (6.48)

We separately consider Dirichlet and Neumann boundary conditions.

Dirichlet boundary condition

The Dirichlet condition with β = 0 leads to

ψ = σ x ∈ ∂R. (6.49)

Just as for Laplace’s boundary value problem, all boundary data result in a self-consistent Poisson
boundary value problem, so there is no constraint on σ. Thinking again about temperature, this
boundary condition specifies the temperature on the domain boundary to equal T = σ, with all
boundary functions, σ, consistent with the interior heating, Λ, and a temperature field satisfying
∇2T = Λ within the interior.
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Self-consistent Neumann boundary condition

The Neumann boundary condition leads to the following self-consistency condition

˛
∂R
σ dS =

ˆ
R

ΛdV. (6.50)

A self-consistent boundary condition for Poisson’s equation with a Neumann boundary condition
must satisfy this surface integral constraint. For the temperature example, this boundary
condition says that the area integrated boundary data must be consistent with the volume
integrated source function in order for the temperature to satisfy Poisson’s equation. Otherwise,
the temperature field will evolve in time and thus not be in a steady state. Compatibility of the
boundary conditions ensures the existence of a solution to the Poisson equation that is unique
up to an arbitrary constant.

6.6 Parabolic partial differential equations

The parabolic case from Section 6.4, B2 − 4AC = 0, contains a single real characteristic. The
canonical example is the heat equation, which is also known as the diffusion equation

∂ψ

∂t
= κ

∂2ψ

∂x2
, (6.51)

where κ > 0 is the kinematic diffusivity with dimensions of squared length per time.

6.6.1 Initial and initial-boundary value problems
The Cauchy Problem is the name given to the initial value problem for the heat equation over
all space, here given by Euclidean space

∂ψ

∂t
= κ∇2ψ x ∈ Rn, t > 0 (6.52a)

ψ(x, t = 0) = σ(x) x ∈ Rn (6.52b)

|ψ(x, t)| <∞ x ∈ Rn, t > 0. (6.52c)

The general initial-boundary value problem over a finite domain R takes the form

∂ψ

∂t
= κ∇2ψ x ∈ R, t > 0 (6.53a)

ψ(x, t = 0) = σ(x) x ∈ R (6.53b)

α(x)ψ(x, t) + β(x) n̂ · ∇ψ(x, t) = g(x, t) x ∈ ∂R, t > 0, α β ≥ 0. (6.53c)

Following from the discussion of Laplace’s and Poisson’s boundary value problems, choices for
the boundary functions α and β impact on the character of the boundary conditions. The
Neumann condition is most commonly applied to set the flux of a tracer or temperature at the
boundaries. The alternative use of the Dirichlet condition is commonly applied for idealized
“diagnostic” tracers in geophysical fluid applications (see Haine et al. (2025) for a review of such
idealized ocean tracers).

6.6.2 Smoothing property
The extended max-min principle from Section 6.5.5 holds also for the heat equation, which is
consistent with solutions to the heat equation generally decaying their initial condition towards
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zero by reducing the amplitude of all extrema. Hence, no extrema are introduced in the interior
of the domain by the heat equation; extrema only arise via boundary and/or initial conditions.
Furthermore, the steady state limit of the heat equation is a harmonic function, and so solves
Laplace’s equation whereby the mean-value property holds (Section 6.5.2).

Illustrating the smoothing property in a finite domain

We illustrate the smoothing property for the specific case of the one-dimensional initial-boundary
value problem with homogeneous Dirichlet boundary conditions

∂ψ

∂t
= κ

∂2ψ

∂x2
0 < x < L, t > 0 (6.54a)

ψ(x, t) = I(x) 0 < x < L, t = 0 (6.54b)

ψ(0, t) = ψ(L, t) = 0 t > 0. (6.54c)

A variety of methods, such as separation of variables, can be used to derive the following Fourier
series solution3

ψ(x, t) =

∞∑
n=1

In e
−κ t (nπ/L)2 sin(nπ x/L) with In =

2

L

ˆ L

0
I(x) sin(nπ x/L) dx. (6.55)

As per the smoothing property of diffusion, note how the amplitude of each Fourier mode decays
exponentially in time.

Smoothing property for an initial value problem on the real line

Now consider the one-dimensional heat equation on the real line, with the only boundary
conditions being regularity at infinity

∂ψ

∂t
= κ

∂2ψ

∂x2
−∞ < x <∞, t > 0 (6.56a)

ψ(x, t) = I(x) −∞ < x <∞, t = 0. (6.56b)

One can show by direct differentiation that the following Gaussian is a solution4

ψ(x, t) =
1√

4π κ t

ˆ ∞

−∞
I(ξ) exp

[
−(x− ξ)2

4κ t

]
dξ. (6.57)

Again, this function smooths/damps the initial condition function I(x) as time increases.

6.6.3 Duhamel’s superposition integral for the heat equation

Consider a scalar field that starts from zero initial conditions and evolves according to the heat
equation in the presence of a source

∂Ψ

∂t
= κ∇2Ψ+ f(x) x ∈ Rn, t > 0 (6.58a)

Ψ(x, t) = 0 x ∈ Rn, t = 0. (6.58b)

3We discuss Fourier series in Chapter 8.
4In Section 9.5 we develop Green’s function methods to derive the integral solution (6.57).
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Now consider the converse, in which another scalar field evolves without a source and yet is
initialized according to the source

∂ψ

∂t
= κ∇2ψ x ∈ Rn, t > 0 (6.59a)

ψ(x, t) = f(x) x ∈ Rn, t = 0. (6.59b)

Remarkably, these two scalar fields are related by Duhamel’s superposition integral

Ψ(x, t) =

ˆ t

0
ψ(x, t− τ) dτ. (6.60)

We verify the connection by direct differentiation

∂Ψ(x, t)

∂t
= ψ(x, 0) +

ˆ t

0

∂ψ(x, t− τ)
∂t

dτ = f(x) + κ∇2Ψ(x, t). (6.61)

Duhamel’s superposition integral allows us to move the source between the partial differential
operator and the initial conditions. It says that the forced solution, Ψ(x, t), is built by time
integrating the “retarded” values of the unforced solution, ψ, from the initial time, t = 0,
to the current time, t. A more general presentation allows for the source function to be a
function of time, f(x, t), in which case we develop a family of solutions, ψf (x, t; τ), generated
by reinitializing ψf (x, t = τ ; τ) = f(x, τ) and then superposing the members of this family to
generate Ψ(x, t). This more general solution method is encompassed by the Green’s functions of
Section 9.5.

As an example, consider the initial value problem for the heat equation on a line as given by
equations (6.56a)-(6.56b)

∂ψ

∂t
= κ

∂2ψ

∂x2
−∞ < x <∞, t > 0 (6.62a)

ψ(x, t) = f(x) −∞ < x <∞, t = 0, (6.62b)

whose solution is given by the Gaussian function in equation (6.57). Duhamel’s superposition
integral (6.60) says that

Ψ(x, t) =

ˆ t

0
ψ(x, t− τ) dτ =

ˆ t

0

1√
4π κ (t− τ)

ˆ ∞

−∞
f(ξ) exp

[
− (x− ξ)2
4κ (t− τ)

]
dτ dξ (6.63)

satisfies the forced (inhomogeneous) initial value problem with zero initial condition

∂Ψ

∂t
= κ

∂2Ψ

∂x2
+ f(x) −∞ < x <∞, t > 0 (6.64a)

Ψ(x, t) = 0 −∞ < x <∞, t = 0. (6.64b)

We make use of this result in our discussion of Green’s functions in Chapter 9.

6.6.4 Further study

We examine physical and mathematical properties of the heat/diffusion equation in Sections 68.3
and 68.4. Section 9.11 of Hildebrand (1976) offers a lucid discussion of Duhamel’s superposition
integral.

CHAPTER 6. LINEAR PARTIAL DIFFERENTIAL EQUATIONS page 137 of 2158



6.7. HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

6.7 Hyperbolic partial differential equations

The hyperbolic case from Section 6.4 has B2−4AC > 0 and thus contains two real characteristics.
The the linear homogeneous wave equation is the canonical example of a hyperbolic partial
differential equation

(∂tt − U2 ∂xx)ψ = 0. (6.65)

Solutions have the form of a moving signal in both directions that move along the two character-
istics

ψ(x, t) = F(x− Ut) +G(x+ U t), (6.66)

where F and G are differentiable functions whose form is determined by the initial conditions.
Note that we can factor the differential operator into the form

(∂t − U ∂x) (∂t + U ∂x)ψ = 0. (6.67)

Consequently, if either one of the linear first-order partial differential equations are satisfied

(∂t − U ∂x)ψ = 0 (6.68a)

(∂t + U ∂x)ψ = 0 (6.68b)

then ψ will satisfy the full wave equation. These first-order partial differential equations are the
one-dimensional advection equations considered in Section 6.3 with opposite advection direction,
and each of which has a single characteristic. In this manner, we can think of advection by
constant velocity as the square root of the wave equation. Similarly, some disciplines refer to the
linear advection equation (6.2), with constant advection speed, as the one-way wave equation. It
represents the simplest of the hyperbolic partial differential equations.

6.7.1 Initial value problem for the infinite-domain wave equation

Since there are two time derivatives, specification of a solution requires initial conditions for
the field and its first time derivative. To illustrate the structure of a solution to the wave
equation, we develop a solution to the Cauchy problem, which is the initial value problem for
the one-dimensional wave equation on the real line (infinite spatial domain so no boundary
conditions)

∂ttψ = c2 ∂xxψ −∞ < x <∞, t > 0 wave equation on a line (6.69a)

ψ = F (x) −∞ < x <∞, t = 0 initial condition (6.69b)

∂tψ = G(x) −∞ < x <∞, t = 0 initial tendency, (6.69c)

where the initial condition data, F,G, are arbitrary functions of space and c is a constant wave
speed. Following from the discussion of characteristics in Section 6.3, we are motivated to
perform a linear transformation of the wave equation into wave characteristic coordinates

ξ = x+ c t and η = x− c t =⇒ (ξ + η)/2 = x and (ξ − η)/(2c) = t. (6.70)

Wave signals propagate in directions defined by constant ξ and η, so that these coordinates
isolate the signal transmission. Furthermore, as we will see, this coordinate transformation
facilitates a direct integration of the wave equation.
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Transformation to characteristic coordinates

To help organize the linear transformation to characteristic coordinates, write equation (6.70) as
a matrix-vector equation[

ξ
η

]
=

[
c 1
−c 1

] [
t
x

]
⇐⇒

[
t
x

]
=

1

2

[
c−1 −c−1

1 1

] [
ξ
η

]
. (6.71)

Furthermore, introduce tensor indices (see Chapter 1)

µ = (0, 1) and µ = (0, 1), (6.72)

where indices 0 and 0 represent time and indices 1 and 1 represent space, in which case the time
and space coordinates are written

xµ = (x0, x1) = (t, x) and xµ = (x0, x1) = (ξ, η). (6.73)

Use of this index notation brings the linear transformation (6.71) into the tidy form

xµ = Λµν x
ν ⇐⇒ xµ = Λµν x

ν , (6.74)

where the transformation matrices are given by the constant matrices5

Λµν =

[
∂x1/∂x1 ∂x1/∂x2

∂x1/∂x2 ∂x2/∂x2

]
=

[
c 1
−c 1

]
(6.75)

and

Λµν =

[
∂x1/∂x1 ∂x1/∂x2

∂x2/∂x1 ∂x2/∂x2

]
=

1

2

[
c−1 −c−1

1 1

]
. (6.76)

Note the use of an upstairs position for the row index on the transformation matrix, which
conforms to the use with general tensors from Chapter 3. The coordinate transformation (6.74)
and the transformation matrices (6.75)-(6.76) then lead to the partial derivative relationship

∂ν = Λµν ∂µ ⇐⇒ ∂ν = Λµν xµ, (6.77)

so that

∂2

∂x2
=

[
∂

∂ξ
+

∂

∂η

]2
=

∂2

∂ξ2
+ 2

∂

∂ξ

∂

∂η
+

∂2

∂η2
(6.78a)

c−2 ∂
2

∂t2
=

[
∂

∂ξ
− ∂

∂η

]2
=

∂2

∂ξ2
− 2

∂

∂ξ

∂

∂η
+

∂2

∂η2
. (6.78b)

General solution for the initial value problem

The operator transformations (6.78a) and (6.78b) bring the initial value problem (6.69a)-(6.69c)
into the form

∂2ψ

∂ξ∂η
= 0 −∞ < η < ξ <∞ (6.79a)

ψ(ξ, η) = F (ξ) −∞ < ξ <∞, ξ = η (6.79b)

5For linear coordinate transformations such as considered here, the space-time coordinates as well as tensors
transform with the same transformation matrices.
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∂ψ

∂ξ
− ∂ψ

∂η
= c−1G(ξ) −∞ < ξ <∞, ξ = η. (6.79c)

Integrating equation (6.79a) leads to ∂ξψ = θ(ξ) so that

ψ(ξ, η) = Φ(η) +

ˆ ξ

θ(s) ds ≡ Φ(η) + Θ(ξ), (6.80)

for two functions Φ(η) and Θ(ξ). The initial conditions (6.79b) and (6.79c) determine relations
between Φ(η) and Θ(ξ) and the initial data

Θ(ξ) =
1

2

[
F (ξ) +

1

c

ˆ ξ

G(s) ds

]
(6.81a)

Φ(η) =
1

2

[
F (η)− 1

c

ˆ η

G(s) ds

]
, (6.81b)

in which case the general solution to the initial value problem (6.69a)-(6.69c) takes the form

ψ(x, t) =
1

2
[F (x+ c t) + F (x− c t)] + 1

2c

ˆ x+c t

x−c t
G(s) ds, (6.82)

where we reintroduced the variables (x, t). This solution is known as the D’Alembert formula for
the wave equation. Note how the initial profile, F (x), is propagated along the two characteristics,
ξ = x+ c t and η = x− c t, without any change. In contrast, the initial tendency, ∂tψ(x, t = 0) =
G(x), is smoothed through the time integration. This behavior contrasts to the heat equation in
Section 6.6, with its single time derivative resulting in a smoothing of the full solution.

t

x

.

. .
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⇠0 = x0 + c t0<latexit sha1_base64="qy4MiXYZcSJ2EDsxmQ5MZVdjUag=">AAACHXicbVDLSgMxFM3UV62vUZciBIvgQsuMSHUjFN24rGAf0A5DJk3b0GRmSO6IZejKD3HtVr/BnbgVP8G/MH0gtvVAyMm593JuThALrsFxvqzMwuLS8kp2Nbe2vrG5ZW/vVHWUKMoqNBKRqgdEM8FDVgEOgtVjxYgMBKsFvethvXbPlOZReAf9mHmSdELe5pSAkXx7v8mA+KkzwJf4YXSfYIqbxxiGD9/OOwVnBDxP3AnJownKvv3dbEU0kSwEKojWDdeJwUuJAk4FG+SaiWYxoT3SYQ1DQyKZ9tLRNwb40Cgt3I6UOSHgkfp3IiVS674MTKck0NWztaH4X62RQPvCS3kYJ8BCOjZqJwJDhIeZ4BZXjILoG0Ko4mZXTLtEEQomuSmXQP4amGzc2STmSfW04BYLxduzfOlqklIW7aEDdIRcdI5K6AaVUQVR9Iie0Qt6tZ6sN+vd+hi3ZqzJzC6agvX5A/bpoDY=</latexit>

⌘0 = x0 � c t0

Figure 6.3: Equation (6.82) is the general solution to the wave equation initial value problem on a line, in which
case an arbitrary space-time point, (x0, t0), is causally connected via wave signals to all space-time points within
the shaded region in its past. This domain of influence is bounded by the two wave characteristics, ξ0 = x0 + c t0
and η0 = x0 − c t0, with these characteristics the pathway for propagating information about the initial wave
profile, ψ(x, t = 0) = F (x). Points in between the characteristics are causally connected via the initial time
tendency, ∂tψ(x, t = 0) = G(x), which is integrated over the region x0 − c t0 ≤ x ≤ x0 + c t0. Points outside the
domain of influence are causally disconnected from the point (x0, t0).

6.7.2 Domain of influence for wave signals
The wave solution (6.82) at a point in space time, (x0, t0), depends on data to its past within a
causality triangle, or domain of influence, as shown in Figure 6.3. The domain of influence is
bounded by the two wave characteristics, ξ0 = x0 + c t0 and η0 = x0 − c t0. These characteristics
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are the pathways for propagating information about the initial wave profile, ψ(x, t = 0) = F (x).
Points in between the characteristics are causally connected via the initial time tendency,
∂tψ(x, t = 0) = G(x), which is integrated over the region x0− c t0 ≤ x ≤ x0+ c t0. Points outside
the domain of influence are causally disconnected from the point (x0, t0).

6.7.3 Helmholtz equation
Consider the wave equation with a constant wave speed

(∂tt − c2∇2)ψ = 0. (6.83)

Assuming a monochromatic periodic time dependence ansatz6 of the form

ψ(x, t) = e−iω tΨ(x) (6.84)

results in the Helmholtz equation for the amplitude function

[∇2 + (ω/c)2] Ψ = 0. (6.85)

The Helmholtz equation thus plays a central role in wave theory. In particular, it is the relevant
equation when we are uninterested in the initial value problem for waves, but instead are
interested in the steady state where the wave field is fully established. In Exercise 51.1, we
encounter this equation when deriving the standing acoustic modes in a rectangular cavity. We
further encounter Helmholtz-like equations throughout our study of wave mechanics in Part X
of this book.

6.7.4 Duhamel’s superposition integral for the wave equation
We here present Duhamel’s superposition integral for the wave equation, following from the
similar discussion for the heat equation in Section 6.6.3. For this purpose, consider the forced
wave equation with time independent forcing

∂ttΨ = c2∇2Ψ+G(x) x ∈ Rn, t > 0 (6.86a)

Ψ(x, t) = 0 x ∈ Rn, t = 0, (6.86b)

and the corresponding unforced wave equation with inhomogenous initial time tendency

∂ttψ = c2∇2ψ x ∈ Rn, t > 0 (6.87a)

ψ(x, t) = 0 x ∈ Rn, t = 0. (6.87b)

∂tψ(x, t) = G(x) x ∈ Rn, t = 0. (6.87c)

The two scalar fields are related by Duhamel’s superposition integral

Ψ(x, t) =

ˆ t

0
ψ(x, t− τ) dτ. (6.88)

We can verify this formula through direct differentiation

∂tΨ(x, t) =

ˆ t

0

∂ψ(x, t− τ)
∂t

dτ (6.89a)

6Ansatz is a German word meaning an educated guess for the form of the solution. Monochromatic refers to
the time dependence where each portion of the wave oscillates with the same angular frequency, ω. We study
wave kinematics in Chapter 49.
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∂ttΨ(x, t) = ∂tψ(x, 0) +

ˆ t

0
∂ttψ(x, t− τ) dτ = G(x) + c2∇2Ψ(x, t). (6.89b)

As an example, consider the initial value problem for wave equation on a line with time
independent forcing

∂ttΨ = c2 ∂xxΨ+G(x) −∞ < x <∞, t > 0 (6.90a)

Ψ(x, t) = 0 −∞ < x <∞, t = 0 (6.90b)

∂tΨ(x, t) = 0 −∞ < x <∞, t = 0. (6.90c)

Duhamel’s superposition integral says that Ψ is related to the solution of the unforced wave
equation with initial time tendency given by the forcing

∂ttψ = c2 ∂xxψ −∞ < x <∞, t > 0 (6.91a)

ψ(x, t) = 0 −∞ < x <∞, t = τ (6.91b)

∂tψ(x, t) = G(x) −∞ < x <∞, t = τ > 0. (6.91c)

We know from Section 6.7.1 that the solution, ψ, is given by the D’Alembert formula in equation
(6.82), only here with the initial condition function set to zero

ψ(x, t) =
1

2c

ˆ x+c t

x−c t
G(s) ds. (6.92)

Hence, D’Alembert’s formula says that the solution to the forced wave equation (6.90a)-(6.90c)
is given by the superposition integral

Ψ(x, t) =
1

2c

ˆ t

0

ˆ x+c (t−τ)

x−c (t−τ)
G(s) ds. (6.93)

Introducing the antiderivative function via

G(s) =

ˆ s

G(s′) ds′ ⇐⇒ ∂G(s)

∂s
= G(s) (6.94)

allows us to interpret the solution (6.93) as the superposition of two oppositely traveling waves

Ψ(x, t) =
1

2c

ˆ t

0

[
G[x+ c (t− τ)]−G[x− c (t− τ)]

]
dτ. (6.95)

6.7.5 Further study
Stakgold (2000a,b) provides a thorough discussion of the wave equation and the related Helmholtz
equation. We further our understanding of wave maths and physics in Part X of this book, where
we refer to the hyperbolic waves of this section as non-dispersive waves. For non-dispersive waves,
the linear superposition of many waves retains its integrity since each wave travels with the same
speed. However, most waves of interest for geophysical fluid mechanics are dispersive, so that
waves mix among themselves; i.e., they change wavelengths as they propagate. Dispersive waves
are described by linear partial differential equations that are not necessarily hyperbolic. For
example, surface gravity waves of Chapter 52 satisfy an elliptic equation, with time dependence
arising from boundary conditions. The dispersion of surface gravity waves leads to the familiar
spreading of waves on the surface of a pond whereby longer waves travel faster than shorter
waves.
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6.8 Euler’s theorem for homogeneous functions

Consider a suite of Q independent variables, X1, X2, ...XQ, and an arbitrary function of these
variables, F (X1, X2, ...XQ). We say that this function is a homogeneous function of degree γ if
the following property holds

F (λX1, λX2, ...λXQ) = λγ F (X1, X2, ...XQ), (6.96)

with λ an arbitrary scalar. The left hand side is the function evaluated with each of the
independent variables scaled by the same number, λ. The right hand side is the function
evaluated with the unscaled variables, but multiplied by the scale raised to the power γ.

A particularly remarkable and useful property of such functions can be found by taking ∂/∂λ
on both sides of the identity (6.96). The left hand side has the following partial derivative, as
found through the chain rule

∂F (λX1, λX2, ...λXQ)

∂λ
=
∂F (X1, X2, ...XQ)

∂X1

∂(λX1)

∂λ
+ ...

∂F (X1, X2, ...XQ)

∂XQ

∂(λXQ)

∂λ

=

Q∑
q=1

[
∂F (X1, X2, ...XQ)

∂Xq

]
Xr ̸=q

Xq (6.97)

The derivative of the right hand side of equation (6.96) is given by

∂[λγ F (X1, X2, ...XQ)]

∂λ
= γ λγ−1 F (X1, X2, ...XQ). (6.98)

Bringing these results together leads to Euler’s theorem for homogeneous functions, which is
found by setting λ = 1

Q∑
q=1

Xq

[
∂F (X1, X2, ...XQ)

∂Xq

]
Xr ̸=q

= γ F (X1, X2, ...XQ). (6.99)

Example homogeneous functions include the intensive thermodynamic properties from Part
IV of this book, with such properties homogeneous functions of degree γ = 0, meaning they are
scale invariant. For example, a bucket of homogeneous water has the same temperature whether
or not we remove an arbitrary sample of the water. In contrast, as discussed below, extensive
thermodynamic properties are homogeneous functions of degree γ = 1. Section 22.3 presents
the thermodynamic implications of such mathematical properties. We also make use of these
properties in proving the Virial theorem of classical mechanics in Section 12.7.

6.9 Evolution of time averages

In geophysical fluid mechanics, we generically refer to an equation with a time derivative, such
as a parabolic or hyperbolic equation, as a prognostic equation or an evolution equation. In the
analysis of such equations, for example when analyzing simulation output or time series data, it
is common to take the time average in order to focus on lower frequency behavior. This section
provides a technical discussion concerning this time averaging operation, with the material here
following Bladwell et al. (2022).

For this purpose, ignore all space coordinates and write a generic prognostic equation in the
form

dA

dt
= B. (6.100)
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For example, the quantity A might be the velocity or temperature at a point in space, and
B might be the acceleration due to pressure or the heating due to temperature diffusion. We
term dA/dt the time tendency of the quantity A whereas B is the “forcing” that gives rise
to the time tendency. In the analysis of fluid flows, we commonly wish to diagnose terms
appearing in the evolution equations for the purpose of ascribing physical understanding to the
flow regime; e.g., what forces are more active in certain regions. Although sitting a bit outside
the scope of a chapter on partial differential equations, the material in this section exposes some
common questions that arise when time averaging terms appearing in the prognostic equations
of geophysical fluid mechanics.

Time integration of equation (6.100) leads to

A(t) = A(t0) +

ˆ t

t0

B(s) ds, (6.101)

thus providing an expression for the instantaneous value of A at an arbitrary time t, assuming
knowledge of the initial value, A(t0), as well as the time integral of B. In practice, particularly
when working with numerical models, we typically have access to time averages over some time
interval (e.g., days, months, years, decades) rather than instantaneous (snapshot) values of A.
Furthermore, instantaneous snapshots can be prone to relatively large fluctuations that expose
the diagnostic calculations to numerical precision errors (e.g., small differences between relatively
large fluctuating values). We are thus interested in relating time averages of A to time averages
of B.

6.9.1 Time averages

ΔT5,6

t
t0 t1 t2 t3 t4 t5 t6 t7 t8

Δτ
ΔT7,8

Figure 6.4: Example time axis for the discussion of time averaging. The labeled times, tn, can represent, for
example, days, months or years with the time interval, ∆Tn,n+1 = tn+1 − tn, not necessarily the same (e.g.,
different number of days in a month or a leap year versus non-leap year). The smaller unlabeled time steps
represent the time steps for the model’s prognostic equations (e.g., days, hours, seconds, etc.), with fixed time
step ∆τ .

Introduce a discrete partitioning of the time axis as in Figure 6.4 and define an unweighted
time average over a chosen time interval ∆Tn,n+1 = tn+1 − tn > 0

An,n+1 =
1

∆Tn,n+1

ˆ tn+1

tn

A(t) dt (6.102a)

Bn,n+1 =
1

∆Tn,n+1

ˆ tn+1

tn

B(t) dt. (6.102b)

These integrals are realized in practice as a discrete sum over the model time steps, with only
the lower limit inclusive so as to not double-count endpoints; i.e., [tn, tn+1). We allow for
non-constant time intervals, ∆Tn,n+1, as arises in monthly and yearly (with leap-years) time
averages.

Substituting expression (6.101) into the time mean (6.102a) renders

An,n+1 −A(t0) =
1

∆Tn,n+1

ˆ tn+1

tn

[ˆ t

t0

B(s) ds

]
dt, (6.103)
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and a similar expression over a later time interval [tp, tp+1) with p ≥ n+1 leads to the difference
between time averages

Ap,p+1 −An,n+1 =
1

∆Tp,p+1

ˆ tp+1

tp

[ˆ t

t0

B(s) ds

]
dt− 1

∆Tn,n+1

ˆ tn+1

tn

[ˆ t

t0

B(s) ds

]
dt. (6.104)

The formalism allows us to take differences between time averages over intervals that are
separated, such as might be of interest in taking decadal means between the beginning and end
of a century, for example. Importantly, the initial value, A(t0), is absent from the difference in
time means so that there are only time integrated quantities appearing in equation (6.104).

6.9.2 Massaging the double time integrals

The double time integrals in equation (6.104) can be massaged into a simpler form. We start by
making the following decomposition and noting that tn ≤ t ≤ tn+1

ˆ tn+1

tn

[ˆ t

t0

B(s) ds

]
dt =

ˆ tn+1

tn

[ˆ tn

t0

B(s) ds+

ˆ t

tn

B(s) ds

]
dt (6.105a)

= ∆Tn,n+1

ˆ tn

t0

B(s) ds+

ˆ tn+1

tn

[ˆ t

tn

B(s) ds

]
dt. (6.105b)

We are thus led to the difference

Ap,p+1 −An,n+1 =

[ˆ tp

t0

B(s) ds−
ˆ tn

t0

B(s) ds

]
+

1

∆Tp,p+1

ˆ tp+1

tp

[ˆ t

tp

B(s) ds

]
dt− 1

∆Tn,n+1

ˆ tn+1

tn

[ˆ t

tn

B(s) ds

]
dt

=

ˆ tp

tn

B(t) dt+
1

∆Tp,p+1

ˆ tp+1

tp

[ˆ t

tp

B(s) ds

]
dt− 1

∆Tn,n+1

ˆ tn+1

tn

[ˆ t

tn

B(s) ds

]
dt. (6.106)

The double integrals in equation (6.106) take place over triangular time domains, such as shown
in Figure 6.5.

t1

t2

t3

t
t1 t2 t3

s
s = t

∫
t3

t2 [∫
t

t2

ℬ(s) ds] dt

Figure 6.5: Gold region depicts the time integration domain used in one of the double integrals from equation
(6.106) for the special case of n = 2. Note that the gray triangular region generally leads to a distinct integral.

CHAPTER 6. LINEAR PARTIAL DIFFERENTIAL EQUATIONS page 145 of 2158



6.9. EVOLUTION OF TIME AVERAGES

6.9.3 Making use of a double integral identity

We here derive an identity (originally due to Cauchy (1823)) that reduces the double integral in
equation (6.106) to a single integral to expose the underlying geometry of the time windowing.
For this purpose we make use of the following identity

ˆ tn+1

tn

[ˆ t

tn

B(s) ds

]
dt =

ˆ tn+1

tn

(tn+1 − t)B(t) dt. (6.107)

To prove this identity we make the substitution B(s) = dA/ds from equation (6.100) and then
show that both sides to equation (6.107) yield the same result. For the left hand side we have

ˆ tn+1

tn

[ˆ t

tn

B(s) ds

]
dt =

ˆ tn+1

tn

[ˆ t

tn

dA(s)

ds
ds

]
dt (6.108a)

=

ˆ tn+1

tn

[ˆ t

tn

dA(s)

]
dt (6.108b)

=

ˆ tn+1

tn

[A(t)−A(tn)]dt (6.108c)

=

ˆ tn+1

tn

A(t) dt− (tn+1 − tn)A(tn), (6.108d)

whereas the right hand side is

ˆ tn+1

tn

(tn+1 − t)B(t) dt =

ˆ tn+1

tn

(tn+1 − t)
dA(t)

dt
) dt (6.109a)

=

ˆ tn+1

tn

(tn+1 − t) dA(t) (6.109b)

=

ˆ tn+1

tn

d[A(t) (tn+1 − t)] +A(t) dt (6.109c)

= −A(tn) (tn+1 − tn) +
ˆ tn+1

tn

A(t) dt, (6.109d)

which is identical to the left hand side given by equation (6.108d). We have thus proven the
double integral formula (6.107).

The right hand side of the double integral formula (6.107) can be written

ˆ tn+1

tn

(tn+1 − t)B(t) dt = tn+1∆Tn,n+1Bn,n+1 −
ˆ tn+1

tn

tB(t) dt, (6.110)

which might be useful in some contexts. However, it is awkward for our purposes since it exposes
the absolute time, tn+1, in the first term on the right hand side and the time, t, within the
integral. Since we generally do not hold any initial time as special (i.e., the initial time, t0, is
arbitrary), it is preferable to retain the time differences throughout the formulation. Hence,
when making use of the double integral identity (6.107) we bring equation (6.106) into the form

Ap,p+1 −An,n+1 =

ˆ tp

tn

B(t) dt+

ˆ tp+1

tp

(tp+1 − t)B(t)

tp+1 − tp
dt−

ˆ tn+1

tn

(tn+1 − t)B(t)

tn+1 − tn
dt (6.111a)

=

ˆ tn+1

tn

(t− tn)B(t)

tn+1 − tn
dt+

ˆ tp

tn+1

B(t) dt+

ˆ tp+1

tp

(tp+1 − t)B(t)

tp+1 − tp
dt. (6.111b)

The first right hand side term is a weighted integral with a linearly increasing weight from zero
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to unity, whereas the final right hand side term has a linearly descreasing weight from unity to
zero. The middle term has a unity weight throughout and it vanishes if p = n+ 1, as when the
averaging regions are adjacent. Figure 6.6. illustrates the time windowing used for equation
(6.111b).

t
tn tn+1 tn+2 tp−1 tp+1tp

w
ei

gh
t

0

1
time window

Figure 6.6: Illustrating the time window weighting used in computing the right hand side of equation (6.111b).
Note that if p = n+ 1, then the middle term in equation (6.111b) and there is no plateau region of unit weight, in
which case the window region becomes two adjacent triangles.

As a final means to write equation (6.111b), extend the middle term to the end of the time
period and then subtract the extra piece and recombine to render

Ap,p+1 −An,n+1 =

ˆ tp+1

tn+1

B(t) dt+

ˆ tn+1

tn

(t− tn)B(t)

tn+1 − tn
dt−

ˆ tp+1

tp

(t− tp)B(t)

tp+1 − tp
dt. (6.112)

The first term on the right hand side is an unweighted integral from the end of the first interval
to the end of the final interval, whereas the other two terms both have increasing weights over
their respective integration intervals. This form allows for some advantages diagnostically since
we only need to save unweighted integrals plus linearly increasing weighted integrals; there is no
need to save decreasing weighted integrals.

6.10 Exercises
exercise 6.1: Helmholtz decomposition for Coriolis acceleration
Consider a vector field

F = 2Ω× v, (6.113)

where Ω is a spatial constant and ∇ · v = 0. As seen in Part V of this book, the vector F
is minus the Coriolis acceleration. Since the velocity is non-divergent, there exists a vector
potential so that

v = ∇×B. (6.114)

Show that we can perform a Helmholtz decomposition of the Coriolis acceleration so that

F = 2Ω× v = −∇Ψ+∇×A, (6.115)

where

−∇2Ψ = −2Ω · (∇× v) (6.116a)

∇×A = (Ω · ∇)B +∇λ, (6.116b)

with λ an arbitrary gauge function.
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Chapter 7

THE DIRAC DELTA

The Dirac delta provides an idealization of a point source. In mathematics, the Dirac delta is
known as a generalized function or a distribution (e.g., chapter 5 of Stakgold (2000b)). We use
the nomenclature Dirac delta, rather than the commonly used “Dirac delta function”, as a hint
that this object is not a typical sort of function. Indeed, the Dirac delta has the very peculiar
properties of vanishing everywhere except at a single point where it is infinite. Consequently,
it has a nonzero integral, which is normalized to unity. Furthermore, when multiplied by an
arbitrary smooth test function and then integrated over the point where the Dirac delta “fires”,
the result is the test function evaluated at the point. This behavior is referred to as the sifting
property. When the test function is unity, then the sifting property reduces to the normalization,
so that the sifting property serves as the defining property of the Dirac delta.

Our treatment of the Dirac delta is physically formal in that we offer a deductive formulation
that is motivated from a physical perspective rather than serving the needs for a mathematically
rigorous presentation.1 The physically formal treatment presented here is supported by heuristic
arguments taken from Newtonian gravity (see Section 13.10); electrostatics (e.g., Jackson (1975));
and the diffusion of temperature or matter within a continuous media.2

reader’s guide to this chapter
Properties of the Dirac delta are derived in many treatments within the mathematical

physics literature. In particular, the Dirac delta is ubiquitous in the study of quantum
mechanics. We here made use of Appendix A of Gasiorowicz (1974) and Appendix C of Pope
(2000).

7.1 Motivation from Newtonian gravity . . . . . . . . . . . . . . . . . . . . . 150
7.2 Sifting property of the Dirac delta . . . . . . . . . . . . . . . . . . . . . . 151
7.3 Dirac delta carries physical dimensions . . . . . . . . . . . . . . . . . . . 151
7.4 Example δ(ϵ)(x) distributions . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5 Connection to the Heaviside step function . . . . . . . . . . . . . . . . . 153
7.6 Scaling property of the Dirac delta . . . . . . . . . . . . . . . . . . . . . 154
7.7 Dirac delta with a function argument . . . . . . . . . . . . . . . . . . . . 155
7.8 Equivalence classes of Dirac deltas . . . . . . . . . . . . . . . . . . . . . . 156
7.9 Taylor series decomposition of the Dirac delta . . . . . . . . . . . . . . . 156
7.10 Spectral decomposition of the Dirac delta . . . . . . . . . . . . . . . . . . 158

1The term physically formal is often used in the mathematical physics and applied mathematics literature as
a complement to mathematically rigorous. A mathematically rigorous treatment for the topics of this chapter
require an array of mathematical apparatus, particularly in topics of functional analysis, that are outside our
scope.

2A heuristic technique or argument employs a practical method not guaranteed to be fully rational or deductive
from all perspectives, but is sufficient for establishing a self-consistent formalism. The study of the Dirac delta is
an example where physical heuristics established a formalism whose mathematical rigor followed later.
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7.11 The product of Dirac deltas . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.12 Cartesian, spherical, and cylindrical-polar coordinates . . . . . . . . . . . 159

7.12.1 Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . 159
7.12.2 Spherical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.12.3 Cylindrical-polar coordinates . . . . . . . . . . . . . . . . . . . . 159

7.13 Temporal Dirac delta and impulses . . . . . . . . . . . . . . . . . . . . . 160
7.14 Shifting the space-time position of the source . . . . . . . . . . . . . . . 160

7.1 Motivation from Newtonian gravity

In Newtonian gravity3 we encounter the Poisson equation for the gravitational potential, Φ,
arising from an arbitrary mass density, ρ

∇2Φ = 4πGgrv ρ, (7.1)

with Ggrv Newton’s gravitational constant. The gravitational potential for an arbitrary spherically
symmetric mass, when sampled at a point outside the mass, equals to the potential of a point
mass located at the origin. Making precise the notion of a “point mass” provides a physical
venue for introducing the Dirac delta, which we interpret as the mass density for a point mass.
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4

3
ω ε3
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ω(ω)(x) →
{

V →1
ω if |x| ↑ ε

0 if |x| > ε.
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ω(x) = M ε(ω)(x)

Figure 7.1: Depicting a spherical region of radius, ϵ > 0, and with fixed mass, M , whose volume is given by
Vϵ =

4
3
π ϵ3. The Dirac delta is given by the limit as the radius tends to zero, δ(x) ≡ limϵ→0 δ

(ϵ)(x). That is, the
Dirac delta is the mass density for a point mass.

For that purpose, consider a mass, M , distributed uniformly within a sphere of radius, ϵ > 0,
and volume,

Vϵ =
4

3
π ϵ3, (7.2)

and let the sphere be centered at the origin of a coordinate system (see Figure 7.1). The mass
distribution has a mass density,

ρ(x) =M δ(ϵ)(x), (7.3)

where we introduced the ϵ−distribution

δ(ϵ)(x) ≡
{
V −1
ϵ if |x| ≤ ϵ

0 if |x| > ϵ.
(7.4)

By construction, an integral over a domain, R, that fully encompasses the sphere yields the mass

ˆ
R

ρ dV =M

ˆ
R

δ(ϵ)(x) dV =M, (7.5)

with this result holding even as the radius of the sphere becomes arbitrarily small, ϵ→ 0. We

3We consider Newtonian gravity in a bit more detail in Section 13.10.1.
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7.2. SIFTING PROPERTY OF THE DIRAC DELTA

define the Dirac delta as the limiting ϵ-distribution

δ(x) ≡ lim
ϵ→0

δ(ϵ)(x). (7.6)

Evidently, the Dirac delta is the mass density for a mass source that is zero everywhere in
space except at a single point. Hence, the Dirac delta distribution is infinite at the location of
the point source. This dual property, namely an object defined only at a single point and yet
having an infinite value at that point, allows the Dirac delta to have a nonzero integral, which is
normalized according to ˆ

R

δ(x) dV = 1, (7.7)

where the region, R, includes the point x = 0 where the Dirac delta “fires”. Concerns with
how to interpret the infinite value of δ(x) at x = 0 are ameliorated by recognizing that δ(x) is
evaluated only as part of an integral. Connecting to other physical analogs beyond the point
mass source, we can consider the Dirac delta as the charge density (charge per volume) for a
point charge in electrostatics, or the mass density for a point source of trace matter within a
fluid.

7.2 Sifting property of the Dirac delta
Multiply an ϵ-distribution by an arbitrary smooth function, ψ(x). Since the ϵ-distribution has
support only within the ϵ-sphere surrounding the origin, an integral of δ(ϵ)(x)ψ(x) over the
sphere, in the limit that ϵ→ 0, leads to the sifting property

lim
ϵ→0

ˆ
R

δ(ϵ)(x)ψ(x) dV =

ˆ
R

δ(x)ψ(x) dV = ψ(x = 0). (7.8)

Evidently, the Dirac delta sifts out the smooth function as evaluated at the location of the
Dirac delta source. The normalization property (7.7) and the sifting property (7.8) are the two
defining features of the Dirac delta. To derive further properties implied by normalization and
sifting, we find it useful to write

ψ(x) =

ˆ
R

δ(x− y)ψ(y) dV, (7.9)

which reduces to the normalization property (7.7) when ψ = 1.

The sifting property (7.9) holds whether the Dirac delta has argument x− y or y − x

ψ(x) =

ˆ
R

δ(x− y)ψ(y) dV =

ˆ
R

δ(y − x)ψ(y) dV, (7.10)

in which case we conclude that the Dirac delta is a symmetric or even distribution

δ(x) = δ(−x). (7.11)

7.3 Dirac delta carries physical dimensions
As emphasized throughout this chapter, the Dirac delta carries physical dimensions given by
the inverse dimension of its argument. For example, δ(x) has dimensions inverse length (here,
x is a Cartesian space coordinate), δ(t) has dimensions inverse time (t is time), and δ(ϕ) is
non-dimensional (ϕ is latitude in radians). The dimensional properties of a Dirac delta are
manifest from its corresponding sifting property. It is notable that many treatments, particularly
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7.4. EXAMPLE δ(ϵ)(x) DISTRIBUTIONS

in the maths literature, ignore the physical dimensions of the Dirac delta. Hence, it is important
to exercise care when transferring Dirac delta identities from a maths text to a physics context.

7.4 Example δ(ϵ)(x) distributions

In one-dimension, the construction of the Dirac delta following equation (7.6) is given by

δ(ϵ)(x) = ϵ−1 for |x| < ϵ/2 and 0 for |x| > ϵ/2, (7.12)

with this function depicted in Figure 7.2.
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Figure 7.2: Left panel: Heaviside step function, H(x), as given by equation (7.19). Middle and right panels: the
square pulse function, δ(ϵ)(x), given by equation (7.12), with the far right panel having a smaller value for ϵ > 0
than the middle panel. We see that limϵ→0 δ

(ϵ)(x) = δ(x) = dH(x)/dx, with
´
R
δ(ϵ)(x) dx = 1 for each ϵ.

There are many other ϵ-distributions whose limiting behavior also result in a Dirac delta, as
defined by the unit normalization and sifting properties

lim
ϵ→0

δ(ϵ)(x) = δ(x). (7.13)

Indeed, any even function that is normalized to unity and whose central peak’s width is
infinitesimal can be used to define a suitable δ(ϵ)(x), with the following examples (see Figure
7.3) appearing in applications (ϵ > 0 for each example)

δ(ϵ)(x) =
e−|x|/ϵ

2 ϵ
(7.14a)

δ(ϵ)(x) =
e−x

2/ϵ2

ϵ
√
π

(7.14b)

δ(ϵ)(x) =
ϵ

π (x2 + ϵ2)
(7.14c)

δ(ϵ)(x) =
sin(x/ϵ)

π x
(7.14d)

δ(ϵ)(x) =
ϵ sin2(x/ϵ)

π x2
. (7.14e)

With x corresponding to a spatial position, note how each of these one-dimensional functions
has physical dimensions of inverse length. The sifting property holds since each function is even
and becomes infinitely peaked yet infinitesimally narrow as ϵ→ 0. We verify the normalization
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condition for equation (7.14a) through

1

2 ϵ

ˆ ∞

−∞
e−|x|/ϵ dx =

1

2 ϵ

ˆ 0

−∞
ex/ϵ dx+

1

2 ϵ

ˆ ∞

0
e−x/ϵ dx =

1

2
+

1

2
= 1. (7.15)

The other expressions for δ(ϵ)(x) likewise have unit integrals over the real line and so satisfy
the normalization property. The expression (7.14b) is related to the causal free space Green’s
function for the diffusion equation studied in Section 9.5.2. The expression (7.14d) is notable for
its connection to Fourier analysis from Chapter 8. Namely, from the discussion in Section 8.5.1
we have the integral expression

δ(x) =
1

2π
lim
ϵ→0

ˆ 1/ϵ

−1/ϵ
ei k x dk =

1

2π ix
lim
ϵ→0

(eix/ϵ − e−ix/ϵ) = lim
ϵ→0

sin(x/ϵ)

π x
. (7.16)

Equivalently, we have the identity

δ(x) =
1

2π

ˆ ∞

−∞
ei k x dk =

1

π

ˆ ∞

−∞
cos(k x) dk, (7.17)

which follows from the Euler identity (8.3) and anti-symmetry of the sin function

ˆ ∞

−∞
sin(k x) dk = 0. (7.18)
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Figure 7.3: Plots of the functions δ(ϵ)(x) from equations (7.14a)-(7.14e) for ϵ = 0.2, each of which converges to
the Dirac delta as ϵ→ 0.

7.5 Connection to the Heaviside step function

The Heaviside step function (Figure 7.2) is given by4

H(x) =


0 if x < 0
1/2 if x = 0
1 if x > 0,

(7.19)

4In some treatments, H(x) is undefined at x = 0. For our purposes, the properties of the Heaviside step
function remain unchanged whether it is defined at x = 0 or not. See footnote on page 20 of Stakgold (2000a) for
more details.
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and it is related to the sgn function

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0,

(7.20)

according to
sgn(x) = 2H(x)− 1. (7.21)

Both the Heaviside and sgn functions are piecewise continuous and have infinite derivatives at
x = 0. In particular, the derivative of the Heaviside step function equals to the Dirac delta

dH(x)

dx
= δ(x). (7.22)

This identity is most apparent by considering the square pulse approximation to the Dirac delta
given by equation (7.12), in which we find

δ(x) = lim
ϵ→0

δ(ϵ)(x) = lim
ϵ→0

H(x+ ϵ/2)−H(x− ϵ/2)
ϵ

=
dH(x)

dx
. (7.23)

To be convinced of the second equality, separately consider the cases with x < −ϵ/2, x > ϵ/2, and
|x| < ϵ/2. Equivalently, we see that the Heaviside step function is the cumulative distribution of
the Dirac delta

ˆ x

−∞
δ(y) dy =

ˆ x

−∞

dH(y)

dy
dy = H(x)−H(−∞) = H(x). (7.24)

Connecting to the language of probability theory, the Dirac delta corresponds to a probability
density function peaked over an infinitesimal region, whereas the Heaviside step function is the
corresponding probability distribution function.

As we see when studying Green’s functions in Chapter 9, there are many other functions
whose derivatives yield the Dirac delta. In particular, the Green’s function is a continuous
function whose first derivative has a jump and second derivative equals to a Dirac delta. Just as
there is no unique function, δ(ϵ)(x), whose limit yields a Dirac delta, there is no unique function
whose derivative (or 2nd derivative) equals to a Dirac delta. The key point is that any “function”
that respects the sifting property (7.9) is a legitimate Dirac delta.

7.6 Scaling property of the Dirac delta

Write the sifting property (7.9) in the form

ψ(x) =

ˆ L

−L
δ(x− y)ψ(y) dy with |x| < L, (7.25)

where we introduced the constant, L, to keep track of the integration limits. Now scale the
coordinates by a non-dimensional constant, α ̸= 0, so that x = α ξ, y = αη, and dy = α dη, in
which case the sifting property (7.25) becomes

ψ(α ξ) =

ˆ L/α

−L/α
α δ(α ξ − αη)ψ(αη) dη. (7.26)
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The sifting property (7.25) also implies

ψ(α ξ) =

ˆ L/α

−L/α
δ(ξ − η)ψ(αη) dη, (7.27)

so that equating the two expressions (7.26) and (7.27) suggests that δ(x) = α δ(αx). However,
this expression fails for α < 0. Namely, from the symmetry property (7.11) we know that
δ(x) = δ(−x) so that δ(αx) = δ(−αx). Hence, the scaling property holds for an arbitrary
nonzero constant in the following form with the absolute value of the constant,

δ(x) = |α| δ(αx). (7.28)

Stated more simply, the symmetry property (7.11), δ(x) = δ(−x), is a special case of the scaling
property with α = −1. For this connection to hold requires application of the absolute value
operation, | − 1| = 1, thus leading to the expression (7.28).

7.7 Dirac delta with a function argument
Consider the integral ˆ

R

ψ(x) δ[f(x)] dx, (7.29)

for some smooth function, f(x). The argument to the Dirac delta vanishes where the function
vanishes, so this integral is nonzero only if f(x) has at least one root somewhere. Assume there
are N roots of f(x), where f(xn) = 0. Let us furthermore assume the roots are simple, so that
f(x) has a non-zero first derivative at each root, f ′(xn) ̸= 0. Consequently, near any of the
simple roots we can write the Taylor expansion

f(x) ≈ f ′(xn) (x− xn). (7.30)

We are thus led to

ˆ
R

ψ(x) δ[f(x)] dx =
N∑
n=1

ˆ
R

ψ(x) δ[f ′(xn) (x− xn)] dx (7.31a)

=
N∑
n=1

1

|f ′(xn)|

ˆ
R

ψ(x) δ(x− xn) dx (7.31b)

=
N∑
n=1

ψ(xn)

|f ′(xn)|
, (7.31c)

where the second equality made use of the scaling property (7.28). Evidently, we we find the
generalized scaling property for the Dirac delta

δ[f(x)] =
N∑
n=1

δ(x− xn)
|f ′(xn)|

for f(x) having N simple roots with f ′(xn) ̸= 0. (7.32)

As an example, consider the quadratic function, f(x) = x2 − α2, which has two simple roots,
x1 = α and x2 = −α, and corresponding derivatives, f ′(x1) = 2α and f ′(x2) = −2α. The
generalized scaling property (7.32) leads to

δ(x2 − α2) =
δ(x− α) + δ(x+ α)

2 |α| , (7.33)
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and the corresponding sifting result

ˆ
R

ψ(x) δ(x2 − α2) dx =
ψ(α) + ψ(−α)

2 |α| . (7.34)

7.8 Equivalence classes of Dirac deltas

We commonly write a variety of equations satisfied by the Dirac that are outside of an integral
sign, such as equations (7.32) and (7.33). Those equations are placeholders or shorthands for
relations that hold inside of integrals and when multiplied by a smooth test function. For
example, consider

ψ(a)A(a) =

ˆ
R

ψ(x)A(x) δ(x− a) dx, (7.35)

which is equivalent to

ψ(a)A(a) =

ˆ
R

ψ(x)A(a) δ(x− a) dx. (7.36)

We conclude that
A(x) δ(x− a) = A(a) δ(x− a). (7.37)

As a corollary, let A(a) = 1 so that

A(x) δ(x− a) = δ(x− a). (7.38)

We can thus consider the Dirac delta as an equivalance class

[A(x) δ(x)] ∼ [δ(x)]. (7.39)

That is, if a Dirac delta within an integral is multiplied by a non-dimensional function, A(x),
satisfying A(0) = 1, then we can disregard A(x) since it does not modify how the Dirac delta
acts within the integral. That is, A(x) does not modify the sifting property of δ(x), and so it
has no impact on how δ(x) affects test functions inside of integrals.

7.9 Taylor series decomposition of the Dirac delta

The first derivative of a Dirac delta represents an idealization of a dipole (e.g., see exercise 1.14
of Stakgold (2000a)). How does a Dirac dipole act on a test function? To answer this question,
make use of the identity

ˆ ϵ

−ϵ

d[ψ(x) δ(x)]

dx
dx = ψ(ϵ) δ(ϵ)− ψ(−ϵ) δ(−ϵ). (7.40)

Each term on the right hand side vanishes when ϵ > 0 since the Dirac delta never fires. Applying
the product rule inside of the integral renders the identity

ˆ ϵ

−ϵ

d[ψ(x) δ(x)]

dx
dx =

ˆ ϵ

−ϵ

[
ψ(x)

dδ(x)

dx
+ δ(x)

dψ(x)

dx

]
dx = 0, (7.41)

so that ˆ ϵ

−ϵ
ψ(x)

dδ(x)

dx
dx = −

[
dψ(x)

dx

]
x=0

. (7.42)
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Consequently, the Dirac dipole acts to sift minus the first derivative of the test function. For
example, let ψ(x) = x, in which case

ˆ ϵ

−ϵ
x
dδ(x)

dx
dx = −1 =⇒

ˆ ϵ

−ϵ

[
x
dδ(x)

dx
+ δ(x)

]
dx = 0, (7.43)

which can be formally written
x (dδ(x)/dx) = −δ(x). (7.44)

We follow the same procedure to derive the sifting property of the second derivative of the
Dirac delta ˆ

R

ψ
d2δ

dx2
dx =

ˆ
R

[
d

dx

(
ψ

dδ

dx

)
− dψ

dx

dδ

dx

]
dx. (7.45)

The right hand side first term integrates to boundary contributions, each of which vanish if we
assume the Dirac delta is in the interior of the domain, and we assume the test function is well
behaved on the boundaries. Integration by parts one more time renders

ˆ
R

ψ
d2δ

dx2
dx = −

ˆ
R

dψ

dx

dδ

dx
dx = −

ˆ
R

d

dx

(
δ
dψ

dx

)
dx+

ˆ
R

δ
d2ψ

dx2
dx =

ˆ
R

δ
d2ψ

dx2
dx, (7.46)

where the boundary term vanishes from the penultimate equation. This procedure readily
generalizes to the identity holding for any integer n > 0

ˆ
R

ψ(x)
dnδ(x)

dxn
dx = (−1)n

ˆ
R

δ(x)
dnψ(x)

dxn
dx = (−1)n

[
dnψ(x)

dxn

]
x=0

. (7.47)

Hence, the n′th derivative of the Dirac delta acts to sift the n′th derivative of a test function as
multiplied by (−1)n.

The sifting property in the form of equation (7.47) allows us to define the Taylor series of a
Dirac delta as follows. Consider the expression for the test function at an arbitrary point x = a,
written using both a Taylor series and the sifting property

ψ(a) = ψ(0) +
∞∑
n=1

an

n!
ψ(n)(0) =

ˆ
R

ψ(x) δ(x− a) dx, (7.48)

where we introduced the shorthand

ψ(n)(0) =

[
dnψ(x)

dxn

]
x=0

. (7.49)

Making use of the sifting property (7.47) also yields

ψ(0) +

∞∑
n=1

an

n!
ψ(n)(0) =

ˆ
R

ψ(x)

[
δ(x) +

∞∑
n=1

an

n!
(−1)n δ(n)(x)

]
dx, (7.50)

where we introduced the shorthand

δ(n)(x) =
dnδ(x)

dxn
. (7.51)

We are thus led to the identity

ψ(a) =

ˆ
R

ψ(x) δ(x− a) dx =

ˆ
R

ψ(x)

[
δ(x) +

∞∑
n=1

an

n!
(−1)n δ(n)(x)

]
dx, (7.52)
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which renders the Taylor series

δ(x− a) = δ(x) +

∞∑
n=1

an

n!
(−1)n δ(n)(x). (7.53)

7.10 Spectral decomposition of the Dirac delta
Consider a discrete set of orthonormal polynomials, Pn(x), that satisfy

ˆ
R

w(x)Pn(x)Pm(x) dx = δmn, (7.54)

where m,n are integers, w(x) is a weight function, and δmn is the Kronecker delta. We assume
these polynomials form a complete basis for the domain, R, with the Legendre polynomials,
Hermite polynomials, and Laguerre polynomials examples that arise in physics.

Now consider an arbitrary smooth test function, ψ(x), defined over the domain R. Com-
pleteness of the polynomials means that we can represent ψ(x) as the infinite series, which is
sometimes referred to as a spectral decomposition

ψ(x) =
∑
n

Φn Pn(x) =
∑
n

[ˆ
R

w(y)Pn(y)ψ(y) dy

]
Pn(x), (7.55)

where the expansion coefficients, Φn, are determined by projecting ψ onto the polynomials along
with the weighting function. Rearranging the spectral decomposition (7.55) allows us to write

ψ(x) =

ˆ
R

[∑
m

w(y)Pm(y)Pm(x)

]
ψ(y) dy =

ˆ
R

δ(x− y)ψ(y) dy, (7.56)

where the second equality made use of the sifting property (7.9) of the Dirac delta. We thus
identify the spectral decomposition of the Dirac delta

δ(x− y) =
∑
m

w(y)Pm(y)Pm(x). (7.57)

7.11 The product of Dirac deltas
The product of two Dirac deltas is not defined if the deltas act on the same space dimension.
For example, one possible definition of the product of two x-space Dirac deltas could be

δ(x) δ(x)
?
= lim

ϵ1→0
δ(ϵ1)(x) lim

ϵ2→0
δ(ϵ2)(x). (7.58)

If we take ϵ1 to zero before ϵ2 then

δ(x) δ(x)
?
= δ(x) lim

ϵ2→0
δ(ϵ2)(x). (7.59)

The problem is seen by taking the integral along the real line,

ˆ
δ(x) δ(x) dx

?
=

ˆ
δ(x) lim

ϵ2→0
δ(ϵ2)(x) dx = lim

ϵ2→0
δ(ϵ2)(0) = δ(0) =∞. (7.60)

Evidently, the product of two Dirac deltas, when acting on the same dimension, is not defined
since the integral is not finite. However, when the two Diracs act over distinct coordinate
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dimensions, such as the x and y Cartesian coordinates, then there is no problem since each
dimension has a corresponding integration

ˆ
R

δ(x) δ(y) dx dy =

[ˆ
Rx

δ(x) dx

][ˆ
Ry

δ(y) dy

]
= 1, (7.61)

where the domains Rx and Ry contain the origin. We pursue this point in Section 7.12 when
decomposing the Dirac delta for three space dimensions into its coordinate components.

7.12 Cartesian, spherical, and cylindrical-polar coordinates
We here display the form of the Dirac delta for three space dimensions using Cartesian, spherical,
and cylindrical coordinates.

7.12.1 Cartesian coordinates

We can decompose the three-dimensional Dirac delta according to the Cartesian coordinates

δ(x) = δ(x) δ(y) δ(z), (7.62)

so that, with the domain R containing the origin, we have

ˆ
R

δ(x)dV =

ˆ
R

δ(x) δ(y) δ(z) dx dy dz = 1. (7.63)

Each of the Dirac deltas, δ(x), δ(y), and δ(z) has physical dimensions of inverse length, so that
their product, δ(x) δ(y) δ(z), has the dimension inverse volume.

7.12.2 Spherical coordinates

We sometimes find it useful to make use of the spherical coordinates from Section 4.23, in which
the Dirac delta takes the form

δ(x) =
δ(r) δ(ϕ) δ(λ)

r2 cosϕ
, (7.64)

so thatˆ
R

δ(x) dx dy dz =

ˆ
R

δ(x) r2 cosϕ dr dϕ dλ =

ˆ
R

δ(r) δ(ϕ) δ(λ) dr dϕ dλ = 1. (7.65)

Notice how the dimensions of a particular Dirac delta equals to the inverse dimensions of its
argument, so that both δ(ϕ) and δ(λ) are dimensionless whereas δ(r) has the dimension of
inverse length.

7.12.3 Cylindrical-polar coordinates

When written using the cylindrical-polar coordinates from Section 4.22, we have

δ(x) =
δ(r) δ(ϑ) δ(z)

r
, (7.66)

so that ˆ
R

δ(x) dx dy dz =

ˆ
R

δ(x) r dr dϑ dz =

ˆ
R

δ(r) δ(ϑ) δ(z) dr dϑ dz = 1. (7.67)
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Again, the dimensions of a particular Dirac delta equals to the inverse dimensions of its argument,
so that δ(ϑ) is dimensionless whereas δ(r) and δ(z) have dimensions of inverse length.

7.13 Temporal Dirac delta and impulses

Poisson’s equation (7.1) for the gravitational potential is an elliptic partial differential equation
(see Section 6.5), in which there is no time derivative. We now introduce the temporal Dirac
delta to support the study of evolution equations, such as when developing a Green’s function
theory for the diffusion equation in Section 9.5, the wave equation in Section 9.6, and the
advection-diffusion equation of Section 69.9. The temporal Dirac delta is a point source that is
turned on just at one time instance and it is normalized according to

ˆ
T

δ(t) dt = 1, (7.68)

where T is a time interval containing the source time, t = 0. This normalization means that δ(t)
has dimensions of inverse time. The temporal Dirac delta also possesses the sifting property
from Section 7.2, in which ˆ

T

δ(t)ψ(t) dt = ψ(t = 0). (7.69)

In the study of transient behavior of dynamical systems, it is often of interest to examine
the response of the system to an idealized force, F(t), where the force occurs over a small time
increment. The time integral of this force is referred to as the impulse

I(τ) =

ˆ τ

−τ
F(t) dt. (7.70)

If the force is further idealized to occur just at a single moment in time, and it is normalized to
unity, then we have the unit impulse, which is the integral of the Dirac delta

I(τ) = 1 =

ˆ τ

−τ
δ(t) dt. (7.71)

The corresponding response of the dynamical system is referred to as the impulse response
function. If the dynamical system is linear, then the impulse response function equals to the
Green’s function for the initial value problem. We further discuss the response function in
Section 9.7.

7.14 Shifting the space-time position of the source

We can arbitrarily place the Dirac source at (x0, t0), in which case the Dirac delta is written

δ(x− x0) δ(t− t0) = δ(x− x0) δ(y − y0) δ(z − z0) δ(t− t0). (7.72)

Defining the region, R, to now encompass the source point in space, x = x0, and the time
increment T to encompasses the source time, t = t0, we have the normalization condition

ˆ
R

ˆ
T

δ(x− x0) δ(t− t0) dV dt = 1, (7.73)
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as well as the sifting property

ˆ
R

ˆ
T

ψ(x, t) δ(x− x0) δ(t− t0) dV dt = ψ(x0, t0). (7.74)
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Chapter 8

FOURIER ANALYSIS

In this chapter we survey salient features of Fourier analysis, with particular application to the
study of wave mechanics in Part X of this book. Fourier analysis is the canonical means to
spectrally decompose a signal into orthogonal components, here given by trigonometric functions.
Fourier analysis is particularly relevant to the study of wave mechanics considered in Part X of
this book, thus motivating the use of wave mechanics terminology in this chapter. We assume
Cartesian coordinates throughout this chapter, given that our treatment of Fourier analysis
assumes flat Euclidean space.1 Furthermore, we are only concerned in this book with physical
systems, in which all physical quantities are real numbers. Hence, our use of complex numbers,
common in Fourier analysis, is solely for convenience.

The following lists conventions for Fourier analysis followed in this book, with further context
for these conventions given later in the chapter.

• P is the period for functions represented using a Fourier series. Some treatments instead
write the period as P = 2L.

• A factor of 1/2π is placed on the inverse Fourier transform as per equation (8.68c), whereas
there is unity for the Fourier transform. An alternative convention is commonly used in
quantum mechanics whereby 1/

√
2π appears on both the Fourier transform and its inverse.

We have more to say about this convention in Section 8.3.7. Note that the 1/2π factor for
the inverse Fourier transform in one-dimension becomes (1/2π)n for n-dimensions. In this
chapter we focus on n = 1 since generalizations to higher dimensions are straightforward.

• Fourier space is referred to as k-space or wavevector space, which is a dual vector space
(through the Fourier integral transform) to x-space or position space. Some treatments
refer to x-space as “physical space”. We avoid that language since for describing a
physical system, x-space is no more or less physical than k-space. Instead, they emphasize
complementary features and both offer physical insights.

chapter guide

The following references offer compatible treatments to that here, with many also providing
far more details: Chapters 2 and 5 of Spiegel (1974b), Appendix A of Gasiorowicz (1974),
Appendix I of Cohen-Tannoudji et al. (1977), Sections 5.10-5.15 of Hildebrand (1976),
Section 5.6 of Stakgold (2000b), and Section 6.4.2 of Thorne and Blandford (2017).
However, there are slight inconsistencies in conventions that warrant care if taking results
from the literature, such as integral tables for Fourier transforms. This video from
3Blue1Brown provides an insightful introduction to Fourier series, and this video, also
from 3Blue1Brown provides a corresponding introduction to Fourier transforms.

1Spherical harmonics offers a generalization of Cartesian Fourior analysis to the sphere.
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8.1 Complex numbers

All physical fields are real in the physics considered in this book. Even so, we sometimes make use
of complex numbers for convenience, particularly when studying linear waves since manipulating
exponentials is simpler than the alternative sines and cosines. We here summarize a few salient
points for working with complex numbers in physics.

8.1.1 Modulus and phase

A complex number, A, is the sum of its real and imaginary parts, which we write as2

A = Re[A] + i Im[A], (8.1)

and its complex conjugate is written

A∗ = Re[A]− i Im[A]. (8.2)

Making use of the Euler identity,3

eiα = cosα+ i sinα, (8.3)

2In this book, we generally use the LATEX mathcal notation for complex numbers.
3There are few equations in mathematics that are more elegant and powerful than Euler’s identity.
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allows us to write a complex number as

A =
√
AA∗ eiα = |A| (cosα+ i sinα) with tanα = Im[A]/Re[A]. (8.4)

The term
|A| =

√
AA∗ =

√
Re[A]2 + Im[A]2 (8.5)

is the modulus of the complex number A. The notation |A| is motivated since the modulus is a
generalization of the absolute value used for real numbers. The angle, α, is called the argument
in the maths literature, whereas we refer to it as the phase to correspond to its name in wave
mechanics. We illustrate these formulae in Figure 8.1 within the complex plane.
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A = Re[A] + i Im[A] = |A| (cosω+ i sinω) = |A| eiω
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A→ = Re[A]→ i Im[A] = |A| (cosω→ i sinω) = |A| e↑iω

Figure 8.1: Illustrating the complex plane and its representation of a complex number, A = Re[A] + i Im[A] =
|A| (cosα+ i sinα) = |A| eiα, along with its complex congugate, A∗ = |A| e−iα, as well as −A∗ and −A.

The complex conjugate of the product of two complex numbers is the product of the conjugate,
which can be shown by

AB = |A| |B| ei (α+β) (8.6a)

A∗B∗ = |A| |B| e−i (α+β) = (AB)∗. (8.6b)

When we write a complex number in this book, it is the real part that is of physical interest

Re[A] =
√
AA∗ cosα = |A| cosα. (8.7)

Hence, for most purposes we evaluate the product, AA, as the product of the real parts

Re[A] Re[A] = |A|2 cos2 α. (8.8)

Likewise, with B = |B| eiβ, we interpret the product AB as

Re[A] Re[B] = |A| |B| cosα cosβ. (8.9)

These considerations are particularly important when computing energetics of wave fields.
Namely, energetics involves the product of real fields rather than the product of complex fields.
So if we work with the complex representation of a wave, then we must compute its real part
prior to computing the product; i.e., the real part of the product of two complex fields is not
equal to the product of the real parts

Re[AB] ̸= Re[A] Re[B]. (8.10)

The following identities are particularly useful when computing energetics of wave fields as in
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Section 61.4.6

Re[iA] = Re[i Re[A]− Im[A]] = − Im[A] (8.11a)

Re[A∗B] = |A| |B| cos(−α+ β) = Re[AB∗] (8.11b)

Im[A∗B] = |A| |B| sin(−α+ β) = −|A| |B| sin(α− β) = − Im[AB∗]. (8.11c)

8.1.2 Phase averaging

There are many occasions in the study of waves where it is useful to average over the extent of a
wave, either in space or time. Doing so provides a measure for the “wave averaged” properties.
To add precision to this notion, consider two real wave fields written in the form of a traveling
plane wave

A = Re[A ei (k·x−ω t)] = |A| cos(k · x− ω t+ α) (8.12a)

B = Re[B ei (k·x−ω t)] = |B| cos(k · x− ω t+ β), (8.12b)

where k · x − ω t is the space-time dependence found for a traveling plane wave, with k the
wavevector and ω the angular frequency (e.g., Section 49.5). We wrote the complex wave
amplitudes as

A = |A| eiα and B = |B| eiβ, (8.13)

where α and β are phase shifts relative to k ·x−ω t. To introduce the notion of a phase average,
introduce a constant phase shift, φ, according to

α = α′ + φ and β = β′ + φ, (8.14)

in which case we define a phase average as

⟨· · ·⟩ ≡ 1

2π

ˆ 2π

0
(· · · ) dφ, (8.15)

so that a phase average is computed by sampling over the extent of a single wavelength or single
wave period. The phase average of a traveling plane wave is zero

⟨A⟩ = 1

2π

ˆ 2π

0
|A| cos(k · x− ω t+ α′ + φ) dφ = 0, (8.16)

whereas the phase average for the product of two real wave fields does not generally vanish

⟨AB⟩ = 1

2π

ˆ 2π

0
|A| |B| cos(k · x− ω t+ α′ + φ) cos(k · x− ω t+ β′ + φ) dφ (8.17a)

=
1

4π

ˆ 2π

0
|A| |B| [cos(α′ − β′) + cos(2k · x− 2ω t+ 2φ+ α′ − β′)] dφ (8.17b)

=
1

2
|A| |B| cos(α′ − β′) (8.17c)

=
1

2
Re[A∗B] (8.17d)

=
1

2
Re[AB∗]. (8.17e)

We see that the phase average of a product acts to remove information about the common phase,
leaving only information about the modulus of the wave amplitudes and their phase difference.
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For example,
⟨A2⟩ = |A|2/2, (8.18)

so that the phase average for the square of a real wave field is one-half the squared modulus of
the wave amplitude. Similarly, if B = iA then

⟨AB⟩ = 1

2π

ˆ 2π

0
|A| |B| cos(π/2) dφ = 0, (8.19)

in which we say that the real wave fields A and B are out of phase.

8.1.3 Euler’s identity motivates the use of complex numbers

As noted earlier, there is no physical reason to introduce complex numbers in classical physics.
However, there are many mathematical reasons. In particular, it is generally more convenient to
use complex Fourier analysis than real Fourier analysis when establishing various theoretical
results in wave mechanics.

The central reason to employ complex numbers is the shear elegance and power of Euler’s
identity (8.3). We encountered examples in Section 8.1.2 when discussing phase averaging. One
more example concerns the sum of two waves, such as the sum of the two real wave fields (8.12a)
and (8.12b)

C = A+B = |A| cos(k · x− ω t+ α) + |B| cos(k · x− ω t+ β). (8.20)

It is certainly possible to determine an expression for the combined wave, C, through the use of
trigonometric identities. However, it is far less tedious to compute the sum via Euler’s identity,
in which case

C = |A| cos(k · x− ω t+ α) + |B| cos(k · x− ω t+ β) (8.21a)

= Re[|A| ei (k·x−ω t+α) + |B| ei (k·x−ω t+β)] (8.21b)

= Re[(|A| eiα + |B| eiβ) ei (k·x−ω t)] (8.21c)

≡ Re[|C| ei (k·x−ω t+γ)] (8.21d)

= |C| cos(k · x− ω t+ γ), (8.21e)

where we introduced the complex amplitude

|C| ei γ ≡ |A| eiα + |B| eiβ. (8.22)

We can further use Euler’s identity and some trigonometric identities to determine the real
amplitude and phase shift for the combined wave

|C|2 = |A|2 + |B|2 + 2 |A| |B| cos(α− β) (8.23a)

tan γ =
|A| sinα+ |B| sinβ
|A| cosα+ |B| cosβ . (8.23b)

The curious reader is encouraged to use just real analysis to compute the expression (8.21e),
along with the real amplitude (8.23a) and phase shift (8.23b).
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8.2 Fourier series

Consider an arbitrary real function, F (x), defined over the real line and that is piecewise
continuous on every finite interval, as is its first derivative.4 We also assume the function satisfies
the periodicity condition5

F (x+ P ) = F (x), (8.24)

where P > 0 is the period.6 The periodicity condition (8.24) holds for every point on the real
line so that

F (x+ nP ) = F (x) for arbitrary positive or negative integer n. (8.25)

How general are periodic functions defined over the full real line? To answer this question,
consider a function defined only over a finite domain, x ∈ [α, β], and that is periodic over that
domain

G(α) = G(β). (8.26)

Quite trivially, we can construct the extended function, F (x), that equals to G(x) for x ∈ [α, β]
and that is periodic over the real line, F (x) = F (x+P ), with period P = β−α. For this reason,
it is sufficient to focus on periodic functions defined over the full real line, x ∈ (−∞,∞).

8.2.1 Fourier series of sines and cosines

A Fourier series decomposes an arbitrary periodic function in terms of the function’s mean value
over a period, plus an infinite series of sines and cosines7

F (x) = a0 +

∞∑
n=1

[an cos(kn x) + bn sin(kn x)], (8.27)

where we introduced the discrete wavenumber

kn = 2π n/P. (8.28)

Clearly the Fourier series (8.27) satisfies the periodicity condition, F (x) = F (x+ nP ). Mathe-
matically, the Fourier series is enabled by completeness of the trigonometric functions as a basis
for periodic functions over a finite interval. Furthermore, the real coefficients, an and bn, are
determined through use of orthonormality conditions satisfied by the sine and cosine functions

2

P

ˆ x0+P

x0

cos(kn x) sin(km x) dx = 0 (8.29a)

2

P

ˆ x0+P

x0

cos(kn x) cos(km x) dx = δmn (8.29b)

2

P

ˆ x0+P

x0

sin(kn x) sin(km x) dx = δmn, (8.29c)

4These properties for F (x) are commonly satisfied for functions considered in this book.
5We use the notation x as for a spatial coordinate. Yet everything that follows holds if x is interpreted as time.
6Some treatments, such as Chapter 2 of Spiegel (1974b), assume the function has period F (x) = F (x+ 2L),

in which case P = 2L. In general, care is needed when making use of expressions from the literature to account
for slight differences in conventions.

7There are certain mathematical conditions required of F (x) that allow for the Fourier series to be an identity.
These conditions are typically satisfied by functions encountered in physics. See Section 5.10 of Hildebrand (1976)
for more details.
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where δmn is the Kronecker delta, which is unity if m = n and vanishes otherwise.8 Furthermore,
note that the constant, x0, is arbitrary and with the equalities holding for any value. We can
understand this arbitrariness by noting that the integral over a single period of a periodic
function is unchanged when shifting the start point of the integration. All that matters is that
we extend over a single period.9

The orthonormality conditions (8.29a)-(8.29c) directly lead to the following expressions for
the Fourier series expansion coefficients

a0 =
1

P

ˆ x0+P

x0

F (x) dx (8.30a)

an>0 =
2

P

ˆ x0+P

x0

cos(kn x)F (x) dx (8.30b)

b0 = 0 (8.30c)

bn>0 =
2

P

ˆ x0+P

x0

sin(kn x)F (x) dx. (8.30d)

Evidently, a0 is the mean value of F (x) over a single period. As an exercise, we verify equation
(8.30b) by multiplying the Fourier series (8.27) by cos(km x) for m > 0 and integrating over a
period

ˆ x0+P

x0

cos(km x)F (x) dx =

ˆ x0+P

x0

cos(km x)

[
a0 +

∞∑
n=1

[an cos(kn x) + bn sin(kn x)]

]
dx

(8.31a)

= (P/2) an δmn, (8.31b)

where the second equality used the orthogonality conditions (8.29a)-(8.29c). We use analogous
steps to verify equation (8.30d),

ˆ x0+P

x0

sin(km x)F (x) dx =

ˆ x0+P

x0

sin(km x)

[
a0 +

∞∑
n=1

[an cos(kn x) + bn sin(kn x)]

]
dx (8.32a)

= (P/2) bn δmn. (8.32b)

8.2.2 Functions with a particular parity
Any function, F (x), can be written as the sum

F (x) =
F (x) + F (−x)

2
+
F (x)− F (−x)

2
= F even(x) + F odd(x). (8.33)

The function F odd(x) is said to have odd parity since it swaps sign upon the transformation
x→ −x

F odd(−x) = −F odd(x), (8.34)

whereas F even has even parity since it maintains the same value upon the transformation x→ −x

F even(−x) = F even(x). (8.35)

8As seen in Section 1.4, the Kronecker delta is the representation of the Euclidean metric when represented
by Cartesian coordinates. For equations (8.29b) and (8.29c), we use the Kronecker delta merely as a signal of
orthonormality of the trigonometric functions.

9We make use of this arbitrariness in Section 8.3.1 where we choose a particularly useful value for developing
the notion of a Fourier integral.
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The cosine and sine functions used in the Fourier series have even and odd parities, respectively

cos(kn x) = cos(−kn x) =⇒ cosine has even parity (8.36a)

sin(kn x) = − sin(−kn x) =⇒ sine has odd parity. (8.36b)

As we show next, the Fourier series expansion of F even and F odd involve only a portion of the full
series (8.27).

8.2.3 Fourier series of periodic functions with parity
Consider an even parity periodic function

F even(x) = F even(x+ P ), (8.37)

so that this function has a Fourier series representation (equation (8.27))

F even(x) = a0 +
∞∑
n=1

[an cos(kn x) + bn sin(kn x)]. (8.38)

Making use of the even parity property, F even(−x) = F even(x), on the left hand side, as well as
the parity properties (8.36a) and (8.36b) of the cosine and sine functions on the right hand side,
leads to

F even(x) = a0 +
∞∑
n=1

[an cos(kn x)− bn sin(kn x)]. (8.39)

For the series expansions (8.38) and (8.39) to be consistent for arbitrary even functions requires
bn = 0 for all n. Evidently, an even periodic function only has a Fourier cosine series expansion

F even(x) = a0 +
∞∑
n=1

an cos(kn x), (8.40)

An analogous result holds for an odd parity periodic function, in which an = 0 so that F odd only
has sine functions for its Fourier expansion

F odd(x) =
∞∑
n=1

bn sin(kn x). (8.41)

As a self-consistency check on the cosine expansion (8.40), compute the bn coefficients
according to equation (8.30d) whereby (setting x0 = −P/2 for convenience)

bn>0 =
2

P

ˆ P/2

−P/2
sin(kn x)F

even(x) dx equation (8.30d) (8.42a)

=
2

P

ˆ −P/2

P/2
sin(−kn y)F even(−y) (−dy) let x = −y (8.42b)

=
2

P

ˆ −P/2

P/2
sin(kn y)F

even(−y) dy sin(−kny) = − sin(kny) (8.42c)

= − 2

P

ˆ P/2

−P/2
sin(kn y)F

even(−y) dy. swap integration limits (8.42d)

= − 2

P

ˆ P/2

−P/2
sin(kn y)F

even(y) dy. F even(y) = F even(−y). (8.42e)
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The only way to satisfy this equation is for bn = 0 for each n, thus verifying the expansion (8.40).
The same sort of argument is used to prove that an = 0 when computing the Fourier series
expansion of an odd function, thus verifying the Fourier sine expansion (8.41) (see Exercise ).

8.2.4 Complex Fourier series of exponentials
Rather than a sum of sines and cosines, we can use the Euler identity (8.3) to decompose a
periodic function into a series of exponentials by introducing the complex expansion coefficients

c0 = a0 (8.43a)

c−n = (an + i bn)/2 for n > 0 (8.43b)

cn = (an − i bn)/2 for n > 0. (8.43c)

Making use of the expressions (8.30b) and (8.30d) yields

cn =
1

P

ˆ x0+P

x0

e−i kn x F (x) dx. (8.44)

The reality condition, commonly referred to as conjugate symmetry,

c−n = c∗n, (8.45)

holds since we are only considering real functions, F (x). Inverting the relations (8.43a)-(8.43c)

a0 = c0 (8.46a)

an = cn + c−n for n > 0 (8.46b)

bn = i (cn − c−n) for n > 0 (8.46c)

then allows us to write the Fourier series (8.27) as

F (x) = a0 +
∞∑
n=1

[an cos(kn x) + bn sin(kn x)] (8.47a)

= c0 +

∞∑
n=1

[(cn + c−n) cos(kn x) + i (cn − c−n) sin(kn x)] (8.47b)

= c0 +
∞∑
n=1

cn [cos(kn x) + i sin(kn x)] +
∞∑
n=1

c−n [cos(kn x)− i sin(kn x)] (8.47c)

= c0 +
∞∑
n=1

cn e
i kn x +

∞∑
n=1

c−n e
−i kn x (8.47d)

= c0 +

∞∑
n=1

cn e
i kn x +

∞∑
n=1

c−n e
i k−n x (8.47e)

=

∞∑
n=−∞

cn e
i kn x, (8.47f)

where the penultimate step made use of equation (8.28) for the wavenumber, whereby

kn = 2π n/P = −k−n. (8.48)

The exponential expression in equation (8.47f) is commonly more convenient for manipulations,
with the conjugate symmetry condition (8.45) of fundamental importance when working with
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real functions. Importantly, note that the real coefficients, an and bn, are defined for n ≥ 0 (with
b0 = 0) , whereas the complex coefficients, cn, are defined for all integers.

8.2.5 Bessel-Parseval relations

Making use of the conjugate symmetry condition (8.45) allows us to write the square of a real
periodic function

F (x)F (x) =

[ ∞∑
n=−∞

cn e
i kn x

][ ∞∑
m=−∞

cm ei km x

]
equation (8.47f) (8.49a)

=

[ ∞∑
n=−∞

cn e
i kn x

][ ∞∑
m=−∞

c−m e−i km x

]
swap m summation order (8.49b)

=

[ ∞∑
n=−∞

cn e
i kn x

][ ∞∑
m=−∞

c∗m e−i km x

]
conjugate symmetry (8.45) (8.49c)

=

∞∑
n,m=−∞

cn c
∗
m ei (kn−km)x combine sums. (8.49d)

The Bessel-Parseval relation (sometimes just referred to as Parseval’s identity) results from
performing an average of equation (8.49d) over a single period

1

P

ˆ x0+P

x0

F (x)F (x) dx =
∞∑

n=−∞
cn c

∗
n =

∞∑
n=−∞

|cn|2 =
∞∑

n=−∞
cn c−n. (8.50)

To reach this identity we used the orthonormality condition holding for the exponentials

1

P

ˆ x0+P

x0

ei (kn−km)x dx = δmn, (8.51)

and the final equality in equation (8.50) follows from conjugate symmetry (8.45) that holds since
F is real. The analogous form of Parseval’s identity holds when using the sine/cosine version of
the Fourier series (8.27), whereby

F (x)F (x) =

[
a0 +

∞∑
n=1

[an cos(kn x) + bn sin(kn x)]

][
a0 +

∞∑
m=1

[am cos(km x) + bm sin(km x)]

]
,

(8.52)
with integration and the orthonormality relations (8.29a)-(8.29c) resulting in

1

P

ˆ x0+P

x0

F (x)F (x) dx = a20 +
1

2

∞∑
n=1

(a2n + b2n). (8.53)

We find it useful to double-check this form of Parseval’s identity while confirming we are
consistently using both the real and complex forms of the Fourier series. For this purpose,
substitute the expressions (8.43a)-(8.43c) for cn into the final form of Parsevel’s identity (8.50)
to yield

∞∑
n=−∞

cn c−n = c20 +

−1∑
n=−∞

cn c−n +

∞∑
n=1

cn c−n = c20 + 2

∞∑
n=1

cn c−n = a20 +
1

2

∞∑
n=1

(a2n + b2n),

(8.54a)
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which agrees with equation (8.53).
We can go one further step by introducing a second real and periodic function, H(x) =

H(x+mP ), in which case

H(x) =
∞∑

n=−∞
dn e

i kn x. (8.55)

The Bessel-Parseval relation (8.50) can thus be generalized to

1

P

ˆ x0+P

x0

F (x)H(x) dx =
∞∑

n=−∞
cn d

∗
n =

∞∑
n=−∞

cn d−n. (8.56)

8.3 Fourier integrals
We develop Fourier integrals as the limit of a Fourier series and then derive some properties of
these integrals. Our treatment is heuristic.10

8.3.1 Fourier’s integral theorem
Consider a real periodic function, F (x) = F (x + nP ) with n an integer, and decompose it
according to the Fourier series (8.27). Also, insert the expressions (8.30a)-(8.30d) for the
expansion coefficients and specify the arbitrary constant x0 = −P/2 in order to symmetrize the
integral limits. The resulting Fourier series is given by

F (x) =
2

P

ˆ P/2

−P/2
F (u)

[
1

2
+

∞∑
n=1

[cos(kn u) cos(kn x) + sin(kn u) sin(kn x)]

]
du. (8.57)

We now consider the limit as P → ∞, in which case the period becomes infinite so that the
function, F (x), is no longer periodic over a finite interval. Precisely, we make the following
assumptions and conversions.

• finite integral: We assume the absolute value of the function has a finite integral for
arbitrary P , which in turn means that its average tends to zero as P becomes infinite:

ˆ P/2

−P/2
|F (u)|du <∞ =⇒ lim

P→∞

1

P

ˆ P/2

−P/2
F (u) du = 0. (8.58)

• infinitesimal wavenumber increment: We introduce the wavenumber increment

kn+1 − kn = ∆k = 2π/P, (8.59)

which becomes infinitesimal as P becomes large. As a result, the infinite sum over discrete
wavenumbers transitions to an integral over continuous wavenumbers

lim
P→∞

∞∑
n=1

2

P
=

1

π

ˆ ∞

0
dk. (8.60)

Making use of these results in equation (8.57) leads to

F (x) =
1

π

ˆ ∞

0

[
cos(k x)

ˆ ∞

−∞
F (u) cos(k u) du+ sin(k x)

ˆ ∞

−∞
F (u) sin(k u) du

]
dk, (8.61)

10The derivation of the Fourier transform equations in this section follows that given by Chapter 5 of Spiegel
(1974b), particularly worked exercise 5.11, yet note that L in Spiegel (1974b) is given by L = P/2.
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which is known as Fourier’s integral theorem. We can bring Fourier’s integral theorem a bit
closer to the discrete Fourier sum (8.27) by introducing the real amplitude functions

A(k) ≡ 1

π

ˆ ∞

−∞
F (u) cos(k u) du and B(k) ≡ 1

π

ˆ ∞

−∞
F (u) sin(k u) du, (8.62)

thus resulting in the tidy expression of the Fourier integral theorem (8.61)

F (x) =

ˆ ∞

0
[A(k) cos(k x) +B(k) sin(k x)] dk. (8.63)

This version of Fourier’s integral theorem forms the foundation for the remainder of this section,
which largely consists of rewriting this identity in a variety of forms. Before doing so, we
emphasize the following points.

All physical fields produce real numbers

As noted at the start of this chapter, all physical fields in this book are real. Hence, every
term in equation (8.63) is real, including the amplitude functions, A(k) and B(k). So although
many versions of Fourier analysis involve complex numbers, as we describe in Section 8.3.2,
the introduction of complex numbers is based on mathematical convenience and so it is not
physically motivated.

Concerning the functional degrees of freedom

For each function, F (x), there are two amplitude functions, A(k) and B(k). However, there
is no explosion of functional degrees of freedom since F (x) is defined over the full real line,
−∞ < x <∞ whereas A(k) and B(k) are defined with k ≥ 0. The equal functional degrees of
freedom manifest when using the complex version of the Fourier integral theorem in Section
8.3.2.

Parity properties of the amplitude functions

The parity properties of the amplitude functions, A(k) and B(k), are directly inherited from the
cosine and sine functions appearing in their definition (8.62), so that we find

A(k) = A(−k) and B(k) = −B(−k). (8.64)

As shown in Section 8.3.5, these properties are reflected in the nature of the integral theorem
when representing functions, F (x), with a particular parity.

Allowing the wavenumber to range over the full real line

The integral over wavenumber, k, in equation (8.62) extends from k = 0 to k = ∞. When
moving to a complex representation that involves the Fourier transform in Section 8.3.2, the
integral is extended to −∞ < k <∞. As discussed in Section 49.6.10, the extension to k < 0
can be interpreted as a plane wave moving in the direction opposite to the wave with k > 0.

8.3.2 Fourier transform
Introducing the Fourier transform, F(k), allows us to connect to the complex Fourier series
from Section (8.2.4)

F(k) ≡ π [A(k)− iB(k)] =

ˆ ∞

−∞
F (u) e−i k u du ⇐= Fourier transform. (8.65)
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We can write the Fourier integral theorem (8.63) in terms of F(k) according to

F (x) =

ˆ ∞

0
[A(k) cos(k x) +B(k) sin(k x)] dk (8.66a)

=
1

2π

ˆ ∞

0

[
cos(k x) [F(k) +F∗(k)] + i sin(k x) [F(k)−F∗(k)]

]
dk (8.66b)

=
1

2π

ˆ ∞

0

[
F(k) ei k x +

[
F(k) ei k x

]∗]
dk. (8.66c)

From its definition (8.65), we know that the complex conjugate of the Fourier transform satisfies
the conjugate symmetry identity

F∗(k) =

ˆ ∞

−∞
F (u) ei k u du = F(−k). (8.67)

This identity is directly analogous to the discrete Fourier transform identity (8.45), both of
which hold due to the reality of the function, F (x). We are thus led to the complex version of
the Fourier integral theorem (8.63)

F (x) =
1

2π

ˆ ∞

0
F(k) ei k x dk +

1

2π

ˆ ∞

0
F(−k) e−i k x dk (8.68a)

=
1

2π

ˆ ∞

0
F(k) ei k x dk − 1

2π

ˆ −∞

0
F(k) ei k x dk (8.68b)

=
1

2π

ˆ ∞

−∞
F(k) ei k x dk. (8.68c)

With F(k) referred to as the Fourier transform we sometimes refer to F (x) as the inverse Fourier
transform. Correspondingly, F(k) and F (x) are Fourier transform pairs.

8.3.3 A comment on conjugate symmetry

As noted above, reality of the function, F (x), is ensured by a Fourier transform that satisfies
the conjugate symmetry property (8.67). We make use of this property in much of our analysis
in this book, such as when studying wave packets in Chapter 49. However, there are reasons to
sometimes dispense with conjugate symmetry. One example is provided in Sections 49.6.4 and
52.9.1 when providing information about a wave packet’s initial tendency rather than its initial
position. Evidently, the identity (8.66c) ensures that F (x) is real, even if the Fourier amplitudes,
F(k), do not satisfy conjugate symmetry. That is, conjugate symmetry is a sufficient condition
to ensure F (x) is real, but it is not a necessary condition.

8.3.4 Integrals over a symmetric interval

Consider the integral of a function, F (x), defined over an arbitrary, but symmetric, interval
x ∈ [−L,L]. Decomposing this function into its even an odd components leads to

ˆ L

−L
F (x) dx =

1

2

ˆ L

−L
[F (x) + F (−x)] dx+

1

2

ˆ L

−L
[F (x)− F (−x)] dx (8.69a)

≡
ˆ L

−L
F even(x)dx+

ˆ L

−L
F odd(x) dx. (8.69b)
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The integral of the even parity component can be written

ˆ L

−L
F even(x) dx =

ˆ 0

−L
F even(x) dx+

ˆ L

0
F even(x) dx (8.70a)

= −
ˆ 0

L
F even(−x) dx+

ˆ L

0
F even(x) dx (8.70b)

= 2

ˆ L

0
F even(x) dx. (8.70c)

Evidently, the integral of an even parity function over a symmetric interval equals to twice the
integral over half the interval

ˆ L

−L
F even(x) dx = 2

ˆ L

0
F even(x) dx. (8.71)

In a similar manner we find that the integral of an odd parity function over a symmetric interval
vanishes

ˆ L

−L
F odd(x) dx =

ˆ 0

−L
F odd(x) dx+

ˆ L

0
F odd(x) dx (8.72a)

= −
ˆ 0

L
F odd(−x) dx+

ˆ L

0
F odd(x) dx (8.72b)

=

ˆ L

0
[F odd(−x) + F odd(x)] dx (8.72c)

= 0. (8.72d)

We thus find that the integral of an arbitrary function over a symmetric interval is given by
twice the integral of the even component over half the interval

ˆ L

−L
F (x) dx = 2

ˆ L

0
Feven(x) dx =

ˆ L

0
[F (x) + F (−x)] dx. (8.73)

We make use of these relations in developing parity conditions for Fourier transforms, in which
case the integral limits are infinity, L =∞.

8.3.5 Fourier cosine and sine transforms

The Fourier integral theorem simplifies when acting on functions of a particular parity. As any
function can be decomposed into its even and odd parity components (see Section 8.3.4), it is
common to make use of the simplification by introducing the cosine and sine transforms. These
transforms allow one to work with all real valued functions when convenient, rather than the
complex valued functions used with the standard Fourier transform of Section 8.3.2.

Fourier cosine transform for even functions: F (x) = F (−x)

Consider an even function, F (x) = F (−x), and expand it in terms of the Fourier integral theorem
(8.63)

F (x) =

ˆ ∞

0
[A(k) cos(k x) +B(k) sin(k x)] dk. (8.74)
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Since F (x) = F (−x) it follows that

F (x) = F (−x) =
ˆ ∞

0
[A(k) cos(k x)−B(k) sin(k x)] dk, (8.75)

which follows from the odd parity of the sine function. For this relation to hold requires B(k) = 0,
which indeed follows from its definition

π B(k) =

ˆ ∞

−∞
F (u) sin(k u) du (8.76a)

=

ˆ 0

−∞
F (u) sin(k u) du+

ˆ ∞

0
F (u) sin(k u) du (8.76b)

=

ˆ ∞

0
[−F (u) + F (u)] sin(k u) du (8.76c)

= 0. (8.76d)

These simplification of Fourier’s integral theorem motivate us to define the Fourier cosine
transform for functions with even parity

FC(k) ≡ (π/2)A(k) =
1

2

ˆ ∞

−∞
F (u) cos(k u) du =

ˆ ∞

0
F (u) cos(k u) du, (8.77)

so that Fourier’s integral theorem (8.75) for an even parity function is

F (x) =

ˆ ∞

0
A(k) cos(k x) dk =

2

π

ˆ ∞

0
FC(k) cos(k x) dk. (8.78)

Correspondingly, the Fourier cosine transform of an odd parity function vanishes.

Fourier sine transform for odd functions: F (x) = −F (−x)

We now consider the case of an odd function, F (x) = −F (−x), and expand it in terms of the
Fourier integral theorem (8.63)

F (x) =

ˆ ∞

0
[A(k) cos(k x) +B(k) sin(k x)] dk =

ˆ ∞

0
[−A(k) cos(k x) +B(k) sin(k x)] dk, (8.79)

where the second equality follows since F (x) = −F (−x) and the parity of the cosine and sine
functions. This relation is consistent only if A(k) = 0 for odd functions, which indeed follows
from its definition

π A(k) =

ˆ ∞

−∞
F (u) cos(k u) du (8.80a)

=

ˆ 0

−∞
F (u) cos(k u) du+

ˆ ∞

0
F (u) cos(k u) du (8.80b)

=

ˆ ∞

0
[F (−u) + F (u)] cos(k u) du (8.80c)

= 0. (8.80d)

We are thus motivated to define the Fourier sine transform for functions with odd parity

FS(k) ≡ (π/2)B(k) =
1

2

ˆ ∞

−∞
F (u) sin(k u) du =

ˆ ∞

0
F (u) sin(k u) du, (8.81)
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so that Fourier’s integral theorem (8.79) for an odd parity function takes the form

F (x) =

ˆ ∞

0
B(k) sin(k x) dk =

2

π

ˆ ∞

0
FS(k) sin(k x) dk. (8.82)

Correspondingly, the Fourier sine transform of an even parity function vanishes.

8.3.6 Parseval-Plancherel formulas

In Section 8.2.5 we showed that a Fourier series expansion of a periodic function satisfies the
Parseval identities (8.50) and (8.56). Here we derive the analog for Fourier integral transforms.
For this purpose, consider the integral of the product of two real functions

ˆ ∞

−∞
G(x)F (x) dx =

1

2π

ˆ ∞

−∞
G(x)

[ˆ ∞

−∞
F(k) ei k x dk

]
dx, (8.83)

where we expressed F (x) in terms of its inverse Fourier transform (8.68c). Now swap the
integration order and rearrange to render

ˆ ∞

−∞
G(x)F (x) dx =

1

2π

ˆ ∞

−∞

[ˆ ∞

−∞
G(x) e−i k x dx

]∗
F(k) dk, (8.84)

where we noted that [
ei k x

]∗
= e−i k x and G∗ = G. (8.85)

We recognize the bracketed term in equation (8.84) as the complex conjugate Fourier transform
of G, thus bringing us to the identity

ˆ ∞

−∞
G(x)F (x) dx =

1

2π

ˆ ∞

−∞
[G(k)]∗F(k) dk. (8.86)

For the special case with G = F we recover the Parseval-Plancherel formula, commonly referred
to as Parseval’s identity ˆ ∞

−∞
[F (x)]2 dx =

1

2π

ˆ ∞

−∞
|F(k)|2 dk. (8.87)

If [F (x)]2 is proportional to the energy, then Parseval’s identity expresses the identity of energy
when expressed in either x-space or k-space.11

8.3.7 Concerning the placement of 1/2π

There is no universal convention for the pre-factors appearing in the Fourier transform pairs
(8.65) and (8.68c). That is, the unity for the Fourier transform pre-factor in equation (8.65),
versus the 1/2π pre-factor for the inverse Fourier transform (8.68c), could just as well be swapped,
or alternatively they could both be equal to 1/

√
2π. However these factors are chosen, their

product must equal to 1/2π.

Furthermore, the 1/2π factor in the inverse Fourier transform (8.68c) can be eliminated
through use of the reduced wavenumber, k̄, defined as

k̄= k/2π, (8.88)

11The 1/2π factor in the Parsevel identity (8.87) can be eliminated by distributing a 1/
√
2π equally between

the Fourier transform and the inverse Fourier transform. That convention is generally followed in the quantum
mechanics literature but not in the fluid mechanics literature. See Section 8.3.7 for more on the 2π factor.
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in which case the inverse Fourier transform (8.68c) is given by

F (x) =

ˆ ∞

−∞
F(k̄) ei 2π k̄x dk̄. (8.89)

An analogous approach is used when working in the time-frequency domain and using the
frequency, f , rather than the angular frequency, ω, where f = ω/2π (see Section 8.4). Even
though k̄ is somewhat more elegant, we generally work with the wavenumber, k, thus necessitating
care to properly place the 1/2π factor.

8.3.8 Fourier transforms and derivatives
Here we examine some properties of the Fourier transform of derivatives. Note that for all of
the results, we must assume that the function and its Fourier transform decay to zero at infinity
at a rate sufficient to ensure that all integrals are all bounded.

Each derivative operation multiplies by (i k)p

Consider a function expressed as the inverse Fourier transform (8.68c)

F (x) =
1

2π

ˆ ∞

−∞
F(k) ei k x dk, (8.90)

where F(k) is the Fourier transform of F (x) as per equation (8.65). Now take the p’th derivative
of F (x) and note that the derivative operator commutes with the k-space integral

dpF (x)

dxp
=

1

2π

ˆ ∞

−∞
F(k) (i k)p ei k x dk, (8.91)

where we set
dp (ei k x)

dxp
= (i k)p ei k x. (8.92)

Equation (8.91) indicates that each derivative increases the power of (i k) inside the k-space
integral, in which case the relative contributions from higher wavenumbers are enhanced relative
to lower wavenumbers.12

Furthering the above result

To further the above remarks, consider a function, G(x), that is expressed as an inverse Fourier
transform

G(x) =
1

2π

ˆ ∞

−∞
G(k) ei k x dk, (8.93)

and define G(x) as the p’th derivative of F (x)

G(p)(x) =
dpF (x)

dxp
. (8.94)

From equation (8.91) we make the identification

G(p)(k) = (i k)pF(k). (8.95)

12As noted at the start of this subsection, we must assume a finite wavenumber cutoff to ensure the integral
(8.91) is bounded. That is, we must assume a length scale below which there is no structure in F (x), which
then means that F(k) vanishes (or is exponentially small) for wavenumbers above some finite wavenumber. This
assumption is typically satisfied by physical fields.

CHAPTER 8. FOURIER ANALYSIS page 179 of 2158



8.3. FOURIER INTEGRALS

Hence, the Fourier transform of the derivative of a function results in a power of (i k) for each
derivative, so that, for example,

G(1)(k) = i kF(k) (8.96a)

G(2)(k) = −k2F(k). (8.96b)

For p = 1 we see that the Fourier transform of the derivative of a function has a π/2 phase shift
relative to the function, whereas for p = 2 there is a π phase shift.

Directly computing the Fourier transform of the derivative of a function

There is yet another way to compute the Fourier transform of the derivative of a function,
through use of integration by parts

G(1)(k) =

ˆ ∞

−∞

dF

dx
e−i k x dx (8.97a)

=

ˆ ∞

−∞

[
d(F e−i k x)

dx
− F d(e−i k x)

dx

]
dx (8.97b)

=

ˆ ∞

−∞

[
d(F e−i k x)

dx
+ (i k)F (x) e−i k x

]
dx. (8.97c)

If we assume F (x) decays to zero as x→ ±∞, then the total derivative vanishes, in which case
we are left with

G(1)(k) = (i k)

ˆ ∞

−∞
F (x) e−i k x dx = (i k)F(k). (8.98)

This result agrees with equation (8.96a) derived earlier. Higher derivatives can be computed
likewise.

A Fourier series example with two Fourier components

To further illustrate the role of derivatives and how they enhance the relative contribution of
small scales versus large scales, consider a finite sized one-dimensional periodic domain. For a
function, F (x), that is periodic on this domain we can represent it according to its Fourier series
(8.27), and assume there are just two non-zero wavenumbers contributing to the function

F (x) = a1 cos(k1 x) + a10 cos(k10 x), (8.99)

with a1/a10 = 0.95/0.05 = 19. As illustrated in Figure 8.2, the function F (x) is the sum of a low
wavenumber Fourier component, a1 cos(k1 x), plus a high wavenumber component, a10 cos(k10 x).
The second derivative of this function is given by

d2F (x)/dx2 = −a1 k21 cos(k1 x)− a10 k210 cos(k10 x), (8.100)

so that each wavenumber contribution is multiplied by its respective wavenumber squared.
Evidently, the contribution from n = 10 is enhanced relative to the n = 1 contribution by the
ratio (k10/k1)

2 = (10/1)2 = 100. In general, any nonzero an coefficient in the expansion of a
function is amplified by its respective wavenumber when taking a derivative, so that higher
wavenumber features are enhanced relative to lower wavenumber features.
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Figure 8.2: Left panel: a function comprised of two Fourier components, F (x) = F1(x) + F2(x) = a1 cos(k1 x) +
a10 cos(k10 x), with a low wavenumber k1 = 2π/L, and a high wavenumber, k10 = 2π/(L/10), along with the
amplitudes a1 = 0.95 and a10 = 0.05. We choose L = 1 in arbitrary units. Given that a1/a10 = 19, the low
wavenumber component dominates F (x). Right panel: the second derivative of the function, d2F (x)/dx2 =
−a1 k21 cos(k1 x) − a10 k

2
10 cos(k10 x), which is dominated by the high wavenumber component, with the high

wavenumber component having an amplitude that is roughly five times larger than the low wavenumber component,
a10 k

2
10/(a1 k

2
1) ≈ 5.

Streamfunction and vorticity example

An example from fluid mechanics occurs with a horizontally non-divergent barotropic fluid from
Chapter 38. In this case the vorticity, ζ, is the Laplacian of the streamfunction, ψ, so that

ζ = ∇2ψ. (8.101)

Taking the Fourier transform of this equation reveals that the Fourier transform of the vorticity
equals to −k2 times the Fourier transform of the streamfunction. Hence, if there is any structure
in the streamfunction at scale k, then the vorticity at that same scale is amplified by k2.
Consequently, the vorticity field has higher wavenumber features (i.e., smaller spatial scales)
than the streamfunction field.

8.4 Time-frequency Fourier transforms

Our notation has thus far been based on space, x, and wavenumber, k. However, all formula
hold whatever interpretation one gives to these coordinates, with time and frequency commonly
used as well as space and wavenumber. Even so, for the time/frequency Fourier analysis we
follow the typical physics convention of swapping sign in the exponents. Doing so accords with
conventions in wave mechanics as pursued in Chapter 49. With that motivation we define the
time/frequency Fourier transform and its inverse according to

F(ω) =

ˆ ∞

−∞
F (t) eiω t dt (8.102a)

F (t) =
1

2π

ˆ ∞

−∞
F(ω) e−iω t dω, (8.102b)

where ω is the angular frequency. The time integral extends from −∞ to ∞, meaning that
it extends arbitrarily far in the past and arbitrarily far into the future. The negative angular
frequency arises from the same symmetrization of the integral limits made when moving to the
complex Fourier transform in Section 8.3.2. As in our discussion of wave mechanics in Section
49.6.10, we here find it important to interpret the negative angular frequency, ω < 0, which we
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do next.

8.4.1 How to interpret negative frequency for waves
As noted at the start of this chapter, we generally make use of Fourier analysis for the study
of waves in Part X of this book. When working in x-space and k-space, we can consider the
components of a wavevector to be positive or negative given that the wavevector determines the
direction of a wave. We consider this particular point in Section 49.6.10. Since information about
the direction of the wave is fully carried by the wavevector, we consider the angular frequency of
a wave to be a non-negative number, ω ≥ 0 (Section 49.4), which corresponds to a non-negative
wave period, 2π/ω. Hence, when working with waves, we interpret the expression (8.102b)
for the inverse Fourier transform, with its negative frequency integral limits, as a convenient
mathematical means to bring the Fourier sine and cosine functions together into a single integral.
Yet we do not give any physical meaning to ω < 0.

To provide details to support the above comments, return to the Fourier integral theorem
(8.63), only now interpreted for time and angular frequency

F (t) =

ˆ ∞

0
[A(ω) cos(ω t) +B(ω) sin(ω t)]dω. (8.103)

Note that the frequency integral extends only over non-negative frequencies, consistent with
ω as a frequency. In contrast, the amplitude functions are built from integrals over all time
according to equation (8.62)

A(ω) =
1

π

ˆ ∞

−∞
F (t) cos(ω t) dt and B(ω) =

1

π

ˆ ∞

−∞
F (t) sin(ω t) dt, (8.104)

so that13

F(ω) = π [A(ω) + iB(ω)]. (8.105)

We have no problem with negative time simply because the origin of time is arbitrary. In
contrast, we ascribe no physical meaning to a negative frequency, but instead interpret a negative
frequency as a mathematical expedient enabling us to write equation (8.102b) in a compact
form. We emphasize this point by writing

F (t) =
1

2π

ˆ ∞

−∞
e−iω tF(ω) dω Fourier eq. (8.102b) (8.106a)

=
1

2

ˆ ∞

−∞
[cos(ω t)− i sin(ω t)] [A(ω) + iB(ω)]dω Euler + eq. (8.104) (8.106b)

=
1

2

ˆ ∞

−∞
[A(ω) cos(ω t) +B(ω) sin(ω t)]dω parity properties (8.106c)

=

ˆ ∞

0
[A(ω) cos(ω t) +B(ω) sin(ω t)]dω parity properties. (8.106d)

So again, we compute the inverse Fourier transform as in equation (8.102b) with a frequency
interval including negative frequencies. Yet there is no physical meaning given to the negative
frequencies. Instead, they simply offer the means to unify the Fourier cosine and sine amplitude
functions according to the above identities.

13Compare equation (8.105) to equation (8.65). The sign difference arises from the sign convention: we use
e−iω t for the time-domain inverse Fourier transform (8.102b), whereas ei k x for the space-domain inverse Fourier
transform (8.68c).
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8.4.2 Frequency versus angular frequency

As noted in Section 8.3.7, we can eliminate the 1/2π factor appearing in the inverse Fourier
transform (8.102b) through using the frequency, f (cycles per time), rather than the angular
frequency, ω (radians per time),

f = ω/2π, (8.107)

in which case the Fourier transform partners (8.102a) and (8.102b) take the form

F(f) =

ˆ ∞

−∞
F (t) ei 2π f t dt (8.108a)

F (t) =

ˆ ∞

−∞
F(f) e−i 2π f t df. (8.108b)

Even though f is rather elegant from this perspective, we generally use the angular frequency, ω
(along with the angular wavenumber, k), thus necessitating care with the placement of the 1/2π
factor for the Fourier transform pair given by equations (8.102a) and (8.102b).

8.5 Example Fourier transform pairs

In this section we offer a few examples of Fourier transform pairs.

8.5.1 Dirac delta in x-space

Consider the Dirac delta from Chapter 7,

F (x) = δ(x). (8.109)

Following from its sifting property (7.8), we find that the Fourier transform (equation (8.65)) of
the Dirac delta is given by

F(k) =

ˆ ∞

−∞
δ(x) e−i k x dx = 1. (8.110)

This result provides an extreme example of the complementarity relation maintained between the
Fourier transform and its inverse. Namely, if a function is concentrated in x-space then its Fourier
transform is widely distributed in k-space. The Dirac delta, δ(x), is infinitely concentrated in
x-space at the origin, whereas it has a uniform and constant distribution in k-space. That is,
the x-space distribution is infinitesimally narrow whereas the k-space distribution is infinitely
broad. As a consistency check, we note the physical dimensionality of the terms in equation
(8.110). The Dirac delta, δ(x), has dimensions of inverse length (Section 7.12), so that δ(x) dx is
non-dimensional. We thus expect its Fourier transform, F(k), to be non-dimensional.

It follows that the inverse Fourier transform (equation (8.68c)) of the Dirac delta is given by

δ(x− x0) =
1

2π

ˆ ∞

−∞
ei k (x−x0) dk (8.111)

where we introduced an arbitrary shift from the origin, x0. Note that

ˆ ∞

−∞
sin[k (x− x0)] dk = 0, (8.112)

which follows since the k-space integral is over a symmetric domain yet the integrand has odd
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k-space parity. Consequently, we have

δ(x− x0) =
1

2π

ˆ ∞

−∞
cos[k (x− x0)] dk =

2

2π

ˆ ∞

0
cos[k (x− x0)] dk. (8.113)

This equation is a rather remarkable expression that can be heuristically explained by noting
that for all values of x− x0 ̸= 0, the cosine function oscillates so that any positive values are
exactly matched by negative values, thus yielding a zero integral. However, when x− x0 = 0,
the integral diverges to infinity.

8.5.2 Dirac delta in k-space

We now assume exact information about the wave number by setting the Fourier transform to

F(k) = δ(k − k0), (8.114)

which has physical dimensions of length. The resulting inverse Fourier transform is given by the
dimensionless function

F (x) =
1

2π

ˆ ∞

−∞
δ(k − k0) ei k x dk =

ei k0 x

2π
. (8.115)

So as a complement to the case in Section 8.5.1, we here find that exact information about
the k-space location (i.e., the wavenumber is exactly k0) results in zero information about the
x-space position.

8.5.3 Gaussian

Consider a normalized Gaussian function,

F (x) = (4π σ)−1/2 e−x
2/4σ with

ˆ ∞

−∞
F (x) dx = 1, (8.116)

and where the mean and variance are

⟨x⟩ =
ˆ ∞

−∞
xF (x) dx = 0 and ⟨x2⟩ =

ˆ ∞

−∞
x2 F (x) dx = 2σ. (8.117)

Its Fourier transform is given by

F(k) = (4π σ)−1/2

ˆ ∞

−∞
e−x

2/4σ e−i k x dx = e−σ k
2
, (8.118)

with evaluation of this integral following from the calculus of residues.14 We expect the Fourier
transform to be real since F (x) has even parity so that its Fourier sine transform vanishes (see
Section 8.3.5). What is remarkable, however, is that the Fourier transform is also a Gaussian.
This property is unique to the Gaussian and it is illustrated in Figure 8.3.

To compute the variance of the Fourier transform (in k-space) requires us to first normalize
it according to

(σ/π)1/2
ˆ ∞

−∞
e−σ k

2
dk = 1, (8.119)

14In Section 49.7.5 we discuss a few of the necessary steps for evaluating the integral (8.118), as part of our
study of Gaussian wave packets.
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so that its variance is

⟨k2⟩ = (σ/π)1/2
ˆ ∞

−∞
k2 e−σ k

2
dk = (2σ)−1. (8.120)

We thus find that the product of the variances is unity

⟨x2⟩⟨k2⟩ = 1. (8.121)

Hence, if the Gaussian is narrow in x-space, as per a small value of σ, then it is broad in k-space,
and vice versa. This behavior offers another example of the complementarity property of Fourier
transform pairs.

2.5 0.0 2.5
0.0

0.1

0.2

F(x) = (4 ) 1/2e x2/4

2 0 2
0.0

0.5

1.0
(k) = e k2

Figure 8.3: Left panel: the Gaussian function, F (x) = (4π σ)−1/2 e−x2/4σ, which has a variance, ⟨x2⟩ = 2σ, with

the horizontal axes having a range ±3
√

⟨x2⟩ = ±3 (2σ)1/2. Right panel: the Fourier transform, F(k) = e−σ k2

,

which has a variance ⟨k2⟩ = (2σ)−1 and the horizontal axes range ±3
√

⟨k2⟩ = ±3 (2σ)−1/2. We set σ = 1 in
arbitrary units.

8.6 Exercises
exercise 8.1: Bessel-Parseval identity for two functions
Show all steps necessary to derive the generalized Bessel-Parseval identity (8.56)

exercise 8.2: Solving an ODE (problem 9.8 of Fetter and Walecka (2003))
In this exercise we find a general expression for a forced ordinary differential equation using
Fourier transform methods to determine the Green’s function. We provide a detailed study of
Green’s functions in Chapter 9, though understanding of that material is not needed for this
exercise.

(a) Use a Fourier transform to solve the one-dimensional ordinary differential equation

d2H(x)

dx2
− λ2H(x) = −F (x), (8.122)

for λ > 0 and assuming that H(x) vanishes as |x| → ∞. Express your answer in the form
of a Green’s function, G(x, x′), so that the solution can be written

H(x) =

ˆ ∞

−∞
G(x, x′)F (x′) dx′. (8.123)
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(b) Find an explicit expression for the Green’s function. Hint: you might wish to make use of
an integral table.

(c) What are the physical dimensions of the Green’s function, G? Relative to F , what are the
dimensions of H?

(d) Discuss the limit λ→ 0.
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Chapter 9

GREEN’S FUNCTIONS

The mathematical problem of classical continuum mechanics concerns a field, ψ(x, t), that
represents a physical property such as material tracer concentration, velocity streamfunction,
temperature, Newtonian gravitational potential, or electrostatic potential. The space-time
structure of the field is the result of a space-time distributed source (e.g., tracer source, potential
vorticity distribution, mass distribution, or electric charge distribution) along with differential
operators (e.g., time derivative, advection, Laplacian diffusion, wave operator) that connect
the field across points in space-time, as well as initial and boundary conditions along selected
space-time regions.1

For fluid mechanics, the differential equations describing the dynamical field, ψ, are generally
nonlinear. However, in some notable cases it is possible to linearize the governing equations
and learn much about the underlying mathematical and physical properties of the system.
For example, the linear wave theory in Part X of this book renders great insights into the
space-time structure of geophysical fluids. The advection-diffusion equation describing a passive
tracer (Chapter 69) is also a linear partial differential equation, even when the dynamical flow
field is determined by nonlinear field equations. Finally, the Poisson equation for pressure in
a Boussinesq ocean (Section 29.3) is linear, under certain assumptions about the boundary
conditions.

The conceptual foundation of the Green’s function method is based on observing that if
the field equations are linear, then ψ can be constructed by accumulating (i.e., convolving)
contributions to the field induced by point-sized portions of the distributed source (including
sources on the space-time boundaries). More precisely, we write G(x, t|x0, t) as the field at an
observation space-time point, (x, t) (the field point), that is caused by a point source at (x0, t0)
(the source point). We then observe that ψ(x, t) caused by a source that is distributed through
space and time is the product of G multiplied by the source and integrated over the space-time
domain. Similar superpositions are made for the initial and boundary conditions. The function,
G, is referred to as the Green’s function in honor of the 19th century mathematical physicist
who introduced the method. As revealed in this chapter, even without an analytical expression
for the Green’s function (which are, in fact, only available under certain idealized cases), an
appreciation of Green’s function method deepens both physical and mathematical understanding
of the various linear partial differential equations encountered in this book

The above arguments rely on the superposition principle that holds for linear systems. It
does so by finding a particular solution (the Green’s function) to a linear initial-boundary value
problem with a singular point source (the Dirac delta from Chapter 7) and homogeneous boundary
conditions. The solution to the original problem is found by integrating (convolving) the Green’s
function with the boundary conditions, initial conditions, and distributed sources. The Green’s
function is generally simpler to determine than the solution to the original initial-boundary
value problem, thus providing the key practical reason to pursue the method. Furthermore,

1In some cases, sources are present only along spatial boundaries.
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the Green’s function provides a formal inverse to the linear partial differential operator in a
manner reminiscent of matrix inversion used to solve a matrix-vector problem. Just as for the
matrix-vector problem, once we have the Green’s function we can write the solution to any of
the associated initial-boundary value problems regardless the details of the distributed source,
initial data, or boundary data. Herein lies the power of the Green’s function method and why it
has found much use across mathematical physics.

reader’s guide to this chapter
We develop the Green’s function method for a variety of linear initial-boundary value

problems. Use of the common symbol, G, for the Green’s function, and G for free-space
Green’s function, minimizes the adornments otherwise needed to distinguish Green’s functions
derived for each of the distinct equations. Confusion is avoided by noting that properties of
any particular Green’s function are specific to the section where the function is discussed.
The modified Green’s function, G̃, is the one place we do provide extra adornment, with this
function encountered in our study of the Poisson equation with Neumann boundary conditions.
Furthermore, it is useful on certain occasions to write the gradient operator as either ∇x or
∇x0 , depending on what argument of a Green’s function is being differentiated (i.e., the field
point or source point). This notation is particularly helpful in organizing manipulations in
this chapter.

Much in this chapter is based on the treatments found in Chapter 7 of Morse and Feshbach
(1953) as well as Stakgold (2000a,b). Both of these treatments are highly recommended
for those wishing to pursue Green’s function methods in more depth and to see further
applications.
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9.1 Loose threads
• Derive the 1d free space Green’s function in Section 9.2.

• Include some applied math sorts of exercises that solve the diffusion equation and find the
Green’s function in idealized domains.

• Present the method of images for idealized domains

9.2 Free space Green’s functions for elliptic operators
We study the Dirac delta in Chapter 7 by considering the Newtonian gravitational potential in
the presence of a point mass source. This physical example also serves to introduce the notion
of a Green’s function, in this case a particularly simple Green’s function known as a free space
Green’s function for Laplace’s equation. The free space Green’s function serves an important
role in the analytical theory of Green’s functions, and it offers a pedagogical introduction to
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Green’s functions satisfying boundary conditions. We here derive explicit expressions for the
Laplace free space Green’s function as well as that for the screened Poisson equation.

9.2.1 Gravitational potential from a point mass source
Consider the gravitational potential, Φ, in three space dimensions and in the presence of a point
mass source at x = x0 in the absence of boundaries (i.e., in free space), and with an assumed
decay of the potential when moving away from the source. In the study of Green’s functions this
potential is referred to as the fundamental solution to Laplace’s equation.2 In other contexts
it is referred to as the free space Green’s function, which is the terminology we choose since it
emphasizes the absence of any spatial boundaries. From our discussion of Newtonian gravity in
Section 7.1, the free space Green’s function for Newtonian gravity satisfies the Poisson equation
with a singular mass source

∇2
xΦ(x|x0) = 4πGgrvM δ(x− x0), (9.1)

where we wrote the singular mass density in terms of the Dirac delta

ρ(x|x0) =M δ(x− x0). (9.2)

We added the “grv” label to Newton’s gravitational constant, Ggrv, rather than use the more
common nomenclature, G, in order to distinguish the gravitational constant from a Green’s
function.

The gravitational potential in equation (9.1) has two arguments, Φ(x|x0). The first argument,
x, is the point where the field is sampled and is referred to as the field point or sometimes the
observation point. The second argument, x0, is where the source is located and is thus referred
to as the source point. Figure 9.1 summarizes the notation. The Laplacian operator acts on the
field point, x, so that it is useful to write it with an x subscript, ∇2

x, for clarity. The dimensonal
multiplier, 4πGgrvM , acting on the Dirac delta in equation (9.1) is specific to the physical
problem, here being for Newtonian gravity. In this case the Green’s function has dimensions
of L2 T−2 since it is a gravitational potential. In other cases, the Green’s function will have
distinct dimensions, whereas the Dirac delta remains with the same dimensions.3

The gravitational potential for a point mass source, in the absence of any boundaries, is the
free space Green’s function for Newtonian gravity. Anticipating our study in Section 13.10.2, we
write this free space Green’s function in the form

Φ(x|x0) = −
M Ggrv

|x− x0|
. (9.3)

This function is singular when sampling the field at the source location, x = x0, and it decreases
according to the inverse distance when moving away from the source.

9.2.2 Free space Green’s function
Abstracting the previous discussion motivates us to define the free space Green’s function,
G(x|x0), for the Laplace operator as the solution to the singular Poisson equation

−∇2
xG(x|x0) = δ(x− x0). (9.4)

2For example, see Section 5.8 of Stakgold (2000b) where he provides a discussion of a variety of such free space
or fundamental solutions.

3As emphasized throughout this book, checking for physical dimensional consistency offers a powerful means
to ensure that a mathematical expression makes physical sense. If the equation is not dimensionally consistent,
then something is wrong either with the maths or the physics.
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Figure 9.1: Depicting the geometry of a typical Green’s function problem in space, shown here for a finite
domain, R, with boundary ∂R. Note that the free-space Green’s function has no prescribed boundary conditions,
whereas other Green’s functions typically do. The field observation point, x, is where the Green’s function is
sampled, whereas the source point, x0, is where the Dirac delta source is located. The origin is at an arbitrary
position within the domain. The Green’s function, G(x|x0), is the response of the field as sampled at x arising
from the Dirac delta placed at x0

It is conventional in many treatments to place a minus sign on the Laplacian operator to
correspond to how it appears in the diffusion equation of Section 9.5. In one, two and three
space dimensions the free space Green’s function is given by

G(x|x0) = −|x− x0|/2 for x, x0 ∈ R1 (9.5a)

G(x|x0) = −(2π)−1 ln |x− x0|, for x,x0 ∈ R2 (9.5b)

G(x|x0) = (4π |x− x0|)−1 for x,x0 ∈ R3. (9.5c)

When considering the Dirac delta as the mass density for a point mass, the corresponding
gravitational acceleration is proportional to the gradient of the free space Green’s function.
From these expressions for the free space Green’s functions, we see that for one space dimension,
a point mass yields a gravity field that is a constant on either side of the mass point, with
the acceleration pointing towards the mass. For two space dimensions, a point mass source
produces a gravitational acceleration that points to the mass, and with a magnitude that falls
off as the inverse distance from the source. Finally, for three space dimensions, the gravitational
acceleration points towards the mass and falls off as the inverse squared distance.

We examine the three-dimensional Green’s function in Section 9.2.3 and provide a derivation
in Section 9.2.4. We then derive the two-dimensional Green’s function (9.5b) in Section 9.2.5, and
make use of it for studying flow around a point vortex in Section 38.2.8. Finally, we encounter the
one-dimensional Green’s function in Section 9.3.11 when studying the one-dimensional Poisson
equation.

9.2.3 Properties of the three-dimensional Green’s function

We here verify that the expression (9.5c) is indeed the free space Green’s function for R3, with
this discussion providing exposure to some of the formal manipulations encountered with Dirac
deltas and Green’s functions.

To simplify notation, place the Dirac delta at x0 = 0 so that

G(x|0) = 1

4π r
, (9.6)

where |x| = r is the radial distance from the origin. Introduce the continuous and non-singular
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function

G(ϵ)(x) =
1

4π

{
r−1 for r > ϵ
ϵ−1 for r ≤ ϵ, (9.7)

with ϵ > 0, in which case G(ϵ)(x) has removed the singularity at r = 0. Now consider the integral

I(ϵ) = −
ˆ
r≤ϵ

ψ(x)∇2G(ϵ)(x) dV, (9.8)

for an arbitrary smooth function, ψ, and for a spherical region of radius r = ϵ centered on the
origin. Since ψ is a smooth function, taking the limit as ϵ→ 0 allows us to remove ψ from the
integral and evaluate it at the origin

lim
ϵ→0

I(ϵ) = −ψ(r = 0) lim
ϵ→0

[ˆ
r≤ϵ
∇2G(ϵ)(x) dV

]
. (9.9)

Making use of the divergence theorem brings the volume integral to a surface integral over the
ϵ-sphere

lim
ϵ→0

I(ϵ) = −ψ(r = 0) lim
ϵ→0

[ˆ
r=ϵ
r̂ · ∇(1/r) r2 dr

]
= ψ(r = 0), (9.10)

where we introduced spherical coordinates from Section 4.23. This result establishes both the
sifting property and normalization property for −∇2G(ϵ)(x). These two properties are the
defining features of a Dirac delta, in which case we have established the identity

−∇2G(ϵ)(x) = −∇2(4π |x|)−1 = δ(x). (9.11)

9.2.4 Deriving the three-dimensional Green’s function

As a means to further understand the free space Green’s function (9.5c), we here offer a derivation
using Fourier transform methods. For that purpose, introduce the Fourier representation (8.113)
of the Dirac delta so that4

−∇2
xG(x|x0) = δ(x− x0) =

1

(2π)3

ˆ
eik·(x−x0) dk, (9.12)

where dk is the k-space volume element. It is straightforward to verify that

G(x|x0) =
1

(2π)3

ˆ
eik·(x−x0)

|k|2 dk (9.13)

solves the Green’s function equation (9.12), thus providing a Fourier integral expression for the
free space Green’s function.

Now evaluate the integral (9.13) to derive a closed form expression by introducing spherical
coordinates in k-space, whereby5

kx = |k| cosϕ cosλ and ky = |k| cosϕ sinλ and kz = |k| sinϕ. (9.14)

We are free to orient the axes as suits the integration, with the following choice very convenient

k · (x− x0) = |k| |x− x0| sinϕ, (9.15)

4This approach follows Section 28 of Dennery and Krzywicki (1967).
5See Section 4.23 for a discussion of spherical coordinates.
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thus bringing the integral (9.13) to

G(x|x0) =
1

(2π)3

ˆ ∞

0
d|k|
ˆ π/2

−π/2
cosϕ dϕ

ˆ 2π

0
ei |k| |x−x0| sinϕ dλ. (9.16)

The λ integral trivially picks up a factor of 2π since the integrand is independent of λ. Performing
the ϕ integral takes just a bit more work

ˆ π/2

−π/2
ei |k| |x−x0| sinϕ cosϕ dϕ =

ˆ π/2

−π/2
ei |k| |x−x0| sinϕ d(− sinϕ) (9.17a)

= −
ˆ 1

−1
ei |k| |x−x0|α dα (9.17b)

=
2 sin[|k| |x− x0|]
|k| |x− x0|

, (9.17c)

so that the Green’s function is

G(x|x0) =
4π

(2π)3

ˆ ∞

0

sin[|k| |x− x0|]
|k| |x− x0|

d|k| = 4π

(2π)3 |x− x0|

ˆ ∞

0

sinα

α
dα. (9.18)

The integral in equation (9.18) can be readily found in an integral table. Nonetheless, we use
this integral as an opportunity to introduce a version of Feynman’s trick, which for this integral
proceeds by considering the LaPlace transform

F (s) =

ˆ ∞

0
e−s α

sinα

α
dα, (9.19)

where s ≥ 0 is a parameter. The desired integral is F (0), but we first determine F (s) by taking
its derivative

dF (s)

ds
= −s

ˆ ∞

0
e−s α sinα dα. (9.20)

Integrating by parts two times leads to

−dF (s)

ds
=

1

1 + s2
, (9.21)

which can be directly integrated to find

−F (s) = tan−1(s) + C. (9.22)

To determine the constant of integration, C, take the limit s→∞, in which case F (s) as given
by equation (9.19) vanishes so that

C = − lim
s→∞

tan−1(s) = −π/2, (9.23)

in which case

F (s) = − tan−1(s) + π/2 =

ˆ ∞

0
e−s α

sinα

α
dα. (9.24)

Setting s = 0 and noting that tan−1(s = 0) = 0 leads to the desired integral

ˆ ∞

0
e−s α

sinα

α
dα = π/2, (9.25)
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and then to the free space Green’s function (9.5c)

G(x|x0) = (4π |x− x0|)−1. (9.26)

9.2.5 The two-dimensional Green’s function

To simplify the derivation of the two-dimensional free space Green’s function (9.5b), place the
Dirac delta at the origin so that x0 = 0. Furthermore, the Dirac delta induces no angular
asymmetry, so that it is convenient to use polar coordinates since the Green’s function is
independent of the polar angle. As detailed in Section 4.22, the two-dimensional Laplace
operator acting on a circularly symmetric function leads to the Green’s function equation

−1

r

d

dr

[
r
dG

dr

]
=
δ(r) δ(ϑ)

r
, (9.27)

where we made use of equation (7.66) for the polar coordinate form of the Dirac delta. Integrating
over the angle to remove δ(ϑ) renders

−1

r

d

dr

[
r
dG

dr

]
= − δ(r)

2π r
. (9.28)

One radial integral that includes the origin yields

dG

dr
= − 1

2π r
, (9.29)

with a second radial integral leading to

G(r|0)−G(r0|0) = −(2π)−1 ln(r/r0), (9.30)

where r0 ̸= 0 is an arbitrary reference radius. Without loss of generality we set G(r0|0) =
−(2π)−1 ln r0 so that

G(r|0) = −(2π)−1 ln r, (9.31)

whose more general expression is given by equation (9.5b).

9.2.6 Green’s function for the screened Poisson equation

As a bit more practice with free space Green’s functions, introduce an extension of the Coulomb
potential of electrostatics by considering the following elliptic equation

(−∇2 + µ2)ψ = Λ, (9.32)

where µ2 > 0 is a constant with dimesion L−2. As noted in Section 50 of Fetter and Walecka
(2003), this equation occurs in the Yukawa theory of mesons and the Debye-Hückel screening of
ionic solutions, hence the name screened Poisson equation. Although not of direct use for our
studies of geophysical fluid mechanics, we see in Section 9.6.8 that there is a direct connection
to the Helmholtz equation, which is important for geophysical wave theory.

Consider the screened Poisson equation (9.32) in the absence of boundaries, so that its
corresponding free space Green’s function satisfies

(∇2 − µ2)G(x|x0) = −δ(x− x0). (9.33)

Since there are no boundaries, we can make use of the Fourier transform method from Section
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9.2.4 to derive the free space Green’s function, which satisfies

(−∇2 + µ2)G(x|x0) =
1

(2π)3

ˆ
eik·(x−x0) dk, (9.34)

and has the Fourier integral expression

G(x|x0) =
1

(2π)3

ˆ
eik·(x−x0) dk

|k|2 + µ2
. (9.35)

Setting µ = 0 recovers expression (9.13) for Laplace’s free space Green’s function. As for that
case, we introduce spherical wavevector coordinates (9.14) and orient the axes according to
x− x0 so that equation (9.15) holds. We thus have integral

G(x|x0) =
2π

(2π)3

ˆ ∞

0

[ˆ π/2

−π/2

ei |k| |x−x0| sinϕ

|k|2 + µ2
d(− sinϕ)

]
d|k| (9.36a)

=
1

2π2 |x− x0|

ˆ ∞

0

|k| sin[|k||x− x0|] d|k|
|k|2 + µ2

(9.36b)

=
e−µ |x−x0|

4π |x− x0|
, (9.36c)

where the final equality made use of an integral table.6 The Green’s function (9.36c) for the
screened Poisson equation earns its name since it exponentially decays when moving away from
the origin at x = x0, with this behavior contrasting to the much slower 1/|x− x0| decay of the
electrostatics Coulomb potential with µ = 0.

9.3 Poisson equation with Dirichlet boundaries
In this section we develop the Green’s function method for Poisson’s equation with a Dirichlet
boundary condition

−∇2ψ = Λ, for x ∈ R and ψ = σ, for x ∈ ∂R. (9.37)

We focus on the three-dimensional case, though the results hold for one and two dimensions
as well. The mathematical goal is to determine an integral expression for ψ in terms of the
distributed source, Λ(x), and boundary data, σ(x).

9.3.1 Constraints on the source and boundary normal derivative
Assuming there exists a solution to the boundary value problem (9.37), we can derive a constraint
on the normal derivative of ψ along the domain boundary.7 This constraint is revealed by
integrating the Poisson equation (9.37) over the spatial domain, with the left hand side yielding

−
ˆ
R

∇2ψ dV = −
˛
∂R
∇ψ · n̂dS, (9.38)

where we made use of the divergence theorem and with ∂R the closed boundary of the domain,
R. Equating this result to the integral of the source, Λ, leads to the constraint

˛
∂R
∇ψ · n̂dS = −

ˆ
R

ΛdV. (9.39)

6See Section 50 of Fetter and Walecka (2003) for details of the calculation.
7To be self-contained, we here repeat discussion of the constraint (9.39) that is also provided in Section 6.5.6.
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We can physically interpret the constraint (9.39) by invoking a steady state tracer diffusion
interpretation of the Poisson equation, with ∇ψ · n̂ interpreted as a flux of ψ-stuff through
the boundary. For a steady state solution to exist in the presence of specified boundary tracer
concentration as well as with an interior source function, there must be a balance between
the boundary integrated flux and the volume integrated source. In particular, this balance is
required to maintain the specified Dirichlet boundary values in the presence an interior source.
Absent this balance, there will be depletion or accumulation of ψ within the domain that leads
to a transient adjustment, thus breaking the steady state assumption.8 Notably, the constraint
(9.39) can be realized for arbitrary Dirichlet boundary data, σ.

9.3.2 Uniqueness of the solution
To establish uniqueness of the solution to the boundary value problem (9.37), consider two
functions, ψA and ψB, each satisfying the same boundary value problem (9.37). In turn, their
difference, Ψ = ψA−ψB , is a harmonic function that satisfies a homogeneous Dirichlet boundary
condition

−∇2Ψ = 0, for x ∈ R and Ψ = 0, for x ∈ ∂R. (9.40)

We offer a proof by contraction to establish that Ψ = 0 is the only solution to this boundary
value problem. Namely, we assume Ψ ̸= 0 and then show that to be an inconsistent assumption.
First consider the case where Ψ is a constant. A constant is certainly a harmonic function,
∇2Ψ = 0. But only the zero constant, Ψ = 0, satisfies the homogeneous Dirichlet boundary
condition. Next, assume Ψ has spatial dependence so that ∇Ψ ̸= 0 and examine the non-negative
integral over the full domain

I =

ˆ
R

∇Ψ · ∇ΨdV. (9.41)

Since ∇2Ψ = 0 we have ∇Ψ · ∇Ψ = ∇ · (Ψ∇Ψ) so that

I =

ˆ
R

∇ · (Ψ∇Ψ)dV =

˛
∂R

Ψ∇Ψ · n̂dS, (9.42)

where we used the divergence theorem for the second equality. But since Ψ = 0 on ∂R we find
that I = 0. Since the integrand of I is non-negative, I = 0 can only be realized by ∇Ψ = 0
everywhere, which in turn means that Ψ is a constant. But we just saw that the only constant
that satisfies the homogeneous Dirichlet boundary condition is Ψ = 0 everywhere. We thus
conclude that Ψ = 0 is the only harmonic function with zero Dirichlet boundary conditions, in
which case the solution, ψ, to the boundary value problem (9.37) is indeed unique.

9.3.3 The Green’s function problem
The Green’s function, G(x|x0), corresponding to the boundary value problem (9.37) is the
solution to the Poisson equation with a Dirac delta source (rather than Λ) and a homogeneous
Dirichlet boundary condition (rather than σ)

−∇2
xG(x|x0) = δ(x− x0) for x,x0 ∈ R and G(x|x0) = 0 for x ∈ ∂R. (9.43)

In three space dimensions, the Dirac delta has dimensions of inverse volume (Section 7.3), so that
the Green’s function has dimensions of inverse length. By construction, the Green’s function is
harmonic everywhere except at the location of the Dirac delta source, x = x0. Furthermore, the

8An analogous interpretation holds when ψ is the gravitational potential resulting from the mass source, Λ.
For ψ to be a specified value along the domain boundary requires the volume integrated mass source to balance a
gravitational acceleration integrated along the boundary.
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Green’s function satisfies a homogenous Dirichlet boundary condition whenever the field point,
x, is on the boundary and for any source position, x0.

Although the Green’s function cares about the existence of spatial boundaries, it is inde-
pendent of the boundary data, σ, and the distributed source, Λ, that appear in the boundary
value problem (9.37) for ψ. In that manner, the Green’s function is connected to the original
boundary value problem only through the differential operator (here the Laplacian) and the
type of boundary condition (here a Dirichlet condition).

9.3.4 Decomposing the Green’s function

Linearity enables us to decompose the Green’s function into the sum of the free space Green’s
function, G(x|x0), plus a harmonic function

G(x|x0) = G(x|x0) +H(x|x0), (9.44)

where the free space Green’s function and harmonic function satisfy

−∇2
xG(x|x0) = δ(x− x0) for x,x0 ∈ Rn (9.45a)

−∇2
xH(x|x0) = 0 for x,x0 ∈ R (9.45b)

−H(x|x0) = G(x|x0) for x ∈ ∂R. (9.45c)

Given the free space Green’s function for the corresponding space dimension, n, from equations
(9.5a), (9.5b), or (9.5c), then the mathematical problem of finding G(x|x0) reduces to finding
the harmonic function, H(x|x0), satisfying the inhomogeneous Dirichlet boundary condition
(9.45c). Hence, the decomposition (9.44) is quite useful in practice as it isolates the singular
or non-smooth behavior from the Dirac delta within the known free space Green’s function,
whereas the harmonic function is smooth.

9.3.5 Jump condition induced by the Dirac source

Following the consistency condition established in Section 9.3.1, we integrate the Green’s function
partial differential equation (9.43) over a volume, R0, that encloses the Dirac delta source point
at x0 ∈ R0. Doing so leads to

ˆ
R

∇x · ∇xG(x|x0) dV0 =

˛
∂R
n̂ · ∇xG(x|x0) dS0 = −1, (9.46)

where we used the divergence theorem for the first equality. This result means that for any
domain enclosing the Dirac source point, the normal derivative of the Green’s function must
satisfy this integral jump condition across the region boundary. Decomposing the Green’s
function per equation (9.44) reveals that it is the free space Green’s function that contributes to
the jump ˆ

R

∇x · ∇xG(x|x0) dV0 =

˛
∂R
n̂ · ∇xG(x|x0) dS0 = −1, (9.47)

whereas the harmonic contribution has no jump

ˆ
R

∇x · ∇xH(x|x0) dV0 =

˛
∂R
n̂ · ∇xH(x|x0) dS0 = 0. (9.48)
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9.3.6 Reciprocity of the Green’s function

The Green’s function satisfies the following reciprocity condition

G(x|x0) = G(x0|x). (9.49)

Reciprocity says that the Green’s function at the field point, x, arising from a Dirac delta source
at the source point, x0 is identical to the Green’s function at the field point, x0, arising from a
Dirac delta source at point, x. By inspection, the free space Green’s functions (9.5a)-(9.5c) satisfy
reciprocity. Hence, by implication the harmonic function, H(x|x0), also satisfies reciprocity. We
here offer a direct derivation of reciprocity by using steps similar to those used for establishing
the second form of Green’s integral identity (2.92).

Proof of reciprocity

Consider two Green’s functions, G(x|a) and G(x|b), arising from Dirac delta sources at points
a ∈ R and b ∈ R

−∇2
xG(x|a) = δ(x− a) and −∇2

xG(x|b) = δ(x− b). (9.50)

Multiplying the first equation by G(x, b) and the second by G(x,a), then subtracting leads to

−G(x|b)∇2
xG(x|a) +G(x|a)∇2

xG(x|b) = G(x|b) δ(x− a)−G(x|a) δ(x− b). (9.51)

Now integrate this equation over the region R, with the right hand side rendering

ˆ
R

[G(x|b) δ(x− a)−G(x|a) δ(x− b)] dV = G(a, b)−G(b,a), (9.52)

where we made use of the sifting property (7.8). Integrating the left hand side of equation (9.51)
leads to ˆ

R

[−G(x|b)∇2
xG(x|a) +G(x|a)∇2

xG(x|b)] dV (9.53a)

=

ˆ
R

[−∇x · [G(x|b)∇xG(x|a)] +∇x · [G(x|a)∇xG(x|b)]] dV (9.53b)

=

˛
∂R

[−G(x|b)∇xG(x|a) +G(x|a)∇xG(x|b)] · n̂dS, (9.53c)

where we made use of the divergence theorem for the second equality. The final result vanishes
when making use of the homogeneous Dirichlet boundary condition (9.43). We are thus led to

G(a, b) = G(b,a), (9.54)

which is the reciprocity condition (9.49).

Comments on self-adjoint operators

The reciprocity relation (9.49) for Green’s functions holds for self-adjoint differential operators.9

Self-adjointness reflects properties of both the differential operator and the boundary conditions,
with the discussion in this section revealing that the Laplacian operator is self-adjoint with
Dirichlet boundary conditions. Operators that are not self-adjoint, such as the diffusion operator

9See Theorem 8.10 of Duchateau and Zachmann (1986).
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in Section 9.5, satisfy a slightly more general reciprocity relation that we consider in Section
9.5.7.

The absence of self-adjointness reflects some form of symmetry breaking either through the
operator itself or through the boundary and/or initial conditions. The diffusion operator has
a single time derivative, ∂t, which breaks symmetry between past and future thus leading to
the absence of self-adjointness. Furthermore, self-adjointness is a property that depends on the
nature of the chosen inner product, with the inner product in the present discussion defined by
integration over the domain R. See Stakgold (2000a,b) for a thorough discussion accessible to
physicists.

9.3.7 The integral solution

We have the elements in place to determine ψ as an integral expression involving G(x|x0) along
with the prescribed source, Λ, and boundary data, σ. To do so we follow steps similar to those
used to establish reciprocity. Recall the Poisson boundary value problem (9.37) for ψ and the
associated Green’s function problem (9.43),

−∇2
xψ(x) = Λ(x) (9.55a)

−∇2
xG(x|x0) = δ(x− x0). (9.55b)

Multiply the ψ(x) equation by G(x|x0) and the G(x|x0) equation by ψ(x) to find

−G(x|x0)∇2
xψ(x) = G(x|x0) Λ(x) (9.56a)

−ψ(x)∇2
xG(x|x0) = ψ(x) δ(x− x0), (9.56b)

and then subtract these two equations

−G(x|x0)∇2
xψ(x) + ψ(x)∇2

xG(x|x0) = G(x|x0) Λ(x)− ψ(x) δ(x− x0). (9.57)

Now integrate over observational points, x, sampled over the region R, in which case the right
hand side becomesˆ

R

[G(x|x0) Λ(x)− ψ(x) δ(x− x0)] dV = −ψ(x0) +

ˆ
R

G(x|x0) Λ(x) dV, (9.58)

where we made use of the sifting property (7.8) to expose the function, ψ, at the location of the
Dirac source, x0. Integrating the left hand side of equation (9.57) yields

ˆ
R

[−G(x|x0)∇2
xψ(x)+ψ(x)∇2

xG(x|x0)] dV (9.59a)

=

ˆ
R

∇x · [−G(x|x0)∇xψ(x) + ψ(x)∇xG(x|x0)] dV (9.59b)

=

˛
∂R

[−G(x|x0)∇xψ(x) + ψ(x)∇xG(x|x0)] · n̂x dS. (9.59c)

Bringing the two sides to equation (9.57) together leads to

ψ(x0) =

ˆ
R

Λ(x)G(x|x0) dV +

˛
∂R

[G(x|x0)∇xψ(x)− ψ(x)∇xG(x|x0)] · n̂x dS. (9.60)

As a final step, we make use of the Dirichlet boundary conditions (homogeneous for the
Green’s function and prescribed function for ψ), relabel x0 ↔ x, and make use of reciprocity,
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G(x|x0) = G(x0|x), so that

ψ(x) =

ˆ
R

Λ(x0)G(x|x0) dV0︸ ︷︷ ︸
volume integral over R

−
˛
∂R

[σ(x0)∇x0G(x|x0)] · n̂x0 dS0,︸ ︷︷ ︸
boundary area integral over ∂R

(9.61)

where we inserted the boundary data ψ(x) = σ(x) for x ∈ ∂R. We have thus established ψ as
a volume integral of the Green’s function with the source, Λ, plus a boundary integral of the
Green’s function with the boundary data. Note that the Green’s function is independent of the
source, Λ, and the boundary data, so that G(x|x0) can be used to express ψ for arbitrary source
functions and boundary data.

9.3.8 Properties of the Dirichlet solution
We refer to the inward normal gradient of the Green’s function as the boundary Green’s function

Gbd(x|x0) ≡ −n̂x0 · ∇x0G(x|x0) = −
∂G(x|x0)

∂n̂x0

, (9.62)

in which case the Dirichlet solution (9.61) takes the form

ψ(x) =

ˆ
R

Λ(x0)G(x|x0) dV0 +

˛
∂R
σ(x0)G

bd(x|x0) dS0. (9.63)

This form for the solution, which is depicted in Figure 9.2, emphasizes the role of the Green’s
function in the region interior as the mediator between the distributed source, Λ, and all
surrounding points x ∈ R, along with the boundary Green’s function acting as mediator between
information prescribed along the boundary, x ∈ ∂R, and interior points. In this subsection
we summarize certain properties of the solution (9.61) and (9.63), and infer (through insisting
on self-consistency) corresponding properties of the Green’s function and boundary Green’s
function.

<latexit sha1_base64="Z/lZ2sES10/FEK3dKY1V5EGCXKw=">AAACCXicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2Fpoh5JJM21oMhmSjFCGfoFrt/oN7sStX+En+Bdm2kFs64XA4Zx7OScniDnTxnW/nMLK6tr6RnGztLW9s7tX3j9oaZkoQptEcqnaAdaUs4g2DTOctmNFsQg4fQhG15n+8EiVZjK6N+OY+gIPIhYygo2lOl2BzZBgnt5NeuWKW3Wng5aBl4MK5NPolb+7fUkSQSNDONa647mx8VOsDCOcTkrdRNMYkxEe0I6FERZU++k08gSdWKaPQqnsiwyasn8vUiy0HovAbmYR9aKWkf9pncSEl37KojgxNCIzozDhyEiU/R/1maLE8LEFmChmsyIyxAoTY1uacwnEr4HtxltsYhm0zqperVq7Pa/Ur/KWinAEx3AKHlxAHW6gAU0gIOEZXuDVeXLenHfnY7ZacPKbQ5gb5/MH7qyapQ==</latexit>

R

<latexit sha1_base64="71SxWTN6yBCHE6U9QhIdCVT/t/s="></latexit>

→↑2
xG

bd(x|x0) = 0
<latexit sha1_base64="oX0WgO8weitcS98Q2bwZdb79KPI="></latexit>

Gbd(x|x0) = ω(2)(x→ x0)<latexit sha1_base64="/u7zZlDxSIvQAOZ5+IfftJUo7eQ="></latexit>

→↑2
xG(x|x0) = ω(x→ x0)

<latexit sha1_base64="+X0wayImVUiNfJ3K8i3MpE/u6Sg=">AAACHXicbVDLSsNAFJ3UV62vqEsRBotQNyURqW6EogtdVrAPaEOYTCft0JkkzEzEErPyQ1y71W9wJ27FT/AvnLZBbOuBgcM593LuHC9iVCrL+jJyC4tLyyv51cLa+sbmlrm905BhLDCp45CFouUhSRgNSF1RxUgrEgRxj5GmN7gc+c07IiQNg1s1jIjDUS+gPsVIack1969KScfj8D6FDxBm1E2s9AieQ8s1i1bZGgPOEzsjRZCh5prfnW6IY04ChRmSsm1bkXISJBTFjKSFTixJhPAA9Uhb0wBxIp1k/I0UHmqlC/1Q6BcoOFb/biSISznknp7kSPXlrDcS//PasfLPnIQGUaxIgCdBfsygCuGoE9ilgmDFhpogLKi+FeI+Eggr3dxUisd/A3Q39mwT86RxXLYr5crNSbF6kbWUB3vgAJSADU5BFVyDGqgDDB7BM3gBr8aT8Wa8Gx+T0ZyR7eyCKRifP+GsoCg=</latexit>

G(x|x0) = 0

Figure 9.2: Decomposing the Green’s function solution (9.61) for a Poisson boundary value problem with
Dirichlet boundary conditions. The decomposition is written in terms of an interior Green’s function, G(x|x0),
that satisfies equation (9.43), and a boundary Green’s function, Gbd(x|x0), that satisfies equation (9.69). Note
that we derive the properties for the boundary Green’s function in Section 9.3.9.

Verifying the partial differential equation for x ∈ R

We derived the Dirichlet solution (9.61) with manipulations that are reversible; i.e., equal signs
at every step. Hence, we know that the expression (9.61) indeed satisfies the Dirichlet boundary
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value problem (9.37). Even so, the exercise of directly verifying the solution reveals insights into
properties of the Green’s function.

As a starting point, decompose the Green’s function according to equation (9.44) to bring
the solution (9.44) to the form

ψ(x) =

ˆ
R

Λ(x0) [G(x|x0) +H(x|x0)] dV0 +

˛
∂R
σ(x0)G

bd(x|x0) dS0. (9.64)

Now assume the field point, x, is located at a point within the interior of the region, x ∈ R,
and operate with −∇2

x on equation (9.64) to find

−∇2
xψ(x) = −

ˆ
R

Λ(x0)∇2
x[G(x|x0) +H(x|x0] dV0 +

˛
∂R
σ(x0) [−∇2

xG
bd(x|x0)] dS0. (9.65)

Note that we brought the Laplacian operator, ∇2
x, inside the integral since the integral is over

x0. For the first term on the right hand side of equation (9.45b), set ∇2
xH(x|x0) = 0 as per

equation (9.45b), and use the free space Green’s function identity −∇2
xG(x|x0) = δ(x − x0).

Then use the sifting property of the Dirac delta,
´
R
Λ(x0) δ(x− x0) dV0 = Λ(x). To show that

the boundary contribution vanishes, make use of the following

∇2
xG

bd(x|x0) = ∇2
x[−∇x0G(x|x0) · n̂x0 ] (9.66a)

= n̂x0 · ∇x0 [−∇2
xG(x|x0)] (9.66b)

= n̂x0 · ∇x0δ(x− x0). (9.66c)

With x0 ∈ ∂R yet x /∈ ∂R, the Dirac delta never fires, thus eliminating the boundary contribution.
We have thus verified that −∇2ψ = Λ for points x ∈ R.

Verifying the Dirichlet boundary condition for x ∈ ∂R
To verify that the boundary conditions are satisfied by the Dirichlet solution (9.61), bring the
field point, x, onto the boundary

x→ x∂R ∈ ∂R. (9.67)

For such boundary points, the volume integral in the solution (9.61) vanishes since the Dirichlet
Green’s function vanishes on the boundary, G(x∂R |x0) = 0. Self-consistency with the Dirichlet
boundary data, ψ(x∂R) = σ(x∂R), leads to the identity

σ(x) =

˛
∂R
σ(x0)G

bd(x|x0) dS0 = −
˛
∂R
σ(x0)∇x0G(x∂R |x0) · n̂x0 dS0 for x ∈ ∂R. (9.68)

This integral equation is consistent so long as Gbd(x|x0) satisfies the boundary condition

Gbd(x|x0) = −n̂x0 · ∇x0G(x|x0) = δ(2)(x− x0) for x,x0 ∈ ∂R, (9.69)

where δ(2)(x − x0) is the surface Dirac delta with physical dimensions of inverse area. This
property of the boundary Green’s function is consistent with the jump condition (9.72) found
for the one-dimensional Poisson equation. It furthermore leads to the corresponding integral
identity ˛

∂R
Gbd(x|x0) dS0 =

˛
∂R
δ(2)(x− x0) dS0 = 1 for x,x0 ∈ ∂R. (9.70)

We emphasize10 that the expressions (9.69) and (9.70) are found by first placing the source point,
x0, on the boundary and thereafter moving the field point to the boundary, x → x∂R ∈ ∂R.

10As per page 801 of Morse and Feshbach (1953).
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We return to the normalization (9.70) in Section 9.3.9 when discussing the partial differential
equation satisfied by the boundary Green’s function.

Linear superposition

The Dirichlet solution (9.61) manifests the linear superposition principle by writing ψ = ψ1 +ψ2

as given by Table 9.1. By construction, ψ1 satisfies Poisson’s equation with homogeneous
Dirichlet boundary conditions, whereas ψ2 satisfies Laplace’s equation with inhomogeneous
Dirichlet boundary conditions.

pde: x ∈ R bc: x ∈ ∂R solution ψ = ψ1 + ψ2

−∇2ψ1 = Λ ψ1 = 0 ψ1(x) =
´
R
G(x|x0) Λ(x0) dV0

−∇2ψ2 = 0 ψ2 = σ ψ2(x) =
¸
∂R G

bd(x|x0)σ(x0) dS0

Table 9.1: Decomposing the Dirichlet solution (9.61) into ψ = ψ1 + ψ2, with ψ1 and ψ2 satisfying the
properties shown in this table. For the boundary contribution we made use of the boundary Green’s function,
Gbd(x|x0) = −∇x0G(x|x0) · n̂x0 , as given by equation (9.62) and whose properties are further developed in
Section 9.3.9.

9.3.9 Boundary Green’s function
Boundary value problem for the boundary Green’s function

As part of the development in Section 9.3.8, we revealed that the boundary Green’s function
satisfies the following boundary value problem

−∇2
xG

bd(x|x0) = 0 for x ∈ R and Gbd(x|x0) = δ(2)(x− x0) for x,x0 ∈ ∂R. (9.71)

As seen by equation (9.43), the Dirichlet Green’s function, G(x|x0), feels the Dirac source in
the interior of the domain, x ∈ R, and satisfies homogeneous Dirichlet boundary conditions for
x ∈ ∂R. As a complement, the boundary Green’s function, Gbd(x|x0), is harmonic everywhere
in the domain interior and yet equals to the Dirac source along the boundary. By construction,
the boundary Green’s function incorporates boundary information into the region as part of the
Dirichlet solution (9.63). We make further use of the boundary Green’s function when studying
the diffusion equation in Section 9.5 and the advection-diffusion equation in Section 69.9, in
which case the boundary Green’s function is referred to as the boundary propagator.

Normalization of the boundary Green’s function

Consider the special case of constant boundary data, σ = σconst, in which case the harmonic
function in Table 9.1 is itself a constant, ψB(x) = σconst. Consequently, the boundary Green’s
function satisfies

−
˛
∂R
∇x0G(x|x0) · n̂x0 dS0 =

˛
∂R
Gbd(x|x0) dS0 = 1. (9.72)

This is the same normalization derived above in equation (9.70). It is built by placing Dirac
delta sources along the boundary, x0 ∈ ∂R, and then area integrating over the boundary area.
It holds for any field point, x ∈ R. Although derived by considering the special case of constant
boundary data, equation (9.72) holds in general since the Green’s function is independent of the
boundary data.

To help understand the identity (9.72), consider the Green’s function to be the steady
state temperature or tracer concentration resulting from a Dirac delta source placed within
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the domain interior. The area integrated condition (9.72) acts to maintain the homogeneous
Dirichlet boundary condition, G(x∂R |x0) = 0, for every point x∂R ∈ ∂R. It does so by providing
a boundary flux, via the normal gradient, whose area integral precisely cancels the unit positive
source from the Dirac delta.

Equation (9.72) represents a normalization of the boundary Green’s function at each point
within the region interior, and it is consistent with the boundary condition given in equation
(9.71). If we place Dirac delta sources along the boundary and integrate over the boundary, then
every point within the domain feels a net unit source from these boundary sources, which is
reflected by the normalization of the boundary Green’s function. We return to this normalization
when considering the boundary propagator for the diffusion equation in Section 9.5.13.

9.3.10 Mean value property for harmonic functions

Recall the discussion in Section 6.5.2 of the mean value property of harmonic functions. This
property says that the value of a harmonic function, ψ, at a point x within an open region of R
equals to the average of ψ taken over the surface of a sphere within R that is centered at x. We
here prove the mean value property through use of Green’s function methods. For this purpose,
specialize the Dirichlet solution (9.61) to the case of zero source, Λ = 0, so that the harmonic
field is determined solely through the boundary Green’s function and boundary data

ψ(x) = −
˛
∂R
ψ(x0)∇x0G(x|x0) · n̂x0 dS0. (9.73)

Recall the discussion in Section (9.3.4) whereby the Green’s function is decomposed into the
sum of the free space Green’s function plus a harmonic function that equals to minus the free
space Green’s function on the boundary. Furthermore, to simplify the algebra, without loss in
generality, set the coordinate system so that the field point is at the origin, x = 0, and let y be
the source point, in which case

ψ(0) = −
˛
∂R
ψ(y)∇yG(0|y) · n̂y dSy. (9.74)

Two dimensions

Making use of the free space Green’s function (9.5b) leads to the solution for two space dimensions

ψ(0) =
1

2π

˛
∂R
ψ(y)∇y [ln |y| − 2πH(0|y)] · n̂y dℓ (9.75)

Now specialize the region, R, to be a circle with center at x = 0, radius R, and make use of
polar coordinates so that dℓ = R dϑ (Section 4.22). For this domain the free space Green’s
function is a constant on the circle’s perimeter so that

ψ(0) =
1

2π

ˆ 2π

0
ψ(R,ϑ) dϑ−

ˆ 2π

0
∂rH(0|R,ϑ) dϑ. (9.76)

The harmonic function, H, satisfies

−∇2
yH(0|y) = 0 for |y| < R and H(0|y) = (1/2π) lnR for |y| = R. (9.77)

The unique solution is given by the constant

H(0|y) = (1/2π) lnR, (9.78)
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which has a zero derivative so that equation (9.76) reduces to the mean value expression

ψ(0) =
1

2π

ˆ 2π

0
ψ(R,ϑ) dϑ =

´ 2π
0 ψ(R,ϑ) dϑ´ 2π

0 dϑ
. (9.79)

That is, the value of the harmonic function, ψ, at the center of a circle of arbitrary radius, R,
equals to its average integrated over the circle’s perimeter.

Three dimensions

The same arguments hold for three space dimensions, now making use of the free space Green’s
function (9.5c) and spherical coordinates (Section 4.23), in which case

ψ(0) =
1

4π

ˆ 2π

0

[ˆ π/2

−π/2
ψ(R, λ, ϕ) dλ

]
cosϕ dϕ =

´ 2π
0

[´ π/2
−π/2 ψ(R, λ, ϕ) dλ

]
cosϕ dϕ

´ 2π
0

[´ π/2
−π/2 dλ

]
cosϕ dϕ

. (9.80)

9.3.11 1D Poisson equation with Dirichlet boundaries

To illustrate the Green’s function method, we here work through the one-dimensional Poisson
equation on a finite domain with Dirichlet boundary conditions

−d2ψ

dx2
= Λ for −L < x < L (9.81a)

ψ(x) = σ± for x = ±L, (9.81b)

where Λ(x) is an interior source and σ± is prescribed boundary data. The corresponding Green’s
function satisfies

−d2G(x|x0)
dx2

= δ(x− x0) for −L < x < L (9.82a)

G(x|x0) = 0 for x = ±L. (9.82b)

Since the Dirac delta has dimensions of inverse length, equation (9.82a) implies that the Green’s
function has the dimensions of length. The Green’s function solution (9.61) takes on the following
form for one-dimension

ψ(x0) =

ˆ L

−L
G(x|x0) Λ(x) dx−

[
ψ(x)

dG(x|x0)
dx

]
x=L

+

[
ψ(x)

dG(x|x0)
dx

]
x=−L

. (9.83)

Furthermore, by integrating the differential equation (9.81a) over the domain we are led to the
identity

dψ

dx

∣∣∣∣
x=L

− dψ

dx

∣∣∣∣
x=−L

= −
ˆ L

−L
Λ(x) dx, (9.84)

which is the one-dimensional version of the compatibility constraint (9.39). Likewise, the
one-dimensional version of the Green’s function jump condition (9.46) is given by

lim
ϵ→0

[
dG(x|x0)

dx

]
x=x0+ϵ

− lim
ϵ→0

[
dG(x|x0)

dx

]
x=x0−ϵ

= −1. (9.85)
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The solution to the Green’s function equation (9.82a) is given by the linear function

G(x|x0) =
{

(x− x0)/2 +Ax+B for −L ≤ x ≤ x0
−(x− x0)/2 + C x+D for x0 ≤ x ≤ L. (9.86)

Note that we extracted the term G(x|x0) = −|x−x0|/2, which is the free space Green’s function
(9.5a). Doing so is not necessary, yet it does help to reduce the algebra needed to determine the
constants A,B,C,D, which are found by invoking the (i) jump condition for dG(x|x0)/dx at
x = x0, (ii) continuity of G(x|x0) at x = x0, and (iii) homogeneous Dirichlet boundary conditions
at x = ±L.

The jump condition (9.85) leads to A = C so that

G(x|x0) =
{

(x− x0)/2 +Ax+B for −L ≤ x ≤ x0
−(x− x0)/2 +Ax+D for x0 ≤ x ≤ L. (9.87)

A finite jump in the Green’s function derivative at x = x0 means that the Green’s function is
continuous at x = x0,

lim
ϵ→0

G(x = x0 + ϵ|x0) = lim
ϵ→0

G(x = x0 − ϵ|x0). (9.88)

Making use of this condition in equation (9.87) yields B = D so that

G(x|x0) =
{

(x− x0)/2 +Ax+B for −L ≤ x ≤ x0
−(x− x0)/2 +Ax+B for x0 ≤ x ≤ L. (9.89)

The two remaining constants are determined by specifying the homogeneous Dirichlet boundary
conditions, G(x = ±L|x0) = 0, in which we find A = −x0/(2L) and B = L/2, so that the
Green’s function is the linear kink function

G(x|x0) =
1

2L

{
(L− x0) (L+ x) for −L ≤ x ≤ x0
(L+ x0) (L− x) for x0 ≤ x ≤ L, (9.90)

which is depicted in Figure 9.3. Note the reciprocity condition is manifest in the expression
(9.90). Also note that we can write the Green’s function as the sum of the free space Green’s
function plus a harmonic function

G(x|x0) = −|x− x0|/2 +
L2 − xx0

2L
= G(x|x0) +H(x|x0), (9.91)

where

−d2H(x|x0)
dx2

= 0 and H(x = ±L|x0) = −G(x = ±L|x0). (9.92)

9.4 Poisson equation with Neumann boundaries
Consider the Poisson equation with Neumann boundary conditions

−∇2ψ = Λ, for x ∈ R and n̂ · ∇ψ = Σ, for x ∈ ∂R. (9.93)

Rather than specifying the value of ψ along the boundary, the Neumann condition specifies the
normal derivative. As we see, this slight change in the boundary conditions leads to some rather
basic distinctions from the Dirichlet problem.
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Figure 9.3: The Green’s function (9.90) for the one-dimensional Poisson equation satisfying homogeneous
Dirichlet boundary conditions at x = ±L. The Dirac delta source is located at x = x0, which is the point where
the Green’s function has its maximum displacement of (L2 − x20)/(2L). The Green’s function is continuous and
yet its first derivative has a finite discontinuity at the location of the Dirac source. Its second derivative is minus
the Dirac delta, as per the Green’s function equation (9.82a). We here choose x0 = 1 and L = 3x0, with arbitrary
units.

9.4.1 Constraints on the source and boundary data

As in our discussion of Dirichlet boundary conditions in Section 9.3.1, we can realize a solution
to the boundary value problem (9.93) only so long as the constraint (9.39) is satisfied. For
Neumann boundary conditions, we specify the normal derivative along the boundary so that the
constraint (9.39) is now imposed on the volume source and boundary data11

˛
∂R

ΣdS = −
ˆ
R

ΛdV. (9.94)

If the source and boundary data do not satisfy this constraint, then there is no solution to the
Poisson problem (9.93). If the Poisson problem arises physically from steady state tracer diffusion,
then the constraint (9.94) imposes a balance between the diffusive flux integrated around the
boundary (left hand side) with the volume integrated tracer source (right hand side). In the
absence of this balance, there is no solution to the Poisson problem thus indicating the presence
of transients (e.g., time dependent diffusion). If the Poisson problem arises from Newtonian
gravity, then the condition (9.94) means that the area integrated gravitational acceleration
specified on the boundary must be consistent with the volume integrated mass source distributed
within the domain.

9.4.2 Uniqueness of the solution up to a constant

As for the Dirichlet problem in Section 9.3.2, consider the uniqueness of the solution to the
boundary value problem (9.93). We do so, again, by considering two functions, ψA and ψB, each
satisfying the boundary value problem (9.93) and noting that their difference, Ψ = ψA − ψB,
satisfies the homogeneous problem

−∇2Ψ = 0, for x ∈ R and n̂ · ∇Ψ = 0, for x ∈ ∂R. (9.95)

11To be self-contained, we here repeat the discussion of the constraint (9.94) that is also provided in Section
6.5.6.
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The same arguments we used in Section 9.3.2 lead us to conclude that ∇Ψ = 0, but for the
Neumann problem this result is consistent with Ψ being an arbitrary spatial constant. We can
understand this arbitrariness since the Neumann boundary condition involves a derivative, with
the derivative of a constant vanishing. We thus conclude that the solution to the boundary value
problem (9.93) is unique up to an arbitrary constant.

9.4.3 Modified Green’s function problem

The standard Green’s function corresponding to the Poisson boundary value problem (9.93) is
the solution to the Poisson equation with a Dirac delta source and a homogeneous Neumann
boundary condition

−∇2
xG(x|x0) = δ(x− x0) for x,x0 ∈ R (9.96a)

n̂ · ∇xG(x|x0) = 0, for x ∈ ∂R. (9.96b)

However, there is no solution to the Green’s function problem (9.96a)-(9.96b) since the self-
consistency condition (9.94) is not satisfied. Namely, an integral over the Dirac delta source leads
to unity, which is not consistent with use of the homogeneous Neumann boundary condition
(9.96b).

We are led to consider the modified Green’s function that satisfies12

−∇2
xG̃(x|x0) = δ(x− x0)− 1/V for x,x0 ∈ R (9.97a)

n̂ · ∇xG̃(x|x0) = 0, for x ∈ ∂R. (9.97b)

Introducing the region volume to the source in equation (9.97a)

V =

ˆ
R

dV, (9.98)

ensures that the self-consistency condition (9.94) is satisfied by G̃

−
ˆ
R

∇2
xG̃(x|x0) dVx = −

˛
∂R
n̂x · ∇xG̃(x|x0) dVx = 0 (9.99a)

ˆ
R

δ(x− x0) dV −
1

V

ˆ
R

dV = 0. (9.99b)

Making use of the method from Section 9.3.7, we readily derive an integral expression for the
solution, ψ, in terms of the modified Green’s function,

ψ(x)− ⟨ψ⟩ =
ˆ
R

Λ(x0) G̃(x|x0) dV0 +

˛
∂R

Σ(x0) G̃(x|x0) dS0, (9.100)

where Σ = n̂ · ∇ψ is the Neumann boundary data given in the problem statement (9.93), and
we introduced the domain average

⟨ψ⟩ = 1

V

ˆ
R

ψ dV. (9.101)

12See Exercise 6.46 of Stakgold (2000a) or exercise 8.10 of Duchateau and Zachmann (1986). Hildebrand (1976)
in his Section 11.11 refers to the solution of equation (9.97a) (9.97b) as Hilbert’s function. Kellogg (1953) on his
page 246 refers to G(1) as the Green’s function of the second kind. For simplicity in nomenclature we refer to
G̃ as the modified Green’s function. Both Hildebrand (1976) and Section 1.10 of Jackson (1975) consider the
complement modification of the Green’s function, whereby the Neumann boundary condition is not homogeneous
whereas the source remains a Dirac delta.
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9.4.4 Reciprocity of the modified Green’s function

The reciprocity condition (9.49) satisfied by the Dirichlet Green’s function is a very useful
property. What is required to respect this property for the modified Green’s function? To
answer that question, consider the Green’s function problem (9.97a)-(9.97b) for two source
points, a ∈ R and b ∈ R

−∇2
xG̃(x|a) = δ(x− a)− 1/V and n̂ · ∇xG̃(x|a) = 0 (9.102a)

−∇2
xG̃(x|b) = δ(x− b)− 1/V and n̂ · ∇xG̃(x|b) = 0. (9.102b)

Multiplying equation (9.102a) by G̃(x|b) and equation (9.102b) by G̃(x|a), subtracting, then
integrating over the domain, and using the homogeneous Neumann boundary conditions leads to

G̃(x|b)− G̃(x|a) = 1

V

ˆ
R

[G̃(x|b)− G̃(x|a)] dV. (9.103)

Reciprocity holds if the modified Green’s function has a constant integral over the domain,

ˆ
R

G̃(x|x0) dV = constant, (9.104)

with zero a convenient constant that we use in the following. In words, we see that if the domain
integral of the modified Green’s function is the independent of where the Dirac delta is placed,
then the modified Green’s function satisfies the reciprocity condition

ˆ
R

G̃(x|x0) dV = 0 =⇒ G̃(x|x0) = G̃(x0|x). (9.105)

9.4.5 Decomposing the modified Green’s function

Motivated by the decomposition (9.44) for the Dirichlet Green’s function, we linearly decompose
the modified Green’s function as the sum of the free space Green’s function, G(x|x0), plus
another function

G̃(x|x0) = G(x|x0) + H̃(x|x0), (9.106)

where

−∇2
xH̃(x|x0) = −1/V for x,x0 ∈ R (9.107a)

−n̂ · ∇xH̃(x|x0) = n̂ · ∇xG(x|x0) for x ∈ ∂R. (9.107b)

This decomposition is self-consistent since the free space Green’s function satisfies the global
boundary constraint ˛

∂R
n̂ · ∇xG(x|x0) dSx = −1, (9.108)

and likewise, equation (9.107a) means that

˛
∂R
n̂ · ∇xH̃(x|x0) dSx = 1. (9.109)

Hence, the local boundary condition (9.107b) is consistent with these two global boundary
constraints.
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9.4.6 Verifying the solution

It is a useful exercise to verify that the solution (9.100) indeed solves the Poisson boundary
value problem with Neumann boundary conditions (equation (9.93)). First consider a point in
the interior of the region, x ∈ R, and apply −∇2

x on equation (9.100) to find

−∇2
xψ(x) =

ˆ
R

Λ(x0) [−∇2
xG̃(x|x0)] dV0 +

˛
∂R

Σ(x0) [−∇2
xG̃(x|x0)] dS0 (9.110a)

=

ˆ
R

Λ(x0) [δ(x− x0)− 1/V] dV0 +

˛
∂R

Σ(x0) [δ(x− x0)− 1/V] dS0 (9.110b)

= Λ(x)− 1

V

[ˆ
R

Λ(x0) dV0 +

˛
∂R

Σ(x0) dS0

]
+

˛
∂R

Σ(x0) δ(x− x0) dS0. (9.110c)

For points in the interior, the boundary integral with the Dirac delta never fires since x /∈ ∂R,
so that

¸
∂R Σ(x0) δ(x − x0) dS0 vanishes. Furthermore, the 1/V term drops out due to the

consistency condition (9.94). We have thus verified that −∇2ψ = Λ holds for points in the
interior of the domain.

To verify that the boundary condition is met, act with the gradient, ∇x, on the solution
(9.100)

∇xψ(x) =

ˆ
R

Λ(x0) [∇xG̃(x|x0)] dV0 +

˛
∂R

Σ(x0) [∇xG̃(x|x0)] dS0. (9.111)

Now move the field point onto the boundary, x→ xx∂R
∈ ∂R, and project the gradient onto

the unit normal direction, n̂x, at the point x∂R . This projection leads to n̂x · ∇xψ(xx∂R
) =

Σ(xx∂R
) on the left hand side, and it annihilates the volume term on the right hand side since

n̂x · ∇xG̃(xx∂R
|x0) = 0. We are thus left with

n̂x · ∇xψ(x) = Σ(x) =

˛
∂R

Σ(x0) [n̂x · ∇xG̃(x|x0)] dS0 for x ∈ ∂R. (9.112)

We emphasize that both arguments of the Green’s function are on the boundary, x,x0 ∈ ∂R,
with the Dirac source point, x0, integrated around the boundary whereas the field point, x, is
an arbitrary point on the boundary. Equation (9.68) is the analogous integral equation for the
solution with Dirichlet boundary conditions. We are ensured a solution to the integral equation
(9.112) if the Green’s function satisfies the property

n̂x · ∇xG̃(x|x0) = δ(2)(x− x0) for x,x0 ∈ ∂R, (9.113)

which takes on the integral expression

˛
∂R
n̂x · ∇xG̃(x|x0) dS0 =

˛
∂R
δ(2)(x− x0) dS0 for x ∈ ∂R. (9.114)

Table 9.2 compares the boundary properties of the Green’s functions for the Dirichlet and
Neumann problems.

9.4.7 Extracting a harmonic portion to the solution

The analysis in Section 9.4.6 reveals that we can write the Neumann solution (9.100) in the form

ψ(x)−⟨ψ⟩ =
ˆ
R

Λ(x0)G(x|x0) dV0︸ ︷︷ ︸
ψΛ

+

ˆ
R

Λ(x0) H̃(x|x0) dV0 +

˛
∂R

Σ(x0) G̃(x|x0) dS0︸ ︷︷ ︸
ψharmonic

. (9.115)
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boundary condition green’s function property equation

Dirichlet n̂x0 · ∇x0G(x|x0) = −δ(2)(x− x0) (9.69)

Neumann n̂x · ∇xG(x|x0) = δ(2)(x− x0) (9.113)

Table 9.2: Comparing the boundary normal derivatives for the Poisson equation Green’s function with Dirichlet
and Neumann boundary conditions. Each point is on the boundary, x,x0 ∈ ∂R, and the Dirac delta is two-
dimensional so it has dimensions of inverse area. The properties satisfied by these Green’s functions are realized by
first placing the source point, x0, on the boundary and then moving the field point to the boundary, x → x∂R ∈ ∂R.
For the Dirichlet condition, the normal derivative is computed at the source point, whereas the Neumann condition
computes the normal derivative at the field point.

The function, ψΛ, is directly computable since both the source function, Λ, and free space
Green’s function, G(x|x0), are known. The Neumann boundary value problem (9.93) has thus
been reduced to finding the harmonic function, ψharmonic, which satisfies the Neumann boundary
value problem

−∇2ψharmonic(x) = 0 for x ∈ R (9.116a)

n̂ · ∇ψharmonic(x) = Σ(x)−
ˆ
R

Λ(x0) n̂x · ∇xG(x|x0) dV0 for x ∈ ∂R. (9.116b)

We verify that the boundary value problem (9.116a)-(9.116b) is self-consistent by integrating
the boundary condition (9.116b) around the domain boundary

ˆ
∂R
n̂ · ∇ψharmonic(x) dSx =

ˆ
∂R

Σ(x) dSx −
ˆ
∂R

[ˆ
R

Λ(x0) n̂x · ∇xG(x|x0) dV0

]
dSx. (9.117)

In the final term we can interchange the surface integral over x with the volume integral over
x0 to have

ˆ
∂R

[ˆ
R

Λ(x0) n̂x · ∇xG(x|x0) dV0

]
dSx =

ˆ
R

Λ(x0)

[ˆ
∂R
n̂x · ∇xG(x|x0) dSx

]
dV0 (9.118a)

= −
ˆ
R

Λ(x0) dV0, (9.118b)

where the second equality made use of the identity (9.108) satisfied by the free space Green’s
function. Making use of the constraint (9.94) satisfied by the source and boundary data leads to

ˆ
∂R
n̂ · ∇ψharmonic(x) dSx = 0, (9.119)

as required for a harmonic function.

9.4.8 The Dirac delta sheet and boundary data

The Dirichlet solution (9.61) has the Green’s function in the volume integral but its normal
gradient in the surface integral. In contrast, the Neumann solution (9.100) involves the Green’s
function, G̃, within both the volume integral and the surface integral. For the Neumann problem
we can thus consider a slightly modified formulation of how the boundary data is incorporated.
To motivate this formulation, assume the only nontrivial Neumann boundary data appears along
the flat plane surface, z = zb, with all other boundaries maintaining the homogeneous boundary
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condition, n̂ · ∇ψ = 0. In this special case the Neumann solution (9.100) takes the form

ψ(x)− ⟨ψ⟩ =
ˆ
R

Λ(x0) G̃(x|x0) dV0 +

ˆ
z=zb

Σ(x0, y0) G̃(x|x0) dx0 dy0 (9.120a)

=

ˆ
R

[Λ(x0) + Σ(x0, y0) δ(z0 − zb)] G̃(x|x0) dV0 (9.120b)

≡
ˆ
R

Λ∗(x0) G̃(x|x0) dV0. (9.120c)

These manipulations have absorbed the non-homogeneous Neumann boundary condition into a
modified source, Λ∗(x). We are thus led to two equivalent formulations for the Poisson boundary
value problem with Neumann conditions. The first is given by equation (9.93), whereby ψ is the
solution to the Poisson equation with source, Λ, and with inhomogeneous Neumann boundary
data, Σ. The second formulation considers ψ to be the solution to Poisson’s equation with
homogeneous Neumann boundary conditions yet with a modified source function

Λ∗(x) = Λ(x) + Σ(x, y) δ(z − zb) = Λ(x) + ∂zψ(x) δ(z − zb). (9.121)

As a check, note that the physical dimensionality of Λ∗(x) is indeed correct since the Dirac delta,
δ(z − zb), has dimensions of inverse length. We interpret the term, Σ(x, y) δ(z − zb), as a flux or
Dirac delta sheet that sits just inside the boundary (at z = zb − ϵ with ϵ→ 0), which allows this
data to be incorporated into the volume source data rather than be part of the boundary data.
The specific form (9.121) can be generalized to the expression

Λ∗(x) = Λ(x) + Σ(x) δ[n̂ · (x− x∂R)] = Λ(x) + n̂ · ∇ψ(x) δ[n̂ · (x− x∂R)], (9.122)

where the argument to the Dirac delta picks out the coordinates in the direction of the outward
unit normal. The transformed Neumann problem thus takes the generic form

−∇2ψ = Λ∗, for x ∈ R and n̂ · ∇ψ = 0, for x ∈ ∂R. (9.123)

Again, the solution to the boundary value problem (9.123) is identical to the solution of the
original problem (9.93).
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<latexit sha1_base64="fc3MVSlIAZifBN/XBIeh5a7TXC4=">AAACHnicbVDLSsNAFJ3UV62vqEtBBosggiUpUt0IRTcuXFSwD2himUym7dDJJMxMhBKy80Ncu9VvcCdu9RP8C6dtENt6YOBw7j2cO8eLGJXKsr6M3MLi0vJKfrWwtr6xuWVu7zRkGAtM6jhkoWh5SBJGOakrqhhpRYKgwGOk6Q2uRvPmAxGShvxODSPiBqjHaZdipLTUMfdPHI48hu6TcgqdSFJ4AZ0b7fe1dJx2zKJVssaA88TOSBFkqHXMb8cPcRwQrjBDUrZtK1JugoSimJG04MSSRAgPUI+0NeUoINJNxv9I4aFWfNgNhX5cwbH615GgQMph4OnNAKm+nJ2NxP9m7Vh1z92E8ihWhONJUDdmUIVwVAr0qSBYsaEmCAuqb4W4jwTCSlc3leIFvwG6G3u2iXnSKJfsSqlye1qsXmYt5cEeOABHwAZnoAquQQ3UAQaP4Bm8gFfjyXgz3o2PyWrOyDy7YArG5w83c6GF</latexit>

→↑2ω = !→

<latexit sha1_base64="DCdQle9uFzxG16XKRiDcRKKSmes=">AAACIXicbVDLSgMxFM34rPVVdekmWgRXZUZE3QiiG5cV7AM6pdxJ0zY0yQzJHaEMXfshrt3qN7gTd+IX+BemD8SqBwKHc+7l3JwokcKi7797c/MLi0vLuZX86tr6xmZha7tq49QwXmGxjE09Asul0LyCAiWvJ4aDiiSvRf2rkV+748aKWN/iIOFNBV0tOoIBOqlV2At7gFkYKaqHNGTtGGmoIZJAw8QKek79VqHol/wx6F8STEmRTFFuFT7DdsxSxTUyCdY2Aj/BZgYGBZN8mA9TyxNgfejyhqMaFLfNbPyVIT1wSpt2YuOeRjpWf25koKwdqMhNKsCe/e2NxP+8Roqds2YmdJIi12wS1EklxZiOeqFtYThDOXAEmBHuVsp6YICha28mJVLfAa6b4HcTf0n1qBSclE5ujosXl9OWcmSX7JNDEpBTckGuSZlUCCP35JE8kWfvwXvxXr23yeicN93ZITPwPr4AUgKikQ==</latexit>

n̂ ·→ω = 0

<latexit sha1_base64="d6zehs8pCWGdoSl6SNepvhXWe9c="></latexit>

!→(x) = !(x) + ”(x) ω[n̂ · (x→ xωR)]

Figure 9.4: Use of Neumann boundary conditions for the Poisson boundary value problem allows for two
equivalent formulations of the boundary condition. The first, shown in the left, considers the Poisson equation
−∇2ψ = Λ in the interior, x ∈ R, along with boundary data along x ∈ ∂R, where n̂ · ∇ψ = Σ. The second
formulation, shown on the right, absorbs the boundary data into the interior source via a Dirac delta sheet that is
placed infinitesimally close, on the inside, of the boundary. In this approach the Poisson equation has a modified
source, Λ∗(x) = Λ(x) + Σ(x) δ[n̂ · (x − x∂R)], and the Neumann boundary condition becomes homogeneous,
n̂ · ∇ψ = 0. The delta sheet is here depicted by the slightly thicker line placed around the boundary.

Notably, the same data, Σ, is needed for both equations (9.123) and (9.93), so there is
nothing fundamentally special or efficient about one formulation or the other. Rather, it is
a matter of convenience. For example, the formulation using Λ∗ has found some favor in the
study of quasi-geostrophic potential vorticity (Bretherton, 1966), and we pursue this approach
in Section 45.7. We also make use of a similar construct in Sections 72.6.3 and 73.4.3 for studies
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of boundary buoyancy fluxes crossing the ocean surface.

9.4.9 One-dimensional Poisson equation with Neumann boundaries
To exemplify the results from this section, consider the one-dimensional Poisson equation with
Neumann boundary conditions

−d2ψ

dx2
= Λ for −L < x < L (9.124a)

dψ

dx
= Σ± for x = ±L, (9.124b)

with Σ± prescribed boundary data. The corresponding modified Green’s function, G̃(x|x0),
satisfies the boundary value problem

−d2G̃(x|x0)
dx2

= δ(x− x0)−
1

2L
for −L < x, x0 < L, (9.125a)

dG̃(x|x0)
dx

= 0 for x = ±L. (9.125b)

Including the extra source term, −1/(2L), in the differential equation (9.125a) compensates for
the integral of the Dirac source, so that the integral of equation (9.125a)

− dG̃

dx

∣∣∣∣∣
x=L

+
dG̃

dx

∣∣∣∣∣
x=−L

= 0, (9.126)

is consistent with homogeneous Neumann boundary conditions satisfied by G̃. The one-
dimensional version of the solution (9.100) takes the form

ψ(x0)− ⟨ψ⟩ =
ˆ L

−L
G̃(x|x0) Λ(x) dx+

[
G̃

dψ

dx

]
x=L

−
[
G̃

dψ

dx

]
x=−L

, (9.127)

where we introduced the domain average

⟨ψ⟩ = 1

2L

ˆ L

−L
ψ(x) dx. (9.128)

Exposing the free space Green’s function, −|x−x0|/2, as for the Dirichlet solution in Section
9.3.11, we have the quadratic expression for the Green’s function

G̃(x|x0) =
{

(x− x0)/2 + x2/(4L) +Ax+B for −L ≤ x ≤ x0
−(x− x0)/2 + x2/(4L) + C x+D for x0 ≤ x ≤ L, (9.129)

where A,B,C,D are constants. The quadratic term is the new piece relative to the Dirichlet
expression in Section 9.3.11. Use of the homogeneous Neumann boundary conditions at x = ±L
determines A = 0 and C = 0 so that the Green’s function is

G̃(x|x0) =
{

(x− x0)/2 + x2/(4L) +B for −L ≤ x ≤ x0
−(x− x0)/2 + x2/(4L) +D for x0 ≤ x ≤ L, (9.130)

along with its first derivative

dG̃(x|x0)
dx

=

{
1/2 + x/(2L) for −L ≤ x ≤ x0
−1/2 + x/(2L) for x0 ≤ x ≤ L. (9.131)
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Figure 9.5: Depicting the Green’s function, G̃(x|x0), given by equation (9.134). This function has a kink at the
source point, here chosen as x = x0 = 1 and with L = 3x0 (units are arbitrary). Notice that the Green’s function
has a zero derivative at x = ±L, as required since it satisfies the homogeneous Neumann boundary conditions.

The jump condition at x = x0 offers no new information, since the jump is already satisfied
by exposing the free space Green’s function. However, insisting that the Green’s function be
continuous at x = x0 leads to B = D, thus yielding the Green’s function

G̃(x|x0) =
{

(x− x0)/2 + x2/(4L) +B for −L ≤ x ≤ x0
−(x− x0)/2 + x2/(4L) +B for x0 ≤ x ≤ L. (9.132)

The final constant, B, can be specified by insisting on the reciprocity condition by constraining
the global integral of G̃ to be zero as per equation (9.105), which yields

B = (x20/2− L2/3)/(2L), (9.133)

and thus the Green’s function

G̃(x|x0) =
1

4L

{
x2 + x20 + 2L (x− x0) for −L ≤ x ≤ x0
x2 + x20 − 2L (x− x0) for x0 ≤ x ≤ L, (9.134)

with reciprocity manifest. We plot this Green’s function in Figure 9.5, revealing a kink at the
Dirac source location, x = x0, and the quadratic behaviour when moving away from the source.

9.5 Green’s functions for the diffusion equation

In this section we study the diffusion equation, also known as the heat equation. We first
encountered the diffusion equation in Section 6.6, where it served as the canonical parabolic
partial differential equation. It is more thoroughly explored in Chapter 69, with much of the
current chapter a foundation for the Green’s function treatment of the advection-diffusion tracer
equation in Section 69.9. Correspondingly, we offer physical interpretations of the results in this
section according to the tracer diffusion equation, where the tracer can be material (e.g., ocean
salinity or atmospheric moisture) or thermodynamic (e.g., temperature or potential enthalpy).
Time evolution presents a fundamentally new element to the diffusion equation relative to the
Poisson equation encountered in Sections 9.2, 9.3, and 9.4.
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9.5.1 Time independence of the spatial domain
Certain geophysical applications of interest in this book make use of spatial regions, R, that have
time dependent boundaries. The ocean free surface is the key example. Indeed, we consider time
dependent boundaries when studying the tracer advection-diffusion equation in Section 69.9.
However, the advent of a time dependent domain boundary adds some additional conceptual
and technical details that are best confronted only after developing a Green’s function brain
muscle in the current chapter. For that reason, we assume R is static in this chapter.

9.5.2 Causal free space Green’s function
Consider a Dirac delta source of tracer at the space-time point, (x0, t0), and assume a continuous
media where there is no advection, such as found in a stagnant fluid or elastic solid. The simplest
solution to the diffusion equation is known as the causal free space Green’s function, G, which is
defined for t ∈ (−∞,∞) and satisfies

(∂t − κ∇2
x)G(x, t|x0, t0) = δ(t− t0) δ(x− x0) x ∈ Rn (9.135a)

G(x, t|x0, t0)→ 0 |x− x0| → ∞ (9.135b)

G(x, t|x0, t0) = 0 t < t0, (9.135c)

where Rn is Euclidean space with n = 1, 2, 3 considered here, and where κ > 0 is a constant
kinematic diffusivity (dimensions L2 T−1). Equation (9.135b) ensures that the free space Green’s
function decays as the field point gets further away from the source point. The causality condition
(9.135c) means that the Green’s function vanishes throughout all of space for times prior to the
time, t0, at which the Dirac source occurs. Given the dimensions of the Dirac source, we see
that the Green’s function has dimensions of L−n.

The causal free-space Green’s function is given by13

G(x, t|x0, t0) =
H(t− t0)

[4π κ (t− t0)]n/2
e−(x−x0)2/[4κ (t−t0)], (9.136)

where the Heaviside step function, H (equation (7.19)), enforces causality. The amplitude of
the Green’s function exponentially decays when moving away from the source location, thus
satisfying the condition (9.135b). Additionally, as time progresses beyond the source time, the
Green’s function decays according to the pre-factor, (t− t0)−n/2. As seen by equation (7.14b),
as time approaches the Dirac delta time, t ↓ t0, the Green’s function becomes a Dirac delta in
space14

lim
t↓t0

G(x, t|x0, t0) = δ(x− x0). (9.137)

9.5.3 Causal Green’s function
We next introduce the causal Green’s function for the diffusion equation. This Green’s function is
defined for t ∈ (−∞,∞) and satisfies the following equations when assuming Neumann boundary
conditions

∂[G(x, t|x0, t0)]

∂t
−∇x · [K · ∇xG(x, t|x0, t0)] = δ(t− t0) δ(x− x0) x ∈ R (9.138a)

n̂ · K · ∇xG(x, t|x0, t0) = 0 x ∈ ∂R,x0 /∈ ∂R
(9.138b)

G(x, t|x0, t0) = 0 t < t0. (9.138c)

13See Section 5.8 of Stakgold (2000b) for a derivation of the free space solution (9.136).
14See also exercise 5.3 in Stakgold (2000b) for the one-dimensional case.
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The Neumann boundary condition is relevant when one knows the boundary flux of heat or
tracer concentration. Note that the nicety regarding the placement of the field and source
points for the boundary conditions. Namely, the homogeneous Neumann boundary condition
(9.138b) holds when the field point, x, is on the boundary and yet the source point, x0, is not
on the boundary. We later extend the boundary condition (see equation (9.181)) to allow both
x,x0 ∈ ∂R.

Dirichlet boundary conditions are used when knowing the boundary values for the field, in
which case the corresponding causal Green’s function satisfies

∂[G(x, t|x0, t0)]

∂t
−∇x · [K · ∇xG(x, t|x0, t0)] = δ(t− t0) δ(x− x0) x ∈ R (9.139a)

G(x, t|x0, t0) = 0 x ∈ ∂R (9.139b)

G(x, t|x0, t0) = 0 t < t0. (9.139c)

The Dirichlet condition is particularly relevant for passive tracers in the atmosphere and ocean,
such as those studied in Section 69.9. In both the Neumann and Dirichlet cases, we generalized
the free space solution from Section 9.5.2 by introducing a space-time dependent diffusivity
tensor, K(x, t), which is a symmetric second order tensor with dimensions L2 T−1 (we study
diffusion tensors in Chapter 69 and 71). The Green’s function has dimensions of inverse volume,
L−3, which is implied since the Dirac delta source has dimensions of inverse volume times inverse
time, L−3 T−1.

In the presence of boundaries, the spatial position of the Dirac delta source impacts the
value of the causal Green’s function. In contrast, the causality condition (9.138c) means that
the Green’s function is dependent only on the time since the introduction of the source, t− t0.
Hence, there is no added generality afforded by setting the source time, t0, to be distinct from
t0 = 0. Even so, we retain t0 to maintain symmetry with the spatial location x0. Doing so also
helps to distinguish the Dirac source time, t0, from the initial time, tinit, with the intitial time
introduced in Section 9.5.9.

Finally, notice that the causality conditions (9.138c) and (9.139c) strictly hold for t < t0. As
seen in equation (9.178), when the source time is evaluated at t0 = tinit, then the limit as the
field time goes to the initial time, t ↓ tinit, results in a spatial Dirac delta δ(x− x0). That is, the
Green’s function is initialized by a Dirac delta source at x = x0.

9.5.4 An integral consistency condition

It is notable that there is a Green’s function for the diffusion equation in the presence of
homogeneous Neumann conditions, whereas there is no Green’s function for the Poisson equation
with Neumann boundaries (Section 9.4.3). Time dependence in the diffusion equation is the key
distinction.

To determine a self-consistency condition for the Green’s function partial differential equation
(9.138a), integrate it over the static spatial domain, R, and make use of the divergence theorem
to find

d

dt

ˆ
R

G(x, t|x0, t0) dVx = δ(t− t0) +
˛
∂R
n̂ · K(x) · ∇xG(x, t|x0, t0) dSx. (9.140)

The boundary integral term on the right hand side vanishes for the homogeneous Neumann
boundary conditions (9.138b), in which the domain integrated Green’s function evolves only as a
result of the Dirac delta source firing at t = t0. For the case of homogeneous Dirichlet boundary
conditions (9.139b), the domain integrated Green’s function evolves both from the Dirac source
and from the generally nonzero fluxes crossing the domain boundaries.
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Now integrate equation (9.140) over a time intervel, t0 − ϵ ≤ t ≤ t0 + ϵ, thus resulting in

ˆ
R

G(x, t = t0 + ϵ|x0, t0) dVx = 1 +

ˆ t0+ϵ

t0−ϵ

˛
∂R
n̂ · K(x) · ∇xG(x, t|x0, t0) dSx dt, (9.141)

where we used causality (9.138c) to set G(x, t = t0− ϵ|x0, t0) = 0. The unit impulse on the right
hand side results from the integrated Dirac delta source that fires at t = t0. For homogeneous
Neumann boundaries, the domain integrated Green’s function is unity at all times t > t0

ˆ
R

G(x, t = t0 + ϵ|x0, t0) dVx = 1 for Neumann boundaries. (9.142)

That is, the Green’s function is normalized to unity when integrated over the full domain. This
result follows from the conservation of domain integrated tracer, which holds in the absence of
boundary fluxes (homogeneous Neumann conditions) and for all times.

9.5.5 A temporal consistency condition
We can develop another consistency condition by integrating the partial differential equation
(9.138a) over a time interval that straddles the Dirac source time, t ∈ [t0 − ϵ, t0 + ϵ], in which
case

G(x, t0 + ϵ|x0, t0) = δ(x− x0) +

ˆ t0+ϵ

t0−ϵ
∇x · [K · ∇xG(x, t|x0, t0)] dt. (9.143)

where we used causality (9.138c) to set G(x, t0−ϵ|x0, t0) = 0. The divergence operator commutes
with the time integral so that the right hand side term can be written

ˆ t0+ϵ

t0−ϵ
∇x · [K · ∇xG(x, t|x0, t0)] dt = ∇x ·

ˆ t0+ϵ

t0−ϵ
K · ∇xG(x, t|x0, t0) dt. (9.144)

Now take the limit as ϵ→ 0, and assume the integrand is smooth in time so that the integral
vanishes,15 thus leaving the relation

lim
ϵ→0

G(x, t0 + ϵ|x0, t0) = δ(x− x0). (9.145)

Evidently, the Green’s function, when evaluated at the source time t = t0, equals to the spatial
Dirac delta source. This property is shared with the causal free space Green’s function in Section
9.5.2 (see equation (9.137)).

9.5.6 Adjoint causal Green’s function
We make use of the adjoint causal Green’s function for solving initial-boundary value problems
for the diffusion equation. The adjoint causal Green’s function is defined for t ∈ (−∞,∞) and
satisfies the following boundary value problem for the Neumann conditions, with these equations
representing the adjoint to the Green’s function equations (9.138a)-(9.138c)

− ∂[G‡(x, t|x0, t0)]

∂t
−∇x ·

[
K · ∇xG

‡(x, t|x0, t0)
]
= δ(t− t0) δ(x− x0) x ∈ R (9.146a)

n̂ · K · ∇xG
‡(x, t|x0, t0) = 0 x ∈ ∂R,x0 /∈ ∂R

(9.146b)

G‡(x, t|x0, t0) = 0 t > t0. (9.146c)

15This assumption is not fully satisfactory. Even so, we infer the property (9.145) derived when studying
properties of the Green’s function solution to the initial-boundary value problem for the diffusion equation.
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Similarly, the adjoint Green’s function satisfying Dirichlet boundary conditions is determined by

− ∂[G‡(x, t|x0, t0)]

∂t
−∇x ·

[
K · ∇xG

‡(x, t|x0, t0)
]
= δ(t− t0) δ(x− x0) x ∈ R (9.147a)

G‡(x, t|x0, t0) = 0 x ∈ ∂R (9.147b)

G‡(x, t|x0, t0) = 0 t > t0. (9.147c)

Note the sign change on the time derivative in equations (9.146a) and (9.147a) relative to
equations (9.138a) and (9.139a). This change results since the single partial time derivative is
not a self-adjoint operator, reflecting the lack of time symmetry of the diffusion equation (i.e.,
the diffusion equation distinguishes between past and future). Also note the backward causal
condition, equations (9.146c) and (9.147c). Physically we might wish to interpret the adjoint
Green’s function as a solution to the concentration equation, which is the diffusion equation run
backwards in time.

9.5.7 Reciprocity of the Green’s function and its adjoint

When studying Poisson’s equation we made use of reciprocity (9.49) satisfied by the Poisson
equation Green’s function. We desire a corresponding reciprocity condition for the causal Green’s
function from the diffusion equation. Deriving reciprocity requires a bit more work for the
diffusion equation due to the added time derivative term, which renders the adjoint diffusion
operator distinct from the diffusion operator. That is, the diffusion operator is not self-adjoint
due to sign change on the time derivative, whereas the Laplacian operator is self-adjoint.

Before starting this derivation, note that we did not derive the adjoint in Section 9.5.6,
instead we merely wrote it down. However, introduction of the adjoint Green’s function is
largely motivated by the following derivation of the reciprocity relation. In this derivation we
find that the Green’s function for the diffusion equation satisfies a reciprocity relation with the
adjoint Green’s function (equation (9.156) below). Hence, as part of the following derivation we
indirectly see how to construct the adjoint problem.

Setting up the derivation

To derive reciprocity, consider the partial differential equation (9.138a) with a Dirac delta source
δ(t− t1) δ(x− x1), and the adjoint partial differential equation (9.146a) with a distinct Dirac
delta source δ(t− t2) δ(x− x2). Multiply each of these equations by the complement Green’s
function and subtract

G‡(x, t|x2, t2)(∂tG(x, t|x1, t1)−∇x · [K · ∇xG(x, t|x1, t1)])

−G(x, t|x1, t1)(−∂tG‡(x, t|x2, t2)−∇x · [K · ∇xG
‡(x, t|x2, t2)])

= G‡(x, t|x2, t2) δ(t− t1) δ(x− x1)−G(x, t|x1, t1) δ(t− t2) δ(x− x2). (9.148)

The Dirac delta source locations, x1 ∈ R and x2 ∈ R, are arbitrary points within the spatial
domain R. Likewise, the source times, t1 and t2, are arbitrary. In the following, we find it useful
for organizational purposes to introduce an arbitrarily large time, T , so that

−T < t1, t2 < T, (9.149)

with T later dropping out from the results through use of the causality conditions.
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Integration and use of the sifting property

An integral of the right hand side of equation (9.148) over the spatial domain, x ∈ R, and over
the time domain, t ∈ [−T, T ], for the observational space-time points (x, t), leads to

ˆ T

−T

ˆ
R

[
G‡(x, t|x2, t2) δ(t− t1) δ(x− x1)−G(x, t|x1, t1) δ(t− t2) δ(x− x2)

]
dV dt

= G‡(x1, t1|x2, t2)−G(x2, t2|x1, t1). (9.150)

As shown in the following, the same integral of the left hand side of equation (9.148) vanishes,
which then establishes the reciprocity property between the Green’s function and the adjoint
Green’s function.

Moving the time derivative from G to G‡ and picking up a minus sign

The left hand side of equation (9.148) requires us to massage just the first term since, as we will
show, this term equals to the second so that the left hand side of equation (9.148) vanishes. To
prove this assertion, start by examining the time derivative. Since the spatial domain, R, is
assumed to be static,16 we can swap the time and space derivatives to find

ˆ T

−T
G‡(x, t|x2, t2) ∂tG(x, t|x1, t1) dt

=

ˆ T

−T

[
∂t

(
G‡(x, t|x2, t2)G(x, t|x1, t1)

)
− ∂tG‡(x, t|x2, t2) G(x, t|x1, t1)

]
dt. (9.151)

We now set
G(x, t = −T |x1, t1) = 0 and G‡(x, t = +T |x2, t2) = 0, (9.152)

which result from the causality conditions (9.138c) and (9.146c). Hence, in moving the time
derivative from G to G‡ we pick up a minus sign, which, again, means that the time derivative
is not self-adjoint

ˆ T

−T
G‡(x, t|x2, t2) ∂tG(x, t|x1, t1) dt = −

ˆ T

−T
∂tG

‡(x, t|x2, t2) G(x, t|x1, t1) dt. (9.153)

The Laplacian is self-adjoint with a symmetric diffusion tensor

Consider next the spatial derivative term on the left hand side of equation (9.148)

−
ˆ
R

G‡(x, t|x2, t2)∇x · [K · ∇xG(x, t|x1, t1)] dV =

ˆ
R

[
−∇x ·

(
G‡(x, t|x2, t2)K · ∇xG(x, t|x1, t1)

)
+∇xG

‡(x, t|x2, t2) · K · ∇xG(x, t|x1, t1)
]
dV.

(9.154)

Use of the divergence theorem and either the homogeneous Neumann boundary condition
(9.138b) or homogeneous Dirichlet condition (9.139b) allow us to drop the total derivative term.
The same manipulation, with either the Neumann condition (9.146b) or Dirichlet condition
(9.147b) satisfied by the adjoint Green’s function G‡(x, t|x2, t2), allows us to seamlessly move

16As noted in Section 9.5.1, in Section 69.9 we dispense with the assumption of a time independent spatial
domain. Doing so requires extra care, both physically and mathematically, thus motivating us to postpone that
discussion until we have more experience.
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the Laplacian operator from G(x, t|x1, t1) onto G
‡(x, t|x2, t2), thus manifesting the self-adjoint

nature of the Laplacian operator even in the presence of a symmetric diffusion tensor

ˆ
R

G‡(x, t|x2, t2)∇x · [K · ∇xG(x, t|x1, t1)] dV

=

ˆ
R

∇x ·
[
K · ∇xG

‡(x, t|x2, t2)
]
G(x, t|x1, t1) dV. (9.155)

Reciprocity of the Green’s function and the adjoint Green’s function

The above manipulations show that the space-time integral for the left hand side of equation
(9.148) vanishes. Consequently, we are left with the reciprocity relation satisfied by the Green’s
function and adjoint Green’s function for the diffusion equation

G‡(x, t|x0, t0) = G(x0, t0|x, t). (9.156)

The Green’s function, G(x0, t0|x, t), results from placing a Dirac delta source at (x, t) and
using the forward diffusion equation to determine the response at (x0, t0) with t < t0. The
adjoint Green’s function, G‡(x, t|x0, t0), results from placing a Dirac delta source at (x0, t0)
and using the adjoint diffusion equation to determine the response at (x, t), again with t < t0.
The reciprocity relation (9.156) shows that the two responses are identical. We emphasize that
reciprocity is a property that emerges from properties of the differential operator, the boundary
conditions, and the causality condition.

Reciprocity in the form of equation (9.156) means we have no need to bother solving the
adjoint Green’s function equation for G‡(x, t|x0, t0) since the adjoint Green’s function equals to
the Green’s function after swapping the space-time points for the field and source. Hence, it is
sufficient to determine the Green’s function, G(x, t|x0, t0), and then use reciprocity to determine
G‡(x, t|x0, t0). The simplicity of the reciprocity relation (9.156) is central to the practical use of
the Green’s function method for the diffusion equation.

9.5.8 Composition property of the Green’s function
Following from the reciprocity relation derived in Section 9.5.7, we here derive the composition
property satisfied by the Green’s functions for the diffusion equation. This property connects
the Green’s function to Markov processes, in which the composition property is known as the
Chapman-Kolmogorov relation (Gardiner , 1985). The derivation closely follows that given in
Section 9.5.7 for reciprocity, though it is a bit simpler. Larson (1999) and Holzer (2009) discuss
the composition property in the context of the advection-diffusion equation, to which we return
to in Section 69.9.6. Holzer (2009) also provides further connections to probability theory, thus
promoting the interpretation of the Green’s function as a transition probability.

Setting up the derivation

Consider again the Green’s function partial differential equation (9.138a) with a Dirac delta
source at (t1,x1),

∂tG(x, t|x1, t1)−∇x · [K · ∇xG(x, t|x1, t1)] = δ(t− t1) δ(x− x1), (9.157)

and the adjoint Green’s function partial differential equation (9.146a) with a distinct Dirac delta
source at (t2,x2)

∂tG
‡(x, t|x2, t2) +∇x · [K · ∇xG

‡(x, t|x2, t2)] = −δ(t− t2) δ(x− x2). (9.158)
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Multiply each of these equations by the complement Green’s function and add the two equations.17

Adding the time derivatives leads to

G‡(x, t|x2, t2) ∂tG(x, t|x1, t1) +G(x, t|x1, t1) ∂tG
‡(x, t|x2, t2)

= ∂t [G
‡(x, t|x2, t2)G(x, t|x1, t1)], (9.159)

and adding the space derivatives leads to

−G‡(x, t|x2, t2)∇x · [K · ∇xG(x, t|x1, t1)] +G(x, t|x1, t1)∇x · [K · ∇xG
‡(x, t|x2, t2)]

= ∇x · [−G‡(x, t|x2, t2)K · ∇xG(x, t|x1, t1) +G(x, t|x1, t1)K · ∇xG
‡(x, t|x2, t2)]. (9.160)

Integrating over the full spatial domain and using the homogeneous Neumann or Dirichlet
boundary conditions removes the space derivative terms, thus leaving

d

dt

ˆ
R

[G‡(x, t|x2, t2)G(x, t|x1, t1)] dV

= G‡(x1, t|x2, t2) δ(t− t1)−G(x2, t|x1, t1) δ(t− t2), (9.161)

where we pulled the time derivative outside of the space integration since R is a static domain
(Section 9.5.1).

Time integration and use of causality

T1

t1 t2

T2

T1

t1 t2

T2

T1 < t1 < T2 < t2

t1 < T1 < t2 < T2

Figure 9.6: Two possible placements of the time steps used to derive the Green’s function composition property.

Integrate equation (9.161) over time, in which case

ˆ
R

[G‡(x, T2|x2, t2)G(x, T2|x1, t1)−G‡(x, T1|x2, t2)G(x, T1|x1, t1)] dV

=

ˆ T2

T1

[G‡(x1, t|x2, t2) δ(t− t1)−G(x2, t|x1, t1) δ(t− t2)] dt, (9.162)

where T1 < T2 are time endpoints for the time integration. The causality conditions (9.138c)
and (9.146c) lead to the following identities, depending on the placements of T1, T2 relative to
t1, t2 as shown in Figure 9.6

G‡(x1, t1|x2, t2) =

ˆ
R

G‡(x, T2|x2, t2)G(x, T2|x1, t1) dV if T1 < t1 < T2 < t2 (9.163a)

G(x2, t2|x1, t1) =

ˆ
R

G‡(x, T1|x2, t2)G(x, T1|x1, t1) dV if t1 < T1 < t2 < T2. (9.163b)

17Recall that in Section 9.5.7 we subtracted the two equations to derive the reciprocity relation.
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Use of the reciprocity relation (9.156) then leads to the composition relations

G(x2, t2|x1, t1) =

ˆ
R

G(x2, t2|x, T2)G(x, T2|x1, t1) dV if T1 < t1 < T2 < t2 (9.164a)

G(x2, t2|x1, t1) =

ˆ
R

G(x2, t2|x, T1)G(x, T1|x1, t1) dV if t1 < T1 < t2 < T2. (9.164b)

These equations are identical since both include an arbitrary intermediate time that is bounded
by t1 < t2, thus allowing us to write the general composition property of the Green’s function

G(x2, t2|x1, t1) =

ˆ
R

G(x2, t2|x, τ)G(x, τ |x1, t1) dV if t1 < τ < t2. (9.165)

Interpreting the Green’s function composition property

The Green’s function, G(x2, t2|x1, t1), on the left hand side of the composition property (9.165)
is the response from a Dirac delta source diffused from (x1, t1) and measured at the field space-
time point (x2, t2). The right hand side says that this response, G(x2, t2|x1, t1), is identical
to the composition of a Green’s function feeling the source at (x1, t1) but now sampled at an
intermediate space-time position, (x, τ), and then further diffused to (x2, t2), with integration
over all possible intermediate positions x. Furthermore, note that the intermediate sampling can
occur at an arbitrary intermediate time, τ , so long as t1 < τ < t2. The composition property
allows us to conceive of a long-time interval Green’s function as the composition of an arbitrary
number of shorter time interval Green’s functions.

9.5.9 The integral solution
Having established reciprocity (9.156), we are ready to derive an integral expression for the
field, ψ(x, t), satisfying the diffusion equation initial-boundary value problem with either the
Neumann boundary conditions

∂tψ(x, t)−∇ · [K · ∇xψ(x, t)] = Λ(x, t) x ∈ R (9.166a)

n̂ · K · ∇xψ(x, t) = Σ(x, t) x ∈ ∂R (9.166b)

ψ(x, t = tinit) = I(x) x ∈ R, (9.166c)

or Dirichlet boundary conditions

∂tψ(x, t)−∇ · [K · ∇xψ(x, t)] = Λ(x, t) x ∈ R (9.167a)

ψ(x, t) = σ(x, t) x ∈ ∂R (9.167b)

ψ(x, t = tinit) = I(x) x ∈ R. (9.167c)

In these equations we introduced the initial time, t = tinit, which is distinct from the Dirac
delta source time, t = t0. We are interested in the evolution of ψ after specification of the
initial data, ψ(x, t = tinit) = I(x). Correspondingly, tinit defines the lower limit on time integrals
in the following. Use of the ∇x notation is not needed for these equations, since there is no
source point, x0, in any of the expressions. However, writing ∇x helps us remain organized
during the following manipulations. Finally, note that the diffusion tensor appearing in these
equations means that the source function, Λ(x, t), in equations (9.166a) and (9.167a), as well as
the boundary data, Σ(x, t), in equation (9.166b), have different physical dimensions from their
counterparts found in the Poisson boundary value problems (9.37) and (9.93).

The following derivation emulates that for the Poisson equation in Section 9.3.7, yet with
distinct features arising from time evolution and the corresponding need to use the adjoint causal
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Green’s function, G‡. We expose many details as doing so reveals general notions and tricks
arising with Green’s function methods for initial-boundary value problems.

Setting up the derivation

To start the derivation, multiply the diffusion equation (9.166a) by the adjoint Green’s function,
G‡(x, t|x0, t0), and the adjoint Green’s function equation (9.146a) by ψ(x, t). Subtracting and
rearranging leads to

∂t(G
‡ ψ)+∇·[ψ K·∇xG

‡−G‡ K·∇ψ] = G‡(x, t|x0, t0) Λ(x, t)−ψ(x, t) δ(x−x0) δ(t−t0), (9.168)

where we temporarily suppressed arguments on the left hand side for brevity. Since the spatial
domain is assumed to be static, we can integrate this equation over space and time without
concern for the order of integration.

Time integration

A time integral of the first left hand side term in equation (9.168) leads to18

ˆ T

tinit

∂t[G
‡(x, t|x0, t0)ψ(x, t)] dt = G‡(x, T |x0, t0)ψ(x, T )−G‡(x, tinit|x0, t0)ψ(x, tinit) (9.169a)

= −G‡(x, tinit|x0, t0) I(x), (9.169b)

where we made use of the backward causal condition (9.146c) satisfied by the adjoint Green’s
function to set G‡(x, t = T |x0, t0) = 0, and used the initial condition (9.166c) to introduce the
initial value data, ψ(x, tinit) = I(x).

Space integration

A space integral over all observation points, and use of the divergence theorem, brings the
divergence term on the left side of equation (9.168) into

ˆ
R

∇ · [ψ(x, t)K · ∇xG
‡(x, t|x0, t0)−G‡(x, t|x0, t0)K · ∇xψ(x, t)] dV

=

˛
∂R

[
ψ(x, t)K · ∇xG

‡(x, t|x0, t0)−G‡(x, t|x0, t0)K · ∇xψ(x, t)
]
· n̂dS. (9.170)

We keep both boundary terms pending specification of whether the fields satisfy Dirichlet or
Neumann boundary conditions. This boundary integral has the same appearance as found
for the Poisson equation in Section 9.3.7, with the added feature here of the diffusion tensor.
Also, recall that the diffusion tensor is generally a function of space and time, K(x, t), with the
dependence supressed for brevity.

18Recall that T is an arbitrarily large but finite time. It drops out from the final answer, but proves useful for
organizational purposes in intermediate steps.
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Integrating the right hand side of equation (9.168)

A space and time integral for the right hand side of equation (9.168), along with the sifting
properties of the Dirac delta, render

ˆ T

tinit

[ˆ
R

[G‡(x, t|x0, t0) Λ(x, t)− ψ(x, t) δ(x− x0) δ(t− t0)] dV
]
dt

= −ψ(x0, t0) +

ˆ T

tinit

[ˆ
R

G‡(x, t|x0, t0) Λ(x, t)dV

]
dt. (9.171)

Notice how this integration over the observation space-time points, (x, t), serves to pick out the
field, ψ, evaluated at the space-time point, (x0, t0), where the Dirac delta source is located.

Rearrangement and use of reciprocity

Bringing the above results together leads to the expression

ψ(x0, t0) =

ˆ
R

G‡(x, tinit|x0, t0) I(x) dV +

ˆ t0

tinit

[ˆ
R

G‡(x, t|x0, t0) Λ(x, t) dV

]
dt

+

ˆ t0

tinit

[˛
∂R

[
G‡(x, t|x0, t0)K · ∇xψ(x, t)− ψ(x, t)K · ∇xG

‡(x, t|x0, t0)
]
· n̂dS

]
dt. (9.172)

The time integrals are restricted to the range t ∈ [tinit, t0] through use of the causality condition
(9.146c) for the adjoint Green’s function. Hence, the arbitrary time, T , drops out from the
solution and there is no dependence on fields at times later than t0 nor before tinit.

Use of reciprocity (9.156) allows us to replace the adjoint Green’s function with the Green’s
function to thus bring equation (9.172) to

ψ(x0, t0) =

ˆ
R

G(x0, t0|x, tinit) I(x) dV +

ˆ t0

tinit

[ˆ
R

G(x0, t0|x, t) Λ(x, t) dV
]
dt

+

ˆ t0

tinit

[˛
∂R

[G(x0, t0|x, t)K · ∇xψ(x, t)− ψ(x, t)K · ∇xG(x0, t0|x, t)] · n̂dS

]
dt. (9.173)

Finally, it is convenient to relabel (x0, t0)↔ (x, t) to write

ψ(x, t) =

ˆ
R

G(x, t|x0, tinit) I(x0) dV0︸ ︷︷ ︸
space integral of G times I on R

+

ˆ t

tinit

[ˆ
R

G(x, t|x0, t0) Λ(x0, t0) dV0

]
dt0︸ ︷︷ ︸

space-time integral of G times Λ over R

+

ˆ t

tinit

[˛
∂R

[G(x, t|x0, t0)K · ∇x0ψ(x0, t0)− ψ(x0, t0)K · ∇x0G(x, t|x0, t0)] · n̂x0 dS0

]
dt0.︸ ︷︷ ︸

space-time integral of boundary terms over ∂R

(9.174)

Specializing to Neumann boundary conditions leads to

ψNeumann(x, t) =

ˆ
R

G(x, t|x0, tinit) I(x0) dV0 +

ˆ t

tinit

[ˆ
R

G(x, t|x0, t0) Λ(x0, t0) dV0

]
dt0

+

ˆ t

tinit

[˛
∂R
G(x, t|x0, t0) Σ(x0, t0) dS0

]
dt0, (9.175)
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whereas the solution with Dirichlet boundary conditions is

ψDirichlet(x, t) =

ˆ
R

G(x, t|x0, tinit) I(x0) dV0 +

ˆ t

tinit

[ˆ
R

G(x, t|x0, t0) Λ(x0, t0) dV0

]
dt0

−
ˆ t

tinit

[˛
∂R
σ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0. (9.176)

9.5.10 Properties of the solution: initial conditions
Many properties of the solution (9.174) are also reflected in the Poisson equation solutions from
Sections 9.3.8 and 9.4.7. In particular, the solution manifests the linear superposition principle,
with the solution given by the sum of three terms arising from the initial conditions, distributed
volume source, and spatial boundary conditions. We expect to have this connection given
that the steady state diffusion equation satisfies a generalized Poisson equation (generalized
by the presence of a diffusion tensor). Uniqueness of the solution (9.174) also follows as in the
discussion of the Poisson equation in Sections 9.3.2 and 9.4.2. Namely, consider two solutions to
the diffusion equation and take their difference, Ψ = ψA − ψB. We readily see that Ψ satisfies
the homogeneous diffusion equation with homogeneous boundary conditions along with a zero
initial condition. Ψ thus remains zero for both the Dirichlet and Neumann cases, thus proving
that the solution to both problems is unique.

A fundamentally new piece of physics and maths arises from time dependence. By sampling
the solution (9.174) as time decreases towards the initial time, t ↓ tinit, and noting the initial
condition ψ(x, tinit) = I(x), we are led to19

lim
t↓tinit

ψ(x, t) = I(x) = lim
t↓tinit

ˆ
R

G(x, t|x0, tinit) I(x0) dV0. (9.177)

This temporal sampling of the field time is distinguished from the source time, which here is fixed
at the initial time, tinit. Self-consistency in equation (9.177) implies that the Green’s function for
both Neumann and Dirichlet boundary conditions satisfies the initial condition

lim
t↓tinit

G(x, t|x0, tinit) = δ(x− x0) with x,x0 ∈ R. (9.178)

That is, the Green’s function is initialized by a Dirac delta pulse at the source point, x0, which
is a result already derived in Section 9.5.5 (equation (9.145)) through use of causality. This
result then leads to the identity

lim
t↓tinit

ˆ
R

G(x, t|x0, tinit) I(x0) dV0 =

ˆ
R

δ(x− x0) I(x0) dV0 = I(x). (9.179)

9.5.11 Properties of the solution with Neumann boundary conditions
Acting with K(x, t) · ∇x on the Neumann solution (9.175); evaluating the expression on the
boundary x = x∂R ∈ ∂R; and then projecting onto the outward unit normal, n̂x, serves to
annihilate the volume integrals as per the homogeneous Neumann condition satisfied by the
Green’s function (9.138b). We are thus left with

n̂x · K(x, t) · ∇xψ(x, t) = Σ(x, t) (9.180a)

=

ˆ t

tinit

[˛
∂R
n̂x · K(x, t) · ∇xG(x, t|x0, t0) Σ(x0, t0) dS0

]
dt0. (9.180b)

19Since tinit is the initial time, the limit t ↓ tinit means that t = tinit + ϵ with ϵ→ 0.
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Self-consistency implies that the Green’s function for the Neumann problem, when evaluated on
the spatial boundary, satisfies

n̂x · K(x, t) · ∇xG(x, t|x0, t0) = δ(t− t0) δ(2)(x− x0) with x,x0 ∈ ∂R, (9.181)

where δ(2)(x− x0) is a surface Dirac delta with physical dimensions inverse area. The boundary
condition (9.181) generalizes the property (9.113) holding for the Poisson equation Green’s
function. Furthermore, it extends the homogeneous Neumann condition (9.138b) holding when
x ∈ ∂R and x0 /∈ ∂R to now allow x ∈ ∂R and x0 ∈ ∂R.

When studying the Poisson boundary value problem in Section 9.4.8, we saw how to transform
the Neumann boundary condition into the interior by modifying the source function. The diffusion
equation Neumann solution (9.175) allows for the same transformation by writing

ψNeumann(x, t) =

ˆ
R

G(x, t|x0, tinit) I(x0) dV0+

ˆ t

tinit

[ˆ
R

G(x, t|x0, t0) Λ
∗(x0, t0) dV0

]
dt0, (9.182)

where the modified source function follows from that used for the Poisson equation (9.122)

Λ∗(x0, t0) = Λ(x0, t0) + Σ(x0, t0) δ[n̂ · (x0 − x∂R)]. (9.183)

9.5.12 Properties of the solution with Dirichlet boundary conditions

Evaluating the Dirichlet solution (9.176) on a spatial boundary, x = x∂R ∈ ∂R, eliminates both
of the volume integrals so that we are left with

ψdirichlet(x∂R , t) = σ(x∂R , t) = −
ˆ t

tinit

[˛
∂R
σ(x0, t0)K · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0. (9.184)

Self-consistency implies that the Green’s function for the Dirichlet problem, when evaluated on
the spatial boundary, satisfies

n̂x0 · K(x0, t0) · ∇x0G(x, t|x0, t0) = −δ(t− t0) δ(2)(x− x0) with x,x0 ∈ ∂R, (9.185)

which is a generalization of the property (9.69) holding for the Poisson equation Green’s function.
It is notable that this boundary condition appears with the opposite sign to the analog (9.181)
holding for the Neumann conditions.

9.5.13 The boundary propagator for the Dirichlet problem

In Sections 9.3.8 and 9.3.9 we studied the boundary Green’s function for the Poisson equation.
Here we extend those ideas to the boundary propagator for the diffusion equation, with the
boundary propagator mediating the transfer of Dirichlet boundary information into the interior.
Boundary propagators for diffusion and advection-diffusion (Section 69.9) have extensive use in
geophysical fluids given that many tracers have no interior sources.

Defining the boundary propagator

To focus on the role of the boundary propagator, consider a tracer in which the initial conditions
and interior source both vanish: I(x) = 0 and Λ(x, t) = 0. Assuming Dirichlet boundary
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conditions, the initial-boundary value problem (9.166a)-(9.166c) simplifies to

∂tψ(x, t)−∇x · [K · ∇xψ(x, t)] = 0 x ∈ R (9.186a)

ψ(x, t) = σ(x, t) x ∈ ∂R (9.186b)

ψ(x, t = tinit) = 0 x ∈ R, (9.186c)

with the corresponding Dirichlet Green’s function solution (9.176) taking the form

ψ(x, t) = −
ˆ t

tinit

[˛
∂R
σ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0. (9.187)

We define the boundary propagator as the kernel in this equation

Gbp(x, t|x0, t0) ≡ −K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 with x0 ∈ ∂R, (9.188)

with this definition giving Gbp the dimensions of L−2 T−1. Use of the boundary propagator
brings the Dirichlet solution (9.187) into the succinct form

ψ(x, t) =

ˆ t

tinit

[˛
∂R
σ(x0, t0)G

bp(x, t|x0, t0) dS0

]
dt0. (9.189)

Boundary value problem satisfied by the boundary propagator

If we know the Green’s function, G(x, t|x0, t0), then we can compute the boundary propagator
through the definition (9.188). Alternatively, we can directly determine the boundary propagator
by solving its boundary value problem. Following from the definition (9.188) and the boundary
condition (9.185), we know that

Gbp(x, t|x0, t0) = δ(t− t0) δ(2)(x− x0) with x,x0 ∈ ∂R. (9.190)

Hence, the boundary propagator, when evaluated along the boundary, is a Dirac delta source
that fires at time t = t0 at the location x = x0 ∈ ∂R. To determine the partial differential
equation satisfied by the boundary propagator, make use of the solution (9.189) and compute
its time derivative

∂tψ(x, t) =

˛
∂R
σ(x0, t)G

bp(x, t|x0, t) dS0

+

ˆ t

tinit

[˛
∂R
σ(x0, t0)

∂Gbp(x, t|x0, t0)

∂t
dS0

]
dt0. (9.191)

The first right hand side term vanishes since the boundary propagator satisfies causality just
like the Green’s function when sampled at interior points

Gbp(x, t|x0, t0) = 0 if tinit < t ≤ t0 and x /∈ ∂R. (9.192)

Similarly, equation (9.189) ensures that

∇x ·[K(x, t)·∇xψ(x, t)] =

ˆ t

tinit

[˛
∂R
σ(x0, t0)∇x · [K(x, t) · ∇xG

bp(x, t|x0, t0)]

]
dS0 dt0. (9.193)

We are thus led to

∂tψ(x, t)−∇x · [K(x, t) · ∇xψ(x, t)]
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=

ˆ t

tinit

[˛
∂R
σ(x0, t0)

[
∂Gbp(x, t|x0, t0)

∂t
−∇x · [K(x, t) · ∇xG

bp(x, t|x0, t0)]

]
dS0

]
dt0. (9.194)

Since the left hand side vanishes via the partial differential equation (9.186a), and since the
boundary data, σ, is arbitrary, we are led to the causal boundary value problem for the boundary
propagator

∂tG
bp(x, t|x0, t0)−∇x · [K · ∇xG

bp(x, t|x0, t0)] = 0 x ∈ R (9.195a)

Gbp(x, t|x0, t0) = 0 t < t0 (9.195b)

Gbp(x, t|x0, t0) = δ(t− t0) δ(2)(x− x0) x,x0 ∈ ∂R. (9.195c)

In words, we see that upon firing the Dirac delta source on the boundary at time t = t0 and
point x = x0 ∈ ∂R, the boundary propagator diffuses the Dirac source into the region interior.
Whereas the Dirichlet Green’s function, G(x, t|x0, t0), is zero along the boundary and yet feels
the Dirac delta source within the interior, the boundary propagator, Gbp(x, t|x0, t0), places
the Dirac delta source on the boundary and feels no source within the interior. Just as the
causality condition means that the Green’s function is a function of t− t0, so too is the boundary
propagator. Furthermore, a focus on the boundary propagator rather than the Green’s function
allows us to dispense with the need to compute the normal gradient of the Green’s function at
the boundary, with that calculation rather awkward in practice.

Normalization of the boundary propagator

Consider the special case of a uniform constant Dirichlet boundary data, σ = σconstant, in the
solution (9.189). Diffusion acts on this constant boundary data to spread it throughout the
region. After sufficient time the solution will reach a steady state whereby ψ = σconstant at every
point withing the domain. This result means that the boundary Green’s function satisfies the
normalization condition

lim
tinit→−∞

ˆ t

tinit

[˛
∂R
Gbp(x, t|x0, t0) dS0

]
dt0 = 1, (9.196)

where the lower time limit is meant to indicate some arbitrary time sufficiently far in the past so
that a steady state has been reached. This normalization condition holds for every point within
the domain and for any time, t. It corresponds to the normalization condition (9.72) satisfied by
the boundary Green’s function for the Poisson equation.

9.6 Green’s functions for the wave equation

The linear wave equation from Section 6.7 describes the motion of non-dispersive waves such as
the acoustic waves of Chapter 51 and shallow water gravity waves of Section 55.5. These are a
small subset of the waves encountered in geophysical fluid mechanics, most of which are dispersive.
Even so, it is useful to here introduce the Green’s function formalism for non-dispersive waves
both because of its intrinsic interest, and because it offers a step towards the dispersive waves.
Much of the development in this section emulates that for the diffusion equation in Section 9.5,
in particular the details of causality that are shared between the diffusion equation and wave
equation.
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9.6.1 Initial-boundary value problem for the wave equation

Consider the following initial-boundary value problem for a wave function satisfying the linear
non-dispersive wave equation

(∂tt − c2∇2)ψ(x, t) = Λ(x, t) x ∈ R, t > tinit (9.197a)

ψ(x, t) = I(x) x ∈ R, t = tinit (9.197b)

∂tψ(x, t) = J(x) x ∈ R, t = tinit (9.197c)

ψ(x, t) = σ(x, t) x ∈ ∂R, (9.197d)

where R is a spatial region, and with Λ, I, J , and σ known functions. We choose to focus on the
Dirichlet boundary problem here, though note that the Neumann boundary condition is handled
similarly.20 Compatiability between the boundary conditions and initial conditions is ensured if

σ(x, t) = I(x) x ∈ ∂R, t = tinit. (9.198)

As for the diffusion equation in Section 9.5.9, we introduced the initial time, t = tinit, which is
distinct from the Dirac delta source time, t = t0, appearing in the Green’s function equations.
Correspondingly, the Dirac delta source is fired after the initial time,

tinit < t0, (9.199)

which follows since we are interested in evolution of ψ after specification of the initial data.
Correspondingly, tinit defines the lower limit on time integrals in the following. For the upper
limit we introduce an arbitrary time T > t0, with T dropping out due to causality in a manner
just like it did for the diffusion equation in Section 9.5.9.

9.6.2 Uniqueness of the solution

We here consider the question of uniqueness to the solution of the wave equation. If there are
two distinct solutions, ψ1 and ψ2, that each solve the initial-boundary value problem (9.197a)–
(9.197d), then their difference, Ψ = ψ1 − ψ2, must solve the following homogeneous system

(∂tt − c2∇2)Ψ(x, t) = 0 x ∈ R, t > tinit (9.200a)

Ψ(x, t) = 0 x ∈ R, t = tinit (9.200b)

∂tΨ(x, t) = 0 x ∈ R, t = tinit (9.200c)

Ψ(x, t) = 0 x ∈ ∂R. (9.200d)

Now multiply the homogeneous wave equation (9.200a) by ∂tΨ and integrate over the domain,
with integration by parts leading to an energy equation

d

dt

ˆ
R

[(∂tΨ)2 + c2∇Ψ · ∇Ψ] dV = 2 c2
ˆ
∂R

(∂tΨ)∇Ψ · n̂dS. (9.201)

Since Ψ = 0 on the boundary (equation (9.200d)), we know that ∂tΨ = 0 also holds on the
boundary, so that the right hand side vanishes, meaning that the energy integral is a constant

ˆ
R

[(∂tΨ)2 + c2∇Ψ · ∇Ψ] dV = C. (9.202)

20See Section 8.5 of Duchateau and Zachmann (1986) for the general Robin boundary value problem.
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At the initial time, both Ψ = 0 and ∂tΨ = 0, in which case ∇Ψ = 0 as well, which means
that C = 0. Since the integrand is non-negative, we can only satisfy this constraint if Ψ is a
space-time constant. With Ψ = 0 as the initial condition, then Ψ = 0 holds for all time, which
then proves our assertion that the wave equation solution is unique.

9.6.3 Relating modified initial condition solutions
Consider the following initial-boundary value problem

(∂tt − c2∇2)u(x, t) = 0 x ∈ R, t > tinit (9.203a)

u(x, t) = 0 x ∈ R, t = tinit (9.203b)

∂tu(x, t) = F (x) x ∈ R, t = tinit (9.203c)

u(x, t) = 0 x ∈ ∂R, t ≥ 0, (9.203d)

as well as the slightly modified problem

(∂tt − c2∇2) v(x, t) = 0 x ∈ R, t > tinit (9.204a)

v(x, t) = F (x) x ∈ R, t = tinit (9.204b)

∂tv(x, t) = 0 x ∈ R, t = tinit (9.204c)

v(x, t) = 0 x ∈ ∂R, , t ≥ 0 (9.204d)

where the only difference appears in the initial conditions. Compatibility between the initial
condition and boundary condition requires that F (x) = 0 on ∂R. In the following we show that

v = ∂tu, (9.205)

so that finding u is sufficient for finding v. Furthermore, by superposition we can handle any
arbitrary initial displacement and time derivative.

For the proof, introduce the function

β = ∂tu, (9.206)

with our goal to show that β satisfies the same equations as v and then, from the uniqueness
theorem in Section 9.6.2, we conclude that β = v. First observe that

(∂tt − c2∇2)β = (∂tt − c2∇2)∂tu = ∂t(∂tt − c2∇2)u = 0, (9.207)

so that β satisfies the homogeneous wave equation. Since u vanishes on ∂R for all time, t ≥ 0,
then it has a vanishing time derivative there as well, which means that β = 0 on ∂R. For the
initial condition, observe that

β(x, 0) = ∂tu(x, 0) = F (x). (9.208)

Finally, we have
∂tβ(x, t) = ∂ttu(x, t) = c2∇2u(x, t). (9.209)

Since u(x, t = 0) = 0, we know that ∇2u(x, t = 0) = 0, which means that

∂tβ(x, 0) = 0. (9.210)

We have thus established that β satisfies the same initial-boundary value problem as v, which
means that β = v.
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9.6.4 Causal free space Green’s function
The causal free space Green’s function for the wave equation satisfies

(∂tt − c2∇2
x)G(x, t|x0, t0) = δ(t− t0) δ(x− x0) x,x0 ∈ Rn (9.211a)

G(x, t|x0, t0) = 0 x,x0 ∈ Rn, t ≤ t0 (9.211b)

∂tG(x, t|x0, t0) = δ(x− x0) x,x0 ∈ Rn, t = t0, (9.211c)

where c > 0 is a constant wave speed (dimensions L T−1). An initial condition (9.211c) on the
time derivative is needed since the wave equation has two time derivatives, and it is chosen as
a Dirac source. Note that we do not impose a regularity condition at infinity, in contrast to
equation (9.135b) for the diffusion equation free space Green’s function. The reason is that we
can conceive, at least in principle, of waves reaching out to infinity at time infinity. Finally,
given the dimensions of the Dirac source, we see that the Green’s function has dimensions of
T L−n.

Consider the slightly simpler Green’s function problem by focusing on times t > t0 and
setting t0 = 0 and x0 = 0, in which case we have

(∂tt − c2∇2) g(x, t) = 0 x ∈ Rn, t > 0 (9.212a)

g(x, t) = 0 x ∈ Rn, t = 0+ (9.212b)

∂tg(x, t) = δ(x) x ∈ Rn, t = 0+, (9.212c)

where t = 0+ refers to a time that is arbitrarily close to, but greater than, t = 0. We now show
that

G(x, t|x0 = 0, t0 = 0) = H(t) g(x, t), (9.213)

or more generally
G(x, t|x0, t0) = H(t− t0) g(x, t|x0, t0). (9.214)

This result is not too surprising since, by causality, G(x, t|x0, t0) vanishes for times prior to when
the Dirac delta is fired, so we suspect it should be proportional to a Heaviside step function just
like for the diffusion equation in Section 9.5.2.

A proof of equation (9.214) requires the time derivatives (dropping the x label for brevity)

∂tG(t) = δ(t) g(t) +H(t) ∂tg(t) (9.215a)

∂ttG(t) = (dδ(t)/dt) g(t) + 2 δ(t) ∂tg(t) +H(t) ∂ttg(t). (9.215b)

To massage the ∂ttG term, introduce a prime symbol for time derivative so that21

δ′(t) g(t) + δ(t) ∂tg(t) = δ′(t) g(t)− t δ′(t) ∂tg(t) dipole identity (7.44) (9.216a)

= δ′(t) [g(t)− t ∂tg(t)] reorganize (9.216b)

= δ′(t) g(0) + t δ′(t) [∂tg(0)− ∂tg(t)] Taylor series around t = 0
(9.216c)

= δ′(t) g(0)− δ(t) [∂tg(0)− ∂tg(t)] dipole identity (7.44). (9.216d)

Causality, along with the initial condition (9.212b), means that g(t = 0) = 0, so that the first
term vanishes. When multiplying a function and the Dirac delta, it is sufficient to evaluate that
function at the place where the Dirac fires. For the second term, the Dirac delta fires at t = 0,
which is where ∂tg(0)− ∂tg(t) = 0, so that second term vanishes. We are thus led to

∂ttG(t) = δ(t) ∂tg(t) +H(t) ∂ttg(t). (9.217)

21These manipulations are motivated from page 61 of Stakgold (2000b), including his footnote.
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Likewise, we find
δ(t) ∂tg(x, t) = δ(t) ∂tg(x, 0) = δ(t) δ(x), (9.218)

where the final equality made use of the initial condition (9.212c). Bringing all the pieces
together leads to

(∂tt − c2∇2)G = H(t) (∂tt − c2∇2)g+ δ(t) δ(x) = δ(t) δ(x), (9.219)

with the final equality holding since (∂tt − c2∇2)g = 0 as per equation (9.212a). We have thus
shown that the causal free-space Green’s function for the wave equation can be decomposed as
in equation (9.214), in which case it is sufficient to solve equations (9.212a)-(9.212c).

9.6.5 Expressions for the free space Green’s functions
Following the methods from Section 28.4 of Dennery and Krzywicki (1967), Section 8.5 of
Duchateau and Zachmann (1986), and Section 5.8 of Stakgold (2000b), the causal free-space
Green’s function for the wave equation is given by22

G(x, t|x0, t0) =
H[c (t− t0)− |x− x0|]

2c
for R1 (9.220a)

G(x, t|x0, t0) =
H[c (t− t0)− |x− x0|]

2π c
√
[c (t− t0)]2 − |x− x0|2

for R2 (9.220b)

G(x, t|x0, t0) =
δ[c (t− t0)− |x− x0|]

4π c |x− x0|
for R3. (9.220c)

These wave solutions manifest causality since they vanish for regions in space-time that are
unconnected to the source, as accords with the domain of influence shown by Figure 6.3.

There is an essential distinction between the three-dimensional Green’s function (9.220c)
relative to the one and two dimensional Green’s functions (9.220a) and (9.220b). Namely, in
three dimensions the Green’s function is a spherical front that is infinitely sharp (i.e., a Dirac
front) that propagates outward at speed c from the source point at x = x0. The one and two
dimensional Green’s function fronts also move with speed c, yet these fronts are trailed by a
wake as realized by the Heaviside step function. Furthermore, observe that the two dimensional
wake decays according to the inverse distance from the front.

9.6.6 Causal Green’s function for the wave equation
The causal Green’s function corresponding to the initial-boundary value problem (9.197a)-
(9.197d) is given by

(∂tt − c2∇2)G(x, t|x0, t0) = δ(x− x0) δ(t− t0) x,x0 ∈ R (9.221a)

G(x, t|x0, t0) = 0 x ∈ R, t < t0 (9.221b)

G(x, t|x0, t0) = 0 x ∈ ∂R. (9.221c)

The following properties are of use for subsequent development.

• The time dependence only appears as the difference, t − t0, so that there is no need to
retain both time variables. Correspondingly,

∂tG(x, t|x0, t0) = −∂t0G(x, t|x0, t0). (9.222)

22Recall from Section 7.5 that the Heaviside step function is a non-dimensional function, whereas the Dirac
delta has dimensions given by the inverse dimensions of its argument. These properties are key to checking that
the given Green’s functions in equations (9.220a)-(9.220c) have dimensions T L−n, where n is the space dimenson.
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• The wave operator is self-adjoint. Even so, swapping t and t0 results in a swapped causality
relation so that if G(x, t|x0, t0) is the causal Green’s function that satisfies equations
(9.221a)-(9.221c), then G(x0, t0|x, t) represents an anti-causal Green’s function in that it
satisfies

(∂tt − c2∇2)G(x0, t0|x, t) = δ(x− x0) δ(t− t0) x,x0 ∈ R (9.223a)

G(x0, t0|x, t) = 0 x ∈ R, t > t0 (9.223b)

G(x0, t0|x, t) = 0 x ∈ ∂R. (9.223c)

• By the same arguments used in Section 9.6.4, we can determine the causal Green’s function
by solving the following initial-boundary value problem

(∂tt − c2∇2) g(x, t|x0, t0) = 0 x,x0 ∈ R t > t0 (9.224a)

g(x, t|x0, t0) = 0 x ∈ R, t = t0 (9.224b)

∂tg(x, t|x0, t0) = δ(x− x0) x ∈ R, t = t0 (9.224c)

g(x, t|x0, t0) = 0 x ∈ ∂R. (9.224d)

As in equation (9.214) for the free space Green’s function, we have

G(x, t|x0, t0) = H(t− t0) g(x, t|x0, t0). (9.225)

9.6.7 Green’s function solution to the wave equation

The self-adjoint nature of the wave operator simplifies the derivation of the Green’s function
solution relative to that needed for the diffusion equation in Section 9.5. To proceed, multiply
the swapped Green’s function equation (9.223a) by the wave function and integrate over the
space-time domain

ψ(x0, t0) =

ˆ
R

ˆ T

tinit

ψ(x, t) (∂tt − c2∇2)G(x0, t0|x, t) dt dVx. (9.226)

Dropping arguments for brevity, we move the wave operator from the Green’s function to the
wave function, thus leading to

ψ (∂tt − c2∇2)G = G (∂tt − c2∇2)ψ + ∂t(ψ ∂tG−G∂tψ)− c2∇ · (ψ∇G−G∇ψ). (9.227)

Making use of the partial differential equation (9.197a) satisfied by the wave equation brings the
first right hand side term to

G(x0, t0|x, t) (∂tt − c2∇2)ψ(x, t) = G(x0, t0|x, t) Λ(x, t). (9.228)

The space integral of the space derivative term in equation (9.227) is given by

ˆ
R

∇x · (ψ∇xG−G∇xψ) dVx =

ˆ
∂R
σ(x, t)∇xG(x0, t0|x, t) · n̂dSx, (9.229)

where we used the Dirichlet boundary condition (9.197d) satisfied by ψ and the homogeneous
Dirichlet condition (9.223c) satisfied by the Green’s function.

We need to do a bit more work for the time integral of the time derivative term in equation
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(9.227), which is given by

ˆ T

tinit

∂t(ψ ∂tG−G∂tψ) dt = [ψ(x, t) ∂tG(x0, t0|x, t)−G(x0, t0|x, t) ∂tψ(x, t)]
∣∣∣∣T
tinit

. (9.230)

The initial conditions (9.197b) and (9.197c), along with the anti-causality condition (9.223b),
render

ˆ T

tinit

∂t(ψ ∂tG−G∂tψ) dt = −I(x) ∂tG(x0, t0|x, tinit) + J(x)G(x0, t0|x, tinit) (9.231a)

= I(x) ∂t0G(x0, t0|x, tinit) + J(x)G(x0, t0|x, tinit), (9.231b)

where the second equality used the property (9.222) of the time derivatives acting on the Green’s
function. Notice that the upper time limit, T , drops out due to the anti-causality condition.

Bringing terms together leads to the Green’s function solution to the wave equation

ψ(x0, t0) =

ˆ
R

ˆ t0

tinit

Λ(x, t)G(x0, t0|x, t) dt dVx

− c2
ˆ
∂R

ˆ t0

tinit

σ(x, t)∇xG(x0, t0|x, t) · ndSx

+

ˆ
R

[I(x) ∂t0G(x0, t0|x, tinit) + J(x)G(x0, t0|x, tinit)] dVx. (9.232)

Again notice that the upper time limit, T , drops out due to the anti-causality condition. Hence,
the Green’s function solution (9.232) only depends on processes happening between the initial
time, tinit, and current time, t0, thus manifesting causality. This solution shares much with the
diffusion equation in Section 9.5, but here with the addition of a second initial condition due to
the second order time derivative appearing in the wave equation, whereas there is only a single
time derivative in the diffusion equation.

9.6.8 The Helmholtz equation
Consider the wave equation (9.197a) in unbounded space

(∂tt − c2∇2)ψ = λ. (9.233)

Now introduce the time-frequency Fourier transforms, Ψ(x, ω) and Λ(x, ω) (see equations
(8.102a) and (8.102b)) whereby

ψ(x, t) =
1

2π

ˆ ∞

−∞
Ψ(x, ω) e−iω t dω and λ(x, t) =

1

2π

ˆ ∞

−∞
Λ(x, ω) e−iω t dω, (9.234)

thus yielding the frequency domain version of the wave equation

[∇2 + (ω/c)2] Ψ = −Λ/c2. (9.235)

This is the Helmholtz equation first introduced in Section 6.7.3, and its corresponding free space
Green’s function satisfies the singular elliptic problem

[∇2 + (ω/c)2]G(x|x0;ω) = −δ(x− x0). (9.236)

Observe that the Helmholtz operator, ∇2+(ω/c)2, differs from the screened Poisson operator,
∇2− µ2 (equation (9.32)), due to the differing signs on the constant. One may relate the two by
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setting
µ = −iω/c. (9.237)

This connection proves rather important for both the physics and the maths, yet with details
involving aspects of causality and complex analysis that are beyond our scope.23 It is satisfying
that the details do confirm that the Helmholtz free space Green’s function is related to the
screened Poisson Green’s function (9.36c) simply by setting µ = −iω/c, so that

G(x|x0;ω) =
ei |x−x0|ω/c

4π |x− x0|
. (9.238)

9.7 Initial value problems and response functions

In this section we focus on initial value problems and study the response functions that help to
characterize a dynamical system. For this purpose, consider the first order ordinary differential
equation

[d/dt+ λ(t)]ψ(t) = F (t) with ψ(t ≤ tinit) = 0, (9.239)

where ψ is some geophysical field, such as the anomalous sea surface temperature, λ is a
feedback parameter that is positive for a damped system, and F is a forcing function such as
that introduced by atmospheric variability on the surface ocean. We are only concerned with
temporal behavior so that all spatial information is ignored. This equation has found widespread
use in the climate dynamics community, largely following the work of Hasselmann (1976).

The material in this section could well have been presented near the start of this chapter
since we are only concerned with ordinary differential equations. However, placing it at the end
helps to tie together material sprinkled throughout this chapter, and to connect to applications
of Green’s functions for studies of climate dynamics.

9.7.1 Impulse response function

Consider the system (9.239) with λ > 0 a time-independent feedback parameter damping the
system back to zero, and with the forcing given by a weighted Dirac delta

[d/dt+ λ]G(t|t0) = α δ(t− t0) with G(t|t0) = 0 for t < t0, (9.240)

where α > 0 is a constant dimensionless scaling coefficient. We refer to the resulting causal
Green’s function, G(t|t0), as the impulse response function since it represents the response of
the dynamical system to an impulse provided by the Dirac delta.24

Initial condition for the impulse response function

To determine the initial condition for the Green’s function, integrate equation (9.240) over an
interval containing the source time, t0, to render

lim
ϵ→0

[
G(t0 + ϵ|t0)−G(t0 − ϵ|t0) +

ˆ t0+ϵ

t0−ϵ
λG(t|t0) dt

]
= α. (9.241)

23Fetter and Walecka (2003) present a lucid discussion of the role of causality in their Section 50. See also
Section 5.8 and 7.12 of Stakgold (2000b) for a detailed presentation of the mathematical derivations.

24Recall our discussion of impulse in Section 7.13.
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Causality means that G(t0 − ϵ|t0) = 0 so that

lim
ϵ→0

G(t0 + ϵ|t0) + lim
ϵ→0

ˆ t0+ϵ

t0

λG(t|t0) dt = α. (9.242)

We assume that the integral vanishes in the limit of ϵ→ 0, which is a sensible assumption since
the only means to have a nonzero integral is if the Green’s function had a singularity similar to
a Dirac delta. We are thus led to the initial condition for the Green’s function

G(t = t0|t0) = α. (9.243)

Solution for the impulse response function

The causality condition G(t < t0|t0) = 0 can be satisfied by introducing the Heaviside step
function from Section 7.5

G(t|t0) = H(t− t0) g(t) with [d/dt+ λ] g = 0 and g(t = t0) = α, (9.244)

with the solution readily determined to be the damped exponential

G(t|t0) = H(t− t0)α e−λ (t−t0). (9.245)

We verify this function satisfies the initial value problem (9.240) by noting that

dG(t|t0)/dt = α δ(t− t0) e−λ (t−t0) − λG(t|t0) = α δ(t− t0)− λG(t|t0). (9.246)

To reach the second equality, we noted that the e−λ (t−t0) term multiplying the Dirac delta is
unity at t = t0, and so it does not alter the sifting property of the Dirac delta. Hence, following
the discussion leading to equation (7.39), we can drop e−λ (t−t0) from the Dirac. As illustrated
in Figure 9.7, the impulse response function (9.245) has a particularly simple interpretation as
the damped exponential response of the dynamical system to a Dirac impulse fired at t = t0.

<latexit sha1_base64="i6gt8BPJ6dGioSsYLEJkV2O6M9I=">AAACA3icbZDNSgMxFIXv1L9a/6ou3QSL4KrMiKLLohuXFZy20A4lk6ZtaCYzJHeEMnTp2q0+gztx64P4CL6FaTsLbXsg8HHOvSQ5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoYeJUM+6zWMa6FVLDpVDcR4GStxLNaRRK3gxHd9O8+cS1EbF6xHHCg4gOlOgLRtFaPnYzd9ItV9yqOxNZBi+HCuSqd8s/nV7M0ogrZJIa0/bcBIOMahRM8kmpkxqeUDaiA962qGjETZDNHjshZ9bpkX6s7VFIZu7fjYxGxoyj0E5GFIdmMZuaK7MwWmW3U+zfBJlQSYpcsfn9/VQSjMm0ENITmjOUYwuUaWG/QNiQasrQ1lay3XiLTSxD46LqXVXdh8tK7TZvqQgncArn4ME11OAe6uADAwEv8ApvzrPz7nw4n/PRgpPvHMM/OV+/49OX3Q==</latexit>

t0
<latexit sha1_base64="S1cjM7l3DGXccnT0xlOy6DW7uTI=">AAAB/3icbZDNSgMxFIUz9a/Wv6pLN8EiuCozouiy6MZlC/YH2qFk0jttaCYzJHeEMnTh2q0+gztx66P4CL6FaTsLrT0Q+DjnXpKcIJHCoOt+OYW19Y3NreJ2aWd3b/+gfHjUMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m+XtR9BGxOoBJwn4ERsqEQrO0FoN7JcrbtWdi/4HL4cKyVXvl797g5inESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQuhYVi8D42fyhU3pmnQENY22PQjp3f29kLDJmEgV2MmI4MsvZzFyZBdEqu5tieONnQiUpguKL+8NUUozprAw6EBo4yokFxrWwX6B8xDTjaCsr2W685Sb+Q+ui6l1V3cZlpXabt1QkJ+SUnBOPXJMauSd10iScAHkmL+TVeXLenHfnYzFacPKdY/JHzucP196WLg==</latexit>

t
<latexit sha1_base64="i6gt8BPJ6dGioSsYLEJkV2O6M9I=">AAACA3icbZDNSgMxFIXv1L9a/6ou3QSL4KrMiKLLohuXFZy20A4lk6ZtaCYzJHeEMnTp2q0+gztx64P4CL6FaTsLbXsg8HHOvSQ5YSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoYeJUM+6zWMa6FVLDpVDcR4GStxLNaRRK3gxHd9O8+cS1EbF6xHHCg4gOlOgLRtFaPnYzd9ItV9yqOxNZBi+HCuSqd8s/nV7M0ogrZJIa0/bcBIOMahRM8kmpkxqeUDaiA962qGjETZDNHjshZ9bpkX6s7VFIZu7fjYxGxoyj0E5GFIdmMZuaK7MwWmW3U+zfBJlQSYpcsfn9/VQSjMm0ENITmjOUYwuUaWG/QNiQasrQ1lay3XiLTSxD46LqXVXdh8tK7TZvqQgncArn4ME11OAe6uADAwEv8ApvzrPz7nw4n/PRgpPvHMM/OV+/49OX3Q==</latexit>

t0
<latexit sha1_base64="S1cjM7l3DGXccnT0xlOy6DW7uTI=">AAAB/3icbZDNSgMxFIUz9a/Wv6pLN8EiuCozouiy6MZlC/YH2qFk0jttaCYzJHeEMnTh2q0+gztx66P4CL6FaTsLrT0Q+DjnXpKcIJHCoOt+OYW19Y3NreJ2aWd3b/+gfHjUMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m+XtR9BGxOoBJwn4ERsqEQrO0FoN7JcrbtWdi/4HL4cKyVXvl797g5inESjkkhnT9dwE/YxpFFzCtNRLDSSMj9kQuhYVi8D42fyhU3pmnQENY22PQjp3f29kLDJmEgV2MmI4MsvZzFyZBdEqu5tieONnQiUpguKL+8NUUozprAw6EBo4yokFxrWwX6B8xDTjaCsr2W685Sb+Q+ui6l1V3cZlpXabt1QkJ+SUnBOPXJMauSd10iScAHkmL+TVeXLenHfnYzFacPKdY/JHzucP196WLg==</latexit>

t

<latexit sha1_base64="PeMi6S9HDQ6/KbGEvkdz1LABei4=">AAACG3icbVC7SgNBFJ31GeNr1TLNYBBiYdgVRcugjWUE84BsCLOzN8mQ2Qczd4WwpPBDrG31G+zE1sJP8C+cPApNcuDC4Zx778w9fiKFRsf5tlZW19Y3NnNb+e2d3b19++CwruNUcajxWMaq6TMNUkRQQ4ESmokCFvoSGv7gduw3HkFpEUcPOEygHbJeJLqCMzRSxy54kx2ZgmBEvQAkshKeYSdzRqcdu+iUnQnoInFnpEhmqHbsHy+IeRpChFwyrVuuk2A7YwoFlzDKe6mGhPEB60HL0IiFoNvZ5AMjemKUgHZjZSpCOlH/TmQs1HoY+qYzZNjX895YXOr54TK5lWL3up2JKEkRIj59v5tKijEdB0UDoYCjHBrCuBLmBMr7TDGOJs68ycadT2KR1M/L7mXZub8oVm5mKeVIgRyTEnHJFamQO1IlNcLJE3khr+TNerberQ/rc9q6Ys1mjsg/WF+/LEqhEA==</latexit>

�(t� t0)
<latexit sha1_base64="OwCi00yW/b6CHp8myoAbHFkPDtw=">AAACBHicbZDNSgMxFIXv+FvrX9Wlm8EiuCozouiy6MZlBfsD7VDupJk2NskMSUYoQ7eu3eozuBO3voeP4FuYtrPQtgcCH+fcS5ITJpxp43nfzsrq2vrGZmGruL2zu7dfOjhs6DhVhNZJzGPVClFTziStG2Y4bSWKogg5bYbD20nefKJKs1g+mFFCA4F9ySJG0Fir0UGeDLBbKnsVbyp3EfwcypCr1i39dHoxSQWVhnDUuu17iQkyVIYRTsfFTqppgmSIfdq2KFFQHWTT147dU+v03ChW9kjjTt2/GxkKrUcitJMCzUDPZxNzaRaKZXY7NdF1kDGZpIZKMrs/SrlrYnfSiNtjihLDRxaQKGa/4JIBKiTG9la03fjzTSxC47ziX1a8+4ty9SZvqQDHcAJn4MMVVOEOalAHAo/wAq/w5jw7786H8zkbXXHynSP4J+frF7ALmE4=</latexit>↵

<latexit sha1_base64="lUzOKVY+0R7Paaq5BvN8yxiH7fE=">AAACGHicbVDLSsNAFJ3UV62vqBvBzWAR6qYkouiy6EKXFewD2lIm02k7dCYJMzdCifFDXLvVb3Anbt35Cf6F0zQLbXvgwuGc++AeLxRcg+N8W7ml5ZXVtfx6YWNza3vH3t2r6yBSlNVoIALV9IhmgvusBhwEa4aKEekJ1vBG1xO/8cCU5oF/D+OQdSQZ+LzPKQEjde2DdrojVqyX4JsS4EcM3dhJTrp20Sk7KfA8cTNSRBmqXfun3QtoJJkPVBCtW64TQicmCjgVLCm0I81CQkdkwFqG+kQy3YnT6wk+NkoP9wNlygecqn8nYiK1HkvPdEoCQz3rTcSFnicXya0I+pedmPthBMyn0/v9SGAI8CQl3OOKURBjQwhV3LyA6ZAoQsFkWTDZuLNJzJP6adk9Lzt3Z8XKVZZSHh2iI1RCLrpAFXSLqqiGKHpCL+gVvVnP1rv1YX1OW3NWNrOP/sH6+gUYk59i</latexit>

G(t|t0)

Figure 9.7: Left panel: Dirac delta that is fired at time t = t0. Right panel: The impulse response function
(9.245) resulting from the Dirac delta impulse as realized for the damped linear system (9.240).

9.7.2 Step response function
Rather than hit the system at a particular moment in time with a Dirac delta, we may choose
to impose a force that turns on and remains on after some initial time, as per a Heaviside step
function. The step response function, S(t|t0), measures the response of the dynamical system to
this step forcing and it satisfies the differential equation

[d/dt+ λ]S(t|t0) = αH(t− t0) with S(t|t0) = 0 for t < t0. (9.247)
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Note that in the steady state at t→∞, the step response function asymptotes to the constant

lim
t→∞

S(t|t0) = α/λ. (9.248)

Connection to the impulse response function

Taking the time derivative, d/dt0, on the step response function equation (9.247) leads to

[d/dt+ λ] dS(t|t0)/dt0 = α dH(t− t0)/dt0. (9.249)

The derivative of the Heaviside step function equals to the Dirac delta as per equation (7.22), in
which

dH(t− t0)/dt0 = −dH(t− t0)/dt = −δ(t− t0). (9.250)

Use of this result in equation (9.249), and comparison to the impulse response function equation
(9.240), yields the identity

dS(t|t0)
dt0

= −G(t|t0). (9.251)

This identity holds even when the feedback parameter is a function of time, λ = λ(t), since the
time derivative operator, d/dt0, has no affect on λ(t).

Initial condition for the step response function

To determine the initial condition for the step response function, integrate equation (9.247) over
an interval bounding t0 and take the limit as that interval vanishes

lim
ϵ→0

[
S(t0 + ϵ|t0)− S(t0 − ϵ|t0) +

ˆ t0+ϵ

t0−ϵ
λS(t|t0) dt =

ˆ t0+ϵ

t0−ϵ
H(t− t0) dt

]
. (9.252)

Causality means that S(t0 − ϵ|t0) = 0. Furthermore, the integral of the Heaviside is given by

lim
ϵ→0

ˆ t0+ϵ

t0−ϵ
H(t− t0) dt = lim

ϵ→0

ˆ t0+ϵ

t0

H(t− t0) dt = lim
ϵ→0

ϵ = 0, (9.253)

so that
lim
ϵ→0

S(t0 + ϵ|t0) = ϵ λ =⇒ S(t = t0|t0) = 0. (9.254)

That is, the step response function starts at zero and then grows in time in response to the
Heaviside step function forcing.

Solution for the step response function

It is straightforward to show that the causal step response function is given by the saturating
exponential

S(t|t0) =
α

λ

[
1− e−λ (t−t0)

]
H(t− t0). (9.255)

Figure 9.8 depicts this function along with the Heaviside step forcing. Furthermore, we verify
the connection between S(t|t0) and G(t|t0) by computing

dS(t|t0)/dt0 = −αH(t− t0) e−λ (t−t0) −
α

λ

[
1− e−λ (t−t0)

]
δ(t− t0) (9.256a)

= −G(t|t0)−
α

λ

[
1− e−λ (t−t0)

]
δ(t− t0). (9.256b)
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The second term on the right hand side vanishes since

ˆ t0+ϵ

t0−ϵ

[
1− e−λ (t−t0)

]
δ(t− t0) dt = 0, (9.257)

in which case we have
dS(t|t0)/dt0 = −G(t|t0). (9.258)
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S(t|t0)

Figure 9.8: Left panel: Heaviside step function is fired at time t = t0 and stays on afterward. Right panel: The
step response function (9.255) resulting from the Heaviside step forcing impulse as realized for the damped linear
system (9.240).

9.7.3 Reciprocity relation

The initial value problem (9.239) is not self-adjoint. Hence, we need to develop a reciprocity
condition for the impulse response function and its adjoint, following the procedure used for the
diffusion equation in Section 9.5.7. Again, the impulse response function satisfies

[d/dt+ λ]G(t|t1) = α δ(t− t1) with G(t|t1) = 0 for t < t1 and G(t1|t1) = α, (9.259)

and the adjoint impulse response function satisfies

[−d/dt+ λ]G‡(t|t2) = α δ(t− t2) with G‡(t|t2) = 0 for t > t2 and G‡(t2|t2) = α. (9.260)

We here introduced two Dirac delta source times, t1, t2, which both occur after the initial time
and before the end time

tinit < t1, t2 < T. (9.261)

As we will see, causality eliminates the final time, T , from the solution for ψ. We retain it merely
for bookeeping.

Determining the reciprocity relation between G‡ and G follows by multiplying equation
(9.259) by G‡(t|t2) and multiplying equation (9.260) by G(t|t1) and then subtracting

d

dt

[
G(t|t1)G‡(t|t2)

]
= α [G‡(t|t2) δ(t− t1)−G(t|t1) δ(t− t2)]. (9.262)

Now integrate this equation over the time range tinit ≤ t ≤ T . For the right hand side we assume
α to be a constant, which then leads to the difference G‡(t1|t2) − G(t2|t1). For the left hand
side, use of the causality conditions in equations (9.259) and (9.260) render

ˆ T

tinit

d

dt

[
G(t|t1)G‡(t|t2)

]
dt = 0, (9.263)
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thus yielding the reciprocity relation

G‡(t|t0) = G(t0|t). (9.264)

The feedback parameter, λ, dropped out from the derivation, with the reciprocity relation
holding even if λ is time dependent. However, we again needed to assume the coefficient α to be
constant.

9.7.4 Response function for general forcing
We now return to the initial value problem (9.239) and determine the response, ψ, to a general
forcing function, F (t), that turns on at some initial time t = t0 > tinit. As for our earlier
discussions of Green’s functions, we express the general response function as an integral over
impulse responses. For this purpose, multiply equation (9.239) by G‡(t|t0) and the adjoint
equation (9.260) by ψ(t), subtract, and then integrate to find

αψ(t0) =

ˆ T

tinit

G‡(t|t0)F (t) dt−
ˆ T

tinit

d

dt

[
G‡(t|t0)ψ(t)

]
dt. (9.265)

Making use of the causality condition G‡(t|t0) = 0 for t > t0 leads to

αψ(t0) = G‡(tinit|t0)ψ(tinit) +
ˆ t0

tinit

G‡(t|t0)F (t) dt, (9.266)

where we retained the possibility of ψ(tinit) ̸= 0 for a bit of generality. The reciprocity condition
(9.264) brings this equation to the form

αψ(t0) = G(t0|tinit)ψ(tinit) +
ˆ t0

tinit

G(t0|t)F (t) dt, (9.267)

and swapping symbols, t↔ t0, yields

αψ(t) = G(t|tinit)ψ(tinit) +
ˆ t

tinit

G(t|t0)F (t0) dt0. (9.268)

As anticipated, the general response is written as an initial response plus the integral of the
general forcing with the impulse response function. Causality ensures that ψ is dependent only on
forcing that is active between the initial time, tinit, and current time, t. To garner further insights
into the general expression (9.268), consider the special case of constant feedback parameter, λ,
in which the impulse response function is (9.245) so that

ψ(t) = e−λ (t−tinit) ψ(tinit) +

ˆ t

tinit

e−λ (t−t0) F (t0) dt0. (9.269)

9.7.5 Connection to the boundary propagator
Recall our discussion in Section 9.5.13 of the boundary propagator, Gbp(x, t|x0, t0), for the
diffusion equation, which solves the causal boundary value problem (9.195a)-(9.195c). Again, the
boundary propogator measures the response of the system at (x, t) to a Dirac delta space-time
source imposed along the surface boundary. The details of the diffusion process are encoded into
the boundary propagator so that the propagator is able to build up the response, ψ, to a general
boundary forcing function, σ, as per equation (9.189). The discussion in the present section thus
prompts us to consider the boundary propagator as an impulse response function for spatially
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distributed sources whose influence through space and time is mediated by diffusion.

9.7.6 Comments and further study

Many applications of Green’s function methods in geophysical fluid mechanics and climate
dynamics do not make use of analytical methods to solve for the Green’s function. Instead,
they make use of numerical estimates based on time stepping passive tracers in ocean and
atmosphere models, with source functions approximating Dirac delta sources. Many applications
have focused on boundary propagators, which as shown in this section are equivalant to impulse
response functions for boundary sources. We return to this point when discussing the passive
tracer equation in Section 69.9.

Hasselmann et al. (1993) introduced the impulse response function and step response function
to the study of climate model drift. Marshall et al. (2014) and Zanna et al. (2019) presented
further studies using this framework. Some of the mathematical formulation of impulse response
and step response functions as presented here follow that offered in Exercise 1.52 of Stakgold
(2000a).

9.8 Helmholtz decomposition
In characterizing the kinematic properties of vector fields, such as the velocity vector for a
moving fluid, Helmholtz (1867) introduced a method to decompose any vector into two distinct
components whose properties are readily analyzed: one component vector has a zero divergence
and the second vector has a zero curl. This Helmholtz decomposition has extensive applications
throughout fluid mechanics. See also Bhatia et al. (2013) for a review, as well as an earlier
treatment in Section 26 of Serrin (1959). We make particular use of the Helmholtz decomposition
when introducing a scalar or vector potential for studying the kinematics of non-divergent fluid
flows (Chapter 21). In this section we provide further insights into features of the Helmholtz
decomposition, with much of the discussion following Denaro (2003) and Bhatia et al. (2013).
Note that our treatment makes use of Cartesian vector analysis, with more general treatments,
such as Chapter 14 of Frankel (2012), outside our scope.

To introduce the Helmholtz decomposition, consider a vector field, F , written using Cartesian
coordinates and in free space (i.e., no boundaries), and assume the field decays to zero outside
of a finite domain. In this case we can decompose F into

F = −∇D +∇×R, (9.270)

where

D(x) =
1

4π

ˆ
R

∇ · F (x′)

|x− x′| dV ′ (9.271a)

R(x) =
1

4π

ˆ
R

∇× F (x′)

|x− x′| dV ′. (9.271b)

The scalar potential, D, and vector potential, R, are here given by the Green’s function solutions
derived in Section 9.3.7.

The Helmholtz decomposition (9.271a) and (9.271b) is both elegant and straightforward. It
offers motivation to seek a similar decomposition for domains of relevance to geophysical fluids,
where boundaries play a fundamental role. However, there are many mathematical nuances
associated with Helmholtz decompositions in more general situations, each depending on the
domain topology and nature of the prescribed boundary conditions. Our goal in this section is to
explore the mathematics for a few common boundary conditions for a fluid on simply connected
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manifolds.25 We offer rather brief comments for the more general non-simply connected case as
the mathematics is beyond our scope.26

9.8.1 Summarizing the Helmholtz decomposition
The Helmholtz decomposition on a simply connected manifold, R, states that a vector field, F ,
is fully determined by specifying its divergence, ∇ · F , and curl, ∇× F , for points x ∈ R, along
with the normal component, n̂ · F , or the tangential component27, n̂× F , along the domain
boundary, ∂R. Here, n̂ is the outward normal along the boundary. Expressed with equations,
the Helmholtz decomposition is given by

F = −∇D +∇×R = gradient term (curl-free) + rotation term (divergence-free). (9.272)

The scalar potential, D, is arbitrary up to a constant, and the vector potential, R, is arbitrary
up to the gradient of a scalar field. This ambiguity in specifying D and R is referred to as
gauge invariance or gauge freedom, and we encounter it in other contexts within this book. For
present purposes, gauge freedom allows us to choose the Coulomb gauge that is commonly used
in electromagnetics (Jackson, 1975), whereby R is prescribed to be divergence-free

∇ ·R = 0. (9.273)

As seen next, this constraint simplifies the boundary value problem satisfied by R.

Taking the divergence of (9.272) reveals that the scalar potential satisfies the Poisson equation

−∇2D = ∇ · F for x ∈ R. (9.274)

Taking the curl of the decomposition (9.272), and using the curl identity (2.42c) along with the
Coulomb gauge (9.273)

∇× (∇×R) = ∇(∇ ·R)−∇2R = −∇2R, (9.275)

leads to the vector Poisson equation

−∇2R = ∇× F for x ∈ R. (9.276)

The two elliptic equations, (9.274) and (9.276), are supplemented by boundary conditions for
points x ∈ ∂R. The choice of boundary conditions depend on information available about the
vector F along the boundary. We here consider the following three sets of boundary conditions,
with n̂ the outward unit normal along ∂R:

normal component − n̂ · ∇D = n̂ · F and n̂ · (∇×R) = 0 (9.277a)

tangential component n̂×∇D = 0 and n̂× (∇×R) = n̂× F (9.277b)

vanishing boundary n̂ · ∇D = 0 and n̂× (∇×R) = 0 =⇒ F = 0. (9.277c)

The homogeneous Neumann boundary condition n̂ · (∇×R) = 0 in equation (9.277a) means

25A manifold is simply connected if a closed curve can be continuously shrunk to a point while remaining
on the manifold. For example, the domain of the global ocean on a water covered planet is a simply connected
manifold. Adding land masses in the form of islands or continents makes the ocean domain non-simply connected.

26Section 5.2 of Bhatia et al. (2013) provides a few comments on the non-simply connected case, whereas
chapter 14 of Frankel (2012) provides details for the mathematically experienced reader.

27Helmholtz (1867) only considered vector fields with a specified normal component along boundaries. This
situation is most common in fluid mechanical applications. Denaro (2003) showed how specification of the
tangential component along the boundary also allows for a Helmholtz decomposition. We explore both boundary
conditions in this section.
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that (∇×R) is parallel to the boundary. Likewise, n̂×∇D = 0 in equation (9.277b) means
that ∇D is parallel to the boundary. If F = v is the fluid velocity field, then v · n̂ = 0 is
the no-normal flow kinematic condition that holds for static solid boundaries (Section 19.6.1).
Furthermore, the vanishing boundary condition (9.277c) holds for the velocity with the dynamic
no-slip boundary condition discussed in Section 25.10.3.

9.8.2 Concerning a harmonic contribution

Consider a vector H that is both divergent-free and curl-free

∇ ·H = 0 and ∇×H = 0. (9.278)

H is a harmonic vector function (Section 6.5.1), which is seen by noting that with ∇ ·H = 0
then (see equation (2.42c)) H satisfies the vector Laplace equation

∇× (∇×H) = −∇2H = 0, (9.279)

so that each component of H is a harmonic function.

An arbitrary vector, F , generally contains a portion that is harmonic, in which case we
consider the three-component decomposition

F = −∇E +∇× S +H = gradient term + rotation term + harmonic term. (9.280)

However, as we show in this section, there are many physically interesting cases in which the
original two-component Helmholtz decomposition (9.272) is sufficient. That is, for many cases
the two-component Helmholtz decomposition is able to include contributions from the harmonic
portion of F as part of either ∇D or ∇×R.

Normal component boundary condition

The constraint ∇ ×H = 0 can be satisfied by writing H = −∇ϕ, which then brings the
decomposition (9.280) into the form

F = −(∇E +∇ϕ) +∇× S. (9.281)

We connect this decomposition to the orginal form of the Helmholtz decomposition in equation
(9.272) by identifying

∇E +∇ϕ ≡ ∇D and ∇× S ≡ ∇×R. (9.282)

In so doing, the harmonic term, here captured by ∇ϕ, is absorbed into the scalar potential, D.
This method for absorbing the harmonic term is suited to the normal component boundary
condition (9.277a), in which

−n̂ · F = n̂ · (∇E +∇ϕ) = n̂ · ∇D =⇒ n̂ · ∇E = −n̂ · (F +∇ϕ). (9.283)

In practice, we determine D and R as per the two-component decomposition (9.272), with the
harmonic contribution to F contained as part of the scalar potential, D.

Tangential component boundary condition

The constraint ∇ ·H = 0 is satisfied by writing H = ∇×A, so that the decomposition (9.280)
takes on the form

F = −∇E +∇× (S +A). (9.284)
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We connect this decomposition to the orginal form of the Helmholtz decomposition of equation
(9.272) by identifying

∇E ≡ ∇D and ∇× (S +A) ≡ ∇×R. (9.285)

In so doing, the harmonic term, here captured by ∇×A, is included in the vector potential, R.
This method for absorbing the harmonic term is suited for the tangential component boundary
condition (9.277b), in which case

n̂× F = n̂× (S +A) = n̂×R =⇒ n̂× S = n̂× (F −A). (9.286)

Non-divergent velocity vector with no-normal flow boundary condition

As discussed in Chapters 21 and 29, many geophysical fluid flows maintain a non-divergent
velocity field. Such velocity fields also maintain the no-normal flow boundary condition at static
material boundaries (Section 19.6.1). For this vector field the scalar potential is harmonic and
satisfies the vanishing Neumann boundary condition

−∇2D = 0 for x ∈ R (9.287a)

n̂ · ∇D = 0 for x ∈ ∂R. (9.287b)

The solution to this boundary value problem is a spatially constant D, so that the velocity field
is fully specified by a vector potential

F = ∇×R. (9.288)

In the presence of a time dependent boundary condition, such as a fluctuating free surface, the
scalar potential is not generally a spatial constant. We encounter an example when studying
surface gravity waves in Section 52.3.

Vanishing boundary condition

The case with F = 0 on the boundary means that

F · n̂ = 0 and n̂× F = 0 for x ∈ ∂R. (9.289)

We proceed with both of the previous boundary condition constraints whereby

∇E +∇ϕ = ∇D and ∇× S = ∇×R (9.290a)

∇E = ∇D and ∇× (A+ S) = ∇×R. (9.290b)

These two sets of constraints are mutually satisfied only when

∇ϕ = 0 and ∇×A = 0, (9.291)

so that the harmonic term vanishes identically for the case of F = 0 along the boundary.

Summary comments

We have shown that for a simply connected domain, it is possible to absorb an arbitrary
harmonic portion of F into either the scalar potential D (for the normal component boundary
conditions (9.277a)) or vector potential, R (for tangential component boundary conditions
(9.277b)). Furthermore, the harmonic term vanishes altogether for the vanishing boundary
condition (e.g., no-slip velocity boundary condition).
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We infer from this discussion that if both the normal and tangential components of F are
specified nonzero values on the boundary, then the harmonic term cannot be fully absorbed
into one of the potentials D or R. Rather, the harmonic term must be explictly computed, in
which case the three-component decomposition (9.280) is referred to as the Helmholtz-Hodge
decomposition.

These considerations are analogous to the Cauchy-Stokes decomposition summarized by
Figure 18.6. That is, Cauchy-Stokes decomposes the motion of a fluid element into three processes:
a deformation plus a rigid rotation plus a uniform translation. The deformation corresponds to
the curl-free vector in the Helmholtz decomposition (−∇D), the rotation corresponds to the
divergent free vector (∇×R), and the uniform translation corresponds to the harmonic vector.

9.8.3 Self-consistency conditions

We here establish existence conditions for the scalar potential, D, and vector potential, R, that
satisfy the decomposition (9.272). We separately do so for the two sets of boundary conditions
(9.277a) and (9.277b). The proof consists of showing that the source term on the right hand
side of the Poisson equation is self-consistent with the boundary condition.

Normal component boundary condition

Consider the scalar Poisson equation with Neumann boundary conditions

−∇2χ = Λ for x ∈ R (9.292a)

−n̂ · ∇χ = σ for x ∈ ∂R. (9.292b)

As discussed in Section 6.5.6, this elliptic boundary value problem has a solution so long as the
source, Λ, and boundary condition, σ, satisfy a self-consistency condition given by equation
(6.50) ˆ

R

ΛdV =

˛
∂R
σ dS. (9.293)

Now specialize to the Helmholtz decomposition (9.272) whereby χ = D is the scalar potential
with source Λ = ∇ · F and boundary condition σ = n̂ · F . Gauss’s divergence theorem (2.79)
readily verifies self-consistency

ˆ
R

ΛdV =

ˆ
R

∇ · F dV =

˛
∂R
F · n̂dS =

˛
∂R
σ dS. (9.294)

As noted in Section 6.5.6, self-consistency ensures the existence of a solution to the Neumann
problem that is unique up to an arbitrary constant. Hence, ∇D is unique so that

∇×R = F +∇D (9.295)

is also unique (we further discuss uniqueness in Section 9.8.5). Finally, the inhomogeneous
Neumann boundary condition satisfied by the scalar potential, −n̂ · ∇D = n̂ · F , means that
the curl satisfies the homogeneous Neumann boundary condition

n̂ · (∇×R) = n̂ · (F +∇D) = 0, (9.296)

so that (∇×R) is parallel to the boundary.
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Tangential component boundary condition

Consider the vector Poisson equation

−∇2Ψ = Λ for x ∈ R (9.297a)

n̂× (∇×Ψ) = n̂×Σ for x ∈ ∂R, (9.297b)

with an assumed non-divergence condition (Coulomb gauge) placed on Ψ

∇ ·Ψ = 0. (9.298)

The region R is assumed to be a bounded three-dimensional volume with a closed boundary
surface, ∂R. Now let S be an arbitrary simply connected portion of ∂R, and write ∂S for the
closed contour that bounds S. Integrate the normal projection of the vector Poisson equation
over S and make use of Stokes’ theorem (Section 2.6) to render

ˆ
Λ · n̂dS = −

ˆ
∇2Ψ · n̂dS =

ˆ
∇× (∇×Ψ) · n̂dS =

‰
∂S

(∇×Ψ) · t̂ds, (9.299)

with t̂ the unit tangent vector pointing counter-clockwise along the closed contour, and ds the
increment of arc-length along the contour (see Section 2.4). The assumed boundary condition
(9.297b) means that for x ∈ ∂R we can write

∇×Ψ = Σ+m, (9.300)

where m is parallel to n̂ so that n̂ ×m = 0. In turn, with m parallel to n̂ then it is also
perpendicular to the unit tangent vector, t̂ ·m = 0, so that

‰
∂S

(∇×Ψ) · t̂ ds =
‰
∂S

Σ · t̂ds. (9.301)

We are thus led to the self-consistency condition between the source, Λ, and boundary condition,
Σ ˆ

Λ · n̂dS =

‰
∂S

Σ · t̂ds, (9.302)

with this condition holding for any arbitrary simply connected region, S, that lives on the
boundary, ∂R.

Now apply the self-consistency condition (9.302) to the Helmholtz decomposition (9.272), in
which case Ψ = R, Λ = ∇× F , and Σ = F . Making use of Stokes’ theorem readily verifies
self-consistency

ˆ
Λ · n̂dS =

ˆ
(∇× F ) · n̂dS =

‰
∂S
F · t̂ds =

‰
∂S

Σ · t̂ ds. (9.303)

We appeal to the scalar Poisson equation to conclude that self-consistency between the source
and boundary conditions ensures the existence of a vector potential, R, that is unique up to the
gradient of a scalar. Hence, the gradient of the scalar potential is itself unique. Finally, we note
that the assumed boundary condition (9.277b) for the vector potential, n̂× (∇×R) = n̂× F ,
means that the scalar potential satisfies the homogeneous boundary condition

n̂× F = n̂× (∇×R) = n̂× (F −∇D) =⇒ n̂×∇D = 0. (9.304)

We thus see that ∇D is aligned parallel to n̂ along the boundary.
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9.8.4 Orthogonality with the L2 inner product
Consider an L2 inner product for vector functions defined according to the volume integral of
their scalar product

⟨A,B⟩ ≡
ˆ
R

A ·B dV. (9.305)

We here show that ⟨∇D, (∇×R)⟩ = 0. That is, the Helmholtz decomposition (9.272) serves
to decompose a vector into two orthogonal component vectors, where orthogonality is defined
over the L2 inner product (9.305). This orthogonality property is of great importance for the
practical use of the Helmholtz decomposition.

Orthogonality with the normal component boundary condition

Assuming the normal component boundary conditions (9.277a), we readily find that the two
vectors ∇D and ∇×R have a vanishing inner product

⟨∇D,∇×R⟩ =
ˆ
R

∇D ·(∇×R) dV =

ˆ
R

∇·(D∇×R) dV =

ˆ
∂R
D (∇×R)·n̂dS = 0, (9.306)

where the final equality made use of the homogeneous boundary condition (∇×R) · n̂ = 0.

Orthogonality with the tangential boundary condition

Now assume the tangential component boundary conditions (9.277b). For this case we make use
of the following identities holding for Cartesian tensors

∇D · (∇×R) = ∂iD (∇×R)i expose Cartesian tensor indices (9.307a)

= ∂iD ϵijk ∂jRk vector product as per equation (1.51d) (9.307b)

= ∂j(ϵ
ijk ∂iDRk) since ϵijk∂i∂jD = 0 and ∂jϵ

ijk = 0 (9.307c)

= −∂j(ϵjik ∂iDRk) ϵijk = −ϵjik (9.307d)

= −∇ · (∇D ×R) reintroduce Cartesian vector notation. (9.307e)

As a result we have orthogonality

⟨∇D,∇×R⟩ =
ˆ
R

∇· (R×∇D) dV =

ˆ
R

(R×∇D) · n̂dS =

ˆ
∂R

(∇D× n̂) ·R dS = 0, (9.308)

where the final equality made use of the homogeneous boundary condition (∇D × n̂) = 0.

Comments

We have shown that the set of boundary conditions (9.277a) and (9.277b) are sufficient to
produce an L2-orthogonal Helmholtz decomposition on a simply connected domain. However,
we have not shown that these boundary conditions are necessary for orthogonality, with other
boundary conditions generally available. Since orthogonality is central to the practical use of
the Helmholtz decomposition, it is important to verify whether orthogonality property holds
when using alternative boundary conditions.

9.8.5 Uniqueness of the decomposition
We already commented on the uniqueness of the scalar and vector potentials in Section 9.8.3. We
here further that discussion by offering a uniqueness proof following a “proof by contradiction”
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method. For this approach we write the Helmholtz decomposition as

F = −∇D1 +∇×R1 = −∇D2 +∇×R2, (9.309)

and show that the only consistent solution has D1 = D2 and R1 = R2. Note that uniqueness is
a function of the boundary conditions. That is, the normal component boundary conditions
(9.277a) generally lead to a decomposition that is distinct from the tangential component
boundary conditions (9.277b).

Uniqueness with the normal component boundary condition

From the assumed relation (9.309) we have

0 = −∇(D1 −D2) +∇× (R1 −R2). (9.310)

Taking the scalar product of this equality with ∇× (R1 −R2) and then integrating over the
domain leads to

0 = −
ˆ
R

[∇(D1 −D2) · ∇ × (R1 −R2)] dV +

ˆ
R

[∇× (R1 −R2)]
2 dV. (9.311)

The first integral vanishes, as seen by

−
ˆ
R

[∇(D1 −D2) · ∇ × (R1 −R2)] dV =

ˆ
R

[∇D1 · (∇×R2) +∇D2 · (∇×R1)] dV (9.312a)

=

ˆ
R

∇ · [D1 (∇×R2) +D2 (∇×R1)] dV (9.312b)

=

ˆ
∂R

[D1 (∇×R2) +D2 (∇×R1)] · n̂dS (9.312c)

= 0, (9.312d)

where the first equality follows from orthogonality as per equation (9.306); the second equality
holds since the divergence of the curl vanishes (Section 2.3.4); the third equality follows from
Gauss’s divergence theorem (Section 2.7); and the fourth equality follows from the homogeneous
boundary conditions, n̂ · (∇×R1) = n̂ · (∇×R2) = 0, satisfied with the normal component
boundary conditions (9.277a). We are thus left with the equality

ˆ
R

[∇× (R1 −R2)]
2 dV = 0, (9.313)

which is generally satisfied only when ∇ × R1 = ∇ × R2 so that ∇D1 = ∇D2. We have
thus shown that the Helmholtz decomposition F = −∇D +∇×R is unique with the normal
component boundary conditions (9.277a).

Uniqueness with the tangential component boundary condition

Now consider the tangential component boundary conditions (9.277b). The proof proceeds
much like above, only now we take the scalar product of equation (9.310) with ∇(D1 −D2) and
integrate over the domain. In doing so we encounter the term

−
ˆ
R

[∇(D1 −D2) · ∇ × (R1 −R2)] dV =

ˆ
R

[∇D1 · (∇×R2) +∇D2 · (∇×R1)] dV (9.314a)

=

ˆ
R

∇ · [∇D1 ×R2 +∇D2 ×R1] dV (9.314b)
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=

ˆ
∂R

[R2 · (n̂×∇D1) +R1 · (n̂×∇D2)] (9.314c)

= 0, (9.314d)

where the second equality made use of the identity (9.307e) derived when examining orthogonality,
the third equality made of the divergence theorem, and the fourth equality holds according to
the homogenous boundary conditions n̂×∇D = 0 following from equation (9.277b). We are
thus led to ˆ

R

[∇(D1 −D2)]
2 dV = 0, (9.315)

which generally holds only if ∇D1 = ∇D2 and hence ∇×R1 = ∇×R2. We have thus shown
that the Helmholtz decomposition is unique with the tangential component boundary conditions
(9.277b).
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Chapter 10

CALCULUS OF VARIATIONS

The calculus of variations (or variational calculus) provides a mathematical framework to
determine a function that extremizes a given integral. The integral is a functional, which is a
function of functions. As discussed by Yourgrau and Mandelstam (1968), the intellectual origins
of variational methods date from extremum questions posed by the ancient Greeks, which then
found their modern realization in the work of Fermat in optics (e.g., see Chapter 1 in Tracy et al.
(2014)), and in the mechanics of Newton, the Bernoulli brothers, Euler, Legendre, Lagrange, and
Hamilton. Variational methods are central to much of 20th century physics, including classical
and quantum field theory. The calculus of variations is also central to optimization methods,
information theory, and data assimilation.

Discussions of the calculus of variations are given in classical mechanics texts, with the
present chapter building from Chapter 2 of Goldstein (1980), Chapter 5 of Marion and Thornton
(1988), Chapter 2 of Basdevant (2007), and Appendix B of Tracy et al. (2014). Our treatment is
relatively brief, working first through the derivation of the Euler equation and then providing a
few analytical examples. Variational methods can handle constraints that affect the solution
to the extremum problem, though we do not consider constraints in this chapter. Rather, we
leave the treatment of constraints for the analytical mechanics studied in Chapter 12 and fluid
mechanics in Chapter 47.

reader’s guide to this chapter
The calculus of variations is fundamental to various parts of this book through the use of

Hamilton’s Principle, with applications to analytical mechanics in Chapter 12, classical field
theory in Chapter 46, fluid mechanics in Chapter 47, and wave mechanics in Chapter 50 (and
other waves chapters in Part X). In these mechanical examples, the functional is known as
the Lagrangian and the integral is called the action.

When making use of variational methods in other chapters of this book, we typically
provide background to the calculus of variations sufficient to deal with the problem at hand.
Consequently, the present chapter can be readily skipped. Even so, this chapter serves those
wanting a more complete understanding of the method’s foundations, as well a sampling of
the numerous analytical examples enabled by variational methods.
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10.1. MATHEMATICAL FORMULATION

10.2 Shortest path between two points on a plane . . . . . . . . . . . . . . . . 255
10.3 Shortest time falling between two points . . . . . . . . . . . . . . . . . . 255
10.4 Shape of a hanging massive string . . . . . . . . . . . . . . . . . . . . . . 257
10.5 Minimal surface of revolution . . . . . . . . . . . . . . . . . . . . . . . . 258

10.1 Mathematical formulation

The fundamental goal of the calculus of variations concerns the determination of a function that
extremizes a given integral. For example, what is the shortest path between two points on a
plane? Experience indicates that the shortest path is a straight line, and with the formalism of
the calculus of variations supporting this experience (Section 10.2). The question is non-local in
that it seeks information about the distance between two distinct points in space. The answer,
as we will see, is the solution to a differential equation that determines a specific function.

Let (x, y) be the Cartesian coordinates for a point in E2 (i.e., the plane), and assume that
y = y(x) specifies y as a differentiable function of x. In this chapter we focus on functions of
one variable, with extensions to higher dimensions straightforward and presented where needed
later in this book. Now consider an integral of the form

J =

ˆ x2

x1

L[y(x), y′(x), x] dx, (10.1)

where L is a functional and

y′(x) =
dy

dx
(10.2)

is the first derivative of y(x). Functionals dependent on higher derivatives of y can be considered.
However, in mechanics (i.e., Hamilton’s principle) we do not encounter higher than the first
derivative, so that a functional of the form (10.1) is sufficient for our needs. We seek a function,
y, that extremizes the integral, J, for a given functional, L, and with specified end points, x1
and x2. The calculus of variations provides a systematic method to determine this extremal
function. Note that we write x, which typically means space point in this book. However, it can
also mean time, t, which is typicallly the case in mechanics.

In formulating the solution to the extremum problem, it is important to recognize that the
functional, L, depends implicitly on x as realized through its dependence on y(x) and y′(x).
It also depends explicitly on x, as indicated by the final argument in equation (10.1). This
tandem implicit and explicit dependence is perhaps the most technically confusing point about
the calculus of variations, making it essential to clearly state how derivatives of L are taken.
This point is further explained in Section 10.1.4.

10.1.1 Variation of a function

Assume that y(x) is the function that extremizes J, and assume this function is unique. As a
result, any function distinct from y(x) is not an extremum of J. One means to consider such
non-extremal functions is by introducing a non-dimensional parameter, α, that defines

Y (x, α) = y(x) + αη(x), (10.3)

where η(x) is an arbitrary smooth function that vanishes at the endpoints

η(x1) = η(x2) = 0. (10.4)
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Specifying these endpoint conditions means that Y (x, α) equals to the extremum function at
the endpoints

Y (x1, α) = y(x1) and Y (x2, α) = y(x2). (10.5)

Furthermore, by definition,
Y (x, 0) = y(x) (10.6)

is the extremum function for all x. We say that Y (x, α) is a function of the spatial point, x, and
the parameter, α. It follows that varying α allows Y (x, α) to sample the space of functions that
are close, but not identical, to the extreme function, y(x).

10.1.2 The δ variation operator acting on a function

As a notational shorthand, it is very useful to make use of the non-dimensional variation operator,
δ, defined so that

Y (x, α) = y(x) + αη(x) = y(x) + δy(x) = (1 + δ) y(x), (10.7)

where δy(x) defines the variation of the function. Notably, δ acts only on the function and not
the space point, so that x remains unchanged upon acting with δ. Correspondingly, δ commutes
with the derivative operator

δ[y′(x)] = δ[dy(x)/dx] = d[δy(x)]/dx. (10.8)

As a final shorthand, we often write

y(x)→ y(x) + δy(x), (10.9)

to indicate that a function, y(x), is to be replaced by (1 + δ) y(x) each place it is found. In
Figure 10.1 we illustrate y(x) + δy(x), where y(x) is a straight line whereas δy(x) are arbitrary
curved paths for which δy(x1) = δy(x2) = 0.
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Figure 10.1: Illustrating some variations to the function, y(x), here depicted as a straight line whereas y(x)+δy(x)
are curved paths. Note that each variation satisfies δy(x1) = δy(x2) = 0.

10.1.3 Derivative of the integral

Introducing the function, Y (x, α), into the integral (10.1) yields

J(α) =

ˆ x2

x1

L[Y (x, α), Y ′(x, α), x] dx, (10.10)
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where we exposed the α dependence of the integral by writing J(α), and where

Y ′(x, α) =
∂Y (x, α)

∂x
= y′(x) + αη′(x). (10.11)

By construction, the integral, J(α), is an extremum at α = 0, which means that its derivative
vanishes there

dJ

dα

∣∣∣∣
α=0

= 0. (10.12)

The integration limits in equation (10.10) are independent of α, so that the chain rule renders

dJ(α)

dα
=

ˆ x2

x1

[
∂L

∂Y

∂Y

∂α
+
∂L

∂Y ′
∂Y ′

∂α

]
dx. (10.13)

Making use of the identities
∂Y

∂α
= η and

∂Y ′

∂α
= η′ (10.14)

leads to

dJ(α)

dα
=

ˆ x2

x1

[
∂L

∂Y
η +

∂L

∂Y ′ η
′
]
dx (10.15a)

=

ˆ x2

x1

[
∂L

∂Y
− d

dx

(
∂L

∂Y ′

)]
η dx+

ˆ x2

x1

d

dx

[
∂L

∂Y ′ η

]
dx, (10.15b)

where the second equality follows from integration by parts. Since η(x1) = η(x2) = 0, the total
derivative term vanishes from equation (10.15b), thus leaving

dJ(α)

dα
=

ˆ x2

x1

[
∂L

∂Y
− d

dx

(
∂L

∂Y ′

)]
η dx. (10.16)

We emphasize the importance of distinguishing the derivative operators as they appear in
equation (10.16), whereby

∂L

∂Y ′ =

(
∂L

∂Y ′

)
Y,x

(10.17a)

d

dx

[
∂L

∂Y ′

]
=

[
∂Y

∂x

∂

∂Y

)
Y ′,x

+
∂Y ′

∂x

∂

∂Y ′

)
Y,x

+
∂

∂x

)
Y,Y ′

]
∂L

∂Y ′ . (10.17b)

The ∂Y and ∂Y ′ terms in equation (10.17b) arise from the implicit x dependence through Y and
Y ′, with the explicit x dependence leading to the ∂x term. Being mindful of these operations
greatly reduces confusion when manipulating the equations of variational calculus. In the
following, we typically drop the subscripts to reduce notational clutter. Yet where confusion
arises it is useful to return to the above two equations for clarification.

10.1.4 Variation of the integral and the Fréchet derivative
Rather than computing the derivative of the integral as in Section 10.1.3, it is common in the
physics literature to compute the variation of the integral through use of the δ operator, which
in turn motivates defining the functional derivative, or sometimes called the Fréchet derivative.
In this approach we write

δJ = δ

ˆ x2

x1

L[y(x), y′(x), x] dx =

ˆ x2

x1

δL[y(x), y′(x), x] dx, (10.18)

page 252 of 2158 geophysical fluid mechanics



10.1. MATHEMATICAL FORMULATION

where the variation operator commutes with the spatial integral since, as noted in Section 10.1.2,
δ does not touch the space coordinate. To compute the variation of the functional, L, we make
use of the chain rule and by noting that δx = 0, so that

δJ =

ˆ x2

x1

[
∂L

∂y
δy +

∂L

∂y′
δy′
]
dx (10.19a)

=

ˆ x2

x1

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy dx+

ˆ x2

x1

d

dx

(
∂L

∂y′
δy

)
dx (10.19b)

=

ˆ x2

x1

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy dx (10.19c)

= α

[
dJ(α)

dα

]
α=0

, (10.19d)

where the penultimate equality holds since δy(x1) = δy(x2) = 0, and the final equality set
δy = αη and used equation (10.16) for dJ(α)/dα. Evidently, equation (10.19d) provides a direct
connection between the variation of the integral to the derivative of the integral via

δJ = α

[
dJ(α)

dα

]
α=0

. (10.20)

The variation operator formalism in equation (10.19c) suggests we define the functional
derivative, also known as the Fréchet derivative, via

δJ

δy(x∗)
=

ˆ x2

x1

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
δy(x)

δy(x∗)
dx =

[
∂L

∂y(x∗)
− d

dx∗

(
∂L

∂y′(x∗)

)]
dx∗, (10.21)

where
δy(x)

δy(x∗)
= δ(x− x∗) dx∗, (10.22)

with δ(x− x∗) the Dirac delta studied in Chapter 7, and with x∗ an arbitrary space point.1 It is
notable that the dx∗ factor appearing in equation (10.22) is typically ignored in most treatments,
since it plays no role in the Euler equations that follow from setting δJ/δy(x∗) = 0 (Section
10.1.5). However, this factor is necessary for dimensional consistency since the Dirac delta has
dimensions of inverse length. So in summary, the Fréchet derivative of the integral is given by

δJ

δy
=

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
dx. (10.23)

The Fréchet derivative provides the functional analog to the gradient operator, with this derivative
vanishing at an extremum of J.

10.1.5 The Euler equation

The derivative (10.16) vanishes when α = 0, by construction, in which case

0 =
dJ(α)

dα

∣∣∣∣
α=0

=

ˆ x2

x1

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
η dx, (10.24)

where the derivatives inside the integral are now taken with respect to y since Y (0, x) = y(x).
Since η(x) is an arbitrary function, this equation is satisfied only if the integrand vanishes, which

1Use of the δ symbol for both the variational operator as well as the Dirac delta is unfortunate but universal.
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leads to Euler’s equation

∂L

∂y
− d

dx

(
∂L

∂y′

)
⇐⇒ y(x) extremizes J[y(x), y′(x), x]. (10.25)

Euler’s equation is equivalently found by setting the Fréchet derivative (10.23) to zero

δJ

δy
= 0 =⇒

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
= 0. (10.26)

Note that in our study of mechanics in Chapter 12, we refer to the Euler equation as the Euler-
Lagrange equation, given work done by Lagrange to extend variational methods to mechanics.

10.1.6 The second form of Euler’s equation

The total derivative of the functional is given, through the chain rule, by

dL

dx
=

[
∂L

∂x

]
y,y′

+
dy

dx

[
∂L

∂y

]
y′,x

+
d2y

dx2

[
∂L

∂y′

]
y,x

(10.27a)

=
∂L

∂x
+ y′

∂L

∂y
+ y′′

∂L

∂y′
, (10.27b)

where the second equality dropped the subscript notation to reduce clutter. In turn, we have

d

dx

[
y′
∂L

∂y′

]
= y′′

∂L

∂y′
+ y′

d

dx

[
∂L

∂y′

]
, (10.28)

with substitution from equation (10.27b) rendering

d

dx

[
L− y′ ∂L

∂y′

]
=
∂L

∂x
+ y′

[
∂L

∂y
− d

dx

(
∂L

∂y′

)]
. (10.29)

The final term on the right hand side vanishes due to Euler’s equation (10.25), thus leading to
the second form of Euler’s equation

d

dx

[
L− y′ ∂L

∂y′

]
=
∂L

∂x
. (10.30)

This equation is particularly useful when the functional, L, has no explicit dependence on x,
in which case the right hand side vanishes. Furthermore, when applied to mechanics, the term
y′ ∂L/∂y′ − L is the Hamiltonian (e.g., see Section 12.9.4).

10.1.7 Nature of the extremum

The Euler equation (10.25) has a solution, y(x), that is an extremum to the integral J[y(x), y′(x), x].
In this manner, we connect a question about the extremum of an integral to the solution of a
differential equation. However, is the extremum a minimum, maximum, or inflection? To answer
that question requires taking the second derivative of the integral,

δ2J = α2

[
d2J(α)

dα2

]
α=0

. (10.31)

In practice this is a rather difficult calculation to perform. Furthermore, in many cases the
nature of the extremum is apparent by inspection. For example, in Section 10.2 we determine the
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path between any two points on a plane, with a straight line an extremum that is the minimum
path since one is free to consider an alternative path this is arbitrarily longer.

10.2 Shortest path between two points on a plane

Let (x, y) ∈ R2 be the Cartesian coordinates for a point in E2 (i.e., a flat plane), where y = y(x)
specifies y as a differentiable function of x. We seek an expresion for the function, y(x), that
represents the shortest path between two arbitrary points in E2. The answer is a straight line

y = y1 +
x− x1
x2 − x1

(y2 − y1) =
y1 (x2 − x) + y2 (x− x1)

x2 − x1
, with y1 = y(x1) and y2 = y(x2),

(10.32)
with the calculus of variations unnecessary to determine this function. Even so, we find it useful
to consider this question using the calculus of variations in order to garner experience and
confidence with the formalism.

In E2, the distance between two infinitesimally close points is given by Pythagoras’ theorem

ds = [(dx)2 + (dy)2]1/2 =
√
1 + (y′)2 dx, (10.33)

so that the finite distance between two points is given by the integral

J =

ˆ x2

x1

ds =

ˆ x2

x1

√
1 + (y′)2 dx =

ˆ x2

x1

Ldx, (10.34)

where the functional is
L =

√
1 + (y′)2. (10.35)

Terms in the Euler equation (10.25) are thus given by

∂L

∂y
= 0 and

∂L

∂y′
=

y′√
1 + (y′)2

, (10.36)

so that the Euler equation is

d

dx

[
y′√

1 + (y′)2

]
= 0, (10.37)

whose solution is indeed the straight line given by equation (10.32).

10.3 Shortest time falling between two points
The brachistochrone is a smooth curve upon which a frictionless bead moves under the effects
from gravity and travels in the shortest time between two points, A and B, where these two
points are not underneath one another.2 We illustrate the physical system in Figure 10.2. The
integral expression for time of the excursion is given by

T =

ˆ B

A
dt =

ˆ sB

sA

ds

v(s)
, (10.38)

where s is the arc length and v(s) is the speed of the bead as a function of the arc length. The
minimal time is achieved by the particle moving in a single plane, which we set as the x-z plane

2If the two points A and B are vertically oriented, then the brachistochrone is the straight vertical line
connecting these two points.
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without loss of generality. In this case the differential arc length is given by

ds =
√
(dx)2 + (dz)2 =

√
1 + (z′)2 dx, (10.39)

where we assumed that the vertical position, z, is a monotonic function of the horizontal position,
x, thus enabling a functional expression z = z(x) for the curve.3
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g = �g ẑ

Figure 10.2: A bead falls along a frictionless wire from point A to point B. It traverses this path in the least
amount of time if the wire is in the shape of a cycloid. This brachistochrone problem is readily solved using
variational methods.

Mechanical energy of the bead is constant since the bead is frictionless.4 If the bead starts
from rest at point A, then the mechanical energy at this point is just given by the gravittional
potential energy, gmzA, where m is the mass of the bead, zA is its vertical position, and we
choose the zero for potential energy at z = 0. We thus find that the speed at any point along
the path is given by

v2/2 + g z = g zA =⇒ v =
√

2 g (zA − z), (10.40)

in which the time integral (10.38) becomes

T =

ˆ sB

sA

ds

v(s)
=

ˆ xB

xA

√
1 + (z′)2√

2 g (zA − z)
dx. (10.41)

The functional appearing in the time integral (10.41) is given by

L = L[z(x), z′(x)] =

√
1 + (z′)2√

2 g (zA − z)
. (10.42)

With no explicit dependence on x, the second form of Euler’s equation, given by equation (10.30),
leads to the identity

L− z′ ∂L
∂z′

=
1√

2 g (zA − z) (1 + (z′)2)
= c−1, (10.43)

where c is a constant with dimensions of speed (L T−1). We can write the solution to this
equation by introducing the angle parameter θ, so that

x = [c2/(4g)] (sin θ − θ) and zA − z = [c2/(4g)] (1− cos θ) (10.44a)

dx/dθ = [c2/(4g)] (cos θ − 1) and d(zA − z)/dθ = [c2/(4g)] sin θ. (10.44b)

3Some treatments, such as Example 5.2 of Marion and Thornton (1988), solve for x = x(z), which is possible
since the is a one-to-one relation between x and z.

4In Section 11.1.5 we prove this property of conservative classical discrete systems.
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This is the equation for a cycloid, which is the curve shown in Figure 10.3 that is traced by a
point on a circle that is rolling (without slipping) along a straight line on a plane.5
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2⇡(c2/4g)

Figure 10.3: A cycloid is the curve traced by a point on a circle that is rolling (without slipping) along a straight
line on a plane. As per equation (10.44a), the radius of the circle is c2/(4g) so that its circumference is 2π c2/(4g).
We depict the circle each quarter rotation as it moves along the line, with the black dot fixed relative to the circle
and tracing out the cycloid.

10.4 Shape of a hanging massive string

Consider a string or cable with uniform mass per length, σ, which is suspended from each end
as depicted in Figure 10.4. What is the shape of the string when in mechanical equilibrium? To
answer this question one can make use of mechanics through studying the tensile forces acting
within the string and the gravitational forces acting on the string, with equilibrium realized
when the net forces and torques sum to zero. Alternatively, we can assume the shape minimizes
the gravitational potential energy of the string, in which case there is no need to determine any
of the forces. Instead we make use of variational calculus to determine the minimum potential
energy state.
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Figure 10.4: A massive string or cable is supported at its two ends at a vertical position z1 = z(x1) = z2 = z(x2).
The string is placed in a vertically directed gravitational field with acceleration, g = −g ẑ, where g is the constant
gravitational acceleration. Variational methods determine the shape of the string as given by the hyperbolic
cosine in equation (10.50), which is known as a catenary. This is the ideal shape taken by stationary power lines,
spider webs, clothes lines, and chains, for example.

The variational problem arises from writing the gravitational potential energy as

P = g σ

ˆ s(x2)

s(x1)
z(x) ds, (10.45)

where s is the arc distance along the curve and g is the constant gravitational acceleration.
Along the curve, the arc-length differential is

ds =
√
(dx)2 + (dz)2 =

√
1 + (z′)2 dx, (10.46)

5See Example 5-2 of Marion and Thornton (1988) for more details of the cycloid.
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where z′(x) = dz/dx is the derivative. Hence, the potential energy is

P = g σ

ˆ x2

x1

z(x)
√
1 + (z′)2 dx = g σ

ˆ x2

x1

L[z(x), z′(x)] dx, (10.47)

where we introduced the functional

L[z(x), z′(x)] = z(x)
√
1 + (z′)2. (10.48)

This functional is reminiscent of that found for the shortest path problem as given by equation
(10.35), yet here there is an extra z(x) factor multiplying the square root term.

Since the functional (10.48) has no explicit x dependence, we make use of the second form of
the Euler equation, in which

L− y′ ∂L
∂y′

= z
√

1 + (z′)2
[
1− (z′)2

1 + (z′)2

]
= ℓ =⇒ z/ℓ = 1 + (z′)2, (10.49)

where ℓ is a constant of integration with dimensions of length. The solution to this differential
equation that satisfies the two endpoint conditions z(x1) = z(x2) is given by

z = ℓ cosh[(2x− x1 − x2)/(2ℓ)], (10.50)

which is referred to as a catenary and is depicted in Figure 10.4. The constant, ℓ, is the vertical
position of the midpoint of the curve, which is also the lowest point

z = ℓ at x = (x1 + x2)/2. (10.51)

10.5 Minimal surface of revolution
Figure 10.5 shows an axially symmetric surface that is bounded by two circles with distinct radii
and that are aligned along the ẑ axis. This surface is formed by connecting two points in the
x-z plane, (x1, z1) and (x2, z2), and then revolving the curve around the z-axis. What is the
shape of the surface that results in the minimum surface area? One guess is that the surface
is a cone built from straight lines extending from the lower circle to the upper circle. In fact,
it turns out to be built from catenaries; i.e., the same shape as found in Section 10.4 for the
hanging massive string, with the resulting surface known as a catenoid.

Given the rotational symmetry assumed for the surface, it is sufficient to fix attention to the
x-z plane. Furthermore, we assume there is a monotonic relation between z and x, so that we
can write z = z(x) for any point on the surface in the x-z plane. In this case the surface area is
given by

A = 2π

ˆ x2

x1

x
√
1 + (z′)2 dx, (10.52)

where the 2π factor arises from the angular integral and circular symmetry. The x factor is the
radius of the circle and

ds =
√

1 + (z′)2 dx (10.53)

is the thickness of a tiny strip along the surface and in the x-z plane (see Figure 10.5). The
integrand to the surface area in equation (10.52) is identical to the integrand in equation (10.47)
for the potential energy of a hanging string. Hence, the minimal surface is constructed from
catenaries. That is, in any particular plane passing through the center of the circles (e.g., the x-z
plane), use a catenary to connect a point on the upper surface to a point on the lower surface,
and then spin this catenary around the vertical axis. The resulting surface of revolution has the
minimal surface area and it is known as a catenoid.
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Figure 10.5: This figure shows an axially symmetric surface that connects two circles aligned along the ẑ axis. The
thickness of a strip along the surface and within the x-z plane is given by ds =

√
(dx)2 + (dz)2 =

√
1 + (z′)2 dx.

The shape of the minimal surface that connects the two circles is known as a catenoid. The catenoid is built from
connecting the two circles with a catenary and then rotating the catenary around the vertical axis.

As noted in Section 2-2 of Goldstein (1980), a more thorough treatment of this problem
identifies those configurations in which there is no catenary that can connect the circles, or
when the minimal surface is discontinuous rather than continuous. Such cases might represent
inflection points rather than minimal surfaces. Also note that circles with similar or identical
radii, then the function z(x) is not monotonic, in which case the problem can be split into two
regions over which z(x) is monotonic.
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Planetary rotation and gravitation are two defining features of geophysical fluid mechanics.
Furthermore, geophysical fluids exhibit motions whose speed is small relative to that of the
rotating planet. We thus say that geophysical fluids are in near rigid-body motion, making
it convenient to use a rotating (non-inertial) terrestrial reference frame to describe the fluid
motion. Rotating and gravitating motion around a planet introduce new physical ideas beyond
more familiar non-rotating physical systems. Rather than introduce rotating physics within the
context of fluid mechanics, we first focus on the point particle system to establish a foundation
for rotating physics. In the process, we also review facets of classical particle mechanics that
are useful in the continuum mechanics of a moving fluid. Additionally, we examine systems of
particles and then take their continuum limit, thus introducing notions relevant to the continuum
mechanics of fluids.

Classical mechanics considers space to be Euclidean and time to be universal. Euclidean
space has no curvature, so that Cartesian coordinates are commonly sufficient (though not
always the most convenient) for developing the equations of motion. Universal time (sometimes
referred to as Newtonian time) means that an event occuring at one point in space at time, t,
also occurs at the same time everywhere else in space. That is, classical mechanics is based
on absolute simultaneity holding throughout all of Euclidean space. The marriage of Euclidean
space and Newtonian time is referred to as Galilean relativity.

There is a payoff for studying these chapters on classical mechanics even for the experienced
physicist. Namely, topics familiar from previous studies are presented from the viewpoint
of what later proves central to the study of geophysical fluid mechanics. In particular, we
encounter Newtonian mechanics, Lagrangian mechanics, Hamilton’s principle, trajectories, linear
momentum, angular momentum, body forces, accelerations due to the rotating reference frame
(planetary Coriolis and planetary centrifugal), space-time symmetries and conservation laws,
center of mass coordinates, harmonic oscillators, pendula, planetary Cartesian coordinates, and
planetary spherical coordinates.

We start by reviewing foundational elements of Newtonian particle mechanics in Chapter
11, considering a single point particle, a system of particles, and particles coupled by linear
oscillators. We here also introduce some kinematic properties of non-inertial reference frames.
Thereafter, in Chapters 13 and 14 we focus on the geophysically relevant case of a classical
point particle moving around a rotating and gravitating sphere as described from the rotating
terrestrial reference frame. In Chapter 12 we study Lagrangian mechanics, which formulates
classical mechanics in a manner that complements Newtonian mechanics. We then follow in
Chapter 15 with a suite of case studies that exemplify the power of Lagrangian mechanics. It is
notable that Lagrangian mechanics focuses on energy rather than forces, and its Euler-Lagrange
differential equations (derived from Hamilton’s stationary action principle) are equivalent to
Newton’s equations of motion. Although leading to the same end point, the energy approach
of Lagrange, coupled to the variational approach of Hamilton’s principle, provide a powerful
means to formulate otherwise intractable problems in classical physics. It also offers the natural
mathematical foundation for connecting symmetries to conservation laws via Noether’s theorem.
Finally, it forms the starting point for a field theoretic perspective on continuum mechanics as
introduced in Chapter 46.



Chapter 11

NEWTONIAN MECHANICS

Classical physics is concerned with describing the motion of matter, with Newtonian classical
mechanics based on using Newton’s laws to deduce the cause of motion. Classical matter is
organized into three categories: (i) massive point particles; (ii) extended and continuous rigid
media (rigid bodies); (iii) extended and continuous non-rigid media (e.g., elastic solids, fluids). A
point particle has zero dimensions and so it occupies a single point in space. Rigid bodies occupy
a finite region of space and are comprised of a continuum of matter particles that maintain fixed
relative positions, thus constraining the media to maintain constant mass and volume. Particles
in an extended non-rigid continuous media can move relative to one another, so that the media
maintains constant mass though with a generally changing volume.1 In this chapter we focus on
mechanics of point particles as a venue to introduce rudimentary features of classical mechanics.

A mechanical description of motion is decomposed into kinematics and dynamics, with
kinematics concerned with the nature of motion and dynamics concerned with the causes of
motion. More specifically, kinematics is concerned with the position, velocity, and acceleration,
whereas dynamics, through Newton’s laws, provide the means to determine how motion is altered
in the presence of forces. The mechanics of Newton are summarized by three laws of motion:

• first law: In an inertial reference frame, every massive body remains at rest or in uniform
motion unless acted on by a net force. This law is sometimes referred to as the law of
inertia.

• second law: In an inertial reference frame, application of a net force to a body alters its
linear momentum.

• third law: To each action there is an equal and oppositely directed reaction.

The first and second laws offer definitions for an inertial reference frame and for a force. The
third law provides a statement about how forces act, thus providing physical substance to the
first and second laws.2 The third law holds for central forces, such as arise in Newtonian gravity
and electrostatics. However, it does not hold for all forces, such as the Lorentz force acting on a
moving charged particle.

The decomposition of matter into point particles, rigid bodies, and continuous media, directly
corresponds to the kinematic decomposition of motion into translations, rotations, and dilations.3

Namely, point particles move by translations through space, with this space-time motion referred
to as a trajectory. The motion of a rigid body consists of its center of mass translations plus
rotations of the body relative to the center of mass. Finally, the motion of a continuous media

1We typically abbreviate “extended non-rigid continuous media” as “continuous media”. There is little room
for confusion with rigid bodies since in this book we provide only tangential attention to the dynamics of rigid
bodies.

2For more on this perspective of Newton’s laws, see Chapter 1 of Symon (1971) or Chapter 2 of Marion and
Thornton (1988).

3This decomposition is referred to as the Cauchy-Stokes decomposition and is studied in Section 18.8.6.
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consists of the translations and rotations of a rigid body, plus changes in the relative positions
of the particles that can lead to changes in the volume of the media, with such motions referred
to as dilatations.

chapter guide

In this chapter we study the rudiments of Newtonian particle mechanics for a single
massive point particle and for a system of such particles. Along the way, we expose core
concepts such as space, time, mass, force, and rotation. Notably, within the bounds of
classical physics, we must remain satisfied with common experience definitions for many
of the foundational concepts that are not deduced from more fundamental principles.

Every classical mechanics textbook has some form of the material presented in this chapter.
The books from Goldstein (1980) and Fetter and Walecka (2003) are targeted at the
entering physics graduate student, whereas French (1971), Symon (1971), Marion and
Thornton (1988), and Taylor (2005) are targeted at second or third year undergraduates.
This chapter is required for understanding the mechanics of a particle moving around a
rotating sphere in Chapters 13 and 14. It also serves as a baseline for the complementary
approach taken by the Lagrangian mechanics studied in Chapters 12 and 15. We make
use of Cartesian tensors for ease of presentation.
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11.1. NEWTONIAN MECHANICS OF A POINT PARTICLE

11.1 Newtonian mechanics of a point particle
In this section we study the Newtonian mechanics of a single point particle of constant mass,
with the point particle occupying a single point in space and so having zero extent.

11.1.1 Position, velocity, and acceleration
The Cartesian position, x, of a point particle at a Newtonian time instance, t, is written

x =X(t) = X1(t) x̂+X2(t) ŷ +X3(t) ẑ = x(t) x̂+ y(t) ŷ + z(t) ẑ. (11.1)

The spatial position is measured relative to an arbitrary origin, with the vector, X, pointing
from the origin to the position of the particle. Universal Newtonian time, t, is a monotonically
increasing parameter that allows for the unambiguous distinction between past, present, and
future. That is, time parameterizes the particle’s position in Euclidean space, withX(t) providing
the mathematical representation for the trajectory in space as determined over a finite span of
time.

The time derivative of the position defines the velocity, and the time derivative of the velocity
is the acceleration

V (t) =
dX(t)

dt
= Ẋ(t) and A(t) =

dV (t)

dt
= V̇ (t) = Ẍ(t), (11.2)

where we introduced the commonly used dot notation for the time derivative. By definition,
the velocity is instantaneously tangent to the trajectory, and the acceleration is instantaneously
tangent to the velocity. Newton’s law connects the acceleration to the net force, in which case
we have no concern for higher time derivatives than the second.

11.1.2 Linear momentum and Newton’s second law
The linear momentum of the particle equals to the mass of the particle, m, times its velocity

P = m Ẋ = mV . (11.3)

The linear momentum changes when it experiences a net force. The vector sum of all forces is
written F , and Newton’s second law of motion states that there exists inertial reference frames
where motion of the particle is described by the differential equation

dP

dt
= F . (11.4)

If the particle mass is fixed, then this equation becomes a second order differential equation for
the particle position as a function of time

A =
dV

dt
=

d2X

dt2
= F /m. (11.5)

Many conclusions in mechanics are expressed in terms of conservation laws (Chapter 14),
which provide relations or conditions whereby mechanical properties of a physical system remain
time invariant (i.e., time independent). Newton’s second law provides our first conservation
law since, in the absence of a net force, the linear momentum remains unchanged: dP /dt = 0.
Depending on the nature of the forces, this conservation law might hold for one, two, or all
three of the vector components to the linear momentum. Note that for a constant mass particle,
a time independent linear momentum means that the velocity remains constant, which is a
statement of Newton’s first law (the law of inertia).
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11.1.3 Galilean relativity and inertial reference frames
If the forces acting on the particle are not directly dependent on the particle velocity, then the
inertial frame equation of motion (11.5) is unchanged if shifting the velocity by a constant. Such
velocity-independent forces (such as Newton’s gravitational force) are commonly found in the
conservative (non-dissipative) motion of charge-free particles. This arbitrariness in the velocity
reflects a symmetry respected by the equation of motion, where symmetry refers to an operation
that can be performed on the system without changing any physics. This particular symmetry
is known in various contexts as Galilean invariance, Galilean relativity, or Newtonian relativity.

Galilean relativity holds for all inertial reference frames in non-relativistic mechanics. It is
thus notable that there is no absolute reference frame, since we cannot mechanically distinguish
any of the inertial reference frames that differ by an arbitrary constant velocity. That is, there
is no classical experiment that can distinguish between two arbitrary inertial reference frames,
so long as the experiments are described by Newton’s equation of motion (11.5) and the force is
independent of the velocity. The operational reason we cannot make a distinction is that the
equation of motion is indistinguishable in the two inertial frames. As a corollary, two inertial
reference frames can at most be moving relative to one another by a constant velocity. Otherwise,
at least one of the reference frames is accelerating, which in turn means that this accelerating
reference frame is not an inertial frame.

This discussion offers an example of the mathematical transformation theory introduced in
Part I of this book. Mathematically, the Galilean transformation is written

t = t and X =X +U t, (11.6)

where the barred position vector is measured in the moving reference frame. Time remains
unchanged since we make use of Newtonian universal time. In contrast, the coordinate position
for the particle in the new frame equals to that in the original reference frame plus a contribution
from the constant velocity, U . We may sometimes refer to the barred reference frame as a
Galilean boosted frame. The particle velocity in the moving (boosted) reference frame is given by

V =
dX

dt
=

dX

dt
+

d (U t)

dt
= V +U , (11.7)

where we set dU/dt = 0 since U has a fixed magnitude and direction (as per our assumption
that it is a constant vector). As expected, the velocity is shifted by the constant reference frame
velocity U , whereas the acceleration in the two reference frames is identical

A =
d2X

dt
2 =

dV

dt
= A. (11.8)

11.1.4 Mechanical work and kinetic energy
When a force is applied to a particle as it moves along its trajectory, the force does mechanical
work on the particle. This force affects the motion, with the work performed by the force
computed by the line integral along the trajectory

W =

ˆ x2

x1

F · dx, (11.9)

where
x1 =X(t = t1) and x2 =X(t = t2) (11.10)

are the spatial coordinates of the endpoints for the trajectory at times t1 and t2, and dx is
the differential vector increment along the trajectory. Since the particle is moving along its
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dynamical trajectory, we can write
dx = V dt (11.11)

and make use of Newton’s equation of motion (11.5) to reach

W =

ˆ x2

x1

F · dx =

ˆ t2

t1

m
dV

dt
· V dt =

m

2

ˆ t2

t1

d(V · V )

dt
dt = K(t2)−K(t1), (11.12)

where we defined the kinetic energy of the particle

K =
m

2
V · V . (11.13)

We conclude that the work done on the particle over a time interval is equal to its change in
kinetic energy. The result (11.12) is called the work-energy theorem.

11.1.5 Mechanical energy conservation
Consider the work done on a particle as it moves between two points in space. Now compute
the work done on the particle as it moves along another path between the same initial and final
positions. If the work done on the particle is independent of the path taken between the points,
then the force is said to be conservative.

Conservation of mechanical energy

Recalling our discussion of exact differentials in Section 2.8, we know that a conservative force
can be written as the gradient of a force potential

F cons = −∇P, (11.14)

where P is called the potential or the potential energy. Inserting the potential into the work
equation (11.12) leads to an expression of mechanical energy conservation

W =

ˆ x2

x1

F cons · dx = ∆K = −∆P =⇒ K(t2) + P (t2) = K(t1) + P (t1). (11.15)

That is, the sum of the kinetic energy plus potential energy remains constant for a particle
moving in a conservative force field. The conservation of kinetic plus potential energy within a
conservative force field offers our third conservation law: the conservation of mechanical energy.

As a result of mechanical energy conservation (11.15), we see that if a particle takes a closed
trajectory within a conservative force field, then there is zero integrated work applied to the
particle

W =

˛
C

F cons · dx = 0, (11.16)

where C is an arbitrary closed trajectory. Another way to see that W = 0 for a closed trajectory
is to write

W =

˛
C

F cons · dx =

˛
C

m
dV

dt
· V dt =

m

2

˛
C

d(V · V ) = 0, (11.17)

with the zero resulting since d(V ·V ) is an exact differential (see Section 2.8 for exact differentials).

Conservative force from the effective gravity field

The earth’s gravitational field as well as the planetary centrifugal acceleration (due to motion
on a rotating planet) both give rise to conservative forces. We discuss these ideas in Section
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13.10.4, where we see that the combined gravitational and planetary centrifugal accelerations
are encapsulated by the gradient of the geopotential, Φ. In this case, the effective gravitational
force acting on a point particle of mass, m, is given by

F geo = −m∇Φ. (11.18)

Consequently, the work done on the particle by the effective gravitational field is

W =

ˆ x2

x1

F geo · dx = −m
ˆ x2

x1

∇Φ · dx = −m [Φ(x2)− Φ(x1)]. (11.19)

The effective gravitational force field does positive work on the particle if Φ(x1) > Φ(x2). That is,
work is applied to the particle as it moves from a high geopotential at x1 to a lower geopotential
at x2, in which case the work-energy theorem (11.12) means that the kinetic energy increases.
Conversely, if Φ(x1) < Φ(x2), then gravity does negative work on the particle. In this case the
potential energy of the particle increases as it moves to a higher geopotential, while, through
the work-energy theorem, the kinetic energy of the particle decreases.

11.1.6 Friction as a non-conservative force
Friction is the canonical non-conservative force that typically depends on the velocity field. For
example, a common form of the frictional force is given by Rayleigh drag

F Rayleigh = −γ mV , (11.20)

where γ > 0 is a constant with dimensions of inverse time. Newton’s equation of motion with
Rayleigh drag (and no other forces) takes the form

dV

dt
= −γ V . (11.21)

Notably, Rayleigh drag is not Galilean invariant since it is dependent on the velocity. We can
understand this lack of Galilean invariance by noting that the friction force identifies the state
of rest (V = 0) as a special reference frame.

The solution to the first order ordinary differential equation (11.21) is the exponential decay

V (t) = V (0) e−γ t, (11.22)

with V (0) the velocity at time t = 0. We thus see that Rayleigh drag exponentially drives the
velocity towards zero. Correspondingly, Rayleigh drag dissipates the kinetic energy according to
twice the exponential decay

dK

dt
= mV · dV

dt
= −2 γ K =⇒ K(t) = K(0) e−2 γ t, (11.23)

where K(0) = V (0) · V (0)/2.

11.2 Kinematics of rigid-body rotations
The motion of a point particle is described by its trajectory, X(t), which provides the particle
location in Euclidean space as time progresses. At each time instance the trajectory’s velocity,
dX/dt, can be decomposed into radial motion towards or away from an arbitrary fixed origin,
plus rotation about an instantaneously defined axis through the origin. In this section we focus
on the rotational motion, so that the particle moves on a trajectory that is a fixed distance from
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V = ⌦⇥X

Figure 11.1: Kinematics of the rotational motion of a particle moving a fixed distance from an origin, whereby
the motion at each instance can be represented as a rotation around an instanteneously determined axis that
passes through the origin. Rotational motion is characterized by the angular velocity, Ω, that is oriented according
to the right hand rule, so that rotation is counter-clockwise relative to Ω̂. The velocity corresponding to this
rotational motion is V = Ω×X, which is perpendicular to both the particle position, X, and the angular velocity,
Ω. The angle, ϕ, is the angle relative to plane perpendicular to the rotation axis that passes through the origin.
This choice for angle is motivated from the geophysical latitude as per Figure 4.3. In contrast, it is conventional
in the mechanics literature to use the co-latitude, π/2− ϕ, which is the angle relative to the rotational axis. This
figure anticipates our study of motion viewed from the rotating terrestrial reference frame in Chapter 13 (see also
Figure 4.3 for the geometry of a rotating sphere).

the origin, d|X|/dt = 0. We make use of results encountered when studying rigid body motion,
with those results available here since |X| is fixed. We thus refer to the motion as rigid-body
rotational motion. Besides offering insights into the nature of motion, the rigid-body rotations
have direct application to the rigid-body rotating reference frame used by terrestrial observers.
We pick up on that application in Section 11.4.

11.2.1 Angular velocity vector
A particle that moves on a trajectory, X(t), that is a fixed distance from an origin (as per points
in a rigid body), can only exhibit rotational motion around an axis that extends through the
origin. In general, the rotational axis has an evolving orientation in space. Yet at any time
instance, the particle motion is specified by the axis around which rotation occurs, as well as
the angular rate of rotation. Bringing the rotation rate and the axis orientation together leads
to the notion of the angular velocity vector (dimensions of radians per time)

Ω = |Ω| Ω̂, (11.24)

where Ω̂ is the unit vector specifying the direction of the rotational axis, and |Ω| is the angular
speed of the rotation. We choose the direction of the rotational axis according to the right hand
rule. Although an arbitrary choice (i.e., we could just as well work with the left hand rule), the
right hand rule establishes a convention from which we pursue the mechanical description. Figure
11.1 provides an example of rotational motion of a particle around an axis passing through a
fixed origin.

11.2.2 Velocity of rigid-body rotation
Since the particle moves along a trajectory that has a fixed distance from the origin, its velocity
is given by

dX

dt
= |X| dX̂

dt
, (11.25)
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where dX̂/dt is the time derivative of the unit vector that points from the origin to the particle.
Following from Figure 11.1, we see that the unit vector evolves under rotations according to

dX̂

dt
= Ω× X̂, (11.26)

with this time derivative perpendicular to both Ω and X̂. Multiplying by the constant |X|
renders the rigid-body velocity vector

dX

dt
= V = Ω×X, (11.27)

with this velocity perpendicular to both the position vector and the rotational axis

V ·Ω = 0 and V ·X = 0, (11.28)

with this orientation reflected in Figure 11.1. We are also led to the corresponding linear
momentum

P = mV = mΩ×X. (11.29)

Evidently, motion that is further away from the rotational axis has a larger velocity magnitude
(speed) for a given angular velocity, and thus a larger linear momentum. This property accords
with our experience on a merry-go-round, in which there is a higher speed at the outer rim of
the merry-go-round relative to points near the center.

11.2.3 Rigid-body rotation of an arbitrary vector

The results from Section 11.2.2, in particular the key result in equation (11.27), hold for any
vector undergoing rigid-body rotation with a fixed origin. This result appears many times
in this book, thus motivating us to here discuss it a bit further from slightly complementary
perspectives. Indeed, we offer yet another derivation in Section 11.4.2 when studying rotating
reference frames. Note that although we consider the position vector, X(t), derivations in this
subsection are general, so that the results hold for an arbitrary vector of fixed magnitude that
rotates about a fixed origin.

Proof that X · dX/dt = 0 for rigid-body rotations

The rigid-body rotation of a vector does not change the vector’s magnitude, so that

|X(t)| = |X(t+ δt)|, (11.30)

where δt is a small time increment during which the vector experiences a rigid-body rotation.
The condition (11.30) can be written in the equivalent form

d(X ·X)

dt
= 0, (11.31)

which then leads to the constraint

X · dX
dt

= 0. (11.32)

Evidently, the time derivative of a vector undergoing a rigid-body rotation about a fixed origin
is itself perpendicular to the vector.
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X(t + δt)

X(t)

Ω

δϑ

Figure 11.2: The change in a vector under a pure rotation leaves its origin fixed and the vector magnitude
unchanged, |X(t)| = |X(t+ δt)|. Only the vector direction changes by the angle δϑ = Ω δt. Infinitesimal changes
generated by the angular velocity Ω lead to the vector differences X(t+ δt)−X(t) = δtΩ×X(t). Evidently, Ω
generates the rotation of vectors around its axis.

Geometric derivation of dX/dt = Ω×X for rigid-body rotations

In Figure 11.2 we consider the vector at two time instances, X(t + δt) and X(t), with the
change in the vector generated by an infinitesimal rotation around the axis defined by the
angular velocity vector, Ω. Evidently, Figure 11.2 reveals that the infinitesimal difference,
X(t+ δt)−X(t), equals to the vector cross product of the angular velocity with the vector

X(t+ δt)−X(t) = δtΩ×X(t). (11.33)

Dividing by δt leads to
dX

dt
= Ω×X. (11.34)

This time derivative satisfies the constraint (11.32) since X · (Ω×X) = 0, meaning that the
magnitude of the vector indeed remains fixed. It is via equation (11.34) that we say Ω generates
rotations of X.

Analytical derivation of dX/dt = Ω×X for rigid-body rotations

Let the direction of the angular velocity, Ω, be vertical, and let X be confined to the horizontal
plane. In a time increment, δt, the vector is rotated by an angle

δϑ = |Ω| δt. (11.35)

In the limit of small δϑ, the difference vector, X(t+ δt)−X(t), is perpendicular to X(t) and is
of magnitude equal to the arc length

δs = |X(t)| δϑ = |X(t)| |Ω| δt. (11.36)

Observe that the vector, Ω×X(t), points in the same direction as the vector, X(t+ δt)−X(t),
and is of length |X(t)| |Ω|. We conclude that

X(t+ δt)−X(t) = Ω×X(t) δt. (11.37)

Dividing through by δt and taking the limit δt→ 0 gives

dX

dt
= Ω×X. (11.38)
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The proof for the case in which Ω has a component along X is a straightforward generalization.
The rotation of the trajectory is still confined to a plane, but only the component of Ω normal
to X generates rotation.

11.2.4 Angular momentum of rigid-body rotations
The angular momentum is the moment of the linear momentum

L =X × P . (11.39)

Newton’s second law (11.4) leads to the time derivative

dL

dt
=X × F , (11.40)

where Ẋ × P = Ẋ ×m Ẋ = 0. The cross product, X × F , is the torque acting on the system
relative to the chosen origin, with torques having dimensions of a force times a length. Equation
(11.40) leads to our second conservation law: a particle has a constant angular momentum when
experiencing zero torques, with this statement dependent on the choice of origin for the angular
momentum and the corresponding torques.4

Inserting the rigid-body velocity (11.27) into the angular momentum (11.39) renders

L =X × P = mX × (Ω×X) = m [Ω |X|2 −X (Ω ·X)] ≡M ·Ω. (11.41a)

In the final equality we introduced the moment of inertia (a symmetric rank two tensor) for a
point particle, with components given by

Mpq = m (X ·X δpq −XpXq). (11.42)

The moment of inertia tensor measures the inertia appropriate for determining angular momentum
relative to a rotational axis. We encounter the moment of inertia tensor for a continuous fluid in
Section 37.9.4 when studying the angular momentum of a region of fluid (see equation (37.76)).

The utility and relevance of angular momentum stems from its conservation for systems
exhibiting rotational symmetry about special points or special directions. For example, motion
on a smooth sphere exhibits rotational symmetry with respect to the center of the sphere.
Consequently, all components of angular momentum for a particle are constant in the absence
of externally applied torques. For motion around a smooth rotating sphere, the rotational
axis breaks the three dimensional isotropy so that we only have a single angular momentum
conservation; namely, the axial angular momentum. We study the connection between symmetry
and conservation laws in Chapter 14, with particular focus on axial angular momentum in
Section 14.5.

11.2.5 Kinetic energy of rigid-body rotations
If the particle is undergoing rigid-body rotational motion so that V = Ω×X (equation (11.27)),
then the squared velocity for the particle is given by

δmn V
m V n = δmn (ϵ

mpq ΩpXq) (ϵ
nstΩsXt) (11.43a)

= δmn ϵ
mpq ϵnstΩpXq ΩsXt (11.43b)

= (δps δqt − δpt δqs) ΩpXq ΩsXt (11.43c)

4We emphasize that angular momentum, torque, and angular velocity, are each defined relative to a chosen
origin and chosen axis. For geophysical motion, the natural origin is the center of the planet, with angular
momentum and torques computed relative to the polar rotation axis. We return to these ideas in Section 14.5.
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= (X ·X) (Ω ·Ω)− (X ·Ω)2, (11.43d)

where we made use of the Cartesian identity (1.69) holding for the permutation symbol. In-
troducing the moment of inertia tensor (11.42) renders the kinetic energy for the rotating
particle

K = 1
2 Ω ·M ·Ω = 1

2 ΩmM
mnΩn. (11.44)

11.2.6 Further study
The kinematics of rotational motion have their origin in the work of Euler. A more thorough
discussion of rotational kinematics can be found in Section 4-6 of Goldstein (1980).

11.3 Accelerated and non-rotating reference frames
Inertial reference frames have a special status in Newtonian mechanics since it is in these reference
frames that Newton’s second law holds as per equations (11.4) or (11.5). Inertial reference frames
are not accelerating, and as such they are related by the Galilean transformations considered in
Section 11.1.3. Inertial reference frames are an idealization only approximately met in practice.
For motion taking place within many terrestrial laboratories, the earth or laboratory reference
frame provides a good approximation to an inertial reference frame. However, when the size of
the physical system increases, and/or the length scale of the motion increases, then we must
account for the earth’s rotation. This is the situation holding for most of the geophysical fluid
motions of concern in this book.

In this section we initiate our study of non-inertial reference frames by working in a frame that
is accelerating along a straight line without turning (i.e. no rotation), such as when observing
motion from a train accelerating on a straight track. We follow this study in Section 11.4 by
examining motion from a rotating reference frame that has a fixed origin, thus allowing us to
make use of the rigid-body rotating mechanics from Section 11.2. Although the rigid rotating
frame in Section 11.4 is more directly connected to the description of geophysical motion from a
rotating terrestrial reference frame, it is useful to warm up to the study of non-inertial reference
frames by first studying the non-rotating case in the present section.

11.3.1 Reference frame induced accelerations and forces
Let R be an inertial reference frame so that Newton’s law of motion takes on the familiar form
(11.5)

m V̇ = F , (11.45)

where F is the net force vector, with such forces arising from force fields (e.g., gravity or
electromagnetic) or from contact forces that arise from interactions between bodies. Now
consider another reference frame, R∗, that moves with velocity V frame relative to R, and let V ∗

be the velocity of a particle measured relative to the R∗. Accordingly, the velocity of a particle
is decomposed into two terms

V = V frame + V ∗. (11.46)

Making use of this relation in Newton’s law (11.45), and rearranging, leads to

m V̇ ∗ = m (V̇ − V̇ frame) = F −m V̇ frame. (11.47)

If V̇ frame vanishes, then Newton’s law (11.47) remains form invariant and we refer to R∗ as
another inertial reference frame that is realized via a Galilean transformation from the original
(see Section 11.1.3 for Galilean transformations between two inertial reference frames). For the

CHAPTER 11. NEWTONIAN MECHANICS page 273 of 2158



11.3. ACCELERATED AND NON-ROTATING REFERENCE FRAMES

more general case with a non-vanishing V̇ frame, we encounter an extra force in equation (11.47)
when working in a non-inertial reference frame

F frame = −mAframe ≡ −m V̇ frame. (11.48)

That is, by choosing to write equation (11.47) in the form of Newton’s law, but from the
perspective of the non-inertial reference frame, we must include a force that arises solely due to
acceleration of the reference frame

m V̇ ∗ = F + F frame. (11.49)

To appreciate the minus sign in equation (11.48), consider the backward force felt on the driver
when accelerating forward in a car.

Equation (11.48) is somewhat overloaded. Namely, when the non-inertial reference frame
is rotating, then the coordinate basis vectors are time dependent, and that time dependence
must be considered when transforming vectors. As a result, we only make direct use of equation
(11.48) when studying linear accelerating frames in Section 11.3.3, since in this case the basis
vectors in the two reference frames are the same. The case of rotating reference frames in Section
11.4 requires a bit more work.

11.3.2 A comment on terminology

The reference frame induced force, F frame, from equation (11.48) is sometimes called a “fictitious
force” or a “pseudo-force”. We eschew that terminology since reference frame induced forces can
play a dominant role in describing motion viewed from the non-inertial reference frame. So from
the non-inertial reference frame perspective, there is nothing fictional about them F frame.

Chapter 12 of French (1971) refers to F frame as an inertial force along with the corresponding
inertial acceleration. As noted on pages 493-494 of French (1971), such forces that are experienced
by an object due to the acceleration of a reference frame are “forces of inertia” that allow one
to return Newton’s law back to its familiar form found in inertial reference frames. Though
ubiquitous in the literature, this terminology is prone to confusion since these so-called inertial
forces arise due to non-inertial motion of the reference frame, and as such would more clearly
be referred to as “non-inertial terms” or “non-inertial forces” (see Section 9.3 of Marion and
Thornton (1988)). We aim to avoid confusion by being somewhat pedantic when discussing
forces induced by a non-inertial reference frame.

11.3.3 Simple pendulum in an accelerating train

Consider a non-inertial reference frame that accelerates along a line without turning (i.e., no
rotation). For example, we feel a backwards acceleration while the vehicle accelerates forward,
and the converse while the vehicle slows to a stop. The opposite sense of the acceleration is
accounted for by the minus sign in the expression (11.48).

As a specific example, consider a pendulum with constant mass, m, on a massless string
of length L. Hang the pendulum from the top of a train car in a gravity field and assume the
train has an acceleration, V̇ frame, along a straight track. When viewed from the inertial reference
frame, the pendulum satisfies Newton’s law in the familiar form

m V̇ = F . (11.50)

The force, F , arises from the pendulum’s weight, m g, as well as the string tension, T , so that

m V̇ = T +m g. (11.51)
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Aframe

Figure 11.3: A pendulum oscillating from the ceiling of a train car, with the train moving with velocity
V frame = x̂ |V frame|. Forces acting on the pendulum arise from the string tension, T , and the weight, gm = −ẑ gm.
In the accelerating (non-inertial) reference frame, the additional force appears, −x̂m |V frame|. When viewed
in the accelerating reference frame, the pendulum reaches its equilibrium (V̇ ∗ = 0) at an angle satisfying
tanφequil = |V̇ frame|/g.

When viewed in the accelerating reference frame the equation of motion takes the form

m V̇ ∗ = T +m g −m V̇ frame = T +m (g − V̇ frame). (11.52)

Since the same mass, m, multipled both the gravitational force and the force due to the
accelerating reference frame, we can define an effective gravity by writing

m V̇ ∗ = T +m geff with geff = g − V̇ frame. (11.53)

The effective gravity is not vertical when the reference frame accelerates. For example, if the
reference frame accelerates in the +x̂ direction, then

geff = −g ẑ − V̇ frame x̂ = −g (ẑ + x̂ V̇ frame/g). (11.54)

We depict this situation in Figure 11.3.

What happens when the acceleration of the pendulum vanishes in the inertial reference
frame? In this case the string tension exactly balances the weight so that from equation (11.51)
we find

T = −m g ⇐= no acceleration in inertial frame, R. (11.55)

Evidently, the pendulum comes to rest in the inertial frame with a string tension that exactly
balances the vertical gravitational force acting on the pendulum mass. Hence, the pendulum
hangs vertically.

The same question posed from the non-inertial reference frame leads to the distinct string
tension

T = −m geff ⇐= no acceleration in non-inertial frame, R∗. (11.56)

That is, the string tension now balances the effective gravity, so that the resting pendulum is
not vertical but instead it is aligned with the effective gravity. We can readily find the angle of
the resting pendulum, relative to the vertical, through the expression (11.54) for the effective
gravity, so that

tanφequil = |V̇ frame|/g. (11.57)
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ŷinertial

<latexit sha1_base64="q1ykRWyIzmOQbVIewhvJDbLa0x8=">AAACOHicbVDJSgNBEO2JW4xbogcPXhqD4CnMiNsx6MVjBLPAzBB6Op2kSXfP0F0jDEM+w6v+h3/izZt49QvsLAdN8qDg8V4VVfWiRHADrvvhFNbWNza3itulnd29/YNy5bBl4lRT1qSxiHUnIoYJrlgTOAjWSTQjMhKsHY3uJ377mWnDY/UEWcJCSQaK9zklYCU/GBLIg0jibNwtV92aOwVeJt6cVNEcjW7FOQ56MU0lU0AFMcb33ATCnGjgVLBxKUgNSwgdkQHzLVVEMhPm05vH+MwqPdyPtS0FeKr+nciJNCaTke2UBIZm0ZuIKz1muIKVTiRXyX4K/dsw5ypJgSk6u6yfCgwxniSGe1wzCiKzhFDN7XOYDokmFGyuK1aXSjZKbzG4ZdK6qHnXtavHy2r9bh5qEZ2gU3SOPHSD6ugBNVATURSjF/SK3px359P5cr5nrQVnPnOE/sH5+QWJeKw0</latexit>

ŷ
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Figure 11.4: Depicting the coordinate axes in an inertial reference frame, (x̂inertial, ŷinertial, ẑinertial), and a
corresponding rigid-body rotating reference frame, (x̂, ŷ, ẑ). The origin for the two reference frames is the same,
and the rotation is around the vertical axis so that ẑ = ẑinertial and Ω = Ω ẑ. Left panel: perspective view of
the inertial and rotating reference frames. Middle panel: horizontal (plan view) and rotation of the horizontal
basis vectors in the rotating reference frame. Right panel: expressing the time derivatives of the horizontal basis
vectors according to the rigid-body rotation equation (11.60).

11.4 Rigid-body rotating reference frames

We now consider a rotating reference frame. For simplicity, as well as to connect to the terrestrial
case, assume rotation is around a fixed axis that passes through a fixed origin, such as that
depicted in Figure 11.4. In this manner, the reference frame rotates as a rigid-body, thus enabling
use of the kinematics from Section 11.2.5

In this chapter we make use of Cartesian coordinates for both the inertial reference frame, R,
and the rigid-body rotating reference frame, R∗, with orientation chosen so that the basis vectors
of the rotating frame rotate counter-clockwise around the vertical axis, ẑ. As we see in this
section, a proper accounting for the basis vector rotation is critical for computing non-inertial
accelerations.

11.4.1 Incorrect calculation of Coriolis acceleration

Directly plugging into the expression (11.48) leads to the force in the non-inertial reference frame

F frame = −m V̇ rigid (11.58a)

= −m d(Ω×X)

dt
(11.58b)

= −mΩ× V (11.58c)

= −mΩ× (V rigid + V ∗). (11.58d)

The first term is the correct expression for the centrifugal acceleration (see Figure 11.5), yet
the second term is missing a factor of two for the Coriolis acceleration. As hinted at following
equation (11.48), the error arises since the coordinate basis vectors change as the reference frame
rotates, and this time dependence must be considered when computing the acceleration seen in
a non-inertial reference frame.

5Rigid-body rotating reference frame is what one generally means when studying rotating physics. However,
there are more general forms of rotation, whereby angular rotation is a function of space and time. We do not
consider time dependent rotating frames in this book. However, the rigid-body frame of the earth’s rotation is
experienced as a latitudinally dependent rotation rate due to sphericity of the planet. Spatial dependence of the
rotating terrestrial frame is the origin for the planetary Rossby waves studied in Part X of this book.
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11.4.2 Rigid-body rotation of an arbitrary vector
We here offer yet another means to derive the key result from Section 11.2.3 concerning the time
derivative of a vector undergoing rigid-body rotation around a fixed origin. For this purpose,
consider a vector that is measured in the rotating reference frame and represented using Cartesian
coordinates

Q =
3∑

i∗=1

Qi∗ êi∗ = Qi∗ êi∗, (11.59)

where the second equality made use of Einstein summation convention. Also, we introduced
the rotating reference frame Cartesian basis vectors, ê1∗ = x̂, ê2∗ = ŷ, and ê3∗ = ẑ, which are
rigidly rotating with the reference frame. Following the discussion in Section 11.2.2, rigid-body
rotation of the basis vectors leads to a time derivative according to equation (11.26), so that

dêi∗
dt

= Ω× êi∗. (11.60)

Hence, the time derivative of Q, when represented in the rotating reference frame, is given by
two terms,

dQ

dt
=

dQi∗

dt
êi∗ +Qi∗ (Ω× êi∗) =

dQi∗

dt
êi∗ +Ω×Q. (11.61)

The first expression on the right hand side is the time derivative of the vector’s components as
measured in the rotating reference frame, which we write as

Q̇∗ ≡ dQi∗

dt
êi∗. (11.62)

The second term in equation (11.61) arises from rigid-body rotation of the rotating reference
frame’s coordinate basis.

11.4.3 Coriolis and centrifugal accelerations
We can make use of equation (11.61) for an arbitrary vector, including the particle’s position
vector. In this case the velocity of the particle is decompsed into

dX

dt
=

dXi∗

dt
êi∗ +Ω×X = V ∗ +Urigid. (11.63)

Evidently, the velocity as measured in the inertial frame equals to the velocity measured in the
non-inertial reference frame, V ∗, plus the rigid-body rotating velocity,

Urigid = Ω×X. (11.64)

Taking the second derivative of the position vector leads to the decomposition of the acceleration
measured in the inertial reference frame

d2X

dt2
=

d2Xi∗

dt2
êi∗ +

dXi∗

dt
(Ω× êi∗) +Ω× dX

dt
(11.65a)

= A∗ +Ω× V ∗ +Ω× (V ∗ + V rigid) (11.65b)

= A∗ + 2Ω× V ∗ +Ω× V rigid. (11.65c)

Hence, the acceleration as measured in the rigid-body rotating reference frame is given by

A∗ = A −2Ω× V ∗︸ ︷︷ ︸
Coriolis

−Ω× V rigid︸ ︷︷ ︸
centrifugal

. (11.66)
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Figure 11.5: Depicting the kinematics of a rigid-body rotating reference frame, with rotation around a fixed
vertical axis that passes through a fixed origin. The orientation is geophysically motivated as per Figure 4.3. In
addition to the angular velocity, Ω, and rigid-body velocity, V rigid = Ω×X, both depicted in Figure 11.1, we
also show the centrifugal acceleration, Acent = −Ω×V rigid = −Ω× (Ω×X), that points outward away from the
rotational axis.

We here identified the Coriolis and centrifugal accelerations

ACoriolis = −2Ω× V ∗ and Acentrifugal = −Ω× V rigid = −Ω× (Ω×X), (11.67)

with both of these accelerations arising from the rigid-body rotation of the non-inertial reference
frame. We have much to say in this book about these accelerations, particularly as realized by
the rotating earth.

11.5 Newtonian mechanics for a system of particles

We here extend the single particle mechanics from Section 11.1 to the case of N particles with
mass, m(i), position, X(i)(t), and velocity, V(i)(t) = dX(i)/dt, where i is an integer labeling the
particles,6 and we assume the particle mass remains fixed in time. In the following, we find it
useful to introduce the total mass of the system as well as the vector center of mass according to

M =

N∑
i=1

m(i) and X =
1

M

N∑
i=1

m(i)X(i). (11.68)

11.5.1 Forces on the particles

We conceive of two contributions to the forces acting on each particle. The first arises from

external force fields that are independent of the N particles, F
(ext)
(i) . For example, we may

consider a system of particles moving in the gravitational field of the planet, with the planet’s
gravitational field assumed to be independent of the particles. The second force arises from the
interactions between the particles, which we refer to as an internal force. We write the internal
force vector as F(ji), which is taken to be the force on particle i due to interactions with particle
j. We furthermore assume that there are no self-forces so that

F(ii) = 0. (11.69)

6We place the particle index within parentheses to emphasize that it is not a tensor index. Correspondingly,
particle indices do not follow the summation convention of tensor indices.
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The net force acting on particle i is thus written

F(i) = F
(ext)
(i) +

N∑
j=1

F(ji), (11.70)

and the net force acting on the full system of particles is

N∑
i=1

F(i) =
N∑
i=1

F
(ext)
(i) +

N∑
i=1

N∑
j=1

F(ji). (11.71)

The final sum can be written

N∑
i=1

N∑
j=1

F(ji) =
1

2

N∑
i=1

N∑
j=1

(F(ji) + F(ij)), (11.72)

where, again, F(ji) is the force on particle i due to interactions with particle j, and F(ij) is the
force on particle j due to interactions with particle i. This identity follows since the sums are
finite so that limits on double sums can be swapped. In the next subsection we see why it is
useful to write the internal forces in this manner.

11.5.2 Weak and strong form of Newton’s third law

Newton’s third law states that the force acting on particle i due to particle j is equal to, yet
oppositely directed, the force acting on particle j due to particle i:

F(ij) = −F(ji). (11.73)

For those forces satisfying Newton’s third law, the total force acting on the N particle system
arises from just the external force, since the internal forces cancel pairwise

N∑
i=1

N∑
j=1

F(ij) =

N∑
i=1

F
(ext)
(i) = F (ext). (11.74)

As discussed in Section 13.10.2, the gravitational force acting between two point masses
offers an example force that satisfies Newton’s third law, in which case the force is given by the
inverse square expression

F(ji) = −
Gm(i)m(j) (X(i) −X(j))

|X(i) −X(j)|3
= −F(ji), (11.75)

where G is Newton’s gravitational constant discussed in Section 13.10.1. Notice how the
gravitational force acts along the line connecting the two particles, so that

(X(i) −X(j))× F(ji) = 0. (11.76)

The electrostatic force acting on charged particles in an electric field is given by Coulombs law,
which is also an inverse squared force and that acts along the line between the two particles.

Newton’s gravity force and the Coulomb electrostatic force are known as central forces. Central
forces are said to satisfy the strong form of Newton’s third law, in that both F(ij) = −F(ji) and
(X(i) −X(j))× F(ji) = 0. Slightly more general forces arise that satisfy F(ji) = −F(ij) and yet
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(X(i) −X(j))× F(ji) ̸= 0, with such forces said to satisfy the weak form of Newton’s third law:

F(ij) = −F(ji) and (X(i) −X(j))× F(ji) = 0 =⇒ central force; strong 3rd law (11.77a)

F(ij) = −F(ji) and (X(i) −X(j))× F(ji) ̸= 0 =⇒ non-central force; weak 3rd law. (11.77b)

Any force that depends on the velocity of the particle is not a central force.7 The distinction
between the weak and strong form of Newton’s third law becomes important when studying
particle angular momentum in Section 11.5.4. When studying stresses in fluids in Chapter 25,
we assume the strong form of Newton’s third law.

11.5.3 Newton’s second law of motion

The linear momentum of a particle is its mass times the velocity

P(i) = m(i) V(i) no implied summation. (11.78)

Assuming the mass of the particle is constant, the corresponding equation of motion is given by
Newton’s second law

Ṗ(i) = m(i) V̇(i) = F
(ext)
(i) +

N∑
j=1

F(ji). (11.79)

Assuming the internal forces satisfy either the weak or strong form of Newton’s third law as in
equations (11.77a)-(11.77b), we find that the total momentum for the N particle system evolves
according to just the total external force

Ṗ =
N∑
i=1

Ṗ(i) =
d2

dt2

N∑
i=1

m(i)X(i) =M Ẍ = F (ext). (11.80)

That is, the time change in the total linear momentum is given by the total mass times the
acceleration of the center of mass, which equals, through Newton’s second and third laws, to the
total external force acting on the system. We thus find that the center of mass maintains a fixed
velocity if there is no net external force acting on the many particle system. This result accords
with common experience whereby we cannot lift ourselves up by our own bootstraps.

11.5.4 Angular momentum

The total angular momentum for the many particle system is given by

L =
N∑
i=1

L(i) =
N∑
i=1

X(i) × P(i) =
N∑
i=1

m(i)X(i) × V(i), (11.81)

and its time derivative is given by

L̇ =

N∑
i=1

m(i)X(i) × V̇(i) =

N∑
i=1

X(i) × F (ext)
(i) +

N∑
i=1

N∑
j=1

X(i) × F(ji), (11.82)

7The force acting on a classical charged particle moving in an electromagnetic field is known as the Lorentz
force. The Lorentz force depends on the velocity of the charged particle and so it is not a central force, with the
Lorentz force only satisfying the weak form of Newton’s third law. See page 45 of Marion and Thornton (1988)
for more discussion.
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where we set Ẋ(i) × V(i) = Ẋ(i) × Ẋ(i) = 0, and made use of the particle equation of motion
(11.79). We identify the term

Γ(ext) ≡
N∑
i=1

X(i) × F (ext)
(i) (11.83)

as the total torque acting on the N particle system arising from the external force acting on
each particle. The internal torque contribution can be written

N∑
i=1

N∑
j=1

X(i) × F(ji) =
1

2

N∑
i=1

N∑
j=1

(X(i) × F(ji) +X(j) × F(ij)) =
1

2

N∑
i=1

N∑
j=1

(X(i) −X(j))× F(ji),

(11.84)
where the first equality follows from interchanging particle indices, and the second equality
follows from the weak form of Newton’s third law given by equation (11.77b). If we furthermore
assume the force satisfies the strong form of Newton’s third law (11.77a), as for a central force,
then the total angular momentum evolves according to just the total external torque

L̇ = Γ(ext). (11.85)

That is, we require the strong form of Newton’s third law to ensure that the total angular
momentum is only affected by the torques created by external forces. If the forces only satisfy
the weak form of Newton’s third law, then evolution of the total angular momentum is generally
affected by internal torques. Such torques arise in the presence of nonmechanical forces, such
as a magnetic force between charged particles when the electromagnetic field contains intrinsic
angular momentum. We have no occasion to study internal torques in this book, so that all
physical systems are assumed to satisfy the strong form of Newton’s third law.

11.5.5 Center of mass coordinates

It is sometimes preferable to move to an internal set of coordinates that dispenses with the
arbitrary fixed origin. In this case we place the coordinate origin at the moving center of mass,

X(i) =X +X ′
(i), (11.86)

with a corresponding velocity expression

V(i) = V + V ′
(i). (11.87)

Making use of the definition of the center of mass coordinate (11.68), we readily find that the
relative position and relative velocity each have a vanishing mass weighted sum over all the
particles

N∑
i=1

m(i)X
′
(i) = 0 and

N∑
i=1

m(i) V
′
(i) = 0. (11.88)

11.5.6 Angular momentum in center of mass coordinates

The total angular momentum of theN particle system, expressed in the center of mass coordinates,
is given by

L =

N∑
i=1

m(i)X(i) × V(i) (11.89a)
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=
N∑
i=1

m(i) (X +X ′
(i))× (V + V ′

(i)) (11.89b)

=MX × V +
N∑
i=1

m(i)X
′
(i) × V ′

(i) (11.89c)

= L(cm) +L′, (11.89d)

where we used equation (11.88) to reach the third equality. The first term is the angular
momentum of the center of mass relative to the fixed origin

L(cm) =MX × V , (11.90)

whereas the second term is the internal angular momentum measured relative to the center of
mass

L′ =
N∑
i=1

m(i)X
′
(i) × V ′

(i). (11.91)

Evolution of the center of mass angular momentum takes on the form

L̇(cm) =MX × V̇ =X × F (ext), (11.92)

with the right hand side the torque from the net external force computed relative to the center
of mass position. Correspondingly, evolution of the total angular momentum is

L̇ =

N∑
i=1

m(i)X(i) × V̇(i) (11.93a)

=
N∑
i=1

(X +X ′
(i))× F ext

(i) (11.93b)

=X × F ext +
N∑
i=1

X ′
(i) × F ext

(i) (11.93c)

= L̇(cm) + L̇′. (11.93d)

We thus see that the rate of change for the angular momentum computed relative to the center
of mass is given by the torques from the external forces applied to each particle, computed
relative to the center of mass

L̇′ =
N∑
i=1

X ′
(i) × F ext

(i) . (11.94)

11.5.7 Energy in center of mass coordinates
Making use of the identity (11.88), we find that the total kinetic energy is given by

K =
1

2

N∑
i=1

m(i) V(i) · V(i) =
M

2
V · V +

1

2

N∑
i=1

m(i) V
′
(i) · V ′

(i) = K(cm) +K ′, (11.95)

which is the sum of the center of mass kinetic energy, K(cm), plus the kinetic energy of the
internal motions relative to the center of mass, K ′.

Consider two configurations of the N particle system, configuration A at time tA and
configuration B at time tB. Let X(iA) be the position of particle i in configuration A, and X(iB)
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the position of this particle in configuration B, and assume the two configurations are connected
by trajectories determined by the equation of motion for each particle. Extending our discussion
of work in Section 11.1.4, we see that the work done by forces acting on the N particle system
as it moves between these two configurations is given by

WAB =
N∑
i=1

ˆ X(iB)

X(iA)

F(i) · dx(i) (11.96a)

=

N∑
i=1

ˆ tB

tA

F(i) · V(i) dt (11.96b)

=
N∑
i=1

ˆ tB

tA

m(i) V̇(i) · V(i) dt (11.96c)

=
1

2

N∑
i=1

ˆ tB

tA

m(i)
d

dt
(V(i) · V(i)) dt (11.96d)

= KA −KB, (11.96e)

where KA and KB are the kinetic energies in the two configurations.

Rather than making use of Newton’s law of motion to introduce the kinetic energy, we can
decompose the force vector in the expression for work, thus giving

WAB =
N∑
i=1

ˆ X(iB)

X(iA)

F(i) · dx(i) (11.97a)

=

N∑
i=1

ˆ X(iB)

X(iA)

F
(ext)
(i) · dx(i) +

1

2

N∑
i=1

N∑
j=1

ˆ X(iB)

X(iA)

F(ji) · (dx(i) − dx(j)), (11.97b)

where the minus sign on the final term arises from Newton’s third law satisfied by the internal
forces. Now assume that both the internal and external forces are conservative, so that they can
separately be written as the gradient of respective potential energies. For the external potential
energy acting on particle i, we assume it is a function just of the position of that particle

F ext

(i) = −∇iP ext(X(i)), (11.98)

where ∇i is the gradient operator acting on the position in space, x(i), of the trajectory at a
particular time, x(i) =X(i)(t). Furthermore, assume the interparticle potential energy between
particles i and j is a function just of the distance between the two particles, which is a property
of central forces. In this case we have

F(ji) = −∇ijP (|X(i) −X(j)|), (11.99)

where ∇ij is the gradient operator acting on the relative position, x(i)−x(j), of the two particles
at a particular time instance. These assumptions then bring the work into the form

WAB = −
N∑
i=1

ˆ X(iB)

X(iA)

∇iP (ext) · dx(i) −
1

2

N∑
i=1

N∑
j=1

ˆ X(iB)

X(iA)

∇ijP · (dx(i) − dx(j)) (11.100a)

= −
N∑
i=1

ˆ X(iB)

X(iA)

dP
(ext)
(i) − 1

2

N∑
i=1

N∑
j=1

ˆ X(iB)

X(iA)

dP (|X(i) −X(j)|) (11.100b)

≡ −[P (tot)(A)− P (tot)(B)], (11.100c)
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where the total potential energy is

P (tot) =

N∑
i=1

P
(ext)
(i) +

1

2

N∑
i=1

N∑
j=1

P (|X(i) −X(j)|). (11.101)

Combining this result and the expression of work in terms of kinetic energy leads to the
conservation of mechanical energy for the conservative N particle system

K + P (tot) = constant. (11.102)

11.5.8 Comments and further reading
This section largely follows Section 2 of Fetter and Walecka (2003). Note that when considering a
continuous fluid in Part V, the interparticle forces manifest as pressure and friction, whereas the
external force is given by gravitation, planetary centrifugal, and planetary Corioliis. Furthermore,
we always assume the fluids in this book satisfy the strong form of Newton’s third law.

11.6 Exercises
exercise 11.1: Acceleration with dΩ/dt ̸= 0
Geophysical applications warrant taking the planetary rotation to be a constant vector, dΩ/dt =
0, and that assumption is made throughout this book. However, for some applications, such
as for rotating machines, we cannot make that assumption. What extra term appears in the
acceleration vector (11.48) when dΩ/dt ̸= 0? Hint: rework the derivation of equation (11.65c)
retaining dΩ/dt ̸= 0.
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Chapter 12

ANALYTICAL MECHANICS

In this chapter we formulate the equations describing classical particle motion according to
Lagrangian mechanics as well as Hamiltonian mechanics. We also make use of Hamilton’s
principle of stationary action, which offers a basis for classical mechanics that is distinct from,
though consistent with, Newton’s laws of motion. That is, within classical mechanics, neither
Newton’s laws of motion nor Hamilton’s principle are derived from more fundamental physical
principles. As we see in this chapter, as well as Chapter 15 and Part IX, the lens afforded by
Lagrangian and Hamiltonian mechanics, as well as Hamilton’s principle, render insights into
the nature of motion and dynamics, while also providing powerful tools for its quantitative and
qualitative description.

We refer to this formulation of mechanics as analytical mechanics. The name is motivated
since a great deal of general analysis is placed up front as part of formulating the equations of
motion. As seen through the examples discussed in Chapter 15, analytical mechanics allow us to
sidestep many difficulties inherent in Newtonian mechanics arising from the need to determine
forces, with forces often difficult if not impossible to determine a priori. Remarkably, analytical
mechanics, through the method of Lagrange multipliers, allows one to determine even the most
complex of forces a posteriori.

chapter guide

We here assume an understanding of Newton’s law of motion from Chapter 11. We also
use a modest level of tensor notation for some of the manipulations. Book supplements to
this chapter include intermediate and advanced treatments of classical mechanics, such as
Landau and Lifshitz (1976), Goldstein (1980), Marion and Thornton (1988), Fetter and
Walecka (2003), José and Saletan (1998), and Taylor (2005).
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12.1 Loose threads
• Liouville’s theorem and motion in phase space in Section 12.10.7.

• Adiabatic invariants: prove the general theorem as in José and Saletan (1998) or Landau
and Lifshitz (1976).

• Hamilton-Jacobi theory in brief.

12.2 Motivation for studying analytical mechanics
As encountered in this chapter, the formulation of Lagrangian mechanics requires a nontrivial
effort in general formalism. Most of this effort is required to account for constraints and to
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remove the need to know anything about forces, including forces of constraint. Hamiltonian
mechanics is another approach that parallels Lagrangian mechanics in that it also accounts for
constraints and has no concern for forces, yet it focuses more on the geometry of phase space
rather than the configuration space of Lagrangian mechanics (these terms are defined later in this
chapter). We refer to analytical mechanics as the study of constrained motion using the methods
of either Lagrange or Hamilton. Analytical mechanics, particularly Hamiltonian mechanics,
proved foundational to the invention of quantum mechanics.

As payoff for the extra formalism needed beyond that of Newtonian mechanics, analytical
mechanics provides an extremely straightforward means to derive the Euler-Lagrange equation
of motion for physical systems. The key reason for the simplification is that with analytical
mechanics we only need energies to derive the equation of motion. Energy is a scalar and thus
is invariant under coordinate transformations, so that the Euler-Lagrange equations of motion
take on the same form regardless the coordinates. In contrast, Newton’s laws are simple to state
in principle. However, they are vector equations since they require information about forces,
and as such they can be very difficult to formulate for mechanical systems beyond the simplest.

Philosophically, we observe that the Newtonian approach is concerned with motion of a
system arising from an outside agency, namely a net force that brings about a change in the linear
momentum, or a net torque that changes the angular momentum. In contrast, the Lagrangian
approach is concerned with properties of the physical system, namely its potential and kinetic
energies. We propose that a complete understanding of a classical physical system comes from
pursuing both the energy approaches of analytical mechanics (of Lagrange and Hamilton) and
the force approach of Newtonian mechanics.

Before diving into the details of analytical mechanics, we offer the following list of character-
istics as motivation for the study.

Generalized coordinates

As seen in Chapter 11, Newtonian mechanics is naturally expressed using Cartesian coordinates,
whereas it takes some work (using tensor methods) to develop the equations using non-Cartesian
coordinates (such as the spherical coordinates used in Chapter 13). In contrast, the equation of
motion arising in Lagrangian mechanics, referred to as the Euler-Lagrange equation, has the
same form using any coordinate system. Lagrangian mechanics is thus suited to the use of
generalized coordinates, with such coordinates tailored to the particulars of each physical system.
Hamiltonian mechanics goes one further step to render insights into the geometry of classical
motion.

Dynamical constraints

Noether’s theorem connects space-time symmetries of a physical system to the dynamical
conservation laws maintained by motion of the system. These conservation laws provide
dynamical constraints on the motion. The deduction of these constraints is naturally arrived at
using Lagrangian mechanics coupled to Hamilton’s principle of stationary action.

Forces of constraint

In addition to dynamical constraints, there are any number of further constraints that arise
from details of the particular motion, such as the imposition of spatial boundaries, rods or
springs connecting particles, or other geometric conditions. From the perspective of classical
mechanics, such constraints might be considered purely kinematical. For example, the motion
of a frictionless bead threaded by a wire is constrained to move along a trajectory defined by
the shape of the wire. Such constraints reduce the spatial degrees of freedom of the particle
motion. However, it is rarely simple, and often impossible in practice, to provide an a priori
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determination of the forces of constraint (also called reactive forces) that maintain the constraints.
Since Newtonian mechanics requires all forces for determining the motion, it offers an impractical
basis for studying systems where the forces of constraint are unknown a priori. In contrast,
the equations of motion from Lagrangian mechanics do not require forces, neither those from
external fields nor the forces of constraint. As such, Lagrangian mechanics provides the basis for
the formulation of a huge range of phenomena. Indeed, it is for this reason that it forms the
core of engineering mechanics.

Diagnosing forces

Although Lagrangian mechanices does not need forces, it does provide the means to determine
forces if so desired, including forces of constraint. It does so through the method of Lagrange
multipliers.

Continuum mechanics

Each of the above motivations, developed in this chapter for particle mechanics, has its general-
izations to continuum mechanics. That is, Lagrangian mechanics and Hamilton’s principle are
suited to continuum field theories such as geophysical fluid mechanics. We touch upon some
of this use in the chapters forming Part IX to this book, which formulates the equations of
geophysical fluid mechanics using Hamilton’s principle. Further motivation is provided when we
study waves in Part X of this book and instabilities in Part XI.

12.3 Constraints
A particle that moves in three dimensional Euclidean space has at most three independent
degrees of freedom, meaning that three numbers are needed to specify the particle’s spatial
position at a particular time. If the particle moves without any forces then it is said to be a
free particle, and we describe free particle motion in Section 12.9.1. Even without forces on the
particle, the motion of a free particle is constrained by dynamical constraints that arise from
symmetries of the space and time through which the particle moves; e.g., linear momentum,
angular momentum, and mechanical energy are conserved (Section 12.9). In addition, there are
further constraints that arise from forces of constraint, as we now discuss.

12.3.1 Holonomic constraints
When constraints are placed on the spatial position of the particles, then they are referred to as
holonomic constraints. For example, consider the motion of a particle restricted to a frictionless
two dimensional surface. As a result, its three Cartesian coordinates are related by a function of
the form

Ψ[x(t), y(t), z(t)] = C, (12.1)

where C is a constant. If, for example, the particle is confined to move on the surface of a sphere
of radius, R, then the constraint takes the form

Ψ[x(t), y(t), z(t)] = x(t)2 + y(t)2 + z(t)2 = R2. (12.2)

By this restriction the particle has two independent spatial degrees of freedom rather than the
three available without the constraint.

Holonomic constraints are enforced by forces of constraint, which are also known as reactive
forces. Forces of constraint reduce the degrees of freedom possessed by the motion. According
to d’Alembert’s principle, forces of constraint instantaneously perform no work on the physical
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system, which is the property that we use to define forces of constraint.1 For the particle moving
on a surface, we readily see that the forces of constraint that keep the particle on the surface
perform no work since the forces act, at each time instance, in a direction that is perpendicular
to the surface and hence perpendicular to the trajectory. Furthermore, note that the forces of
constraint can be conservative (written as the gradient of a scalar potential energy function)
or non-conservative (such as friction). Indeed, within the confines of classical mechanics, we
generally have little fundamental knowledge of the forces of constraints. Rather, we only see
their impact on the motion.

An equivalent expression for the algebraic constraint (12.1) is given by differential expressions

dΨ = 0 or
dΨ

dt
=
∂Ψ

∂xa
ẋa +

∂Ψ

∂t
= 0, (12.3)

where we wrote (x, y, z) = (x1, x2, x3) and made use of the summation convention from tensor
alegebra. We refer to holonomic constraints as integrable since the differential constraint (12.3)
can be integrated to yield the algebraic constraint (12.1).

12.3.2 Non-holonomic constraints

There are physical systems where the constraints take on a more general non-holonomic form.
The canonical non-holonomic constraint involves both the position and velocity and so it is
written

Ψ(X, Ẋ, t) = C. (12.4)

The exact differential of this constraint includes the position, velocity, and time, so that

dΨ =
∂Ψ

∂xa
ẋa +

∂Ψ

∂ẋa
¨̇xa +

∂Ψ

∂t
= 0. (12.5)

We note that some non-holonomic constraints are, in effect, holonomic in that they can be
integrated. For example, consider the contraint

Ha ẋ
a + I = 0, (12.6)

where Ha and I are functions of time that can be written as

Ha =
∂Ψ

∂xa
and I =

∂Ψ

∂t
. (12.7)

For this special case, the constraint (12.6) takes the form of the differential holonomic constraint
(12.3), in which we say that the constraint (12.6) is semi-holonomic. But more generally non-
holonomic constraints are non-integrable and require methods that are not fully covered by the
generalized coordinates or Lagrange multipliers considered in this chapter.

12.3.3 Dynamical constraints

At the start of this section we noted the possibility of a dynamical constraint. Such constraints
typically involve both the position and velocity of the particle, and so might at first be considered
non-holonomic. However, they do not arise from an external force of constraint. Rather, they
arise from space and time symmetries. For example, in Section 12.9.4 we detail conditions under

1Recall from Section 11.1.4 that mechanical work arises when a force acts in a direction aligned with the
motion of a physical system. If the force is perpendicular to the motion, then that force performs no work and so
does not alter the kinetic energy of the system. Hence, d’Alembert’s principle says that forces of constraint act
perpendicular to the motion. See Section 14 of Fetter and Walecka (2003) for more on d’Alembert’s principle.
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which the mechanical energy is a constant of the motion, whereby the sum of the kinetic and
potential energies are constant. For a particle, this dynamical constraint takes the form

m Ẋ · Ẋ/2 + V (X) = K(X, Ẋ). (12.8)

Evidently, this constraint involves the position of the particle, through the potential energy
V (X), and the velocity, through the kinetic energy, m Ẋ · Ẋ/2. It holds everywhere along the
particle’s trajectory as determined by the equation of motion

m Ẍ = −∇V. (12.9)

12.3.4 Comments
In this chapter we only consider dynamical constraints and holonomic constraints. The study of
non-holonomic constraints can be rather subtle, and it is outside our scope.

12.4 Coordinate description of motion
We here review the Cartesian coordinate formalism needed to describe the motion of a system
of N particles, and then transform to generalized coordinates that are optimized to describing
constrained motion.

12.4.1 Cartesian coordinates for N particles
Following the notation from Section 11.5, we specify the position of each discrete particle by its
Cartesian position vector,

X(i) = x̂x
1
(i) + ŷ x

2
(i) + ẑ x

3
(i) = ea x

a
(i), (12.10)

where i = 1, ..N is the particle index, xa(i) is the a’th Cartesian coordinate for particle i, and
ea is the a’th Cartesian basis vector where a = 1, 2, 3. We place the particle index inside a
parentheses to distinguish it from the coordinate indices, and we make use of the Einstein
summation convention for the Cartesian index in the final equality. Each of the Cartesian
coordinates for the particle position are functions of time, though we sometimes suppress time
dependence for brevity.

The notation in equation (12.10) is somewhat cluttered on many occasions. To help de-clutter
the notation we sometimes find it convenient to meld each of the Cartesian position vectors
together into an ordered list of length 3N

X = (x1, x2, x3, x4, x5, ..., x3N−2, x3N−1, x3N ). (12.11)

This list is organized so that the first triplet, n = 1, 2, 3, contains the coordinates for the first
particle, the second triplet, n = 4, 5, 6, is for the second particle, and so on up to the final triplet
where n = 3N − 2, 3N − 1, 3N is for particle N . In so ordering the indices we are able to drop
the particle label since there is a clear mapping between particle number and position within
the list.

12.4.2 An introduction to generalized coordinates
Cartesian coordinates are sufficient for describing motion through Euclidean space, and they
offer a suitable description particularly when there are no constraints on the motion. However,
when constraints reduce the degrees of freedom, we are motivated to choose each coordinate
to directly correspond to an independent degree of freedom. We refer to such coordinates as
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generalized coordinates. Generalized coordinates can be any coordinate that specifies the spatial
position of the matter comprising the physical system. For example, latitude and longitude
provide generalized coordinates for a particle moving on the surface of a sphere, whereas the
polar angle serves as a generalized coordinate for motion around the circumference of a planar
circle. In these two examples, we see that generalized coordinates are typically not Cartesian
coordinates.

A further example of the value of generalized coordinates arises in the description of rigid
body motion. A rigid body is comprised of a huge number of particles that are each constrained
by inter-particle forces that keep the particles rigidly fixed relative to one another.2 Internal
forces of constraint that maintain the rigid spacing provide no net force nor net torqe on the
body as a whole, so that only externally applied forces and torques lead to time changes in the
body’s translation and/or rotation. Correspondingly, the internal forces of constraint perform
no net work on the body, which reflects d’Alembert’s principle. Given that the particles are
rigidly fixed relative to one another, the spatial configuration of the rigid body is specified by
the position of the center of mass (three coordinates) and the orientation of the rigid body in
space (three angles). The spatial configuration of a rigid body is thus fully described by just six
degrees of freedom.3

12.4.3 Cartesian and generalized coordinates for N particles

Assume there are C holonomic constraints placed on the spatial coordinates of the system that
are written in the form

Ψc(x
1, ..., x3N , t) = Cc, for c = 1, ..., C, (12.12)

where Cc are constants. As a result, there are

D = 3N − C (12.13)

spatial degrees of freedom. We can thus choose D generalized coordinates, ξσ, σ = 1, 2, ..., D,
that are linearly independent and so fully describe the spatial position of the constrained system.
For example, if a particle is constrained to move on a spherical shell of radius R, then the two
spherical angular coordinates are suitable generalized coordinates corresponding to the single
constraint equation, r = R.

With the spatial configuration of the physical system fully described by the generalized
coordinates, we can determine the Cartesian position, X, for the particles according to the
functional relation

X =X(ξ1, ξ2, ..., ξD, t), (12.14)

where the explicit time dependence in this relation offers generality that can be useful (e.g.,
motion on a spherical shell whose radius is time dependent). In turn, the exact differential of the
Cartesian position is related to that of the generalized coordinates according to the chain rule

dX =
D∑
σ=1

∂X

∂ξσ
dξσ +

∂X

∂t
dt. (12.15)

2In any real solid, the atoms are not rigidly fixed. But when concerned only with the macroscopic (classical)
motion of a solid body, we can readily approximate its matter constituents as rigidly fixed relative to each other.

3See any of the references at the start of this chapter for detailed analysis of rigid body motion.
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12.4.4 Virtual displacements

When discussing forces of constraint in Section (12.3), we included the qualifier “instantaneous”
or “time instance” when referring to the inability of a force of constraint to do work on the
physical system. This qualifier is needed when the constraints are explicit functions of time,
such as for motion on a spherical shell whose radius changes in time. We formalize this qualifier
by introducing the concept of a virtual displacement. A virtual displacement is a tiny spatial
displacement of a physical system that occurs at a fixed time instance. Furthermore, virtual
displacements respect the forces of constraint, which means they are kinematically admissable
displacements.

Conceptually, we imagine freezing the physical system at a specific time instance, and
then probing alternative realizations of the physical system by considering tiny kinematically
admissable displacements; i.e., displacements that are consistent with the forces of constraints. By
choosing a particular time instance, virtual displacements are not concerned with the dynamics
since dynamics requires information about time changes. For a particle moving on a spherical
shell, spherical angle displacements at a fixed time respect the constraint that the particle
remains on the shell, so that tiny displacements of the spherical angles provide suitable virtual
displacements.

Any perturbation of generalized coordinates represents a possible virtual displacement. In
turn, a virtual displacement written in terms of Cartesian coordinates follows from the exact
differential (12.15) with dt = 0

δX =
D∑
σ=1

∂X

∂ξσ
δξσ. (12.16)

In this expression we introduced the δ symbol for a virtual displacement as distinct from an
exact differential. Virtual displacements hold a prominent role in Lagrangian mechanics as
well as Hamilton’s principle. In the context of Hamilton’s principle, virtual displacements are
generalized to the variations considered when probing alternative trajectories of a physical
system.

Note that the δ symbol is commonly used in this book for tiny displacements or perturbations
of a physical system that allow one to probe dynamical stability and examine alternative
realizations of the motion. Not all cases where we use the δ symbol are virtual displacements.
For example, in Section 14.6.2 we examined the constraints imposed by axial angular momentum
conservation, with the use of δ in that context distinctly not virtual since the perturbations
generally occur over a time interval.

12.4.5 Particle moving on a spherical shell

As an example of the ideas presented in this section, consider a particle constrained to move a
constant radial distance from a fixed center. This motion on a spherical shell is enabled through
the imposition of forces of constaint that keep the particle from either moving radially outward
or radially inward. The forces of constraint can perform no work on the particle since they
act in the radial direction, whereas the motion is in the spherical angular directions. For a
particular realization, consider particle motion on the surface of a solid massive and frictionless
spherical shell. The gravitational force from the shell provides a radially inward force that keeps
the particle from moving outward, whereas the solid surface of the shell provides the radially
outward force that keeps the particle from moving inward.4 It is as if the particle was confined
to a narrow gap between two spherical surfaces that only allow motion in the angular directions.

4The constraint against moving inward arises from inter-atomic forces that keep the particle from penetrating
into the solid shell. From the perspective of the classical particle motion, we are unconcerned with such inter-atomic
forces, but instead only concerned with their effects on the classical motion of the particle.
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Neither of the constraining forces performs work on the particle since they act perpendicular to
the particle’s motion.

The coordinates used to specify the particle position are constrained to the spherical shell
with fixed radius, R. Hence, the particle spatial position is fully specified by the latitude, ϕ, and
longitude, λ, which are related to Cartesian coordinates via equations (4.206a)–(4.206c) (see
also Figure 4.3)

x = R cosϕ cosλ and y = R cosϕ sinλ and z = R sinϕ, (12.17)

which manifests the constraint placed on the three Cartesian coordinates

X(t) ·X(t) = x(t)2 + y(t)2 + z(t)2 = R2. (12.18)

Note that the corresponding exact differentials

dx = R (−dϕ sinϕ cosλ− dλ cosϕ sinλ) (12.19a)

dy = R (−dϕ sinϕ sinλ+ dλ cosϕ cosλ) (12.19b)

dz = R dϕ cosϕ, (12.19c)

are within the spherical shell since they are orthogonal to the radial unit vector

r̂ · (x̂dx+ ŷ dy + ẑ dz) = 0, (12.20)

where the radial unit vector is given by equation (4.219c)

r̂ = x̂ cosλ cosϕ+ ŷ sinλ cosϕ+ ẑ sinϕ. (12.21)

12.5 Lagrange’s equations of motion

In this section we step through the derivation of Lagrange’s equation of motion. This equation
is equivalent to Newton’s equation of motion, and yet it eliminates the forces of constraint and
is written fully in terms of generalized coordinates. A key facet of the derivation concerns the
need to articulate the functional dependency of the Cartesian position and velocity, X and Ẋ,
on the generalized coordinates, generalized velocities, and time, (ξσ, ξ̇σ, t).

12.5.1 Eliminating the forces of constraint

The inability of forces of constraint to perform work under virtual displacements (d’Alembert’s
principle) provides the key insight needed to eliminate the forces of constraint from the equations
of motion. For this purpose, start by writing Newton’s equation of motion using Cartesian
coordinates

Ṗn = Fn + Fnconstraint for n = 1, ..., 3N, (12.22)

where Fn is the n’th component of the net applied force (e.g., gravity, electromagnetism) and
Fnconstraint is the n’th component of the force of constraint. It is convenient to make use of the
3N ordered list notation of equation (12.11), in which we organize the linear momentum time
derivatives and applied forces

Ṗ = (Ṗ 1, Ṗ 2, Ṗ 3, Ṗ 4, Ṗ 5, ..., Ṗ 3N−2, Ṗ 3N−1, Ṗ 3N ) (12.23a)

F = (F 1, F 2, F 3, F 4, F 5, ..., F 3N−2, F 3N−1, F 3N ), (12.23b)
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so that Newton’s equation (12.22) for the N particle system becomes

Ṗ = F + Fconstraint. (12.24)

Through d’Alembert’s principle we eliminate the forces of constraint by multiplying Newton’s
equation (12.24) by the vector of Cartesian virtual displacements, δX, and summing over all
3N Cartesian coordinates

(Ṗ − F ) · δX = 0. (12.25)

To reach this equation we set
Fconstraint · δX = 0, (12.26)

due to d’Alembert’s principle. To help appreciate d’Alembert’s principle written as equation
(12.26), again refer to the case of a particle moving on a spherical shell from Section 12.4.5,
whereby the force of constraint is directed radially whereas a virtual displacement is directed
along an angle within the shell.

Equation (12.25) is a statement of d’Alembert’s principle using Cartesian coordinates. It
succeeds in eliminating the forces of constraint, which is one of our goals. However, we cannot
set each of the 3N terms individually to zero since each Cartesian component of the virtual
displacement, δX, is not generally independent of the other. To provide a more useful expression
requires us to transform the Cartesian virtual displacements into generalized coordinate virtual
displacements. This part of the derivation requires a few steps, and we do so by separately
considering F · δX and Ṗ · δX.

12.5.2 Work by the applied forces acting on virtual displacements

Although the forces of constraint perform no work on the virtual displacements, the applied
forces generally do perform work, as given by

δW = F · δX = F ·
D∑
σ=1

∂X

∂ξσ
δξσ =

D∑
σ=1

Qσ δξ
σ. (12.27)

The second equality made use of equation (12.16) to write the Cartesian virtual displacement in
terms of the generalized coordinate displacements. The third equality defined the generalized
force, which is the representation of the applied force using generalized coordinates

Qσ = F · ∂X
∂ξσ

. (12.28)

We thus identify the product, Qσ δξ
σ (no implied sum), as the work done by the generalized

force, Qσ, on the generaliized virtual displacement, δξσ. Correspondingly, the total work done
by all generalized forces is given by the sum in equation (12.27). Observe that the generalized
force can be computed from the defining expression (12.28), given knowledge of the force vector,
F , and coordinate transformation matrix, ∂X/∂ξσ. Alternatively, and often more conveniently,
recall that the virtual displacements of the generalized coordinates are linearly independent so
that we can compute the generalized force by computing the virtual work arising from a single
virtual displacement, with all other displacements set to zero.
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12.5.3 Massaging Ṗ · δX

As for equation (12.27), we transform the Cartesian virtual displacements into generalized
coordinate virtual displacements according to

Ṗ · δX = Ṗ ·
D∑
σ=1

∂X

∂ξσ
δξσ =

3N∑
n=1

D∑
σ=1

ṗn
∂xn

∂ξσ
δξσ, (12.29)

which takes on the following form if each particle has the same constant mass, m,

Ṗ · δX = m

3N∑
n=1

D∑
σ=1

ẍn
∂xn

∂ξσ
δξσ (12.30a)

= m

3N∑
n=1

D∑
σ=1

[
d

dt

(
ẋn

∂xn

∂ξσ

)
− ẋn d

dt

(
∂xn

∂ξσ

)]
δξσ. (12.30b)

To massage this expression further requires us to be careful about the functional dependencies
for the terms inside the square bracket.

Alternative expression for the transformation matrix elements

For the first right hand side term in equation (12.30b), recall that the functional dependence for
the Cartesian expression of the particle velocity is found by making use of the exact differential
(12.15), where division by dt leads to

Ẋ =
D∑
σ=1

∂X

∂ξσ
ξ̇σ +

∂X

∂t
. (12.31)

The Cartesian position, X, is a function of the generalized coordinates and time as per equation
(12.14), which then means that the partial derivatives, ∂X/∂ξσ and ∂X/∂t, each have the
same functional dependence. We thus conclude that the Cartesian velocity is a function of the
generalized coordinates, the generalized velocities, and time

Ẋ = Ẋ(ξ1, ..., ξD, ξ̇1, ..., ξ̇D, t). (12.32)

Furthermore, equation (12.31) says that each element of Ẋ is a linear function of the generalized
velocities, ξ̇σ, from which it follows that

∂ẋn

∂ξ̇σ
=
∂xn

∂ξσ
. (12.33)

This rather remarkable identity says that component-wise, the partial derivative of the Cartesian
velocity, with respect to the generalized coordinate velocity, equals to the partial derivative of
the Cartesian coordinate with respect to the generalized coordinate.

Making use of the identity (12.33) for the first right hand side term in equation (12.30b)
leads to

m
3N∑
n=1

D∑
σ=1

d

dt

[
ẋn

∂xn

∂ξσ

]
= m

3N∑
n=1

D∑
σ=1

d

dt

[
ẋn

∂ẋn

∂ξ̇σ

]
(12.34a)

=
m

2

3N∑
n=1

D∑
σ=1

d

dt

[
∂(ẋn ẋn)

∂ξ̇σ

]
(12.34b)
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=
D∑
σ=1

d

dt

[
∂K

∂ξ̇σ

]
, (12.34c)

where we introduced the kinetic energy of the N particle system

K =
m

2

3N∑
n=1

ẋn ẋn =
m

2

N∑
i=1

Ẋ(i) · Ẋ(i) =
m

2

N∑
i=1

ẋa(i) δab ẋ
b
(i), (12.35)

with the final equality introducing the Kronecker metric, δab, for Euclidean space. Note that the
functional dependence (12.32) for the Cartesian velocities is transferred to the kinetic energy so
that

K = K(ξ1, ..., ξD, ξ̇1, ..., ξ̇D, t). (12.36)

Proving that d/dt(∂xn/∂ξσ) = ∂ẋn/∂ξσ

For the next step we prove the identity

d

dt

∂xn

∂ξσ
=

∂

∂ξσ
dxn

dt
(12.37)

by evaluating both sides and showing they are equal. For the left hand side, recall from the
derivation of equation (12.33) that the transformation matrix element, ∂xn/∂ξσ, is a function of
the generalized coordinates and time, so that its total time derivative is

d

dt

∂xn

∂ξσ
=

 ∂
∂t

+

D∑
µ=1

ξ̇µ
∂

∂ξµ

 ∂xn
∂ξσ

. (12.38)

Next, evaluate the right hand side of equation (12.37) directly by expanding the total time
derivative. Importantly, recall the functional dependence of the Cartesian velocity in equation
(12.32), and note that the partial derivative, ∂/∂ξσ, is computed while holding fixed the explicit
time dependence and the dependence on the generalized velocity, ξ̇σ. We thus find

∂

∂ξσ
dxn

dt
=

∂

∂ξσ

 ∂
∂t

+

D∑
µ=1

ξ̇µ
∂

∂ξµ

xn =

 ∂
∂t

+

D∑
µ=1

ξ̇µ
∂

∂ξµ

 ∂xn
∂ξσ

, (12.39)

which follows since (i) partial derivative operators commute, and (ii) the partial derivative,
∂/∂ξσ, is computed while holding the generalized velocity, ξ̇µ, fixed. Since equations (12.38)
and (12.39) are identical, we have proven the identity (12.37).

Making use of equation (12.37) for the second right hand side term in equation (12.30b)
leads to

3N∑
n=1

D∑
d=1

mnẋn
d

dt

(
∂xn

∂ξσ

)
δξσ = m

3N∑
n=1

D∑
σ=1

ẋn
∂

∂ξσ
dxn

dt
δξσ =

D∑
d=1

∂K

∂ξσ
δξσ, (12.40)

where we again introduced the kinetic energy (12.35) of the N particle system.
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12.5.4 Lagrange’s equation of motion

We now combine the expression (12.27) for the work done by the generalized force against the
virtual displacements, along with the identities (12.34c) and (12.40), to find

D∑
d=1

[
d

dt

[
∂K

∂ξ̇σ

]
− ∂K

∂ξσ
−Qσ

]
δξσ = 0. (12.41)

We have thus succeeded in eliminating the forces of constraint and expressing the equations
in terms of just the generalized coordinates. Since each of the virtual displacements of the
generalized coordinates, δξσ, σ = 1, ...D, are linearly independent, satisfying equation (12.41)
for arbitrary virtual displacements requires Lagrange’s equations of motion

d

dt

[
∂K

∂ξ̇σ

]
− ∂K

∂ξσ
= Qσ for σ = 1, ..., D. (12.42)

Lagrange’s equation is a partial differential equation for the kinetic energy that is driven by
generalized forces. This equation holds separately for each of the D generalized coordinates.

12.5.5 Conservative forces and the Lagrangian function

Conservative forces are those that can be derived as minus the spatial gradient of a potential
energy scalar, P . We commonly assume conservative forces when working with Lagrangian
mechanics as discussed in Section 12.5.5. When written using Cartesian coordinates, the potential
energy for a conservative system is time independent. However, when transforming to generalized
coordinates as per equation (12.14), the potential energy can pick up an explicit time dependence
along with the expected dependence on generalized coordinates. We thus write the potential
energy as

potential energy = P cartesian(X) = P generalized(ξ1, ..., ξD, t), (12.43)

where P cartesian and P generalized are distinct scalar functions that both measure the potential energy.
Notably, the potential energy is not a function of the Cartesian velocity nor the generalized
velocity, so that

∂P cartesian

∂ẋn
= 0 and

∂P generalized

∂ξ̇σ
= 0. (12.44)

As per our discussion of scalar functions in Section 1.5.1, we drop the extra superscript
notation on the potential energy in equation (12.43), with the understanding that the functional
dependency determines which particularl function is meant. In this manner, the generalized
force takes the form

Qσ =

3N∑
n=1

Fn
∂xn

∂ξσ
= −

3N∑
n=1

∂P (X)

∂xn
∂xn

∂ξσ
= −∂P (ξ

1, ..., ξD, t)

∂ξσ
, (12.45)

where the second equality follows from the chain rule. Consequently, we can rewrite Lagrange’s
equation (12.42) as

d

dt

[
∂(K − P )

∂ξ̇σ

]
− ∂(K − P )

∂ξσ
= 0 for σ = 1, ..., D. (12.46)

The difference between the kinetic energy and potential energy is referred to as the Lagrangian

L = K − P, (12.47)
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so that Lagrange’s equation of motion (12.46) takes on the more commonly written form

d

dt

[
∂L

∂ξ̇σ

]
− ∂L

∂ξσ
= 0 for σ = 1, ..., D. (12.48)

The Lagrangian inherits the functional dependence of the kinetic energy as given by equation
(12.36)

L = L(ξ1, ..., ξD, ξ̇1, ..., ξ̇D, t). (12.49)

Furthermore, we refer to the space defined by the ξσ, ξ̇σ, σ = 1, ..., D as configuration space. As
such, Lagrange’s equation (12.48) is a partial differential equation for motion in configuration
space.

In Lagrange’s equation (12.48), when computing the partial derivatives, ∂/∂ξσ and ∂/∂ξ̇σ,
all other variables are held fixed. When computing the total time derivative, d/dt, we must be
sure to account for the functional dependence of L according to equation (12.49), so that

d

dt

[
∂L

∂ξ̇µ

]
=

[
∂

∂t
+ ξ̇σ

∂

∂ξσ
+ ξ̈σ

∂

∂ξ̇σ

]
∂L

∂ξ̇µ
. (12.50)

12.5.6 Connection to Newton’s equation of motion
As a partial differential equation for the scalar Lagrangian function, Lagrange’s equation (12.48)
is quite distinct from Newton’s equation of motion, which is a vector ordinary differential
equation for the acceleration determined by the forces. However, these two equations are directly
connected since we used Newton’s equation to derive Lagrange’s equation.

To further reveal the equivalance, consider the unconstrained case for a single particle, in
which the Lagrangian as written in Cartesian coordinates as

L = (m/2) (ẋ2 + ẏ2 + ż2)− P (x, y, z), (12.51)

which leads to

d

dt

[
∂L

∂ẋ

]
= mẍ and

d

dt

[
∂L

∂ẏ

]
= mÿ and

d

dt

[
∂L

∂ż

]
= m z̈. (12.52)

Lagrange’s equation thus becomes Newton’s equation of motion

F = m Ẍ with F = −∇xP. (12.53)

12.5.7 Kinetic energy in terms of generalized velocities
We wrote the kinetic energy in equation (12.35) in terms of the Cartesian velocities. Here we
make use of the coordinate transformation (12.31) to expose the generalized velocities according
to

K =
m

2

N∑
i=1

ẋa(i) δab ẋ
b
(i) (12.54a)

=
m

2

N∑
i=1

[
∂xa(i)

∂t
+

D∑
σ=1

ξ̇σ
∂xa(i)

∂ξσ

]
δab

∂xb(i)
∂t

+

D∑
µ=1

ξ̇µ
∂xb(i)

∂ξµ

 , (12.54b)

where we made use of the notation in equation (12.10) with the implied summation over
a, b = 1, 2, 3. Expanding this product leads to three terms, two of which arise from the time
dependent coordinate transformation, whereby ∂tX(i) ̸= 0. The third term is given by the
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quadratic form

m

2

N∑
i=1

D∑
σ=1

D∑
µ=1

∂xa(i)

∂ξσ
δab

∂xb(i)

∂ξµ
ξ̇σ ξ̇µ =

m

2

D∑
σ=1

D∑
µ=1

Gσµ(ξ) ξ̇
σ ξ̇µ. (12.55)

We here introduced the symmetric tensor

Gσµ =

N∑
i=1

∂xa(i)

∂ξσ
δab

∂xb(i)

∂ξµ
, (12.56)

which is the metric tensor for the space of generalized coordinates. For the special (and common)
case of a time independent coordinate transformation, the metric is a function just of the
generalized coordinates

Gσµ = Gσµ(ξ), (12.57)

and the kinetic energy reduces to the quadratic form

K =
m

2

D∑
σ=1

D∑
µ=1

Gσµ(ξ) ξ̇
σ ξ̇µ if ∂tX(i) = 0. (12.58)

12.5.8 Comments
The derivation in this section closely follows sections 13, 14, and 15 of Fetter and Walecka (2003).
In summary, the approach started from Newton’s equation of motion and then introduced virtual
displacements, d’Alembert’s principle, generalized coordinates, and then pursues a series of
manipulations that carefully account for the functional dependencies of various quantities. In
the next section we take an alternative approach that starts from Hamilton’s stationary action
principle, which is a more streamlined approach that renders Lagrange’s equation and is thus
consistent with Newton’s equation of motion. The more tedious approach of the current section
serves to expose certain details about are both useful for understanding the foundation of the
theory, and find use in different contexts within this book.

12.6 Hamilton’s principle of stationary action
In this section we show that Lagrange’s equations of motion (12.48) for a conservative physical
system can be derived from a variational principle, known as Hamilton’s principle of stationary
action. Hamilton’s principle states that the action, which is the time integral of the Lagrangian,
is stationary if and only if Lagrange’s equation of motion are satisfied. Hamilton’s principle is
logically on the same level as Newton’s laws of motion in that neither are derived from more
fundamental principles. Rather, they each offer the starting point for two distinct, but consistent,
formulations of mechanics.

12.6.1 Notation
As for our derivation of Lagrange’s equations in Section 12.5, it is useful to work with generalized
coordinates in order to seamlessly account for constraints. To reduce notation clutter we use the
boldface notation introduced in equation (12.11) for Cartesian coordinates. Here, the generalized
coordinates and generalized velocities for a system with D degrees of freedom are organized into
a list of length D according to

ξ = (ξ1, ..., ξD) and ξ̇ = (ξ̇1, ..., ξ̇D). (12.59)

CHAPTER 12. ANALYTICAL MECHANICS page 299 of 2158



12.6. HAMILTON’S PRINCIPLE OF STATIONARY ACTION

In this manner, the kinetic energy, potential energy, and Lagrangian are written with the
functional dependence

K = K(ξ, ξ̇, t) and P = P (ξ, t) and L = L(ξ, ξ̇, t). (12.60)

We also assume the following shorthand for partial derivatives

∂K

∂ξ
= (∂K/∂ξ1, ∂K/∂ξ2, ..., ∂K/∂ξD) and

∂K

∂ξ̇
= (∂K/∂ξ̇1, ∂K/∂ξ̇2, ..., ∂K/∂ξ̇D). (12.61)

With this notation, Lagrange’s equations of motion (12.48) take the form

d

dt

[
∂L

∂ξ̇

]
− ∂L

∂ξ
= 0. (12.62)

12.6.2 The action

Consider the trajectory of an N particle system with D ≤ 3N degrees of freedom, and assume
knowledge of the trajectory at two points in time, tA < tB. The action is the time integral of
the Lagrangian5

S =

ˆ tB

tA

L(ξ, ξ̇, t) dt, (12.63)

where we exposed the functional dependence (12.49) for the Lagrangian function. As defined, the
action has physical dimensions of energy times time, which is the same as angular momentum

S [≡] M (L/T)2 T = M L2 T−1. (12.64)

Hamilton’s principle states that the physically realized trajectory is an extremum of the action.
The action integral (12.63) must have an extremum arising from the physically realized trajectory,
regardless the time interval. However, the extremum is not necessarily a minimum.6 Indeed,
it is typically nontrivial to deduce the nature of the extremum given that one must compute
the second variation of the action. Even so, we only rely on there being an extremum of the
action in order to derive the equations of motion. It is for this reason that we prefer the name
Hamilton’s principle of stationary action rather than the commonly used Hamilton’s principle of
least action.

12.6.3 Variation of the action

To prove that the action is stationary for the physical trajectory, ξ(t), consider a perturbed
trajectory via

ξ′(t) = ξ(t) + ϵχ(t). (12.65)

As so defined, we have the perturbation written

δξ(t) = ξ′(t)− ξ(t) = ϵχ(t), (12.66)

and the corresponding perturbation to the generalized velocity

δξ̇(t) = ξ̇′(t)− ξ̇(t) = ϵ χ̇(t) = (d/dt) δξ. (12.67)

5In some chapters of this book (e.g., Chapters 22, 22, and 26), S is the entropy per mass. The distinct
meanings for the same symbol will be clear from the context.

6This point is emphasized in a footnote in Section 2 of Landau and Lifshitz (1976).
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In these equations, ϵ is a small non-dimensional constant that scales the perturbation function,
χ(t). Furthermore, the perturbation function vanishes at the initial time and final time

χ(tA) = χ(tB) = 0, (12.68)

and χ(t) is consistent with the constraints applied to the system. For example, if the motion is
constrained to the surface of a spherical shell, then so too is χ. Furthermore, note that equation
(12.67) reveals that variations in the generalized velocities are not independent of variations of
the generalized coordinates.

We refer to δξ(t) as the variation of the trajectory, with Figure 12.1 providing an example.
Variations provide a method to probe physically unrealized paths for the purpose of characterizing
and understanding what is special about the physically realized path. This approach builds from
the virtual displacements considered in Section 12.4.4. Indeed, the path variations are virtual
displacements from the physical path. Like a virtual displacement, path variations are made
during a single time instance so that dt = 0.
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Figure 12.1: The physically realized trajectory, ξ(t), is depicted by the black line, with a sampling of the infinite
number of possible variations, ξ′(t) = ξ(t) + δξ(t), depicted in red. We assume knowledge of the trajectory at
the start time, tA, and end time, tB . Hence, the physical trajectory and its variations are coincident at times tA
and tB . Variations provide a means to probe physically unrealized paths for the purpose of characterizing and
understanding what is special about the physically realized path.

The Lagrangian function takes on the following form when evaluated with the modified
trajectory (12.65)

L(ξ′, ξ̇′, t) = L(ξ + ϵχ, ξ̇ + ϵ χ̇, t) ≈ L(ξ, ξ̇, t) + ϵ

[
χ · ∂L(ξ, ξ̇, t)

∂ξ
+ χ̇ · ∂L(ξ, ξ̇, t)

∂ξ̇

]
. (12.69)

We only expand the Taylor series to leading order since ϵ is tiny so that all higher order terms
are negligible. The notation in equation (12.69) is a shorthand for the more complete sums over
the degrees of freedom

χ · ∂L(ξ, ξ̇, t)
∂ξ

=

D∑
σ=1

χσ ∂L(ξ, ξ̇, t)

∂ξσ
and χ̇ · ∂L(ξ, ξ̇, t)

∂ξ̇
=

D∑
σ=1

χ̇σ ∂L(ξ, ξ̇, t)

∂ξ̇σ
. (12.70)

From equation (12.69) we deduce the variation of the Lagrangian that arises from variation
of the trajectories

δL(ξ, ξ̇, t) = L(ξ′, ξ̇′, t)− L(ξ, ξ̇, t) ≈ ϵ
[
χ · ∂L(ξ, ξ̇, t)

∂ξ
+ χ̇ · ∂L(ξ, ξ̇, t)

∂ξ̇

]
, (12.71)
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along with the corresponding variation of the action

δS =

ˆ tB

tA

δL(ξ, ξ̇, t) dt. (12.72)

Integrating by parts on the final term in equation (12.71) leads to the equivalent expression for
variation of the Lagrangian

δL = ϵχ ·
[
∂L

∂ξ
− d

dt

(
∂L

∂ξ̇

)]
+

d

dt

[
ϵχ · ∂L(ξ, ξ̇, t)

∂ξ̇

]
. (12.73)

Since the perturbation function, χ, vanishes at tA and tB according to equation (12.68), the
total time derivative plays no role in the action variation, in which case

δS = ϵ

ˆ tB

tA

χ ·
[
∂L

∂ξ
− d

dt

(
∂L

∂ξ̇

)]
dt. (12.74)

12.6.4 Stationary action and the Euler-Lagrange equations

Equation (12.74) says that variation of the action vanishes (i.e., the action is stationary) for all
values of χ if and only if the integrand is zero for each of the generalized coordinates. We are
thus led to the condition

δS = 0⇐⇒ d

dt

[
∂L

∂ξ̇σ

]
− ∂L

∂ξσ
= 0 for σ = 1, ..., D, (12.75)

which is Lagrange’s equation of motion (12.48) derived in Section 12.5 starting from Newton’s
equation of motion. In the context of Hamilton’s principle, Lagrange’s equations (12.75) are
referred to as the Euler-Lagrange equations, given the work by Euler on variational principles.

12.6.5 Derivative of the action with respect to ϵ

The discussion in Section 12.6.3 illustrates the how to vary the action, and its usage becomes
second nature once doing it a few times. We here present a slightly alternative approach that,
in the end, is totally equivalant to the variation approach but which offers a few more insights.

Consider the action evaluated on the perturbed trajectory

S′ =

ˆ tB

tA

L(ξ′, ξ̇′, t) dt =

ˆ tB

tA

L(ξ + ϵχ, ξ̇ + ϵ χ̇
′
, t) dt. (12.76)

Now take the derivative of the perturbed action with respect to ϵ

dS′

dϵ
=

ˆ tB

tA

[
∂L(ξ′, ξ̇′, t)

∂ξ′
· ∂ξ

′

∂ϵ
+
∂L(ξ′, ξ̇′, t)

∂ξ̇′
· ∂ξ̇

′

∂ϵ

]
dt. (12.77)

Now evaluate the derivatives of the trajectory and the velocity to find

dS′

dϵ
=

ˆ tB

tA

[
∂L(ξ′, ξ̇′, t)

∂ξ′
· χ+

∂L(ξ′, ξ̇′, t)

∂ξ̇′
· χ̇
]
dt, (12.78)
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with integration by parts and use of the initial and final conditions yielding

dS′

dϵ
=

ˆ tB

tA

χ ·
[
∂L(ξ′, ξ̇′, t)

∂ξ′
− d

dt

(
∂L(ξ′, ξ̇′, t)

∂ξ̇′

)]
dt. (12.79)

This expression has the same look as the variation in equation (12.74), and yet here the action is
evaluated on the perturbed trajectory rather than the physically realized trajectory. Hamilton’s
principle says that the action is extremal for the physically realized trajectory, which means that[

dS′

dϵ

]
ϵ=0

= 0. (12.80)

That is, Hamilton’s principle says that the physically realized trajectory extremizes the action,
which means that the action has a zero derivative at ϵ = 0. As expected, this statement leads to
the same Euler-Lagrange equations (12.75) as derived using the variational approach.

Considering the small parameter to be continuous, we can formally connect this discussion
to the δ variation operator by writing[

dS′

dϵ

]
dϵ = δS′ and

dξ′

dϵ
dϵ = δξ′. (12.81)

12.6.6 Mechanical equivalence of Lagrangians
The Euler-Lagrange equation (12.75) remains unchanged if we multiply the Lagrangian by
a constant. This property, though seemingly trivial, has important implications for scaling
properties of the energy of physical systems. We deduce such properties in Section 12.7.
Additionally, the Euler-Lagrange equation is unchanged by adding the total time derivative of
an arbitrary function of the generalized coordinates and time

Lnew = Lold +
dΓ(ξ, t)

dt
. (12.82)

To show the equivalance, note that the action transforms into

Snew = Sold + Γ[ξ(tB), tB]− Γ[ξ(tA), tA]. (12.83)

The added terms are evaluated at tA and tB, where the trajectories are held fixed. Hence, these
terms have zero variation so that

δSnew = δSold, (12.84)

which then means that the associated Euler-Lagrange equation is unchanged.

12.6.7 Summary of the method
As a recap, we here defined the action (12.63) as the time integral of the Lagrangian between a
start time and end time, tA < tB. The trajectory is assumed to be known at tA and tB. Besides
knowing all details of the physical system at t = tA and at t = tB , there is nothing special about
these two times. For example, we do not imagine the physical system starts from some rest state
at tA. Instead, we only imagine that information about a physical system is somehow known at
at tA and tB. The physical question concerns the trajectory in between these two time instances.
To determine this trajectory, we consider how the action is modified by considering an arbitrary
variation of the trajectory for times between the end times, again with the trajectory fixed at
the start and end times. We found that the Euler-Lagrange equations (12.75) are satisfied if
and only if the action is stationary with respect to trajectory variations. That is, the physically
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realized trajectory is that trajectory that makes the action stationary; i.e., it is an extremum of
the action. This result constitutes Hamilton’s principle of stationary action.

Since the physically realized trajectory is the one that satisfies the Euler-Lagrange equations,
all other trajectories are unphysical and as such they are not constrained by dynamical principles.
Instead, these virtual trajectories are only constrained by the geometry of the system and by the
need to respect the prescribed initial and final conditions. As such, Hamilton’s principle tests
all kinematically possible trajectories and selects the dynamically unique trajectory through
insisting on stationarity of the action. Uniqueness of the dynamical trajectory constitutes a tacit
assumption of Hamilton’s principle. Proof of uniqueness follows from uniqueness of solutions to
the Euler-Lagrange differential equations.

12.6.8 Some philosophical points

As already noted, Hamilton’s principle provides an alternative to Newton’s laws for the formu-
lation of mechanics. Indeed, it is remarkable how complementary these two approaches are.
Namely, Newton’s laws are concerned with forces and accelerations acting at a point in space
and time. Stating Newton’s law of motion is relatively straightforward and, with the benefit
of centuries of hindsight and experience, rather self-evident.7 In contrast, Hamilton’s principle
says that the difference between the kinetic and potential energies, as integrated on a trajectory
over a time interval, is extremized by the physically realized trajectory. Understanding the
mathematical and physical statement of Hamilton’s principle, and making use of it operationally,
requires nontrivial formulational effort via the methods of analytical mechanics. Even so, upon
mastering its formulation, the application of Hamilton’s principle via the Euler-Lagrange equa-
tions can prove of great practical value for solving physical problems that are outside the reach
of Newtonian methods.

The Newtonian description offers the canonical cause and effect perspective, whereby a force
(the cause) creates an effect (the acceleration). In contrast, Hamilton’s principle states that the
physically realize motion takes place so that the action (an integral over time) is an extrema.
From this view, Hamilton’s principle can be viewed as offering a purpose for the motion, namely
to extremize the action.8 We do not pursue this discussion further as it goes beyond our goals,
though the interested reader might find Chapter 14 of Yourgrau and Mandelstam (1968) of
interest for its philosophical insights.

12.7 Mechanical similarity and the virial theorem

As noted in Section 12.6.6, the Euler-Lagrange equation (12.75) remains unchanged if we
multiply the Lagrangian by a constant. In this section we uncover a suite of rather general
scaling properties that can be inferred as a result of this seemingly trivial symmetry. Remarkably,
these properties are found without solving the equations of motion.

12.7.1 Potential energy as a homogeneous function

To derive the advertised results, we must assume that the potential energy is a homogeneous
function, which means that it scales according to

P (λx1, λ x2, λ x3) = λγ P (x1, x2, x3), (12.85)

7Being self-evident in retrospect is often a characteristic of a foundational physical concept.
8A teleological explanation considers phenomena in terms of the purpose it serves rather than of the cause by

which it arises.
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where λ is a non-dimensional scale factor and γ is an integer that sets the degree of homogeneity.
The left hand side of equation (12.85) is the potential energy evaluated with each of its Cartesian
coordinates scaled by the same number, λ. That is, the left hand side has length scales modified
by λ. The right hand side is the potential energy evaluated with the unscaled coordinates
(unscaled length), but it is multiplied by the scale, λ, raised to the power γ.

Note that we represented the potential energy in equation (12.85) in terms of the Cartesian
coordinates, since doing so readily ensures that scaling is consistently applied to each of the
distinct coordinates by the same number. We also only considered the potential energy for
a single particle. Extending to an arbitrary number of particles simply means adding more
coordinates to the potential energy, with the scale, λ, also applied to these additional coordinates.

We prove Euler’s theorem for homogeneous functions in Section 6.8, which for potential
energy constitutes the identity

γ P (X) = xa ∂P (X)/∂xa. (12.86)

This equation says that the potential energy, as multiplied by the degree of homogeneity, γ, has
an equivalent expression in terms of the coordinates multiplied by the corresponding partial
derivative of the potential energy. Introducing the conservative force associated with the potential
energy

F = −∇P, (12.87)

we see that Euler’s theorem for potential energy means that

γ P = −X · F (12.88)

We emphasize that the rather simple expression (12.88) for the potential energy holds only
for potential energies that are homogeneous functions. Though restrictive, there are a number
of physically interesting systems with homogeneous potential energies, including the following.

• γ = −1: the potential energy of particles in a gravity field or electrostatic field is inversely
related to the distance between the particles, so that γ = −1.

• γ = 1: for a particle moving in a uniform field, such as a uniform gravity field, the potential
energy has γ = 1.

• γ = 2: Small amplitude oscillations, such as those exhibited by a pendulum (Section 15.1)
or simple harmonic oscillator (Section 15.6), have γ = 2.

Note that the trivial case of γ = 0 corresponds to a potential energy that is a constant, and thus
leads to a zero force.

12.7.2 Mechanical similarity

Consider a physical system in which we scale the length by λ, just as considered for the potential
energy in equation (12.85). This scaling alters the Lagrangian in a manner that alters the
Euler-Lagrange equations. However, if we couple scaling of the length with a corresponding
scaling of the time, then it is conceivable that we can find a combination of these two scalings
that results in an overall factor multiplying the Lagrangian, in which case the Euler-Lagrange
equation are unaltered. We refer to this confluence of scaling as mechanical similarity.

We are thus led to examine symmetry of the Lagrangian under the space-time scaling
transformation

xa → λxa ⇐⇒ xa
′
/xa = λ and t→ β t⇐⇒ t′/t = β, (12.89)
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where λ and β are two non-dimensional scales. This space-time scaling leads to a scaling of the
velocity components

ẋa → (λ/β) ẋa. (12.90)

Since the kinetic energy is proportional to the square of the velocity, the scaling of space and
time given by equation (12.89) renders the Lagrangian scaling

L = K − P → λγ P − (λ/β)2K. (12.91)

In order for this scaling to not alter the Euler-Lagrange equations requires

β = λ1−γ/2 =⇒ (t′/t) = β = λ1−γ/2 = (x′/x)1−γ/2. (12.92)

which we refer to as mechanical similarity. This equation means that if we scale time by β, so
that (t′/t) = β, then we do not change the equations of motion if length is scaled according
to (l/l′)1−γ/2. We can now infer the following results according to the scaling of the potential
energy presented in Section 12.7.1.

• γ = −1 leads to (t′/t) = (x′/x)3/2, or (t′/t)2 = (x′/x)3. This equality accords with Kepler’s
third law, which states that the square of the orbit period scales as the cube of the orbit
size.

• γ = 1 leads to (t′/t) = (x′/x)1/2, or (t′/t)2 = (x′/x). This equality accords with the
quadratic time dependence for a particle freely falling through a uniform gravity field.

• γ = 2 leads to (t′/t) = 1, which accords with the amplitude independence for the period of
small oscillations exhibited by a pendulum.

12.7.3 Virial theorem and time averaged energy
To derive the virial theorem, we assume that the physical system maintains motion within
a bounded region of space and with bounded velocity. This assumption is maintained by
geophysical motion. The virial theorem provides a relation between the time averaged kinetic
energy and time averaged potential energy for such bounded motion.

The kinetic energy is a quadratic function of velocity. Hence, as a function of velocity, the
kinetic energy is a homogeneous function of degree two. Euler’s theorem for homogeneous
functions thus means that

2K = mδab ẋ
a ẋb/2 = ẋa (∂K/∂ẋa) = ẋa Pa, (12.93)

where we introduced the Cartesian momentum,

Pa ≡
∂L

∂ẋa
=
∂K

∂ẋa
, (12.94)

which is generalized in Section 12.10 for generalized coordinates. Here it merely represents a
useful shorthand, allowing us to write

2K = ẋa Pa (12.95a)

=
d(xa Pa)

dt
− xa Ṗa (12.95b)

=
d(xa Pa)

dt
+ xa ∂P/∂xa (12.95c)

=
d(xa Pa)

dt
+ γ P. (12.95d)
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In the penultimate step (12.95c) we set

Ṗa = −∂P/∂xa (12.96)

according to Newton’s law of motion, and in the final step (12.95d) we made use of Euler’s
theorem (12.86) for the potential energy. Taking the time average of equation (12.95d), and
assuming the time average of the time derivative vanishes, then leads to the relation between
the time averaged kinetic energy and time averaged potential energy

2K = γ P . (12.97)

Note that the time average of the derivative vanishes if the time average is computed over a
long enough time, given that the motion is assumed to be bounded. Additionally, if the motion
is periodic then we can exactly remove the time derivative by taking the time average over the
period of the motion.

The virial theorem (12.97) relates the time averaged kinetic energy and the time averaged
potential energy in physical systems with a potential energy that is a homogeneous function of
degree γ. In this book we find particular use for the case of γ = 2, which corresponds to motion
of a simple harmonic oscillator, in which the virial theorem says that the potential and kinetic
energies have equal time averages. This result is referred to as the equipartition of energy. In
addition to harmonic oscillators and small amplitude pendula, we find in Part X of this book
that the equipartition of energy holds for linear wave motion, with the potential energy of linear
waves generally a homogeneous function of degree two.

12.7.4 Further reading

This section shares much with Section 10 of Landau and Lifshitz (1976) as well as Section 6.13
of Marion and Thornton (1988).

12.8 Lagrange multipliers and forces of constraint

Derivation of Lagrange’s equation of motion in Section 12.5 succeeded in eliminating the forces
of constraint from the formulation. Likewise in the discussion of Hamilton’s principle in Section
12.6, we assumed the D = 3N − C generalized coordinates directly correspond to the D degrees
of freedom available to the constrained physical system. In this section we present a method to
infer the C forces of constraint through the method of Lagrange multipliers, with this inference
of use when aiming to study force balances.

12.8.1 Holonomic constraints and their variation

Following equation (12.12), consider 3N coordinates, ξσ, σ = 1, ..., 3N , and assume they are
constrained by C holonomic constraints of the form

Ψc(ξ
1, ..., ξ3N , t) = Cc, for c = 1, ..., C, (12.98)

where Cc are constants. This equation is nearly the same as equation (12.12), only now we allow
the coordinates to be non-Cartesian if that is suits to the problem.9 Varying the trajectory then

9Strictly, the 3N coordinates, ξσ, are not “generalized coordinates” since that term refers to coordinates that
directly correspond to the D = 3N − C degrees of freedom. Even so, that distinction is not important for what
follows.

CHAPTER 12. ANALYTICAL MECHANICS page 307 of 2158



12.8. LAGRANGE MULTIPLIERS AND FORCES OF CONSTRAINT

leads to a variation of the constraint equations (12.98) that takes the form

δΨc =

3N∑
σ=1

∂Ψc

∂ξσ
δξσ = 0, for c = 1, ..., C. (12.99)

This equation provides C constraints that must be satisfied by the 3N variations, δξσ. Recall
that a variation is a virtual process (Section 12.4.4) and so it occurs at a time instance, which
explains why there is no dt term in equation (12.99). Also note that variation of a constant
vanishes, so that δ Cc = 0, thus rendering a zero on the right hand side of equation (12.99).

12.8.2 Lagrange multipliers and the modified Euler-Lagrange equations

Recall the variation of the action given by equation (12.74), only now write this variation
assuming there are 3N coordinates

δS =

ˆ tB

tA

3N∑
σ=1

δξσ
[
∂L

∂ξσ
− d

dt

(
∂L

∂ξ̇σ

)]
dt = 0. (12.100)

Contrary to what we did in Section 12.6.4, we cannot separately set δξσ to zero to then render
the Euler-Lagrange equations (12.75). The reason is that the 3N variations, δξσ, are constrained
according to equation (12.101), thus making the variations dependent on one another. The
method of Lagrange multipliers allows for us to incorporate the constraints while keeping all 3N
coordinates.

To do so, introduce C Lagrange multipliers, Λc(t), which are functions of time and whose
form is to be specified below. Multiply each of the C constraint equations (12.99) by Λc and
sum over all of the constraints

C∑
c=1

Λc δΨc =
C∑
c=1

3N∑
σ=1

Λc
∂Ψc

∂ξσ
δξσ = 0. (12.101)

Now the action variation in equation (12.100) is unchanged by adding zero to the right hand
side, and if we add zero in the form of equation (12.101) then that brings the constraints into
the action variation via

δS =

ˆ tB

tA

3N∑
σ=1

δξσ

[
∂L

∂ξσ
− d

dt

(
∂L

∂ξ̇σ

)
+

C∑
c=1

Λc
∂Ψc

∂ξσ

]
dt = 0. (12.102)

This equation has D = 3N − C independent variations and C constrained variations. Let us
organize the coordinates, ξσ, so that the σ = 1, ...D coordinates have independent variations,
whereas the remaining are constrained. Hence, coefficients of the independent variations in
equation (12.102) must vanish in order to satisfy Hamilton’s stationary action principle, using
the same logic as for Section 12.6.4. For the remaining σ = D + 1, ..., D + C constrained
variations, we can choose the C Lagrange multipliers so that the coefficients of these dependent
variations also vanish. In this manner the coefficients multiplying all of the 3N variations, δξσ,
vanish, which then leads to the modified Euler-Lagrange equations along with the C holonomic
constraints

d

dt

[
∂L

∂ξ̇σ

]
− ∂L

∂ξσ
=

C∑
c=1

Λc
∂Ψc

∂ξσ
for σ = 1, ..., 3N (12.103a)

Ψc(ξ
1, ..., ξ3N , t) = Cc, for c = 1, ..., C. (12.103b)
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12.8.3 The extended Lagrangian with multipliers

The modified Euler-Lagrange equation (12.103a) and corresponding holonomic constraints
(12.103b) can be summarized by defining the extended Lagrangian as

L∗ = L+
C∑
c=1

ΛcΨc. (12.104)

As defined, the extended Lagrangian has the functional depedence

L∗ = L(ξ1, ...ξ3N , ξ̇1, ...ξ̇3N , t,Λ1, ...ΛC), (12.105)

so that it is a function of the coordinates, ξσ, velocities, ξ̇σ, and time, t, as well as the Lagrange
multipliers, Λ1, ...,ΛC . We thus find the partial derivatives

∂L∗

∂ξ̇σ
=

∂L

∂ξ̇σ
(12.106a)

∂L∗

∂ξσ
=

∂L

∂ξσ
+

C∑
c=1

Λc
∂Ψc

∂ξσ
(12.106b)

∂L∗

∂Λc
= Ψc. (12.106c)

In this manner we can write the Euler-Lagrange equation (12.103a) and corresponding holonomic
constraints (12.103b) as

d

dt

[
∂L∗

∂ξ̇σ

]
=
∂L∗

∂ξσ
(12.107a)

∂L∗

∂Λc
= Ψc. (12.107b)

12.8.4 Determining the forces of constraint

There are 3N equations in the modified Euler-Lagrange equation (12.103a), and C constraints
in equation (12.103b). By adding to the burden of what is to be determined, we now have the
means to infer the forces of constraint. For that purpose, re-introduce the kinetic energy and
potential energy to write equation (12.103a) as

d

dt

[
∂K

∂ξ̇σ

]
− ∂K

∂ξσ
= − ∂P

∂ξσ
+

C∑
c=1

Λc
∂Ψc

∂ξσ
for σ = 1, ..., 3N , (12.108)

where the potential energy is independent of the coordinate velocities, ∂P/∂ξ̇σ = 0, as follows
from equation (12.44). Recalling the Lagrange’s equation in the form (12.42), we identify the
right hand side of equation (12.108) as the generalized force

Qσ = − ∂P
∂ξσ

+
C∑
c=1

Λc
∂Ψc

∂ξσ
for σ = 1, ..., 3N . (12.109)

Now −∂P/∂ξσ is the applied conservative force, so we identify the remaining term is the force
of constraint

Qconstraint
σ =

C∑
c=1

Λc
∂Ψc

∂ξσ
for σ = 1, ..., 3N . (12.110)
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12.9 Symmetries and conservation laws

Part of the allure of Hamilton’s principle and the corresponding Euler-Lagrange equations
concerns the ability to deduce quantities that are conserved by the physically realized dynamical
system. These dynamical conservation laws are associated with symmetries, with this connection
between symmetries (kinematics) and conservation laws (dynamics) first made by Noether
(1918) (see Noether and Tavel (2018) for an English translation). In this section we focus on
space and time symmetries. In particular, we connect the conservation of linear momentum to
space homogeneity; conservation of angular momentum to space isotropy; and conservation of
mechanical energy to time homogeneity. The present section focuses on deriving the mathematical
expressions of the conservation law. In so doing, we further our understanding of Hamilton’s
principle and the associated manipulations needed for its practical use. We study implications of
these conservation laws in Chapter 14 for particles moving viewed in a rotating reference frame,
such as appropriate for a terrestrial observer on a rotating planet.

To connect a symmetry to a conservation law, it is sufficient to focus on the Lagrangian
since it encapsulates the mechanics. That is, we examine how the Lagrangian is affected by
the chosen symmetry operation. Furthermore, since we are concerned with conservation laws
realized by the physical system, the Lagrangian satisfies the Euler-Lagrange equations of motion.
Additionally, we here only consider continuous space and time symmetries. Therefore, to
determine implications of a symmetry it is sufficient to examine how the Lagrangian varies
under an infinitesimal symmetry transformation. This treatment is convenient since infinitesimal
transformations are simpler mathematically than finite transformations. In effect, we only need
to go to leading order in a Taylor expansion to deduce the conservation laws. Additionally, we
remove all forces of constraint, so that it is sufficient to work with Cartesian coordinates.

So in brief, we observe that if the mechanical system is to respect a particular symmetry,
then its action must remain invariant under the symmetry transformation; i.e., its variation
must vanish. Variation of the action vanishes if variation of the Lagrangian vanishes, with a
zero variation of the Lagrangian directly leading to the differential conservation law associated
with the symmetry.10

12.9.1 Free particle motion

Before we work through the conservation laws arising from space-time symmetries, we here
study what is perhaps the simplest physical system, the free particle. Doing so provides a
warm-up to the more general systems considered next. Free particle motion occurs when a
particle experiences no forces at all (neither applied nor constraining) in an inertial reference
frame. We infer from this statement that the particle can only move in an empty space that is
homogeneous and isotropic, since otherwises it would necessarily experience a force that altered
its path.11

For the particle to experience space as homogeneous (the particle does not care about the
point in space) and time as homogeneous (the particle does not care about the origin of time),

10In Section 12.6.6 we found that the action is unaffected the total time derivative of a function that depends
only on the generalized coordinates and time. Even so, to derive the conservation laws in this section, we set the
Lagrangian variation to zero.

11This statement carries importance nuances when moving to general relativity, which is outside of our scope.
So for this book, we consider space to be Euclidean, so that free particle motion is along a straight line in this
space. Furthermore, it is notable that free particle motion appears to be forced motion when viewed from a
non-inertial reference frame (Sections 11.3 and 11.4). As such, the symmetries of a non-inertial reference frame
are generally distinct from an inertial reference frame. We here focus on inertial reference frames since it is here
that free particle motion in empty space experiences no force, and velocity remains constant.
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then the Lagrangian for the particle cannot contain any explicit dependence on space or time,

∂L

∂t
= 0 and

∂L

∂x
=
∂L

∂y
=
∂L

∂z
= 0, (12.111)

where it is convenient to use Cartesian coordinates since there are no constraints. For mechanics
to be the same for all space directions (isotropic space), then the Lagrangian must be independent
of the velocity direction. We are led to a Lagrangian that is a function just of the velocity
magnitude, or more conveniently the velocity squared. That is, the free particle Lagrangian is
given by the kinetic energy

L = m (ẋ2 + ẏ2 + ż2)/2, (12.112)

where we chose Cartesian coordinates since the motion is unconstrained. We already knew
this result must hold since the potential energy is zero in the absence of forces. Even so, this
discussion serves to illustrate the power of arguments based on symmetry, with such arguments
fundamental to how we make practical use of Hamilton’s principle.

With the Lagrangian given by just the kinetic energy for unconstrained motion, then the
Euler-Lagrange equation leads to constancy of the velocity

d

dt

∂L

∂ẋ
=

d

dt

∂L

∂ẏ
=

d

dt

∂L

∂ż
= 0 =⇒ Ẋ = constant. (12.113)

This result is Newton’s first law discussed in Chapter 11, and sometimes referred to as the law
of inertia.

12.9.2 Space homogeneity and linear momentum conservation

We here examine the implications of an N particle system moving through a space that is
homogeneous in an inertial reference frame. Moving beyond the free particle case of Section
12.9.1, we allow for conservative forces of interaction between the particles as measured by the
potential energy function, P (X). To respect spatial homogeneity requires mechanical properties
of the system to be unchanged if we shift the coordinate position for each particle by an arbitrary
amount. For ease in deriving the associated conservation law we examine how the Lagrangian
changes when considering an infinitesimal shift in all of the particle positions

X(i) →X(i) + ϵ =⇒ δX(i) = ϵ, (12.114)

where ϵ is a constant displacement vector that is the same for all particles. A constant shift
in particle positions does nothing to the particle velocities. Hence, upon shifting all particle
positions by a constant, the Lagrangian becomes, to first order in ϵ,

L(X ′, Ẋ ′, t) = L(X + ϵ, Ẋ, t) ≈ L(X, Ẋ, t) + ϵa
N∑
i=1

∂L

∂xa(i)
, (12.115)

so that variation of the Lagrangian is

δL = ϵa
N∑
i=1

∂L

∂xa(i)
. (12.116)

A zero variation of the Lagrangian ensures that the physical system is unaffected by shifts in
the particle positions. Since the perturbation vector, ϵ, is arbitrary, the Lagrangian has zero
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variation only if

δL = 0 =⇒
N∑
i=1

∂L

∂xa(i)
= 0 for a = 1, 2, 3. (12.117)

Using this result in the Euler-Lagrange equation (12.75) leads to a conservation law for each of
the three spatial directions

d

dt

N∑
i=1

∂L

∂ẋ(i)
=

d

dt

N∑
i=1

∂L

∂ẏ(i)
=

d

dt

N∑
i=1

∂L

∂ż(i)
= 0. (12.118)

Evidently, when space is homogeneous and an N particle system respects this symmetry, then
the linear momentum of the system is a constant of the motion

N∑
i=1

∂L

∂ẋa(i)
= m

N∑
i=1

ẋa(i) = constant. (12.119)

This result is the law of inertia for the N particle system. Note that if there is spatial symmetry
in only a select number of directions, then only the corresponding momenta are conserved.

Another implication for the homogeneity condition (12.117) is that the sum of the forces
acting on the N particle system vanishes

N∑
i=1

∂L

∂xa(i)
= −

N∑
i=1

∂P

∂xa(i)
=

N∑
i=1

F a(i) = 0. (12.120)

For the case of N = 1 we recover the free particle discussed in Section 12.9.1, whereby the
particle experiences no forces if it moves through a space that is homogeneous. However, an N
particle system respects spatial homogeneity if the sum of all the inter-particle forces vanishes.
Equation (12.120) is a statement of Newton’s third law as studied in Section 11.5.2, where we
also noted that a central force between particles provides a prominent example of a force that
respects the third law.

12.9.3 Space isotropy and angular momentum conservation
We now consider the conservation law associated with the isotropy of space. Spatial isotropy
means that the mechanical system is invariant under the same rotation of both the positions
and velocities for the N particles. Let δϕ be an infinitesimal rotation vector and consider the
following variation of the Cartesian representations of the particle positions and velocities

δX(i) = δϕ×X(i) and δẊ(i) = δϕ× Ẋ(i), (12.121)

which made use of Section 11.2 for how infinitesimal rigid rotations affect changes to vectors.
The corresponding variation of the Lagrangian is given by

δL =
N∑
i=1

[
∂L

∂xa(i)
δxa(i) +

∂L

∂ẋa(i)
δẋa(i)

]
=

N∑
i=1

d

dt

[
∂L

∂ẋa(i)
δẋa(i)

]
, (12.122)

where we used the Euler-Lagrange equation (12.75) to reach the second equality. With the
kinetic energy in terms of Cartesian coordinates given by equation (12.35), we can introduce the
Cartesian component of linear momentum

P a(i) =
∂L

∂ẋa(i)
, (12.123)
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in which case the Lagrangian has zero variation under infinitesimal rotations if

N∑
i=1

d

dt

[
P a(i) δẋ

a
(i)

]
= δϕ ·

N∑
i=1

d

dt
(X(i) × P(i)) = 0. (12.124)

With δϕ arbitrary, we are left with conservation of angular momentum for the N particle system

N∑
i=1

d

dt
(X(i) × P(i)) = 0. (12.125)

For a space that possesses partial isotropy, that component of angular momentum associated
with the isotropy is conserved. This case is particularly relevant for planetary physics, whereby
planetary rotation reduces spatial isotropy to just that of the rotational axis (see Section 14.5.1).

12.9.4 Time homogeneity and Hamiltonian evolution

Time homogeneity

We now consider how a mechanical system behaves under a shift in time, t→ t+ ϵ, while keeping
the generalized positions and generalized velocities unchanged. In this case the Lagrangian
becomes

L(ξ, ξ̇, t+ ϵ) ≈ L(ξ, ξ̇, t) + ϵ ∂tL =⇒ δL = ϵ ∂tL. (12.126)

Hence, for a mechanical system to manifest time homogeneity the Lagrangian must have no
explicit time dependence, [

∂L

∂t

]
ξσ ,ξ̇σ

= 0⇐⇒ time symmetry. (12.127)

Derivation of the Hamiltonian evolution

The total time derivative of the Lagrangian (following equation (12.50)) takes on the form

dL

dt
−
[
∂L

∂t

]
ξσ ,ξ̇σ

=
D∑
σ=1

[
ξ̇σ

∂L

∂ξσ
+ ξ̈σ

∂L

∂ξ̇σ

]
(12.128a)

=
D∑
σ=1

[
ξ̇σ

d

dt

∂L

∂ξ̇σ
+ ξ̈σ

∂L

∂ξ̇σ

]
(12.128b)

=

D∑
σ=1

d

dt

[
ξ̇σ

∂L

∂ξ̇σ

]
, (12.128c)

where the second equality used the Euler-Lagrange equation (12.75). We are thus led to

dH

dt
= −

[
∂L

∂t

]
ξσ ,ξ̇σ

with H =

[
D∑
σ=1

ξ̇σ
∂L

∂ξ̇σ
− L

]
, (12.129)

where H is known as the Hamiltonian. Evidently, if there is no explicit time dependence in the
Lagrangian then the Hamiltonian is a constant of the motion[

∂L

∂t

]
ξσ ,ξ̇σ

= 0 =⇒ dH

dt
= 0. (12.130)
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Connecting the Hamiltonian to the mechanical energy

From Section 12.5.7 we wrote the kinetic energy in terms of generalized coordinates. In the
special case of a time independent transformation between Cartesian and generalized coordinates,
the kinetic energy is given by equation (12.55)

K =
m

2

D∑
σ=1

D∑
µ=1

Gσµ(ξ) ξ̇
σ ξ̇µ. (12.131)

We thus find

∂L

∂ξ̇ν
=
∂K

∂ξ̇ν
=
m

2

D∑
σ=1

D∑
µ=1

Gσµ (δ
σ
ν ξ̇

µ + δµν ξ̇
σ) = m

D∑
σ=1

Gσν ξ̇
σ, (12.132)

where we used Gσµ = Gµσ for the final equality. In this case, the Hamiltonian equals to the
total mechanical energy

H =
D∑
ν=1

ξ̇ν
∂L

∂ξ̇ν
− L = m

D∑
ν=1

D∑
σ=1

Gσν ξ̇
ν ξ̇σ − m

2

D∑
ν=1

D∑
σ=1

Gσν ξ̇
ν ξ̇σ + P = K + P, (12.133)

which is the familiar form of mechanical energy found in our study of energetics in Newtonian
mechanics from Section 11.1.5.

Further distinguishing the Hamiltonian and the mechanical energy

We emphasize that the Hamiltonian is a constant of the motion if the Lagrangian has no explicit
time dependence; e.g., equation (12.130). However, the Hamiltonian equals to the mechanical
energy only if there is a time independent coordinate transformation between Cartesian and
generalized coordinates. Typically ∂tL = 0 means that ∂tX(i) = 0. However, such is not
always that case (e.g., see page 82 of Fetter and Walecka (2003)). So when ∂tL = 0 but
∂tX(i) ≠ 0, the Hamiltonian remains a constant of the motion, but the mechanical energy is
time dependent. Hence, we must qualify our earlier statement that time homogeneity leads to a
constant mechanical energy. The more precise statement is that the Hamiltonian is a constant of
the motion when time does not explicitly appear in the Lagrangian; however, the Hamiltonian is
equal to the mechanical energy only if there is a time independent relation between Cartesian
coordinates and generalized coordinates.

12.9.5 Further study
Conservation laws and symmetries in classical mechanics are lucidly discussed in Chapters 1 and
2 of Landau and Lifshitz (1976). Pedagogical presentations on these topics can be found in this
online lecture from the Space Time series and this online lecture from Physics with Elliot. This
essay about Emmy Noether provides insights into this mathematician whose work, conducted
under some very unfortunate circumstances, forever connected symmetry and conservation laws,
with this connection providing the basis for nearly all modern theories of physics.

12.10 Hamiltonian mechanics
In this section we develop the rudiments of Hamiltonian mechanics, which is related to Lagrangian
mechanics through a Legendre transformation.12

12We also encounter Legendre transformations in our study of thermodynamics in Part IV of this book.

page 314 of 2158 geophysical fluid mechanics

https://www.youtube.com/watch?v=PUn2izowBkw
https://www.youtube.com/watch?v=O0NYaO_OnH4
https://www.nytimes.com/2012/03/27/science/emmy-noether-the-most-significant-mathematician-youve-never-heard-of.html
https://www.nytimes.com/2012/03/27/science/emmy-noether-the-most-significant-mathematician-youve-never-heard-of.html


12.10. HAMILTONIAN MECHANICS

12.10.1 Generalized momenta

Define the generalized momenta, also known as the canonical momenta, according to

Pσ ≡
∂L

∂ξ̇σ
= Pσ(ξ, ξ̇, t), (12.134)

where the functional dependence is inherited from the Lagrangian. Also note the care in placing
the σ index downstairs in the covariant position, which is quite useful in the following. With the
generalized momenta, the Euler-Lagrange equations (12.75) take the form

Ṗσ =
∂L

∂ξσ
. (12.135)

Evidently, if the Lagrangian has no explicit dependence on a particular generalized coordinate,
then the corresponding generalized momenta is a constant of the motion. Such generalized
coordinates are termed cyclic, and we more to say about cyclic coordinates in Section 12.10.5.

12.10.2 Legendre transformation

In terms of the generalized momenta, the Hamiltonian function (12.130) is written

H = −L+
D∑
σ=1

ξ̇σ Pσ. (12.136)

This definition of the Hamiltonian represents a Legendre transformation from the Lagrangian
to the Hamiltonian, whereby we swap around some of the functional dependence. Namely,
we already know that the Lagrangian has functional dependence on generalized coordinates,
generalized velocities, and time. In this subsection we show that the Hamiltonian is a functional
of the generalized coordinates, generalized momenta, and time. We say that the Legendre
transformation (12.136) moves from the configuration space of Lagrangian mechanics to the
phase space of Hamiltonian mechanics.

Exact differential of the Hamiltonian

The Lagrangian functional dependence (12.49)

L = L(ξ, ξ̇, t), (12.137)

leads to the exact differential of the Hamiltonian (12.136)

dH = −∂L
∂t

dt+

D∑
σ=1

[
− ∂L
∂ξσ

dξσ − ∂L

∂ξ̇σ
dξ̇σ + Pσ dξ̇

σ + ξ̇σ dPσ

]
. (12.138)

With the generalized momenta given by equation (12.134), the exact differential reduces to

dH = −∂L
∂t

dt+
D∑
σ=1

[
− ∂L
∂ξσ

dξσ + ξ̇σ dPσ

]
. (12.139)

This relation means that the Hamiltonian has the following functional dependence

H = H(ξ1, ..., ξD,P1, ...,PD, t). (12.140)
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Namely, the Hamiltonian is a functional of the generalized coordinates, generalized momenta,
and a (possibly) explicit function of time. Furthermore, as for the Lagrangian function, the
Hamiltonian is an implicit function of time as realized through time dependence to the generalized
coordinates and generalized momenta.

Relations between partial derivatives

The functional dependence (12.140) means that the exact differential of the Hamiltonian is given
by

dH =

[
∂H

∂t

]
ξσ ,Pσ

dt+

D∑
σ=1

([
∂H

∂ξσ

]
Pσ ,t

dξσ +

[
∂H

∂Pσ

]
ξσ ,t

dPσ

)
, (12.141)

which is equal also to equation (12.139), here rewritten as

dH = −
[
∂L

∂t

]
ξσ ,ξ̇σ

dt+
D∑
σ=1

(
−
[
∂L

∂ξσ

]
ξ̇σ ,t

dξσ + ξ̇σ dPσ

)
. (12.142)

In both equations (12.141) and (12.142) we exposed subscripts on the partial derivatives to
be clear on what coordinates are held fixed when computing the derivatives. Equating terms
between equations (12.141) and (12.142) leads to[

∂H

∂t

]
ξσ ,Pσ

= −
[
∂L

∂t

]
ξσ ,ξ̇σ

(12.143a)[
∂H

∂ξσ

]
Pσ ,t

= −
[
∂L

∂ξσ

]
ξ̇σ ,t

(12.143b)[
∂H

∂Pσ

]
ξσ ,t

=
dξσ

dt
. (12.143c)

12.10.3 Hamilton’s equations of motion
The manipulations in Section 12.10.2 are mathematical identities that arise from the functional
dependencies of the Lagrangian and Hamiltonian, and the Legendre transformation (12.136).
We return to physics by assuming the Lagrangian satisfies the Euler-Lagrange equations as
written in the form (12.135)

Ṗσ =

[
∂L

∂ξσ

]
ξ̇σ ,t

, (12.144)

which brings the exact differential (12.142) to

dH =

[
∂H

∂t

]
ξσ ,Pσ

dt+

D∑
σ=1

(
−Ṗσ dξσ + ξ̇σ dPσ

)
. (12.145)

We are thus led to Hamilton’s equations of motion

Ṗσ =
dPσ
dt

= −
[
∂H

∂ξσ

]
Pσ ,t

(12.146a)

ξ̇σ =
dξσ

dt
=

[
∂H

∂Pσ

]
ξσ ,t

, (12.146b)

which are 2D first order differential equations for the time derivatives of the generalized
coordinates and generalized momenta. These equations are to be compared to the Euler-
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Lagrange equations (12.75), which are D second order differential equations for the generalized
coordinates.

As a result of Hamilton’s equations (12.146a) and (12.146b), we can readily compute the
time derivative of the Hamiltonian

dH

dt
=

[
∂H

∂t

]
ξσ ,Pσ

+

D∑
σ=1

([
∂H

∂ξσ

]
Pσ ,t

ξ̇σ +

[
∂H

∂Pσ

]
ξσ ,t

Ṗσ

)
(12.147a)

=

[
∂H

∂t

]
ξσ ,Pσ

+

D∑
σ=1

(
−Ṗσ ξ̇σ + Ṗσ ξ̇

σ
)

(12.147b)

=

[
∂H

∂t

]
ξσ ,Pσ

(12.147c)

= −
[
∂L

∂t

]
ξσ ,ξ̇σ

, (12.147d)

where the final equality follows from equation (12.129). Evidently, the Hamiltonian is a constant
of the motion if it has no explicit time dependence. This result corresponds to Noether’s theorem
as discussed in Section 12.9.4.

12.10.4 Operational steps
When deriving Hamilton’s equations of motion for a particular physical problem, we typically
start by writing down the Lagrangian and then using the Legendre transformation (12.136)
to derive the Hamiltonian. Before performing the partial derivatives in Hamilton’s equations
(12.147c)-(12.146b), it is essential to express the Hamiltonian as a function of the generalized
coordinates and generalized momenta. Doing so requires removing all appearances of the
generalized velocity in favor of the generalized momenta.

In much of this section, we exposed subscripts on the partial derivatives to identify what
variables are held fixed when taking the derivatives. Such care is important for developing
a proper understanding of the equations and their manipulation. We also found such care
important for developing Lagrangian mechanics earlier in this chapter. For both formulations,
some exposure to the methodology readily allows one to dispense with the extra clutter of the
subscripts. Even so, it can be quite valuable to expose the subscripts when debugging any
particular formulation.

12.10.5 Cyclic versus ignorable coordinates
We commented in Section 12.10.1 that if the Lagrangian is independent of a coordinate, referred
to as a cyclic coordinate, then its corresponding generalized momenta is a constant of the motion.
Even so, the corresponding generalized velocity is not necessarily zero and so it cannot be
ignored. However, in the Hamiltonian formulation we can ignore a cyclic coordinate since the
generalized momenta now a time-independent parameter of the Hamiltonian. As such, there is
no corresponding equation of motion. We thus find the Hamiltonian dynamical system has two
less degrees of freedom, one for the cyclic coordinate and one for the corresponding constant
generalized momenta, thus motivating the name ignorable coordinate when a cyclic coordinate is
encountered in the Hamiltonian formulation.

12.10.6 Modified Hamilton’s principle
Hamilton’s variational principle in the form of equation (12.75) leads to the Euler-Lagrange
equations. We can derive a related variational principle that leads to Hamilton’s equations. To
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do so, insert the definition of the Hamiltonian from equation (12.136) into the action to render

S =

ˆ tB

tA

L(ξσ, ξ̇σ, t) dt =

ˆ tB

tA

[
−H(ξσ,Pσ, t) +

D∑
σ=1

ξ̇σ Pσ

]
dt. (12.148)

We now consider a variation of the generalized coordinates and generalized momenta, in which
the action is varied according to

δS =
D∑
σ=1

ˆ tB

tA

[
−∂H
∂ξσ

δξσ − ∂H

∂Pσ
δPσ + δξ̇σ Pσ + ξ̇σ δPσ

]
dt. (12.149)

Variations of the generalized momenta and generalized coordinates are independent. However,
variation of the generalized coordinates and generalized velocities are connected just like when
deriving the Euler-Lagrange equations in Section 12.6.3. Hence, an integration by parts leads to

ˆ tB

tA

δξ̇σ Pσ dt =

ˆ tB

tA

d(δξσ)

dt
Pσ dt =

ˆ tB

tA

[
d(δξσ Pσ)

dt
− δξσ Ṗσ

]
dt. (12.150)

The total time derivative in the final expression vanishes since the coordinate variation vanishes
at the initial and final times. We are thus left with the action variation

δS =

D∑
σ=1

ˆ tB

tA

[
−
(
Ṗσ +

∂H

∂ξσ

)
δξσ +

(
ξ̇σ − ∂H

∂Pσ

)
δPσ

]
dt. (12.151)

Since δξσ and δPσ are independent, we realize a stationary action if and only if Hamilton’s
equations are satisfied

ξ̇σ =
∂H

∂Pσ
and Ṗσ = −∂H

∂ξσ
. (12.152)

12.10.7 Incompressible motion in phase space
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Chapter 13

PARTICLE MECHANICS AROUND A ROTATING PLANET

In this chapter we study the mechanics of a point particle of fixed mass that moves around a
rotating and massive planet, making use of the Newtonian mechanics from Chapter 11. The
motion of a point particle provides a model for objects such as satellites moving around rotating
planets. For this analysis, the motion of the planet is prescribed with a fixed kinetic energy and
fixed angular momentum around a fixed axis of rotation. Hence, we are concerned just with
mechanics of the moving particle.

Our description of the particle is examined from the rigid-body rotating (non-inertial)
reference frame (Section 11.4), which is the natural frame for an observer fixed on the planet
surface. We generally ignore friction and other non-gravitational forces, so that the only force
appearing in an inertial reference frame is that from the gravitational field produced by the
massive spherical planet. As discussed in Section 11.4, there are two extra accelerations (planetary
centrifugal and planetary Coriolis) that appear when viewing motion from the rigid-body rotating
terrestrial reference frame.

chapter guide

This chapter builds from the Newtonian mechanics of Chapter 11, here specializing to the
geophysically relevant case of a particle moving around a rotating planet. Introducing
the spherical coordinate equations of motion represent a key technical element of this
chapter, thus going beyond the Cartesian coordinates used in Chapter 11. The use of
spherical coordinates prompts the introduction of basic Cartesian and general tensor
algebra as presented in Chapters 1, 3, 4, and Section 4.23. We offer the salient features of
tensor technology in this chapter where needed, thus providing a reasonably self-contained
presentation.
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13.1 The rotating earth
The earth’s angular velocity is comprised of two main contributions: the spin of the earth
about its axis and the orbit of the earth about the sun (see Figure 13.1). Other astronomical
motions can be neglected for geophysical fluid mechanics. Therefore, in the course of a single
period of 24 hours, or 24× 3600 = 86400 seconds, the earth experiences an angular rotation of
(2π + 2π/365.24) radians. As such, the angular rotation rate is given by

Ω =
2π + 2π/365.24

86400s
=
[ π

43082

]
s−1 = 7.2921× 10−5 s−1. (13.1)

The earth’s angular velocity, both its direction through the polar axis and its magnitude, is
assumed constant in time for purposes of geophysical fluid mechanics

dΩ

dt
= 0. (13.2)

The angular velocity (13.1) seems quite small. However, a terrestrial reference frame on the
earth surface undergoes rigid-body rotation with speed

Urigid-body(ϕ) = ΩRe cosϕ ≈ 465 m s−1 cosϕ = 1672 km hr−1 cosϕ, (13.3)
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earth

sun

Figure 13.1: The angular velocity of the earth arises from the spin about the polar axis plus the orbit of the
planet around the sun. This angular velocity determines the strength of the Coriolis acceleration and the planetary
centrifugal acceleration. The polar axis has an angle of roughly 23.4◦ relative to the orbital/ecliptic plane with
respect to the sun. This angle is referred to as the obliquity, and the obliquity is the reason for the seasonal cycle
(e.g., the summer season occurrs in the hemisphere receiving more solar radiation). For an interesting perspective
on planetary rotation, see this video from Veritasium.
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⌦ = ⌦ ẑ

Figure 13.2: For an observer at rest on the earth’s surface, the rigid-body speed is ΩRe cosϕ = 7.2921 ×
10−5 s−1 × 6.371× 106 mcosϕ ≈ 465 m s−1 cosϕ = 1672 km hr−1 cosϕ. We here display rigid-body speeds for
motion at the equator, 30◦ latitude, and 60◦ latitude. These speeds are much larger than motion of the ocean
and atmosphere relative to the earth, thus motivating a description of geophysical fluid motion from the rotating
terrestrial frame moving with the rigid-body.

where we set the earth’s radius to

Re = 6.371× 106m. (13.4)

This speed is quite large relative to a fixed frame outside the planet (see Figure 13.2)

Urigid-body(0
◦) = 1672 km hr−1 (13.5a)

Urigid-body(30
◦) = 1448 km hr−1 (13.5b)

Urigid-body(60
◦) = 826 km hr−1. (13.5c)

Motion of the atmosphere and ocean are generally close to rigid-body motion, so that their
speeds relative to the planet are much smaller than the speed of the rotating planet itself. So in
addition to being directly relevant to terrestrial observers, we find it most interesting to study
geophysical motion in the rotating planetary frame (a non-inertial frame) rather than a frame
fixed relative to the stars (an approximate inertial frame).
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13.2 Changes to basis vectors under rigid-body rotation
In Section 11.2, we studied the kinematics of a vector with fixed length that is rotating about a
fixed origin. The key kinematic result (11.34) exposes how rotation generates a time change to
the rigid-body rotation of a vector

dQ

dt
= Ω×Q, (13.6)

where Q is an arbitrary vector. We here make use of this relation to determine how the basis
vectors for Cartesian coordinates, cylindrical-polar coordinates, and spherical coordinates change
under rotation.

13.2.1 Changes to Cartesian basis vectors under rotation

With Ω = Ω ẑ as for a rotating spherical earth, equation (13.6) says that the change in planetary
Cartesian unit vectors under rigid-body rotation is given by

dx̂

dt
= Ω× x̂ = Ω ŷ and

dŷ

dt
= Ω× ŷ = −Ω x̂ and

dẑ

dt
= Ω× ẑ = 0. (13.7)

13.2.2 Changes to cylindrical-polar coordinate unit vectors under rotation

Now consider the polar coordinates from Section 4.22 with rotation continuing to be oriented
about the vertical axis, Ω = Ω ẑ. In the horizontal plane we have the radial and angular unit
vectors

r̂ = x̂ cosϑ+ ŷ sinϑ (13.8a)

ϑ̂ = −x̂ sinϑ+ ŷ cosϑ. (13.8b)

We can directly verify that the time derivative of these unit vectors is given by

dr̂

dt
= (Ω + ϑ̇) ϑ̂ = (Ω + ϑ̇) (ẑ × r̂) (13.9a)

dϑ̂

dt
= −(Ω + ϑ̇) r̂ = (Ω + ϑ̇) (ẑ × ϑ̂). (13.9b)

Notice how these unit vectors change both due to the rotation of the reference frame, Ω, plus
the change in the angular position relative to the reference frame, ϑ̇. We thus see that unit
vectors, such as those for spherical coordinates and cylindrical-polar coordinates, change due to
the rigid-body rotation, just like the Cartesian unit vectors. Additionally, non-Cartesian unit
vectors change when their orientation is modified relative to the Cartesian coordinate axes at a
rate distinct from the rigid-body. This situation occurs when a trajectory moves relative to the
rigid-body, with further discussion for spherical coordinates in Sections 13.7.2 and 13.9.

13.2.3 Changes to spherical coordinate unit vectors under rotation

As a third example, consider the rotation of spherical coordinate unit vectors, whose form was
derived in Section 4.23.2

λ̂ = −x̂ sinλ+ ŷ cosλ (13.10a)

ϕ̂ = −x̂ cosλ sinϕ− ŷ sinλ sinϕ+ ẑ cosϕ (13.10b)

r̂ = x̂ cosλ cosϕ+ ŷ sinλ cosϕ+ ẑ sinϕ. (13.10c)
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Again, each of the spherical basis vectors, (λ̂, ϕ̂, r̂), are normalized, so that their evolution arises
just from rotations.

Start with deriving the time derivative of the radial unit vector, r̂. We know that it can
rotate either through rigid-body motion of the rotating reference frame, or through changes in
the spherical angles, (λ, ϕ), relative to the rotating reference frame. We see these two forms of
time changes by taking the time derivative

dr̂

dt
=

d

dt
(x̂ cosλ cosϕ+ ŷ sinλ cosϕ+ ẑ sinϕ). (13.11)

Expanding the right hand side leads to

d

dt
(x̂ cosλ cosϕ) =

dx̂

dt
cosλ cosϕ− x̂ λ̇ sinλ cosϕ− x̂ ϕ̇ cosλ sinϕ (13.12a)

d

dt
(ŷ sinλ cosϕ) =

dŷ

dt
sinλ cosϕ+ ŷ λ̇ cosλ cosϕ− ŷ ϕ̇ sinλ sinϕ (13.12b)

d

dt
(ẑ sinϕ) = ẑ ϕ̇ cosϕ. (13.12c)

Making use of equation (13.7) for the change in planetary Cartesian unit vectors due to rotation,
and substituting the expressions (4.219a)-(4.219c) for the spherical unit vectors, leads to

dr̂

dt
= λ̂ (λ̇+Ω) cosϕ+ ϕ̂ ϕ̇. (13.13)

We thus confirm that changes to r̂ arise just from changes to its angular orientation. To help
understand this expression, take the case of rigid-body motion, in which λ̇ = ϕ̇ = 0, so that r̂
changes only through motion of the rotating reference frame. Any additional longitudinal motion
arising from λ̇ ̸= 0 renders further changes in the λ̂ direction. Finally, meridional motion through
ϕ̇ ̸= 0 modifies the unit vector in the ϕ̂ direction. Similar manipulations and considerations lead
to the time derivatives for the angular unit vectors

dϕ̂

dt
= −λ̂ (Ω + λ̇) sinϕ− r̂ ϕ̇ (13.14a)

dλ̂

dt
= (Ω + λ̇) (ϕ̂ sinϕ− r̂ cosϕ). (13.14b)

Further details for deriving equations (13.13), (13.14a), and (13.14b) are given in the solution
to Exercise 13.2.

13.3 A synopsis of tensor algebra
In Part I of this book, we detailed the use of tensor analysis for geophysical motions. We here
summarize some of the salient points that are of use in this chapter for manipulating spherical
coordinates.

13.3.1 Why we need general tensors
Cartesian tensors are sufficient for many purposes of fluid mechanics, such as when using
Cartesian coordinates for a tangent plane approximation to study geophysical fluid motion (e.g.,
Section 24.5). However, we make routine use of spherical coordinates when describing geophysical
motion, and cylindrical-polar coordinates for studies of rotating tank experiments (see Section
36.8). Finally, we use generalized vertical coordinates in the description of stratified flows (Part
XII). The basis vectors for curvilinear coordinates and generalized vertical coordinates change
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direction when moving through space. In contrast, Cartesian basis vectors always point in
the same direction. This distinction between the basis vectors is the key reason curvilinear
coordinates and generalized vertical coordinates require a more general formalism than required
by Cartesian tensors.

Even though general tensors are of use in this book, we can keep much of the heavy technology
at a modest distance, with exposure only in selected places. The key crutch we rely on is that
the planet is assumed to be embedded in a background three-dimensional Euclidean space. That
is, we are not considering the curved space-time of general relativity nor the marriage of space
and time afforded by special relativity. Rather, we restrict our concern to Galilean relatively,
which is based on three-dimensional Euclidean space plus universal Newtonian time. These
assumptions greatly simplify our use of general tensors.

13.3.2 The coordinate representation of a vector

The coordinate representation of a vector follows from decomposing the vector into components
aligned according to a set of basis vectors, in which case we write

Q⃗ =

3∑
a=1

Qa e⃗a = Qa e⃗a, (13.15)

where the Einstein summation convention is defined by the final equality. In this equation,

e⃗a = (e⃗1, e⃗2, e⃗3) (13.16)

is a set of linearly independent basis vectors, and Qa are the corresponding coordinate repre-
sentations of the vector Q⃗. The basis vectors may be normalized to unit magnitude, as in the
case of Cartesian coordinates, or may be unnormalized as for spherical coordinates (see Section
4.23.2). Note that we commonly make use of the boldface notation for a vector rather than the
arrowed symbol (Section 3.5)

Q = Q⃗ = Qa e⃗a. (13.17)

The basis vectors in equation (13.15) have a lower index while the coordinate representation
of a vector has an upper index. Why? For arbitrary coordinates (e.g., spherical), we make a
distinction between a coordinate representation with an index upstairs (contravariant) versus
the downstairs (covariant) representation. Moving between the covariant and contravariant
representations requires a metric tensor.

When working with general coordinates, it is necessary to distinguish between a basis vector,
e⃗a, and its dual partner known as a one-form, ẽa. Duality is here defined by the familiar
(Euclidean) inner product that leads to the bi-orthogonality relation

e⃗a · ẽb = δba, (13.18)

with δba the Kronecker delta tensor

δba =

{
1 if b = a
0 if b ̸= a.

(13.19)

In linear algebra, a row vector is dual to its column vector, with that analog appropriate for the
present context. Cartesian basis vectors equal to the basis one-forms, in which case there is no
distinction between contravariant and covariant. However, the distinction is important for more
general coordinates used in geophysical fluids.
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13.3.3 Generalized coordinates
We find it convenient to write ξa as the a’th component of a generalized coordinate used to
describe space. In this chapter we choose the unbarred generalized coordinates as planetary
Cartesian coordinates, so that

(ξ1, ξ2, ξ3) = (x, y, z), (13.20)

whereas the barred generalized coordinates are the planetary spherical coordinates1

(ξ1, ξ2, ξ3) = (λ, ϕ, r). (13.21)

These two sets of coordinates are related by the coordinate transformation provided in Section
4.23 (see in particular Figure 4.3)

x = r cosϕ cosλ and y = r cosϕ sinλ and z = r sinϕ. (13.22)

The equation set (13.22) provides the coordinate transformation between a particular point in
three-dimensional Euclidean space that is represented by Cartesian coordinates and spherical
coordinates.

13.3.4 Transformation between coordinate representations
The coordinate representation of a tensor is a subjective analytical description of an objective
geometric object. That is, the subjectively chosen coordinate representation of a vector, such as
that given by equation (13.15), does not affect the vector as a geometric object. Hence, we can
represent the vector using any arbitrary set of coordinates

Q⃗ = Qa e⃗a = Qa e⃗a. (13.23)

In this equation, Qa is the representation of the vector Q⃗ in a coordinate system defined by the
basis vector e⃗a, whereas Q

a is the representation in the unbarred coordinate system with basis
vectors e⃗a.

The coordinate representation of a vector transforms when changing coordinates. The
transformation is mediated by the transformation matrix, which is the matrix composed of the
partial derivatives of one coordinate set with respect to the other. For example, the relation
between the coordinate representation of the velocity vector and acceleration vector, as well as
the coordinate basis vectors, are given by

V a = Λaa V
a and Aa = ΛaaA

a and e⃗a = Λaa e⃗a. (13.24)

The general expression for the transformation matrix is given by the matrix of partial derivatives

Λaa =

 ∂ξ1/∂ξ1 ∂ξ1/∂ξ2 ∂ξ1/∂ξ3

∂ξ2/∂ξ1 ∂ξ2/∂ξ2 ∂ξ2/∂ξ3

∂ξ3/∂ξ1 ∂ξ3/∂ξ2 ∂ξ3/∂ξ3

 . (13.25)

For the particular case where the unbarred coordinates are Cartesian and the barred are spherical,
we have from Section 4.23.1 the transformation matrix along with its inverse

Λaa =

 −r cosϕ sinλ −r sinϕ cosλ cosϕ cosλ
r cosϕ cosλ −r sinϕ sinλ cosϕ sinλ

0 r cosϕ sinϕ

 (13.26)

1We will have occasion to use other generalized coordinates in this book, with particular attention given to
generalized vertical coordinates in Part XII.
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Λaa =
1

r2 cosϕ

 −r sinλ r cosλ 0
−r cosϕ sinϕ cosλ −r cosϕ sinϕ sinλ r cos2 ϕ
r2 cos2 ϕ cosλ r2 cos2 ϕ sinλ r2 cosϕ sinϕ

 . (13.27)

It is straightforward to verify the orthonormality relations satisfied by these matrices

Λaa Λ
a
b
= δa

b
and Λaa Λ

a
b = δab. (13.28)

Hence, if we have the Cartesian representation of a vector, such as the velocity or acceleration,
then we can use these transformation rules to derive the spherical representation through matrix
multiplication, as per equation (13.24).

13.3.5 Two meanings for the same symbol
We highlight the need to hold two meanings in mind for (x, y, z) and (r, λ, ϕ), or for any set
of generalized coordinates (ξ1, ξ2, ξ3). One meaning specifies a point in Euclidean space. The
other meaning refers to the position in space for a moving material particle, in which case the
coordinate position is a function of time. We commonly write the second meaning using the
capital, X(t), to denote the particle trajectory. To accord with common usage for the Cartesian
and spherical coordinates, we write the components to X(t) using the smaller case, so that the
Cartesian position of the particle is

X(t) = x̂x(t) + ŷ y(t) + ẑ z(t), (13.29)

whereas the spherical position is
X(t) = r̂(t) r(t). (13.30)

Time dependence of the unit vectors depends on the reference frame. For an inertial reference
frame, the Cartesian unit vectors are fixed in space, whereas for the rigid-body rotating frame,
the Cartesian basis vectors rotate around the vertical axis. Likewise, the spherical unit vector
rotates with the rotating reference frame. Yet even in an inertial reference frame, r̂ is a function
of time since it points from the origin towards the moving particle.

13.4 The velocity vector
The velocity is the time derivative of the position vector

V =
dX

dt
. (13.31)

This equation is manifestly geometric in that the velocity at a space-time point is the tangent
vector to the trajectory at that point. When expressing this relation using a coordinate
representation we note that time dependence lives with both the coordinate representation of
the position vector as well as the basis vectors

V =
dX

dt
=

d (ξa e⃗a)

dt
=

dξa

dt
e⃗a + ξa

de⃗a
dt

. (13.32)

13.4.1 Coordinate velocity
The first term on the right hand side of equation (13.32) is the velocity as measured within the
chosen reference frame using the chosen coordinates

Vcoord ≡
dξa

dt
e⃗a. (13.33)
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This is the contribution to velocity as measured in the reference frame that moves with the basis
vectors. In the context of geophysical motions, this is the velocity measured in the rotating
terrestrial reference frame using Cartesian, spherical, or other chosen coordinates.

13.4.2 Temporal changes to the basis vectors
The second term on the right hand side of equation (13.32) arises from changes to the basis
vectors. There are three means for a basis vector to change, and we encounter them when
considering coordinate representations later in this chapter. Two changes arise from rotations,
each of which change the basis vector’s direction without changing its magnitude. The third
change leads to a modification of the basis vector’s magnitude.

• rigid-body rotation: For a rigid-body rotation of the reference frame, the rigid-body
velocity is given by (see Section 11.2.2)

Urigid = Ω×X. (13.34)

• rotation relative to rigid-body: A vector can also rotate at a rate that differs from
the rigid-body.

• change in magnitude: Finally, if the basis vectors are not normalized to have unit
magnitude, then they can change their magnitude during motion.

13.5 Decomposition of the inertial frame acceleration
The acceleration measured in an inertial reference frame is given by the time derivative of the
velocity measured in this frame, so that the acceleration is the second derivative of the position
vector

A =
dV

dt
=

d2X

dt2
. (13.35)

This equation is independent of any coordinate representation so that the physical and geometrical
content are manifest. When introducing a coordinate representation, the resulting expression
becomes subject to details of the chosen coordinates and those details possibly obscure the
underlying geometric meaning. Hence, it is important to keep the geometric expression in mind
when offering an interpretation for coordinate dependent terms.

Introducing a coordinate representation X = ξa e⃗a into the acceleration (13.35), and making
use of the chain rule, leads to

A =
d

dt

dX

dt
(13.36a)

=
d

dt

d (ξa e⃗a)

dt
(13.36b)

=
d

dt

[
d ξa

dt
e⃗a + ξa

d e⃗a
dt

]
(13.36c)

=
d2ξa

dt2
e⃗a + 2

dξa

dt

de⃗a
dt

+ ξa
d2e⃗a
dt2

. (13.36d)

The first term on the right hand side is the acceleration of the coordinate representation as
measured in the rotating reference frame

Acoord ≡
d2ξa

dt2
e⃗a. (13.37)
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It is the acceleration measured by an observer in the rotating frame using coordinates ξa. The
remaining two terms arise from changes to the basis vectors, and they give rise to the Coriolis and
planetary centrifugal accelerations associated with the rotating reference frame. In non-Cartesian
coordinates, they also give rise to a metric acceleration arising from the change in directions
of the unit vectors associated with motion of the particle relative to the rotating reference
frame (Section 13.4.2). Note that the factor of two on the middle term (the Coriolis term) in
equation (13.36d) results from the two time derivatives that act on the basis vectors that arise
when computing the acceleration. We already encountered this factor of two when deriving the
Cartesian expression of the Coriolis acceleration in Section 11.4.3.

13.6 Representing the position vector
We make use of some results from Section 4.23 relating Cartesian and spherical coordinates and
as defined by Figure 4.3. In particular, we use the planetary Cartesian basis vectors, (x̂, ŷ, ẑ), and
corresponding spherical basis vectors, (λ̂, ϕ̂, r̂), thus leading to the coordinate representations of
the position vector relative to the center of a rotating sphere

X = x x̂+ y ŷ + z ẑ (13.38a)

= (r cosϕ cosλ) x̂+ (r cosϕ sinλ) ŷ + (r sinϕ) ẑ (13.38b)

= r r̂ (13.38c)

= |X| r̂. (13.38d)

The expression for the position vector is quite simple when written in spherical coordinates, as
it is merely the distance from the origin with a direction that points radially from the origin to
the particle.

13.7 Representing the velocity vector
As seen in Section 13.4, the inertial frame velocity vector has a coordinate representation written
as

V =
dX

dt
=

d(ξa e⃗a)

dt
=

dξa

dt
e⃗a + ξa

de⃗a
dt

. (13.39)

Contributions arise from both the time changes in the coordinates, ξa, and time changes to the
basis vectors, e⃗a. We now consider the Cartesian and spherical forms for these changes.

13.7.1 Planetary Cartesian coordinate representation
The basis vectors for the Cartesian coordinates, (e⃗1, e⃗2, e⃗3) = (x̂, ŷ, ẑ), are normalized, so they
do not change their magnitude. Furthermore, they move only through rigid-body motion of the
rotating reference frame. We refer to these coordinates as planetary Cartesian coordinates since
they are oriented according to the rotating planet with origin at the planet’s center. In Section
24.5 we introduce the distinct tangent plane Cartesian coordinates. Tangent plane Cartesian
coordinates are also moving with the rotating planet. Yet they are defined according to a tangent
plane at a point on the surface of the planet. It is important to distinguish these two uses for
Cartesian coordinates in geophysical fluid mechanics.

The angular velocity is oriented around the polar axis

Ω = Ω ẑ, (13.40)

so that the rigid-body velocity of the rotating reference frame only has components in the x̂ and
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ŷ directions
Urigid = Ω×X = Ω(−x̂ y + ŷ x). (13.41)

The inertial frame velocity thus has the following representation in terms of planetary Cartesian
coordinates

V =
d

dt
[x̂x+ ŷ y + ẑ z] (13.42a)

=

[
x̂
dx

dt
+ ŷ

dy

dt
+ ẑ

dz

dt

]
+ x

dx̂

dt
+ y

dŷ

dt
+ z

dẑ

dt
(13.42b)

=

[
−yΩ+

dx

dt

]
x̂+

[
xΩ+

dy

dt

]
ŷ +

dz

dt
ẑ (13.42c)

= VCartesian +Ω×X (13.42d)

= VCartesian +Urigid, (13.42e)

where we defined the Cartesian velocity vector

VCartesian ≡
dx

dt
x̂+

dy

dt
ŷ +

dz

dt
ẑ, (13.43)

which is the velocity as measured in the rotating reference frame when using planetary Cartesian
coordinates. We also made use of equation (13.7) to express the time rate of change for the
planetary Cartesian unit vectors, with this change arising solely from the planetary rotation.
Note that the results here are valid for Ω varying in time.

13.7.2 Planetary spherical coordinate representation

The position vector in the planetary spherical coordinate representation is given by

X = r r̂. (13.44)

The basis vector r̂ is normalized, so that its evolution arises just from rotations, and we
determined that time evolution in equation (13.13)

dr̂

dt
= λ̂ (λ̇+Ω) cosϕ+ ϕ̂ ϕ̇. (13.45)

Consequently, the velocity as viewed in the inertial frame has the following spherical coordinate
representation

V =
dX

dt
(13.46a)

=
d(r r̂)

dt
(13.46b)

= r
dr̂

dt
+

dr

dt
r̂ (13.46c)

= r⊥ (λ̇+Ω) λ̂+ r ϕ̇ ϕ̂+ ṙ r̂ (13.46d)

= (u+ r⊥Ω) λ̂+ v ϕ̂+ w r̂ (13.46e)

= Vspherical +Urigid. (13.46f)

In this equation we introduced the spherical coordinate velocity vector

Vspherical = r⊥ λ̇ λ̂+ r ϕ̇ ϕ̂+ ṙ r̂ ≡ u λ̂+ v ϕ̂+ w r̂, (13.47)
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where we defined the components to the spherical velocity vector

u ≡ r⊥
dλ

dt
and v ≡ r dϕ

dt
and w ≡ dr

dt
, (13.48)

and with
r⊥ = |X| cosϕ = r cosϕ (13.49)

the distance to the polar axis. The spherical velocity, Vspherical, is the velocity measured in the
rotating reference frame when using planetary spherical coordinates. We also noted that the
rigid-body velocity has the spherical coordinate representation

Urigid = Ω×X = r⊥Ω λ̂. (13.50)

That is, the rigid-body velocity is purely zonal.

13.7.3 Transforming from Cartesian to spherical

We make use of the tensor analysis from Section 13.3 to transform from the Cartesian representa-
tion of the velocity vector to the spherical representation. This approach leads to an equivalent
result to that pursued thus far in this section, but it is somewhat more systematic and it offers
useful experience with the formalities of coordinate transformations. In particular, we make use
of the transformation rule (13.24) along with the transformation matrix (13.26) and its inverse
(13.27) to have

V 1 = V r = Λ1
1 V

1 + Λ1
2 V

2 + Λ1
3 V

3 (13.51a)

V 2 = V λ = Λ2
1 V

1 + Λ2
2 V

2 + Λ2
3 V

3 (13.51b)

V 3 = V ϕ = Λ3
1 V

1 + Λ3
2 V

2 + Λ3
3 V

3, (13.51c)

where the Cartesian components are

V 1 = ẋ− Ω y = ṙ cosϕ cosλ− r ϕ̇ sinϕ cosλ− r (λ̇+Ω) cosϕ sinλ (13.52a)

V 2 = ẏ +Ωx = ṙ cosϕ sinλ− r ϕ̇ sinϕ sinλ+ r (λ̇+Ω) cosϕ cosλ (13.52b)

V 3 = ż = ṙ sinϕ+ r ϕ̇ cosϕ. (13.52c)

Making use of the inverse transformation matrix components Λab given by equation (13.27), as
well as the relation (13.24) between the coordinate basis vectors, leads to

V⃗ = V = V a e⃗a = r⊥ (λ̇+Ω) λ̂+ r ϕ̇ ϕ̂+ ṙ r̂, (13.53)

which is the same as equation (13.46f) determined without the formalism of tensor algebra.

13.7.4 Axial angular momentum

As seen in Section 14.5, the zonal component of the inertial frame velocity, times the moment
arm (distance from the rotation axis), equals to the axial angular momentum per unit mass

Lz = mr⊥ λ̂ · V = mr⊥ (u+ r⊥Ω). (13.54)

The distance to the rotational axis is given by r⊥, and this is the moment arm for the axial
angular momentum. For cases with rotational symmetry around polar axis, as for motion of a
particle around a smooth sphere, the axial angular momentum is a constant of the motion. As
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discussed in Section 14.5, this conservation law provides a constraint on the particle trajectory
and it plays a role in the motion of geophysical fluids (Section 24.7).

13.8 Planetary Cartesian representation of acceleration
The acceleration measured in an inertial reference frame is given by the second time derivative
of the position vector

A =
dV

dt
=

d2X

dt2
. (13.55)

We here consider its representation using planetary Cartesian coordinates (x, y, z) and the
Cartesian basis (e⃗1, e⃗2, e⃗3) = (x̂, ŷ, ẑ). The results here were anticipated by the discussion in
Section 11.4.3. We find it useful to go through the derivation again, here with more focus on the
geophysical applications of this book.

13.8.1 Planetary Cartesian representation

For the study of geophysical fluid motion, we assume the planetary angular velocity, Ω, is a
constant in time

dΩ

dt
= 0. (13.56)

Making use of the results from Section 13.2.1 leads to

de⃗a
dt

= Ω× e⃗a (13.57)

and
d2e⃗a
dt2

=
d

dt
(Ω× e⃗a) = Ω× de⃗a

dt
= Ω× (Ω× e⃗a), (13.58)

which yields the acceleration

A =
d

dt

dX

dt
(13.59a)

=
d2ξa

dt2
e⃗a + 2

dξa

dt
(Ω× e⃗a) + ξaΩ× (Ω× e⃗a) (13.59b)

= x̂
[
ẍ− 2Ω ẏ − Ω2x

]
+ ŷ

[
ÿ + 2Ω ẋ− Ω2y

]
+ ẑ z̈ (13.59c)

= ẍ x̂+ ÿ ŷ + z̈ ẑ + 2Ω (−ẏ x̂+ ẋ ŷ)− Ω2 (x x̂+ y ŷ) (13.59d)

= ACartesian + 2Ω× VCartesian +Ω× (Ω×X) (13.59e)

= ACartesian −ACoriolis −Acentrifugal. (13.59f)

The acceleration is thus decomposed into three terms that we now discuss.

Coordinate acceleration in the rotating reference frame

The first acceleration on the right hand side of equation (13.59f) is

ACartesian =
d2x

dt2
x̂+

d2y

dt2
ŷ +

d2z

dt2
ẑ = ẍ x̂+ ÿ ŷ + z̈ ẑ, (13.60)

which is the coordinate acceleration measured in the rotating frame using planetary Cartesian
coordinates.
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Planetary Coriolis acceleration

The second term on the right hand side of equation (13.59f) is the planetary Coriolis acceleration

ACoriolis = −2Ω× VCartesian. (13.61)

One key feature of the Coriolis acceleration is that it vanishes when there is no motion relative to
the rotating reference frame. The Coriolis acceleration plays a fundamental role in geophysical
fluid mechanics and is central to our studies in this book.

Planetary centrifugal/centripetal acceleration

The third contribution to acceleration in equation (13.59f) is the planetary centrifugal acceleration,
which is also minus the planetary centripetal acceleration

Acentrifugal = −Acentripetal = −Ω× (Ω×X). (13.62)

The planetary centrifugal acceleration points outward from (perpendicular to) the polar axis of
rotation whereas the planetary centripetal acceleration points inward; they are action/reaction
pairs. They can be written as the gradient of a scalar potential

Acentrifugal = −∇Φcentrifugal (13.63)

with

−Φcentrifugal ≡
(Ω× x) · (Ω× x)

2
=

Ω2 r2⊥
2

=
(Ω r cosϕ)2

2
=

Ω2 (x2 + y2)

2
, (13.64)

so that
Acentrifugal = −∇Φcentrifugal = Ω2∇(x2 + y2)/2. (13.65)

The planetary centripetal acceleration (pointing towards the rotational axis) keeps the
rotating particle from flying outward away from the rotational axis. On a massive rotating
sphere, the planetary centripetal acceleration acting on the moving particle is provided by
that component of the gravitational acceleration (Section 13.10) that is directed towards the
rotation axis. The planetary centripetal acceleration’s opposing partner, the planetary centrifugal
acceleration, arises from the rotating planet and it accounts for the slight equatorial bulge of
the earth. For a human scale example, note that the centrifugal acceleration pulls a person
outward from the center of a rotating merry-go-round, whereas the person’s arms provide the
opposing centripetal acceleration to keep from from flying outward. In summary, the centrifugal
acceleration arises from rotation of the non-inertial reference frame, and as such is a non-inertial
acceleration, whereas the centripetal acceleration arises from a “real” force that balances the
centrifugal acceleration.

13.8.2 Summary

For the purpose of formulating the equation of motion in the rotating terrestrial frame, we write
the rigid-body rotating frame acceleration as

ACartesian = A+ACoriolis +Acentrifugal (13.66a)

= A− 2Ω× VCartesian −∇Φcentrifugal (13.66b)

and summarize the following accelerations (force per unit mass).
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• inertial: Newton’s law of motion is formulated within an inertial reference frame making
use of the acceleration, A, that is directly affected by forces such as gravitation.

• Planetary Coriolis: The planetary Coriolis acceleration,

ACoriolis = −2Ω× VCartesian = −2Ω ẑ × VCartesian = −2Ω
[
−dy

dt
x̂+

dx

dt
ŷ

]
, (13.67)

arises from the choice to describe motion within the rotating terrestrial reference frame.
The Coriolis acceleration gives rise to a rich suite of fundamentally new phenomena relative
to non-rotating motion, with much of this book focused in describing such phenomena.
It has components only in the horizontal planetary Cartesian plane spanned by the unit
vectors (x̂, ŷ). That is, the Coriolis acceleration occurs in a plane parallel to the equatorial
plane. We expect this orientation of the Coriolis acceleration since it arises from rotation
about the ẑ axis, so that there can be no component of the Coriolis acceleration aligned
with ẑ.

• Planetary centrifugal: The planetary centrifugal acceleration,

Acentrifugal = −∇Φcentrifugal = Ω2 r⊥ = Ω2 (x x̂+ y ŷ), (13.68)

is the second term arising from the rotating reference frame. As for the Coriolis acceleration,
the planetary centrifugal acceleration has components only in the horizontal planetary
Cartesian plane spanned by the unit vectors (x̂, ŷ); i.e., the planetary centrifugal accel-
eration occurs in a plane parallel to the equatorial plane, which is again expected since
the planetary centrifugal acceleration arises from rotation of the planet about the polar
axis. The planetary centrifugal acceleration is directed outward from (perpendicular to)
to the polar axis of rotation. We see this orientation in Figure 13.4 to be discussed later.
Furthermore, the planetary centrifugal acceleration is nonzero even when the particle is
fixed relative to the rotating planet, whereas the Coriolis acceleration is zero when the
particle has zero motion relative to the planet.

The planetary centrifugal acceleration can be written as the gradient of a scalar potential,
Acentrifugal = −∇Φcentrifugal where Φcentrifugal = −Ω2 (x2 + y2)/2 (equation (13.64)). Hence, the
planetary centrifugal acceleration can be combined with the gravitational acceleration in
the equation of motion (see Section 13.10). The resulting “effective gravity” leads to a
conservative force field that is modified relative to the central gravitational field of the
non-rotating spherical planet. We detail these points in Section 13.10.4.

13.8.3 Further study
We build up our understanding of the Coriolis acceleration as the book develops, such as in
Section 14.6 where we offer a thorough examination of its facets. Further related study can be
found in Section 3.5 of Apel (1987). Visualizations from rotating tank experiments are useful to
garner an experiential understanding of the Coriolis acceleration. The first few minutes of this
video from Prof. Fultz of the University of Chicago is particularly insightful.

13.9 Spherical representation of acceleration
The spherical representation of the velocity viewed in an inertial reference frame is given by
equation (13.46f)

V =
dX

dt
= (u+ r⊥Ω) λ̂+ v ϕ̂+ w r̂ = Vsphere + r⊥Ω λ̂, (13.69)
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13.9. SPHERICAL REPRESENTATION OF ACCELERATION

where we introduced the spherical velocity from equation (13.48)

Vsphere ≡ u λ̂+ v ϕ̂+ w r̂. (13.70)

We also make use of the notation for the zonal component of the velocity as measured in the
inertial reference frame,

uI = u+ r⊥Ω. (13.71)

Just as for computing the velocity vector, the corresponding acceleration measured in the inertial
reference frame must take into account changes in both the spherical coordinates and spherical
basis vectors

A =
d

dt

(
uI λ̂+ v ϕ̂+ w r̂

)
(13.72a)

=
duI
dt
λ̂+

dv

dt
ϕ̂+

dw

dt
r̂ + uI

dλ̂

dt
+ v

dϕ̂

dt
+ w

dr̂

dt
. (13.72b)

The spherical unit vectors change due to both the rigid-body rotation of the rotating reference
frame, plus motion of the particle relative to the rotating frame. Making use of equations
(13.13), (13.14a), and (13.14b) for the changes to the spherical coordinate unit vectors leads to
the decomposition of the acceleration viewed from the inertial frame

A · λ̂ =
duI
dt

+

[
dλ

dt
+Ω

]
(w cosϕ− v sinϕ) (13.73a)

A · ϕ̂ =
dv

dt
+

[
dλ

dt
+Ω

]
uI sinϕ+ w

dϕ

dt
(13.73b)

A · r̂ =
dw

dt
−
[
dλ

dt
+Ω

]
uI cosϕ− v

dϕ

dt
. (13.73c)

Use of the identities

u = r⊥
dλ

dt
and uI = u+ r⊥Ω and

duI
dt

=
du

dt
+Ω(w cosϕ− v sinϕ), (13.74)

along with some reorganization, then renders the spherical coordinate representation of the
inertial frame acceleration

A = λ̂

[
du

dt
+
u (w − v tanϕ)

r
+ 2Ω (w cosϕ− v sinϕ)

]
+ ϕ̂

[
dv

dt
+
v w + u2 tanϕ

r
+ 2Ωu sinϕ+ r⊥Ω2 sinϕ

]
+ r̂

[
dw

dt
− u2 + v2

r
− 2Ωu cosϕ− r⊥Ω2 cosϕ

]
. (13.75)

13.9.1 Transforming from Cartesian to spherical

As in Section 13.7.3, we can make use of the tensor algebra from Section 13.3 to transform from
the Cartesian representation of the acceleration vector to the spherical representation. Following
the same steps as for the velocity leads to

Aa = ΛaaA
a (13.76)
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where the Cartesian components to the acceleration are

A1 = ẍ− 2Ω ẏ − Ω2 x (13.77a)

A2 = ÿ + 2Ω ẋ− Ω2 y (13.77b)

A3 = z̈. (13.77c)

Making use of the coordinate transformation (13.22) allows us to express these Cartesian
components of the acceleration in terms of spherical coordinates. Then we make use of the
inverse transformation matrix components Λab given by equation (13.27), as well as the relation
(13.24) between the coordinate basis vectors, which leads to

A⃗ = A = Aa e⃗a = Aa e⃗a (13.78)

with the spherical coordinate representation given by equation (13.75) as derived without the
formalism of tensor algebra. Both approaches require algebraic manipulations, so that it is useful
to have two approaches to double-check results.

13.9.2 Decomposing the acceleration
We decompose the inertial frame acceleration (13.75) into the following terms

A = Asphere +Ametric −ACoriolis −Acentrifugal, (13.79)

with signs chosen so that in the rigid-body rotating frame the acceleration is written

Asphere +Ametric︸ ︷︷ ︸
net spherical acceleration

= A+ACoriolis +Acentrifugal. (13.80)

We identify the net spherical acceleration as the sum of the coordinate acceleration and metric
acceleration. In the absence of reference frame rotation, this sum provides an expression for
the acceleration as represented by spherical coordinates. For example, if we are describing the
motion of a satellite from an inertial reference frame using spherical coordinates, then we would
use Asphere +Ametric. The Coriolis and planetary centrifugal terms arise from the rigid-body
rotation of the planet.

13.9.3 Spherical coordinate acceleration
The spherical coordinate acceleration is given by the time change in the spherical velocity
components

Asphere =
du

dt
λ̂+

dv

dt
ϕ̂+

dw

dt
r̂. (13.81)

This term has no contribution from changes to the spherical unit vectors.

13.9.4 Metric acceleration
We define the metric acceleration as that contribution to the acceleration arising from time
dependence of the spherical unit vectors that appears when taking the time derivative of the
velocity vector. For spherical coordinates we have

Ametric = λ̂

[
u (w − v tanϕ)

r

]
+ ϕ̂

[
v w + u2 tanϕ

r

]
− r̂

[
u2 + v2

r

]
(13.82a)

= λ̂

[
u (w cosϕ− v sinϕ)

r cosϕ

]
+ ϕ̂

[
v w cosϕ+ u2 sinϕ

r cosϕ

]
− r̂

[
u2 + v2

r

]
(13.82b)
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=
1

r
[u tanϕ (r̂ × Vsphere) + wUsphere − r̂ Usphere ·Usphere] , (13.82c)

where we wrote the horizontal (angular) and vertical (radial) components of the spherical velocity
according to

Vsphere = Usphere + r̂w = λ̂u+ ϕ̂ v + r̂w. (13.83)

Note that
Vsphere ·Ametric = 0, (13.84)

so that the metric acceleration is orthogonal to the spherical velocity, in which case with (see
equation (13.46f)) V = Vsphere + r⊥Ω λ̂ we have

V ·Ametric = Ωu (−v sinϕ+ w cosϕ). (13.85)

Furthermore, the metric acceleration vanishes when the curvature of the sphere vanishes (i.e.,
r →∞), as per a flat plane.

13.9.5 Planetary centrifugal acceleration

The spherical coordinate representation of the planetary centrifugal acceleration is given by

Acentrifugal = −∇Φcentrifugal = Ω2 (x x̂+ y ŷ) = r⊥Ω2 (−ϕ̂ sinϕ+ r̂ cosϕ). (13.86)

The planetary centrifugal acceleration points outward from the axis of rotation (see Figure 13.4
to be discussed later), so that it has no component in the longitudinal direction. Furthermore,
note that

V ·Acentrifugal = Vsphere ·Acentrifugal = r⊥Ω2 (−v sinϕ+ w cosϕ). (13.87)

13.9.6 Planetary Coriolis acceleration

The spherical coordinate representation of the Coriolis acceleration makes use of the spherical
representation of the earth’s angular velocity

Ω = Ω ẑ = Ω(ϕ̂ cosϕ+ r̂ sinϕ). (13.88)

Although Ω = Ω ẑ is fixed in absolute space, its representation using spherical coordinates is
a function of latitudinal position on the sphere, with components in the local radial and local
meridional directions. This spatial dependence gives rise to much of the characteristic features
of geophysical flows associated with the beta-effect studied in Section 40.6.2.

We use the representation (13.88) to write the spherical coordinate representation of the
Coriolis acceleration

ACoriolis = −2Ω× Vsphere (13.89a)

= −2Ω (ϕ̂ cosϕ+ r̂ sinϕ)× (u λ̂+ v ϕ̂+ w r̂) (13.89b)

= −2Ω
[
λ̂ (w cosϕ− v sinϕ) + ϕ̂u sinϕ− r̂ u cosϕ

]
. (13.89c)

As a check on this result, note that

ACoriolis · ẑ = 0, (13.90)

as it must since there is no component of the Coriolis acceleration that is parallel to the rotation
axis. Furthermore, as for the metric acceleration, we see that the Coriolis acceleration is
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orthogonal to the spherical velocity

Vsphere ·ACoriolis = 0, (13.91)

so that
V ·ACoriolis = 2 r⊥Ω2 (v sinϕ− w cosϕ). (13.92)

We commonly find it convenient to introduce a shorthand notation

f = (2Ω sinϕ) r̂ and f∗ = (2Ω cosϕ) ϕ̂, (13.93)

so that the Coriolis acceleration is decomposed into two terms

ACoriolis = −(f + f∗)× Vsphere. (13.94)

These two terms take on the form

Af
Coriolis = −(2Ω sinϕ) r̂ × (u λ̂+ v ϕ̂+ w r̂) = 2Ω sinϕ (v λ̂− u ϕ̂), (13.95)

which is purely in the spherical angular directions, and

Af∗

Coriolis = −(2Ω cosϕ) ϕ̂× (u λ̂+ v ϕ̂+ w r̂) = 2Ω cosϕ (u r̂ − w λ̂), (13.96)

which has a zonal and radial component.

13.9.7 Centrifugal acceleration from particle plus planetary motion

The radial component to the inertial frame acceleration (13.75) can be written in the form

A · r̂ =
dw

dt
− (u2I + v2)/r. (13.97)

Evidently, the contribution from (u2I+v
2)/r term leads to a vertical (radially outward) acceleration

in the radial equation of motion (13.134) discussed in Section 13.11.2. We identify it as the
radial acceleration arising from the particle’s centrifugal acceleration due to angular motion of
the particle around the sphere, combined with the local vertical contribution from the planetary
centrifugal acceleration of Section 13.9.5.

13.9.8 Coriolis acceleration for large-scale motions

Let us again write the Coriolis acceleration in equation (13.89c), now underlining two terms

ACoriolis = −2Ω
[
λ̂ (w cosϕ− v sinϕ) + ϕ̂u sinϕ− r̂ u cosϕ

]
. (13.98)

For many applications in geophysical fluid mechanics, the term r̂ (2Ωu cosϕ) is much smaller
than the competing gravitational acceleration that also contributes to the radial acceleration,
thus prompting r̂ (2Ωu cosϕ) to be dropped from the r̂ equation of motion.2 Furthermore, the
vertical velocity term is often much smaller than the horizontal velocity term appearing in the λ̂
component. Dropping these two terms results in the Coriolis acceleration used for large-scale
dynamics, such as when considering the hydrostatic primitive equations for geophysical fluids
(Section 27.1)

Alarge-scale
Coriolis ≡ −2Ω sinϕ (−λ̂ v + ϕ̂u) ≡ −f r̂ × Vsphere. (13.99)

2The term r̂ (2Ωu cosϕ) is called the Eötvös correction in the study of marine gravity.
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For the last equality we introduced the Coriolis parameter

f ≡ 2Ω sinϕ. (13.100)

As illustrated in Figure 13.3, we see that it is the radial (i.e., the local vertical) component of
the earth’s angular rotation that plays the most important role in large-scale geophysical fluid
mechanics

Ω · r̂ = Ω ẑ · r̂ = Ω(ϕ̂ cosϕ+ r̂ sinϕ) · r̂ = Ωsinϕ = f/2. (13.101)
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Figure 13.3: This figure illustrates the two components of the earth’s rigid-body rotational velocity, Ω = Ω ẑ =
Ω(ϕ̂ cosϕ+ r̂ sinϕ). The radial component (also known as the local vertical component), Ωr = Ωsinϕ, is generally
more important for large scale geophysical fluid motions than the meridional component, Ωϕ = Ωcosϕ.

13.10 Newtonian gravity
Thus far we have focused on the kinematics of a particle moving around a rotating planet, with
this motion viewed from the rotating planetary reference frame. We now acknowledge that the
particle is moving in the prescribed gravitational field of the massive planet. The gravitational
force acting on the particle is the only force felt by the point particle when viewed in an inertial
reference frame. Since the point particle contains no internal structure and it has no surface
area, the total energy for the particle equals to the mechanical energy (Chapter 14). We here
discuss the gravitational potential energy and the associated gravitational force, all within the
context of Newtonian mechanics.

13.10.1 Newtonian gravity from Poisson’s equation
The Newtonian gravitational potential, ΦN, in the presence of a mass distribution with density,
ρ, satisfies Poisson’s equation (see Section 6.5)

∇2ΦN = 4πGρ, (13.102)

where
G = 6.674× 10−11 N m2 kg−2 = 6.674× 10−11 m3 kg−1 s−2 (13.103)

is Newton’s gravitational constant. Gravity is a conservative force, so that the gradient of the
gravitational potential gives the gravitational acceleration

g = −∇ΦN. (13.104)
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The gravitational potential has dimensions of L2 T−2 so that its gradient indeed has the
dimensions of acceleration, L T−2. Note that the gravitational potential responds instantaneously
to any changes in the mass distribution. It took a few centuries, and the genius of Einstein, to
provide a local connection between mass and gravity as rendered by space-time curvature and
gravitational waves.3

A volume integral of Poisson’s equation (13.102), computed over a region in space, leads to

ˆ
R

∇2ΦN dV = 4πG

ˆ
R

ρ dV. (13.105)

The integral on the right hand side is the mass contained in the region,

M =

ˆ
R

ρdV, (13.106)

whereas the divergence theorem (Section 2.7) allows us to write the left hand side as a surface
integral ˆ

∂R
∇ΦN · n̂dS = 4πGM. (13.107)

With a continuous mass density, ρ, the Newtonian gravitational potential, ΦN, can be written
in terms of the Green’s function solution in equation (9.61), along with the free space Green’s
function in equation (9.5c), so that

ΦN(x) = −G
ˆ
R

ρ(x0)

|x− x0|
dV0 and g(x) = −∇ΦN = −G

ˆ
R

ρ(x0) (x− x0)

|x− x0|3
dV0. (13.108)

The potential is built from the convolution of the free space Green’s function with the mass
distribution. The gravitational acceleration manifests the inverse squared gravitational force
arising from Newtonian gravity.

13.10.2 Gravitational field outside a spherical earth

In this book we assume the mass density of the planet to be spherically symmetric, in which
case the gravitational potential is a function only of the radial distance from the center of the
mass distribution, Φe = Φe(r). Letting the integration region, R, be a sphere of radius r > Re,
where Re is the radius of the planet, and making use of spherical coordinates from Section 4.23.8,
brings equation (13.107) to

4π r2
∂Φe

∂r
= 4πGM. (13.109)

Integration leads to the gravitational potential for an arbitrary point outside the spherically
symmetric mass distribution4

Φe = −
GM

r
, (13.110)

where we set the integration constant to zero. Evidently, when sampling the gravity field at a
radius equal to or larger than the spherical planet radius, the gravitational potential is identical
to that of a point mass at the origin. The gradient of the gravitational potential (13.110) yields
the inverse-squared dependence of the gravitational acceleration

ge = −∇Φe = −
GM

r2
r̂ = −GM

r3
r, (13.111)

3See Thorne and Blandford (2017) for a study of general relativity and gravitational waves.
4In Exercise 13.10 we derive the gravitational potential inside of a spherical body.
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along with the gravitational force acting on a point particle of mass m

Fgravity = m ge = −m∇Φe. (13.112)

Furthermore, the gravitational potential energy of the particle (dimensions M L2 T−2) is

P = mΦe. (13.113)

13.10.3 Approximate gravitational acceleration

For most applications of atmospheric and oceanic fluid dynamics, it is sufficient to assume
the gravitational acceleration is constant and equal to its value at the earth’s surface. This
assumption holds so long as the radial position of the particle is a distance from the earth surface
that is small relative to the earth radius. We generally make this assumption throughout this
book.5 In this case we can assume the earth’s gravitational acceleration, ge, is a constant so that

ge = −ge r̂, (13.114)

where

ge =
GMe

R2
e

≈ 9.8 m s−2. (13.115)

To reach this value, we assumed a sphere of mass equal to the earth mass

Me = 5.977× 1024 kg, (13.116)

and radius
Re = 6.371× 106 m (13.117)

determined so that the sphere has the same volume as the earth.

The corresponding gravitational potential for the particle is given by

Φe = ge r, (13.118)

with the gravitational acceleration

ge = −∇Φe = −ge r̂, (13.119)

and the gravitational potential energy

mΦe = mge r. (13.120)

We emphasize that the expression for the gravitational potential, (13.118), and potential energy,
(13.120), are accurate only so long as the radial position of the particle is a distance from the
earth surface that is small relative to the earth radius. Furthermore, note that the approximate
gravitational potential (13.118) is positive whereas the unapproximated potential (13.110) is
negative. However, the absolute zero of the potential has no physical significance. Instead,
what is important is the change between two points in space, with both expressions for the
gravitational potential increasing when moving away from the earth center.

5In the study of tides in Chapter 34, we no longer make the assumption of constant gravitational field.
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13.10.4 Effective gravitational force from the geopotential
Combining the potential for the planetary centrifugal acceleration as given by equation (13.64)
with the gravitational potential (13.110), leads to the geopotential

Φ = r [ge −U2
rigid/(2r)] with Urigid = r cosϕΩ λ̂, (13.121)

where Urigid is the rigid body velocity of the planet, as per equation (13.50). The expression
(13.121) for the geopotential is relevant for motion that is close enough to the earth surface
that we can assume the earth’s gravitational acceleration, ge, is constant (see discussion in
Section 13.10.3). In Exercise 13.7 we derive the geopotential for the more general case when this
assumption is not made.

The contribution from the planetary centrifugal term in the geopotential (13.121) can be
estimated by making use of terrestrial values, in which R = Re = 6.371 × 106 m (equation
(13.117)), and Ωe = 7.292× 10−5 s−1 (Section 13.1). The planetary centrifugal term is its largest
at the equator, ϕ = 0, where

U2
rigid

2Re

≈ 0.017 m s−2, (13.122)

so that the ratio of the gravitational to planetary centrifugal accelerations is (at most)

ge
U2

rigid/(2Re)
=
MeG/R

2
e

Ω2
e Re/2

≈ 576. (13.123)

The geopotential is thus dominated by the earth’s gravitational potential. Even so, the planetary
centrifugal acceleration leads to a slight equatorial bulge on the earth. To account for this slight
non-sphericity, geophysical fluid models generally interpret the radial direction, r̂, as pointing
parallel to ∇Φ rather than parallel to ∇Φe. We have more to say on this topic of geopotential
coordinates in Section 13.11.3.

13.10.5 Further study
Newton’s gravitational law is standard material from freshman physics. Some commonly used
physical properties of the earth are summarized in Appendix Two of Gill (1982).

13.11 Newton’s law of motion
As seen in Section 11.1, Newton’s law of motion says that in an inertial reference frame, the
time derivative of the linear momentum arises only from externally applied forces. In our study,
we are only concerned with the gravitational force that the constant mass particle feels in an
inertial frame. In this case, Newton’s equation of motion says that

mA = −m∇Φe. (13.124)

This is a relatively simple equation of motion. Its representation is somewhat complex, yet useful
for practical purposes, when moving to the rigid-body rotating reference frame of terrestrial
observers and when represented using spherical coordinates.6

6As emphasized by Early (2012), the acceleration from gravity, from the perspective of general relativity,
cannot be distinguished from accelerations encountered when describing motion in a non-inertial reference frame.
Early (2012) provides an accounting of such motion while clarifying what is meant by “inertial oscillations” for
particles constrained to move around the earth along a constant geopotential (we also consider inertial oscillations
in Section 15.5). Even so, we here consider gravity as distinct from Coriolis and centrifugal since, in Newtonian
mechanics, gravity appears when the particle is viewed from an inertial reference frame.
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13.11.1 Cartesian coordinate representation

The inertial frame acceleration using planetary Cartesian coordinates is decomposed according
to equation (13.66b)

A = ACartesian −ACoriolis −Acentrifugal (13.125a)

= ACartesian + 2Ω× VCartesian +∇Φcentrifugal. (13.125b)

We thus have the equation of motion as viewed within the rigid-body rotating frame and using
Cartesian coordinates

ACartesian = A− 2Ω× VCartesian −∇Φcentrifugal (13.126a)

= −∇Φe − 2Ω× VCartesian −∇Φcentrifugal (13.126b)

= −2Ω× VCartesian −∇Φ, (13.126c)

where the geopotential is the sum of the gravitational and planetary centrifugal potentials
(equation (13.121))

Φ = Φe +Φcentrifugal. (13.127)

We can write the equation of motion in the vector form within the rotating reference frame

d2X

dt2
+ 2Ω× Ẋ = −∇Φ. (13.128)

Note for this equation, the basis vectors are not time differentiated again since their rigid-body
rotation has already been taken care of when exposing the Coriolis and planetary centrifugal
accelerations. That is, the time derivatives are all computed within the rigid-body rotating
reference frame. This equation of motion is the standard form that occurs also for a fluid, though
with the addition of contact forces from pressure and friction as studied in Chapter 24.

Since the rotation of the reference frame is assumed to be constant in time, the equation of
motion (13.128) can be written

dM

dt
=

d

dt
(VCartesian + 2Ω×X) = −∇Φ, (13.129)

where we introduced the potential momentum per mass

M = VCartesian + 2Ω×X. (13.130)

Evidently, the potential momentum is a constant of the motion for particles moving along
directions parallel to the geopotential (so long as the geopotential is a constant). We emphasize
that the potential momentum per mass is distinct from the inertial frame velocity (13.42e).
Namely, the factor of 2 in the potential momentum arises from the Coriolis acceleration, whereas
the inertial frame velocity has Ω×X arising from the rigid-body rotation of the planet. We
further discuss potential momentum in Section 14.3.

13.11.2 Spherical coordinate representation

We now follow the spherical coordinate discussion in Section 13.9 by writing the inertial frame
acceleration using planetary spherical coordinates and decomposing this acceleration into terms
that arise in a rigid-body rotating non-inertial frame

Asphere +Ametric = ACoriolis +A+Acentrifugal = −2Ω× Vsphere −∇Φ. (13.131)
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The effective gravitational force is not a central force due to the contribution from the planetary
centrifugal acceleration. We see this fact more explicitly by using the equations in Section 13.9
to write the spherical equations of motion

u̇+
u (w − v tanϕ)

r
+ 2Ω (w cosϕ− v sinϕ) = 0 (13.132)

v̇ +
v w + u2 tanϕ

r
+ 2Ωu sinϕ = −r⊥Ω2 sinϕ (13.133)

ẇ − u2 + v2

r
− 2Ωu cosϕ = r⊥Ω2 cosϕ− ge, (13.134)

where, again, r⊥ = r cosϕ.

The Ω2 term in both the meridional equation (13.133), and the radial equation (13.134),
are the two components of the planetary centrifugal acceleration, Acentrifugal = r⊥Ω2 (−ϕ̂ sinϕ+
r̂ cosϕ). The planetary centrifugal acceleration is directed outward from the planetary axis of
rotation, and it is balanced by an inward directed planetary centripetal acceleration provided by
that portion of the gravitational acceleration directed oppositely to the planetary centrifugal.
Notably, a particle initially at rest on a smooth spherical planet accelerates meridionally toward
the equator due to the meridional component of the planetary centrifugal acceleration. The
initial meridional acceleration for this particle is derived from equation (13.133), whereby
v̇ = −r⊥Ω2 sinϕ.

Imagine setting the planetary centripetal acceleration to zero, in which case the particle would
still feel the central force from gravity but its trajectory would differ. As seen in Section 13.10.4,
the earth’s gravitational acceleration is much larger than the planetary centrifugal acceleration,
so that in the absence of the planetary centrifugal acceleration the particle would still be bound
to the planet. But in more extreme conditions where the rotational rate is much higher (e.g., a
rotating neutron star), removing the centripetal acceleration causes a huge modification to the
particle trajectory.

13.11.3 Geopotential coordinate representation
As we saw in Section 13.10.2, the radius of a sphere that best fits the volume of the earth is
given by Re = 6.371× 106m. The non-central nature of the effective gravitational force (arising
from central gravity plus planetary centrifugal) leads to an oblate spheroidal shape for planets
such as the earth. The result is a distinction between the earth’s equatorial and polar radii
(Appendix Two of Gill (1982))

Requator = 6.378× 106m and Rpole = 6.357× 106m, (13.135)

with a corresponding ratio

1− Rpole

Requator

≈ 3× 10−3. (13.136)

An oblate spheroid shape does a better job fitting the actual earth shape than a sphere, thus
motivating the use of oblate spheroid coordinates for describing planetary scale mechanics. In
this case, the radial coordinate is constant on the oblate spheroid shaped geopotential, and the
effective gravitational acceleration is precisely aligned with the geopotential direction. If we
consider an ocean covered rotating spherical planet, then at static equilibrium the sea surface
corresponds to an oblate spheroidal geopotential.

Even though oblate spheroidal coordinates are better than spherical for describing geopoten-
tials, it is possible, to a high degree of accuracy, to describe the earth’s geometry as spherical
(Veronis , 1973). Doing so simplifies the mathematics since oblate spheroidal coordinates are less
convenient and less familiar than standard spherical coordinates. We are thus led to assume
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that the radial coordinate measures distances perpendicular to the geopotential, yet to use
geometric/metric functions based on spherical coordinates. The error in this approach is small
for the earth, and well worth the price since there is no component to the effective gravitational
force that is within the geopotential surface.

We illustrate the change in coordinates in Figure 13.4, with the figure caption also explaining
how the force balances are reorganized. Absorbing the planetary centrifugal term into an effective
gravitational potential then leads to the effective gravitational acceleration vector

−∇Φ = −g r̂, (13.137)

with g the effective gravitational acceleration. Using this convention, the particle equations of
motion take the following form

u̇+
u (w − v tanϕ)

r
+ 2Ω (w cosϕ− v sinϕ) = 0 (13.138a)

v̇ +
v w + u2 tanϕ

r
+ 2Ωu sinϕ = 0 (13.138b)

ẇ − u2 + v2

r
− 2Ωu cosϕ = −g. (13.138c)

Notably, in geopotential coordinates the effective gravitational acceleration only impacts the
radial equation of motion. There is no longer a component of the effective gravity pointing
meridionally.

13.11.4 Comments

Figure 13.4, including its rather long caption, offers a view on the transition from spherical
coordinates to geopotential coordinates. The use of geopotential coordinates is rather accurate
and extremely convenient for most purposes of geophysical fluid mechanics, with a notable
exception being the study of tides and sea level, in which detailed models of the earth’s mass
distribution and gravity field are used (see Gregory et al. (2019) for a review).

Although precise, the transition to geopotential coordinates is somewhat subtle in principle
since we are reorganizing how the planetary centrifugal acceleration appears. It is through this
reorganization that we can largely ignore the planetary centrifugal acceleration in our studies
of geophysical motions since it is absorbed by the geopotential. The single exception for our
studies concerns the rotating laboratory tank experiments in Section 27.5, where we find it more
convenient to expose the centrifugal acceleration.

13.11.5 Further study

Section 4.12 of Gill (1982) and section 2.2.1 of Vallis (2017) present the terrestrial scaling
needed to justify spherical coordinates with a radial effective gravitational potential. Morse and
Feshbach (1953) and Veronis (1973) present details of oblate spheroidal coordinates. See also the
textbook from Staniforth (2022) for a careful presentation of the equations for earth’s gravity.

The transition from spherical to geopotential coordinates for geophysical fluid mechanics has
been the topic of some confusion, as evidenced by the papers from Stewart and McWilliams
(2022), Chang and Wolfe (2022), Chang et al. (2023), and McWilliams (2024). For the purposes
of this book, the key point is that gravity is directed vertically and thus provides no acceleration
in the local horizontal directions.
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g
<latexit sha1_base64="WtXto6zAGWNh4GGR8349UO6Kkt8=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPz/Ocw5J0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDPNWw+oNI/lnRkn6Ed0IHnIGTXWqg96xZJbdmciq+AtoFQ9/ah/A0CtV/zs9mOWRigNE1Trjucmxs+oMpwJnBS6qcaEshEdYMeipBFqP5sNOiHn1umTMFb2SUNm7u+OjEZaj6PAVkbUDPVyNjX/yzqpCa/8jMskNSjZ/KMwFcTEZLo16XOFzIixBcoUt7MSNqSKMmNvU7BH8JZXXoXmZdlzy17dK1WvYa48nMAZXIAHFajCLdSgAQwQHuEZXpx758l5dd7mpTln0XMMf+S8/wDbf48t</latexit><latexit sha1_base64="gH2rnrj6x8O9Iamx7//RGwklDtU=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OZuMmZ1dZmaFEFJa2VgoYutT5DnsfAZfwsml0MQfBj7+/xzmnBMkgmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0nCqGVRaLWDUCqlFwiVXDjcBGopBGgcB60L+Z5PUHVJrH8s4MEvQj2pU85Iwaa1W67XzBLbpTkWXw5lAoHY8r348n43I7/9nqxCyNUBomqNZNz02MP6TKcCZwlGulGhPK+rSLTYuSRqj94XTQETmzToeEsbJPGjJ1f3cMaaT1IApsZURNTy9mE/O/rJma8MofcpmkBiWbfRSmgpiYTLYmHa6QGTGwQJnidlbCelRRZuxtcvYI3uLKy1C7KHpu0at4hdI1zJSFIziFc/DgEkpwC2WoAgOEJ3iBV+feeXbenPdZacaZ9xzCHzkfP7nEkJM=</latexit><latexit sha1_base64="gH2rnrj6x8O9Iamx7//RGwklDtU=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OZuMmZ1dZmaFEFJa2VgoYutT5DnsfAZfwsml0MQfBj7+/xzmnBMkgmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0nCqGVRaLWDUCqlFwiVXDjcBGopBGgcB60L+Z5PUHVJrH8s4MEvQj2pU85Iwaa1W67XzBLbpTkWXw5lAoHY8r348n43I7/9nqxCyNUBomqNZNz02MP6TKcCZwlGulGhPK+rSLTYuSRqj94XTQETmzToeEsbJPGjJ1f3cMaaT1IApsZURNTy9mE/O/rJma8MofcpmkBiWbfRSmgpiYTLYmHa6QGTGwQJnidlbCelRRZuxtcvYI3uLKy1C7KHpu0at4hdI1zJSFIziFc/DgEkpwC2WoAgOEJ3iBV+feeXbenPdZacaZ9xzCHzkfP7nEkJM=</latexit><latexit sha1_base64="ptrlgiLeeUyhJHSXUTVbRklphFY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVao0G15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WV2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QPLhYzo</latexit>

gr
<latexit sha1_base64="mVar6DAKL8mtokI45ftJ90nDvpI=">AAAB7HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NloGbSwTcJNAsoTZydlkyOzsMjMrhCXPYGOhiK3P4HPY2fkoTi6FJv4w8PH/5zDnnDAVXBvX/XIKa+sbm1vF7dLO7t7+QfnwqKmTTDH0WSIS1Q6pRsEl+oYbge1UIY1Dga1wdDvNWw+oNE/kvRmnGMR0IHnEGTXW8ge9XE165YpbdWciq+AtoFI7/Wh8A0C9V/7s9hOWxSgNE1TrjuemJsipMpwJnJS6mcaUshEdYMeipDHqIJ8NOyHn1umTKFH2SUNm7u+OnMZaj+PQVsbUDPVyNjX/yzqZia6DnMs0MyjZ/KMoE8QkZLo56XOFzIixBcoUt7MSNqSKMmPvU7JH8JZXXoXmZdVzq17Dq9RuYK4inMAZXIAHV1CDO6iDDww4PMIzvDjSeXJenbd5acFZ9BzDHznvPygckR4=</latexit><latexit sha1_base64="pCOJi84Tbjcut7ZDtRi6/rvEaI8=">AAAB7HicbZC7SgNBFIbPeo3xFrVUZDAIVmHXRsugjWUCbhJIljA7OUmGzM4uM7NCWFJa21goYusz5DnsfAZfwsml0MQfBj7+/xzmnBMmgmvjul/Oyura+sZmbiu/vbO7t184OKzpOFUMfRaLWDVCqlFwib7hRmAjUUijUGA9HNxO8voDKs1jeW+GCQYR7Une5Ywaa/m9dqZG7ULRLblTkWXw5lAsn4yr34+n40q78NnqxCyNUBomqNZNz01MkFFlOBM4yrdSjQllA9rDpkVJI9RBNh12RM6t0yHdWNknDZm6vzsyGmk9jEJbGVHT14vZxPwva6amex1kXCapQclmH3VTQUxMJpuTDlfIjBhaoExxOythfaooM/Y+eXsEb3HlZahdljy35FW9YvkGZsrBMZzBBXhwBWW4gwr4wIDDE7zAqyOdZ+fNeZ+VrjjzniP4I+fjBwZhkoQ=</latexit><latexit sha1_base64="pCOJi84Tbjcut7ZDtRi6/rvEaI8=">AAAB7HicbZC7SgNBFIbPeo3xFrVUZDAIVmHXRsugjWUCbhJIljA7OUmGzM4uM7NCWFJa21goYusz5DnsfAZfwsml0MQfBj7+/xzmnBMmgmvjul/Oyura+sZmbiu/vbO7t184OKzpOFUMfRaLWDVCqlFwib7hRmAjUUijUGA9HNxO8voDKs1jeW+GCQYR7Une5Ywaa/m9dqZG7ULRLblTkWXw5lAsn4yr34+n40q78NnqxCyNUBomqNZNz01MkFFlOBM4yrdSjQllA9rDpkVJI9RBNh12RM6t0yHdWNknDZm6vzsyGmk9jEJbGVHT14vZxPwva6amex1kXCapQclmH3VTQUxMJpuTDlfIjBhaoExxOythfaooM/Y+eXsEb3HlZahdljy35FW9YvkGZsrBMZzBBXhwBWW4gwr4wIDDE7zAqyOdZ+fNeZ+VrjjzniP4I+fjBwZhkoQ=</latexit><latexit sha1_base64="JU3+2yoAm2iglv/O7svykV9aONY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m86LHoxWMF0xbaUDbbSbt0swm7GyGE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ncrG5tb2TnW3trd/cHhUPz7p6CRTDH2WiET1QqpRcIm+4UZgL1VI41BgN5zezf3uEyrNE/lo8hSDmI4ljzijxkr+eFio2bDecJvuAmSdeCVpQIn2sP41GCUsi1EaJqjWfc9NTVBQZTgTOKsNMo0pZVM6xr6lksaog2Jx7IxcWGVEokTZkoYs1N8TBY21zuPQdsbUTPSqNxf/8/qZiW6Cgss0MyjZclGUCWISMv+cjLhCZkRuCWWK21sJm1BFmbH51GwI3urL66Rz1fTcpvfgNVq3ZRxVOINzuAQPrqEF99AGHxhweIZXeHOk8+K8Ox/L1opTzpzCHzifPxgijtk=</latexit>

<latexit sha1_base64="Nj2+Q/u1tFWJiz1DHJFlXmw2qyw=">AAACM3icbVDLSgNBEJzxGeMr0YMHL4tB8BR2xdcx6MVjBPOAZAmzk9lkzMzsMtMrhCX/4FX/w48Rb+LVf3CS7EGTLWgoqrrp7gpiwQ247gdeWV1b39gsbBW3d3b39kvlg6aJEk1Zg0Yi0u2AGCa4Yg3gIFg71ozIQLBWMLqb+q1npg2P1COMY+ZLMlA85JSAlZpdIuIh6ZUqbtWdwVkmXkYqKEO9V8ZH3X5EE8kUUEGM6XhuDH5KNHAq2KTYTQyLCR2RAetYqohkxk9n506cU6v0nTDSthQ4M/XvREqkMWMZ2E5JYGgWvamY6zHDFeQ6gcyTOwmEN37KVZwAU3R+WZgIByJnGpbT55pREGNLCNXcPufQIdGEgo00Z3WxaKP0FoNbJs3zqndVvXy4qNRus1AL6BidoDPkoWtUQ/eojhqIoif0gl7RG37Hn/gLf89bV3A2c4j+Af/8AkKYqg8=</latexit>↵

Acentrifugal
<latexit sha1_base64="fIJxLlx8hmTTeA2tpds7WWWGUBU=">AAACBXicbVC7TgMxENzjGcIrQAmFlQgpVXRHA2WAhjJI5CElp+BzfIkVn32yfYjodA0Nv0JDAUK0/AMd38BP4DwKSBhppdHMrr07QcyZNq775Swtr6yurec28ptb2zu7hb39hpaJIrROJJeqFWBNORO0bpjhtBUriqOA02YwvBz7zTuqNJPixoxi6ke4L1jICDZW6haOzrtpJwrkfdoxTIwQocIoFiZ9zLOsWyi5FXcCtEi8GSlVi+XvWwCodQufnZ4kSWQfIRxr3fbc2PgpVoYRTrN8J9E0xmSI+7RtqcAR1X46uSJDx1bpoVAqW8Kgifp7IsWR1qMosJ0RNgM9743F/7x2YsIzP2UiTgwVZPpRmHBkJBpHgnpMUWL4yBJMFLO7IjLAChNjg8vbELz5kxdJ46TiuRXv2itVL2CKHBxCEcrgwSlU4QpqUAcCD/AEL/DqPDrPzpvzPm1dcmYzB/AHzscP/4KbCw==</latexit><latexit sha1_base64="1vC9jNTY38HH65TsAp2zZbkw71M=">AAACBXicbVC7TsMwFHV4lvIKMMJgtULqVCUsMBZYGItEH1ITRY7rpFYdJ7IdRBRlYYBfYWEAIVYkPoGNb+AL2HAfA7Qc6UpH59xr33v8hFGpLOvTWFhcWl5ZLa2V1zc2t7bNnd22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzh+cjvXBMhacyvVJYQN0IhpwHFSGnJMw9OvdyJ/PgmdxTlGcSEK0GDNESsKDyzatWtMeA8saek2qjUvsL3u++mZ344/RinkX4EMyRlz7YS5eZIKIoZKcpOKkmC8BCFpKcpRxGRbj6+ooCHWunDIBa6uIJj9fdEjiIps8jXnRFSAznrjcT/vF6qghM3pzxJFeF48lGQMqhiOIoE9qkgWLFME4QF1btCPEACYaWDK+sQ7NmT50n7qG5bdfvSrjbOwAQlsA8qoAZscAwa4AI0QQtgcAsewBN4Nu6NR+PFeJ20LhjTmT3wB8bbDwvFnVM=</latexit><latexit sha1_base64="1vC9jNTY38HH65TsAp2zZbkw71M=">AAACBXicbVC7TsMwFHV4lvIKMMJgtULqVCUsMBZYGItEH1ITRY7rpFYdJ7IdRBRlYYBfYWEAIVYkPoGNb+AL2HAfA7Qc6UpH59xr33v8hFGpLOvTWFhcWl5ZLa2V1zc2t7bNnd22jFOBSQvHLBZdH0nCKCctRRUj3UQQFPmMdPzh+cjvXBMhacyvVJYQN0IhpwHFSGnJMw9OvdyJ/PgmdxTlGcSEK0GDNESsKDyzatWtMeA8saek2qjUvsL3u++mZ344/RinkX4EMyRlz7YS5eZIKIoZKcpOKkmC8BCFpKcpRxGRbj6+ooCHWunDIBa6uIJj9fdEjiIps8jXnRFSAznrjcT/vF6qghM3pzxJFeF48lGQMqhiOIoE9qkgWLFME4QF1btCPEACYaWDK+sQ7NmT50n7qG5bdfvSrjbOwAQlsA8qoAZscAwa4AI0QQtgcAsewBN4Nu6NR+PFeJ20LhjTmT3wB8bbDwvFnVM=</latexit><latexit sha1_base64="D6GCXWJD/odULS7lYoqduYPVuY4=">AAACBXicbVC7TsMwFHXKq5RXgBEGiwqJqUpYYCywMBaJtkhNFDmu01r1I7IdRBR1YeFXWBhAiJV/YONvcNsM0HKkKx2dc69974lTRrXxvG+nsrS8srpWXa9tbG5t77i7ex0tM4VJG0sm1V2MNGFUkLahhpG7VBHEY0a68ehq4nfvidJUiluTpyTkaCBoQjEyVorcw4uoCHgsH4rAUJFDTIRRNMkGiI3HkVv3Gt4UcJH4JamDEq3I/Qr6EmfcPoIZ0rrne6kJC6QMxYyMa0GmSYrwCA1Iz1KBONFhMb1iDI+t0oeJVLaEgVP190SBuNY5j20nR2ao572J+J/Xy0xyHhZUpJkhAs8+SjIGjYSTSGCfKoINyy1BWFG7K8RDpBA2NriaDcGfP3mRdE4bvtfwb/x687KMowoOwBE4AT44A01wDVqgDTB4BM/gFbw5T86L8+58zForTjmzD/7A+fwBhouZNg==</latexit>

g
<latexit sha1_base64="WtXto6zAGWNh4GGR8349UO6Kkt8=">AAAB6HicbZC7SgNBFIbPxluMt6ilFoNBsAq7NrEM2lgmYC6QLGF2cjYZMzu7zMwKYckT2FgoYutT+Bx2dj6Kk0uhiT8MfPz/Ocw5J0gE18Z1v5zc2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDPNWw+oNI/lnRkn6Ed0IHnIGTXWqg96xZJbdmciq+AtoFQ9/ah/A0CtV/zs9mOWRigNE1Trjucmxs+oMpwJnBS6qcaEshEdYMeipBFqP5sNOiHn1umTMFb2SUNm7u+OjEZaj6PAVkbUDPVyNjX/yzqpCa/8jMskNSjZ/KMwFcTEZLo16XOFzIixBcoUt7MSNqSKMmNvU7BH8JZXXoXmZdlzy17dK1WvYa48nMAZXIAHFajCLdSgAQwQHuEZXpx758l5dd7mpTln0XMMf+S8/wDbf48t</latexit><latexit sha1_base64="gH2rnrj6x8O9Iamx7//RGwklDtU=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OZuMmZ1dZmaFEFJa2VgoYutT5DnsfAZfwsml0MQfBj7+/xzmnBMkgmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0nCqGVRaLWDUCqlFwiVXDjcBGopBGgcB60L+Z5PUHVJrH8s4MEvQj2pU85Iwaa1W67XzBLbpTkWXw5lAoHY8r348n43I7/9nqxCyNUBomqNZNz02MP6TKcCZwlGulGhPK+rSLTYuSRqj94XTQETmzToeEsbJPGjJ1f3cMaaT1IApsZURNTy9mE/O/rJma8MofcpmkBiWbfRSmgpiYTLYmHa6QGTGwQJnidlbCelRRZuxtcvYI3uLKy1C7KHpu0at4hdI1zJSFIziFc/DgEkpwC2WoAgOEJ3iBV+feeXbenPdZacaZ9xzCHzkfP7nEkJM=</latexit><latexit sha1_base64="gH2rnrj6x8O9Iamx7//RGwklDtU=">AAAB6HicbZC7SgNBFIbPxluMt6ilIoNBsAq7NloGbSwTMBdIljA7OZuMmZ1dZmaFEFJa2VgoYutT5DnsfAZfwsml0MQfBj7+/xzmnBMkgmvjul9OZmV1bX0ju5nb2t7Z3cvvH9R0nCqGVRaLWDUCqlFwiVXDjcBGopBGgcB60L+Z5PUHVJrH8s4MEvQj2pU85Iwaa1W67XzBLbpTkWXw5lAoHY8r348n43I7/9nqxCyNUBomqNZNz02MP6TKcCZwlGulGhPK+rSLTYuSRqj94XTQETmzToeEsbJPGjJ1f3cMaaT1IApsZURNTy9mE/O/rJma8MofcpmkBiWbfRSmgpiYTLYmHa6QGTGwQJnidlbCelRRZuxtcvYI3uLKy1C7KHpu0at4hdI1zJSFIziFc/DgEkpwC2WoAgOEJ3iBV+feeXbenPdZacaZ9xzCHzkfP7nEkJM=</latexit><latexit sha1_base64="ptrlgiLeeUyhJHSXUTVbRklphFY=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9Ej04hESCyTQkO0yhZXtttndmpCGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczf3OEyrNE/lgpikGMR1JHnFGjZVao0G15tbdBcg68QpSgwLNQfWrP0xYFqM0TFCte56bmiCnynAmcFbpZxpTyiZ0hD1LJY1RB/ni0Bm5sMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJroJci7TzKBky0VRJohJyPxrMuQKmRFTSyhT3N5K2JgqyozNpmJD8FZfXiftq7rn1r2WV2vcFnGU4QzO4RI8uIYG3EMTfGCA8Ayv8OY8Oi/Ou/OxbC05xcwp/IHz+QPLhYzo</latexit>

⌦
<latexit sha1_base64="lViTTLMqnR6kvPTxisjW/uxtPkQ=">AAAB7XicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2dEcwFkiXMTmaTMXNZZmaFEAI+go2FIrY+ir2db+PkUmjiDwMf/38Oc86JU86MDYJvL7e0vLK6ll/3Nza3tncKu3s1ozJNaJUornQjxoZyJmnVMstpI9UUi5jTety/Guf1B6oNU/LODlIaCdyVLGEEW2fVWjeCdnG7UAxKwURoEcIZFC8+/fNHAKi0C1+tjiKZoNISjo1phkFqoyHWlhFOR34rMzTFpI+7tOlQYkFNNJxMO0JHzumgRGn3pEUT93fHEAtjBiJ2lQLbnpnPxuZ/WTOzyVk0ZDLNLJVk+lGScWQVGq+OOkxTYvnAASaauVkR6WGNiXUH8t0RwvmVF6F2UgqDUngbFsuXMFUeDuAQjiGEUyjDNVSgCgTu4Qle4NVT3rP35r1PS3PerGcf/sj7+AHNeZDF</latexit><latexit sha1_base64="iI4WWd8Rl4VSYcBk8spXXRjIluc=">AAAB7XicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2dEcwFkiXMTmaTMXNZZmaFEPIONhaK2Fj4KPY24ts4SSw08YeBj/8/hznnxClnxgbBl5dbWFxaXsmv+mvrG5tbhe2dmlGZJrRKFFe6EWNDOZO0apnltJFqikXMaT3uX4zz+h3Vhil5YwcpjQTuSpYwgq2zaq0rQbu4XSgGpWAiNA/hDxTP3v3T9PXTr7QLH62OIpmg0hKOjWmGQWqjIdaWEU5HfiszNMWkj7u06VBiQU00nEw7QgfO6aBEafekRRP3d8cQC2MGInaVAtuemc3G5n9ZM7PJSTRkMs0slWT6UZJxZBUar446TFNi+cABJpq5WRHpYY2JdQfy3RHC2ZXnoXZUCoNSeB0Wy+cwVR72YB8OIYRjKMMlVKAKBG7hHh7hyVPeg/fsvUxLc95Pzy78kff2Db8Ikjk=</latexit><latexit sha1_base64="iI4WWd8Rl4VSYcBk8spXXRjIluc=">AAAB7XicbZC7SgNBFIbPxltcb1FLm8EgWIVdG23EoI2dEcwFkiXMTmaTMXNZZmaFEPIONhaK2Fj4KPY24ts4SSw08YeBj/8/hznnxClnxgbBl5dbWFxaXsmv+mvrG5tbhe2dmlGZJrRKFFe6EWNDOZO0apnltJFqikXMaT3uX4zz+h3Vhil5YwcpjQTuSpYwgq2zaq0rQbu4XSgGpWAiNA/hDxTP3v3T9PXTr7QLH62OIpmg0hKOjWmGQWqjIdaWEU5HfiszNMWkj7u06VBiQU00nEw7QgfO6aBEafekRRP3d8cQC2MGInaVAtuemc3G5n9ZM7PJSTRkMs0slWT6UZJxZBUar446TFNi+cABJpq5WRHpYY2JdQfy3RHC2ZXnoXZUCoNSeB0Wy+cwVR72YB8OIYRjKMMlVKAKBG7hHh7hyVPeg/fsvUxLc95Pzy78kff2Db8Ikjk=</latexit><latexit sha1_base64="Y1FoiiZ7EmmBIF9H/5LaQfOMLzQ=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKex60WPQizcjmAckS5id9CZj5rHMzAoh5B+8eFDEq//jzb9xkuxBEwsaiqpuurvilDNjg+DbK6ytb2xuFbdLO7t7+wflw6OmUZmm2KCKK92OiUHOJDYssxzbqUYiYo6teHQz81tPqA1T8sGOU4wEGUiWMEqsk5rdO4ED0itXgmowh79KwpxUIEe9V/7q9hXNBEpLOTGmEwapjSZEW0Y5TkvdzGBK6IgMsOOoJAJNNJlfO/XPnNL3E6VdSevP1d8TEyKMGYvYdQpih2bZm4n/eZ3MJlfRhMk0syjpYlGScd8qf/a632caqeVjRwjVzN3q0yHRhFoXUMmFEC6/vEqaF9UwqIb3YaV2ncdRhBM4hXMI4RJqcAt1aACFR3iGV3jzlPfivXsfi9aCl88cwx94nz9eQY74</latexit>
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Figure 13.4: This figure illustrates the spherical (left panel) versus geopotential (right panel) coordinate systems
used to study geophysical motions. The left panel shows the non-central nature of the effective gravitational
acceleration, g, on a rotating spherical planet, with the effective gravity given by the sum of the gravitational
acceleration, −ge r̂, plus planetary centrifugal acceleration (equation (13.86)), Acentrifugal = r⊥ Ω2 (−ϕ̂ sinϕ +
r̂ cosϕ). The gravitational acceleration points radially to the center of the earth whereas the planetary centrifugal
acceleration points outward away from the polar axis of rotation, thus leading to an effective gravitational
acceleration g = r̂ (−ge + r⊥ Ω2 cosϕ)− ϕ̂ r⊥ Ω2 sinϕ = r̂ gr + ϕ̂ gϕ. The angle between the radial gravity and the
effective gravity, α, is determined by a plumb line and is a function of the rotation rate, earth radius, gravitational
acceleration, and latitude. The expression for α is determined in Exercise 13.5. A particle initially at rest on
a smooth spherical planet accelerates meridionally toward the equator due to the meridional component of the
planetary centrifugal acceleration (from equation (13.133) we have v̇ = −r⊥ Ω2 sinϕ). The right panel shows
a geopotential vertical coordinate, r = R + z, that measures the distance perpendicular to the oblate spheroid
shaped geopotential surface. The geopotential vertical coordinate precisely aligns the effective gravitational force
with the vertical coordinate, so that there is no component of the effective gravity along the surface directions
(gϕ = 0). Equivalently, the central gravitational acceleration now has a meridional component on the oblate
spheroid that exactly balances the meridional component to the planetary centrifugal acceleration, leaving an
effective gravity that is only vertical. Hence, a frictionless oblate spheroidal planet allows for a particle at rest on
the planet’s surface to remain at rest (see equation (13.138b)). Note that this figure is not drawn to scale, with
the oblate nature highly exaggerated compared to the real earth system (see equation (13.136)), and the planetary
centrifugal acceleration much smaller than the gravitational (see equation (13.123)). This figure is taken after
Figure 2.2 of Vallis (2017) and Figure 2.8 of Olbers et al. (2012).

13.12 Exercises
exercise 13.1: Working through the spherical acceleration
Convince yourself that the spherical form of the acceleration given by equation (13.75) is indeed
correct.

exercise 13.2: Deriving the spherical unit vector time derivatives
In this exercise we work through details for deriving the time derivative of the spherical coordinate
unit vector from Section 13.2.3.

(A) Fill in the details for deriving equation (13.13)

(B) Fill in the details for deriving equation (13.14a)

(C) Fill in the details for deriving equation (13.14b)

exercise 13.3: Velocity and acceleration in cylindrical-polar coordinates
In Section 4.22 we worked through the transformation from Cartesian coordinates to cylindrical-
polar coordinates for describing motion in a rotating reference frame. We also made use of
polar coordinates in Section 13.2.2 to illustrate how polar unit vectors change under rotations.
The cylindrical-polar coordinates are useful when describing physical systems such as rotating
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fluid columns (e.g., fluids in a rotating circular tank as in Section 36.8) or when studying
cyclostrophically balanced flow (Section 32.5). Here we work through the details using a
cylindrical-polar coordinate system in the rigid-body rotating reference frame.

In particular, we here derive the cylindrical-polar coordinate representation of the velocity
and acceleration vectors for a particle moving in a reference frame rigid-body rotating with a
constant rate about the vertical axis (Ω = Ω ẑ). The derivation is directly analogous to the
spherical coordinate representation presented in the chapter. Specifically, in Section 13.7.2 we
determined a spherical coordinate representation of the velocity vector, and then in Section 13.9
we found the spherical coordinate representation of the acceleration vector.

(A) Determine the representation of the inertial frame velocity vector, V = dX/dt, in terms
of cylindrical-polar coordinates. Hint: remember to include the solid body motion of the
rotating reference frame, which was discussed in Section 13.2.2.

(B) Determine the representation of the inertial frame acceleration vector, A = dV /dt, in
terms of cylindrical-polar coordinates.

(C) Writing the inertial frame acceleration in the form

A = Acylindrical-polar +Ametric −Acentrifugal −ACoriolis, (13.139)

give the mathematical expressions for these terms:

• Acylindrical-polar = acceleration in the rotating reference frame using cylindrical-polar
coordinates;

• Ametric = acceleration due to motion of the cylindrical-polar unit vectors relative to
the rotating reference frame;

• Acentrifugal = centrifugal acceleration;

• ACoriolis = Coriolis acceleration.

exercise 13.4: Velocity projected onto acceleration
The kinetic energy per mass of a particle is given by

K = V · V /2, (13.140)

where V is the velocity of the particle viewed in the inertial reference frame. Hence, in an
inertial reference frame it is trivial to show that

dK

dt
= V ·A (13.141)

through use of the chain rule, where A = dV /dt is the inertial frame acceleration. Verify that
this identity also holds when viewing the motion in the rigid-body rotating reference frame. For
simplicity make use of planetary Cartesian coordinates.

exercise 13.5: Angle of a plumb line
A plumb line defines the local vertical direction, which is parallel to the effective gravity. As
illustrated in Figure 13.4, the planetary centrifugal acceleration causes the plumb line to not
extend through the earth center.

(A) What is the angle that the plumb line makes with a line that extends through the earth
center? Hint: read the caption to Figure 13.4, and orient your thinking according to the
left panel of this figure. Make use of the spherical coordinate version of the equations of
motion (13.132)–(13.134).

page 346 of 2158 geophysical fluid mechanics



13.12. EXERCISES

(B) Explain why the plumb line angle, α, vanishes at both the equator and the poles.

exercise 13.6: Geometry of constant geopotential surfaces
Here we examine some properties of the geopotential given by equation (13.121), where the
squared rigid-body speed is U2

rigid = (Ω r cosϕ)2. We only consider geopotentials that are close
to the radius of the planet, so that we can assume the gravitational acceleration, ge, is constant
and takes on its value at Re as in Sections 13.10.2 and 13.10.4.

(A) Sketch surfaces of constant geopotential according to equation (13.121).

(B) By equating the geopotential going around the pole to that going around the equator,
show that the polar radius is less than the equatorial radius when Ω > 0.

(C) Taking the terrestrial values of ge, Requator, and Ω, what is the polar radius Rpole? Compare
to the measured value of the polar radius given by equation (13.135).

exercise 13.7: General form of the geopotential
In Exercise 13.6, as in Sections 13.10.3 and 13.10.4, we only considered geopotentials that are
close to the radius of the planet. Show that geopotentials have larger radius at the equator than
at the poles even when not making this assumption. Hint: maintain the general form of the
gravitational potential as given by equation (13.110), then add the potential for the planetary
centrifugal acceleration (13.64). Evaluate the geopotential at the pole and then show that this
same geopotential surface has a larger radial position anywhere equatorward of the pole.

exercise 13.8: Scaling to justify use of geopotential coordinates
Summarize the argument that justifies the use of geopotential coordinates while retaining the
spherical geometry. Make use of your favorite textbook discussion such that given in Chapter 2
of Vallis (2017).

exercise 13.9: Accelerations acting on a resting particle
In this exercise we consider the accelerations acting on a particle at rest (in the rotating frame)
on a smooth/frictionless rotating spherical planet and a rotating oblate spheroidal planet. We
also consider similar questions in Section 14.8.

(A) Motion of a particle on a rotating spherical planet is described using the spherical coordi-
nates from Section 13.11.2 with the corresponding equations of motion (13.132)-(13.134).
Suppose that we drop a particle on a rotating sphere and that we describe its motion using
the spherical coordinates. Discuss the initial acceleration of the particle that is released
from rest.

(B) Motion of a particle on a rotating oblate spheroid planet is described using the geopotential
coordinates from Section 13.11.3 with the corresponding equations of motion (13.138a)-
(13.138c). Suppose that we drop a particle on a rotating oblate spheroid and that we
describe its motion using the geopotential coordinates. Discuss the initial acceleration of
the particle that is released from rest. Note that we return to this freely falling particle in
Section 14.8.3.

exercise 13.10: Gravitational potential inside a sphere
In Section 13.10.2 we found the gravitational, Φe, for a point outside of the spherical earth. Here
we find the gravitational potential inside of the earth. That is, solve the Poisson equation

∇2Φe = 4πGρ, (13.142)

for a radial position r < Re. Hint: follow the approach in Section 13.10.1 and then match the
potential at r = Re. Hint: the solution can be found in many undergraduate physics texts.
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Chapter 14

SYMMETRIES AND CONSERVATION LAWS

Symmetries are discrete or continuous operations that leave a physical system unchanged. For
example, let X be a trajectory satisfying Newton’s equation of motion and A be an operation.
If A[X] also satisfies Newton’s equation of motion then A is a symmetry of the physical system.
As studied in Section 12.9, Noether’s theorem provides a connection between symmetries and
conservation laws, with conservation laws providing dynamical constraints on the motion. In
this chapter we study a variety of dynamical constraints respected by particle motion. We then
use these dynamical constraints as a means to study the nature of the motion and, in turn, to
further our understanding. We are particularly interested in studying motion as observed from
a rigid-body rotating reference frame, as per a terrestrial observer on the rotating earth.

One of the key reasons to make use of conserved quantities concerns their additive nature.
Namely, a conserved quantity for a system composed of several weakly interacting parts is given
by the sum of the conserved quantity for the individual parts. As a result, symmetries and
conservation laws are fundamental to how we garner a qualitative and quantitative understanding
of motion in which, for many purposes, it is more useful to know the dynamically conserved
properties of any realized motion than details of any particular trajectory.

chapter guide

This chapter relies on our study of particle mechanics in Chapter 13. In Section 12.9 we
provide the mathematical basis for Noether’s theorem through the study of Lagrangian
mechanics and Hamilton’s principle. However, full reading of that material is not necessary
for the present chapter.
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14.1 Trajectories and dynamical constraints
Time integration (twice) of the equation of motion provides an expression for the trajectory
of a particle. To assist in this integration we find it very useful to make use of dynamical
constraints respected by the motion. Dynamical constraints manifest as conservation laws and
can be essential for any practical determination of the trajectory. Dynamical constraints also
provide predictive statements of value when studying the stability of motion and for developing
numerical methods for simulations.

Knowledge of the trajectory is important if we are interested in details of a particular
realization of the motion. For example, the particle might be an idealization of a satellite
orbiting the planet, with an accurate trajectory needed to predict its location at a future time.
However, for other purposes we might wish to know that all particles, no matter what trajectory,
conserve angular momentum and mechanical energy. This information about the dynamical
constraints satisfied by the motion offers the ability to understand basic properties of the motion
and to predict its response to perturbations, even without determining trajectories. Dynamical
constraints imposed by conservation laws are especially relevant for fluids since it is rare to
determine the analytical expression for the motion of fluid particles, making the knowledge of
constraints incredibly valuable.

14.1.1 Connecting symmetries to conservation laws
The discovery of conservation laws often comes from inspired manipulations of the equations
of motion. However, there is a more robust and fundamental means to deduce conservation
laws through their connection to symmetries, with a symmetry manifesting as an operation that
leaves the physical system unchanged. For example, does the physical system remain unchanged
when shifting the origin of time? If so, then mechanical energy is a constant of the motion.
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Likewise, if there is rotational symmetry around an axis, then the associated angular momentum
is a constant of the motion.

The connection between symmetries (kinematics) and conservation laws (dynamics) was made
by Noether (1918) (see Noether and Tavel (2018) for an English translation). We provide the
mathematical expression of Noether’s theorem in Section 12.9 as part of our study of Hamilton’s
principle. It is sufficient for this chapter to make use of this theorem as a conceptual framework
for understanding conservation laws and their connections to symmetries. Quite simply, if there
is a symmetry then there is a corresponding conservation law, and vice versa.

It is very useful to identify conserved quantities as a means to understand and to dynamically
constrain the motion. This perspective holds even when the symmetries giving rise to conserved
quantities are broken through the introduction of non-conservative forces such as friction. For
example, as seen in Section 11.1.6, friction breaks time translation symmetry and so leads to
the dissipation of mechanical energy. Nonetheless, understanding the conservative motion, and
the associated energy conservation law, offers insights for the case with friction. In this chapter,
we offer two examples to support this point: mechanical energy conservation and axial angular
momentum conservation. These conservation laws also hold in a modified form for the continuum
fluid (e.g., Chapter 24). Additional conservation properties also arise that are unique to the
continuum, with conservation of potential vorticity the most notable one for geophysical fluids
(Chapter 41).

14.1.2 Further study
Conservation laws and symmetries in classical mechanics are lucidly discussed in Chapters 1 and
2 of Landau and Lifshitz (1976). Pedagogical presentations on these topics can be found in this
online lecture from the Space Time series and this online lecture from Physics with Elliot. This
essay about Emmy Noether provides insights into this mathematician whose work, conducted
under some very unfortunate circumstances, forever connected symmetries to conservation laws,
with this connection providing the basis for nearly all modern theories of physics.

14.2 Time reversal symmetry
As a warm-up to the ideas of symmetry, consider the question about time reversibility. A
deterministic process is time-reversible if the time-reversed process satisfies the same dynamical
equations as the forward-time process. That is, the dynamical equations are symmetric under a
change in the sign of time so that the time-reversed evolution of one state is equivalent to the
forward-time evolution of a corresponding state. We here discuss time reversal symmetry in the
context of the point particle with trajectory, X(t), and velocity, V (t) = dX(t)/dt.

If X(t) is a solution to the equations of motion, then what is needed for

X∗(t∗) =X(−t) and V ∗(t∗) = dX∗(t∗)/dt∗ = −dX(−t)/dt (14.1)

to define the same trajectory traversed backwards in time, where t∗ = −t? We answer this
question by recalling from Section 13.11.1 that with planetary rotation a constant in time then
the Cartesian coordinate equation of motion is given by

d

dt

[
dX(t)

dt
+ 2Ω×X(t)

]
= −∇Φ(t). (14.2)

We are interested in the constraints that ensure the following equation is satisfied

d

dt∗

[
dX∗(t∗)

dt∗
+ 2Ω∗ ×X∗(t∗)

]
= −∇Φ(t∗). (14.3)
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The effective gravitational acceleration remains time reversible if

Φ∗(t∗) = Φ(t), (14.4)

which is trivially satisfied for Φ = g z. The Coriolis acceleration is velocity dependent so that it
generally breaks time reversal symmetry. However, we can recover time symmetry by assuming
that the rotation direction switches when time reverses so that

Ω∗ = −Ω. (14.5)

With this transformation, a trajectory, X(t), that solves the forward equation (14.2) yields a
trajectory X(−t) that solves the same equation but with time (and Ω) reversed. We return
in Section 25.8.12 to the question of time reversal symmetry for the Euler equations of perfect
fluid mechanics.

14.3 Potential momentum

In Section 13.11.1 we introduced the potential momentum, and we here further study its
conservation properties. Recall that it is a constant of the motion when a particle moves on a
time independent geopotential in a direction where the geopotential does not change. That is,
the conservation of potential momentum arises from a spatial symmetry of the geopotential.

14.3.1 Basics

Start with the planetary Cartesian coordinate equation of motion

d

dt

[
Ẋ + 2Ω×X

]
= −∇Φ. (14.6)

Now introduce the potential momentum per mass

M ≡ Ẋ + 2Ω×X = x̂ (u− 2Ω y) + ŷ (v + 2Ωx) + ẑw, (14.7)

in which case the equation of motion takes the form

Ṁ = −∇Φ. (14.8)

Now let ŝ be a unit vector tangent to the geopotential surface so that ŝ · ∇Φ = 0. Assuming
the geopotential surface is time independent so that ŝ is also time independent, then the equation
of motion (14.8) leads to

d(ŝ ·M)

dt
= 0. (14.9)

That is, the projection of the potential momentum onto a static geopotential surface is a constant
of motion. This dynamical constraint arises since we cannot distinguish one point on the
geopotential from another; i.e., there is a symmetry associated with motion along the static
geopotential. Noether’s theorem (Section 14.1.1) then says that this geometric symmetry leads
to a constant of the motion, here given by that component of potential momentum within the
geopotential surface. We illustrate this situation in Figure 14.1 with a horizontal geopotential
surface.

Consider a particle with potential momentum, M , and move it from an arbitrary point to a
reference position with X = 0. Upon reaching the reference position, the horizontal velocity of
the particle must equal toM in order to maintain the same potential momentum. This example
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Φ = Φ(z)M

̂s ⋅ M

x
y

z

Figure 14.1: The projection of the potential momentum onto the geopotential surface is a constant of the motion,
d(ŝ ·M)/dt = 0. Here the geopotential surface is the x-y-plane so that x̂ ·M = u− 2Ω y and ŷ ·M = v + 2Ωx
are the two conserved components of potential momentum.

motivates the name “potential momentum”, since M measures the potential for relative motion
contained in the particle as it moves along a geopotential.

14.3.2 Comment about terminology
As noted on page 51 of Markowski and Richardson (2010), one might see potential momentum
referred to as pseudo angular momentum, with some dropping the “pseudo” portion to the
name. In either case, it is important to note that potential momentum is distinct from angular
momentum. In particular, there is no moment-arm as part of the potential momentum, nor is
there any axial symmetry corresponding to the conservation law.

Many authors use the term absolute momentum rather than potential momentum, perhaps
in reference to the momentum measured in the absolute or inertial reference frame. However,
that connection is incorrect since the inertial frame velocity is (Section 13.7.1)

V = VCartesian +Urigid-body = VCartesian +Ω×X. (14.10)

The factor of two multiplying the rotation rate in the potential momentum arises from the
Coriolis acceleration. In contrast, the rigid-body rotation velocity contributes to the inertial
frame velocity and it has a factor of unity multiplying the rotation rate.

14.4 Free particle motion on the f -plane
In Section 24.5 we introduce the tangent plane approximation for motion on a rotating sphere.
In this approximation, motion occurs on a geopotential surface with the surface approximated
as a horizontal flat plane. Furthermore, we use local tangent plane Cartesian coordinates (which
are distinct from the planetary Cartesian coordinates used in Chapter 13 and illustrated in
Figure 4.3). The f -plane approximation furthermore sets the Coriolis parameter to a constant,

f = 2Ω sinϕ0, (14.11)

where ϕ0 is a chosen latitude. Consequently, a free particle constrained to move on a con-
stant geopotential under the f -plane approximation maintains a constant horizontal potential
momentum

dMx

dt
=

d(u− f y)
dt

= 0 (14.12a)

dMy

dt
=

d(v + f x)

dt
= 0, (14.12b)

where we introduced the horizontal velocity components (u, v) = (ẋ, ẏ). These two conservation
laws provide dynamical constraints on the free particle motion on a constant geopotential
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Figure 14.2: Free particle motion on a horizontal f -plane occurs when the particle’s centrifugal acceleration
balances its planetary Coriolis acceleration. Left panel: f > 0 for the northern hemisphere, revealing that the
motion is an anti-cyclonic (clockwise) circular motion with radius |R| = U/|f |. The Coriolis acceleration is to the
right, pointing into the center of the inertial circle, whereas the centrifugal acceleration points away from the
center. Right panel: Counterclockwise motion in the southern hemisphere with the same balance between Coriolis
and centrifugal accelerations.

surface.1

14.4.1 Oscillator equation
Taking the time derivative of the zonal equation (14.12a) and using the meridional equation
(14.12b) leads to

ü− f v̇ = ü+ f2u = 0. (14.13)

Similar manipulations for the meridional velocity equation render the free oscillator equation for
each component of the horizontal velocity

d2u

dt2
+ f2u = 0 and

d2v

dt2
+ f2v = 0. (14.14)

Motions that satisfy this equation are termed inertial oscillations.

14.4.2 Particle trajectory and velocity
Time integrating the equation of motion (14.14) renders the particle trajectory and its velocity

X(t) = (U/f) [x̂ sin(ft) + ŷ cos(ft)] (14.15a)

U(t) = U [x̂ cos(ft)− ŷ sin(ft)], (14.15b)

where U > 0 is the particle speed, which is a constant, and we assumed the initial conditions

X(0) = (U/f) ŷ and U(0) = U x̂. (14.16)

From the particle trajectory equation (14.15a), we see that the free particle motion is circular
with a radius

R = U/|f |. (14.17)

As depicted in Figure 14.2, northern hemisphere (f > 0) free particle motion occurs in the
clockwise direction whereas southern hemisphere motion is counter-clockwise. This motion arises
from the rightward deflection by the Coriolis in the northern hemisphere and leftward in the
southern. Consequently, particle motion occurs in an anti-cyclonic sense (opposite to the sense
of the rotating reference frame). As studied in Section 32.4, this motion arises from a balance

1It is important to recall from Section 13.10.4 that motion on a geopotential incorporates the acceleration
from both the central gravitational field and the planetary centrifugal acceleration. Hence, there is no planetary
centrifugal term when studying free particle motion on the f -plane.
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between the Coriolis acceleration of the rotating frame and the centrifugal acceleration arising
from the particle’s circular motion. The only way to realize this balance is for the particle to
move anti-cyclonically, with the Coriolis acceleration pointing towards the inside of the circle
and the centrifugal acceleration pointing outside. Finally, note that the potential momentum
vanishes since

M(t) = U(t) + f ẑ ×X(t) = 0. (14.18)

Adding an arbitrary constant to the initial position makes the potential momentum equal to a
nonzero constant.

14.4.3 Period of the circular motion
The circular motion of the free particle possesses a constant speed and moves around a circle
with a period

Tinertial =
2π

f
=

11.97

| sinϕ0|
hour, (14.19)

where we set Ω = 7.292×10−5s−1 (equation (13.1)). This period is the time it takes to go around
the circle. It is smallest at the poles, where the latitude ϕ0 = ±π/2 and Tsmallest ≈ 12 hour. At
the equator, ϕ0 = 0, so that the radius of the inertial circle is infinite and inertial oscillations
are unavailable. Furthermore, Tinertial is the time for a Foucault pendulum (Section 15.3) to turn
through π radians, so that Tinertial is sometimes referred to as one-half a pendulum day.

14.4.4 Inertial oscillations
The circular free particle motion studied in this section is sometimes referred to as an inertial
oscillation. Again, this circular motion occurs on a constant geopotential and on the f -plane
when there is a balance between the Coriolis acceleration from planetary rotation and centrifugal
acceleration arising from the curved motion of a particle on a constant geopotential. Importantly,
the centrifugal acceleration here is not the planetary centrifugal acceleration (Section 13.10.4),
with the planetary centrifugal acceleration absorbed into the effective gravity that is a fixed
constant along a geopotential.

Furthermore, the name “inertial” does not refer to motion as observed in an inertial reference
frame. Instead, it is used as a synonym for free particle motion, with the free motion here in the
directions along a constant geopotential.2 More generally, there has been some confusion in the
literature concerning the forces acting in inertial oscillations, particularly when not making a
tangent plane approximation. Early (2012) clarifies the fundamental physics. We return to these
matters in Section 15.4, there making use of Lagrangian mechanics to examine the energetics
and forces acting on the free particle.

14.4.5 Comments and further study
Inertial oscillations of fluid elements are described by the above constant potential momentum
equation of motion. Such oscillations are commonly measured by ocean current meters, especially
in higher latitude regions where diurnal (day-night) variations in wind forcing have a strong
projection onto the inertial period. This resonant forcing puts energy into inertial or near-inertial
motions. It is quite amazing that such oscillations are indeed found in the ocean, given that we
have ignored pressure and friction, which are two forces that impact on fluid motion (whereas
pressure and friction do not affect point particles). A key reason we can observe such motion
is that upper ocean currents are often generated by winds even in the absence of horizontal

2See Section 11.3.2 for comments on the somewhat confusing terminology used to refer to the Coriolis
acceleration and centrifugal acceleration as “inertial” accelerations.
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pressure gradients. Hence, there are occasions when the motion is not strongly affected by
pressure gradients or friction, thus allowing for the inertial oscillations to manifest.

We study inertial waves in Chapter 53 as part of our study of rapidly rotating fluid motion.
We also encounter inertial motions in Section 32.4 as part of our characterization of horizontal
fluid motion according to the balance between forces. A rotating fluid in a tank offers a useful
controlled setting to observe inertial waves in a fluid, such as shown near the 18 minute mark in
this video from Prof. Fultz.

14.5 Angular momentum

We introduced the concept of angular momentum in Section 11.2.4, with angular momentum
the moment of linear momentum and given by the following expression for the point particle

L = mX × V . (14.20)

In this section we study the angular momentum computed relative to the center of a spherical
planet; i.e., where X is the position of the particle with respect to the sphere’s center. For
a non-rotating sphere, there is spherical symmetry, meaning that rotations around any axis
extending out from the sphere’s center represent symmetry operations. Noether’s theorem
then says that the angular momentum projected onto any of these axes is a constant of the
motion for a particle moving around the non-rotating sphere. For a rotating spherical planet,
the polar rotational axis is distinguished from all other axes, so that the spherical symmetry of
the non-rotating planet is broken down to symmetry around just the rotational axis. Indeed, for
oblate spheroidal planets, the rotation axis is the only symmetry axis. Noether’s theorem then
says that it is only the axial component of angular momentum that is conserved for the rotating
planet.

To be more specific, we ask whether a point particle knows anything about the longitudinal
angle, λ, on the rotating planet (Figure 14.3)? Assuming the planet is smooth (i.e., no mountains),
and the planet rotates around the polar axis (along the planetary ẑ direction), then there is an
arbitrariness in the value of the longitude. That is, the physical system remains unchanged if
we shift the longitudinal angle by a constant. Noether’s theorem then says that this symmetry
leads to a corresponding conservation of angular momentum around the polar axis.

We here display the manipulations that show axial angular momentum, Lz = ẑ · L, is a
constant of the motion for motion around the rotating sphere, and furthermore show that the
other components to angular momentum, Lx = x̂ ·L and Ly = ŷ ·L, are not constant. Many of
the same concepts and mathematical manipulations occur when considering angular momentum
conservation for a fluid in Section 24.7.

14.5.1 Axial angular momentum

The axial angular momentum is the component of the angular momentum through the polar
axis, and it can be written in the following equivalent manners

Lz = L · ẑ = m (X × V ) · ẑ = m (ẑ ×X) · V = mr cosϕ (λ̂ · V ) = mr⊥ (λ̂ · V ). (14.21)

Evidently, the component of angular momentum along the polar axis equals to the component
of the linear momentum in the longitudinal direction, multiplied by the distance to the polar
rotational axis (the moment-arm)

r⊥ = r cosϕ. (14.22)
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⌦

Figure 14.3: Axial angular momentum is the component of the angular momentum through the polar axis,
Lz = ẑ ·L. It is the moment of the zonal momentum around the polar axis, with the moment-arm, r⊥ = r cosϕ =√
x2 + y2, the distance to the axis of rotation, whereas r2 =

√
x2 + y2 + z2 is the radial distance to the center of

the planet. It can be written in the equivalent manners Lz = mr⊥ (λ̂ · V ) = mr2⊥ (λ̇+ Ω) = mr⊥ (u+ r⊥ Ω).
The axial angular momentum is a constant of the motion for the particle moving on a smooth rotating planet in
the absence of friction.

In deriving equation (14.21), we made use of the identity (see equation (4.233))

ẑ ×X = r ẑ × r̂ = r⊥ λ̂, (14.23)

which we use below for proving that axial angular momentum is a constant of the motion.

We can write the axial angular momentum from equation (14.21) in terms of the rotating
frame quantities. To do so, decompose the inertial frame velocity written using spherical
coordinates according to equation (13.46f), which yields

Lz = mr⊥ (λ̂ · V ) = mr2⊥ (λ̇+Ω) = mr⊥ (u+ r⊥Ω). (14.24)

Evidently, when measured from the rotating terrestrial frame, the axial angular momentum
consists of two terms: one from the zonal velocity of the particle relative to the rotating planet
and another from the rigid-body motion of the planet.

14.5.2 Axial angular momentum is a constant of the motion

The time derivative of the axial angular momentum is given by

m−1 dLz/dt = d/dt [(X × V ) · ẑ] definition of axial angular momentum (14.25a)

= d/dt [(ẑ ×X) · V ] cyclic permutation from equation (1.60j) (14.25b)

= (ẑ × V ) · V + (ẑ ×X) ·A dX/dt = V , dV /dt = A, and dẑ/dt = 0 (14.25c)

= (ẑ ×X) ·A (ẑ × V ) · V = 0 (14.25d)

= r⊥ λ̂ ·A. ẑ ×X = r⊥ λ̂ from equation (14.23). (14.25e)

The inertial frame acceleration arises just from the central-force gravitational field (equation
(13.124))

A = −∇Φe = −ge r̂. (14.26)
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Evidently, the central gravity force has no affect on the axial angular momentum since λ̂ · r̂ = 0.
We are thus led to axial angular momentum conservation

dLz

dt
= 0. (14.27)

Conservation of axial angular momentum plays an important role in constraining the particle
motion, and we explore those constraints in Section 14.6.

14.5.3 Lx and Ly are not constants of the motion
To display the symmetry breaking nature of rotation around the polar axis, we here show that
the angular momentum components, x̂ · L and ŷ · L, are not constants of the motion. For
Lx = x̂ ·L we write

m−1 Lx = (x̂× X̂) · V = r (x̂× r̂) · V , (14.28)

so that its time derivative is

m−1 dLx/dt = (dx̂/dt×X) · V + (x̂× Ẋ) · V + r (x̂× r̂) ·A (14.29a)

= rΩ (ŷ × r̂) · V , (14.29b)

where we used equation (13.7) to write dx̂/dt = Ω ŷ. Similarly, we have

m−1 Ly = (ŷ × X̂) · V = r (ŷ × r̂) · V , (14.30)

so that its time derivative is

m−1 dLy/dt = (dŷ/dt×X) · V = −rΩ (x̂× r̂) · V , (14.31)

where dŷ/dt = −Ω x̂ from equation (13.7). Evidently, both dLx/dt and dLy/dt vanish when
Ω = 0. Otherwise, when Ω ̸= 0 then both Lx and Ly are not constant, leaving just Lz as a
constant of the motion.

14.6 Facets of the Coriolis acceleration
The Coriolis acceleration is a primary feature of motion in the ocean and atmosphere, and for
any motion that spans large distances over the planet (e.g., projectiles, satellites). There are a
variety of methods available to lend understanding to facets of Coriolis, though few can replace
time pondering its implications. In this section we offer a few thought experiments to help build
understanding. As part of those thought experiments, we show that acceleration induced by
axial angular momentum conserving motion connects to the Coriolis acceleration appearing
in the zonal momentum equation. This connection offers a clear example of how conservation
principles, which lead to constraints, directly affect motion.

14.6.1 Two pictures to help frame the discussion
Before working through the mathematical analysis needed to quantitatively understand the
Coriolis acceleration, we consider two depictions of the Coriolis acceleration as it acts on a
moving particle whose motion is viewed in a rotating reference frame. These pictures capture
essential features of the Coriolis acceleration for studies of geophysical fluid motion.

Figure 14.4 shows the motion of a particle on a rotating and frictionless table. We can choose
to observe this motion from the comfort of the laboratory frame, which we assume approximates
an inertial frame, or we can view the motion from the rotating table (preferably viewed by a
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camera on the table so as to avoid becoming too dizzy). The figure caption details the motion
from the two reference frames. Evidently, the rotating reference frame observer sees the particle
motion deflected to the right, regardless the direction that the particle moves on the table. In
contrast, the inertial reference frame observer views the table moving to the left according to
the counter-clockwise motion of the table, whereas the particle moves along a straight line. We
emphasize that the motion is objectively the same; it is the same particle moving through space
along the same single trajectory. However, the perspectives of observers in the two reference
frames clearly differ.
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Inertial frame

moving particle
point fixed to table

Figure 14.4: Illustrating the motion of a particle on a frictionless table (e.g., a perfectly slick ice rink), with the
table rotating in the counter-clockwise sense around its center (corresponding to the planetary rotation as viewed
from the northern hemisphere). The particle (red dot) moves outward from the center of the table at time t0 to
the edge at time t2, with an intermediate position at time t1. The left panel shows the motion viewed from an
inertial (non-rotating) reference frame, whereby the particle moves along a straight line from the center to the
edge. During this transit, the table moves underneath the particle. Stars designate points painted on the table,
with the stars moving to the left as the table rotates. The right panel depicts the motion viewed within the frame
at rest with the rotating table (rigid-body rotating non-inertial reference frame). Here, the positions on the table
remain fixed (the stars do not move), whereas the particle moves along a rightward curved trajectory as it reaches
the edge. The rotating frame observer interprets the rightward deflection as due to the Coriolis acceleration.

The rotating table example in Figure 14.4 captures the essence of how the Coriolis acceleration
deflects particles moving along horizontal trajectories around the rotating planet. Namely, each
point on the planet is akin to a rotating table. Importantly, the rotation rate (and sign) is a
function of latitude since the imprint of the planetary rotation depends on the latitude. So
although the planet rotates at a constant angular velocity, the imprint of that rotation has
a latitudinal dependence due to the spherical geometry of the planet. This added feature
of planetary Coriolis acceleration is referred to as the beta effect, and it is is a fundamental
distinction from the rotating flat table of Figure 14.4 where each point on the table feels the
same angular rotation vector. Facets of the beta effect are revealed through the course of this
book.

Figure 14.5 summarizes features of the Coriolis acceleration seen for motion on a rotating
planet. Here, the particle trajectories are deflected to the right in the northern hemisphere,
where the planetary rotation is counter-clockwise just as in the rotating table example. However,
for the southern hemisphere the planetary rotation is clockwise, so that the Coriolis deflection is
to the left. To help understand the sign switch, imagine viewing the planet from above the north
pole, whereby the rotation of the planet is counter-clockwise. Now view the planet from below
the south pole, in which case the earth is seen to rotate clockwise.3 This sign swap reflects the
axial vector nature of the angular velocity vector, with axial vectors discussed in Section 1.7.2.

3Those who do not trust their mind’s eye are encouraged to perform the thought experiment with a globe.
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Figure 14.5: For a particle moving at constant radial distance from the planet center, the Coriolis acceleration
deflects to the right in the northern hemisphere and to the left in the southern hemisphere. This figure summarizes
key features of the Coriolis acceleration for large-scale geophysical motions. The one exception is the missing
vertical acceleration induced by the Coriolis acceleration, with this vertical deflection discussed in Section 14.6.8.
It is notable that this vertical acceleration is tiny compared to that from gravity, and so it is commonly ignored.

14.6.2 Constraints from axial angular momentum conservation

There are various ways to express the constraints resulting from conservation of axial angular
momentum, most notably whether we describe the motion from the inertial frame or rotating
frame. Here we explore the constraints viewed by the rotating terrestrial observer. Since the
mass, m, of the particle is constant, we find it a bit more convenient to work with the axial
angular momentum per mass, which from Section 14.5.1 takes on the form

lz = Lz/m = r⊥ λ̂ · V = r2⊥ (λ̇+Ω) = r⊥ (u+ r⊥Ω), (14.32)

where the zonal velocity component is given by equation (13.48)

u = r⊥ λ̇ = r cosϕ λ̇. (14.33)

Note that for most geophysical applications, lz > 0 since rigid-body motion dominates over the
relative zonal velocity:

r⊥Ω > |u| for most terrestrial motions, (14.34)

with r⊥Ω = 465 m s−1 at the equator (see Figure 13.2). In Exercise 14.1 we consider the
interesting, but geophysically uncommon, case where lz ≤ 0.

Constraints on δu and δλ̇ in terms of δr⊥

To determine the constraints, we set δlz = 0, where δ refers to any small change brought about
by some perturbation whose origins are not of concern. When writing lz = r2⊥ (λ̇+Ω) we have

δlz = 2 r⊥ δr⊥ (λ̇+Ω) + r2⊥ δλ̇ = 2 lz
δr⊥
r⊥

+ r2⊥ δλ̇, (14.35)

where we set δΩ = 0 since the earth’s rotation rate is assumed to be fixed. Furthermore, we find
it useful to express the perturbations in terms of lz since it is a constant of the motion. Likewise,
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when writing lz = r⊥ (u+ r⊥Ω) we have

δlz = δr⊥ (u+ r⊥Ω) + r⊥ (δu+Ω δr⊥) = Ω r⊥ δr⊥

[
1 +

lz

Ω r2⊥

]
+ r⊥ δu. (14.36)

Setting δlz = 0 then leads to the expressions for the constraints

δλ̇ = −2 lz

r2⊥

δr⊥
r⊥
⇐⇒ δu = −Ω δr⊥

[
1 +

lz

Ω r2⊥

]
. (14.37)

As noted above, lz > 0 is generally the case for geophysical fluid motion. Consequently, axial
angular momentum conserving motion that brings the particle closer to the rotation axis
(δr⊥ < 0) leads to an eastward velocity change (angular velocity δλ̇ > 0 and zonal velocity
δu > 0). The opposite occurs for motion with δr⊥ > 0. These results hold in both the northern
and southern hemispheres.

Unpacking δr⊥ in terms of δr and δϕ

Since r⊥ = r cosϕ, the distance to the rotational axis can be perturbed through changing either
the radial position or the meridional position

δr⊥ = (cosϕ) δr − (r sinϕ) δϕ. (14.38)

Assuming these perturbations occur over a small time increment, δt, allows us to write

δr⊥/δt = w cosϕ− v sinϕ, (14.39)

where we made use of equation (13.48) to introduce the meridional and vertical velocity compo-
nents

v = r δϕ/δt = r ϕ̇ and w = δr/δt = ṙ. (14.40)

For motion in the earth’s atmosphere and ocean, perturbations to vertical distance, δr, are far
smaller than the distance to the earth’s center, δr ≪ r, since the thickness of the ocean and
atmosphere are very small compared to the earth’s radius. In this case, when ϕ ̸= 0, then δr⊥
is affected much more by meridional motion at constant radial position (second term on right
hand side of equation (14.39)) than by vertical motion at constant latitude (first term on right
hand side of equation (14.39)). We return to this observation in Section 14.6.9 when discussing
the shallow fluid approximation used to develop the primitive equations for the atmosphere and
ocean (Section 27.1.2).

14.6.3 Axial angular momentum conservation and Coriolis acceleration

Consider a particle at rest in the rotating frame so that its axial angular momentum equals to
that arising from the rigid-body motion of the planet, lz = r2⊥Ω. If we perturb this initial state
while conserving axial angular momentum, equation (14.37) says there must be an associated
change in the zonal velocity given by

δλ̇ = −2Ω δr⊥
r⊥

and δu = −2Ω δr⊥. (14.41)

If the perturbation occurs over a time increment, δt, then we have

δλ̇/δt = λ̈ = −2Ω δr⊥/δt

r⊥
= −2Ω (w cosϕ− v sinϕ)/r⊥ (14.42a)
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δu/δt = u̇ = −2Ω (δr⊥/δt) = −2Ω (w cosϕ− v sinϕ), (14.42b)

where we used equation (14.39) for δr⊥/δt. The expression for u̇ is precisely the same as the
Coriolis acceleration appearing in the zonal momentum equation (13.138a)

u̇+
u (w − v tanϕ)

r
= −2Ω (w cosϕ− v sinϕ).︸ ︷︷ ︸

Coriolis acceleration

(14.43)

We thus find that the Coriolis acceleration appearing in the zonal momentum equation is identical
to the zonal acceleration induced by constraining the motion to conserve axial angular momentum.
That is, by unpacking the constraint of axial angular momentum conservation to reveal the zonal
momentum equation, the Coriolis acceleration is revealed to be part of the package. Furthermore,
we see that both vertical and meridional motion lead to zonal accelerations through the Coriolis
acceleration or, equivalently, through axial angular momentum conservation.

14.6.4 Deriving u̇ from dLz/dt = 0

The discussion in Section 14.6.3 can be formalized by analyzing how the conservation of axial
angular momentum leads to an expression for the zonal acceleration, u̇. For this purpose,
compute the time derivative of the first form of the axial angular momentum in equation (14.32),
in which case

dlz

dt
=

d[(r cosϕ)2 (λ̇+Ω)]

dt
(14.44a)

= 2 (ṙ cosϕ− r ϕ̇ sinϕ) (λ̇ r cosϕ+ rΩcosϕ) + (r cosϕ)2 λ̈ (14.44b)

= 2 (w cosϕ− v sinϕ) (u+ rΩcosϕ) + (r cosϕ)2 λ̈, (14.44c)

where we introduced the (u, v, w) velocity components according to equation (13.48). With the
zonal velocity u = λ̇ r⊥ = λ̇ r cosϕ, we have

r cosϕ λ̈ = u̇+
u

r cosϕ
(v sinϕ− w cosϕ) , (14.45)

so that equation (14.44c) takes the form

dlz

dt
= 2 (w cosϕ− v sinϕ) (u+ rΩcosϕ) + (r cosϕ)2 λ̈ (14.46a)

= (w cosϕ− v sinϕ) (u+ 2 rΩcosϕ) + u̇ r cosϕ. (14.46b)

Setting dlz/dt = 0 and rearranging then leads to a prognostic equation for the zonal velocity

du

dt
=

[
u

r cosϕ
+ 2Ω

]
(v sinϕ− w cosϕ). (14.47)

The first term in the bracket arises from curvature of the sphere (the “metric acceleration”)
whereas the second term is the Coriolis acceleration.

The same result can be obtained by performing the time derivative on the second form of
the axial angular momentum in equation (14.32), in which case

dlz

dt
=

d [u r cosϕ+Ω(r cosϕ)2]

dt
(14.48a)

= u̇ r cosϕ+ u ṙ cosϕ− u r ϕ̇ sinϕ+ 2Ω r cosϕ (ṙ cosϕ− r ϕ̇ sinϕ). (14.48b)
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Again, setting dlz/dt = 0 and rearranging leads to the zonal acceleration (14.47).

14.6.5 Zonal acceleration induced by meridional motion

We now consider a few thought experiments to help understand how axial angular momentum
conservation gives rise to the Coriolis acceleration appearing in the zonal momentum equation.
Start by considering a particle moving meridionally (δϕ ̸= 0) while maintaining a constant radial
position (δr = 0). The axial angular momentum constraint (14.42b) induces a zonal acceleration

u̇ = 2Ω v sinϕ, (14.49)

which, as seen by equation (14.43), is the Coriolis acceleration appearing in the zonal momentum
equation arising from the meridional motion. For poleward motion in either hemisphere,
the product v sinϕ is always positive.4 Hence, axial angular momentum conserving motion
towards either pole induces an eastward acceleration, whereas a westward acceleration is induced
for equatorward motion. For the northern hemisphere, the induced acceleration deflects the
particle to the right when looking downstream whereas in the southern hemisphere the induced
acceleration deflects the particle to the left. These deflections are illustrated in Figure 14.5.

A rudimentary means to understand the deflections arising from meridional motion is to view
a particle trajectory from an inertial reference frame off the planet. For a meridional trajectory,
the spinning earth causes the trajectory to pick up zonal motion relative to the earth surface,
zonally to the right in the northern hemisphere and zonally to the left in the southern hemisphere.
Equivalently, consider a projectile starting from rest on the planet and shot poleward. Since the
projectile started closer to the equator, it has a zonal velocity component that is larger than
the more poleward ground underneath it as it flies away from the equator. Hence, as it moves
poleward it also picks up an eastward velocity component, which is to the right of the poleward
motion in the northern hemisphere and to the left in the southern.

14.6.6 Zonal acceleration induced by radial (vertical) motion

Now consider a particle moving radially while holding the latitude fixed (δr ≠ 0 and δϕ = 0).
The axial angular momentum constraint (14.42b) induces a zonal acceleration

u̇ = −2Ωw cosϕ, (14.50)

which, as seen by equation (14.43), is the Coriolis acceleration appearing in the zonal momentum
equation arising from the vertical motion. Hence, for vertically downward motion (w < 0), axial
angular momentum conservation induces a positive zonal acceleration, u̇ > 0, which we expect
from axial angular momentum conservation since the particle is moving closer to the rotation
axis.

14.6.7 Meridional acceleration from Coriolis

We showed in Section 14.6.4 that the zonal equation of motion determining u̇ is another way of
writing the conservation of axial angular momentum. The same, however, cannot be said for the
meridional equation of motion, which is given by equation (13.138b)

v̇ +
v w + u2 tanϕ

r
= −2Ωu sinϕ. (14.51)

4Recall from Figure 4.3 that sinϕ ≤ 0 in the Southern Hemisphere, where −π/2 ≤ ϕ ≤ 0. In contrast,
sinϕ ≥ 0 in the Northern Hemisphere, where 0 ≤ ϕ ≤ π/2.
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The Coriolis acceleration is on the right hand side. In the northern hemisphere (sinϕ > 0), the
Coriolis acceleration gives rise to a rightward (equatorward) acceleration, −2Ωu sinϕ < 0, when
the particle is moving eastward, u > 0, thus inducing a negative meridional acceleration, v̇ < 0.
Conversely, if the particle is moving to the west so that u < 0, then the Coriolis acceleration
is again to the right, only this time it provides a poleward acceleration, v̇ > 0. The analogous
considerations hold in the southern hemisphere where the particle is deflected to the left by the
Coriolis acceleration. These motions are reflected in Figure 14.5. Once the particle picks up a
meridional component to the motion, then we return to the axial angular momentum constraint
(14.42b) to see how zonal flow is affected.

14.6.8 Vertical acceleration from Coriolis
As for the meridional Coriolis acceleration in Section 14.6.7 there is no angular momentum
constraint that connects to the Coriolis acceleration appearing in the vertical velocity equation
(13.138c)

ẇ − u2 + v2

r
= 2Ωu cosϕ− g. (14.52)

In both hemispheres the cosine factor is positive, cosϕ > 0. Hence, the Coriolis acceleration is
positive (upward) for eastward motion and negative (downward) for westward motion. Note
that for typical geophysical motion, the Coriolis acceleration is tiny compared to that arising
from gravity.

14.6.9 When lateral motions dominate vertical motions
We here consider two approximations relevant to large scale geophysical fluid motions.

1. The particle kinetic energy is dominated by lateral motions on the sphere (i.e., motion at
constant radial position).

2. Vertical (radial) excursions are much smaller than the earth radius.

When applied to a fluid, the first assumption leads to the hydrostatic approximation (Section
27.2), and the second assumption leads to the shallow fluid approximation (Section 27.1.2).
Self-consistency of the equations of motion means that these two assumptions must be applied
together.

Dropping the vertical velocity component to the kinetic energy leads to

K ≈ m

2
[(u+ r⊥Ω)2 + v2]. (14.53)

The second assumption means that the axial angular momentum takes the approximate form

Lz ≈ mR⊥ (u+ΩR⊥) = mR2
⊥ (λ̇+Ω), (14.54)

where
r = R+ z ≈ R and R⊥ = R cosϕ. (14.55)

The approximate angular momentum (14.54) ignores contributions from vertical motion in
changing the moment-arm. Indeed, as noted in Section 14.6.2, vertical movements within the
atmosphere and ocean (relatively thin fluid layers over the earth’s surface) lead to a relatively
small modification to the moment-arm, so the assumption that r⊥ ≈ R cosϕ is reasonable. With
r ≈ R, the zonal acceleration (14.47) is modified to the form

du

dt
= v

[
u tanϕ

R
+ f

]
where f = 2Ω sinϕ. (14.56)
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That is, we dropped the vertical velocity component, w, from the general form of the acceleration
(14.47). Correspondingly, the meridional momentum equation takes the form

dv

dt
= −u

[
u tanϕ

R
+ f

]
. (14.57)

These approximate forms for the zonal and meridional accelerations appear in the primitive
equations developed in Section 27.1.

14.6.10 Comments

A concise summary of many features of rotating physics is provided by this video from Scien-
cePrimer.

14.7 Mechanical energy conservation

Does the particle know anything about the origin of time? Since the angular velocity of the
planet and the gravitational acceleration are both assumed constant in time, then shifting the
time by an arbitrary constant will leave the physical system unaltered. That is, the physical
system remains unchanged if we shift all clocks by a constant amount. Through Noether’s
theorem, this symmetry in time leads to mechanical energy conservation, which means that
the particle’s mechanical energy is a fixed constant. We here prove that mechanical energy is
constant in time by manipulating the equations of motion. Many of the manipulations also
occur when considering the mechanical energy conservation laws for a continuum fluid discussed
in Chapter 24.

14.7.1 Some properties of kinetic energy

In this subsection we establish some basic properties of kinetic energy for a particle. As we saw
in Section 11.1.4, changes in the kinetic energy of a particle equal to the mechanical work done
on the particle as it moves along its trajectory

K(t2)−K(t1) =

ˆ x2

x1

F · dx =

ˆ t2

t1

F · V dt, (14.58)

where V dt = dx defines the vector increment along the trajectory, and x1,2 are the endpoints
of the trajectory at times t1,2. The integrand, F · V , is known as the power. Hence, equation
(14.58) says that the time integral of the power equals to the difference in kinetic energy between
the final and initial times.

The kinetic energy is not Galilean invariant since movement to another inertial reference
frame leads to the kinetic energy change

V = V +U =⇒ K = K +
m

2
(2V ·U +U ·U), (14.59)

where U is a constant boost velocity so that dU/dt = 0. We do not expect kinetic energy to be
Galilean invariant since kinetic energy measures energy of motion relative to a chosen reference
frame. Even so, the time change of the kinetic energy in a different inertial frame is given by
the power in the new frame

dK

dt
=

dK

dt
+mA ·U = F · V + F ·U = F · V . (14.60)
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Hence, we can directly connect kinetic energy changes to forces within an arbitrary inertial
reference frame.

Cartesian expression for kinetic energy

Consider the expression for kinetic energy when introducing the velocity of the rotating reference
frame. Writing the inertial frame velocity in the planetary Cartesian form

V = VCartesian +Urigid, (14.61)

leads to
K =

m

2
[VCartesian ·UCartesian + 2VCartesian ·Urigid +Urigid ·Urigid] (14.62)

The first term arises from motion of the particle relative to the rotating sphere; the second
arises from coupling between relative velocity and rigid-body velocity; and the third arises from
rigid-body motion of the sphere.

Spherical expression for kinetic energy: Part I

To expose spherical symmetry of the physical system, we express the kinetic energy in terms of
the planetary spherical coordinates defined in Figure 4.3. Doing so for the rigid-body velocity
leads to equation (13.50)

Urigid = Ω r cosϕ (− sinλ x̂+ cosλ ŷ) . (14.63)

Likewise, the velocity components measured in the rotating frame are given by

Ẋ =
d (r cosϕ cosλ)

dt
= ṙ cosϕ cosλ− rϕ̇ sinϕ cosλ− rλ̇ cosϕ sinλ (14.64a)

Ẏ =
d (r cosϕ sinλ)

dt
= ṙ cosϕ sinλ− rϕ̇ sinϕ sinλ+ rλ̇ cosϕ cosλ (14.64b)

Ż =
d (r sinϕ)

dt
= ṙ sinϕ+ rϕ̇ cosϕ. (14.64c)

Bringing terms together then leads to the kinetic energy in terms of spherical coordinates

K =
m

2

[
(ṙ2 + r2ϕ̇2 + λ̇2 r2 cos2 ϕ) + (2Ω r2λ̇ cos2 ϕ) + (Ω r cosϕ)2

]
. (14.65)

Spherical expression for kinetic energy: Part II

An alternative means for deriving the kinetic energy in equation (14.65) makes use of the
spherical coordinate form of the inertial frame velocity given by equation (13.46f), in which case

V = (u+ r⊥Ω) λ̂+ v ϕ̂+ w r̂, (14.66)

so that
K =

m

2

[
(u+ r⊥Ω)2 + v2 + w2

]
, (14.67)

where r⊥ = r cosϕ. Additionally, as discussed in Section 14.5, the axial angular momentum is
given by

Lz = mr⊥ (u+ r⊥Ω) ≡ mlz, (14.68)
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and this property is a constant of the motion when there is azimuthal (zonal) symmetry. It is
thus convenient to write the kinetic energy as

K =
m

2

[
(lz/r⊥)

2 + v2 + w2
]
. (14.69)

Geopotential expression for mechanical energy

As seen in Section 14.7.4 below, the mechanical energy using geopotential coordinates takes on
the form

Mgeop =
m

2

[
u2 + v2 + w2 + 2 g r

]
, (14.70)

where each of these symbols takes on their geopotential interpretation.

14.7.2 Planetary Cartesian mechanical energy
The time derivative of the kinetic energy is given by

dK

dt
= mV · dV

dt
= mV ·A = −mV · ∇Φe. (14.71)

For the final equality we introduced the gravitational potential given that the particle only feels
an external force from gravity as per equation (13.124). The gravitational potential is given by
(see equation (13.118))

Φe = ge r, (14.72)

so that
dK

dt
= −mV · ∇Φe = −mge ṙ. (14.73)

This result means that kinetic energy is reduced when moving the particle away from the
earth center (ṙ > 0). Moving away from the earth requires work to overcome the gravitational
acceleration pointing towards the earth. This work to overcome the gravitational attraction
is taken away from the kinetic energy of the particle. Furthermore, the work is added to the
gravitational potential energy, whose evolution is given by (see equation (13.120))

dPe

dt
= mge ṙ, (14.74)

where we assumed a constant gravitational acceleration, ge. Consequently, as the particle moves
away from the earth center, its reduction in kinetic energy is exactly compensated by an increase
in potential energy. Hence, the mechanical energy for the particle remains constant throughout
the motion

d(K + Pe)

dt
= 0, (14.75)

where the mechanical energy is the sum of the inertial frame kinetic energy plus the gravitational
potential energy

M = K + Pe (14.76a)

=
m

2
V · V +mΦe (14.76b)

=
m

2

[
(u+ r⊥Ω)2 + v2 + w2

]
+mge r (14.76c)

=
m

2

[
(lz/r⊥)

2 + v2 + w2
]
+mge r. (14.76d)
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14.7.3 Planetary spherical mechanical energy

It is physically revealing to expose the exchange of mechanical energy between kinetic and
gravitational potential energies. Furthermore, knowledge of the total mechanical energy at any
time affords knowledge for all time since the mechanical energy (in the absence of dissipation)
remains constant. Following from the discussion in Section 14.6, where we examined the
constraints on particle motion due to conservation of axial angular momentum, we here ask
similar questions about mechanical energy conservation. We make use of the spherical form of
the equations of motion, equations (13.132)-(13.134), which expose the planetary centrifugal and
Coriolis accelerations, and pursue the calculation for geopotential coordinates in Section 14.7.4.

We find it convenient to write the momentum equations (13.132)-(13.134) in terms of the
distance to the polar axis, r⊥ = r cosϕ, and its time derivative, ṙ⊥ = w cosϕ− v sinϕ

d

dt

[
r⊥ u+Ω r2⊥

]
= 0 (14.77a)

v̇ = −v w
r
− u tanϕ

r
(u+ 2Ω r⊥)− r⊥Ω2 sinϕ (14.77b)

ẇ =
u2 + v2

r
+ 2Ωu cosϕ+ r⊥Ω2 cosϕ− ge. (14.77c)

Equation (14.77a) expresses the conservation of axial angular momentum, l̇z = 0, where the
axial angular momentum per mass is lz = r⊥ (u + r⊥Ω) (Section 14.5). For the mechanical
energy, we have

Ṁ = 0 with M =
m

2

[
(lz/r⊥)

2 + v2 + w2
]
+mge r, (14.78)

where lz/r⊥ = u+ r⊥Ω is the zonal component to the inertial frame velocity (equation (13.46f)).
We now show that Ṁ = 0 arises from the momentum equations. Performing the time derivative,
and setting dlz/dt = 0, leads to

1

m
Ṁ =

1

2

d

dt

[
(lz/r⊥)

2 + v2 + w2 + 2 ge r
]
= −(lz)2 ṙ⊥

(r⊥)3
+ v v̇ + w (ẇ + ge). (14.79)

Use of the meridional momentum equation (14.77b) renders

v v̇ = −v
[
v w

r
+
u tanϕ

r
(u+ 2Ω r⊥) + r⊥Ω2 sinϕ

]
(14.80a)

= −v
2w

r
− v tanϕ

r
(u+ r⊥Ω)2. (14.80b)

Likewise, the vertical momentum equation (14.77c) renders

w (ẇ + ge) =
v2w

r
+
w

r

[
u2 + 2Ωu r⊥ + (r⊥Ω)2

]
(14.81a)

=
v2w

r
+
w

r
(u+ r⊥Ω)2, (14.81b)

so that

v v̇ + w (ẇ + ge) = r−1 (−v tanϕ+ w) (u+ r⊥Ω)2 =
(lz)2 ṙ⊥
(r⊥)3

. (14.82)

Combining this result with equation (14.79) leads to the expected Ṁ = 0. Hence, angular
momentum conservation combined with the meridional and vertical momentum equations is
equivalent to mechanical energy conservation.
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14.7.4 Geopotential mechanical energy

Now consider the mechanical energy conservation when using geopotential coordinates with the
equations of motion (13.138a)-(13.138c)

u̇+
u (w − v tanϕ)

r
+ 2Ω (w cosϕ− v sinϕ) = 0 (14.83a)

v̇ +
v w + u2 tanϕ

r
+ 2Ωu sinϕ = 0 (14.83b)

ẇ − u2 + v2

r
− 2Ωu cosϕ = −g. (14.83c)

Multiplying each equation by its respective velocity component and summing yields

1

m
Ṁgeop =

1

2

d

dt

[
u2 + v2 + w2 + 2 g r

]
= 0. (14.84)

The conserved mechanical energy for the particle written in geopotential coordinates

Mgeop = m (u2 + v2 + w2)/2 +mg r. (14.85)

This expression should be compared to that written using spherical coordinates in equation
(14.78). Since the coordinates are different (spherical versus geopotential), the velocity compo-
nents (u, v, w) are slightly different in the two coordinate systems, as is the radial position. So
care is needed when comparing the two expressions.

14.8 Sample particle trajectories

Here we examine some trajectories to illustrate how the dynamical properties discussed in this
chapter, particularly angular momentum conservation, help to determine trajectories. The
discussion complements that considered in Exercise 13.9.

14.8.1 Free fall starting from rest in the inertial reference frame

Consider a particle freely falling to the center of the sphere starting with zero axial angular
momentum. Although the trajectory from an inertial reference frame is rather trivial, we need
to do a bit more work in the non-inertial rotating frame, where we make use of the spherical
coordinate equations to write

λ̇ = −Ω and u = −r⊥Ω and v = 0 and ẇ = −ge. (14.86)

Evidently, the longitude, latitude, and vertical position are given by

(λ− λ0) = −Ω t and ϕ = ϕ0 and (w − w0) = −ge t, (14.87)

where λ0 is the initial longitude, ϕ0 is the initial latitude, and w0 the initial vertical velocity. So
the position with respect to the earth’s longitude adjusts westward according to (λ−λ0) = −Ω t,
which is needed to maintain a fixed absolute longitude. Likewise, the vertical free fall with
(w − w0) = −ge t accords with the free fall seen in the inertial reference frame. Integrating the
vertical equation leads to the radial position

r − r0 = w0 t− ge t2/2. (14.88)
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If we drop the particle from rest, so that w0 = 0, then the particle falls a distance H within a
time

T = (2H/ge)
1/2. (14.89)

During this time the particle deflects its longitude to the west by an amount

λ− λ0 = −ΩT = −Ω (2H/ge)
1/2. (14.90)

It is useful to check self-consistency by verifying that the rotating reference frame description
measures a zero axial angular momentum throughout the free fall. We first do so by noting that
lz = r2⊥ (λ̇+Ω) = 0 since λ̇ = −Ω. Taking the time derivative leads to

l̇z = r r⊥ ṙ⊥ (Ω + λ̇) + r2⊥ λ̈ = 0, (14.91)

since λ̇ = −Ω and so λ̈ = 0. Furthermore, we can write lz = r⊥ (u+ r⊥ Ω) = 0, which also means
that

l̇z = ṙ⊥ (u+ r⊥Ω) + r⊥ (u̇+ ṙ⊥Ω) = 0, (14.92)

where we noted that u = −r⊥Ω means that u̇ = −ṙ⊥Ω.

14.8.2 Falling with u̇ = 0

Now consider a trajectory that maintains a constant zonal velocity, u̇ = 0, which, with u = r⊥ λ̇,
means that

u̇ = ṙ⊥ λ̇+ r⊥ λ̈ = 0. (14.93)

To maintain a constant axial angular momentum means

l̇z = 2 r⊥ ṙ⊥ (λ̇+Ω) + r2⊥ λ̈ = r⊥ ṙ⊥ (λ̇+ 2Ω), (14.94)

where the second step made use of the assumed u̇ = 0 condition from equation (14.93). Equation
(14.94) can be satisfied by either ṙ⊥ = 0 or λ̇ = −2Ω. Yet setting one of these conditions means
that the other must also hold in order to maintain u̇ = 0 from equation (14.93). We are thus led
to

u̇ = 0 and l̇z = 0⇐⇒ λ̇ = −2Ω and ṙ⊥ = 0 and lz = −Ω r2⊥. (14.95)

Evidently, a particle moving westward with λ̇ = −2Ω, and maintaining a fixed distance from
the polar rotation axis, maintains both constant axial angular momentum and a constant zonal
velocity

u = −2Ω r⊥. (14.96)

Furthermore, observe that a constant distance from the rotation axis, ṙ⊥ = 0, means that

ṙ⊥ = 0 =⇒ w cosϕ = v sinϕ. (14.97)

This relation couples vertical and meridional motion in the rotating reference frame in a manner
that keeps the distance to the rotational axis fixed. For example, the vertical velocity vanishes
at the equator. Additionally, if the particle is falling so that w cosϕ < 0, then there is an
equatorward meridional velocity to keep the distance from the rotational axis fixed. In this
manner, the particle is falling not towards the earth center but instead towards the equatorial
plane, all while maintaining a fixed zonal velocity with u̇ = 0.

To garner further insight into the trajectory, we examine the meridional and vertical acceler-
ations. For this purpose, recall the meridional equation of motion (13.133), written as

r v̇ + v w + u2 tanϕ+Ω r sinϕ (2u+ r⊥Ω) = 0. (14.98)
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Now multiply by cosϕ and set w cosϕ = v sinϕ to reach

r⊥ v̇ + (u2 + v2) sinϕ+Ω r⊥ sinϕ (2u+ r⊥Ω) = 0. (14.99)

Next set u = −2 r⊥Ω to have

r⊥ v̇ + [(Ω r⊥)
2 + v2] sinϕ = 0, (14.100)

which, when setting lz/r⊥ = −Ω r⊥, leads to the meridional acceleration

r⊥ v̇ = −[(lz/r⊥)2 + v2] sinϕ. (14.101)

Evidently, the meridional acceleration is negative in the northern hemisphere (where sinϕ > 0)
and positive in the southern, so that the particle always accelerates toward the equator. Similarly,
use of the vertical acceleration from equation (13.134) leads to

r (ẇ + ge) = u2 + v2 + r⊥Ωu+ (r⊥Ω)2 = v2 + (r⊥Ω)2 = v2 + (lz/r⊥)
2 > 0. (14.102)

Hence, the vertical acceleration (ẇ < 0) is always smaller in magnitude than the earth’s
gravitational acceleration. Finally, combining the conditions (14.101) and (14.102) means that
the meridional and vertical accelerations are related by

v̇ cosϕ+ (ẇ + ge) sinϕ = 0. (14.103)

So when the particle reaches the equator at ϕ = 0, we know from equation (14.97) that the
vertical velocity vanishes, and from equation (14.103) we see that the merdional acceleration
also vanishes. In contrast, at the poles where ϕ = ±π/2, the vertical acceleration is ẇ = −ge
whereas equation (14.97) says that the meridional velocity vanishes.

14.8.3 Free fall from rest in the rotating frame

We here consider the case of a particle initially at rest in the rotating reference frame that
is allowed to freely fall. As in Exercise 13.9b, we make use of geopotential coordinates since
the particle will initially fall parallel to the effective gravity direction; i.e., the plumb line. We
consider the trajectory just in the zonal and vertical plane, assuming v = 0 throughout the
free fall. Setting v = v̇ = 0 in the geopotential coordinate equations of motion (13.138a) and
(13.138c) yields

u̇+
uw

r
+ 2Ωw cosϕ = 0 (14.104a)

ẇ − u2

r
− 2Ωu cosϕ = −g. (14.104b)

We now linearize by dropping the uw/r and u2/r terms to render

u̇ = −2Ωw cosϕ and ẇ = 2Ωu cosϕ− g. (14.105)

Now write w = w0 + w1, where

ẇ0 = −g and ẇ1 = 2Ωu cosϕ, (14.106)

so that w0 = −g t. To first order in Ω, the zonal velocity satisfies

u̇ = 2Ω g t cosϕ =⇒ u = Ω g t2 cosϕ. (14.107)
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We are thus left with the free fall particle velocity that is valid to first order in Ω

V = (Ω g t2 cosϕ) λ̂− g t r̂. (14.108)

The eastward velocity component arises from the need for the particle to conserve axial angular
momentum as it falls closer to the polar axis.

Time integrating the velocity equation (14.108) leads to the particle trajectory

X = (1/3) (Ω g t3 cosϕ) λ̂− (g t2/2) r̂ +X0, (14.109)

where X0 is an arbitrary initial position. The time it takes for the particle to fall a vertical
distance H is given by

T = (2H/g)1/2, (14.110)

and within this time interval the particle is deflected eastward by a distance

D = (1/3) (Ω g cosϕ) (2H/g)3/2. (14.111)

14.9 Dynamical constraints from spatial symmetries
We close this chapter by summarizing the conservation laws that arise from spatial symmetries.
These conservation laws complement the discussion in Section 14.7 for mechanical energy
conservation arising from time symmetry.

14.9.1 Linear momentum conservation

As seen in Section 11.1.2, linear momentum remains constant for a particle moving without
any forces acting on it; i.e., a free particle. This type of motion is not common for geophysical
particles or fluids since they feel gravity and so are not free. Even so, we consider this limiting
case as a point of comparison for the other conservation laws.

The conservation of linear momentum is simply viewed within the particle’s inertial reference
frame, where a vanishing inertial frame acceleration leads to a constant inertial frame velocity

A = dV /dt = 0. (14.112)

In a Euclidean space, a vanishing acceleration means the particle is moving in a straight line
with constant velocity.5 When viewed from a rotating frame using Cartesian coordinates, a
vanishing inertial frame acceleration means that the Cartesian acceleration balances Coriolis
and centrifugal accelerations

Ẍ = −2Ω× Ẋ −∇Φcentrifugal. (14.113)

This equation is clearly not a very useful means to describe unaccelerated free particle motion.
We can provide a bit more compactness to this equation by introducing the potential momentum
(14.7) so that

dM/dt = −∇Φcentrifugal. (14.114)

While the inertial frame acceleration vanishes (A = dV /dt = 0), time changes to the potential
momentum are balanced by the gradient of the centrifugal potential.

5Recall that a zero acceleration as in equation (14.112) is an expression of Newton’s first law (law of inertia),
which was stated in the start of Chapter 11.
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14.9.2 Potential momentum conservation
Conservation of potential momentum arises from symmetry of particle motion on a constant
geopotential surface. The conservation law is most readily viewed within the rotating frame,
whereby equation (14.9) is given by

d(ŝ ·M)

dt
= 0. (14.115)

A geopotential is a two-dimensional surface so that this conservation law corresponds to two
dynamical constraints such as shown in Figure 14.1.

14.9.3 Angular momentum conservation
As detailed in Section 14.5, the angular momentum computed with respect to the axis of rotation
is a constant of the motion (Figure 14.3). This conservation law arises from symmetry of the
system about the rotational axis. Axial (z-axis) angular momentum conservation takes the form

dLz/dt = 0, (14.116)

where the axial angular momentum is

Lz = mr2⊥ (λ̇+Ω) with r⊥ =
√
x2 + y2 = r cosϕ. (14.117)

The distance from the rotation axis, r⊥, is the moment arm for the axial angular momentum.
The longitude, λ, measures the angle in the counter-clockwise direction from the positive x-axis,
and λ̇ is the time change of the longitude.

14.10 Exercises
exercise 14.1: Negative axial angular momentum
In Section 14.6 we assume the axial angular momentum is positive, which is geophysically the
common situation since axial angular momentum from the rigid-body motion is so large relative
to motion of geophysical fluids. But let us consider the uncommon case where the particle moves
zonally westward at a speed greater than the planetary rotation speed so that

λ̇+Ω < 0⇐⇒ u+Ω r⊥ < 0, (14.118)

which means the axial angular momentum per mass of the particle is negative

lz = r⊥ (u+ r⊥Ω) = −|lz| < 0. (14.119)

Throughout this exercise we seek answers based on conservation of axial angular momentum.
When checking to see whether an answer agrees with common sense, be careful since motion of
this sort is not commonly experienced by terrestrial observers. Correspondingly, it is useful to
check answers by viewing the motion from the perspective of an inertial reference frame rather
than the rotating terrestrial reference frame. For example, the particular case where λ̇ = −Ω, in
which case the particle has zero angular momentum, corresponds to a particle that is stationary
in the inertial reference frame while the planet rotates underneath.

(A) Discuss what happens to δλ̇ for the particle that is deflected poleward with constant
radius while conserving axial angular momentum. Hint: consider the first form of equation
(14.37).
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(B) Discuss what happens to δu for the particle as it is deflected poleward with constant radius
while conserving axial angular momentum. Separately discuss the three cases where

(i) |lz| = 0

(ii) |lz| < Ω r2⊥.

(iii) |lz| > Ω r2⊥

Hint: consider the second form of equation (14.37).

(C) Is fluid particle motion with u + Ω r⊥ < 0 relevant for the terrestrial atmosphere and
ocean? Why? To help answer this question, what is Ω r⊥ for ϕ = π/4 and r = Re? Note,
we already provided the result for the equator just after equation (14.34). Compare these
speeds to that of a category 5 tropical cyclone.

exercise 14.2: Spherical components to angular momentum
In Section 14.5 we studied angular momentum relative to the center of the sphere, L = mX×V .
In particular, we considered the evolution equations for the planetary Cartesian compoents x̂ ·L,
ŷ ·L, and ẑ ·L. Here we consider the projection of the angular momentum onto the planetary
spherical directions λ̂, ϕ̂ and r̂. For a space that is spherically symmetric around the center of
the sphere, we do not expect λ̂ ·L or ϕ̂ ·L to be constants of the motion. The reason is that
neither λ̂ nor ϕ̂ extend outward from the center of the sphere, so that rotations around either
of these axes do not manifest a symmetry operation. Nevertheless, it is interesting to explore
properties of λ̂ ·L and ϕ̂ ·L as an exercise in the angular momentum formalism, and to display
how their evolution relates to that of the linear momentum on the sphere.

(A) Write an expression for the zonal component to the angular momentum, λ̂ ·L, in terms of
ϕ̇ and r. Hint: check that the physical dimensions are correct, and that the sign accords
with the right hand rule.

(B) Derive an expression for the time derivative, d(λ̂ ·L)/dt, in terms of ϕ̇ and ṙ.

(C) Write an alternative expression for the time derivative, d(λ̂ ·L)/dt, in terms u = r⊥ λ̇ and
Ω. Hint: recall the spherical coordinate version of the meridional momentum equation
(13.133).

(D) Derive an expression for the meridional component to the angular momentum, ϕ̂ ·L, and
write it in terms of r, Ω, λ̇, and ϕ.

(E) Derive an expression for the time derivative, d(ϕ̂ ·L)/dt.

(F) Derive an expression for r̂ ·L.
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Chapter 15

CASE STUDIES IN ANALYTICAL MECHANICS

The discussion in Chapter 12 certainly does support the name analytical mechanics, given that
there is a nontrival degree of analysis needed to reformulate the laws of mechanics beyond their
Newton’s law expression. In this chapter, we work through some case studies for the purpose
of illustrating the use of analytical mechanics for practical problems. These studies further
exemplify and clarify the foundations of the theory while exploring geophysically interesting
dynamical systems. It is through such examples that the power and elegance of analytical
mechanics shines.

chapter guide

This chapter relies on the formulation of analytical mechanics from Chapter 12. We also
make use of material from our study of particle mechanics around a rotating planet from
Chapter 13.
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15.1 Planar simple pendulum
Consider a planar simple pendulum as illustrated in Figure 15.1, where motion is restricted
to the x-z plane. This pendulum consists of a point mass, m, attached to a massless string of
fixed length, ℓ, oscillating around a fixed point within a constant gravity field with acceleration
−g ẑ. We derive the equations of motion for this system using both Newtonian mechanics and
Lagrangian mechanics.

Before diving into the specifics of the simple pendulum, we note that it exemplifies the
two key properties of any oscillatory system, including linear waves studied in Part X of this
book. The first property is a restoring force that kicks in when the system is displaced a small
distance from its equilibrium. For the simple pendulum the restoring force is provided by the
gravitational acceleration. The second property is inertia as that then allows the system to
overshoot its equilibrium position, with mass providing the pendulum’s inertia. The exchange
between the restoring force and inertia lead to oscillations, and the natural oscillation frequencies
are a function of the inertia and the restoring force.

15.1.1 Free particle motion using polar coordinates
Before addressing the simple pendulum, we find it useful to consider the equations for a free
particle moving in the x-z plane without gravity and without any string. Cartesian coordinates
provide the natural set of coordinates for describing this motion, in which the x̂ and ẑ components
to the Cartesian velocity velocity remain constant in space and time. We also consider polar
coordinates, with the polar angle defined by φ as depicted in Figure 15.1, anticipating the motion
of a simple pendulum using these coordinates. The coordinate transformation between Cartesian
and polar is given by

x = r sinφ (15.1a)

z = −r cosφ (15.1b)

r̂ = x̂ sinφ− ẑ cosφ (15.1c)

φ̂ = x̂ cosφ+ ẑ sinφ. (15.1d)

The Cartesian unit vectors are fixed in space, but the time derivatives of the polar unit vectors
are

˙̂r = φ̇ φ̂ and ˙̂φ = −φ̇ r̂. (15.2)
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Figure 15.1: A simple pendulum is comprised of a point mass, m, attached to a massless string of fixed length,
ℓ, with the string attached to a fixed point taken as the origin of a Cartesian coordinate system. The string
makes an angle, φ, with respect to the vertical, and gravity points down with a constant acceleration, −g ẑ. The
force provided by the string on the particle, T , points radially inward and balances the projection of the weight
along the string plus the centrifugal acceleration due to motion of the particle. The point mass moves along the
circumference of the circle. The string force is directed orthogonal to the motion so that it does no work on the
point mass, and as such the string provides a force of constraint. The component of the weight directed along the
circumference forces motion of the oscillator, with this force having magnitude mg| sinφ|.

These results render the particle position, its velocity, and its acceleration

X = r (x̂ sinφ− ẑ cosφ) = r r̂ (15.3a)

Ẋ = ṙ r̂ + r φ̇ φ̂ (15.3b)

Ẍ = (r̈ − r φ̇2) r̂ + (2 ṙ φ̇+ r φ̈) φ̂. (15.3c)

Free particle motion has zero acceleration,

ẍ = 0 and z̈ = 0, (15.4)

which means each Cartesian velocity component is a space and time constant. This trivial result
has some nuance when written in polar coordinates

r̈ − r φ̇2 = 0 and 2 ṙ φ̇+ r φ̈ = 0. (15.5)

Of relevance to the pendulum, observe that forces are needed for both equations to maintain a
fixed r.

Pursuing a Lagrangian mechanics approach, we compute the Euler-Lagrange equation (12.75)
using (r, φ) as the two generalized coordinates. For the free particle, the Lagrangian equals to
the kinetic energy

L = m (ṙ2 + r2 φ̇2)/2, (15.6)

so that the two Euler-Lagrange equations are

d

dt

∂L

∂ṙ
=
∂L

∂r
=⇒ r̈ = r φ̇2 (15.7a)
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d

dt

∂L

∂φ̇
=
∂L

∂φ
=⇒ d (r2 φ̇)

dt
= 0. (15.7b)

The radial equation says that the radial acceleration balances the centrifugal acceleration. The
angular equation reflects the property of a Lagrangian that is independent of the generarlized
coordinate, φ, so that its corresponding generalized momentum, the angular momentum computed
relative to the origin, is a constant of the motion.

15.1.2 Newtonian mechanics of the simple pendulum

Now allow the particle to feel the constant gravitational field and the force by the string. Notably,
the string force keeps the particle at a fixed distance, r = ℓ, from the origin so that the particle
motion only has a single degree of freedom. The position, velocity, and acceleration for the
particle are thus given by

X = ℓ (x̂ sinφ− ẑ cosφ) = ℓ r̂ (15.8a)

Ẋ = ℓ φ̇ (x̂ cosφ+ ẑ sinφ) = ℓ φ̇ φ̂ (15.8b)

Ẍ = ℓ φ̈ φ̂− ℓ φ̇2 r̂, (15.8c)

with polar coordinates now ideally suited to the physical system. The force provided by the
string points radially inward and it must be sufficient to exactly balance the projection of the
particle weight along the string direction, plus the centrifugal acceleration of the particle as it
oscillates along the circumference of the circle

T = −m (g cosφ+ ℓ φ̇2) r̂. (15.9)

This string force constrains the particle to remain a fixed distance, r = ℓ, from the center of
the circle. Since the particle motion is directed along the circumference and the string force
is radially directed, then the string force does no work on the particle. Evidently, the force
provided by the string is a force of constraint. We reconsider this force of constraint from the
Lagrangian perspective in Section 15.1.6.

Newton’s equation of motion takes the form

m Ẍ = −mg ẑ + T . (15.10)

Projecting into the angular direction, φ̂, eliminates the string force and leads to the nonlinear
oscillator equation

φ̈+ (g/ℓ) sinφ = 0, (15.11)

where we used
ẑ · φ̂ = sinφ. (15.12)

When the angle is small we can approximate sinφ ≈ φ, in which case we have a linear oscillator
equation

φ̈+ (g/ℓ)φ = 0, (15.13)

with natural angular frequency, ω0 =
√
g/ℓ and period 2π/ω0 = 2π

√
ℓ/g.

15.1.3 Euler-Lagrange equation for the simple pendulum

With a single degree of freedom for the simple pendulum, we choose the angle, φ, as the generalized
coordinate. The kinetic energy, potential energy (referenced to z = 0), and Lagrangian are thus
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given by

K = (m/2) (ẋ2 + ż2) = (m/2) ℓ2 φ̇2 (15.14a)

P = −mg ℓ cosφ (15.14b)

L = m (ℓ2 φ̇2/2 + g ℓ cosφ), (15.14c)

with the corresponding Euler-Lagrange equation (12.75)

d

dt

[
∂L

∂φ̇

]
=
∂L

∂φ
=⇒ φ̈+ (g/ℓ) sinφ = 0. (15.15)

As expected, we derived the same oscillator equation (15.11) as when using Newtonian mechanics.
However, the path to this equation is somewhat more streamlined since we had no need to
consider forces.

15.1.4 The Hamiltonian is a constant of the motion

The coordinate transformation between the Cartesian coordinates and generalized coordinate
does not depend explicitly on time, nor does the Lagrangian. Hence, from Section 12.9.4 we
know that the Hamiltonian equals to the mechanical energy, and it is a constant of the motion

H = −L+ φ̇
∂L

∂φ̇
= K + P. (15.16)

We readily confirm that Ḣ = 0 by computing

K̇ + Ṗ = mℓ2 φ̇ [φ̈+ (g/ℓ) sinφ] = 0, (15.17)

where the second equality follows from the Euler-Lagrange equation of motion (15.15).

15.1.5 Hamilton’s equations of motion

When proving that the Hamiltonian is a constant of the motion in Section 15.1.4, we did not
first write the Hamiltonian in terms of the generalized coordinates and momenta. Instead, we
directly computed the time derivative and used the Euler-Lagrange equation to show that Ḣ = 0.
However, as mentioned in Section 12.10.4, to derive Hamilton’s equations of motion we must
first write the Hamiltonian in terms of the generalized coordinates and generalized momenta.
The generalized momenta for the pendulum is given by

Pφ =
∂L

∂φ̇
= mℓ2 φ̇, (15.18)

so that the Hamiltonian is

H(φ,Pφ) =
P2
φ

2mℓ2
−mg ℓ cosφ. (15.19)

Hamilton’s equations of motion (12.146a) and (12.146b) take on the general form

Ṗσ = −∂H
∂ξσ

and ξ̇σ =
∂H

∂Pσ
, (15.20)

which for the pendulum are

Ṗφ = −mg ℓ sinφ and φ̇ =
Pφ

mℓ2
. (15.21)
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Reorganization of the Ṗφ equation renders the Euler-Lagrange equation (15.15). In contrast, the
φ̇ equation is identical to the definition of the generalized momenta given by equation (15.18),
so that this equation offers no new information.

15.1.6 Force of constraint provided by the string
Following the Lagrange multiplier method from Section 12.8, we here derive the force of constraint
acting on the particle. As already noted, the force of constraint is provided by the string, and
this force is always orthogonal to the particle motion. Indeed, we wrote this force by inspection
in equation (15.9). Here we compute this force via the Lagrange multiplier. In particular, we
follow the approach in Section 12.8 and identify the single constraint equation as

Ψ(r) = r = ℓ, (15.22)

so that ∂Ψ/∂r = 1 and equation (12.110) then says that the Lagrange multiplier is the force of
constraint corresponding to the radial coordinate

Λ = Qr. (15.23)

Following the procedure detailed in Section 12.8.3, we consider the extended Lagrangian
(12.104) for the pendulum

L = m (ṙ2 + r2 φ̇2)/2 +mg r cosφ+ Λ(r − ℓ). (15.24)

The corresponding Euler-Lagrange equations are

m r̈ = mr φ̇2 +mg cosφ+ Λ (15.25a)

m
d(r2 φ̇)

dt
= −mg r sinφ (15.25b)

r = ℓ. (15.25c)

The angular equation of motion (15.25a) remains unaffected by the Lagrange multiplier since
there are no constraints on motion in the angular direction. So the set of three equations for the
three unknowns, (r, φ,Λ), is given by

2 ṙ φ̇+ r φ̈+ g sinφ = 0 and Λ = m (r̈ − r φ̇2 − g cosφ) and r = ℓ. (15.26)

Satisfying the constraint, r = ℓ, means that ṙ = 0 and r̈ = 0 so that the force of constraint is

Qr = Λ = −m (ℓ φ̇2 + g cosφ) < 0, (15.27)

where the inequality follows since ℓ φ̇2 + g cosφ > 0. This result agrees with equation (15.9) for
the force provided by the string, T , so that we identify

T = Qr r̂ = −m (ℓ φ̇2 + g cosφ) r̂. (15.28)

15.1.7 Comments
As anticipated, the Euler-Lagrange equation of motion is both equal to Newton’s equation of
motion and simple to derive. It is simpler to derive largely due to the scalar nature of the
Lagrangian versus the vector nature of Newton’s equation of motion. Namely, it is easier to
derive the kinetic energy and potential energy than the acceleration and forces. Even though
we do not need forces for analytical mechanics, the calculation of forces offers great physical
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insights into the nature of the physical system. Conservative forces are deduced as per Newtonian
mechanics via the gradient of the force potential, and forces of constraint are inferred through
the method of Lagrange multipliers.

15.2 Variable length pendulum

What if we let the length of the pendulum’s string be a prescribed function of time? That is, we
let the string length be a time dependent parameter of the physical system. In this case the
Hamiltonian is an explicit function of time, through the string length, and so mechanical energy
is not a constant of the motion. Correspondingly, the force of constraint acting along the string
does work as the string changes, with this work the cause of the nonzero time derivative of the
Hamiltonian. We are familiar with forces of constraint providing no work on a physical system,
with this property enshrined in d’Alembert’s principle studied in Section 12.3.1. Indeed, at any
particular instance, the forces of constraint perform no work on a virtual displacement. However,
when allowing time to evolve then the force of constraint acting along the string does work and
that work results in an energy change.

Along with a time change in the pendulum’s energy, there is a time change to the pendulum’s
angular frequency. Quite remarkably, the ratio of the energy to the angular frequency remains
nearly constant for small amplitude oscillations, so long as changes to the string length are slow.
The ratio of the energy to frequency is known as an adiabatic invariant. This adiabatic invariant
arises when studying linear waves moving through a time dependent media. Additionally,
adiabatic invariants played an important role in the development of quantum mechanics.

15.2.1 Work done by the force of constraint

Recall from Section 15.1.6 that we introduced the extended Lagrangian with a Lagrange multiplier,
Λ, representing the force of constraint,

L = m (ṙ2 + r2 φ̇2)/2 +mg r cosφ+ Λ(r − ℓ), (15.29)

where (r, φ,Λ) are three generalized coordinates, and the corresponding Hamiltonian is

H = −L+ φ̇
∂L

∂φ̇
+ ṙ

∂L

∂ṙ
= m (ṙ2 + r2 φ̇2)/2−mg r cosφ− Λ (r − ℓ). (15.30)

The corresponding Euler-Lagrange equations (15.26) are here repeated for completeness

2 ṙ φ̇+ r φ̈+ g sinφ = 0 and Λ = m (r̈ − r φ̇2 − g cosφ) and r(t) = ℓ(t). (15.31)

Evidently, the force of constraint, Λ, picks up a new contribution from the second time derivative,
r̈, whereas this contribution vanished in Section 15.1.6 where we assumed ℓ has a fixed length.

Both the Lagrangian (15.29) and Hamiltonian (15.30) are explicit functions of time via the
time dependent string length, ℓ(t). Hence, the Hamiltonian has a time derivative, which can be
evaluated in either of the following manners

dH

dt
=

[
∂H

∂t

]
r,φ,Pr,Pφ

=
∂H

∂ℓ

dℓ

dt
= −

[
∂L

∂t

]
r,φ,r,ṙ,φ̇

= ℓ̇Λ, (15.32)

so that the energy of the pendulum changes due to work done by the force of constraint acting
in the presence of a changing string length. We can double-check the result (15.32) by making
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use of the equations of motion (15.31), which now requires us to set r = ℓ so that

dH

dt
= Ḣ = m l̇ (l̈+ ℓ φ̇2− g cosφ)+mℓ φ̇ (ℓ φ̈+ g sinφ) = m ℓ̇ (ℓ̈− ℓ φ̇2− g cosφ) = ℓ̇Λ. (15.33)

15.2.2 Small amplitude oscillations

Assuming the angular displacements of the pendulum are small leads to the Lagrangian and
Hamiltonian for a linear variable length pendulum

L = mℓ2 (φ̇2 − (g/ℓ)φ2)/2 +mg ℓ+m ℓ̇2/2, (15.34a)

H = mℓ2 (φ̇2 + (g/ℓ)φ2)/2−mg ℓ−m ℓ̇2/2, (15.34b)

along with the corresponding Euler-Lagrange equation of motion

d(ℓ2 φ̇)

dt
+ g ℓ φ = 0. (15.35)

Note that the term mℓ2 (φ̇2 − (g/ℓ)φ2)/2 appearing in the Lagrangian (15.34a) is the kinetic
energy minus the potential energy for a simple harmonic oscillator, as studied in Section 15.6.
We thus identify the angular frequency of the oscillator as

ω2(t) = g/ℓ(t), (15.36)

with 2π/ω equal to the period of the oscillations.

15.2.3 Two time scales for the pendulum

For the linear pendulum with a fixed length, the angular displacement is given by φ = A cos(ω t),
where A is a constant amplitude and we set the initial conditions so that φ(t = 0) = A. If the
string length changes very slowly, then we expect the oscillations to continue yet with a time
dependent frequency and amplitude. We are thus motivated to consider the ansatz

φ(t) = A(t) cos θ(t), (15.37)

where the amplitude, A(t), has a time dependence, as does the phase, θ(t). Furthermore, we
note that the time scale for the phase derivative accords with the angular frequency

θ̇ ≈ ω. (15.38)

In Section 15.2.4 we find equality holds to leading order.

A string whose length slowly changes is one whose inverse time scale for changes, T−1, is
much smaller than the angular frequency for the pendulum, so that

ℓ̇/ℓ = T−1 ≪ ω ≈ θ̇ =⇒ ℓ̇2 ≪ ℓ g (15.39)

where the second inequality follows since ω2 = g/ℓ. The inequality T−1 ≪ θ̇ means that the
phase of the oscillation varies rapidly relative to the string length. Another corresponding
assumption concerns the amplitude of the oscillation, which we assume also slowly changes

Ȧ/A = T−1 ≪ ω. (15.40)

Finally, the relation ω2 = g/ℓ, along with the inequality (15.39), shows that relative changes to
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the angular frequency are also small

2 ω̇/ω = −ℓ̇/ℓ =⇒ |ω̇| ≪ ω2 = g/ℓ. (15.41)

These scaling relations can be summarized by stating that the phase of the oscillation changes
rapidly whereas all other quantities change slowly.

In the Lagrangian (15.34a) and Hamiltonian (15.34b), we encounter the sum, mg ℓ+m ℓ̇2/2.
The first term, −mg ℓ, is the gravitational potential energy of a pendulum at zero angular
displacement, φ = 0. Over the time scale of an oscillation, this term is roughly a constant and it
can be ignored by merely readjusting the zero of the potential energy. Likewise, the term m ℓ̇2/2
is the kinetic energy associated with changes to the string length. This term changes slowly and
it is much smaller than the kinetic energy from angular motion, mℓ2 φ̇2/2. We thus ignore this
term as well in the following analysis.

15.2.4 Adiabatic invariant

Making use of the ansatz (15.37) yields time changes to the pendulum’s angle

φ̇ = Ȧ cos θ −A θ̇ sin θ ≈ −A θ̇ sin θ, (15.42)

where we made use of the assumed scales in Section 15.2.3 to reach the approximation. We are
thus led to the approximate form of the Lagrangian (15.34a) (recall we are ignoring the terms
mg ℓ+m ℓ̇2/2)

L ≈ mℓ2A2 (θ̇2 sin2 θ − ω2 cos2 θ)/2. (15.43)

As part of the time scale separation in Section 15.2.3, we assume the phase of the oscillation
changes rapidly relative to changes in the angular frequency as well as changes to θ̇ and ℓ. Hence,
we are motivated to perform a phase average,1 in which case sin2 θ and cos2 θ are replaced by
1/2

⟨L⟩ = mℓ2A2 (θ̇2 − ω2)/4. (15.44)

We treat the amplitude and phase as generalized coordinates that are connected to the angular
displacement via the oscillator ansatz (15.37). Their respective phase averaged Euler-Lagrange
equations are

d

dt

∂L

∂Ȧ
=
∂L

∂A
=⇒ θ̇2 = ω2 (15.45a)

d

dt

∂L

∂φ̇
=
∂L

∂φ
=⇒ d(ℓ2A2 θ̇)

dt
= 0. (15.45b)

Equation (15.45a) says that the phase has a time derivative equal to the instantaneous frequency.
It also results in a zero phase averaged Lagrangian

⟨L⟩ = 0. (15.46)

To interpret equation (15.45b) note that the phase averaged Hamiltonian (15.34b) is (recall we
are ignoring the terms mg ℓ+m ℓ̇2/2)

⟨H⟩ = mℓ2A2 (θ̇2 + ω2)/4 = mℓ2A2 ω2/2, (15.47)

1We introduced phase averaging in Section 8.1.2 when studying Fourier analysis.
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so that the Euler-Lagrange equation (15.45b) can be written

d(H/ω)

dt
= 0. (15.48)

Evidently, although energy and angular frequency change due to the variable string length,
their ratio is constant when the oscillations are small and the changes to the string length are
slow. The ratio, H/ω, is known as the phase averaged action, and equation (15.48) says that
it is an adiabatic invariant. Conservation of the phase averaged action results from symmetry
of the phase in the phase averaged Lagrangian (15.44). That is, we can shift the phase by a
constant and not alter the Lagrangian. This result exemplifies the importance of identifying any
(sometimes quite innocent looking) symmetries of a dynamical system, as they inevitably lead to
a conservation law.

15.2.5 Further study
A general discussion of adiabatic invariants is given in Section 49 of Landau and Lifshitz (1976),
Section 11.7 of Goldstein (1980), and Section 6.4 of José and Saletan (1998). See also Section
7.1 of Salmon (1998) for a discussion of the adiabatic invariant for the harmonic oscillator.
Furthermore, we encounter adiabatic invariants in Section 50.5 when studying waves in a media
that changes in space and time, with the wave action the corresponding invariant.

Adiabatic invariants formed an important part in the foundations of quantum mechanics.
For example, the energy of a photon is given by

E = ℏω, (15.49)

where ℏ = h/2π is the reduced Planck’s constant, thus revealing that E/ω is a constant.

15.3 The Foucault pendulum
In this section we use Lagrangian mechanics to study motion of the Foucault pendulum, which
is a frictionless spherical pendulum in a gravity field on a rotating planet. To illustrate the
rotation of the planet, we setup the pendulum to oscillate in a fixed plane as viewed in an inertial
reference frame, and as such it precesses when viewed from the planetary rotating reference
frame. In this manner, the Foucault pendulum provides a remarkable illustration of the planetary
Coriolis acceleration, and hence of the planetary rotation.

15.3.1 Assumptions about the Coriolis acceleration
We illustrate the Foucault pendulum in Figure 15.2, which is a spherical pendulum that feels the
effects of the earth’s rotation. For any point on the earth, the planetary rotation has a projection
in the local vertical and local meridional directions (see Figure 13.3). However, for our study of
the Foucault pendulum we only consider the local vertical component to the planetary rotation.
This approximate approach accords with our study of large-scale fluid flows in this book. Even
though the Foucault pendulum is tiny compared to the planetary fluid flows, the motion of the
particle respects the same assumptions relevant for large-scale fluid motions. We detail these
assumptions in the next paragraph.

As studied in Section 13.9.8, the meridional component to the planetary rotation leads to
a Coriolis acceleration that has both a radial component and longitudinal component. The
radial Coriolis acceleration is far smaller than the effective gravitational acceleration so that this
contribution to the Coriolis acceleration can be ignored. The longitudinal Coriolis acceleration
is determined by the vertical velocity of the particle. For the Foucault pendulum we assume the
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vertical motion is much smaller than the horizontal velocity. Hence, this piece of the longitudinal
Coriolis acceleration is negligible compared to the other portion that arises from horizontal
motion. For these two reasons, the most significant portion of the Coriolis acceleration acting on
the pendulum arises just from the local vertical component to the planetary rotation. As such,
the Coriolis acceleration acts just in the local horizontal tangent plane.

Furthermore, since the horizontal length scales of the pendulum are tiny relative to the
earth’s radius, we assume the Coriolis parameter (equation (13.100))

f = 2Ω sinϕ, (15.50)

to be constant and evaluated at the fixed point of the pendulum, which we refer to as the f -plane
approximation in Section 24.5. In equation (15.50), Ω is the angular frequency of the planetary
rotation (Section 13.1), and ϕ is the planetary latitude (Figure 4.3).
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Figure 15.2: A Foucault pendulum is a frictionless spherical pendulum on a rotating planet. Taking the f -plane
approximation, we assume rotation of the reference frame occurs around the local vertical axis with angular
frequency (f/2) ẑ, with f = 2Ω sinϕ the Coriolis parameter and ϕ the latitude of the fixed point of the pendulum.
To avoid confusion with the planetary spherical angles (where we use ϕ for latitude and λ for longitude as in
Figure 4.3), we here use the local spherical coordinates with ψ ≥ 0 the angle the pendulum makes with the
horizontal x-y plane, and 0 ≤ γ ≤ 2π the angle it makes with the x-axis in a counter-clockwise sense. The
angle made by the string relative to the vertical axis is φ ≥ 0, just as for the simple pendulum in Figure 15.1.
The right panel shows a projection onto the y-z plane (γ = π/2), which clearly illustrates the relation ψ = φ/2.
Furthermore, the law of cosines expresses the radial position as a function of the angle, φ, and the string length,
r2 = 2 ℓ2 (1− cosφ) = 4 ℓ2 sin2(φ/2).

15.3.2 Position vector for the point mass

To avoid confusion with the planetary spherical coordinates of Figure 4.3, we write the pendulum’s
spherical angles as ψ (angle relative to the horizontal plane with ψ ≥ 0 for the pendulum) and γ
(angle relative to x̂, with 0 ≤ γ ≤ 2π). In this manner, the coordinates for the point mass at the
end of the string are given by

x = r cosψ cos γ = 2 ℓ sin(φ/2) cos(φ/2) cos γ = ℓ sinφ cos γ (15.51a)

y = r cosψ sin γ = 2 ℓ sin(φ/2) cos(φ/2) sin γ = ℓ sinφ sin γ (15.51b)

z = r sinψ = 2 ℓ sin2(φ/2) = ℓ (1− cosφ). (15.51c)

For these equations we made use of the law of cosines to write the radial distance from the
origin, r, in terms of the string length, ℓ, and the angle of the string from the vertical, φ,

r = ℓ
√
2 (1− cosφ) = 2 ℓ sin(φ/2). (15.52)
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Equations (15.51a)–(15.51c) provide an expression for the particle position

X(t) = ℓ [x̂ sinφ cos γ + ŷ sinφ sin γ + ẑ (1− cosφ)], (15.53)

which is written in terms of just the two angles, φ and γ, which serve as our generalized
coordinates.

15.3.3 Lagrangian for the Foucault pendulum

We are describing the motion of the particle within a rotating reference frame, with the horizontal
axes rotating around the vertical as viewed in a local tangent plane on the planet. Hence, from
the rigid-body rotation study in Section 11.2.2, we have (see equation (11.34)) the time change
of the local horizontal Cartesian unit vectors

˙̂x = (f/2) ẑ × x̂ = (f/2) ŷ and ˙̂y = (f/2) ẑ × ŷ = −(f/2) x̂. (15.54)

The corresponding velocity vector for the particle is

Ẋ = ℓ φ̇ cosφ (x̂ cos γ + ŷ sin γ) + ℓ γ̇ sinφ (−x̂ sin γ + ŷ cos γ)

+ ℓ ẑ φ̇ sinφ+ (f/2) ẑ ×X, (15.55)

with rearrangement leading to

Ẋ = ℓ x̂ (φ̇ cosφ cos γ − (γ̇ + f/2) sinφ sin γ)

+ ℓ ŷ (φ̇ cosφ sin γ + (γ̇ + f/2) sinφ cos γ) + ℓ ẑ φ̇ sinφ. (15.56)

Notice the appearance of γ̇ + f/2, which is the net angular frequency for motion around the
vertical axis.

Computing the squared velocity and rearranging then leads to the particle’s kinetic energy

K = (mℓ2/2) (φ̇2 + (γ̇ + f/2)2 sin2 φ), (15.57)

which arises from motion in the two angular directions plus the rigid-body motion of the rotating
reference frame. The gravitational potential energy, referenced to the coordinate system origin,
is given by

P = mg ℓ (1− cosφ), (15.58)

so that the Lagrangian is

L = K − P = (mℓ2/2) (φ̇2 + (γ̇ + f/2)2 sin2 φ) +mg ℓ (cosφ− 1). (15.59)

15.3.4 Euler-Lagrange equations of motion

The absence of an explicit appearance of γ in the Lagrangian (15.59) means that the γ component
of the generalized momentum, Pγ , is a constant of the motion

dPγ
dt

= 0 with Pγ =
∂L

∂γ̇
= mℓ2 (γ̇ + f/2) sin2 φ. (15.60)

We interpret Pγ as the axial angular momentum for the unconstrained rotational motion around
the local vertical axis, with ℓ sinφ the distance of the particle from the vertical axis and γ̇ + f/2
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the net angular frequency for motion around the axis.2 The φ equation is derived from

∂L

∂φ̇
= mℓ2 φ̇ and

∂L

∂φ
= mℓ2 (γ̇ + f/2)2 sinφ cosφ−mg ℓ sinφ, (15.61)

which leads to
φ̈+ (g/ℓ) sinφ = (γ̇ + f/2)2 sinφ cosφ. (15.62)

This equation reduces to the planar pendulum equation (15.15) for the special case of motion
within a vertical plane so that γ̇ = 0, and in the absence of planetary rotation so that f = 0.
It also reduces to the planar pendulum for the case where γ̇ = −f/2, in which the pendulum
contains zero axial angular momentum. We return to the case of zero axial angular momentum
in Section 15.3.6.

15.3.5 Mechanical energy conservation
Since the Cartesian expression (15.53) for the position vector has no explicit time dependence,
and neither does the Lagrangian (15.53), we know that the Hamiltonian equals to the mechanical
energy and it is a constant of the motion

H = K + P = (mℓ2/2) (φ̇2 + (γ̇ + f/2)2 sin2 φ) +mg ℓ (1− cosφ). (15.63)

Using the Euler-Lagrange equations of motion (15.60) and (15.62), it is straightforward to show
that (see Exercise 15.1)

dH

dt
= 0. (15.64)

15.3.6 The case of zero axial angular momentum
Let us view the Foucault pendulum from a non-rotating inertial frame off the planet. Upon
release from a position of rest, the inertial observer sees a pendulum that oscillates in a plane
that is fixed with respect to the non-rotating inertial frame. In contrast, the rotating reference
frame sees the pendulum’s oscillation plane rotate oppositvely to the planet. The situation is
directly analogous to the frictionless motion of a particle on a rotating table as illustrated in
Figure 14.4. For the Foucault pendulum, the particle is constrained to oscillate on the end
of a string. However, its motion couples to the rotation and so the rotating reference frame
experiences a Coriolis acceleration. In picturing the motion, it is important to remember the
assumption of zero friction, so that the apparatus holding the pendulum can rotate with the
planet and yet not impart any frictional force to cause the pendulum to also rotate with the
planet. In this manner, the pendulum maintains a fixed planar motion as viewed in the inertial
reference frame.

Our thought experiment focuses on the special case of zero axial angular momentum (where,
again, the axis here refers to the local vertical axis of the pendulum). In this case, the Euler-
Lagrange equations of motion reduce to the relatively simple set

(γ̇ + f/2) sin2 φ = 0 and φ̈+ (g/ℓ) sinφ = 0. (15.65)

The first equation is generally satisfied with γ̇ = −f/2, whereas the second equation is that for
the planar pendulum from Section 15.1. The zero axial angular momentum motion decouples
the evolution equations for γ and φ.

2Compare this result to our study in Section 14.5 of axial angular momentum for planetary motion. In that
discussion we considered motion around the planetary rotational axis. Here, the rotational axis for the Foucault
pendulum is approximated by the local vertical, as per our assumptions discussed in Section 15.3.1.
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Evidently, with γ̇ = −f/2 then γ evolves as γ = −(f/2) t. We refer to this motion as a
precession of the pendulum motion around the vertical rotational axis. The precession of γ
means that the Foucault pendulum is seen by a rotating frame observer to have its oscillation
plane rotate opposite to the planetary rotation (anti-cyclonically). In the northern hemisphere
the pendulum’s rotational plane precesses clockwise, whereas it precesses counter-clockwise in
the southern hemisphere. Again, as per the motion of a frictionless ball on a rotating table
seen in Figure 14.4, the precession can be interpreted as the persistent effects of the rightward
deflection by the Coriolis acceleration in the northern hemisphere and leftward deflction in the
southern (see Section 14.6). The period of the precession is

T precession =
2π

|f |/2 =
2π

Ω| sinϕ| . (15.66)

Hence, a Foucault pendulum positioned at either poles (where the latitude, ϕ = ±π/2) exhibits a
complete precession once per day, whereas at the equator (ϕ = 0) there is no precession (formally
an infinite period). Observe that the precession period is twice the period of inertial oscillations
studied in Section 14.4.

15.3.7 Comments
Our treatment of Foucault’s pendulum is distinguished from certain standard treatments, such
as Section 12 of Fetter and Walecka (2003) and Example 9-5 of Marion and Thornton (1988).
First, we made use of Lagrangian mechanics whereas both of these alternative treatments used
Newtonian mechanics. Consequently, we had no occasion to consider the forces acting within the
string, as these forces of constraint are removed when using the angles φ and γ as generalized
coordinates. Second, we made use of an approximate Coriolis acceleration as described in Section
15.3.1, where we only considered the local vertical component of the earth’s rotation. The
standard treatments reduce to this same approximate Coriolis acceleration, though they generally
wait until later in the analysis to introduce the assumption. We found it useful to introduce the
approximation earlier since it corresponds closely to how we treat the Coriolis acceleration for
motion of the large-scale circulation in the ocean and atmosphere. It also simplifies the analysis.
Third, we focused on the zero axial angular momentum case, which trivially yields the precession
rate γ̇ = −f/2. Since the axial angular momentum is a constant of the motion, we can set it to
a zero value initially and it will remain so throughout the experiment (ignoring friction). It is
this situation that is realized by a careful initial release of the Foucault pendulum so as to not
introduce any lateral bias to the motion. In this manner, the spherical pendulum oscillates in a
fixed plane when viewed by an inertial observer, while the planetary rotation occurs underneath
the oscillating pendulum so that the planetary observer sees a precession.

15.4 Motion on constant potential energy surfaces
In this section we study motion constrained to move on surfaces of constant potential energy.
Since the potential energy is a function of the coordinates (and not the velocity), the constraint
is holonomic thus enabling use of generalized coordinates and Lagrange multipliers.

15.4.1 Anticipating the results
Much can be anticipated before doing any analysis, and it is useful to do so. For each case gravity
provides the external conservative force and we ignore friction as well as any other external
forces. The first case considers motion in the presence of a horizontally symmetric gravitational
potential, which leads to a vertically directed gravitational acceleration. Motion in the horizontal
directions is free (again, we ignore friction and any other forces). Hence, linear momentum
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in the horizontal directions is a constant of the motion, as is angular momentum around the
vertical axis centered anywhere in the field. Also, since the potential and the Lagrangian have
no explicit time dependence, the Hamiltonian (mechanical energy) is a constant. Horizontal
motion is maintained by a force of constraint, such as provided by a frictionless flat table, with
this force exactly balancing the weight of the particle.

Next we study motion in the force field of a spherically symmetric gravitational potential
such as generated by a spherical mass source. In this case the generalized coordinates are the
two spherical angles (latitude and longitude), with the angular momentum around any axis
a constant of the motion, as is the Hamiltonian. The force of constraint must counteract the
gravitational force (pointing into the center) as well as the centrifugal force arising from the
angular velocity (pointing away from the center). Indeed, particles with enough kinetic energy
can have sufficient centrifugal acceleration to overcome the gravitational acceleration, in which
case the force of constraint must keep the particle from flying outward.

15.4.2 Lagrangian using Cartesian coordinates

The unconstrained Lagrangian in Cartesian coordinates is given by

L = (m/2) (ẋ2 + ẏ2 + ż2)− P (x, y, z), (15.67)

where we assume the potential energy has no explicit time dependence, in which case the
Hamiltonian is a constant of the motion (see Section 12.9.4)

Ḣ = 0 with H = (m/2) (ẋ2 + ẏ2 + ż2) + P. (15.68)

Now introduce a Lagrange multiplier, Λ, to constrain the particle motion to a surface of constant
potential energy, P = C, so that the modified Lagrangian is

L∗ = L+ Λ(P − C) = K − P (1− Λ)− ΛC. (15.69)

The corresponding Euler-Lagrange equations of motion (12.107a) and (12.107b) are

m Ẍ = −(1− Λ)∇P and P = C. (15.70)

For particle motion along the P = C surface we know that the exact differential of the potential
energy vanishes, which means that

dP = ∇P · dX = 0 =⇒ ∇P · Ẋ = 0. (15.71)

This condition means that the velocity is parallel to constant potential energy surfaces, which it
must be to maintain constant potential energy. Furthermore, taking the dot product of Ẋ with
the equation of motion (15.70), and using the constraint ∇P · Ẋ = 0, reveals that the kinetic
energy is a constant of the motion

Ẋ · Ẍ = 0 =⇒ K̇ = 0. (15.72)

We can readily anticipate this result since with a constant potential energy and a constant
Hamiltonian, then the kinetic energy is also a constant of the motion.

The Lagrange multiplier scales the force of constraint that counteracts the conservative force
arising from the gradient of the potential energy. Making use of the general expression (12.110)
yields the force of constraint

Qconstraint
σ = Λ

∂P

∂xσ
= −ΛFσ, (15.73)
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where Fσ is the conservative force arising from the potential energy. Setting Λ = 1 ensures
that the force of constraint acts to exactly oppose the conservative force, thus rendering a zero
acceleration along the σ direction. The case of Λ = 1 is encountered for the particle moving
along a horizontal geopotential. However, when the particle experiences any acceleration due to
curved motion (e.g., motion around the sphere), then Λ ̸= 1. The reason is that in addition to
the conservative force from gravity, the particle encounters the centrifugal acceleration due to its
angular motion around the sphere. If the sphere is itself rotating, as considered in Section 15.5,
then there are additional accelerations (planetary centrifugal and planetary Coriolis) that must
be accounted for when determining the force of constraint. These points will become clearer as
we work through the various examples.

15.4.3 Plane symmetric potential energy

If the potential energy arises from a gravitational force field in the −ẑ direction, then gravitational
potential energy is given by

P = mg z, (15.74)

and the corresponding force of constraint is

Qconstraint
z = mg. (15.75)

Evidently, the force of constraint acts vertically upward to exactly balance the downward weight
of the particle so that the particle remains on a fixed z surface. A particle moving on a flat
frictionless table provides the canonical example of this situation, where the table provides the
force of constraint that balances the particle weight.

With Λ = 1 the horizontal motion has no acceleration

ẍ = ÿ = 0. (15.76)

It is notable that all three coordinate directions have zero acceleration. However, motion in the
horizontal directions is unconstrained and so the horizontal motion is free, whereas motion in
the vertical direction is constrained due to the force of constraint balancing the weight.

15.4.4 Spherically symmetric potential energy

Now consider motion in the presence of a spherically symmetric potential, such as for a particle
moving around a non-rotating spherical earth. We make use of spherical coordinates, with the
transformation between planetary Cartesian coordinates and planetary spherical coordinates
given by equations (4.206a)-(4.206c)

x = r cosϕ cosλ and y = r cosϕ sinλ and z = r sinϕ, (15.77)

where 0 ≤ λ ≤ 2π is the longitude, and −π/2 ≤ ϕ ≤ π/2 is the latitude (see Figure 4.3). The
velocity components are given by

ẋ = ṙ cosϕ cosλ− r ϕ̇ sinϕ cosλ− r λ̇ cosϕ sinλ (15.78a)

ẏ = ṙ cosϕ sinλ− r ϕ̇ sinϕ sinλ+ r λ̇ cosϕ cosλ (15.78b)

ż = ṙ sinϕ+ r ϕ̇ cosϕ, (15.78c)

which then leads (after a bit of algebra) to the kinetic energy

K = (m/2) (ẋ2 + ẏ2 + ż2) = (m/2) (ṙ2 + r2 ϕ̇2 + r2 λ̇2 cos2 ϕ). (15.79)
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We could have written this expression down by inspection if using the spherical coordinate
expression (13.46d). However, the approach shown here is useful in general. Namely, we first
write the kinetic energy in Cartesian coordinates, and then transform to coordinates that respect
the symmetry of the system and thus provide suitable generalized coordinates.

Assuming the particle motion moves at a radius close to that of the mean earth radius allows
us to approximate the gravitational potential energy according to equation (13.120)

P = mΦe = mge r, (15.80)

where ge ≈ 9.8 m s−2 (Section 13.10.3). We are thus led to the Lagrangian

L = (m/2) (ṙ2 + r2 ϕ̇2 + r2 λ̇2 cos2 ϕ)−mge r. (15.81)

Since the Lagrangian and the potential energy are not explicit functions of time, then the
Hamiltonian is a constant of the motion

Ḣ = 0 with H = (m/2) (ṙ2 + r2 ϕ̇2 + r2 λ̇2 cos2 ϕ) +mge r. (15.82)

We next modify the Lagrangian by adding a Lagrange multiplier to constrain the motion to
remain on a constant potential energy surface, P = P (R), in which case

L∗ = L+ Λ [P − P (R)] = (m/2) (ṙ2 + r2 ϕ̇2 + r2 λ̇2 cos2 ϕ)− P (1− Λ)− ΛP (R). (15.83)

The corresponding Euler-Lagrange equations are

r̈ = r (ϕ̇2 + λ̇2 cos2 ϕ)− (1− Λ) ge (15.84a)

d(r2 ϕ̇)

dt
= −r2 λ̇2 cosϕ sinϕ (15.84b)

d(r2 λ̇ cos2 ϕ)

dt
= 0 (15.84c)

r = R. (15.84d)

The third equation corresponds to angular momentum conservation arising from the spherical
symmetry. Satisfying the constraint, r = R, means that there is no radial acceleration, r̈ = 0,
and that the potential energy is fixed at the constant

P = mgeR. (15.85)

Equation (15.84a) thus leads to

mR2 (ϕ̇2 + λ̇2 cos2 ϕ) = (1− Λ)P, (15.86)

and the Hamiltonian (which is a constant of the motion) takes the form

H = mR2 (ϕ̇2 + λ̇2 cos2 ϕ)/2 + P. (15.87)

Making use of this constant Hamiltonian in equation (15.86) gives us

Λ = 3− 2H/P = 1− 2K/P, (15.88)

with the kinetic energy a constant of the motion since both H and P are also constants.3 The

3Again, H = K +P is a constant due to time symmetry whereas P is a constant due to the force of constraint
that keeps the particle at a fixed radius.
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radial force of constraint is thus given by

Qr = Λ
∂P

∂r
= (1− 2K/P )mge. (15.89)

To help interpret the force of constraint (15.89), write the kinetic energy in the form

2K = mR2 (ϕ̇2 + λ̇2 cos2 ϕ) = m (v2 + u2) = mRAcentrifugal, (15.90)

where we introduced the spherical velocity components according to equation (13.48), and
defined the centrifugal acceleration arising from the angular motion of the particle around the
sphere,

Acentrifugal = R (ϕ̇2 + λ̇2 cos2 ϕ) = (u2 + v2)/R, (15.91)

which is positive and points outward away from the axis of rotation. We can now write the force
of constraint in the physically transparent manner

Qr = mge (1−Acentrifugal/ge). (15.92)

Evidently, if the gravitational acceleration is greater than the centrifugal acceleration, then the
force of constraint is directed radially outward with a magnitude less than the weight of the
particle. In contrast, if the centrifugal acceleration is greater than the gravitational acceleration,
then the force of constraint must point radially inward to keep the particle on a constant radius.
If the centrifugal acceleration equals to the gravitational acceleration, then the particle remains
at a fixed radius with a zero force of constraint.

15.5 Motion on geopotential surfaces
We extend the results from Section 15.4 to now consider motion on geopotential surfaces that
arise from central gravity plus planetary centrifugal. For the rotating spherical planet, the
geopotentials are oblate spheroidal shaped surfaces (Section 13.10.4), whereas they are parabolic
for the case of a rotating plane (Section 15.5.3). The force of constraint accounts for the
gravitational acceleration, the centrifugal acceleration from the particle motion, the centrifugal
acceleration of the rotating reference frame, and a portion of the Coriolis acceleration. We
greatly simplify the analysis by moving from spherical coordinates to geopotential coordinates
as motivated by our earlier work in Section 13.11.3.

15.5.1 Oblate spheroidally symmetric potential energy
Building from the analysis in Sections 15.4.3 and 15.4.4, consider a rotating spherical planet
with constant angular rotation rate, Ω = Ω ẑ, directed through the vertical planetary Cartesian
axis. We describe motion from the rotating reference frame, in which the planetary spherical
coordinates and planetary Cartesian coordinates are fixed with respect to the rotating planet.
This is the same convention taken in Chapter 13 and used throughout this book. As we show,
the particle motion maintains a constant axial angular momentum (due to zonal symmetry), a
constant Hamiltonian (due to time symmetry), and constant geopotential (due to the imposed
constraint). Notably, however, the kinetic energy is not a constant of the motion.

The Lagrangian and the oblate spheroidal geopotential

The spherical coordinate expression for the particle’s kinetic energy is

K = (m/2) (ṙ2 + r2 ϕ̇2 + r2 (λ̇+Ω)2 cos2 ϕ). (15.93)
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The only change relative to equation (15.79) is the presence of Ω, which arises from the rigid-body
rotation of the planet around the polar axis. The gravitational potential energy is just like for
the non-rotating case, thus leading to the Lagrangian

L = K − P (15.94a)

= (m/2) (ṙ2 + r2 ϕ̇2 + r2 (λ̇+Ω)2 cos2 ϕ)−mge r (15.94b)

= (m/2) [ṙ2 + r2 ϕ̇2 + r2 λ̇ (λ̇+ 2Ω) cos2 ϕ]−m (ge r − (1/2)Ω2 r2 cos2 ϕ) (15.94c)

= Ktruncate −mΦ. (15.94d)

The third equality introduced the truncated kinetic energy

Ktruncate = K − (m/2)Ω2 r2 cos2 ϕ = (m/2) [ṙ2 + r2 ϕ̇2 + r2 λ̇ (λ̇+ 2Ω) cos2 ϕ], (15.95)

which is the kinetic energy absent the contribution from the centrifugal acceleration from the
rigid-body planetary rotation. It is notable that Ktruncate is not guaranteed to be non-negative.
In equation (15.94d) we also introduced the geopotential for a rotating spherical planet

Φ(r, ϕ) = ge r − (1/2)Ω2 r2 cos2 ϕ, (15.96)

which we discussed in Section (13.10.4). In particular, surfaces of constant geopotential have
larger radius at the equator than at the pole, which characterizes the earth’s oblate spheroidal
shape.

The Lagrange multiplier and Euler-Lagrange equations

Introducing a Lagrange multiplier to enforce the constraint of motion on a constant geopotential
leads to the modified Lagrangian

L∗ = L+ Λm (Φ− Φconst) = Ktruncate −mΦ (1− Λ)− ΛmΦconst, (15.97)

where Φconst is a constant. The corresponding Euler-Lagrange equations of motion are

r̈ = r ϕ̇2 + r λ̇ (λ̇+ 2Ω) cos2 ϕ− (1− Λ) ∂Φ/∂r (15.98a)

d(r2 ϕ̇)

dt
= −r2 λ̇ (λ̇+ 2Ω) cosϕ sinϕ− (1− Λ) ∂Φ/∂ϕ (15.98b)

d(r2 (λ̇+Ω) cos2 ϕ)

dt
= 0 (15.98c)

Φ = Φconst. (15.98d)

In the absence of planetary rotation, with Ω = 0, equations (15.98a)–(15.98d) reduce to the Euler-
Lagrange equations (15.84a)–(15.84d) for motion around the non-rotating sphere. Furthermore,
with some work, and in the absence of the geopotential constraint (i.e., Λ = 0), we can massage
these equations to agree with the spherical coordinate equations (13.132)–(13.134) describing
motion around a rotating sphere and derived using Newtonian methods.

Energy constants of the motion

Because the Lagrangian and the gravitational potential energy both have no explicit time
dependence, the Hamiltonian, H, is a constant of the motion (see Section 12.9.4), where

H = K+mge r = Ktruncate+(m/2)Ω2 r2 cos2 ϕ+mge r = Ktruncate+mΦ+mΩ2 r2 cos2 ϕ. (15.99)
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With the motion constrained to maintain a constant geopotential, Φ̇ = 0 and Ḣ = 0, then

d(K +mge r)

dt
= 0 and

d(Ktruncate +mΩ2 r2 cos2 ϕ)

dt
= 0. (15.100)

In contrast to the case of motion around a non-rotating sphere studied in Section 15.4.4, the
kinetic energy is here not a constant of the motion since the particle is not constrained to a
constant spherical radius, ṙ ̸= 0. Rather, the particle is constrained to a constant geopotential,
which has an oblate spheroidal shape. This facet of the motion adds complexity to the description,
which we alleviate in Section 15.5.2 by moving to geopotential coordinates. Until then, it is
useful to offer some more details of the spherical coordinate formulation.

Velocity on the geopotential

Motion along the geopotential means that

Ẋ · ∇Φ = 0, (15.101)

so that the particle velocity is directed parallel to the geopotential surface. Writing the velocity
in spherical coordinates according to equation (13.46d)

Ẋ = r cosϕ (λ̇+Ω) λ̂+ r ϕ̇ ϕ̂+ ṙ r̂, (15.102)

and using the spherical coordinate gradient operator (4.243)

∇ = λ̂ (r cosϕ)−1 ∂λ + ϕ̂ r
−1 ∂ϕ + r̂ ∂r, (15.103)

renders
Ẋ · ∇Φ = ϕ̇ ∂Φ/∂ϕ+ ṙ ∂Φ/∂r = 0, (15.104)

which means that
rΩ2 cosϕ (r ϕ̇ sinϕ− ṙ cosϕ) + ṙ ge = 0. (15.105)

Evidently, any radial motion must be accompanied by meridional motion in order to remain on
the geopotential. Furthermore, if there is no radial motion then there is no meridional motion,
in which case the particle moves along a constant latitude circle.

15.5.2 Oblate spheroidally symmetric earth4

The analysis in Section 15.5.1 can be greatly simplified by acknowledging that the earth has
evolved to approximate the oblate spheroidal shape of the geopotential (15.96). Following
Veronis (1973) and Gill (1982), and as detailed in Section 13.11.3 (see in particular Figure 13.4),
we interpret the radial direction as aligned with the effective gravitational acceleration (central
gravity plus planetary centrifugal), so that the geopotential takes on the much simpler form

Φ = g r, (15.106)

where g is the effective gravitational acceleration and geopotential surfaces are now surfaces of
constant r. In this manner the constrained Lagrangian is

L = (m/2) (ṙ2 + r2 ϕ̇2 + r2 λ̇ (λ̇+ 2Ω) cos2 ϕ)−mg r +mΛ (Φ− Φconst). (15.107)

This Lagrangian is nearly the same as for the non-rotating sphere given by equation (15.83),
with the exception of the 2Ω term. The force of constraint is required to keep the particle

4The analysis in this section is inspired by Early (2012).
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moving on a constant geopotential, which here means the particle maintains a fixed r = R.

To examine the force of constraint, we generate the Euler-Lagrange equations

r̈ = r ϕ̇2 + r λ̇ (λ̇+ 2Ω) cos2 ϕ− (1− Λ) g (15.108a)

d(r2 ϕ̇)

dt
= −r2 λ̇ (λ̇+ 2Ω) cosϕ sinϕ (15.108b)

d(r2 (λ̇+Ω) cos2 ϕ)

dt
= 0 (15.108c)

Φ = Φconst = g R. (15.108d)

With r = R for the constrained motion, the radial equation (15.108a) allows us to solve for the
Lagrange multiplier

Λ = 1− (R/g) (ϕ̇2 + λ̇2 cos2 ϕ+ 2Ω λ̇ cos2 ϕ) = 1− g−1 (Acentrifugal +Acoriolis), (15.109)

where we introduced the centrifugal acceleration arising from the angular particle motion (as for
the non-rotating sphere in equation (15.91))

Acentrifugal = R (ϕ̇2 + λ̇2 cos2 ϕ), (15.110)

as well as the Coriolis acceleration

Acoriolis = 2ΩR λ̇ cos2 ϕ, (15.111)

which is positive for eastward motion and negative if westward. The force of constraint is thus
given by

Qr = Λ
∂P

∂r
= mg [1− (Acentrifugal +Acoriolis)/g]. (15.112)

Compared to the non-rotating case in equation (15.92), we here see the inclusion of the Coriolis
acceleration contribution as well as the minor difference between ge and g.

15.5.3 An f -plane geopotential surface

We now return to planar symmetry as in Section 15.4.3, here examining motion of a particle as
viewed in a rotating reference frame with constant angular rotation rate, (f/2) ẑ. Furthermore,
we assume the motion is on an f -plane (Section 24.5), which means that surfaces of constant
geopotential from Section 15.5.2 are now approximated as horizontal, and it is only the vertical
component of planetary rotation that is considered.

This particle has a kinetic energy

K = (m/2) (ẋ2I + ẏ2I + ż2I ) = (m/2) [(ẋ− f y/2)2 + (ẏ + f x/2)2 + ż2], (15.113)

where
ẊI = Ẋ + (f/2) ẑ ×X (15.114)

relates the velocity measured in the inertial reference frame, ẊI, to the velocity, Ẋ, measured in
the rotating reference frame. Expanding the kinetic energy leads to

K = (m/2) [ẋ (ẋ− f y) + ẏ (ẏ + f x) + ż2] + (m/2) (f/2)2 (x2 + y2). (15.115)

We are thus led to the Lagrangian

Lcartesian = (m/2) [ẋ (ẋ− f y) + ẏ (ẏ + f x) + ż2]−mΦparabolic, (15.116)
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where we introduced the geopotential

Φparabolic = ge z − (1/2) (f/2)2 (x2 + y2), (15.117)

whose isosurfaces are parabolic.

Following the geopotential coordinate approach from Section 15.5.2, we reinterpret the local
vertical direction as perpendicular to surfaces of constant Φparabolic, in which case the Lagrangian
(15.116) simplifies to

L = (m/2) [ẋ (ẋ− f y) + ẏ (ẏ + f x) + ż2]−mΦ, (15.118)

with the geopotential
Φ = g z. (15.119)

To constrain the particle motion to remain on a constant geopotential, Φ = Φconst, we introduce
a Lagrange multiplier to produce the modified Lagrangian

L∗ = (m/2) [ẋ (ẋ− f y) + ẏ (ẏ + f x) + ż2]−mΦ+ Λ (Φ− Φconst), (15.120)

which generates the Euler-Lagrange equations

d(ẋ− f y)
dt

= 0 (15.121a)

d(ẏ + f x)

dt
= 0 (15.121b)

dż

dt
= −(1− Λ) g (15.121c)

Φ = Φconst. (15.121d)

To maintain zero vertical acceleration requires a unit Lagrange multiplier

Λ = 1, (15.122)

which was also found in Section 15.4.3 for motion on a flat non-rotating plane. As for that case,
we here find that the force of constraint must exactly balance the weight of the particle. Contrary
to the full earth case in Section 15.5.2, there is no contribution to the force of constraint from
the Coriolis acceleration. The reason is that we here only consider the local vertical component
of the earth’s rotation, whereas in Section 15.5.2 we made no such approximation.

The horizontal equations of motion (15.121a) and (15.121b) describe the f -plane inertial
oscillations studied in Section 14.4. This horizontal motion is that of a free particle on an f -plane
and as observed in the rotating reference frame. Consistent with the motion being free in the
horizontal, it maintains a constant kinetic energy

K = m (ẋ2 + ẏ2)/2 and K̇ = m (ẋ ẍ+ ẏ ÿ) = mf (ẋ ẏ − ẏ ẋ) = 0. (15.123)

15.6 Simple harmonic oscillator
We here study the mechanics of simple harmonic oscillators. We start with the case of a single
harmonic oscillator and then consider a line of coupled oscillators. We take the continuum limit
of the coupled oscillators, thus providing a platform for introducing longitudinal waves, such
as the acoustic waves studied in Chapter 51, as well as the use of Lagrangian mechanics for
continuous media.
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15.6.1 Physical picture

Consider a tiny piece of matter (idealized as a point) with constant mass, m. Assume this mass
is constrained to move along one direction on a frictionless table. Equivalently, assume the mass
moves in one direction a vacuum without any gravity field. Let the coordinate position, x, of the
mass be measured by the trajectory, x = X(t), and apply a horizontal force to the mass that is
a function just of the position, F (x). Newton’s equation of motion for the point mass is given by

mẌ = F (x), (15.124)

where F (x) is evaluated at the horizontal position of the mass, x = X(t). Now assume the point
mass only moves a small distance from its equilibrium position, x = ∆, which is defined by the
position where the force vanishes, F (∆) = 0. We thus approximate the horizontal force by its
leading order Taylor expansion

F (x) ≈ F (∆) + (x−∆)

[
dF (x)

dx

]
x=∆

= (x−∆)

[
dF (x)

dx

]
x=∆

, (15.125)

where higher order terms are dropped, and we set F (∆) = 0.

15.6.2 Oscillations from a Hooke’s law restoring force
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X(t) = �+ ⇠(t)

Figure 15.3: A simple harmonic oscillator as realized by an object of fixed mass m (approximated as a point
mass) attached to a massless spring with motion in just one direction. The only force acting on the mass arises
from the spring, whose spring constant, Γ, is constant. The trajectory of the point mass, X(t) = ∆ + ξ(t),
measures the position relative to the wall on the left, with ∆ the equilibrium position (where the spring force
vanishes), and ξ(t) the displacement from the equilibrium position. We here depict the system where the spring is
extended to the right so that ξ(t) > 0. In this case, the restoring force from the spring accelerates the mass to the
left.

Now specialize the force to be restorative so that

F (x) = −Γ (x−∆) with Γ =

[
dF (x)

dx

]
x=∆

> 0. (15.126)

This linear force provides the canonical Hooke’s law force, such as realized by an idealized massless
spring as depicted in Figure 15.3.5 Introducing the displacement relative to an equilibrium
position (see Figure 15.3)

ξ(t) = X(t)−∆, (15.127)

along with the Hooke’s law restoring force (15.126), we find Newton’s law for the particle
trajectory takes the form of the linear oscillator equation

mẌ + Γ (X −∆) = m ξ̈ + Γ ξ = 0 =⇒ ξ̈ + ω2
0 ξ = 0 with ω2

0 = Γ/m. (15.128)

5We encounter a more complex example of Hooke’s law in Section 25.8 when studying the relation between
stress and strain rate for viscous fluids.
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A solution to the oscillator equation can be written

X(t)−∆ = ξ(t) = A cos(ω0 t+ α), (15.129)

where A is the oscillation amplitude and α a phase shift, with both A and α time independent
and specified by initial conditions. We thus find that the Hooke’s law restoring force leads to
an oscillatory trajectory (15.129) centered on the equilibrium position, x = ∆. The angular
frequency, ω0, determines the period of oscillation according to

T per = 2π/ω0 = 2π (m/Γ)1/2. (15.130)

The period increases with the square root of the mass (longer period for larger mass) and
decreases with the square root of the Hooke’s law restoring constant (shorter period for larger
Hooke’s law constant).

15.6.3 Hamiltonian as a constant of the motion
The Hooke’s law force has no explicit dependence on time, ∂F/∂t = 0, so that the oscillating
point mass has no concern for the time origin. From our discussion of time symmetry in Section
12.9.4, we know that the simple harmonic oscillator maintains a constant Hamiltonian, which
is here also equal to the mechanical energy. A constancy of the Hamiltonian via Noether’s
theorem then means that the oscillator exchanges mechanical energy between its kinetic energy
and potential energy while holding their sum constant.

Potential energy and kinetic energy of the oscillator

During its motion, the point mass experiences work done by the spring and this work is given by

W = −
ˆ ∆+ξ

∆
F dx = Γ

ˆ ∆+ξ

∆
(x−∆)dx = Γ ξ2/2. (15.131)

This work to displace the mass renders a potential energy for the point mass relative to the zero
potential energy it possesses when located at its equilibrium position with ξ = 0. Through the
work-energy theorem from Section 11.1.4, we find that temporal changes in the potential energy
are associated with temporal changes in kinetic energy

W = −m
ˆ ∆+ξ

∆
Ẍ dx = −m

ˆ t

t0

Ẍ Ẋ dt = −m
2

ˆ t

t0

dẊ2

dt
dt = −K(t) +K(t0), (15.132)

where
K = mẊ2/2 = m ξ̇2/2 (15.133)

is the kinetic energy for the oscillating particle. Hence, as the point mass oscillates, changes
to its potential energy are exactly compensated by equal and opposite changes to its kinetic
energy, thus reflecting the constant mechanical energy for the harmonic oscillator. Another way
to see that the mechanical energy remains constant is to note that the sum of the potential plus
kinetic energies has a zero time derivative

(d/dt) [m ξ̇2 + Γ ξ2]/2 = ξ̇ [m ξ̈ + Γ ξ] = 0, (15.134)

where the final equality made use of the equation of motion (15.128). Indeed, making use of the
trajectory (15.129) we readily see that the mechanical energy is given by the constant

[m ξ̇2 + Γ ξ2]/2 = (A2/2) [mω2
0 sin

2(ω0 t+ α) + Γ cos2(ω0 t+ α)] = ΓA2/2, (15.135)
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where we set ω2
0 = Γ/m as per equation (15.128). The total energy is thus proportional to the

square of the amplitude and linearly proportional to the Hooke’s law constant.

15.6.4 Equipartition of time averaged energies
When time averaged over a single oscillation period of length 2π/ω0, the averaged kinetic energy
and potential energy are identical

ω0

2π

ˆ 2π/ω0

0
(m ξ̇2/2) dt = ΓA2/4 (15.136a)

ω0

2π

ˆ 2π/ω0

0
(Γ ξ2/2) dt = ΓA2/4. (15.136b)

Energy equipartition means that within a single oscillation period, there is an exact exchange
between kinetic energy and potential energy, so that their time averages are identical.

Energy equipartition is a rather generic property of linear oscillating systems, and we
encounter it again for linear waves, such as the acoustic waves in Section 51.6.2. It follows as a
general result of the virial theorem proved in Section 12.7.3. In particular, it holds for systems
in which the potential energy is a homogeneous function of degree two (see Section 12.7.1).

15.6.5 Lagrangian formulation
Having established the potential energy (15.131) for the oscillator, we can write the Lagrangian
as

L = m ξ̇2/2− Γ ξ2, (15.137)

with ξ a suitable generalized coordinate that captures the single degree of freedom for the
oscillator. The Euler-Lagrange equation is

d

dt

∂L

∂ξ̇
=
∂L

∂ξ
=⇒ ξ̈ + ω2

0 ξ = 0, (15.138)

which is the same as equation (15.128) derived from Newtonian methods.

15.6.6 Further study
The study of harmonic oscillators can be found in most classical mechanics texts, with our
treatment following Sections 3.1 and 3.2 of Marion and Thornton (1988).

15.7 Coupled harmonic oscillators
We here extend the study of a single harmonic oscillator in Section 15.6 to the case of N identical
frictionless point mass particles connected by massless linear Hooke’s law springs with identical
spring constant, Γ. Let

Xn(t) = n∆+ ξn(t) (15.139)

be the position of particle n relative to the left-most rigid wall, with x = n∆ the equilibrium
position for particle n and ξn(t) the displacement of the particle at time t from its equilibrium.
The ξn displacements serve as generalized coordinates for this system with N degrees of freedom.6

6In Section 12.4.1 that we wrote X(i) for the Cartesian position of particle i. This notation is important to
distinguish the particle label from a tensor index. In this section, we instead use the upright n to write Xn to
distinguish the particle label, n, from a tensor index, n. Additionally, in this section we are only concerned with
motion along a single direction, so that any label is a particle label.
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Figure 15.4: A line of N = 7 coupled simple harmonic oscillators as realized by identical point objects with fixed
mass, m, each attached to two massless springs and moving in one direction. The only horizontal force acting
on the masses arises from the springs, each with identical spring constants, Γ, and equilibrium length, ∆. The
trajectory of any particular mass, Xn(t), measures the position relative to the equilibrium at Xn(t) = 0, where the
force from the springs vanishes. The system is here shown in its equilibrium where the distance between each
mass is ∆, and the displacments all vanish, ξn = 0. Each point mass is attached to two springs, with the end
springs attached to a rigid wall.

To develop the equation of motion, observe that the force acting on a particle is comprised
of two terms associated with the two springs, one on the left and one on the right. Consider first
the end particles where one of its springs is attached to a rigid wall. For convenience, we label a
point at the left wall as n = 0 and n = N + 1 for a point on the right wall. For the n = 1 mass we
have the force from the left spring given by

Fn=0→n=1 = −Γ ξ1, (15.140)

just as for a single harmonic oscillator considered in Section 15.6.2. The force on particle 1 from
the right spring is given by

Fn=2→n=1 = −Γ (ξ1 − ξ2). (15.141)

We understand the nature of this force by noting that if ξ1 > 0 then the spring is compressed to
the right, so that the restoring force is to the left as the spring expands. Conversely, if ξ2 > 0
then the spring is expanded to the right, in which case the particle is itself accelerated to the
right. Hence, the equation of motion for this mass is given by

m ξ̈1 = −Γ ξ1 − Γ (ξ1 − ξ2). (15.142)

Anticipating the force balance that acts on the interior masses, we introduce two dummy
deviations, each with fixed value of zero,

ξ0 ≡ 0 and ξN+1 ≡ 0. (15.143)

We thus have the equation of motion for the n = 1 point mass given by

M ξ̈1 = −Γ (ξ1 − ξ0)− Γ (ξ1 − ξ2), (15.144)

and analogous considerations hold for the n = N point mass

m ξ̈N = −Γ (ξN − ξN−1)− Γ (ξN − ξN+1). (15.145)

The interior masses have analogous equations so that the generic equation of motion for particles
n = 1, N is given by

m ξ̈n = −Γ (ξn − ξn−1)− Γ (ξn − ξn+1) =⇒ ξ̈n = ω2
0 (ξn+1 − 2 ξn + ξn−1). (15.146)

It is useful to write the case for N = 2 oscillators for reference

ξ̈1 = ω2
0 (−2 ξ1 + ξ2) (15.147a)

ξ̈2 = ω2
0 (−2 ξ2 + ξ1), (15.147b)
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as well as for N = 3 oscillators

ξ̈1 = ω2
0 (−2 ξ1 + ξ2) (15.148a)

ξ̈2 = ω2
0 (ξ3 − 2 ξ2 + ξ1) (15.148b)

ξ̈3 = ω2
0 (−2 ξ3 + ξ2). (15.148c)

15.7.1 Mechanical energy for coupled oscillators
Following our discussion of mechanical energy for a single oscillator in Section 15.6.3, we multiply
the equation of motion (15.146) by ξ̇n and sum over the n = 1, N oscillators. The acceleration
term leads to the time change for the total kinetic energy of the full coupled oscillator system

m
N∑

n=1

ξ̇n ξ̈n =
m

2

N∑
n=1

dξ̇2n
dt

. (15.149)

Summation over the left portion of the force in equation (15.146) can be written

N∑
n=1

ξ̇n (ξn − ξn−1) =

N+1∑
n=1

ξ̇n (ξn − ξn−1), (15.150)

which follows since ξN+1 ≡ 0 so that the extra term in the summation vanishes. The summation
over the right portion of the force in equation (15.146) can be written

N∑
n=1

ξ̇n (ξn − ξn+1) =
N+1∑
n=2

ξ̇n−1 (ξn−1 − ξn) =
N+1∑
n=1

ξ̇n−1 (ξn−1 − ξn). (15.151)

To reach the first equality we changed indices on the terms in the summation, and modified the
summation limits accordingly. For the second equality we expanded the summation range by
noting that ξ0 ≡ 0, thus allowing us to bring the lower summation limit from n = 2 to n = 1.
Combining equations (15.150) and (15.151) leads to

Γ
N∑

n=1

ξ̇n (ξn − ξn−1) + Γ
N∑

n=1

ξ̇n (ξn − ξn+1) =
Γ

2

d

dt

N+1∑
n=1

(ξn − ξn−1)
2, (15.152)

which is the time derivative of the potential energy, P , arising from the expansion and contraction
of the Hooke’s law springs, where

P =
Γ

2

N+1∑
n=1

(ξn − ξn−1)
2 =

Γ

2

[
ξ21 +

N∑
n=2

(ξn − ξn−1)
2 + ξ2N

]
, (15.153)

where we set ξ0 = 0 and ξN+1 = 0.

Bringing the kinetic energy and potential energy together leads to the conservation of
mechanical energy for the coupled oscillator system

d

dt

N+1∑
n=1

[
m

2
ξ̇2n +

Γ

2
(ξn − ξn−1)

2

]
= 0. (15.154)

Just as for the single oscillator, we see that the coupled oscillator system maintains a fixed
mechanical energy in which energy is exchanged between kinetic and potential energy reservoirs.
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15.7.2 Lagrangian formulation
The Lagrangian for the coupled oscillator system is given by

L =
N+1∑
n=1

[
m

2
(ξ̇n)

2 − Γ

2
(ξn − ξn−1)

2

]
. (15.155)

To derive the Euler-Lagrange equations we require the following derivatives

∂L

∂ξ̇p
= m

N+1∑
n=1

ξ̇n δn,p = m ξ̇p, (15.156a)

∂L

∂ξp
= Γ

N+1∑
n=1

(ξn − ξn−1) (δn,p − δn−1,p) = −Γ (ξp+1 − 2 ξp + ξp−1), (15.156b)

which lead to the Euler-Lagrange equation

ξ̈p = ω2
0 (ξp+1 − 2 ξp + ξp−1). (15.157)

As expected, the Euler-Lagrange equation of motion agrees with Newton’s equation (15.146)
derived using Newtonian methods.

15.7.3 Further study
Our presentation of coupled harmonic oscillators was inspired by Section 24 of Fetter and
Walecka (2003), though we made use of a kinematic treatment anticipating the generalized
Lagrangian mean approach used in fluid mechanics and introduced in Section 70.2.

15.8 Exercises
exercise 15.1: Conservation of energy for the Foucault pendulum
Using the Euler-Lagrange equations of motion (15.60) and (15.62), show that Ḣ = 0 for the
Foucault pendulum, where the Hamiltonian is given by equation (15.63).
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Chapter 16

CONTINUUM APPROXIMATION

Ordinary gases and liquids are canonical examples of fluids, with gases filling any container with
its molecules widely separated, whereas molecules in liquids are much closer together so that
liquids are far less compressible than gases. Viewed macroscopically, a fluid is mechanically
characterized by deforming continuously when applying a tangential or shearing stress, so that a
fluid has no preferred shape.1 Consequently, a fluid responds to a shearing stress by flowing.
Even so, fluids can maintain their shape when experiencing a bulk compression, otherwise
known as a normal stress, with liquids and gases generally distinguished by their very different
compressibilities.

For geophysical fluid mechanics, we are concerned with the atmosphere (mostly a gas) and
the ocean (mostly a liquid). We are furthermore interested in macroscopic properties of fluid
motion, with no interest in describing molecular degrees of freedom. Nor do we consider rarefied
gas dynamics, which is a subject appropriate for the upper bounds of the atmosphere where
pressures are extremely low and the molecular mean free path relatively large. For these reasons
we pursue a phenomenological approach that makes use of conservation laws describing the
motion of a continuous fluid media. This treatment is based on the continuum approximation,
which assumes that mathematical limits for fluid volumes tending to zero are reached on length
and time scales very large compared to molecular space and time scales. The temporal realization
of the continuum approximation is based on recognizing that macroscopic motion associated
with fluid flows (e.g., advection, waves, and mixing) evolves with time scales far longer than the
time scales of molecular motions. Hence, from a macroscopic perspective, we assume that all
fluid motions are continuous in both space and time.

The huge space and time scale separation that supports the continuum approximation allows
us to make use of differential calculus for describing the mechanics of fluid motion. That is,
the continuum approximation makes fluid mechanics a continuous field theory, thus sitting
within the broader discipline of continuum mechanics. Correspondingly, the differential laws
describing fluid motion are partial differential equations. Even so, it must be admitted that the
equations of continuum mechanics are motivated by the continuum approximation rather than
deductively resulting from it. That is, a deductive derivation of continuum field theory, starting
from molecular dynamics, is nontrivial even for an ideal gas, and largely non-existent for liquids.
For our purpose, we remain satisfied to postulate that a continuum description is suited for the
fluid mechanics of atmosphere and ocean flows, and to examine the postulate a posteriori via
experimental measurements. Centuries of experiments with fluid motions in the environment
and laboratory lend credence to the continuum description. We consider these tests to offer
sufficient motivation to use continuum mechanics as the foundation for our study of geophysical
fluid mechanics.

1A stress is a force per area, and we study stresses in Chapter 25. A shearing or tangential stress gives rise to
fluid acceleration that causes fluid elements to deform.
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16.1. LOOSE ENDS

reader’s guide to this chapter
This chapter presents salient points supporting the use of a space and time continuous

description of fluid mechanics. Section 16.2 summarizes the key results and Section 16.3
provides a bit more detail by quoting from kinetic theory. Our overall goal here is to unpack
the dictum macroscopically small yet microscopically large, which summarizes the regime
assumed when formulating the equations of continuum mechanics. For this purpose, we
borrow from the kinetic theory of gases as treated in statistical physics books such as Reif
(1965) and Huang (1987). Chapter 1 of Salmon (1998) also provides a compelling discussion
with application to geophysical fluid mechanics. No prior exposure to these treatments is
necessary, nor do we dive into the many details.

We return to elements of this chapter in Section 26.5 when describing local thermody-
namic equilibrium. Together, the continuum approximation and the hypothesis of local
thermodynamic equilibrium form two key pillars of continuum mechanics.
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16.1 Loose ends

• Add a figure for Section 16.2.4.

• Can one be more precise about the scale in Figure 16.2 where measurements become fuzzy?

16.2 A variety of length scales

Matter is comprised of molecules. However, fluid mechanics is not concerned with the motion of
individual molecular degrees of freedom. Rather, fluid mechanics is concerned with phenomeno-
logical conservation laws describing the flow of a continuous fluid material. In this section
we outline certain properties of matter that motivate the continuum approximation and the
corresponding study of continuum mechanics. More details are offered in Section 16.3, although
a full discussion is outside the purview of fluid mechanics, with interested readers encouraged to
penetrate the literature in statistical physics and kinetic theory.
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Lmfp

Figure 16.1: Schematic to illustrate the length scales considered when making the continuum approximation.
The blue circles represent molecules with diameter Lmolecule. On average, molecules are separated by a spacing,
Lspacing, that is much larger than the size of the molecule. The mean free path, Lmfp, is the average distance
a molecule travels between collisions with other molecules, with Lmfp generally larger than Lmolecule since the
mean free path takes into account the trajectory of a molecule between collisions, rather than just its immediate
neighbors. The smallest macroscopic length scale for fluid flow is denoted Lmacro. There is no objective value for
Lmacro, though for our purposes we assume it is on the order of Lmacro ∼ 10−4 m, which corresponds roughly to
the precision of a flow measurement. In this case, Lmacro ≈ 103 Lmfp for an ideal gas at standard conditions. A
region of air with volume L3

macro contains roughly 1013 air molecules, whereas that same volume contains roughly
1016 water molecules. For either case, the Law of Large Numbers greatly helps in taking the continuum limit.
Note that this schematic is not drawn to scale!

16.2.1 Macroscopic and microscopic length scales
In fluid mechanics, as in other areas of continuum mechanics, we are concerned with the motion
of matter over geometric scales that have a lower bound that is macroscopically small (e.g.,
Lmacro ∼ 10−4 m) yet microscopically large (e.g., Lmacro ≫ Lmfp ∼ 10−7 m, where Lmfp is the
molecular mean free path). For example, a region of air with volume L3

macro contains roughly
1013 air molecules at standard temperature (Tstand = 0◦C = 273.15 K) and standard atmospheric
pressure (pstand = 101.325 × 103 Pa), whereas that same volume contains roughly 1016 water
molecules. These numbers illustrate the notions of macroscopically small yet microscopically
large. That is, a macroscopically small region, which provides a lower bound for the precision of
flow measurements, generally contains an enormous number of microscopic molecules. It is only
when reaching length scales on the order of the molecular mean free path that we need to be
concerned with the discrete nature of matter. Figure 16.1 offers a schematic to illustrate these
distinct length scales.

16.2.2 Fields at each space point
When measured on length scales of the mean free path, material properties exhibit very large
fluctuations on time scales of order Lmfp/vrms, where vrms is the root-mean-square speed of a fluid
molecule (see Section 16.3.4). However, on macroscopic scales encompassing many molecular
degrees of freedom, fluid matter appears continuous in both space and time. The incredibly
large number of molecules within a macroscopically tiny region motivates our assumption that
physical properties are homogeneous over regions of size Lmacro. For our purposes, this continuum
approximation works with macroscopically small but finite sized fluid elements whose mean
dynamical properties (e.g., velocity, vorticity) and thermodynamical properties (e.g., mass
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V

Figure 16.2: The measurement of mass density of a fluid becomes erratic for volumes on the order of that
determined by the molecular mean free path, (δV )mfp ∼ L3

mfp. For the fluid mechanical study of fluid motion, we
are concerned with length scales much larger than the mean free path, Lmacro ≫ Lmfp, in which case the mass
density is a smooth function of space and time. This figure is adapted from Figure 1.2.1 of Batchelor (1967).

density, matter concentration, temperature, pressure, specific entropy) are defined at each point
within the continuous fluid media and at each time instance. As a result, we assume that any
differential space increment, dx, has magnitude on the order of Lmacro, even though we make use
of differential calculus and its associated infinitesimals.

Let us be a bit more precise by considering the measurement of mass density for a prescribed
region of fluid, δV . To compute the mass density we take the ratio of the mass of fluid in
the region, δm, to the region volume. When the region volume is macroscopic, and thus
contains many molecules, we can maintain a relatively fixed mass for this region since molecular
fluctuations have a relatively tiny effect on δm. Correspondingly, we can maintain a precise
measurement of the mass density, δm/δV . However, when the volume of the region become
microscopic, whereby it has a volume on the order of δV ∼ L3

mfp, then molecular fluctuations
generally lead to a relatively large fluctuation in the region’s mass. We thus lose the notion of a
smooth and continuous mass density when the volume approaches that set by the molecular
mean free path. This situation is depicted in Figure 16.2.

The ratio of the molecular mean free path to the macroscopic length scale is known as the
Knudsen number

Kn =
Lmfp

Lmacro

. (16.1)

For this book, we are concerned with fluid conditions where the mean free path is microscopic
so that the Knudsen number is tiny

Kn≪ 1. (16.2)

For tiny Knudsen numbers, we are led to make use of the continuum approximation. The
continuum approximation allows us to employ fluid properties that take values at each point
within a space and time continuum, (x, t). For example, we make use of the mass density, ρ(x, t),
fluid velocity, v(x, t), pressure p(x, t), temperature T (x, t), tracer concentration, C(x, t), and
other fields.

We contrast the above to the study of a rarefied gas, such as in the outer reaches of the
earth’s atmosphere. With a relatively small number density of molecules, rarefied gases have
macroscopic mean free paths so that there are relatively few molecular collisions in a given
time increment. Correspondingly, a rarefied gas is far from thermodynamic equilibrium and the
continuum approximation is not well suited to its description.
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16.2.3 Reynolds number and the macroscopic length scale
The continuum field equations of fluid mechanics are formally established for fluid motions with
length scales on the order of Lmacro and larger. We stated earlier that Lmacro is on the order of
10−4 m, with that length loosely based on noting that most macroscopic measurements in a
fluid cannot distinguish flow features smaller than a millimetre. We here describe another means
to determine Lmacro.

Namely, we set Lmacro to the length scale at which the Reynolds number is order unity

Remacro =
U Lmacro

ν
∼ 1. (16.3)

In this equation, ν > 0 is the kinematic viscosity (dimensions squared length per time), which is
a property of the fluid. The velocity scale, U , is set by the scale for a macroscopic fluid velocity
fluctuation. The Reynolds number measures the ratio of inertial accelerations (accelerations felt
by fluid elements) to frictional accelerations from viscous forces (forces due to the rubbing of fluid
elements against one another in the presence of viscosity). We provide more details concerning
the Reynolds number when studying fluid stresses in Chapter 25. For present purposes, we note
that when the Reynolds number is on the order of unity, viscous forces play a leading role in the
acceleration of the fluid. Furthermore, at this scale the viscous accelerations serve to dissipate
kinetic energy of the macroscopic motion, with this dissipation a particularly important process
in fluid turbulence. We are thus motivated to define Lmacro as the length scale where viscosity is
of leading order importance.

The kinematic viscosity is the ratio of the dynamic viscosity and the mass density. For air,
the kinematic viscosity is (page 75 of Gill (1982))

νair =
1.7× 10−5 kg m−1 s−1

1.3 kg m−3
= 1.3× 10−5 m2 s−1, (16.4)

and a typical fluid velocity fluctuation has a scale 10−1 m s−1, so that

Lmacro ≈ 10−4 m = 0.1 mm. (16.5)

Water has a kinematic viscosity (page 75 of Gill (1982))

νwater =
10−3 kg m−1 s−1

1000 kg m−3
≈ 10−6 m2 s−1, (16.6)

and a fluid velocity fluctuation about 10 times smaller than air. Hence, the macroscopic length
scale for water is on the order of that for air, both of which are roughly 10−4 m. We are thus
further compelled to consider the macroscopic length scale to be on the order 10−4 m and larger.

16.2.4 Resolution of measurements and simulations
When we measure fluid motions in the laboratory or field, we generally do not measure the
motions at scales on the order of Lmacro. That is, our measurement devices generally have a
spatial resolution coarser than Lmacro, so that Lmeasure ≫ Lmacro. Likewise, numerical simulations
are generally designed using discrete grids with length scales Lnumerical ≫ Lmacro. The equations
describing motions at the measurement/simulation length scales involve effects from fluctuations
occurring at the smaller (unmeasured) scales. The reason for this coupling is that the fluid
equations are nonlinear so that scales interact. These fluctuations, generally associated with
turbulent or chaotic motions, have statistical correlations that can play a role, sometimes
a dominant role, in the evolution of flow features at the measured/simulated scales. The
parameterization of these correlations in terms of measured/simulated motions constitutes the
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turbulence closure problem. We do not study turbulence closure in this book though we do
identify the role of turbulence at certain points.

It is important to acknowledge the limited ability of macroscopic measurements to accurately
characterize fine scale motions. For this purpose define a gradient length scale

Lgradient =
|v|
|∇v| , (16.7)

where v is the velocity of a fluid element relative to some mean velocity, and |∇v| is the
magnitude of velocity gradients. Decomposing fluctuations into Fourier modes allows us to
see that an accurate measurement of velocity fluctuations with length scales Lgradient requires a
measurement length scale that satisfies

2π Lmeasure ≤ Lgradient. (16.8)

This constraint means that to measure velocity fluctuations on a scale Lgradient requires a finer
measurement sampling with Lmeasure = Lgradient/(2π). Note that this discussion of length scales
transfers seamlessly over to time scales through dividing the length scale by the velocity scale.
Correspondingly, fluctuations with time scales shorter than 2π Tmeasure cannot be accurately
measured.

16.2.5 Fields at each time instance

The continuum approximation means that fields are defined at every point in the space continuum
and at each time in the time continuum. As motivation for the time continuum, we note that
there are a huge number of molecular collisions per second, with molecules moving at incredibly
high speeds (see Section 16.3 for some numbers). There are added features of the continuous time
assumption that are best studied as part of the hypothesis of local thermodynamic equilibrium
in Section 26.5.

16.2.6 The Deborah number

Although the focus of this book concerns the atmosphere and ocean, which are clearly fluids,
it is useful to mention that not all materials clearly fit into the category of solid or fluid. For
example, in geophysics we encounter frozen materials within the cryosphere and rocky material
as part of the crust and deeper earth interior. Both materials appear quite hard and solid from
human perspectives, and yet they flow over longer time scales and as such they are not rigid
solids.

We are led to recognize that the characterization of whether a material is a solid or fluid
depends on the time scale of the macroscopic observation, tobserve, versus the time scale for the
internal relaxations within the material, trelax. The ratio of these two time scales is referred to as
the Deborah number2

Db =
trelax
tobserve

. (16.9)

For the fluid mechanics considered in this book, we are concerned with tiny Deborah numbers,
in which the relaxation time scales are determined by the relatively rapid molecular collisions
that take place on time scales of order 10−10 s (see Section 16.3.5), whereas the observation time
scales are determined by macroscropic deformations that are ≈ 100 s, so that

Db≪ 1 =⇒ viscous fluid. (16.10)

2See Reiner (1964) for the Biblical origins of the Deborah number.
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In contrast, for many geophysical materials, as well as polymers encountered in material science,
the relaxation time scales are relatively large, in which case the Deborah number can be order
unity or even larger

Db =

[
O(1) =⇒ viscoelastic material
≫ 1 =⇒ elastic solid.

(16.11)

16.3 Results from kinetic theory
If the reader is content to accept the continuum approximation on face value, then the material
in this section can be readily skipped. For others, this section outlines results from the kinetic
theory of ideal gases in support of the continuum approximation. Deductive treatments that
transition from molecular mechanics to macroscopic fluid mechanics is a topic of the kinetic
theory of gases and liquids, which is outside our scope. In Section 16.3.7, we provide literature
pointers for those wishing more rigor.

16.3.1 A mole and Avogadro’s number
There are a tremendous number of molecules in the tiniest drop of water or puff of air. Just how
many? To answer this question, we introduce the notion of a mole of matter. A mole is defined
as the mass of a material substance that contains Avogadro’s number of that substance, where

Av = 6.022× 1023 mole−1. (16.12)

Avogadro’s number, Av, is the proportionality constant converting from one molar mass of a
substance to the mass of a substance. Avogadro’s number is conventionally specified so that one
mole of the carbon isotope, 12C, contains exactly 12 grams. Hence, 12 grams of 12C contains
6.022 × 1023 atoms of 12C. Avogadro’s number provides a connection between scales active in
the microscopic world of molecules to the macroscopic world of everyday experience.

Dry air (air with no water vapor) is comprised of oxygen molecules O2, at roughly 22% by
molecular mass, and nitrogen molecules N2, at roughly 78% molecular mass.3 The molar mass
of dry air is thus

M air = 0.22 ∗ 32 g mole−1 + 0.78 ∗ 28 g mole−1 ≈ 28.8 g mole−1. (16.13)

Pure (fresh) water is comprised of two hydrogen atoms and one oxygen atom. The molar mass
of pure water is thus given by

Mwater = 2 ∗ 1 g mole−1 + 16 g mole−1 = 18 g mole−1. (16.14)

16.3.2 Ideal gas law
The ideal gas law is given by

p V = nRg T, (16.15)

where p is the pressure, V is the volume, n is the number of moles, Rg is the universal gas
constant,4 and T is the absolute or thermodynamic temperature (temperature relative to absolute
zero). Measuring the temperature in Kelvin leads to the universal gas constant

Rg = 8.314 J mole−1 K−1 = 8.314 kg m2 s−2 mole−1 K−1, (16.16)

3We here ignore the presence of other trace gases, such as CO2 and H2O, although these gases are critical for
understanding atmospheric radiation and hence the earth’s energy budget.

4We write Rg rather than the more conventional R to distinguish from R commonly used in this book for the
radius of a sphere.
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where the second equality replaced the energy unit, Joule, by its MKS equivalent,

J = kg m2 s−2. (16.17)

Use of the ideal gas law (16.15) says that one mole of ideal gas at standard temperature
(Tstand = 0◦C = 273.15 K) and standard atmospheric pressure (pstand = 101.325 × 103 Pa)
occupies the following volume

V =
nRg Tstand

pstand
(16.18a)

=
(1 mole) (8.314 kg m2 s−2 mole−1 K−1) (273.15 K)

101.325× 103 kg m−1 s−2
(16.18b)

≈ 2.25× 10−2 m3, (16.18c)

where we introduced the MKS units for pressure (force per unit area)

Pa = N m−2 = kg m−1 s−2. (16.19)

Hence, the number density (number of molecules per volume) for a mole of ideal gas is given by

ngas =
number per mole

volume per mole
(16.20a)

=
Av

V
(16.20b)

=
6.022× 1023

2.25× 10−2 m3
(16.20c)

= 2.68× 1025 m−3. (16.20d)

Specializing to air, we compute the mass density of air at standard temperature and pressure as

ρair =
M air

V
=

28.8× 10−3 kg

2.25× 10−2 m3
= 1.28 kg m−3, (16.21)

where we set M air = 28.8× 10−3 kg according to equation (16.13). This ideal gas density is close
to the 1.225 kg m−3 density measured for air at standard conditions, thus supporting use of the
ideal gas law for dry air. Differences arise from trace constituents in air as well as inter-molecular
forces (an ideal gas has no inter-molecular forces).

16.3.3 Molecular mean free path

We are in search of length scales relevant for molecular motion. One length scale is that of
the molecule itself. Another is set by the average distance between molecules. Finally, we may
consider the distance between molecular collisions, with the molecular mean free path the mean
distance that a molecule travels before colliding with another molecule. The mean free path is
generally larger than the average molecular distance since for molecules to collide requires their
trajectories to intersect, and that generally happens over a distance larger than the averaged
molecular distance.

Arguments from kinetic theory of gases, applied to an ideal gas, lead to the expression

Lmfp =
1

π
√
2ngas d2

(16.22)
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where d is the diameter of the molecule. The mean diameter of air molecules is roughly

dmolecule air ≈ 2× 10−10 m. (16.23)

Hence, the mean free path for air molecules at standard temperature and pressure is

Lmfp =
1

π
√
2ngas d2molecule air

(16.24a)

=
1

π
√
2 (2.68× 1025 m−3) (2× 10−10 m)2

(16.24b)

= 2× 10−7 m. (16.24c)

The mean free path for an air molecule is roughly 1000 times larger than the molecular diameter
(e.g., Figure 16.1).

16.3.4 Root mean square molecular speed

What is the mean speed for molecules moving through a gas? Again, kinetic theory for ideal
gases offers an explicit expression, here written in terms of the pressure and density of the gas

vrms =

√
3 p

ρ
=

√
3Rg T

M
. (16.25)

Note the direct relation between pressure, temperature, and speed. That is, molecules move
faster at higher temperature, and thus impart larger pressure on their surrounding environment.
At standard pressure and temperature, the root-mean-square speed for an air molecule is given
by

vrms =

√
3 pstand
ρair

(16.26a)

=

√
3 (101.325× 103 kg m−1 s−2)

1.28 kg m−3
(16.26b)

= 487 m s−1. (16.26c)

To get a sense for the relative scale of this speed, note that the speed of sound in air at standard
temperature and pressure is 331 m s−1. So these molecules are moving faster than sound!
These speeds are correspondingly much higher than the speeds typical for fluid elements in the
atmosphere and ocean.

16.3.5 Time scales for molecular collisions

Assuming one collision occurs within a mean free path, and the molecules are moving at the
root-mean-square speed, we can estimate the time between collision according to

tcollision =
Lmfp

vrms

(16.27)

The corresponding time for air is given by

tair =
2× 10−7 m

487 m s−1
= 4.1× 10−10 s. (16.28)
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Inverting this number, we see that there are roughly t−1
air = 2.5× 109 s−1 collisions per second.

The huge number of molecular collisions per second means that for all macroscopic processes,
including highly turbulent geophysical fluid flow, the dynamical time scales for the macroscopic
motion are many orders of magnitude longer than the time scales for molecular motions.

16.3.6 Macroscopically small and microscopically large

For environmental measurements of the atmosphere and ocean, or for conventional measurements
in laboratories, we can detect differences in fluid properties (e.g., mass density, velocity, tracer
concentration, thermodynamic state properties) for length scales no smaller than

Lmacro = 10−4 m. (16.29)

For macroscopic purposes, fluid properties are homogeneous over regions with length scales on
the order of Lmacro. Although macroscopically rather tiny, a fluid region of volume L3

macro is huge
microscopically. We can see so by computing the number of molecules in this region.

At standard conditions, a volume of air of size L3
macro contains

Nair molecules = V ngas = (10−4 m)3 (2.68× 1025 m−3) ≈ 3× 1013 air molecules. (16.30)

To compute the number of water molecules in this same volume, we first use the water mass
density of

ρwater ≈ 103 kg m−3 (16.31)

to determine the water mass in this region

Mwater = ρwater V = (1000 kg m−3) (10−12 m3) = 10−9 kg. (16.32)

Water has a molar mass of 0.018 kg mole−1, so a volume of (10−4 m)3 contains

Nwater molecules =

(
10−9 kg

0.018 kg mole−1

)
×6.022×1023 molecules mole−1 = 3×1016 water molecules.

(16.33)
Water thus has roughly 103 more molecules in this volume than air at standard pressure, which
reflects the roughly 103 times larger mass density for water. Evidently, both water and air
contain a huge number of molecules in this macroscopically tiny region.

16.3.7 Further study

Pedagogical treatments of the ideal gas law and kinetic theory can be found in most books on
introductory physics or chemistry. Vallis (2017) provides extensions of the ideal gas law for an
atmosphere with moisture.

For discussions of the continuum approximation reflecting that given here, see the discussion
on page 1 of Olbers et al. (2012), or the more thorough treatments in Section 1.2 of Batchelor
(1967), Section 2.1 of Pope (2000), or Section 1.4 of Kundu et al. (2016). Chapter 1 of Salmon
(1998) touches on elements from kinetic theory and details for how to coarse grain average over
molecular degrees of freedom (see his pages 3 and 4 and Sections 9, 10, and 11). An analogous
treatment is given by exercise 2.1 of Pope (2000). A rigorous account of kinetic theory is offered
in many treatments of statistical mechanics. That given by Reif (1965) and Huang (1987)
are accessible to those with a physics undergraduate training. When reading the statistical
mechanics literature, look for discussions of the “hydrodynamical limit,” which concerns the
transition from discrete particle mechanics to continuum mechanics.
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In this part of the book we focus on the kinematics of a classical and non-relativistic
continuous fluid flows. We take inspiration from treatments given in the continuum mechanics
literature (e.g., chapter 4 of Malvern (1969) and Part I of Tromp (2025a)), though with a bias
towards elements particularly useful in fluid mechanics (e.g., chapter 2 of Truesdell (1954)).
There are a variety of rather subtle points connected with fluid flow kinematics, and such
subtleties can lead to confusion (it certainly has for this author!). The present treatment aims
for a reasonably deductive level of rigor while appealing to the physicist. The interested student
is encouraged to read a variety of treatments to survey the presentations, as each author stresses
unique nuances that can be important both for understanding and for applications.

Kinematic properties of fluid flows in an inertial reference frame also hold for flow on steady
rotating planets such as considered in this book. The reason is that steady rigid-body rotation
does not directly impart strain to the flow, where strain refers to the relative motion between
fluid particles (Chapter 17). Rotation does impart a planetary component to the vorticity of
geophysical fluids, with important implications for the study of vorticity in Part VII. However,
for the purpose of fluid kinematics studied in this part of the book, we can safely ignore planetary
rotation.

Eulerian and Lagrangian reference frames

The Eulerian and Lagrangian reference frames provide dual kinematic descriptions of fluid
flows. The Eulerian frame describes fluid motion relative to a frame fixed in the laboratory,
whereas the Lagrangian frame follows a moving material fluid particle. The Eulerian frame is
inertial (when the laboratory is not accelerating), whereas the Lagrangian frame is non-inertial
since fluid particles generally accelerate. Having two descriptions of the same motion provides
a synergy that is extensively used in fluid mechanics. Fully realizing this synergy requires
skills to move between the Eulerian and Lagrangian descriptions, with tools from mathematical
transformation theory of Part I used for this purpose. Whereas Cartesian coordinates offer a
complete description for Eulerian kinematics, Lagrangian kinematics requires general tensor
analysis (Chapters 3 and 4) since fluid particles deform with the fluid motion and thus render a
non-orthogonal coordinate description. Elements of Eulerian and Lagrangian kinematics are the
focus of Chapter 17, and Chapter 18 further develops the formal theory of fluid kinematics, with
applications to the study of material lines, areas, and volumes.

We acknowledge that for most flows encountered in geophysical fluid mechanics, a Lagrangian
description has practical limitations. These limitations arise from the chaotic and turbulent
nature of the flow that render a description based on fluid particle trajectories of little use
after even a brief time. This is perhaps the key reason that Eulerian approaches are far more
common in fluid mechanics, whereas Lagrangian approaches are more common in solid mechanics
where materials maintain their shape far longer. Nevertheless, Lagrangian formulations of
continuum mechanics offer insights to the fundamental theorems of fluid flows, thus motivating
the Lagrangian approach in tandem with the Eulerian.

A historical note is appropriate here. As emphasized by Truesdell (1953), as well as Section
14 of Truesdell (1954), it was Euler who first introduced the material coordinates used with the
Lagrangian reference frame. In recognition of this historical error, we sometimes use “material”
in place of “Lagrangian”. Even so, we do make use of “Lagrangian” in most places, thus
according with its common usage in geophysical fluid mechanics. Relatedly, again according to
Truesdell (1953), it was d’Alembert who introduced the spatial coordinates used for the Eulerian
description.

mass and matter conservation are part of fluid kinematics

The conservation of mass plays a central role in physics. For fluids, mass conservation
constrains the flow regardless what forces act on the fluid. Hence, we include mass conservation
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as a part of fluid kinematics rather than fluid dynamics. Mass conservation, and its expression
as volume conservation for non-divergent flows, are the topics of Chapters 19 and 21. Chapter
20 develops the allied study of matter conservation and matter flow, with this study forming the
foundations for tracer mechanics that we return to in earnest within Part XIII of this book.

fluid kinematics + fluid dynamics = fluid mechanics

Kinematics is concerned with the intrinsic properties of motion, including properties of the
space and time in which motion occurs. It is the complement to dynamics, which is concerned
with the causes of motion that arise through the action of forces. In one sense, kinematics
deduces the acceleration whereas dynamics deduces the forces, with Newton’s second law linking
the two via the equation of motion: F = ma. In fluid mechanics, kinematics studies the
flow of a fluid and its matter constituents, whereas dynamics studies the forces causing the
motion. Furthermore, as discussed in Chapter 14, symmetries of a mechanical system lead,
through Noether’s Theorem, to dynamical conservation laws. That is, symmetries, which
embody kinematic properties, lead to dynamical invariants maintained by the motion, with
these invariants constraining the motion. The intellectual avenues pursued in developing a
mechanical description of fluid motion are many and varied, with fluid kinematics and fluid
dynamics intimately woven into the fabric of that description.

a kinematical result is valid forever

As motivation for studying this part of the book, we offer the following quote from page 2 of
Truesdell (1954), with Clifford Truesdell one the giants of 20th century continuum mechanics
who was clearly fond of kinematics.

All dynamical statements I have relegated to parenthetical sections, appendices, or
footnotes, not in a foolish attempt to diminish their physical importance, but rather
to let the argument course freely, uninterrupted by merely interpretative remarks,
and to leave the propositions free for application to such special dynamical situations
as may be of interest either now or in the future–for I cannot too strongly urge that
a kinematical result is a result valid forever, no matter how time and fashion may
change the “laws” of physics.
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Chapter 17

FUNDAMENTALS OF FLUID KINEMATICS

In describing fluid motion, we use the dual lenses offered by the Eulerian and the Lagrangian
reference frames. The Eulerian reference frame (x-space) uses a spatial description with
coordinates that are fixed in Euclidean space, whereas the Lagrangian reference frame (a-space)
uses a material description with coordinates that are fixed on fluid particles. These dual
descriptions (spatial versus material) form the foundation for fluid kinematics. We give attention
to the needs of both Eulerian and Lagrangian kinematics in this chapter and elsewhere in this
book, and how to transform between the two.1

The Eulerian description is more commonly used in fluid mechanics since the kinematic
property of central focus is the fluid velocity as a field, v(x, t), whereas trajectories for fluid
particles are not needed for most purposes. In contrast, the Lagrangian approach is more
commonly used in solid mechanics, in which one is concerned with motion of material particles
relative to a reference or base configuration (typically the initial state). The two descriptions are
mathematically related by a one-to-one invertible mapping. To transform from the Lagrangian
to Eulerian description requires taking the time derivative of the trajectory to produce the
velocity, whereas to transform from the Eulerian to Lagrangian description requires solving
a set of ordinary differential equations to compute a trajectory from the time integral of the
velocity. The Eulerian description requires less information than the Lagrangian since it does
not determine trajectories. However, there is a price to pay for reducing the information, in
which case the mechanical foundations can be somewhat obscured using the Eulerian approach,
with this comment manifest in our study of Hamilton’s principle in Chapter 47.

reader’s guide to this chapter
This chapter introduces concepts and tools used in nearly every subsequent chapter of

this book that concerns a description of fluid motion.

17.1 Introduction to fluid kinematics . . . . . . . . . . . . . . . . . . . . . . . 420
17.1.1 Strong and weak formulations . . . . . . . . . . . . . . . . . . . . 420
17.1.2 Lagrangian and Eulerian descriptions . . . . . . . . . . . . . . . . 421

17.2 Conceptually partitioning the continuum . . . . . . . . . . . . . . . . . . 421
17.2.1 Fluid particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
17.2.2 Material fluid parcels in perfect fluids . . . . . . . . . . . . . . . 422
17.2.3 Finite sized material objects in perfect fluids . . . . . . . . . . . 424
17.2.4 Fluid elements in real fluids . . . . . . . . . . . . . . . . . . . . . 424
17.2.5 Test fluid element in real fluids . . . . . . . . . . . . . . . . . . . 424

1As noted by Truesdell (1953), as well as the long footnote on pages 30-31 of Truesdell (1954), the Lagrangian
reference frame originates from the work of Leonard Euler (1707-1783), so that the term “Lagrangian reference
frame” is a historical error. Even so, we continue this error given the near ubiquitous terminology used in the
geophysical fluid mechanics literature, thus referring to the material frame as the Lagrangian frame.
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17.2.6 Finite sized fluid region in real fluids . . . . . . . . . . . . . . . . 424
17.2.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

17.3 Material and spatial coordinates . . . . . . . . . . . . . . . . . . . . . . . 425
17.3.1 Fluid particle trajectories . . . . . . . . . . . . . . . . . . . . . . 425
17.3.2 Example material coordinates . . . . . . . . . . . . . . . . . . . . 427

17.4 Lagrangian and Eulerian time derivatives . . . . . . . . . . . . . . . . . . 427
17.4.1 Infinitesimal space-time increment of a function . . . . . . . . . . 427
17.4.2 Total time derivative of a function . . . . . . . . . . . . . . . . . 428
17.4.3 Eulerian: evolution measured in the spatial frame . . . . . . . . . 428
17.4.4 Lagrangian: evolution measured in the material frame . . . . . . 428
17.4.5 Example material time derivative operations . . . . . . . . . . . . 429
17.4.6 Worked example: velocity and acceleration from a trajectory . . 431
17.4.7 Material time derivative of a vector field . . . . . . . . . . . . . . 431
17.4.8 Summarizing some terminology . . . . . . . . . . . . . . . . . . . 432

17.5 Galilean transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
17.5.1 Specifying the Galilean transformation . . . . . . . . . . . . . . . 433
17.5.2 Transformation matrix . . . . . . . . . . . . . . . . . . . . . . . . 433
17.5.3 Transforming the differential operators . . . . . . . . . . . . . . . 434
17.5.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

17.6 Transforming the material time derivative . . . . . . . . . . . . . . . . . 435
17.6.1 Definition of the material time derivative . . . . . . . . . . . . . . 435
17.6.2 Example: a rotating reference frame . . . . . . . . . . . . . . . . 436
17.6.3 Invariance using space-time tensors . . . . . . . . . . . . . . . . . 438
17.6.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

17.7 Fluid flow lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
17.7.1 Material pathlines from fluid particle trajectories . . . . . . . . . 439
17.7.2 Fluid streamlines and streamtubes . . . . . . . . . . . . . . . . . 440
17.7.3 Distinguishing streamlines and pathlines . . . . . . . . . . . . . . 441
17.7.4 Fluid streaklines . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
17.7.5 An analytic example of flow lines . . . . . . . . . . . . . . . . . . 442
17.7.6 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

17.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

17.1 Introduction to fluid kinematics
We here introduce some basic concepts that form the foundation for the discussions in this
chapter.

17.1.1 Strong and weak formulations
The continuum approximation (Chapter 16) allows us to consider fluid flow from a field theoretic
perspective, whereby physical properties are described by fields that take on values at each point
of a space and time continuum. Consequently, we make use of a differential equation formulation
of the governing continuum equations as well as an integral formulation. The differential
formulation is sometimes referred to as the strong formulation. This name is motivated by
the need to make assumptions about the smoothness of the continuum fields. Absent such
smoothness assumptions, the differential equations lack predictive skill. Some phenomena (e.g.,
shocks in fluids and faults in solids) do not satisfy the necessary smoothness assumptions, thus
making the strong formulation unsuitable. In those cases it can be useful to employ an integral
formulation, with the integral formulation known as the weak formulation since it requires fewer
assumptions about smoothness.

In this book, we are not concerned with shocks or other discontinuities in the fluid flow.
Consequently, we make use of both the strong and weak formulations. We are afforded a
connection between the weak and strong formulations through the Leibniz-Reynolds transport
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theorem derived in Section 20.2.4. Each formulation is suited for particular needs. For example,
the strong formulation provides a concise view of the fluid equations and allows for manipulations
and transformations based on the rules of differential calculus and differential gemoetry studied
in Part I. In contrast, the weak formulation is needed to develop budgets over finite fluid regions.
Correspondingly, the weak formulation provides a starting point for the derivation of finite
volume budgets that serve as the basis for analysis methods and numerical methods (e.g., Griffies
et al. (2020)).

17.1.2 Lagrangian and Eulerian descriptions
There are two reference frames commonly used as the basis for describing motion of a continuum.
For the continuous fluid motions considered in this book, these two reference frames retain a
1-to-1 and invertible relation that allows for the mathematical and conceptual transformation
between the frames.

• Lagrangian or material description: This description makes use of a reference frame
that is defined by motion of material fluid particles (Section 17.2.1). That is, the Lagrangian
reference frame is comoving with the continuum of fluid particles. The mechanical
description aims to determine the continuum of trajectories, with each trajectory delineated
by a continuous material coordinate that labels each fluid particle. The Lagrangian reference
frame is non-inertial since fluid particles generally experience accelerations via changes to
their speed and/or direction.

• Eulerian or laboratory description: This description makes use of a reference frame
that observes fluid motion relative to fixed spatial positions, x, within a “laboratory”.
This Eulerian description measures fluid properties as the fluid streams by a fixed observer.
It is not concerned with determining trajectories. Instead, Eulerian kinematics focuses on
fluid properties as continuous fields that are functions of spatial position, x, and time, t.

The Eulerian and Lagrangian descriptions complement one another. The Lagrangian de-
scription renders insights partly due to its direct analog to point particle mechanics of Part II
in this book. Alternatively, the Eulerian description is commonly more straightforward when
developing numerical methods for simulations, or when making laboratory or field measurements.
Throughout this book, we make use of both Eulerian and Lagrangian kinematic descriptions. A
goal of this chapter is to provide the foundation for these two descriptions and to develop tools
for transforming between them.

In non-geophysical treatments of fluid mechanics, it is typical to assume that the laboratory
reference frame of the Eulerian observer is fixed in space, and thus is an inertial reference
frame. However, for geophysical fluid mechanics we generally consider an Eulerian reference
frame fixed with respect to the rotating planet (a rotating laboratory frame), and the earth
laboratory frame is not inertial. However, the discussion in this chapter is not concerned with
the non-inertial features that give rise to planetary centrifugal and Coriolis accelerations (see
Chapter 13). Instead, we note that the constant rotation of the planet does not impart any
strain to the fluid.2 Consequently, non-rotating fluid kinematics is sufficient for most purposes
of geophysical fluid kinematics.

17.2 Conceptually partitioning the continuum
As part of a continuum description of fluid motion, we make use of conceptual physical systems
to frame the mechanics and describe the motion. We start by describing the material fluid

2This point is made more formally when studying the kinematics of fluid strain in Section 18.6.
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particle in Section 17.2.1, which is a zero-dimensional point moving with the fluid flow, and
then expand to infinitesimal fluid regions (fluid parcels and fluid elements) that are bounded
by imagined partitions. The boundaries of fluid regions can be either open or closed to
matter and energy exchange depending on the character of the fluid. Importantly, there is no
pretense that the partitions used to define fluid parcels and fluid elements can be experimentally
determined. Rather, partitions are drawn within the continuum fluid by the theorist for purposes
of formulation and conceptualization. We are afforded the ability to draw these partitions
through the continuum description of fluid mechanics.3

17.2.1 Fluid particles
A point in Euclidean space is specified by a spatial coordinate, x, and an instant in Newtonian
time is specified by the time, t. Euclidean space plus Newtonian time is referred to as a Galilean
space-time. Each point within a matter continum undergoes motion according to the laws of
continuum mechanics. We define a fluid particle as a zero dimensional mathematical point that
follows motion of the continuous material fluid, with that motion specified by the velocity field
(left panel in Figure 17.1). Since it has zero spatial extent, a fluid particle has no impact on
the flow. Notably, a fluid particle is not a molecule or atom since even molecules and atoms
have nonzero spatial extent and so impact their surroundings. Even so, a fluid particle does
represesent a point in the material fluid continuum rather than just a point in space.

The position of a fluid particle in space and time is uniquely specified by its material
coordinate plus time (we discuss material coordinates in Section 17.3.1). The trajectory or
pathline of a fluid particle is an integral curve of the velocity field, where each point along a
trajectory has a tangent that defines the velocity vector (Section 17.7).4 The accumulation of a
continuum of fluid particle trajectories define the pathlines that prescribe the Lagrangian or
material reference frame (Section 17.1.2).

Fluid particles are directly analogous to test mass particles in Newtonian gravitation that
are used to map gravitational field lines, and test electric charges in electromagnetism used for
mapping the electromagnetic field. However, fluid particles have zero mass and are fully defined
kinematically through specifying the velocity field. Fluid particles can be used to study perfect
fluids, which necessarily have a single matter constitutent, as well as real fluids with multiple
matter constituents. For the perfect fluid, fluid particles trace out integral curves of the velocity
field, whereas for a real fluid the fluid particles provide integral curves for the barycentric velocity
studied in Section 20.1.

Some books define fluid particles as finite sized fluid regions, much like the fluid parcel
described in Section 17.2.2 or the fluid element in Section 17.2.4. Some treatments also suggest
that a fluid particle is akin to a fluid molecule. We instead find it conceptually simpler and far
less problematic to define a fluid particle as a mathematical point with zero spatial extent and
zero mass, thus serving solely as a conceptual probe for the fluid flow and as a means to specify
the Lagrangian reference frame.5

17.2.2 Material fluid parcels in perfect fluids
For many purposes we find it useful to study fluid mechanics in the absence of irreversible
processes such as friction, heat exchange, and diffusive mixing. In this case the fluid is referred

3This conceptual formulation of fluid mechanics, namely as a continuous collection of infinitesimally small fluid
elements, originates from the work of Leonard Euler (1707-1783). For an insightful and authoritative discussion
on this topic, see Truesdell (1953) as well as the long footnote on pages 30-31 of Truesdell (1954).

4When orienting time along the vertical axis, then the tangent to the trajectory is actually the inverse velocity:
slope = dt/dx = 1/u. We follow the convention used in special relativity, where the trajectory is known as the
world line, and world lines live within the cone bounded by the world line of photons.

5Our definition of fluid particle agrees with Section 2.2 of Pope (2000).
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Figure 17.1: Schematic of the motion in space-time for the conceptual systems used in our considerations of
fluid kinematics. Left panel: a fluid particle has zero spatial extent and has zero impact on the flow. Its motion in
space-time defines a path/trajectory as determined by integral curves of the velocity field, v(x, t). Note that slope
of the curve on this space-time diagram is the inverse of the velocity: slope = dt/dx = 1/u. The trajectories of
fluid particles define the Lagrangian reference frame. Middle panel: a material fluid parcel is comprised of a fixed
material content (and thus a fixed mass) and fixed thermodynamic properties. Fluid parcels are infinitesimal
deformable regions of a perfect fluid whose motion within a straining velocity field changes the parcel’s shape.
The center of mass for the fluid parcel follows a path that is approximated by that of a fluid particle at the center
of mass. Right panel: a fluid element is comprised of a fixed mass but with matter and thermodynamic properties
exchanged across its boundary, here depicted by the loss of dark gray matter and increase of light gray matter
through exchanges with the surrounding fluid. The fluid element moves with the barycentric velocity (see Section
20.1), which is the center of mass velocity for the constituents contained in the fluid element. Both fluid parcels
and fluid elements change their shape in the presence of fluid strain. Over time, a fluid parcel and a fluid element
change their shape, with most realistic flows resulting in flows that require a reinitialization of the parcel/element
boundaries in order to maintain coherency as identifiable fluid regions.

to as an ideal fluid or equivalently a perfect fluid. We prefer the term perfect fluid to avoid
confusions with an ideal gas often found useful in studying the atmosphere. Namely, ideal gases
can posses irreversible processes so that they need not be perfect fluids.

Perfect fluid mechanics is concerned with motion of a homogeneous fluid (e.g., pure water or
pure air) with zero viscosity (no friction), and in the absence of any heat exchange (adiabatic).6 In
describing perfect fluids we commonly make use of material fluid parcels, which are infinitesimal
deformable fluid regions (middle panel in Figure 17.1). A material fluid parcel maintains a fixed
matter content so that it has a fixed mass. Furthermore, it does not experience irreversible
exchanges of momentum arising from friction since the perfect fluid has zero viscosity. Hence,
its only interaction with the surrounding fluid environment is through reversible mechanical
exchanges from pressure. The material fluid parcel is thus a closed thermodynamic system that
is open to reversible mechanical interactions.

A material parcel is not a point. Rather, it has an infinitesimal volume that deforms with the
flow. Conceptually we can imagine the material fluid parcel as a tiny region of fluid surrounded
by a perfectly slippery bag that is also perfectly insulating. This bag is closed to matter
exchange so that its enclosed fluid particles are not exchanced with surrounding environment.
Even so, the fluid parcel deforms in response to mechanical interactions mediated by pressure.
Additionally, the bag expands or contracts according to the density of the fluid within the
bag. This conceptual picture is qualified by noting that we never have occasion or need to
precisely specify the boundary of a material fluid parcel. Rather, we make use of the conceptual
framework provided by fluid parcels as a means to formulate the differential equations of perfect
fluid mechanics.

6We study frictional stresses arising from viscosity in Chapter 25, with viscosity the means for the irreversible
transfer of momentum within a non-perfect fluid. We study enthalpy in the Chapter 22, with a perfect fluid
maintaining constant enthalpy since it is entirely adiabatic.

CHAPTER 17. FUNDAMENTALS OF FLUID KINEMATICS page 423 of 2158



17.2. CONCEPTUALLY PARTITIONING THE CONTINUUM

17.2.3 Finite sized material objects in perfect fluids
Any extended region in a perfect fluid, either infinitesimal or finite, remains exactly coherent
(fixed matter content) as the region moves through the fluid. The reason for such coherency
is that a perfect fluid supports no mixing or other irreversible processes that would otherwise
act to diffuse the matter content. A closed material region in a perfect fluid is a finite volume
generalization of a material fluid parcel. Conversely, a material fluid parcel is the infinitesimal
limit of a closed material fluid region. Likewise, we can define finite sized material regions of
any shape, each of which retains a fixed mass and fixed matter content as it moves through a
perfect fluid. We study the kinematics of perfect fluid material lines, surfaces, and volumes in
Chapter 18.

17.2.4 Fluid elements in real fluids
A fluid element is an infinitesimal and deformable fluid region of fixed mass yet non-fixed matter
and non-fixed thermodynamic properties (right panel in Figure 17.1). For a homogeneous fluid
comprised of a single matter constituent and no irreversible processes, then a fluid element
reduces to a material fluid parcel. However, there is a distinction for real fluids such as the ocean
and atmosphere, both of which have multiple constituents and support irreversible processes.

The exchange of matter across the boundary of a fluid element arises from the irreversible
mixing of matter constituents within the fluid (Sections 20.1 and 68.3). As detailed in Section
20.1, diffusive matter exchange leaves the mass of the fluid element unchanged since the fluid
element velocity is determined by its center of mass (barycentric velocity). Just as for a material
fluid parcel, we have no need to experimentally specify the boundary of a fluid element. Instead,
fluid elements are conceptual systems used to formulate the differential equations of a real fluid.
Much of the kinematics in the current chapter holds for both material fluid parcels and fluid
elements. However, in Chapter 19 and elsewhere, we make the distinction when studying the
kinematics of multi-constituent fluids.

Many authors do not distinguish between material fluid parcels and fluid elements, choosing
instead to retain a single overloaded term for both a perfect fluid and real fluid. However, this
overloaded terminology can lead to confusion. We are thus motivated to maintain a distinction
between fluid parcel (single component perfect fluid with no mixing) and fluid element (multi-
component real fluid with mixing). The distinction offers an added signal for when the fluid
under study is perfect (fluid parcel) or real (fluid element).

17.2.5 Test fluid element in real fluids
A test fluid element is a fluid element that has no effect on the surrounding fluid environment
and is used as a conceptual probe of the fluid much like the fluid particle in Section 17.2.1.
Unlike the fluid particle, the test fluid element has nonzero spatial extent and it can exchange
matter and energy with its surrounding environment. The test fluid element is of particular use
when studying buoyancy in Chapter 30. In that context, we further refine our treatment of the
test fluid element, where we assume that it feels the same contact forces as the fluid, but distinct
body forces.7

17.2.6 Finite sized fluid region in real fluids
A finite sized region within a real fluid is the most general subsystem we consider, with the
region having boundaries that are open to the exchange of matter, mechanical forces, and
thermodynamic properties with the surrounding environment. Here, we are often concerned
with details of the region boundary and study the transport of properties across that boundary.

7We study contact and body forces in Sections 24.2 and 25.2.
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17.2.7 Comments
Throughout the study of fluid kinematics, it is important to maintain an appreciation for the
continuum approximation. In particular, the continuum approximation affords information
about the continuous velocity field at each point of space and each instance of time. The velocity
field allows us to determine fluid particle trajectories (via time integration), as well as the
motion of fluid parcels in perfect fluids and fluid elements in real fluids. As part of a diagnostic
framework for laboratory or field experiments, it can be useful to seed the fluid flow with a
large number of tiny objects that approximate fluid particles whose motion approximates fluid
particle trajectories. Similarly, in numerical experiments we may seed the flow with numerical
fluid particles and compute their trajectories (van Sebille et al., 2018). If we initially seed
these particles in a tiny region, then deformation of the region provides the means to study
deformation of fluid parcels and fluid elements as they move through the fluid. Likewise, seeding
particles over larger regions allows one to study how finite sized regions are deformed.

When thinking about fluids parcels and elements, we should acknowledge that they are
convenient concepts, and yet we do not delineate their boundaries either conceptually or in
practice. This situation contrasts the study of other areas of continuum mechanics, where
discrete regions of the media are identifiable. For a fluid, the notion of identifying a fluid element,
such as by wrapping a tiny region of fluid with an imaginary permeable sack, is a fiction that
works for some thought experiments, but it is not taken literally. The perspective leads us
to discount (i.e., consider incorrect) a description of continuum mechanics that depends on
fluid elements as distinct and identifiable objects. Rather, we aim for a theoretical description
independent of details for the fluid element boundaries. In this case, we are afforded the ability
to describe a fluid as continuum matter with properties that are unambiguously defined at every
point in the fluid.

17.3 Material and spatial coordinates
A material description is afforded by the Lagrangian reference frame, whereby each fluid particle
is labeled with a continuous material coordinate, a, along with a material time coordinate, T ,
thus leading to the a-space or material space description.8 This description complements the
Eulerian or x-space description, whereby each point in Euclidean space, x, is labeled by its
position relative to a fixed origin and with time, t. The a-space description determines the
history of each material fluid particle’s trajectory, whereas the x-space description determines
the fluid velocity as viewed at each spatial point x. Note that t = T since we are working with
universal Newtonian time. However, it is very useful to distinguish the two times, since when
taking time derivatives it is important to know whether the time derivative is computed holding
x fixed or a fixed.

17.3.1 Fluid particle trajectories
In describing the motion of a classical point particle (Chapter 13), we specify its spatial position
according to a time dependent position vector, X(T ). At a given time, T , the position vector
points to the spatial point x, in which case we write

x =X(T ) point particle. (17.1)

8The continuum mechanics literature often writes X rather than a for the material particle label. That
nomenclature is motivated since X is commonly chosen as the initial Cartesian position at a referential time. We
instead write the material coordinate as a. The reason for our notation is that, as noted in Section 17.3.2, there
are examples where one, two, or three of the a coordinates are not positions in Euclidean space, but instead are
determined by, for example, the buoyancy or tracer concentration.
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Figure 17.2: A short segment of a fluid particle trajectory in Euclidean space. The trajectory passes through the
point x = X(T ) at time T and x+ δx = X(T + δT ) at time T + δT . Eulerian kinematics describes the fluid flow
from the perspective of an observer fixed with respect to the laboratory frame. Lagrangian kinematics describes
the fluid flow from the perspective of an observer comoving with fluid particles. Note that we have here chosen an
origin for use in defining the fluid particle trajectory. If we only cared about the velocity, which is the difference
of the trajectory between two infinitesimally close time instants, then there is no need to prescribe a particular
origin. The reason is that in the process of computing the time difference, we remove dependence on the origin.

A sample trajectory is shown in Figure 17.2. We emphasize the notation convention used here,
which may seem pedantic but in later discussions proves essential. Namely, the time dependent
spatial position of a particle is denoted with, X(T ), whose instantaneous space position is
denoted by the lowercase, x. This convention aims to distinguish time dependent functions,
such as X(T ), from the value of these functions, x, evaluated at a time instance. In Section
18.2 we introduce the fluid motion, which serves as a slighly more formal, and general, means to
distinguish points on a particle trajectory from points in space.

When there are N discrete particles, we distinguish the various particle trajectories by
introducing a discrete label for each of the trajectories (e.g., see Section 11.5). The spatial
position of particle i at time T is thus written

x =X(i)(T ). (17.2)

When the matter is a continuum, then the discrete label becomes a continuous vector, a, which
is referred to as the material coordinate along with material time, T . At time T , the spatial
position of a fluid particle labelled by the material coordinate, a, is written

x =X(a, T ) continuum of matter. (17.3)

The continuous vector, a, labels a point of matter within the continuum fluid. Correspondingly,
by allowing time to progress, the function X(a, T ) provides the trajectory for the fluid particle
labelled by the material coordinate, a.

In this book we ignore special relativistic effects, so that both the material reference frame
and the laboratory reference frame measure the same universal Newtonian time, t = T . In
contrast, the spatial coordinates are distinct for the Eulerian and Lagrangian references frames.
Again, the spatial coordinates for the Eulerian frame are given by the position in Euclidean
space relative to a fixed laboratory frame, with this specification making use of any convenient
set of coordinates, such as Cartesian, spherical, polar, etc. (see Sections 4.21, 4.22, and 4.23).
The three components of a material Lagrangian coordinate, a, remain fixed according to the
value assigned to each fluid particle. Additionally, the three coordinates for both the Eulerian
and Lagrangian description must be linearly independent to allow for a unique specification of
the fluid particle.
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17.3.2 Example material coordinates
One common choice for material coordinate is the spatial position of each fluid particle at the
referential time,

a = (a, b, c) = (̊x, ẙ, z̊) = Cartesian position at T = t0 for particle labelled by a. (17.4)

Even if not making this choice, initial position coordinates are quite useful conceptually as a
grounding in the maths of material coordinates.

Now consider a perfect fluid (single material component with no irreversible processes). For
this fluid, the specific entropy of each fluid parcel remains fixed at its initial value. When the
fluid is placed in a gravitational field, layers of constant specific entropy are generally found to
be monotonically stacked, or stratified, in the vertical direction (Chapter 30). As a result, we
can uniquely specify a fluid parcel by giving its horizontal coordinate position, (x, y), as well as
the specific entropy. The material coordinates for a parcel can thus be written as

a = (a, b, c) = (̊x, ẙ, θ) = Cartesian horizontal and θ at T = t0, (17.5)

where θ is a measure of the specific entropy (or potential temperature as discussed in Section
23.3). In this example, the physical dimensions of the individual material coordinates can
generally differ. It is this generality that necessitates the use of general tensor methods when
developing the mechanical equations using arbitrary Lagrangian coordinates. The case of a
single Lagrangian coordinate combined with two horizontal Eulerian coordinates is commonly
used for geophysical fluid mechanics, with the mathematical physics of these generalized vertical
coordinates detailed in Part XII of this book.

In combination with using specific entropy as a generalized vertical coordinate, we might
further choose to specify a horizontal position according to the value of tracer concentration.
So long as there is a one-to-one mapping between tracer space and geographic space, then we
can consider a tracer concentration as a viable Lagrangian coordinate. This approach is less
common than the generalized vertical coordinate approach, since tracers are rarely monotonically
organized in any particular horizontal direction. Even so, the formalism can be extended to this
case.

17.4 Lagrangian and Eulerian time derivatives
As noted in Section 17.3.2, we assume non-relativistic motion so that the Lagrangian reference
frame and the Eulerian reference frame both measure the same universal Newtonian time, t.
However, when computing time derivatives, the Eulerian frame does so by fixing the space
coordinate, x, whereas the Lagrangian frame does so by fixing the material coordinate, a. These
two time derivatives generally measure distinct changes in the fluid since one is computed in
the laboratory frame and the other in the material frame. Relating their changes constitutes
a key result of fluid kinematics. We derive an expression for the relation by first focusing on
time derivatives acting on scalar fields, such as the temperature, and then derive the relation for
vector fields, such as the velocity.

17.4.1 Infinitesimal space-time increment of a function
Consider a fluid property as represented by a space-time dependent scalar field, Π. For example,
Π could be the temperature, kinetic energy per mass, or the mass density. When measured at a
point in space this fluid property is written mathematically as

Π = Π(x, t). (17.6)
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The difference between Π(x, t) and Π(x+ dx, t+ dt) delivers the differential space and time
increment, computed to leading order via a Taylor series expansion

dΠ = Π(x+ dx, t+ dt)−Π(x, t) (17.7a)

= dt ∂tΠ+ dx · ∇Π. (17.7b)

In this equation, dt is the infinitesimal time increment, and dx is the vector of infinitesimal
space increments. For example, making use of Cartesian coordinates leads to the increment

dx = x̂ dx+ ŷ dy + ẑ dz. (17.8)

We ignore higher order terms in equation (17.7b) since the space and time increments are
infinitesimal.9

17.4.2 Total time derivative of a function
In fluid mechanics, it is often useful to sample properties of the fluid from moving reference
frames. In this case, the sampling position is a function of time. Determining how a field evolves
when sampled in this moving reference frame requires us to allow the sampling position to itself
be a function of time. Operationally, we have the total time derivative of Π determined by
dividing both sides of equation (17.7b) by the infinitesimal time increment

dΠ

dt
=
∂Π

∂t
+

dx

dt
· ∇Π. (17.9)

The first term measures the time derivative of Π at the specific space point, x, and as such
it measures the Eulerian time derivative. The second term accounts for changes in Π arising
from movement of the reference frame relative to a point, x, according to the velocity, dx/dt.
Equation (17.9) holds regardless the velocity of the moving frame. Even so, we find it useful to
specialize to the two common reference frames used in fluid mechanics.

17.4.3 Eulerian: evolution measured in the spatial frame
The Eulerian time derivative considers the evolution of a fluid property when sampled at a fixed
space point

Eulerian time derivative =
∂Π(x, t)

∂t
. (17.10)

This result follows from specializing the total time derivative in equation (17.9) to the case of
fixed spatial points, so that dx/dt = 0. In the geophysical fluids literature, the Eulerian time
derivative is often termed the time tendency and flows with a nonzero time tendency are said to
be developing flows or evolving flows. When the Eulerian time derivative vanishes everywhere the
flow is said to be in a steady state or in a steady flow condition, with all points in the laboratory
frame measuring a zero time change for fluid properties. Note that steady flows are not generally
static; rather, they are simply unchanging locally.

17.4.4 Lagrangian: evolution measured in the material frame
The Lagrangian or material time derivative measures the evolution of a fluid property sampled
along the trajectory of a moving fluid particle. The Lagrangian time derivative for a field is

Lagrangian time derivative =
DΠ

Dt
=
∂Π

∂t
+ v · ∇Π. (17.11)

9Mathematically, equation (17.7b) defines the exterior derivative of a scalar field.
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+ v ⋅ ∇ =
D
Dt
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Lagrangian: following fluid particlesEulerian: fixed in space

Figure 17.3: Illustrating the distinctions between the Eulerian (laboratory) and Lagrangian (material) reference
frames for describing fluid motion. For the Eulerian description we consider a fixed control volume in the laboratory
frame and measure properties as the fluid moves through the volume. For the Lagrangian description we tag fluid
particles and measure fluid properties as sampled along the particle trajectories. The Eulerian representation of
the material time derivative has two terms, one due to time changes local to the fixed laboratory point, and one
due to the advection of properties that are swept by the local position.

The second equality follows by setting dx/dt = v in equation (17.9) since we are sampling
points along the fluid particle trajectory x =X(a, t). The operator ∂/∂t is the Eulerian time
derivative from equation (17.10), whereas v · ∇ is referred to as the advection operator. Use of
the capital D for the material time operator

D

Dt
=

∂

∂t
+ v · ∇ (17.12)

signals that the time derivative is computed along a fluid particle trajectory. This notation
distinguishes the material time derivative from the more generic total time derivative of equation
(17.9). In some texts the material time derivative is referred to as the convective time derivative,
since the term “convection” is often used rather than “advection”.10 It is also sometimes referred
to as the substantial time derivative since it refers to the time changes following a material
substance.

Equation (17.12) provides an Eulerian expression (right hand side) to the material time
derivative, D/Dt. There are two Eulerian contributions: the local (fixed space point) time
tendency ∂/∂t and advection, v · ∇. Advection arises in the Eulerian reference frame due
to the fluid passing by the fixed laboratory observer, whereas it is absent from the material
reference frame since the material frame moves with the fluid particles. Figure 17.3 illustrates
the differences between the Eulerian and Lagrangian perspectives.

A steady flow is one with zero Eulerian time derivatives so that a steady flow does not imply
a vanishing Lagrangian time derivative. Rather, a steady flow is a statement that the flow is
time independent when viewed from the Eulerian (laboratory) reference frame. Hence, a steady
flow generally has changing properties when sampled along a fluid particle trajectory. That
is, there can be a nonzero Lagrangian evolution (via advection) even when the Eulerian time
tendency vanishes.

17.4.5 Example material time derivative operations

The material time derivative operator is perhaps the most important operator in fluid mechanics,
and its relation to the Eulerian time derivative plus advection is a key result of fluid kinematics.
Therefore, it is critical to develop experience with this operator and its generalizations. The
examples here offer a starting point.

10In the geophysical fluids literature, “convection” generally refers to vertical motion induced by gravitational
instability, such as when heavy fluid is above light fluid. In contrast, the engineering literature often refers to
“convection” in the same manner as we use the term “advection.”
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Material invariant/constant

Consider a scalar function, Π(x, t), that remains constant on a material trajectory so that its
material time derivative vanishes

DΠ

Dt
= 0. (17.13)

Material constancy is generally referred to as material invariance. We may also say that the
property, Π, is materially constant. At a fixed point in space, a materially invariant property
has its Eulerian time derivative arising only via advection

∂Π

∂t
= −v · ∇Π. (17.14)

For geometric insight into relation (17.14), introduce the unit normal vector to the surface
of constant Π

n̂ =
∇Π
|∇Π| . (17.15)

Material invariance of Π thus means that the normalized Eulerian time tendency equals to the
negative of the projection of the fluid velocity into the direction normal to constant Π surfaces

∂Π/∂t

|∇Π| = −v · n̂. (17.16)

That is, the normal projection of the fluid velocity, v, is matched precisely to the moving surface
of constant Π. No fluid particles cross the surface. We return to this result in Section 19.6.2
when studying the kinematic boundary conditions at a variety of surfaces.

Time derivative measured in an arbitrary moving frame

Now consider a reference frame moving at an arbitrary velocity, v(s). Examples include the
quasi-Lagrangian reference frames of a float in the ocean or balloon in the atmosphere. Due to
their finite size and associated drag effects, these objects only approximate material particle
motion, so that v(s) ̸= v. Returning to the general expression (17.9) for the total time derivative,
we have the time derivative operator as measured in this non-material moving reference frame

v(s)

Dt
=

∂

∂t
+ v(s) · ∇. (17.17)

A function that remains constant within this general moving frame thus satisfies

v(s)Π

Dt
= 0 =⇒ ∂Π

∂t
= −v(s) · ∇Π. (17.18)

Introducing the normal direction n̂ = |∇Π|−1∇Π leads to

∂Π/∂t

|∇Π| = −v(s) · n̂, (17.19)

which is an analog to the material invariance condition (17.16).
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17.4.6 Worked example: velocity and acceleration from a trajectory

Following example 3.2 from Kundu et al. (2016), consider a one-dimensional fluid motion whereby
the trajectory of a fluid particle is given by

X(t) = x̂X(t) = x̂
[
K (t− t0) + x30

]1/3
, (17.20)

where K is a constant with dimensions volume per time and x0 is the particle position at time
t = t0. The particle velocity and particle acceleration are determined through time differentiation

dX

dt
= x̂

K

3X2
and

d2X

dt2
= −x̂ 2K2

9X5
. (17.21)

The Eulerian velocity field is then determined by

v(x, t) ≡
[
dX

dt

]
x=X(t)

= x̂
K

3x2
, (17.22)

which reveals that the flow is steady since there is no time dependence to the Eulerian velocity
field. The Eulerian acceleration is given by the material time derivative of the Eulerian velocity,
which is equal to the second time derivative of the trajectory evaluated at the field point

Du

Dt
=
∂u

∂t
+ v · ∇u = 0 + u ∂xu = −[K/(3x2)] [(2K)/(3x3)] = −2K2

9x5
=

[
d2X(t)

dt2

]
x=X(t)

.

(17.23)

17.4.7 Material time derivative of a vector field

We now develop the material time derivative of a vector field, such as the velocity. We expect
there to be a bit more baggage to carry around since a vector field representation requires
basis vectors, with such vectors generally a function of space and time. Indeed, as we see, the
application to a vector field requires the covariant derivative operator from Section 4.11.

To start, consider Cartesian coordinates in Euclidean space. There is no special treatment
needed in this case, in which each component of a vector field, G = x̂G1 + ŷG2 + ẑG3, has a
material time derivative

DGm/Dt = (∂t + v · ∇)Gm = (∂t + vn ∂n)G
m. (17.24)

That is, for Cartesian coordinates in Euclidean space, each component of a vector field has a
material time derivative with the same form as that for a scalar field. Extending to arbitrary
coordinates requires us to take into account the space-time dependence of the basis vectors used
to represent a vector. The same ideas arose in Chapter 13 when deriving expressions for the
velocity and acceleration of a particle using spherical coordinates.

So let us write the vector field according to

G = Gm em, (17.25)

where em are basis vectors for the chosen coordinate system. In order for the material time
derivative of a vector field to itself be a tensor, we need to use the covariant derivative as part of
the advection operator, so that we have

D

Dt
= ∂t + vn∇n, (17.26)
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so that
DG

Dt
= (∂t + vn∇n) (Gm em). (17.27)

For Cartesian coordinates, the basis vectors, em, are space-time constants, in which case we
recover equation (17.24). For more general Eulerian coordinates, the basis vectors are time
independent so that

DG

Dt
= em (∂t + vn∇n)Gm Eulerian coordinates. (17.28)

This result noted that the covariant derivative of the basis vectors vanishes, ∇nem = 0, which
follows since the metric tensor also has a zero covariant derivative (Section 4.13). Also in
equation (17.28) we introduced the covariant derivative acting on a vector component

∇nGm = ∂nG
m + ΓmnpG

p, (17.29)

and with Γmnp = Γmpn the Christoffel symbols (Section 4.11) that measure the spatial dependence
of the basis vectors

∂nem = Γpnm ep. (17.30)

In spherical coordinates the basis vectors are time independent, in which case ∂tem = 0.
However, this time derivative term is present in some other coordinates, such as the generalized
vertical coordinates studied in Part XII of this book. So for the case of generalized vertical
coordinates, the basis vectors are time dependent so that the material time derivative of a vector
is

DG

Dt
= Gm ∂tem + em (∂t + vn∇n)Gm. (17.31)

17.4.8 Summarizing some terminology
We here summarize some terminology used to refer to the variety of equations in geophysical
fluid mechanics. Some of this terminology was introduced in this chapter, whereas others will be
encountered later.

• prognostic: This is an equation that determines the time tendency (Eulerian evolution)
of a quantity such as the temperature or velocity.

• diagnostic: This is an equation that determines the value of a field at a particular
time instance. An example is the non-divergence condition satisfied by velocity in an
incompressible flow (Chapter 21) as well in a Boussinesq ocean (Chapter 29). There are
generally no time derivatives appearing in diagnostic equations, though this property is
generally a function of the chosen coordinate system.

• steady state: All Eulerian time derivatives vanish, so that all fluid properties are time
independent when measured in the laboratory frame.

• material invariance: The Lagrangian time derivative vanishes for a property that is a
material invariant.

17.5 Galilean transformation
Recall from Section 11.1.3 that Galilean invariance means that the laws of motion are the same
in all inertial reference frames. Furthermore, two inertial reference frames can only be moving
with a constant velocity relative to one another. As for the particle, Galilean invariance for a
fluid means that the material acceleration of a fluid particle remains the same when viewed in
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Figure 17.4: Illustrating the Galilean transformation between two inertial reference frames. The time coordinate
is unchanged, t = t, whereas space coordinates are related by x = x−U t with U a constant boost velocity. We
refer to the barred frame as the boosted reference frame and the unbarred frame as the rest frame, though since
both frames are inertial there is no unique rest frame.

an arbitrary inertial reference frame. Some care is required when translating this invariance
into a mathematical statement when decomposing the material acceleration into its Eulerian
components. Our considerations here provide a useful warmup to the more general discussion in
Section 17.6, where we transform space and time derivative operators between an inertial frame
and a rotating frame.

Operationally, we determine whether an equation is Galilean invariant by examining the
differential operators appearing in the equation. Hence, in the following we examine how
differential operators transform when moving to a Galilean boosted reference frame. We then
examine how the material time operator transforms, since this operator appears in the calculation
of velocity and acceleration.

17.5.1 Specifying the Galilean transformation

A Galilean transformation is illustrated in Figure 17.4 and it is given mathematically by the
linear space-time transformation

t = t and x = x−U t and v = v −U . (17.32)

We say that the barred coordinates measure space and time in the moving (boosted) reference
frame and the unbarred coordinates measure space and time in the rest (unboosted) frame. As
time increases, fixing a position, x, in the boosted frame, so that v = 0, is equivalent to moving
with velocity v = U in the unboosted frame. Conversely, fixing a position, x, in the rest frame,
so that v = 0, is equivalent to movement with velocity v = −U in the boosted frame.

Since both reference frames are inertial, there is no experiment on a Galilean invariant
physical system that can determine which frame is at rest or which is moving. Instead, what is
relevant is that the two inertial frames are moving relative to one another. Furthermore, note
that time remains unchanged (universal Newtonian time), whereas the position of a point in the
new frame equals to that in the original reference frame plus a contribution from the constant
velocity, U . The inverse transformation is trivially given by

t = t and x = x+U t and v = v +U . (17.33)

17.5.2 Transformation matrix

We make use of the transformation matrix formalism to derive relations between the partial
differential operators, with details of the transformation matrix presented in Section 4.9. The
reader having skipped that section should still be able to understand the gist of the following.
For simplicity we work in the 1+1 dimensional case with time along with one space dimension.

Writing the space and time coordinates as

(t, x) = (x0, x1) and (t, x) = (x0, x1) (17.34)
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renders the transformation of partial derivatives (following the chain rule)

∂

∂xα
=
∂xα

∂xα
∂

∂xα
, (17.35)

where α = 0, 1 is a tensor index that has α = 0 for the time coordinate. The transformation
matrix for the Galilean transformation is thus given by the 2× 2 matrix

∂xα

∂xα
=

[
∂x0/∂x0 ∂x0/∂x1

∂x1/∂x0 ∂x1/∂x1

]
=

[
1 0
−U 1

]
, (17.36)

and the inverse is
∂xα

∂xα
=

[
1 0
U 1

]
. (17.37)

The Jacobian determinant of the transformation matrix is unity, so that the Galilean transfor-
mation always has an inverse.

17.5.3 Transforming the differential operators
Given the transformation matrix, we can compute the Eulerian time derivative as measured in
the moving frame by using the chain rule

∂

∂x0
=
∂x0

∂x0
∂

∂x0
+
∂x1

∂x0
∂

∂x1
=

∂

∂x0
+ U

∂

∂x1
=

∂

∂t
+ U

∂

∂x
. (17.38)

In words, this identity says that the time derivative computed between two inertial reference
frames differs due to an advective term (with the constant Galilean boost velocity) arising from
the relative motion of the two inertial observers. A time derivative measured in the boosted
reference frame keeps the position, x, fixed, so that even if ∂t is zero, we can still have a nonzero
∂t due to advection, U ∂x.

In the same manner we find that the space derivatives are related by

∂

∂x1
=
∂x0

∂x1
∂

∂x0
+
∂x1

∂x1
∂

∂x1
=

∂

∂x1
. (17.39)

Evidently, the space derivative operator remains form invariant under a Galilean transformation.
This result holds also for the other two space dimensions.

Bringing pieces together we find that the material time derivative operator is form invariant
under a Galilean transformation

D

Dt
=

∂

∂t
+ v · ∇ (17.40a)

=
∂

∂t
−U · ∇+ (v +U) · ∇ (17.40b)

=
∂

∂t
+ v · ∇ (17.40c)

=
D

Dt
, (17.40d)

where we used the shorthand

v · ∇ = u
∂

∂x1
+ v

∂

∂x2
+ w

∂

∂x3
. (17.41)

So although the individual pieces to the material time operator are modified by a Galilean
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transformation, the material time derivative operator is form invariant. Hence, if a scalar function
has a material time derivative in one inertial reference frame, it has the same material time
operator in any other inertial reference frame. To be more precise, let F represent some scalar
property. When measured at a space-time point (P, t) using the coordinate system, xα = (x, t),
we write11

F(P, t) = F (x, t), (17.42)

and its material time derivative is

DF (x, t)

Dt
= (∂t + vm ∂m)F. (17.43)

Likewise, when evaluated at the same point but using the boosted coordinates, xα = (x, t), then

F(P) = F (x, t), (17.44)

with its material time derivative

DΠ(P)

Dt
= (∂t + vm ∂m)F . (17.45)

We provide an explicit example in Exercise 17.6.

17.5.4 Comments

There are many features of geophysical fluid flows that break Galilean invariance. For example,
a solid boundary breaks Galilean invariance since it establishes a special reference frame and
thus breaks the symmetry of unbounded space. Additionally, a rotating planet distinguishes
between longitude and latitude even if the planet is perfectly smooth. Nonetheless, as a starting
point in our study of the equations of fluid mechanics it is useful to establish their properties
under a Galilean transformation. In general, if space is Galilean invariant and yet the equations
of motion are not, then we question the physical relevance of the equations. Exercise 38.11
provides an example of this reasoning.

There are further symmetries of the equations of fluid mechanics, especially when there is no
dissipation (inviscid). Section 2.2 of Frisch (1995), Section 2.9 of Pope (2000), and Section 1.4
of Badin and Crisciani (2018) provide a discussion of these further symmetries.

17.6 Transforming the material time derivative
In the discussion of Galilean invariance in Section 17.5, we showed that the material time
derivative operator remains form invariant under changes to the inertial reference frame. Here,
we consider an arbitrary transformation, with a focus on its action on a scalar field. The
development offers a case study for how to transform from one reference frame to another.

17.6.1 Definition of the material time derivative

We first determine the transformation by focusing on the conceptual definition of the material
time derivative. Namely, the material time derivative measures time changes of a fluid property
in the reference frame comoving with a fluid particle. The Lagrangian reference frame follows
fluid particles, so it is the natural reference frame for measuring material time changes. In
contrast, the Eulerian reference frame is fixed in a laboratory. The material time derivative

11Recall the notational convention from Section 1.5.1.
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acting on a scalar when computed from the laboratory reference frame consists of an Eulerian
time tendency plus an advection operator

D

Dt
=

∂

∂t
+ v · ∇. (17.46)

Importantly, this expression holds regardless the choice of laboratory reference frame, either
inertial or non-inertial. The particle reference frame is unconcerned with the subjective choice
made by the observer in the laboratory reference frame. Our choice of laboratory frame only
impacts on the form of the Eulerian time derivative and on the advection operator. The sum of
the two terms returns the same material time derivative operator, no matter what laboratory
frame is chosen.

17.6.2 Example: a rotating reference frame

Consider two reference frames. The first is at rest and so serves as an inertial frame, whereas the
second is rotating (and thus non-inertial) with rotational axis aligned with the vertical direction
as in Figure 4.3. Introduce Cartesian coordinates for the inertial frame, with corresponding
basis vectors (x̂, ŷ, ẑ). Let these inertial frame unit vectors be related to rotating frame unit
vectors according to

x̂ = x̂ cosϑ− ŷ sinϑ (17.47a)

ŷ = x̂ sinϑ+ ŷ cosϑ (17.47b)

ẑ = ẑ, (17.47c)

and let time be the same in the two reference frames. The angle ϑ measures the counter-clockwise
angle between the inertial frame direction x̂ and the moving frame direction x̂, with this angle a
linear function of time

ϑ = Ω t. (17.48)

The above relations between the two sets of basis vectors translates into the same relations
between the corresponding coordinate representations for an arbitrary vector. Including time,
we have the relation between inertial coordinates (the barred frame) and rotating coordinates
(unbarred frame)

t = t (17.49a)

x = x cosϑ− y sinϑ (17.49b)

y = x sinϑ+ y cosϑ (17.49c)

z = z. (17.49d)

The inverse transformation can be easily found

t = t (17.50a)

x = x cosϑ+ y sinϑ (17.50b)

y = −x sinϑ+ y cosϑ (17.50c)

z = z. (17.50d)

We are now prepared to make use of the transformation formalism developed in Section
4.9, and applied for the Galilean transformation in Section 17.5. We include time as part of
the formalism by introducing the Greek label α = 0, 1, 2, 3 so that the transformation matrix
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between the inertial frame and rotating frame is given by

∂xα

∂xα
=


∂x0/∂x0 ∂x0/∂x1 ∂x0/∂x2 ∂x0/∂x3

∂x1/∂x0 ∂x1/∂x1 ∂x1/∂x2 ∂x1/∂x3

∂x2/∂x0 ∂x2/∂x1 ∂x2/∂x2 ∂x2/∂x3

∂x3/∂x0 ∂x3/∂x1 ∂x3/∂x2 ∂x3/∂x3

 =


1 0 0 0
−Ω y cosϑ − sinϑ 0
Ωx sinϑ cosϑ 0
0 0 0 1

 . (17.51)
Similarly, the inverse transformation is given by

∂xα

∂xα
=


∂x0/∂x0 ∂x0/∂x1 ∂x0/∂x2 ∂x0/∂x3

∂x1/∂x0 ∂x1/∂x1 ∂x1/∂x2 ∂x1/∂x3

∂x2/∂x0 ∂x2/∂x1 ∂x2/∂x2 ∂x2/∂x3

∂x3/∂x0 ∂x3/∂x1 ∂x3/∂x2 ∂x3/∂x3

 =


1 0 0 0
Ω y cosϑ sinϑ 0
−Ωx − sinϑ cosϑ 0
0 0 0 1

 . (17.52)
The derivative operators transform according to

∂

∂xα
=
∂xα

∂xα
∂

∂xα
, (17.53)

in which case

∂

∂t
=

∂

∂t
+ (Ω× x) · ∇ (17.54a)

∂

∂x
= cosϑ

∂

∂x
+ sinϑ

∂

∂y
(17.54b)

∂

∂y
= − sinϑ

∂

∂x
+ cosϑ

∂

∂y
(17.54c)

∂

∂z
=

∂

∂z
. (17.54d)

The velocity vector components transform according to

vα =
∂xα

∂xα
vα, (17.55)

so that

v0 = v0 (17.56a)

u = Ω y + u cosϑ+ v sinϑ (17.56b)

v = −Ωx− u sinϑ+ v cosϑ (17.56c)

w = w, (17.56d)

where
v0 = v0 = 1. (17.57)

Bringing these result together leads to the transformation of the horizontal advection operator

u
∂

∂x
+ v

∂

∂y
= (u−Ω× x) · ∇. (17.58)

Combining this result with the transformed Eulerian time derivative leads to the material time
derivative

D

Dt
=

∂

∂t
+ v · ∇ (17.59a)
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=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(17.59b)

=
∂

∂t
+ (Ω× x) · ∇+ (u−Ω× x) · ∇+ w

∂

∂z
(17.59c)

=
∂

∂t
+ v · ∇. (17.59d)

As advertised, the operator is form invariant under time dependent transformations to a non-
inertial reference frame.

17.6.3 Invariance using space-time tensors
We can generalize the previous result by writing the material time derivative operator using
space-time tensor notation from Section 3.5.4, in which case

D

Dt
=

∂

∂t
+ v · ∇ =

∂

∂x0
+ vm

∂

∂xm
= vα

∂

∂xα
, (17.60)

where we introduced the velocity 4-vector

(v0, v1, v2, v3) = (1, v1, v2, v3). (17.61)

All space-time indices are contracted in equation (17.60), which means the material time
derivative is a space-time scalar. Consequently, we can change coordinates or change reference
frames without changing the material time operator.

We verify the above conclusion via the following manipulations using the chain rule

D

Dt
= ∂0 + vm ∂m (17.62a)

= Λα0 ∂α + Λaα v
α Λβa ∂β (17.62b)

= Λα0 ∂α + Λaα Λ
β
a v

α ∂β, (17.62c)

where we wrote the transformation matrix and its inverse in the form (see Section 4.1.4 for more
details)

Λαα ≡
∂xα

∂xα
and Λαα ≡

∂xα

∂xα
. (17.63)

Next make use of the identity

Λaα Λ
β
a = Λαα Λ

β
α − Λ0

α Λ
β
0 a = 1, 2, 3 and α = 0, 1, 2, 3 (17.64a)

= δβα − Λ0
α Λ

β
0 Λαα Λ

β
α = δβα by chain rule (17.64b)

= δβα − δ0α Λ
β
0 Λ0

α = δ0α for Newtonian time. (17.64c)

Use of this identity in equation (17.62c) renders

D

Dt
= Λα0 ∂α +

[
δβα − δ0α Λ

β
0

]
vα ∂β (17.65a)

= Λα0 ∂α + vα ∂α − v0 Λβ0 ∂β (17.65b)

= vα ∂α (17.65c)

= ∂t + va ∂a, (17.65d)

where we used v0 = 1. This proof means that the material time derivative remains form invariant

page 438 of 2158 geophysical fluid mechanics



17.7. FLUID FLOW LINES

no matter what coordinate choice is made for the laboratory reference frame.

17.6.4 Comments
As argued at the start of this section, there is no reason for a time derivative computed in a
material frame to be concerned with the coordinates chosen for the laboratory frame. Hence, we
expect there to be form invariance across all chosen laboratory coordinates. It is satisfying to
see the tools of coordinate transformations put to use verifying this result.

17.7 Fluid flow lines
There are three types of flow lines commonly used to visualize fluid motion: pathlines, streamlines,
and streaklines. These flow lines are identical for time independent (steady) flow, where steady
flow means that all fields are constant in time when observed in the Eulerian reference frame.
However, these flow lines differ for unsteady flow. They each offer complementary information
about the flow field, and have uses in both theoretical and experimental contexts. We have use
for pathlines and streamlines in this book, yet also introduce streaklines for completeness.

17.7.1 Material pathlines from fluid particle trajectories
As introduced in Section 17.3.1, a fluid particle traces out a trajectory as it moves through space
and time (Figure 17.2). We use the term material pathline for a fluid particle trajectory, with a
collection of pathlines providing a means to visualize fluid particle motion throughout the flow.
In this book we are only concerned with smooth velocity fields, which allow for an unambiguous
specification of the particle trajectory at each point of the fluid.

As introduced in Section 18.3.2, a fluid particle trajectory is a curve in space, φ(a, T ), that
is traced by fixing the material coordinate, a, and letting time, T , advance.12 Trajectories are
computed by time integrating the ordinary differential equation

∂φ(a, T )

∂T
= v[φ(a, T ), T ] (17.66a)

φ(a, T = t0) = a, (17.66b)

where the Lagrangian velocity of the fluid particle is written as the Eulerian velocity when
evaluated on a trajectory13

vL(a, T ) = v[x = φ(a, T ), t = T ], (17.67)

and we have assumed the material coordinates are known at some arbitrary initial time, T = t0.
Again, the partial time derivative is computed with the material coordinate held fixed, so that
the material coordinate distinguishes between particle trajectories.

Since the trajectory is determined by integrating the ordinary differential equation (17.66a),
the fluid particle trajectory provides an integral curve for the velocity vector. Furthermore, by
construction, trajectories are tangent to the velocity field at each point, and there is a trajectory
that passes through each point of space at each time instance.

In the laboratory, we can insert tiny particles into the fluid to offer a means for visualizing
the flow, with a time exposed photograph providing an estimate of fluid particle pathlines.
Experimental particles provide an accurate estimate of fluid particle pathlines if the particles do

12As studied in Chapter 18, trajectories are the Euclidean space manifestation of the flow map, which acts to
smoothly deform the matter continuum through space as the fluid moves. For this reason, we sometimes write
φ(a, T ) = X(a, T ) to correspond to the particle mechanics studied in Part II of this book.

13We have more to say about equation (17.67) in Chapter 18.
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Figure 17.5: This image shows an example streamtube. The side boundaries of a streamtube consist of
streamlines. At each point of a streamline, the local tangent vector equals to the velocity field (see equation
(17.69)). Streamlines are identical to pathlines only for steady flow; they differ for unsteady flows. Hence, for
unsteady flows, particle trajectories generally cross through the streamtube boundary.

not disperse through diffusion (see Chapter 69). As another example, consider cars moving at
night with a time exposed photograph revealing pathlines formed by car head and tail lights.
Like cars, the material pathlines in a fluid can intersect, cross, and become quite complex,
particularly when the flow is turbulent.

17.7.2 Fluid streamlines and streamtubes

Streamlines are curves whose tangent is parallel to the instantaneous fluid velocity field. Stream-
lines can intersect only at a stagnation point; i.e., a point where the fluid is not moving.
Let

dx = x̂ dx+ ŷ dy + ẑ dz (17.68)

be an infinitesimal increment along a streamline written using Cartesian coordinates. The family
of streamlines at a given time, t, satisfy the tangent constraint

v × dx = 0, (17.69)

which is equivalent to
dx

u(x, t)
=

dy

v(x, t)
=

dz

w(x, t)
. (17.70)

Alternatively, we can introduce a pseudo-time parameter, s, that determines a position along a
streamline. Streamlines are the curves x = φ(s;a, t) computed with (a, t) held fixed, but with
the pseudo-time varied

∂φ(s;a, T )

∂s
= v[φ(s;a, T ), T ] (17.71a)

φ(s = 0;a, T ) = a. (17.71b)

Again, both the material coordinate a and time T are held fixed when determining streamlines,
so that (a, T ) act as parameters to distinguish streamlines. Streamlines thus do not know about
the time evolution of unsteady flow. Instead, streamlines only sample a snapshot of the velocity
field; they are freshly computed at each time instance.

A streamtube is a bundle of streamlines crossing through an arbitrary closed curve (see
Figure 17.5). Hence, at each time instance, streamtube sides are parallel to the velocity vector.
Furthermore, when the flow is steady then streamlines are identical to material particle pathlines.
Hence, a streamtube is a material tube for steady flow, in which case no fluid particles cross the
streamtube boundary.
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Figure 17.6: A suite of trajectories emanating from a single point. Common approximate realizations include
the paths of fluid particles that leave a chimney, or the smoke from a source like a burning stick or torch. A
streakline is defined as the accumulation of positions at time T of particles that passed through the common point
at some earlier time s < T .

17.7.3 Distinguishing streamlines and pathlines
The tangent to a streamline gives the velocity at a single point in time, whereas the tangent to
a material pathline (i.e., a trajectory) gives the velocity at subsequent times. These tangents
are identical when the flow is steady. However, if the flow is time dependent (unsteady), then
streamlines differ from material pathlines. Furthermore, for unsteady flow, the pseudo-time
parameter, s, determining the streamlines in equation (17.71a) is not equal to the time, t, used
to compute fluid particle trajectories in equation (17.66a). Consequently, the condition v · n̂ = 0
satisfied at each time instance by a streamline still allows fluid particles to cross streamlines.
The reason is that a material pathline moves with the fluid in such a way that

(v − vline) · n̂ = 0 =⇒ v · n̂ = vline · n̂ material lines, (17.72)

where vline is the velocity of a point on the material pathline. The material pathline thus moves
so that no fluid particles cross it. Only when the flow is steady, so that vline · n̂ = 0, will material
pathlines and streamlines be equal. That is, the streamline constraint v · n̂ = 0 is not a material
constraint when vline · n̂ ̸= 0. The key point is that streamlines do not probe the time behavior
of the flow, so they do not know whether the velocity is steady or unsteady.

17.7.4 Fluid streaklines
A streakline is a curve obtained by connecting the positions for all fluid particles that emanate
from a fixed point in space (see Figure 17.6). Streaklines are simple to define conceptually and
to realize experimentally. However, they are a bit convoluted to specify mathematically. We
present two formulations.

At any time T , the streakline passing through a fixed point y is a curve going from y to
φ(y, T ), the position reached by the particle initialized at T = 0 at the point y. A particle is
on the streakline if it passed the fixed point y at some time between 0 and T . If this time was
s, then the material coordinate of the particle would be given by a(y, s) relating the material
coordinate to its corresponding laboratory position). Furthermore, at time T , this particle is at
x, so that the equation of the streakline at time T is

x = φ[a(y, s), T ] 0 ≤ s ≤ T. (17.73)

We can connect the streakline specification to that given for a pathline and streamline
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through the following. A streakline at some time instance T̃ is a curve defined by fixing T̃ and
varying s over s ≤ T̃ in the function φ(s;a, T̃ ). We determine the curves x = φ(s;a, T̃ ) by
solving the following set of initial value problems for trajectories with initial conditions imposed
at T = s rather than T = 0

∂φ(s;a, T )

∂T
= v[φ(s;a, T ), T ] (17.74a)

φ(T = s;a, T ) = a. (17.74b)

Note that a remains fixed, as we start all trajectories determining a streakline from the same
initial point (e.g., the chimney does not move). A streakline can thus be generated by emitting
a dye from a point over a time interval equal to the range of s, with the dye following fluid
particle trajectories.

17.7.5 An analytic example of flow lines

Consider the following two-dimensional example as taken from Section 4.13 of Aris (1962). Let
the Eulerian velocity field be given by

u =
x

τ + t
and v =

y

τ
and w = 0, (17.75)

where τ > 0 is a constant with the dimensions of time. Also write X(a, T ) = φ(x, T ) for the
trajectories, with t = T the time coordinate.

Pathlines

Pathlines are determined by solving the trajectory equations

dX(T )

dT
=
X(T )

τ + T
and

dY (T )

dT
=
Y (T )

τ
and

dZ(T )

dT
= 0, (17.76)

which are found to be

X(T ) = X0 (1 + T/τ) (17.77a)

Y (T ) = Y0 e
T/τ (17.77b)

Z(T ) = Z0, (17.77c)

where X(T = 0) =X0. Sample trajectories are shown in Figure 17.7 over time T ∈ [0, 2]. We
can eliminate time to yield a curve in the horizontal (x, y) plane

y = Y0 e
(x−X0)/X0 . (17.78)

Streamlines

Streamlines are determined by solving the differential equations

dX(s;T )

ds
=
X(s;T )

τ + T
and

dY (s;T )

ds
=
Y (s;T )

τ
and

dZ(s;T )

ds
= 0, (17.79)
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Figure 17.7: Left panel: sample pathlines X(T ) = X0 (1+T/τ) and Y (T ) = Y0 e
T/τ (see equations (17.77a) and

(17.77b)) during times T ∈ [0, 2τ ]. The trajectories drawn here all start at X0 = 1 and set the parameter τ = 1.
Note that those pathlines with X0 = 0 remain on the y-axis, and those with Y0 = 0 remain on the x-axis. Middle
panel: Sample streamlines X(s;T ) = X0 e

s/(τ+T ) and Y (s;T ) = Y0 e
s/τ (see equations (17.80a) and (17.80b). We

set T = 2 and let the pseudo-time run from s ∈ [0, 4]. All streamlines shown here start at X0 = 1. Note that those
that start with X0 = 0 remain on the y-axis, and those that start with Y0 = 0 remain on the x-axis. Right panel:
sample analytic streakline (dark bold line) at T = 2 according to equations (17.83a) and (17.83b). This streakline
is determined by the position of particles at T = 2 that pass through (X,Y ) = (1, 1) during times t ∈ (−∞, 2).
We show three sample trajectories that fall onto the streakline. The longest trajectory starts at (X,Y ) = (1, 1) at
T = 0, whereas the two shorter trajectories pass through (X,Y ) = (1, 1) at some time 0 < T < 2. Notice the
distinction between all three flow lines, which is to be expected since the flow field is unsteady.

where time, T , is a fixed parameter whereas the pseudo-time, s, is varied. Integration renders
the streamlines

X(s;T ) = X0 e
s/(τ+T ) (17.80a)

Y (s;T ) = Y0 e
s/τ (17.80b)

Z(s;T ) = Z0. (17.80c)

Sample streamlines are shown in Figure 17.7. Note that we can eliminate the pseudo-time s to
render a curve in the horizontal (x, y) plane

y = Y0

[
x

X0

](τ+T )/τ
(17.81a)

z = Z0. (17.81b)

Streaklines

For streaklines, invert the trajectory expressions (17.77a)-(17.77b) to find the material coordinates
a(y, s) in the form

a1 =
y1

1 + s/τ
and a2 = y2 e

−s/τ and a3 = y3. (17.82)

We next evaluate the trajectory expressions (17.77a)-(17.77b) with a as the initial positions to
find the streaklines

X(s;a, T ) =
y1 (1 + T/τ)

1 + s/τ
(17.83a)

Y (s;a, T ) = y2 e
(T−s)/τ (17.83b)

Z(s;a, T ) = y3. (17.83c)
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Figure 17.7 illustrates the streakline for a particular point (X,Y ) = (1, 1).

17.7.6 Further study
A discussion of flow lines can be found in most books on fluid mechanics. The presentation here
borrows from Sections 4.11-4.13 of Aris (1962), Section 3.3 of Kundu et al. (2016), and online
lecture notes on fluid kinematics from Professor McIntyre of Cambridge University.

17.8 Exercises
exercise 17.1: Fluid velocity and acceleration derived from a trajectory
This exercise is based on Q1.6 of Johnson (1997). As described in this chapter, Eulerian
kinematics focuses on the velocity field, v(x, t), which provides the fluid velocity as a function
of the space and time. The complementary Lagrangian kinematics is based on describing fluid
motion from the perspective of a moving fluid particle labeled by a material coordinate, a. For
definiteness, let the material coordinate be the position of a fluid particle at some arbitrary
initial time, a =X0.

Consider the following expression for the position of a fluid particle

X(T ) = X(T ) x̂+ Y (T ) ŷ + Z(T ) ẑ = X0 e
2 (T/τ)2 x̂+ Y0 e

−(T/τ)2 ŷ + Z0 e
−(T/τ)2 ẑ, (17.84)

where τ is a constant with dimensions of time.

(a) Derive an expression for the Lagrangian velocity (i.e., velocity of the fluid particle),
V = Ẋ = dX/dT .

(b) Derive an expression for the Eulerian velocity field, v(x, t).

(c) Derive an expression for the Lagrangian acceleration, A = V̇ = dV /dT . To simplify the
expression, write A in terms of V , Ẋ, Ẏ , and Ż.

(d) Derive an expression for the Eulerian acceleration, which is given by the material time
derivative of the Eulerian velocity field,

Dv

Dt
= (∂t + v · ∇)v. (17.85)

(e) Show that the Lagrangian acceleration and Eulerian acceleration are the same when
evaluated at the same point in space and time,

Dv

Dt
= A if t = T and x =X(T ). (17.86)

exercise 17.2: Fluid velocity and acceleration derived from a trajectory
This exercise is just like Exercise 17.1, only with a different expression for the trajectory, and
here considering only a single space dimension. Following the example in Section 17.4.6, consider
the one-dimensional fluid particle trajectory

X(T ) = x̂X(T ) = x̂
[
k (T − t0)2 + x30

]1/3
, (17.87)

where k is a constant with dimensions L3 T−2, x0 is the particle position at time t0, and x̂ is
the fixed Cartesian unit vector.
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(a) Determine the velocity of the fluid particle.

(b) Determine the acceleration of the fluid particle.

(c) Determine the Eulerian velocity field.

(d) Determine the Eulerian acceleration field and show that it equals to the particle acceleration
when evaluated at the spatial point, x =X(T ).

exercise 17.3: Streamlines and pathlines
Consider the spatially constant oscillating horizontal velocity field

u = U [x̂ cos(ω t) + ŷ sin(ω t)], (17.88)

where U is the constant flow speed and ω is the angular frequency of the oscillating flow. In
this example we determine the streamlines and pathlines, which serves to clearly illustrate their
distinction for this spatially constant time dependent flow.

(a) Derive the equation y = y(x) for the streamline that passes through the origin at time
t = 0.

(b) Derive the equation for the pathline that passes through the origin at time t = 0. Write the
equation in a form that eliminates time, so to reveal the geometric shape of the pathlines.

exercise 17.4: Material evolution of the partial derivative of a function
In this exercise we establish some properties of the material time derivative operator when acting
on spatial derivatives of a scalar field.

(a) If a scalar field Π is materially constant, prove that the material evolution of its spatial
derivative is given by

D(∂iΠ)

Dt
= −∂iv · ∇Π. (17.89)

For example, if DΠ/Dt = 0, then the zonal partial derivative ∂xΠ has a material time
derivative given by

D(∂Π/∂x)

Dt
= −∂v

∂x
· ∇Π. (17.90)

(b) What is the material time derivative of ∇Π for the case that Π is not materially constant?
Write your answer in a manner that clearly shows that the partial space derivative does
not commute with the material time derivative. That is,

D(∂iΠ)

Dt
̸= ∂i

DΠ

Dt
. (17.91)

Show what term appears on the right hand side to produce an equality.

Hint: Some might find it more suitable to first solve the general case. Also, use Cartesian tensors
for convenience.

exercise 17.5: Surface moving with the fluid
This exercise is based on Q1.5 of Johnson (1997). Consider a non-dimensional velocity field (all
symbols are non-dimensional in this exercise)

v(x, y, z, t) = t (2x x̂− y ŷ − z ẑ) (17.92)
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and a surface defined by the function

F (x, y, z, t) = x2 e−2 t2 + (y2 + 2 z2) et
2
= constant. (17.93)

Show that
DF

Dt
= (∂t + v · ∇)F = 0, (17.94)

which means that the surface follows fluid particles.

exercise 17.6: Tracer concentration and a Galilean transformation
Consider a tracer concentration written using (x, t) coordinates14

Π(x, t) = Π0 e
−x2/(4κ t), (17.95)

where Π0 is a constant and where κ is a constant diffusivity with dimensions of L2 T−1.

(a) Compute the material time derivative, DΠ/Dt, with an assumed zero fluid flow.

(b) Perform a Galilean boost to a reference frame moving with constant velocity, U x̂. In this
frame the fluid velocity is no longer static, but is now seen to be moving. Compute the
material time derivative of Π(x, t) in this reference frame. Hint: you should find that

DΠ(x, t)

Dt
=

DΠ(x, t)

Dt
, (17.96)

where (x, t) are space-time coordinates in the rest frame, (x, t) are coordinates in the
boosted frame, and Π(x, t) is the functional representation of the tracer concentration in
the boosted frame.

Hint: make use of ideas detailed in Section 17.5

exercise 17.7: Unstated assumption in Lumley’s video
This 27-minute video on Eulerian and Lagrangian descriptions from Prof. Lumley offers a
pedagogical discussion of these two perspectives on fluid motion. However, there is one unstated
assumption in this video that limits the applicability of his expressions for the material time
derivative. What is that assumption? Hint: read Section 17.4.7.

14We study tracers in Chapter 20. No prior knowledge of tracers is needed for this exercise.
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Chapter 18

FLOW AND DEFORMATION

Motion of the matter continuum provides a flow map that continuously and smoothly reshapes
the continuum as time evolves. In this chapter we develop an understanding of how this
motion of the continuum, assumed to occur in Euclidean space, modifies geometric objects
and shapes placed in the flow. The kinematics of this modification is directly connected to
flow deformation, and we consider two methods to characterize deformation. One is based on
the motion field that produces a flow map of the continuum. This method makes use of the
deformation matrix (computed from derivatives of the flow map) that deforms material objects.
The second method (which is dual to the first) is based on the velocity gradient tensor, which is
conveniently decomposed into its symmetric component, the strain rate tensor (also called the
deformation rate tensor), and its anti-symmetric component known as the rotation tensor.

The kinematic ideas in this chapter make extensive use of material fluid particles as introduced
in Section 17.2.1. Fluid particles are mathematical points that move with the fluid flow, and
there is a continuum of such particles comprising any continuous region of fluid. We do not
ask questions about the number of such particles on a material object, nor do we question
whether particles are created or destroyed as a material object changes its length, area, or
volume. Instead, we make use of fluid particles as a conceptual construct to describe motion of
the continuum, and we use their trajectories to define the Lagrangian reference frame. Point
fluid particles are not approximations to molecules. Instead, they are mathematical constructs
that offer a lens to view motion of the matter continuum.

As part of a study of flow kinematics, we commonly consider thought experiments by
drawing an imaginary geometric object within a fluid and following the object as the fluid flows.
A particularly relevant object is one whose material points follow a fluid particle trajectory.
We study the kinematics of such material fluid objects by using rudimentary Lagrangian and
Eulerian methods. Extra attention is given to the kinematics of two-dimensional flow due to the
relative mathematical ease and the associated intuition that proves useful for more general three
dimensional flows.

reader’s guide for this chapter
This chapter builds from the kinematics of Chapter 17, and makes extensive use of both

the Eulerian and Lagrangian references frames. We assign the Latin labels i, j, k for the
spatial (Eulerian) description in x-space, whereas material (Lagrangian) labels use the capital
letters, I, J,K for a-space. Coordinates in both x-space and a-space sometimes assumed to be
arbitrary, so that we make use of notions from general tensor analysis as per Chapters 3 and
4, with distinctions made between covariant and contravariant labels enabling the Einstein
summation convention. We require tensor analysis to systematically transform between the
Eulerian and Lagrangian descriptions, and we review the salient formalism in this chapter as
applied to x-space and a-space.

Even so, at certain points we make use of Cartesian coordinates for the Eulerian space
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since doing so allows for the use of familiar notions from Cartesian tensor analysis (Chapter
2) when studying how points in the flow move relative to one another. Extending certain of
these kinematic concepts to general coordinates requires more mathematical apparatus than
considered in this book (e.g., Lie derivatives).

References for this chapter include the text by Salmon (1998), who provides an accessible
treatment of Eulerian and Lagrangian fluid mechanics. Chapter 4 of Aris (1962) treats fluid
kinematics in the context of tensor analysis. Chapter 4 of Malvern (1969), Chapters 1 and 2
of Tromp (2025a), and Tromp (2025b) provide insightful summaries of continuum kinematics,
with Eulerian (spatial) and Lagrangian (material) two of the four descriptions that have
found use in continuum mechanics. The other two descriptions are the referential description
and the relative description. We make some use of the referential description in Section 18.2,
which is commonly used in solid mechanics.
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18.1 Loose threads
• Convert Figure 18.6 into Keynote and gray shade the color.

18.2 Motion generates the flow map
The discussion in Section 17.3 is directly motivated by particle mechanics, and it serves as a
useful introduction to fluid kinematics. It also serves to emphasize the primary role of particle
trajectories for use in describing fluid motion through Euclidean space. In this section we
provide a more formal treatment building from particle trajectories. In particular, we present a
rudimentary mathematical structure framing the motion of continuum matter.

18.2.1 Defining the motion field and its flow map
The matter continuum moves through Euclidean space as Newtonain time progresses. We define
the motion field, φ, as the mathematical object that generates a nonlinear time dependent and
invertible flow map, with the map between the continuous matter distribution in a reference or
base state and the continuous matter distribution in a future state. That is, the motion field is
the reason there is a flow map, so that the nomenclature “motion field” and “flow map” are
used interchangeably in this book since they both refer to movement of the continuum.

We write the motion field or flow map as

x = φ(a, T ) and xi = φi(a, T ) for i = 1, 2, 3. (18.1)

The function, φ, has a nonlinear dependence on the material coordinate, aI , which labels a
material point in the continuum, as well as the material time, T . The uppercase index, I = 1, 2, 3,
is used for material coordinates. Equation (18.1) says that the spatial point, x, for a fluid
particle in the spatial manifold, S, is determined once we specify the material coordinate, a, and
the time, T = t. We thus conceive of the motion of the material continuum through Euclidean
space as providing the map that continuously and smoothly reshapes the material configuration.
We are only concerned in this book with evolution that renders no holes or rips in the matter
continuum; i.e., no discontinuities such as shocks in fluids or faults in solids.1 Hence, the flow

1Tromp (2025a) and Tromp (2025b) further generalizes the motion by working fully within the context of
manifolds and differential geometry, thus removing the need to conceive of the motion of particles in Euclidean
space. Besides allowing for the power of differential geometry, that level of abstraction allows Tromp (2025a)
and Tromp (2025b) to consider rips in matter continuum, thus opening up the formalism to treating faults and
earthquakes. For the present book, we do not employ that level of abstraction since the geophysical fluid motion
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T = t > tR

Figure 18.1: In the left panel, the matter continuum at reference time, T = tR, defines a reference or base
manifold, B. Each point in B is specified by its material (Lagrangian) coordinate, a, thus defining the a-space
descriptions. Within the base manifold we also depict a subregion, R(tR). The motion field, φ(a, T ), acts as a
one-to-one invertible flow map that smoothly evolves the matter continuum from the base manifold, B, to the
deformed or spatial manifold, S, at t = T > tR. The motion field also maps the subregion R(tR) of B to the
subregion R(t) of S. The inverse motion or inverse flow map, Φ, defines the one-to-one inverse flow map going
from S to B. A point on the spatial manifold is specified by its point in space, x, thus providing the Eulerian
x-space description. We here depict the a-space and x-space coordinates as orthogonal Cartesian coordinates, yet
they can be arbitrary coordinates by making use of the general tensor formalism in Chapters 3 and 4. Indeed, it
is common for the Lagrangian coordinates to have arbitrary physical dimensions (i.e., not length), as discussed in
Section 17.3.2.

map (18.1) is smooth, one-to-one, and invertible.2

We encountered the idea of motion creating a flow map when studying flow lines in Section
17.7. Namely, by fixing a particular material coordinate, a, and letting time progress, the flow
map, φ(a, T ), defines a fluid particle trajectory moving through Euclidean space

φ(a, T ) =X(a, T ). (18.2)

Given this identity, we could have maintained the notation for trajectories introduced in Section
17.3, rather than introduce the new symbol, φ. Indeed, in many cases in this book it is
convenient to use the notation X(a, T ) to connect to trajectories of point particles moving
through Euclidean space, as studied in Part II of this book. However, the φ notation is more
general, allowing for the consideration of motion without presuming it is embedded within
Euclidean space. Even though such generalities are not essential for this book, it is of use for
more general treatments of continuum mechanics (e.g., Tromp (2025a) and Tromp (2025b)).
Furthermore, it is effective nomenclature for our use when interpreting the flow map as a
coordinate transformations between a-space and x-space, as we do in Section 18.3.2.

As depicted in Figure 18.1, the a-space coordinates can be specified by the Cartesian positions
of the fluid particles at a specified reference time, T = tR. Indeed, this choice is common in the
continuum mechanics literature. The continuum matter deforms as it evolves according to the
motion field, φ(a, T ), with this deformation typically leading to rather complex coordinate lines.
Hence, a coordinate description of fluid motion using Lagrangian kinematics necessarily involves
features of the general tensor analysis from Chapters 3 and 4.

of concern this book concerns the smooth motion of fluid particles through Euclidean space.
2Invertibility of the flow map holds even in the presence of irreversible mixing. The reason is that mixing

retains the notion of distinct fluid particles, even though the mixing of fluid particles generates entropy.
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18.2.2 Depicting the motion and its inverse
In Figure 18.1 we depict the motion field and the corresponding flow map of the matter continuum.
The base or reference state of the continuum is referred to as B, and it defines a smooth reference
manifold or base manifold on which we can perform differential calculus (i.e., there are no rips or
discontinuities in the fluid continuum). Each point of B is specified by a value for the material
(also Lagrangian) coordinate, a. As time progresses, the motion field smoothly and invertibly
maps each point of B to a deformed state of the matter continuum. A point in the deformed
fluid state is described by a point in the manifold, S. We measure a position on S using the
spatial (or Eulerian) coordinates, xi, according to the flow map (18.1), thus motivating the name
spatial manifold for S.

Since the flow map provided by the motion is invertible, there is an inverse flow map, Φ.
The inverse flow map takes each point occupied by fluid in the spatial manifold, S, to a unique
point on the reference manifold, B. That is, given the Eulerian position of a fluid particle, x, we
have a unique material coordinate a, which is specified by the inverse flow map

a = Φ(x, t) and aI = ΦI(x, t). (18.3)

The invertible nature of the flow map means that a fluid particle trajectory does not split,
nor do two trajectories occupy the same point at the same time. We acknowledge that fluid
particle trajectories generally become increasingly complex in turbulent flow (indeed, even for
some laminar flows). Consequently, the Lagrangian description is less convenient after a certain
time has elapsed, thus motivating the reinitialization of fluid particle trajectories for practical
calculations. Even so, as long as trajectories do not split or merge, the trajectories are well
defined in principle, and so is the corresponding Lagrangian formulation.

18.2.3 Comments
We mostly interpret the flow map as a coordinate transformation, as discussed in Section 18.3.2.
Even so, it is useful to appreciate the complementary view in terms of motion as a flow map
between distinct manifolds, as presented in this section. This kinematic persepective is commonly
taken in solid mechanics.

18.3 Material and spatial representations
According to the presentation in Section 18.2, we specify a point of matter on the reference (or
base) manifold, B, by providing its material coordinate, a. Similarly, a point on the spatial
manifold, S, is specified by the Eulerian point in space, x. The motion field generates a one-
to-one and invertible flow map, φ(a, T ), which affords the ability to move seamlessly between
the base manifold and the spatial manifold. For example, by specifying the material point, a,
on B, then that information uniquely specifies the fluid particle’s spatial location, (x, t), on S,
according to

x = φ(a, T ) and t = T. (18.4)

Alternatively, by specifying the spatial point of a fluid particle, (x, t), on S, then we uniquely
specify the material point (a, T ) on B, via the inverse motion

a = Φ(x, t) and T = t. (18.5)

18.3.1 Notation
We write dx for the differential increment between two Eulerian positions in x-space. Likewise,
da is the differential increment between two positions in a-space. Finally, we write δx for the
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T = t > tR

Figure 18.2: Two coordinate systems used to represent the spatial manifold, S. The first is the spatial (Eulerian)
representation, x, which is fixed in space. The second is the material (Lagrangian) representation, a, which is
fixed on material particles. When projected onto the spatial manifold, the lines of constant a are deformed as
the fluid evolves, although they are typically assumed orthogonal on the base manifold as in Figure 18.1. The
transformation between these two sets of coordinates is facilitated by the motion field, φ, as given by equation
(18.1). The coordinate transformation perspective complements the mapping perspective from Figure 18.1.

differential distance in x-space between two material fluid particles specified by a and da.

18.3.2 The flow map as a coordinate transformation
Equation (18.4) has the appearance of an invertible coordinate transformation between spatial
and material coordinates. However, the coordinate transformations studied in Chapter 4 concern
two alternative coordinate representations for points on a single manifold, and yet, as illustrated
by Figure 18.1, equation (18.4) provides a flow map between two points on two manifolds, with
one point on the reference manifold and one on the spatial manifold. Even so, the motion field
provides a smooth, one-to-one and invertible mapping between these points. Consequently,
we are afforded an alternative interpretation of the motion field, namely as a coordinate
transformation via equation (18.4). That is, the flow map defines a point transformation between
a spatial representation of a fluid particle (fixed laboratory frame; Eulerian) and a material
representation of the same fluid particle (moving reference frame co-moving with fluid particles;
Lagrangian).3 We make use of the general tensor analysis from Chapter 4 to formalize the
mathematical transformation between the two coordinates and their respective representations
of fluid properties, and depict this point transformation in Figure 18.2.

The velocity of a fluid particle is given by the time derivative of the flow map

vL(a, T ) = ∂Tφ(a, T )⇐⇒ (vL)i = ∂Tφ
i, (18.6)

where the L superscript indicates that the velocity is written as a function of the material
coordinates and time.4 This expression for the fluid particle velocity equals to the Eulerian
velocity field as sampled along the fluid particle trajectory

vL(a, T ) = v[x = φ(a, T ), t = T ]. (18.7)

Equivalently, we can produce the Eulerian expression for the velocity by inverting the expression
for the flow map, φ(a, T ), as per equation (18.5) to obtain the material coordinate, a(x, t), thus
rendering

vL(a, T ) = vL[a(x, t), T ]. (18.8)

3The point transformation perspective follows from Section 4.11 of Aris (1962) and is commonly considered in
fluid mechanics.

4The L superscript is not a tensor index.
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The right hand expression is defined at all spatial points, x, so that we can define the Eulerian
velocity field according to

v(x, t) = vL[a(x, t), T = t]. (18.9)

In the converse situation we have the Eulerian velocity field, v(x, t) at all points in space.
The flow map, and hence the Lagrangian description, can be determined by integrating the first
order ordinary differential equation

∂Tφ(a, T ) = v[x = φ(a, T ), t]. (18.10)

This is a nonlinear differential equation since the flow map appears on the left hand side as its
time derivative, as well as within the argument to the velocity on the right hand side.

18.3.3 Material time derivative of a scalar field
To further help understand the role of the motion field, as well as the time derivative following
a fluid particle trajectory, consider a scalar fluid property, Π, and measure it along the fluid
particle trajectory

ΠL(a, T ) = property Π following the trajectory φ(a, T ). (18.11)

As a complement, measuring the property at a spatial point renders the Eulerian representation5

ΠE(x, t) = property Π at a spatial point x at time t. (18.12)

Since the arguments differ, the functions ΠL and ΠE are generally distinct. The Eulerian and
Lagrangian values for the fluid property agree when they are evaluated at the same point in
space and time, hence

ΠL(a, T ) = ΠE[x = φ(a, T ), t = T ]. (18.13)

The time derivative of ΠL(a, T ) following the fluid particle motion is given by the partial
derivative

∂ΠL(a, T )

∂T
= time derivative following fluid particle motion, (18.14)

which is computed while holding the material coordinates fixed. The chain rule renders the
Eulerian expression for the same time derivative

∂ΠL(a, T )

∂T
=
∂ΠE[x = φ(a, T ), t = T ]

∂T
(18.15a)

=
∂ΠE(x, t)

∂t
+
∂φ(a, T )

∂T
· ∇ΠE(x, t) (18.15b)

= (∂t + v
L(a, T ) · ∇)ΠE(x, t), (18.15c)

= (∂t + v
E(x, t) · ∇)ΠE(x, t). (18.15d)

In equation (18.15c) we introduced the Lagrangian expression for the fluid particle velocity from
Section 18.3.2

vL(a, T ) ≡ v[x = φ(a, T ), t = T ] = ∂Tφ(a, T ), (18.16)

where, again, the time derivative of the motion field is computed while holding the material
coordinate, a, fixed. For equation (18.15d) we equated the Lagrangian and Eulerian expressions
for the particle velocity when they are evaluated at the same point in space and time, as given

5In most occasions throughout this book, we do not expose the E superscript to denote an Eulerian expression
for a fluid property. But for the present purposes it is useful to be somewhat pedantic in order to clearly distinguish
the two functional representations of the scalar property, Π.
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by equation (17.67). Equation (18.15d) accords with equation (17.11) derived using distinct
methods.

18.3.4 The flow map is a function, not a tensor
The flow map is a function that assigns the position in space for fluid particles at a particular
time instance. As such, the flow map generalizes to the continuum the notion of position for
a continuum of point fluid particles. In Section 1.3.2 we emphasized that the point particle
position is not a tensor, motivating us to eschew the term “position vector.” Likewise, the flow
map is not a tensor (even though it is written with the boldface notation), which is why we
eschew the term “flow map vector” or “motion vector field.” Even so, as for the position, the
time derivative of the flow map defines a tensor, namely the velocity of the flow.

18.4 The deformation matrix as a transformation matrix

In an analysis of fluid flow, we make routine use of the spatial coordinates (x-space) of an
Eulerian description and material coordinates (a-space) of a Lagrangian description. Following
the interpretation in Section 18.3.2 of the flow map as a coordinate transformation, we here
introduce the transformation matrix that facilitates the coordinate transformation of physical
objects between Eulerian and Lagrangian descriptions. Since the flow map is invertible, so too
is the transformation matrix, which means that its determinant, the Jacobian, remains nonzero
and hence is single signed. We refer to the transformation matrix as the deformation matrix, for
reasons motivated below.

18.4.1 The deformation (transformation) matrix F i
I

We introduced the transformation matrix in Section 4.1.4 for coordinate transformations. We
here write the transformation matrix as the matrix of partial derivatives of the flow map and
organize the elements to this matrix according to the following convention

F iI =
∂φi

∂aI
≡

 ∂φ1/∂a1 ∂φ1/∂a2 ∂φ1/∂a3

∂φ2/∂a1 ∂φ2/∂a2 ∂φ2/∂a3

∂φ3/∂a1 ∂φ3/∂a2 ∂φ3/∂a3

 . (18.17)

The upper Eulerian label, i, denotes the row and the lower material label, I, is the column.
The transformation matrix, F iI , provides a means to measure how trajectories are deformed by
the flow. Namely, each element of F iI measures how much the i-component of a fluid particle
trajectory is modified when altering the I-component of the material coordinate. Malvern (1969)
refers to F iI as a two-point tensor, given that it connects points in x-space to points in a-space
as per Figure 18.1. However, as discussed in Section 4.1.4, the transformation matrix is not a
tensor, so we do not refer to F iI as a tensor.6 Rather, we refer to the transformation matrix,
F iI , as the deformation matrix in deference to its role as the transformation matrix between
spatial and material coordinates as per Figure 18.2, and given its measure of how trajectories
are deformed by the flow of matter.

In Section 18.6 we study how the deformation matrix leads to the evolution of the vector
connecting two material points in the fluid. As a preface to that discussion, consider the special
case where the material coordinate is the reference spatial position. In this case, the partial
derivatives measure how particle trajectories are modified when altering the reference position
of the particles. If the fluid has no deformation, then particle trajectories remain unaffected if

6In Section 1.10.7, we discuss the distinction between a second order tensor and a matrix.
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changing the material coordinate (i.e., the reference position), in which case the deformation
matrix is the identity tensor

F iI = δiI if there is no flow deformation. (18.18)

Generally each component of the deformation matrix is nonzero so that trajectories are deformed
by the flow and as such they are dependent on the reference position.

18.4.2 The inverse deformation matrix F I
i ≡ (F−1)I i

Since the transformation between a-space and x-space is invertible, we sometimes have occasion
to consider the inverse transformation matrix, which we write as

F I i ≡ (F−1)I i =
∂ΦI

∂xi
≡

 ∂Φ1/∂x1 ∂Φ1/∂x2 ∂Φ1/∂x3

∂Φ2/∂x1 ∂Φ2/∂x2 ∂Φ2/∂x3

∂Φ3/∂x1 ∂Φ3/∂x2 ∂Φ3/∂x3

 , (18.19)

where aI = ΦI(x, t) defines the mapping from x-space to a-space according to equation (18.3).
As the inverse matrix, we are afforded the identities

F I i F
i
J = δIJ and F I i F

j
I = δj i. (18.20)

18.4.3 A terse notation for the deformation matrix and its inverse
The deformation appears throughout our study of fluid mechanics given its role as the trans-
formation matrix between material and position coordinates. Here we summarize the notation

F iI =
∂φi(a, T )

∂aI
=
∂xi

∂aI
deformation matrix (18.21a)

F I i = (F−1)I i =
∂ΦI(x, t)

∂xi
=
∂aI

∂xi
inverse deformation matrix. (18.21b)

The final equality in each line introduces a shorthand whose definition is given by the preceeding
equality. This shorthand is suited to manipulations with the deformation matrix and its
determinant. Furthermore, recall that use of the symbol xi does not imply that the Eulerian
coordinates are Cartesian.

18.4.4 Jacobian determinant of the deformation matrix F i
I

The Jacobian determinant of the deformation matrix can be written in either of the following
ways

det(F iI) =
∂x

∂a
=
∂φ

∂a
= det

 ∂φ1/∂a1 ∂φ1/∂a2 ∂φ1/∂a3

∂φ2/∂a1 ∂φ2/∂a2 ∂φ2/∂a3

∂φ3/∂a1 ∂φ3/∂a2 ∂φ3/∂a3

 . (18.22)

The notation ∂φ/∂a = ∂x/∂a offers a useful means to distinguish between the determinant of
the deformation (18.17), versus the determinant of the inverse deformation matrix, written as

det(F I i) =
∂a

∂x
=
∂Φ

∂x
= det

 ∂Φ1/∂x1 ∂Φ1/∂x2 ∂Φ1/∂x3

∂Φ2/∂x1 ∂Φ2/∂x2 ∂Φ2/∂x3

∂Φ3/∂x1 ∂Φ3/∂x2 ∂Φ3/∂x3

 . (18.23)

The Jacobian is single-signed since the mapping between a-space and x-space is one-to-one
invertible.
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18.4.5 A discrete algorithm for the deformation matrix

To help further understanding of the deformation matrix (18.17), we here sketch an algorithm
for its discrete approximation. For this purpose, consider two-dimensional flow and write the
trajectory of a particular fluid particle using Cartesian coordinates

X(T ) = X1(T ) x̂+X2(T ) ŷ, (18.24)

and use a Cartesian representation for the corresponding material coordinate

a = a1 x̂+ a2 ŷ. (18.25)

Now lay down a two-dimensional lattice with discrete indices (e, f) for each of the nodal points
(grid points) on the lattice, and with corresponding spatial coordinates

x(e, f) = x(e, f) x̂+ y(e, f) ŷ. (18.26)

This lattice discretizes the two-dimensional space and so provides a discrete approximation to
the Eulerian reference frame. Initialize fluid particles at each of the lattice grid points,

X(e, f ;T = 0) = x(e, f) = a(e, f), (18.27)

with the discrete material coordinates defined by the initial positions. Then time step the
trajectories using the velocity field to compute the particle pathlines, X[a(e, f);T ], as illustrated
in Figure 18.3. At any particular time, the Eulerian position of a fluid particle is found by
interpolating from the lattice grid points. Setting the material coordinates equal to the initial
position then leads to the finite difference approximation to the deformation matrix

F iI =

[
F 1

1 F 1
2

F 2
1 F 2

2

]
≈
[

X1(e+1,f ;T )−X1(e−1,f ;T )
X1(e+1,f ;0)−X1(e−1,f ;0)

X1(e,f+1;T )−X1(e,f−1;T )
X2(e,f+1;0)−X2(e,f−1;0)

X2(e+1,f ;T )−X2(e−1,f ;T )
X1(e+1,f ;0)−X1(e−1,f ;0)

X2(e,f+1;T )−X2(e,f−1;T )
X2(e,f+1;0)−X2(e,f−1;0)

]
. (18.28)

If the grid is regular in both directions, then the initial positions have a separation, ∆, given by
the grid spacing so that

F iI ≈
1

2∆

[
X1(e+ 1, f ;T )−X1(e− 1, f ;T ) X1(e, f + 1;T )−X1(e, f − 1;T )
X2(e+ 1, f ;T )−X2(e− 1, f ;T ) X2(e, f + 1;T )−X2(e, f − 1;T )

]
. (18.29)

This expression illustrates how the deformation matrix provides a measure of trajectory spreading
as fluid particles move away from their initial positions. As a check on the formulation, consider
the case without any deformation. In this caseX1(e, f ;T ) = X1(e;T ) andX2(e, f ;T ) = X2(f ;T )
so that the transformation matrix is diagonal, and furthermore, X1(e+1;T )−X1(e−1;T ) = 2∆
and X2(f + 1;T )−X2(f − 1;T ) = 2∆, so that the transformation matrix is the identity.

18.4.6 Comments and further study

When transforming between Eulerian and Lagrangian coordinates, it is the deformation matrix,

F iI = ∂φi/∂aI , (18.30)

and its Jacobian determinant,

det(F iI) = ∂x/∂a = ∂φ/∂a, (18.31)
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e

f

time

Figure 18.3: Illustrating the discrete algorithm of Section 18.4.5 to approximate the deformation matrix, F i
I .

The left panel shows the two-dimensional grid with nodal points defining the initial positions for fluid particles.
Each position on the grid is labeled by a unique integer pair, (e, f). The initial position of each particle is taken
as the material coordinate, with the discrete label (e, f) maintained by the particles as they evolve. The right
panel shows the pathlines for the fluid particles after time T > 0. When working on a discrete grid, the position
of the fluid particles is not generally at a nodal point. Hence, the position must be found by interpolating betwen
the node points.

that encapsulates information about the transformation between Eulerian (x-space) coordinates
and Lagrangian (a-space) coordinates. In particular, it is the deformation matrix (and its inverse)
that transforms the representation of tensors between Eulerian coordinates and Lagrangian
coordinates. The rules of coordinate transformation between Eulerian and Lagrangian represen-
tations are identical to those between any other set of coordinates (e.g., Chapters 1-4). However,
for continuum mechanics the transformation between Eulerian and Lagrangian coordinates is
given special treatment due to the central roles played by Eulerian and Lagrangian kinematics.

This video from the National Committee for Fluid Mechanics Films offers insightful visual-
izations to help understand Eulerian and Lagrangian fluid descriptions. This lecture from Prof.
Brunton discusses fluid kinematics related to finite time Lyapunov exponents, whose calculation
requires estimating the transformation matrix in Section 18.4.5 along with its eigenvalues and
eigenvectors.

18.5 The metric tensor

Throughout this book we are concerned with the motion of continuum matter through Euclidean
space. Euclidean space is endowed with the Kronecker metric as a means to measure the distance
between points in space. When using Cartesian coordinates to describe Euclidean space, we
can make use of Cartesian tensor analysis as detailed in Chapters 1 and 2. However, for fluid
mechanics we are interested in a variety of coordinates, both for Eulerian and Lagrangian
descriptions. In particular, material coordinates used for the Lagrangian description follow fluid
particles. As such, these coordinates deform with the flow and so cannot remain Cartesian
even if initialized as Cartesian. Consequently, we require general tensor analysis as detailed
in Chapters 3 and 4. Having introduced the deformation matrix as the transformation matrix
between x-space and a-space, we here introduce the metric tensor, g, and its representations
using Eulerian and Lagrangian coordinates. The discussion here specializes the more general
presentation provided in Section 4.1.
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18.5.1 Representing the metric tensor with x-coordinates
Consider two very close points in Euclidean space as represented by arbitrary Eulerian coordi-
nates,7 xa and xa + dxa. The squared arc-distance between these points is given by

ds2 = gij dx
i dxj , (18.32)

with gij the components to the metric tensor. Invertible transformations between two sets of
arbitrary Eulerian coordinates,

x = x(x) or component-wise xi = xi(xi), (18.33)

are facilitated by the transformation matrix built from the partial derivatives of the coordinate
transformation. For example, the metric tensor transforms as a second order covariant tensor

gij = gij
∂xi

∂xi
∂xj

∂xj
, (18.34)

which has an inverse transformation

gij = gij
∂xi

∂xi
∂xj

∂xj
. (18.35)

The Eulerian coordinates are independent of time, t. Consequently, the metric tensor represented
using Eulerian coordinates is time independent

∂tgij = 0 =⇒ gij = gij(x). (18.36)

Note that if the coordinates, xi, are Cartesian, then the Euclidean space metric tensor is
represented by the Kronecker or unit tensor

gij = δij Euclidean space with Cartesian coordinates. (18.37)

18.5.2 Representing the metric tensor with a-coordinates
In a directly analogous fashion to the transformation (18.34) between two Eulerian coordinates,
we use the deformation matrix from Section 18.4.1 to transform the metric tensor from general
Eulerian coordinates to general Lagrangian coordinates via

gIJ = gij
∂xi

∂aI
∂xj

∂aJ
= gij F

i
I F

j
J . (18.38)

This representation of the metric tensor is useful when measuring the length of material line
elements8

δs2 = gij dφ
i dφj = gij

∂φi

∂aI
∂φj

∂aJ
daI daJ = gij F

i
I F

j
J da

I daJ = gIJ da
I daJ . (18.39)

This expression is directly analogous to the squared differential length (18.32) found in x-space.
Although the Eulerian representation of the metric tensor is time independent as per equation
(18.36), the Lagrangian representation is time dependent due to the time dependence of the
deformation matrix, so that

gIJ = gIJ(a, T ). (18.40)

7We here use xa as any arbitrary Eulerian coordinates, either Cartesian or more general.
8To help understand equation (18.39), it can be useful to be reminded of the notation conventions summarized

in Sections 18.3.1, 18.4.3, and 18.4.4.
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When the Eulerian coordinates are Cartesian, so that gij = δij , then the Lagrangian form of
the metric tensor is known as Cauchy-Green strain rate tensor

gIJ = F iI F
j
J δij Cauchy-Green strain tensor. (18.41)

Note that in Section 1.6 of Tromp (2025a), gIJ in equation (18.41) is referred to as the right
Cauchy-Green deformation rate tensor, which is the term also used in Malvern (1969). We prefer
the term “strain” rather than “deformation” to help reduce confusion with the deformation
matrix, F iI .

18.5.3 Exposing the functional dependencies
In equation (18.40) we noted that the metric tensor represented using Lagrangian coordinates is
seen as a function of (a, T ). Likewise, the metric tensor represented using Eulerian coordinates
is written in terms of the Eulerian coordinates, gij(x). Written in terms of their transformations
we have

gij(x) = F I i(x, t)F
J
j(x, t) gIJ(a = Φ(x, t), T = t) (18.42a)

gIJ(a, T ) = F iI(a, T )F
j
J(a, T ) gij(x = φ(a, T )). (18.42b)

In these equations we inserted the motion field, φ(a, T ), and its inverse, Φ(x, t), when written
on the right hand sides to these equations.

As noted in Section 18.5.1, the Eulerian representation of the metric tensor has no dependence
on the Eulerian time, t. In contrast, the Lagrangian representation is generally a function of
Lagrangian time, T . This distinction becomes less clear, however, when using coordinates
commonly used in geophysical fluid mechanics, in which the set of coordinates are neither
fully Eulerian nor fully Lagrangian, with the primary example being the generalized vertical
coordinates studied in Part XII of this book. In that case, we generally have a metric tensor
that is time dependent, even though some of the coordinates are Eulerian.

18.5.4 Determinant of the metric tensor and deformation matrix
The determinant of the metric tensor appears in the covariant volume element derived in Section
4.5.3 and extended to Eulerian and Lagrangian coordinates in Section 18.7. Furthermore, the
metric tensor is a positive-definite tensor, so that we know its determinant is positive. As
a shorthand, we find it useful to introduce the following notation for the square root of the
determinant as represented using Eulerian and Lagrangian coordinates

gE =
√
det[g(x)] and gL =

√
det[g(a, T )]. (18.43)

With this notation, we take the determinant of equation (18.38) to render

(gL)2 = det(F iI) det(F
j
J) (g

E)2 =

[
∂x

∂a

]2
(gE)2. (18.44)

Rearrangement leads to
∂x

∂a
=
∂φ

∂a
=

gL

gE
, (18.45)

where we assumed the Jacobian determinant is positive. Note that if the Eulerian coordinates
are Cartesian, then gE = 1 so that

∂x

∂a
=
∂φ

∂a
= gL Cartesian Eulerian coordinates. (18.46)
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18.6 Kinematic description of relative motion
Material curves are one-dimensional geometric objects that follow fluid particles. We initialize a
material curve by drawing a line in the fluid and then following the curve as it deforms according
to the trajectories of the fluid particles. The material curve is stretched and folded by the fluid
flow as illustrated in Figure 18.4. We here develop the rudimentary kinematics of such motion
by considering evolution of the relative vector connecting two fluid particles in Euclidean space.
We specialize to Eulerian Cartesian coordinates to simplify comparison of the particle position
vectors. That is, we assume the flow map generated by the motion, φ(a, T ), is represented by
the Cartesian position of the fluid particles. As we will see, evolution of these two points is
determined by the deformation matrix introduced in Section 18.4.

18.6.1 Differential increment for a-space and x-space

We start by developing expressions for the differential increment of a function in x-space and in
material a-space.9 These relations are useful when manipulating relations in either x-space or
a-space.

Spatial increments

Consider a scalar fluid property, Π, and represent it with the spatial coordinates of an Eulerian
description, Π(x, t). In Section 17.4.1, we considered the space and time increment of a scalar
function. Here we consider just the space increment, as defined by the differential increment of
a function evaluated at the same time but at two infinitesimally close points in space. Writing
this increment for a scalar renders

dΠ(x, t) = Π(x+ dx, t)−Π(x, t) = (dxi ∂i)Π(x, t). (18.47)

Material increments

Consider the same fluid property, Π, now evaluated on a material fluid particle trajectory, and
write this Lagrangian function as in Section 18.3.3

ΠL(a, T ) ≡ Π[x = φ(a, T ), t = T ]. (18.48)

Now consider an infinitesimal increment of ΠL(a, T ) within material coordinate space. This
increment measures the difference of the fluid property, Π, when evaluated on two fluid particles,
one labelled by a and the other by a+ da. Just like when working in x-space, we take a Taylor
series and truncate to leading order, so that

dΠL(a, T ) = Π[φ(a+ da, T ), T ]−Π[φ(a, T ), T ] (18.49a)

= ΠL(a+ da, T )−ΠL(a, T ) (18.49b)

= (daI ∂I)Π
L(a, T ). (18.49c)

Duality between Eulerian and Lagrangian perspectives

It is self-evident that the value of a fluid property at a spatial point x (Eulerian perspective)
equals to the property evaluated on a moving fluid particle (Lagrangian perspective) at the

9From a mathematical perspective, we develop the exterior derivatives for a selection of scalar functions, and
detail their expressions using both Eulerian and Lagrangian coordinates.
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Figure 18.4: Three time instances of a material curve, highlighting two fluid particles whose trajectories are
φ(a, T ) and φ(a+ da, T ). All points along the curve move through the fluid by following the trajectories of the
fluid particles. Kinematics of the relative vector separating two fluid particles is determined by properties of the
deformation matrix in Section 18.6, or the deformation rate in Section 18.8.

instance the particle passes through x. Mathematically, this identity takes the form

ΠL(a, T ) = Π[x = φ(a, T ), t = T ] = Π(x, t) if φ(a, T ) = x. (18.50)

Likewise, if the infinitesimal increment in space, δx, equals to the vector increment of the two
fluid particles,

dφ(a, T ) = φ(a+ da, T )−φ(a, T ), (18.51)

then the functional increments are identical

dΠL(a, T ) = δΠ(x, t) if dφ(a, T ) = δx, (18.52)

where

δΠ(x, t) = Π(x+ δx, t)−Π(x, t) = (δxi ∂i)Π(x, t) (18.53a)

dΠL(a, T ) = ΠL(a+ dx, T )−ΠL(a, T ) = (daI ∂I)Π
L(a, T ). (18.53b)

These identities allow us to develop relations using either a Lagrangian or an Eulerian description,
and then to interpret the resulting equations in their dual perspective available from an Eulerian
or a Lagrangian description.

18.6.2 A role for the deformation matrix

Consider two fluid particles with material coordinates, a and a+ da, along with their corre-
sponding trajectories φ(a, T ) and φ(a+da, T ) (see Figure 18.4). Assuming the trajectories are
represented using Cartesian coordinates, we can write the vector connecting these two particles
(the relative vector) as

dφ(a, T ) = φ(a+ da, T )−φ(a, T ). (18.54)

Expanding to leading order yields an expression of Cauchy’s solution (further explored in Section
18.6.4)

dφ(a, T ) = φ(a+ da, T )−φ(a, T ) ≈ (daI ∂I)φ(a, T ). (18.55)

Making use of the assumed Cartesian coordinates for the flow map allows us to write the material
increment in terms of the deformation matrix10

dφi = daI ∂Iφ
i = daI F iI , (18.56)

where we introduced the deformation matrix from Section 18.4.1, F iI ≡ ∂Iφi.

10The connection between differential increment and deformation gradient does not hold when using general
coordinates for the flow map. The reason is that we cannot naively compare vectors on a general manifold. More
work is needed, with details provided in Chapter 1 of Tromp (2025a) as well as in Tromp (2025b).
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18.6.3 Kinematic evolution equation

Now consider the material time derivative of the material increment

∂[dφ(a, T )]

∂T
=
∂φ(a+ δa, T )

∂T
− ∂φ(a, T )

∂T
(18.57a)

= vL(a+ da, T )− vL(a, T ) (18.57b)

= dvL(a, T ). (18.57c)

In these equations, we introduced the Lagrangian velocity,

vL(a, T ) = v[x = φ(a, T ), t = T ], (18.58)

as per equation (18.16). As for the manipulations in Section 18.6.2, we can massage the expression
(18.57c) by performing a Taylor series expansion and truncating to leading order

∂[dφ(a, T )]

∂T
= dvL(a, T ) = (daI ∂I)v

L(a, T ). (18.59)

Alternatively, we can choose to evaluate this expression using an Eulerian perspective (see
Section 18.6.1), in which case

D(δx)

Dt
= δv(x, t) = (δxi ∂i)v(x, t). (18.60)

In Section 18.6.4 we examine this equation according to Cauchy, thus furthering our understanding
of how the relative displacement vector evolves.

18.6.4 Cauchy’s solution for evolution of the relative vector

We can determine a general solution to the kinematic evolution equation (18.60) following the
method used by Cauchy11 to solve the perfect fluid barotropic vorticity equation discussed in
Section 40.5. Indeed, we already encountered the Cauchy solution in Section 18.6.2. We rederive
it here as an exercise in the formalism that can be of general use when working with Lagrangian
coordinates.

Derivation using the motion field and deformation matrix

For this derivation we make use of the motion field, φi(a, T ), and the deformation matrix,
∂Iφ

i = F iI , in which we start from equation (18.60) yet written using Lagrangian coordinates

∂T (δx
i) = δxj ∂j(∂Tφ

i) = δxj F J j ∂J(∂Tφ
i), (18.61)

where the second equality used the deformation matrix to convert from an Eulerian derivative
to a Lagrangian derivative: ∂j = F J j ∂J . Noting that ∂J ∂T = ∂T ∂J , and introducing the
deformation matrix, ∂Jφ

i = F iJ , we find

∂T (δx
i) = δxj F J j ∂TF

i
J = −δxj (∂TF J j)F iJ . (18.62)

The second equality follows since F J j F
i
J = δij is time independent. Now contract both sides

of this equation with FKi and note that FKi F
i
J = δJK , so that

FKi ∂T (δx
i) = −δxj ∂TFKj =⇒ ∂T (F

K
i δx

i) = 0. (18.63)

11See Frisch and Villone (2014) for an insightful discussion of the enduring impact of Cauchy’s solution.
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Choosing the material coordinates equal to the reference positions

If we choose the material coordinates as the reference positions of fluid particles,

a = x(t = tR) = x̊, (18.64)

then the inverse transformation matrix element at the reference time is given by the unit tensor

FKj = δKj at t = tR, (18.65)

so that the material invariance in equation (18.63) leads to

δxj FKj = δx̊K . (18.66)

Inverting this equation by contracting with F iK and using F iK F
K
j = δij leads to Cauchy’s

solution
δxi = δx̊K F iK = δx̊K ∂Kφi(a, T ). (18.67)

Discussion of Cauchy’s solution (18.67)

The Cauchy solution (18.67) says that the increment along a line segment defined by fluid
particles, δx = δφ, expands or contracts according to the time and space dependent deformation
matrix, F iK . This result follows from our assumption that the increment is defined by fixed
a-space coordinates, which then constrains the increment’s x-space evolution. It is also an
expression that we wrote down, rather trivially, in Section 18.6.2 when performing a truncated
Taylor series expansion of the spatial increment between two material fluid particles that follow
the flow. Both approaches offer distinct insights as well as confidence in the validity of the
result.12 The ability to derive kinematic results using either simple (indeed trivial) methods
versus more long-winded methods is somewhat exemplary of fluid kinematics.

Extension to vorticity

As seen in Section 40.3, the relative vorticity, ω = ∇× v, for a homogeneous inviscid, barotropic
fluid satisfies the same kinematic equation (18.60) as for a material line increment

Dω

Dt
= (ω · ∇)v(x, t). (18.68)

We can thus invoke the Cauchy solution to write the vorticity

ωi(t) = ωK(t = 0)F iK , (18.69)

which is one form of Kelvin’s circulation theorem studied in Section 40.2.

18.7 The volume element
Consider the volume, dV , of an infinitesimal region of x-space as depicted in Figure 18.5. The
volume has a zero Eulerian time derivative,

∂t[dV ] = 0, (18.70)

which trivially follows since the region is Eulerian. The volume has dimensions of L3, and it can
be represented using either Cartesian coordinates, xcart, or arbitrary coordinates, x. We first

12If there is more than one way to solve a problem, then do so, even if one of those ways is much more tedious!
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consider the general case and then specialize to Cartesian.

18.7.1 Arbitrary Eulerian and Lagrangian coordinates
Using the expression (4.60) for the invariant volume element we have

dV = gE d3x, (18.71)

where gE =
√
det(gij(x)) from Section 18.5.4, which is the square root of the metric as written

using the arbitrary Eulerian coordinates, x. Following the interpretation from Section 18.3.2
whereby a-space is a coordinate transformation of x-space, we can write that Eulerian volume
element using arbitrary material coordinates, a, just like we did for two sets of Eulerian
coordinates in equation (18.71). Namely,

dV = gE(x) d3x = gL(a, T ) d3a, (18.72)

where gL =
√
det(gIJ) is the square root of the Euclidean metric using the material coordinates

(equation (18.43)), and gL is a function of material space and time.

18.7.2 Cartesian Eulerian coordinates
To help solidify the general results developed in this section, consider the specific case of Eulerian
Cartesian coordinates (still written as x) and material coordinates set by the Cartesian reference
positions of fluid particles,

a = φ(a, T = tR) = x̊. (18.73)

We are led to the coordinate transformed expression for the volume element

dV = d3x = (∂x/∂x̊) d3x̊, (18.74)

where ∂x/∂x̊ is the Jacobian of transformation between the present Cartesian positions of fluid
particles moving with the flow,

x = φ(x̊, T ), (18.75)

and their reference Cartesian positions

x̊ = φ(x̊, T = tR). (18.76)

The material coordinate volume element, d3x̊ = dx̊dẙ dz̊, is the Cartesian expression for the
volume of fluid in the reference flow state that fits into the Eulerian volume, d3x = dV , at time
t > tR. The Jacobian is a function of time for a moving fluid and so is the volume d3x̊, but their
product is time independent by construction. Furthermore, it is notable that the Jacobian is the
ratio of the volume elements

∂x

∂x̊
=

d3x

d3x̊
. (18.77)

When material coordinates are given by the reference fluid particle positions, a = x̊ =
φ(a, T = tR), then the Jacobian is unity at the reference time, T = tR. This choice for material
coordinate is commonly made in the solid mechanics literature (e.g., Chapter 1 of Tromp
(2025a)), and it is suggested by the referential manifold perspective of Figure 18.12. However,
for geophysical fluid mechanics we do not build this assumption into the formalism. The reason
is that we often find it useful to set a to a non-spatial coordinate, such as discussed in Section
17.3.2, in which case the Jacobian is not unity at the reference time.
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Figure 18.5: Depicting the volume of tiny regions of the fluid using Eulerian (x-space) coordinates (top row)
and Lagrangian (a-space) coordinates (bottom row). The left column considers an Eulerian region with volume,
dV = gE d3x = gL d3a, with this volume independent of Eulerian time, t. The right column depicts the complement
material region, in which the material coordinate volume, δV , is assumed to have zero material time derivative, so
that it is a function just of a.

18.7.3 The volume of a fixed region of a-space

Now consider a tiny material region that moves through the fluid and whose volume is written
δV , as in Figure 18.5, and with the volume independent of material time. The volume has
dimensions of L3, and it can be represented using either the reference Cartesian positions, a = x̊,
or arbitrary material coordinates, a, which leads to

δV = gE δ3x = gL d3a, (18.78)

which are the same expressions we derived in Section 18.7.1 for the Eulerian volume element.
However, in the present case the material volume increment, d3a, is materially constant whereas
the Eulerian increment, δ3x, is a function of time.

18.8 The velocity gradient tensor and relative velocity

In this section we return to the expression (18.55) of the Cauchy solution for the relative position
vector between two fluid particles13

dφ(a, T ) = φ(a+ da, T )−φ(a, T ) = (daI ∂I)φ(a, T ). (18.79)

Rather then developing the solution into the form (18.67), which exposes the deformation matrix,
we here take a material time derivative, in which case the deformation matrix is seen to determine
evolution of the relative velocity.

13We continue to assume Cartesian coordinates for the Eulerian description, whereas the material description
can be arbitrary.
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18.8.1 Evolution of the relative velocity
Taking the material time derivative of the left hand side to equation (18.79) leads to the relative
velocity vector

∂T (dφ) = d(∂Tφ) = dvL, (18.80)

where we introduced the velocity vector as evaluated on a fluid particle

vL(a, T ) = ∂Tφ(a, T ). (18.81)

Combining equation (18.80) with the material time derivative acting on the right hand side of
equation (18.79) renders

dvL = (daI ∂I) ∂Tφ = (daI ∂I)v
L, (18.82)

where the material time derivative operator commutes with the material increment operator
daI ∂I , and with equation (18.82) agreeing with the earlier identity (18.53b). Making use of the
deformation matrix renders the component form of equation (18.82)

(dvL)i = (daI ∂I) ∂Tφ
i = daI ∂T ∂Iφ

i = daI ∂TF
i
I . (18.83)

Hence, the relative velocity of two fluid particles is directly determined by the material time
derivative of the deformation matrix.

18.8.2 Velocity gradient tensor
We make use of the duality developed in Section 18.6.1 to write the Lagrangian expression
(18.82) in terms of Eulerian position coordinates

δv(x, t) = (δxj ∂j)v(x, t)⇐⇒ δvi = (δxj ∂j) v
i. (18.84)

Alternatively, we can return to the identity (18.80), and again make use of the duality to write
the material time derivative of the position increment

D(δxi)

Dt
= δvi = (δxj ∂j) v

i. (18.85)

This equation says that the material evolution of δxi is determined by the velocity derivatives,
∂jv

i. These derivatives form elements to the Cartesian Eulerian form of the second order velocity
gradient tensor

Gij = ∂jv
i, (18.86)

so that equation (18.85) can be written

D(δxi)

Dt
= Gij δx

j . (18.87)

To help understand how the velocity gradient tensor affects the evolution of δx, it is useful
to decompose the tensor into its symmetric and anti-symmetric components. For this purpose
we need the transpose of the tensor, which is written14

(GT)ij = Gj
i. (18.88)

We can thus write the velocity gradient tensor as

G = (G+GT)/2 + (G−GT)/2 ≡ S+R, (18.89)

14Recall we discussed the transpose of a second order tensor in Section 1.11.1.
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where

S = (G+GT)/2 strain (deformation) rate tensor (symmetric) (18.90a)

R = (G−GT)/2 rotation tensor (anti-symmetric). (18.90b)

As seen in the following, the strain rate and rotation tensors affect the motion of a material
fluid object in distinct manners. Note that the strain rate tensor is commonly referred to as the
deformation rate tensor in the literature. We choose the strain rate nomenclature to help reduce
confusion with the deformation matrix, F iI from Section 18.4.1.

18.8.3 Stretching and tilting of material lines

Consider a material line element initially aligned with the vertical axis

δxt=0 = ẑ δZ0. (18.91)

The evolution equation (18.87) means that the initial evolution of this material line element
takes on the form

D(δx)

Dt
= δZ0

[
∂u

∂z

]
︸ ︷︷ ︸

tilting

and
D(δy)

Dt
= δZ0

[
∂v

∂z

]
︸ ︷︷ ︸

tilting

and
D(δz)

Dt
= δZ0

[
∂w

∂z

]
︸ ︷︷ ︸

stretching

. (18.92)

In the presence of a vertical derivative in the horizontal velocity field (vertical shear), the first
and second terms create a non-zero projection of the material line element onto the horizontal
plane. That is, these terms tilt the material line element. Additionally, in the presence of a
vertical derivative of the vertical velocity, the material line element is expanded or compressed
along its initial axis. This term is called stretching. We return to the tilting and stretching
mechanisms when discussing the dynamics of vorticity in Chapter 40. There, we see that vortex
lines in a perfect fluid flow are material lines. Consequently, vortex lines are also affected by
tilting and stretching just like a material line.

18.8.4 Evolution of line element length from the strain rate

Recall the expression (18.39) for the squared length of a material line element

dφ · dφ = dφi δij dφ
j = (daI∂I)φ

i δij (da
J∂J)φ

j , (18.93)

whose material time derivative is given by

∂T (dφ · dφ) = 2 (daI∂I)v
L · (daJ∂J)φ. (18.94)

We can express this result using Eulerian x-space coordinates through the duality in Section
18.6.1, which leads to

(δaI ∂I)v
L = (δxi ∂i)v and (δaI ∂I)φ = δx, (18.95)

so that
D(δx · δx)

Dt
= 2 δxi δxk δjk ∂iv

j = 2 δxi δxk δjkG
j
i. (18.96)
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Since the product δxi δxk is symmetric on the indices i, k, it projects out the symmetric portion
of the velocity gradient tensor, which is the strain rate tensor, thus yielding

1

2

D(δx · δx)
Dt

= 2 δxi δxk δjk S
j
i. (18.97)

Consequently, the strain rate tensor, S, determines the rate at which a material curve changes
its length.

To further understand the result (18.97), consider two fluid particles initialized very close
together. Equation (18.97) says that the distance between the two particles is modified so long
as there are nonzero strain rates in the fluid flow. In the special case of a zero strain rate tensor,
then the separation between the two fluid particles is fixed. Evidently, in the absence of a strain
rate, the two fluid particles move in a locally and instantaneously rigid manner.

Since the strain rate tensor is symmetric, it has six degrees of freedom. Furthermore, it can
be diagonalized, with the diagonal elements equal to the eigenvalues (e.g., see section 2.2 of
Segel (1987)). Each eigenvalue measures the rate that material lines oriented according to the
principle axes (eigenvectors) expand/contract under the impacts of straining motion in the fluid.
According to equation (18.97), the expansion/contraction is exponential when aligned along the
principle axes, with the exponential rate determined by the eigenvalues of S. Furthermore, as
shown in Section 18.10, the sum of these eigenvalues (given by the trace of the strain rate tensor)
measures the rate that a material volume changes through the divergence of the velocity

Sii = ∂iv
i = ∇ · v. (18.98)

18.8.5 Rigid rotation of the line element

As defined by equation (18.90b), the rotation tensor is given by

R = (G−GT)/2. (18.99)

Notably, the rotation tensor is anti-symmetric so that

R = −RT, (18.100)

and as such it has three degrees of freedom. At this point we return to the full gamut of Cartesian
tensor notation by bringing all indices downstairs.15 We also introduce the vorticity vector,

ω = ∇× v, (18.101)

which is related to the rotation tensor via

2Rij = −ϵijk ωk ⇐⇒ R =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⇐⇒ ωk = −ϵkij Rij , (18.102)

where the final expression made use of the identity (1.69) in the form

ϵijl ϵijm = 2 δlm. (18.103)

It is furthermore straightforward to show that the doubly contracted rotation tensor equals to
half the squared vorticity

Rij R
j
i = |ω|2/2. (18.104)

15To work with general tensors at this stage requires more tools than warranted for this discussion.
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deformation w/o rotation rotation w/o deformation

Figure 18.6: Schematic illustrating the Cauchy-Stokes decomposition of how fluid flow can modify a spherical
material region according to equation (18.106). First the sphere can be deformed without rotation, with this
process encompassed by the strain rate tensor, S. Next it can be rigidly rotated without changing its shape,
as encompassed by the rotation tensor, R. The axes shown represent the principle axes so that deformation
corresponds to expansion or contraction along the principle axes directions.

The contribution of the rotation matrix to evolution of the material line element is given by[
D(δxi)

Dt

]
rot

= Rij δx
j = −(ϵijk ωk/2) δxj =⇒

[
D(δx)

Dt

]
rot

=
1

2
(ω × δx) . (18.105)

This relation is in the form of a pure rotation of the material line element, δx, as generated by
the vector, ω/2 (recall the discussion of rigid-body rotations in Section 11.2). We thus conclude
that the anti-symmetric rotation tensor, R, provides a rigid rotation to a material line element
about the axis defined by the vorticity vector. It rotates the objects without altering the size
(length, area, volume).

18.8.6 Cauchy-Stokes decomposition

The above discussion of how fluid motion impacts on a material curve falls under the more general
insights from the Cauchy-Stokes decomposition theorem. This theorem says that the arbitrary
motion of a region in a continuous media can be decomposed into a uniform translation, dilation
along three perpendicular axes, plus a rigid body rotation. Mathematically, this decomposition
can be written by expanding equation (18.87) to read

vi(x, t) = vi(x0, t) +Gij δx
j = vi(x0, t) + Sij δx

j +Rij δx
j . (18.106)

Figure 18.6 illustrates the deformation and rotation portion of this decomposition. A more
thorough discussion of this theorem can be found in Chapter 4 of Aris (1962) and Section 3.1 of
Segel (1987).

18.8.7 Evolution of the deformation matrix

In equation (18.83) we found that the relative velocity of two fluid particles is directly determined
by the material time derivative of the deformation matrix. As an exercise in the formalism, we
here determine how the deformation matrix evolves materially, in which we compute

∂TF
i
I = ∂T ∂Iφ

i definition (18.17) of deformation matrix (18.107a)

= ∂I ∂Tφ
i Lagrangian space and time derivatives commute (18.107b)

= ∂I(v
L)i flow velocity (18.16) (18.107c)

= ∂Iv
i dual representation of flow velocity (18.107d)

= (∂φj/∂aI) ∂jv
i chain rule (18.107e)

= F jI G
i
j . definitions (18.17) and (18.86) (18.107f)
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Evidently, material evolution of the deformation matrix is given by

∂TF
i
I = Gij F

j
I , (18.108)

so that the deformation matrix experiences larger changes in regions with stronger gradients in
the flow, as measured by the velocity gradient tensor, Gij . Making use of equation (18.108) in
equation (18.83) thus leads to the expression for the relative velocity increment

(dvL)i = ∂TF
i
I da

I = Gij F
j
I da

I . (18.109)

18.8.8 Evolution of the Cauchy-Green strain tensor
As noted in Section 18.5.1, the Eulerian representation of the metric tensor is independent of
Eulerian time, so that ∂tgij = 0. Following from the discussion in Section 18.8.7 for evolution of
the deformation matrix, we here consider the material time evolution of the a-space representation
of the metric tensor

∂T gIJ = ∂T [gij F
i
I F

j
J ] = ∂T gij [F

i
I F

j
J ] + gij ∂T [∂Iφ

i ∂Jφ
j ]. (18.110)

The first equality made use of equation (18.38) for the metric tensor written in terms of Lagrangian
coordinates, and the second equality made use of equation (18.17) for the deformation matrix,
F iI . Now use equation (18.16) for velocity of the fluid flow to arrive at

∂T [∂Iφ
i ∂Jφ

j ] = ∂I(∂Tφ
i) ∂Jφ

j + ∂J(∂Tφ
j) ∂Iφ

i (18.111a)

= ∂I(v
L)i ∂Jφ

j + ∂J(v
L)j ∂Iφ

i. (18.111b)

Examine one of these terms, with the Eulerian metric contracted, to find

gij ∂I(v
L)i ∂Jφ

j = gij F
k
I ∂k(v

L)i F jJ chain rule and deformation matrix (18.17) (18.112a)

= gij F
k
I G

i
k F

j
J introduce gradient tensor (18.86) (18.112b)

= gij G
i
I F

j
J transformation of x-space to a-space (18.112c)

= GjI F
j
J metric tensor to lower i-index (18.112d)

= GJI transformation of x-space to a-space. (18.112e)

Bringing terms together leads to

∂T gIJ = ∂T gij [F
i
I F

j
J ] +GJI +GIJ = ∂T gij [F

i
I F

j
J ] + 2SIJ , (18.113)

where the second equality introduced the Lagrangian representation of the strain rate tensor
(18.90a). If we choose Cartesian coordinates for the Eulerian x-space description so that gij = δij ,
then gIJ is the Cauchy-Green strain tensor from equation (18.41), with equation (18.113) leading
to

∂T gIJ = 2SIJ material evolution of Cauchy-Green strain tensor. (18.114)

Evidently, the Cauchy-Green strain tensor has a material evolution directly determined by the
Lagrangian expression for the strain rate tensor.

18.9 Evolution of material surfaces
We here extend the discussion of the material line element in Sections 18.6 and 18.8 to the
case of a material surface such as that shown in Figure 18.7. Considerations are given to
both three-dimensional and two-dimensional flows. Furthermore, we employ Cartesian tensors
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Figure 18.7: A material surface as defined by the cross product of two material line elements, δS = δA× δB.
In the special case of δA = x̂ δx and δB = ŷ δy, then δS = δx δy ẑ.

throughout this section. Even so, we use covariant and contra-variant index placement to
facilitate use of the Einstein summation convention.

18.9.1 Surfaces in three-dimensional flow

Following from the geometric interpretation of the vector product in Section 1.7.5, we here define
a material surface by (see Figure 18.7)

δS = δA× δB and in components δSi = ϵijk δA
j δBk (18.115)

where δA and δB are non-parallel infinitesimal material lines. The surface projected onto the
unit normal direction, n̂, is given by

n̂ · δS = n̂ · (δA× δB). (18.116)

The evolution of the material surface is given by

D(δS)

Dt
=

D(δA)

Dt
× δB + δA× D(δB)

Dt
(18.117a)

= [(δA · ∇)v]× δB + δA× [(δB · ∇)v], (18.117b)

where the second equality made use of the material line evolution equation (18.60). To proceed
we expose indices and make use of some tensor identities

D(δSi)

Dt
= ϵijk [(δA

q ∂q) v
j ] δBk + ϵijk δA

j [(δBq ∂q) v
k] (18.118a)

= ϵijk [δA
q δBk ∂qv

j + δAj δBq ∂qv
k] (18.118b)

= ϵijk ∂qv
j [δAq δBk − δAk δBq] (18.118c)

= ϵijk ∂qv
j ϵrqk δSr (18.118d)

= (δri δ
q
j − δrj δqi) ∂qvj δSr (18.118e)

= (∇ · v) δSi − (∂iv) · δS. (18.118f)

To reach this result we made use of the following identities available for the permutation symbol
from Chapter 1

δAq δBk − δAk δBq = ϵrqk δSr (18.119a)

δri δ
q
j − δrj δqi = ϵijk ϵ

rqk. (18.119b)
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18.9.2 Evolution of the material surface area
Now orient the material surface area according to its outward unit normal vector

δS = n̂ δS and in components δSi = n̂i δS, (18.120)

where the magnitude of the area element is written

δS = |δS|. (18.121)

Doing so brings equation (18.118f) to the form

1

δS

D(n̂i δS)

Dt
= (∇ · v) n̂i − (∂iv) · n̂. (18.122)

Evidently, we can develop evolution equations for the surface area, δS, and the unit normal
vector, n̂.

For the surface area evolution we take the inner product of equation (18.122) with n̂i to yield

1

δS

DδS

Dt
= ∇ · v − [(n̂ · ∇)v] · n̂ (18.123)

where we set n̂ · n̂ = 1 and followed the discussion in Section 2.1.5 to find that

n̂ · n̂ = 1 =⇒ n̂ · Dn̂
Dt

= 0, (18.124)

so that the normal vector is always perpendicular to its material time derivative. Rearrangement
of equation (18.123) then leads to the kinematic evolution equation for the area

1

δS

DδS

Dt
= [∂i − n̂i (n̂ · ∇)] vi. (18.125)

We next provide some interpretation of this result.

Surface derivative operator

The derivative operator on the right hand side of equation (18.125),

∂surf
i ≡ ∂i − n̂i (n̂ · ∇), (18.126)

is a surface derivative operator since it subtracts from the gradient operator the projection onto
the local normal, thus leaving a gradient operator just in the tangent plane of the surface. The
area evolution equation (18.125) can thus be written in the tidy form

1

δS

DδS

Dt
= ∇surf · v, (18.127)

so that the relative area of the material surface changes according to the surface divergence of
the velocity field.

Special case of a horizontal surface

To help understand the kinematic equation (18.127), consider the special case of a horizontal
surface with a vertical unit normal vector, n̂ = ẑ, so that

1

δS

D(δS)

Dt
= ∇ · v − ẑ · ∂zv = ∇h · u. (18.128)
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x

z

∂w/∂x ≠ 0
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n̂

Figure 18.8: Horizontal shear in the vertical velocity, ∇hw, creates undulations in an initially horizontal material
surface that leads to a horizontal component in the normal vector. We here show the case where ∂w/∂x ̸= 0, thus
leading to a zonal component to the normal vector according to Dn̂x/Dt = −∂xw.

.

In this case we see that the area of a horizontal surface increases when the horizontal velocity
diverges, and the area decreases when the horizontal velocity converges. We expect this behavior
since the surface is material and is thus moving with the flow. We encounter this result again in
Section 18.9.4 for two-dimensional flow, in which the area is always horizontal.

As another special case, consider a three dimensional flow that is non-divergent, ∇ · v = 0
(see Chapter 21). In this case the area changes are only due to the projection of the normal
gradient onto the normal direction. So again considering a horizontal area with n̂ = ẑ, the area
evolution in a non-divergent flow is given by

1

δS

D(δS)

Dt
= −ẑ · (ẑ · ∇)v = −∂zw, (18.129)

which follows from equation (18.128) with ∂xu+ ∂yv + ∂zw = ∇h · u+ ∂zw = 0.

18.9.3 Evolution of the normal vector
We make use of the area evolution equation (18.127) within equation (18.122) to derive an
evolution equation for the normal vector

Dn̂i
Dt

= −n̂i
1

δS

D(δS)

Dt
+ (∂jv

j) n̂i − (∂iv
j) n̂j (18.130a)

= −n̂i [∂jvj − n̂j (n̂ · ∇) vj ] + (∂jv
j) n̂i − (∂iv

j) n̂j (18.130b)

= −n̂j [∂i − n̂i n̂ · ∇] vj (18.130c)

= −n̂j ∂surf vj (18.130d)

= −n̂ · ∂surf v. (18.130e)

Equation (18.130c) provides a simple means to verify that the kinematic constraint (18.124) is
satisfied, in which n̂ ·Dn̂/Dt = 0.

To help understand the evolution equation (18.130e), consider again a horizontal area with
its normal vector initially in the vertical. The evolution of this normal vector is thus given by

Dn̂i
Dt

= −(∂i − ẑi ∂z)w, (18.131)

with each component evolving according to

Dn̂1
Dt

= −∂xw and
Dn̂2
Dt

= −∂yw and
Dn̂3
Dt

= 0. (18.132)

Hence, an initially vertical normal vector tilts into the horizontal direction according to minus
the horizontal shear in the vertical velocity. As illustrated in Figure 18.8, we understand this
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Figure 18.9: A parallelepiped defined by three material lines with volume (to within a sign) given by δV =
(δA× δB) · δC. See also the discussion surrounding Figure 1.4.

result by noting that such a shear creates undulations in the initially horizontal surface that
render a horizontal component to the normal vector.

18.9.4 Material area in two-dimensional flow

Now consider a material area for two-dimensional fluid flow with velocity, v = (u, v, 0), and
δA = x̂ δx, δB = ŷ δy, with zero dependence on z. In this case, the area of an infinitesimal
material region is

δS = (δA× δB) · ẑ = δx δy, (18.133)

and its evolution is given by

D(δS)

Dt
= (δB × ẑ) · (δA · ∇)u+ (ẑ × δA) · (δB · ∇)u (18.134a)

= δx δy∇ · u, (18.134b)

so that
1

δS

D(δS)

Dt
= ∇ · u. (18.135)

Hence, the area of the material region evolves according to the divergence of the horizontal velocity.
Correspondingly, the area remains constant in a horizontally non-divergent flow. This result
follows from specializing the three-dimensional result (18.118f) to the case of two-dimensional
flow by assuming no dependence on the vertical direction.

18.10 Volume, thickness, and the Jacobian
As studied in Chapter 19, the mass of a material parcel is constant. However, its volume is not
generally constant since the fluid density is not generally uniform. We here derive the expression
for how volume evolves for a material parcel. We also derive the material evolution equation for
the Jacobian of transformation between position space and material space. We find that the
relative change for both the parcel volume and the Jacobian are determined by divergence of
the velocity field. We retain Cartesian tensor notation throughout this section. Note that some
of these results were anticipated in Sections 18.5 and 18.7.

18.10.1 Material parcel volume

Consider a material region with a volume δV spanned by the infinitesimal material lines δA,
δB, and δC (see Figure 18.9). To within a sign the volume is given by

δV = (δA× δB) · δC. (18.136)
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Making use of the material line evolution equation (18.60) renders

D(δV )

Dt
= (δB × δC) · (δA · ∇)v + (δC × δA) · (δB · ∇)v + (δA× δB) · (δC · ∇)v. (18.137)

Now specialize to the case where the parcel is a parallepiped oriented according to the coordinate
axes

δA = x̂ δx and δB = ŷ δy and δC = ẑ δz, (18.138)

so that
δV = δx δy δz. (18.139)

Plugging into equation (18.137) leads to

1

δV

D(δV )

Dt
= ∇ · v. (18.140)

This result is a three-dimensional generalization of the material area equation (18.135).

We offer an alternative derivation of equation (18.140) in Section 19.2, where no assumptions
are made concerning the shape of the material region. That derivation leads us to conclude
that the relative volume of a material parcel increases when the parcel moves through a region
where the velocity diverges (∇ · v > 0). We think of a diverging velocity field as “spreading out”
the material parcel boundary, thus increasing its volume. In contrast, the volume of a material
parcel decreases where the fluid velocity converges (∇ · v < 0)

∇ · v > 0 =⇒ material volume increases in diverging flow =⇒ parcel expands (18.141a)

∇ · v < 0 =⇒ material volume decreases in converging flow =⇒ parcel contracts. (18.141b)

Some authors refer to ∇ · v as the dilatation (e.g., page 15 of Pope (2000)), since the velocity
divergence measures the rate that the volume of a fluid element is expanded (dilates) or contracts.

18.10.2 Evolution of the column thickness
A material volume, δV , evolves according to the divergence of the velocity (equation (18.140)),
whereas the material area, δS, evolves according to the surface divergence of the velocity
(equation (18.127)). Now consider a material volume whose cross-sectional area is δS and whose
thickness is δh, with δh measuring the thickness in a direction defined by the unit normal, n̂.
That is, the material volume is cylindrical. We can deduce the evolution of the thickness since
we know the evolution of the volume and area

1

δV

D(δV )

Dt
=

1

δh δS

D(δh δS)

Dt
=

1

δh

D(δh)

Dt
+

1

δS

D(δS)

Dt
. (18.142)

Use of equations (18.140) and (18.127) render

1

δh

D(δh)

Dt
= ∇ · v −∇surf · v = n̂i (n̂ · ∇) vi. (18.143)

For example, consider the special case with n̂ = ẑ, in which

1

δh

D(δh)

Dt
=
∂w

∂z
, (18.144)

so that the column thickness evolves according to the vertical derivative of the vertical velocity.
This result accords with our discussion of stretching in Section 18.8.3.
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18.10.3 Evolution of the Jacobian of transformation
Recall the discussion in Sections 18.7.3 and 18.7.1, where we showed how the Jacobian satisfies

d3x =
∂φ(a, T )

∂a
d3a =⇒ ∂φ(a, T )

∂a
=

d3x

d3a
, (18.145)

where
d3a = da1 da2 da3 (18.146)

is the material coordinate volume for the parcel, and d3x is the Eulerian coordinate volume. The
material coordinate volume is a constant following a particle trajectory, whereas the Eulerian
coordinate volume is not a constant, so that

D

Dt

∂φ

∂a
=

1

d3a

D(d3x)

Dt
(18.147a)

=
d3x

d3a
∇ · v (18.147b)

=
∂φ

∂a
∇ · v. (18.147c)

The second equality made use of the equation (18.140), which expresses the material time change
for the volume of a material fluid parcel, as measured in position space, in terms of the velocity
divergence. We thus see that the relative change of the Jacobian is determined by the divergence
of the velocity [

∂φ

∂a

]−1 D

Dt

[
∂φ

∂a

]
= ∇ · v. (18.148)

This equation is identical to the parcel volume equation (18.140), which is expected given the
relation between the Jacobian and the parcel volume. In Exercise 18.5, we derive this result
using the explicit expression for the Jacobian in terms of the permutation symbol, ϵ.

18.11 Kinematics of two-dimensional flow
In this section we consider the rudiments of two-dimensional flow as a venue to illustrate topics
presented earlier in this chapter such as dilation, rotation, and strains. In so doing we expose
kinematic properties commonly used to characterize two-dimensional flow, with generalizations
to three-dimensions available with a bit more maths. We retain Cartesian tensors throughout
this section.

The starting point is Figure 18.10, which shows a square region of fluid exposed to a variety of
flow regimes. We can kinematically describe these changes by making use of the velocity gradient
tensor introduced in Section 18.8, here written for the two-dimensional flow with horizontal
velocity components, (u, v)

[∂jv
i] =

[
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

]
(18.149a)

=

[
∂u/∂x (1/2) (∂u/∂y + ∂v/∂x)

(1/2) (∂u/∂y + ∂v/∂x) ∂v/∂y

]
+
ζ

2

[
0 −1
1 0

]
(18.149b)

= S+R, (18.149c)

where
ζ = ẑ · ∇ × v = ∂v/∂x− ∂u/∂y (18.150)

is the vertical component to the vorticity.
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Figure 18.10: Illustrating the varieties of changes for an initially square material fluid region in two-dimensional
flow. Upper left: purely divergent flow, whereby ∇ · u > 0 yet with zero vorticity, thus leading to an increase in
the area. An example flow generating this motion is realized by u = γ (x x̂+ y ŷ) = γ x (with γ > 0 a constant of
dimensions inverse time) so that the divergence is ∇ · u = 2 γ. Upper right: rotational flow with nonzero vertical
vorticity component, ζ = ẑ · (∇× u), yet zero divergence, thus leading to a pure rotation of the square patch. An
example flow generating this motion is realized by u = ẑ ×∇ψ = γ (−y x̂+ x ŷ) = −γ ẑ × x with streamfunction
ψ = (γ/2) (x2 + y2) and vorticity ζ = ∇2ψ = 2 γ. Lower left: result of a pure tension/compression straining flow
(also called a deformation flow) with zero divergence and zero vorticity, leading to compression in one direction and
dilation in the orthogonal direction. An example flow is given by u = ẑ×∇ψ = γ (x x̂− y ŷ) with streamfunction
ψ = −γ x y. The deformation of the region is measured by the tension strain, ∂xu− ∂yv = 2 γ. Lower right: pure
shearing strain flow with zero divergence and zero vorticity. An example flow is given by u = −γ (y x̂ + x ŷ)
with streamfunction ψ = −(γ/2) (x2 − y2). The deformation of the region is measured by the shearing strain,
∂yu+ ∂xv = −2 γ. This figure is adapted from Figure 2.4 of Hoskins and James (2014).

18.11.1 Diverging flow

Recall from Section 18.9.4 that a material surface in two-dimensional flow changes its area
according to the divergence. The upper left panel of Figure 18.10 thus illustrates equation
(18.135)

1

δS

D(δS)

Dt
= ∇ · u = Sii = S1

1 + S2
2, (18.151)

where δS is the area and Sii is the trace of the strain rate tensor. That is, a diverging flow as
depicted by this figure, with ∇ · u > 0, leads to an expansion of the area. The opposite occurs
for a converging flow, where the area compresses.

18.11.2 Flow with nonzero deformation

The lower left panel of Figure 18.10 shows the square within a deformational flow whereby it
contracts along the y-axis and dilates along the x-axis. This flow is non-divergent, ∇ · u = 0,
and has zero vorticity, ζ = 0, so that the area remains constant and the orientation is fixed.
However, it has shear that acts to deform the area. This particular non-divergent deformational
flow is determined by

u = ẑ ×∇ψ, (18.152)

with the streamfunction, ψ = −γ x y where γ is a constant inverse time scale and hence
the strength of the strain. The resulting velocity components are u = −∂ψ/∂y = γ x and
v = ∂ψ/∂x = −γ y.
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Figure 18.11: Two-dimensional horizontally non-divergent and irrotational flow with nonzero deformation/strain.
Left panel: pure tension strain as determined by the streamfunction, ψ = −γ x y, so that the velocity u =
ẑ × ∇ψ = γ (x x̂ − y ŷ). The y-axis orients the direction along which flow contracts (compression) whereas
the x-axis is the dilation axis (tension). Right panel: pure shearing flow as determined by the streamfunction
ψ = −(γ/2) (x2 − y2) so that the velocity is u = ẑ ×∇ψ = γ (−y x̂− x ŷ). We set γ = 1 for both examples.

18.11.3 Rotational flow with nonzero vorticity

The upper right panel of Figure 18.10 illustrates the effects from flow with a non-zero vorticity,
ζ = ∂v/∂x− ∂u/∂y. We provide extensive discussion of vorticity in Part VII of this book, with
vorticity measuring the spin of a fluid particle within the flow. The nonzero spin imparts a
rotation to an area element, with the flow in the upper right panel of Figure 18.10 bringing
about a counter-clockwise rotation. All components of the strain tensor vanish for a purely
rotational flow, so that there is no deformation of the square as it rotates.

There are two combinations of the strain rate tensor elements that are useful in describing
deformational flows:

tension strain = ST = S1
1 − S2

2 = ∂u/∂x− ∂v/∂y (18.153a)

shearing strain = SS = 2S1
2 = ∂u/∂y + ∂v/∂x. (18.153b)

The tension strain and shearing strain are also known as tension and shearing deformation
rates. Note that negative tension is known as compression. For the deformation flow with
streamfunction ψ = −γ x y, we have

ST = 2 γ and SS = 0, (18.154)

so that this velocity leads to a purely tension straining flow. In contrast, the following non-
divergent irrotational flow is a purely shearing strain flow

ψ = −(γ/2) (x2 − y2) u = −γ y v = −γ x ST = 0 SS = −2 γ, (18.155)

as depicted by the right panel of Figure 18.11. This pure shearing flow leads to the deformation
of the fluid square shown in the lower right panel of Figure 18.10.

18.11.4 Further study

Elements of this section can be found in Section 2.3 of Hoskins and James (2014). More detailed
examinations of two-dimensional flow kinematics are offered by Weiss (1991) and Lilly (2018).
Furthermore, we here introduced the streamfunction, ψ, for non-divergent two-dimensional flow,
yet provide a more thorough discussion in Section 21.4.
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18.12 Exercises
exercise 18.1: Material evolution of the acceleration divergence
This exercise is based on problem 10(a) from Section 3.1 of Segel (1987). Here, we derive the
relation

∇ · Dv
Dt

=
D(∇ · v)

Dt
+ Sij S

j
i −Rij Rj i, (18.156)

where Sij S
j
i and Rij R

j
i are the doubly contracted strain rate tensor and squared rotation

tensor (Sections 18.8.4 and 18.8.5). Make use of Cartesian tensors for your solution.

exercise 18.2: Velocity field with zero strain (Aris (1962) exercise 4.41.1)
If the strain rate tensor vanishes, show that the velocity field can be written

v = U +Ω× x, (18.157)

where Ω is a constant angular rotation rate and U is a constant velocity. That is, a fluid velocity
equal to a constant rotation plus translation renders zero strain. Hint: if S = 0, what does that
imply about the velocity field? You may also wish to make use of the general decomposition
(18.106).

exercise 18.3: Strain rate tensor and rotation tensor (Aris (1962) exercise 4.43.3)
Consider a two-dimensional flow with horizontal velocity

u = (F/r) (x̂ y − ŷ x), (18.158)

where F = F (r) is an arbitrary function of the radial distance r =
√
x2 + y2 and with dimensions

of L T−1. Throughout this exercise, be sure your solution is dimensionally consistent.

(a) Show that the velocity field is non-divergent.

(b) Determine an analytic expression for the streamlines and draw a picture.

(c) Determine the elements to the strain rate tensor, S, given by equation (18.149c). Write
the expression using polar coordinates x = r cosφ and y = r sinφ (see Section 4.22) and
the structure function

G(r) = r
d(F/r)

dr
= (F ′ − F/r)/2 with F ′ = dF/dr. (18.159)

(d) Determine elements to the rotation tensor, R, given by equation (18.149c), also written in
polar coordinates.

exercise 18.4: Strain rate tensor and rotation tensor for parallel shear flow
Consider a two-dimensional parallel shear flow with horizontal velocity

u = a x ŷ, (18.160)

where a is a constant with dimension inverse time.

(a) Compute the strain rate tensor, S (equation (18.149c)) for this velocity field.

(b) Compute the rotation tensor, R (equation (18.149c)) for this velocity field.

(c) Decompose the velocity field according to equation (18.106), and show that each of the
velocity components is non-divergent. That is, write

u = u0 + u(S) + u(A) with ∇ · u(S) = ∇ · u(A) = 0, (18.161)
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with u0i the velocity at the point where δxi = xi− x0i = 0. The velocity u(S) has a constant
strain but no vorticity whereas u(A) has a constant vorticity but no strain. Hint: both u(S)

and u(A) have nonzero x̂ and ŷ components.

(d) Determine the streamfunctions for u(S) and u(A).

(e) Sketch the velocity vectors u(S) and u(A).

exercise 18.5: Evolution of the Jacobian using ϵ-tensor gymnastics
There is another way to derive the identity (18.148) for the evolution of the Jacobian. This
other method is somewhat more tedious. However, it exercises some useful methods of index
gymnastics involving the ϵ-tensor. It also has a natural generalization to curved spaces. This
exercise is only for aficionados of tensor analysis.

An explicit expression for the Jacobian of transformation is given by

∂φ

∂a
=

1

3!
ϵmnp ϵ

IJK ∂φm

∂aI
∂φn

∂aJ
∂φp

∂aK
. (18.162)

Take the material derivative of this expression and show that we get the same expression as
equation (18.148). Hint: make use of the identity

D

Dt

∂φm

∂aI
=
∂vm

∂aI
, (18.163)

which holds since the material time derivative is taken with the material coordinates, a, held
fixed. Also make use of the identity (4.75) for the derivative of the Jacobian with respect to
one of the matrix elements. Finally, note that similar manipulations are encountered in Section
47.5.4.
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Chapter 19

MASS CONSERVATION

Throughout this book, we assume that matter is neither created nor destroyed anywhere within
the fluid continuum, and furthermore that the fluid remains in a single phase.1 These assumptions
constrain the fluid motion and as such they form an important facet of fluid kinematics. In
this chapter, we derive a variety of mathematical expressions for mass conservation in a single
component fluid (materially homogeneous fluid), along with associated kinematic constraints
placed on fluid motion. These constraints are examined both in the fluid interior and at
boundaries, and from both Eulerian and Lagrangian viewpoints.

reader’s guide to this chapter
We are here concerned with single-component fluids, with generalizations to multiple-

component fluids given in Chapter 20. We build on the understanding of the Eulerian and
Lagrangian kinematic descriptions developed in Chapters 17 and 18. For some discussions
we require the tools from general tensor analysis as summarized in Chapter 18 for Eulerian
(x-space) and Lagrangian (a-space).
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19.1.1 Finite volume expression . . . . . . . . . . . . . . . . . . . . . . . 482
19.1.2 Arbitrary Eulerian region . . . . . . . . . . . . . . . . . . . . . . 483

19.2 Material fluid parcels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
19.2.1 Lagrangian expression for mass conservation . . . . . . . . . . . . 484
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19.3 Material fluid regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
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1Chemical reactions transform matter from one form to the another. Nuclear reactions convert between matter
and nuclear energy. Phase changes convert matter from one phase to another. These processes are all outside the
scope of this book.
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19.7.1 Kinematic free surface equation . . . . . . . . . . . . . . . . . . . 500
19.7.2 Budget for mass per horizontal area . . . . . . . . . . . . . . . . 501

19.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

19.1 Eulerian fluid regions
We here develop expressions for the mass budget within an Eulerian region, both infinitesimal
and finite. Recall that Eulerian regions are fixed in space and thus have constant volumes.

19.1.1 Finite volume expression
Consider a finite sized cubic region that is fixed in space as shown in Figure 19.1. The mass
contained within the cube is given by

∆M = ρ∆V = ρ∆x∆y∆z, (19.1)

where the cube volume,
∆V = ∆x∆y∆z, (19.2)

is constant in time as per an Eulerian region. Since we will be taking the limit as the size of
the cube becomes infinitesimal, it is sufficient to approximate the mass density as that at the
cube center, ρ = ρ(x, y, z, t). In the absence of mass sources within the fluid, the mass within
the cube changes only through the accumulation or depletion of mass transported across the six
cube faces.

Focusing on the mass transport in the meridional direction as illustrated in Figure 19.1, the
accumulation of mass within the cube through this transport is determined by the difference in
mass transport crossing the two adjacent cell faces

mass change from meridional transport = (∆x∆z) [(v ρ)y−∆y/2 − (v ρ)y+∆y/2]. (19.3)

Expanding the difference into a Taylor series and truncating after leading order yields

mass change from meridional transport ≈ −(∆x∆y∆z) ∂(v ρ)
∂y

. (19.4)

The same analysis for the zonal and vertical directions leads to the mass budget for the cube

∂(ρ∆V )

∂t
= −∆V

[
∂(u ρ)

∂x
+
∂(v ρ)

∂y
+
∂(w ρ)

∂z

]
. (19.5)

Hence, the cube mass changes according to convergence of mass across the cube boundaries.
Cancelling the constant volume ∆V (again, the volume is assumed fixed as per an Eulerian
region) renders the flux-form Eulerian mass continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (19.6)

The mass continuity equation (19.6) is in the form of a flux-form conservation law, in which
the local time tendency of a field is determined by the convergence of a flux

∂ρ

∂t
= −∇ · (ρv). (19.7)

The mass flux, ρv, with dimensions M L−2 T−1, measures the mass per time of matter crossing
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Figure 19.1: A finite sized cube or cell region with fixed dimensions and position (an Eulerian region) used
to formulate the Eulerian form of mass conservation. We highlight two cell faces with area ∆x∆z and with
meridional mass transport crossing the faces given by ∆x∆z (v ρ)y−∆y/2 and ∆x∆z (v ρ)y+∆y/2. To establish
signs we assume the meridional velocity is positive, v > 0, so that mass enters the face at y−∆y/2 and leaves the
face at y +∆y/2. Differences between these two transports leads to an accumulation of mass within the cell. The
resulting mass budget holds regardless the direction of the flow velocity.

a unit area oriented with an outward normal in each of the three Cartesian directions. If more
mass is transported into a region than leaves (i.e., mass converges), then the mass density
increases, and vice versa for a mass flux that diverges from a region. It is notable that the mass
flux also serves as a measure of the momentum flux, which we discuss in Chapter 24.

19.1.2 Arbitrary Eulerian region

The discussion for the infinitesimal cube can be generalized by making use of Gauss’s divergence
theorem from Section 2.7. For that purpose, consider an arbitrary static and simply closed
region within the fluid such as in Figure 19.2. Integrating the continuity equation (19.6) over
that region leads to ˆ

R

∂ρ

∂t
dV = −

ˆ
R

∇ · (ρv) dV. (19.8)

Since the region is static we can move the partial time derivative outside on the left hand side.
Furthermore, the divergence theorem can be applied to the right hand side to convert the volume
integral to a surface integral over the boundaries of the static domain. The resulting mass budget
is given by

d

dt

ˆ
R

ρdV = −
˛
∂R
ρv · n̂dS, (19.9)

where n̂ is the outward unit normal vector along the closed boundary of the region, and dS
is the surface area element along that boundary. This equation says that the mass within a
fixed region of the fluid changes in time (left hand side) according to the accumulation of mass
crossing the region boundary (right hand side). The minus sign means that the mass decreases
in the region if there is a net mass transport leaving the domain in the direction of the outward
normal.

19.2 Material fluid parcels

We here derive the differential expressions for mass conservation of a constant mass fluid parcel
within a Lagrangian reference frame. The differential expressions for volume and density arise as
a corollary. This discussion complements the Eulerian discussion from Section 19.1. To motivate
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n̂ dS

Figure 19.2: An arbitrarily shaped simply closed region, R, within the fluid. If the region is fixed in space,
then it represents a general Eulerian region for considering mass budgets. A surface area element, dS, is oriented
according to the outward normal, n̂.

the derivations we expand the flux-form mass continuity equation (19.6) to have

1

ρ

Dρ

Dt
= −∇ · v, (19.10)

where D/Dt = ∂t + v · ∇ is the material time derivative operator from Section 17.4.4. We now
derive this form of the mass continuity using Lagrangian methods.

19.2.1 Lagrangian expression for mass conservation
The mass of an infinitesimal fluid parcel that moves with the fluid flow is written2

δM = ρ δV, (19.11)

where δV is the volume and
ρ = δM/δV (19.12)

is the mass density of the moving parcel. Mass conservation means that the fluid parcel has a
constant mass as it moves with the flow, so that its material time derivative vanishes

D(δM)

Dt
= 0. (19.13)

Equation (19.13) is the most basic form of mass conservation for a fluid parcel. However, one
often has need to express this result in terms of parcel density and parcel volume

D(δM)

Dt
=

D(ρ δV )

Dt
= δM

[
1

ρ

Dρ

Dt
+

1

δV

D(δV )

Dt

]
. (19.14)

Comparing to the mass continuity equation (19.10) leads to3

1

δM

D(δM)

Dt
=

1

ρ

Dρ

Dt
+∇ · v. (19.15)

Setting D(δM)/Dt = 0 renders the continuity equation (19.10) derived from the Eulerian
expression

1

ρ

Dρ

Dt
= −∇ · v. (19.16)

The parcel volume contracts in regions where the velocity converges (we prove that property in
Sections 18.10.1 and 19.3.1). The continuity equation (19.16) then says that regions of volume

2Recall that we use the δ symbol to signal a property measured in the Lagrangian reference frame.
3In Section 18.10.1 we derived the material evolution of volume, and will again see this result in equation

(19.25).
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contraction are where the parcel density increases whereas the opposite occurs for regions where
the velocity diverges.

19.2.2 Summary of material kinematic equations

Let us now summarize the variety of differential evolution equations for mass, volume, and
density as viewed from a material reference frame

D(δM)

Dt
= 0 parcel mass is constant (19.17)

1

δV

D(δV )

Dt
= ∇ · v parcel volume increases in divergent flow (19.18)

1

ρ

Dρ

Dt
= −∇ · v parcel density increases in convergent flow. (19.19)

To help remember the signs on the right hand side, recall that as the fluid diverges from a point
(∇ · v > 0), it expands the boundaries of the material parcel and so increases the parcel volume
as per equation (19.18). Since the parcel has a fixed mass, the diverging velocity field causes the
material parcel density to decrease (−∇ · v < 0) as per equation (19.19).

19.3 Material fluid regions
We now extend the kinematics of material fluid parcels in Section 19.2 to finite sized material
fluid regions. Just as for material fluid parcels, the finite sized material fluid region retains the
same matter content, and thus maintains a constant mass.4 We contrast the discussion here
with that for Eulerian regions (fixed in space) considered in Section 19.1. One key operational
distinction between the Eulerian and Lagrangian domains is that partial time derivative, ∂t,
commutes with integration over a fixed Eulerian domain, whereas material time derivative, ∂T ,
commutes with integration over a Lagrangian domain as per Reynolds transport theorem derived
in Section 19.5.

19.3.1 Evolution of volume

Consider a finite material region, R(v), whose volume is given by the integral

V =

ˆ
R(v)

dV, (19.20)

with dV the volume element. The region changes its shape according to motion of the fluid
particles fixed to the boundary of the material region. We designate this region as

R(v) = region following flow, (19.21)

with the v argument emphasizing that the region moves with the flow velocity. The material
region expands when the flow moves outward and contracts when the flow moves inward. These
statements take on the following mathematical expression

d

dt

ˆ
R(v)

dV =

˛
∂R(v)

v · n̂dS, (19.22)

4Recall that throughout this chapter we are focused on single-component fluids, so there is no diffusion of
matter considered here. We relax this restriction in Chapter 20.
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where n̂ is the outward normal on the region’s closed boundary, dS is the area element on the
boundary, and

v · n̂dS = volume transport (volume per time) at the boundary ∂R. (19.23)

Use of the divergence theorem then leads to the equivalent expression

d

dt

ˆ
R(v)

dV =

ˆ
R(v)
∇ · v dV. (19.24)

We now take the limit as the material region becomes a material parcel, in which case we recover
the differential expression

1

δV

D(δV )

Dt
= ∇ · v, (19.25)

where we make use of D/Dt since the infinitesimal volume is moving with the fluid. This equation
is also derived in Section 18.10.1 using different methods.

19.3.2 Mass conservation

The mass of fluid contained in a finite material region is given by

M =

ˆ
R(v)

ρ dV. (19.26)

As a material fluid region, it maintains a constant mass as it moves through the fluid so that

d

dt

ˆ
R(v)

ρdV = 0. (19.27)

Just as for the volume in Section 19.3.1, taking the limit as the material region becomes
infinitesimally small, the region mass conservation statement (19.27) becomes the parcel mass
conservation statement (19.13)

D(δM)

Dt
=

D(ρ δV )

Dt
= 0. (19.28)

19.4 Mass conservation and the motion field
In Sections 18.2 and 18.3 we described motion of the matter continuum in terms of the motion
field, φ(a, T ). The motion field smoothly and continuously maps the reference or base manifold,
B, to the spatial manifold, S, as time evolves. In that manner, the motion field provides a
flow map. Here we frame mass conservation in this rather formal language of Lagrangian fluid
mechanics, with Figure 19.3 providing a summary of the ideas.

19.4.1 Mass for a fluid parcel

Following the discussion of material volume elements in Section 18.7.3, write the mass of a fluid
parcel on the referential or base manifold, B, as (see equation (18.78))

δM = ρL(a, T = tR)
√

det[gL(a, T = tR)] d
3a = ρ̊L(a) g̊L(a) d3a (19.29)

In this equation, d3a is the region of material space that is occupied by the parcel, with this
region specified on the base manifold so that it does not change as the parcel evolves via the
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M =

∫

R(tR)
g̊L(a)ω̊L(a) d3a

Figure 19.3: Following from Figure 18.1, we here depict conservation of mass in terms of the mapping between the
referential or base manifold, B, at time T = t = tR, and the spatial manifold, S, at some future time. The mapping
is affected by the motion field, φ(a, T ), which provides a flow map for the matter continuum. Mass conservation
means that each infinitesimal fluid parcel within the matter continuum has a constant mass as it evolves from
the base manifold to the spatial manifold. When represented using material coordinates on the base manifold,
the parcel (small black circular region) has a mass given by δM = ρ̊(a) d3a, and mass within a finite subregion,
R(tR) of the base manifold (dark gray region) is given by the integral, M =

´
R(tR)

ρ̊(a) d3a. When represented

using Eulerian coordinates on the spatial manifold, the parcel has a mass, δM = ρ(x, t) δV (x, t), and the mass
within the finite subregion, R(t), that moves with the motion field, is given by the integral, M =

´
R(t)

ρ(x, t) dV .

Mass conservation for parcels, according to equation (19.40), means that the mass densities are related by
ρ̊(a) = ρL(a, T ) gL(a, T ), or when using Cartesian Eulerian coordinates we have ρ̊(a) = ρL(a, T ) ∂φ(a, T )/∂a. In
either case, ρ̊(a) is independent of the material time, T

motion field. We use the shorthand

g̊L(a) = gL(a, T = tR) =
√
det[gL(a, T = tR)] (19.30)

for the square root of the Euclidean metric using the Lagrangian coordinates, computed at the
reference time T = tR and written as per equation (18.43). The mass density, ρL(a, T = tR), is
the density of the fluid parcel computed at the base time, T = tR.

As the fluid evolves, the motion field maps the base manifold, B, to the spatial manifold, S,
as depicted in Figure 19.3. Mass conservation means that mass of the fluid parcel, δM , remains
unchanged as its center of mass moves along a fluid particle trajectory, so that

δM = ρL(a, T ) gL(a, T ) d3a = ρ̊L(a) g̊L(a) d3a. (19.31)

When measured using Eulerian coordinates on the spatial manifold, the parcel mass is written

δM = ρ(x, t) δV (x, t). (19.32)

In this equation, δV (x, t) is the parcel volume measured using x coordinates, with this volume
having dimensions L3, and being a function of space and time. The mass density, ρ(x, t), is the
mass of the parcel per unit volume, δV (x, t). Writing the parcel mass using arbitrary Eulerian
coordinates renders

δM = ρ(x, t) δV = ρ(x, t) gE(x) d3x, (19.33)

where gE(x) =
√
det[gE(x)] is the square root of the metric determinant when using arbitrary

Eulerian coordinates.5 Equating the Lagrangian expression (19.31) to the Eulerian expression
(19.33) yields the identity

ρL(a, T ) gL(a, T ) d3a = ρ(x, t) gE(x) d3x. (19.34)

5Recall from Section 18.5.1 that the Eulerian representation of the metric tensor is independent of the Eulerian
time coordinate, t.
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If the Eulerian coordinates are taken to be Cartesian, then equation (18.46) means that the
Jacobian of the transformation between x-space and a-space can be written in terms of the
Lagrangian metric tensor determinant,

∂φ

∂a
= gL(a, T ) Cartesian Eulerian coordinates. (19.35)

With this choice, the parcel mass can be written as

δM = ρL(a, T ) (∂φ/∂a) d3a Cartesian Eulerian coordinates. (19.36)

19.4.2 Parcel mass conservation and the Jacobian

The coordinate volume in material space is a material constant, so that

∂T (d
3a) = 0. (19.37)

Consequently, setting ∂T (δM) = ∂T (ρ δV ) = 0 in equation (19.31) leads to the expression of
mass conservation

∂

∂T
[ρL(a, T ) gL(a, T )] = 0. (19.38)

Evidently, the product of the mass density times the square root of the metric determinant
remains constant when following the trajectory of a fluid particle. Specializing to the case of
Cartesian Eulerian coordinates allows us to replace the metric determinant with the Jacobian as
per equation (18.46), so that

∂

∂T

[
ρL(a, T )

∂φ(a, T )

∂a

]
= 0 Cartesian Eulerian coordinates. (19.39)

Equation (19.29) for mass conservation leads to

ρ̊L(a) g̊L(a) = ρL(a, T ) gL(a, T )
Cartesian Eulerian

= ρL(a, T )
∂φ(a, T )

∂a
. (19.40)

Defining material coordinates as the base manifold particle positions is commonly made in the
solid mechanics literature (e.g., Chapter 1 of Tromp (2025a)). However, for geophysical fluid
mechanics we do not build this assumption into the formalism. The reason is that we often find
it useful to set a to non-spatial coordinates, such as discussed in Section 17.3.2.

19.4.3 Another derivation of mass conservation

Yet another derivation of mass conservation follows from the identity (18.148), in which

D

Dt
[ρ(x, t) δV (x, t)] =

D

Dt

[
ρ
∂φ

∂a
d3a

]
(19.41a)

=

[
Dρ

Dt
+ ρ∇ · v

] [
∂φ

∂a

]
d3a (19.41b)

=

[
Dρ

Dt
+ ρ∇ · v

]
δV (x, t). (19.41c)

The Eulerian form of mass conservation given by equation (19.16) is recovered when noting that
the mass of a material parcel is constant, so that Dρ/Dt = −ρ∇ · v.
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19.4.4 Mass conservation for material fluid regions

Now consider a finite region of the base manifold, R(tR), as depicted in Figure 19.3. The mass
of matter in this region is given by the integral

M =

ˆ
R(tR)

ρ̊L(a) g̊L(a) d3a. (19.42)

If the region follows the fluid flow so that R(t > tR) is comprised of the same fluid particles,
then the domain in a-space remains unchanged, in which case we write it as R(a). Furthermore,
a region that moves with fluid particles has a mass given by

M =

ˆ
R(a)

ρL(a, T ) gL(a, T ) d3a
Cartesian Eulerian

=

ˆ
R(a)

ρL(a, T )
∂φ(a, T )

∂a
d3a. (19.43)

When measured on the spatial manifold using Eulerian coordinates, the mass is given by

M =

ˆ
R(t)

ρ(x, t) dV
Cartesian Eulerian

=

ˆ
R(t)

ρ(x, t) d3x, (19.44)

with the Eulerian domain, R(t), a function of time.

A one-dimensional example

To help understand the equality between equations (19.42)–(19.44), consider a one-dimensional
example, in which the mass on a material line is given by

x2(t)ˆ

x1(t)

ρ(x, t) dx =

a[x2(t)]ˆ

a[x1(t)]

ρL(a, T )
∂φ(a, T )

∂a
da =

a2ˆ

a1

ρL(a, T )
∂φ(a, T )

∂a
da =

a2ˆ

a1

ρ̊L(a) g̊L(a) da.

(19.45)
The first equality introduced the Jacobian, ∂φ/∂a, for the one-dimensional coordinate transfor-
mation from x-space to a-space, with corresponding changes to the integration limits. We can
make this coordinate transformation since there is a 1-to-1 relation between the a-space and
x-space representation of a material fluid parcel. We also introduced the Lagrangian expression
for the mass density following a fluid particle

ρL(a, T ) = ρ[x = φ(a, T ), t = T ]. (19.46)

The second equality in equation (19.45) wrote the integral bounds in terms of the material
coordinate. Since we are considering a material region that follows fluid particles, the integral
bounds have fixed material coordinate values, a[x1(t)] = a1 and a[x2(t)] = a2. The final equality
in equation (19.45) introduced base manifold density and metric determinant,

ρ̊L(a) g̊L(a) = ρL(a, T )
∂φ(a, T )

∂a
, (19.47)

which is independent of time, as required for mass conservation for a material fluid parcel as
given by equation (19.39).
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An exercise in the formalism

As an exercise using the Lagrangian formalism, consider the time derivative of the mass within
a material fluid region and assume Cartesian x-space so that

d

dt

[ˆ
R[v(x,t)]

ρdV

]
=

d

dt

[ˆ
R[v(x,t)]

ρd3x

]
dV = d3x for Cartesian x-space

(19.48a)

=
∂

∂T

[ˆ
R(a)

ρL ∂φ

∂a
d3a

]
transform x to a

(19.48b)

=

ˆ
R(a)

∂

∂T

[
ρL ∂φ

∂a
d3a

]
∂T commutes w/ integral

(19.48c)

=

ˆ
R[v(x,t)]

D

Dt

[
ρ d3x

]
transform a to x

(19.48d)

=

ˆ
R[v(x,t)]

[
Dρ

Dt
+ ρ∇ · v

]
dV chain rule + eq. (18.140)

(19.48e)

=

ˆ
R[v(x,t)]

[
1

ρ

Dρ

Dt
+∇ · v

]
ρdV rearrange.

(19.48f)

When expressing the integral bounds using a-space coordinates, the integral bounds have no
material T -dependence since they are fixed on fluid particles. We can thus move the ∂T derivative
inside of the integral sign to reach the third equality. The fourther equality made use of equation
(19.41c) and converted back to x-space. In this manner, upon entering the integral and using
Eulerian coordinates, the time derivative is written as a material time derivative, D/Dt, since it
is a time derivative computed by following the fluid particles that define the material region. As
the material region, R, has a materially constant mass, we recover the mass continuity equation
(19.16) by setting the integrand in equation (19.48f) to zero.

19.5 Reynolds transport theorem
On first encounter, the method from Section 19.4.4 that involves moving between Eulerian
(x-space) and Lagrangian (a-space) representations is clumsy at best and a black box at worse.
However, with some practice it becomes an elegant means to study the time evolution of fluid
properties integrated over a material region. The method is formalized by the Reynolds transport
theorem.

19.5.1 Derivation of the theorem
Manipulations leading to the mass conservation statement (19.48f) can be generalized by
considering the material time derivative of a mass-weighted field ψ (e.g., a tracer concentration
as in Section 20.1)

D(ψ ρ δV )

Dt
=

Dψ

Dt
ρ δV + ψ

D(ρ δV )

Dt
(19.49a)
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= ρ δV

[
Dψ

Dt
+
ψ

ρ

Dρ

Dt
+ ψ∇ · v

]
(19.49b)

= δV

[
∂(ρψ)

∂t
+∇ · (ρψ v)

]
. (19.49c)

The first equality used the product rule, which holds for material time derivatives. Mass
conservation means that the material derivative D(ρ δV )/Dt = 0. However, we choose to write
mass conservation in the form of equation (19.41c), which allows us to introduce the flux-form
Eulerian expression after replacing the material time derivative with its Eulerian form from
equation (17.11). Another means to derive this result is to write

ρ
Dψ

Dt
= ρ

[
∂ψ

∂t
+ v · ∇ψ

]
(19.50a)

= ρ

[
∂ψ

∂t
+ v · ∇ψ

]
+ ψ

[
∂ρ

∂t
+∇ · (v ρ)

]
(19.50b)

=
∂(ρψ)

∂t
+∇ · (ρv ψ). (19.50c)

Following the discussion in Section 19.4.4, we can extend the material parcel result (19.49c)
to a finite size material region. Again, each point in the material region is following a fluid
particle. The result is known as the Reynolds transport theorem, which can be written in the
following equivalent manners

d

dt

ˆ
R(v)

ψ ρdV =

ˆ
R(v)

Dψ

Dt
ρdV material region (19.51a)

=

ˆ
R(v)

[
∂(ρψ)

∂t
+∇ · (ρψ v)

]
dV identity (19.50c) (19.51b)

=

ˆ
R(v)

∂(ρψ)

∂t
dV +

˛
∂R(v)

ρψ v · n̂dS divergence theorem (2.79). (19.51c)

Note that we returned to the notation R(v) for material region as introduced in Section 19.3.1.
This notation is sufficient to designate that the region is following fluid particles whose velocity
is the fluid velocity, v. The surface integral term, v · n̂, generally does not vanish. Rather, it is
given by v · n̂ = v(s) · n̂, where v(s) is the velocity of a point on the boundary of the material
region. Only when the material boundary is static can we set v · n̂ = 0. We further consider
this issue in Section 19.6 when studying kinematic boundary conditions.

19.5.2 Comments on notation for the time derivative
In this book we write d/dt for the time derivative operator acting on an integral. Furthermore,
when the domain is specialized to follow fluid particles, we identify the special nature of such
domains by introducing the fluid velocity argument to the domain name, R(v). This notation
designates that all points in the domain, R, move with the fluid velocity, v, since all points have
fluid particles attached. However, many authors choose an alternative notation by using the
material time derivative, D/Dt, when acting on an integral over a material region. We thus have
the following equality across the two notational conventions

D

Dt

ˆ
R

ψ ρ dV =
d

dt

ˆ
R(v)

ψ ρdV. (19.52)

The use of one convention versus the other is a matter of taste. We follow Section 2.1 of Batchelor
(1967) by restricting the D/Dt operator to act only on space-time fields, such as ψ(x, t). Hence,
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s = z � ⌘b(x, y) = s0

Figure 19.4: Illustrating the no-normal flow boundary condition maintained for a solid material boundary, on
which v · n̂ = 0 (equation (19.53)). When the solid boundary denotes the solid-earth (ground or ocean bottom),
and when the boundary does not overturn (i.e., n̂ · ẑ is single-signed), then the position of the interface can be
written s(x, y, z) = z − ηb(x, y) = s0, with s0 a constant (equation (19.54)). Correspondingly, the outward unit
normal is given by n̂ = −∇s/|∇s| = −(ẑ −∇ηb)/

√
1 + |∇ηb|2 as given by equation (19.55).

the D/Dt operator is not used when acting on integrals over spatial regions. Following this
convention leads us to write R(v) for a region that moves with the fluid flow and to retain d/dt
when acting on the integral over that region.

The R(v) notation is not generally used in the literature, with many authors dropping the v
and thus letting words designate whether a region follows the flow or otherwise. As we have
occasion in this book to consider a variety of fluid regions, we find it essential to introduce the
somewhat more explicit notation, R(v), to denote a region moving with the flow velocity, v.
This usage aims to help the reader freely swim along with the mathematical flow rather than
struggling to stay afloat in an ocean of confused or non-specific notation.

19.6 Kinematic boundary conditions
When a fluid encounters a boundary, either at the edge of the fluid region or an imaginary
boundary within the fluid itself, the flow must accommodate the boundary. Conversely, the
boundary must accommodate the flow. Some boundaries are impermeable, so that they do not
allow matter to cross. For material boundaries, any fluid originally in contact with the boundary
stays in contact; at most the fluid can move tangential to the boundary without leaving it. We
can understand this rather remarkable constraint placed on material boundaries by noting that
no two fluid particles can occupy the same point along the material boundary, nor can there
be a cavity next to the boundary as the boundary moves through the fluid. Other boundaries
are permeable, thus allowing matter to cross. In this section we develop kinematic boundary
conditions appropriate for the variety of cases encountered in fluid mechanics.

19.6.1 Static material surface
Consider a moving fluid that encounters a static material surface, such as the solid-earth. At the
boundary, we can decompose the fluid velocity into a component that moves in the plane locally
tangent to the boundary and another component that is normal to the boundary. To ensure
that no fluid crosses the static boundary, the normal component must vanish at the boundary
surface. Hence, the kinematic boundary condition for a moving fluid that encounters a static
material boundary is (see Figure 19.4)

v · n̂ = 0 no-normal flow condition on static material boundary. (19.53)

Recall our discussion of streamlines in Section 17.7.2, where v · n̂ = 0 along a streamline.
Evidently, the static material boundary is a flow streamline so that fluid that is in contact with
the boundary remains in contact. This result holds even in the case of a time dependent flow.6

6Specification of the tangential velocity along a material boundary requires dynamical information, such as
the no-slip boundary from Section 25.8.7, that is unavailable from purely kinematic considerations.
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For many cases in practice, the material surface is monotonic in the vertical, meaning there
are no overturns. In this case, it is useful to introduce some differential geometry (at the level of
introductory calculus) to unpack the boundary condition (19.53). Doing so helps to develop a
geometric formalism especially useful for the more complicated moving boundary conditions in
Sections 19.6.2 and 19.6.3. For this purpose, introduce a coordinate expression for the boundary
according to

s(x, y, z) = z − ηb(x, y) = s0 static material boundary, (19.54)

with z = ηb(x, y) the vertical position of the boundary and s0 a constant. The outward unit
normal vector at the boundary is thus given by

n̂ = − ∇s|∇s| = −
∇(z − ηb)
|∇(z − ηb)|

= − ẑ −∇ηb√
1 + |∇ηb|2

. (19.55)

Consequently, the no-flux boundary condition (19.53) takes the form

∇(z − ηb) · v = w − u · ∇ηb = 0 at z = ηb(x, y), (19.56)

where the velocity is decomposed into its horizontal and vertical components, v = (u, w). Hence,
to maintain the no-flux boundary condition requires the vertical velocity component to precisely
balance the projection of the horizontal velocity onto the slope of the material surface. If the
material surface is flat, so that ∇ηb = 0, then the kinematic boundary condition reduces to
w = 0. Alternatively, if the flow is purely horizontal and thus moves along a constant ηb isoline,
then u · ∇ηb = 0 so that w = 0.

19.6.2 Moving (free) material surface

We next consider the kinematic constraints imposed by a moving surface that does not allow
matter to cross the surface.7

General expression of the kinematic boundary condition

To ensure that no matter crosses the surface, the normal component of the velocity for a point
on the surface must match the normal component of the fluid at the surface. We are thus led to
the kinematic boundary condition for a moving material surface

(v − v(s)) · n̂ = 0 moving material boundary condition. (19.57)

We illustrate this boundary condition in Figure 19.5, where v(s) is the velocity of a point fixed
on the moving material surface and v is the velocity of the fluid particles.

As for the static material boundary, there is no constraint on the tangential component of
the velocities, since it is only the normal component that measures the flow of matter across
the boundary. Hence, the boundary condition (19.57) does not mean v and v(s) are identical. It
only says that their normal components are the same when evaluated on the material surface.
As a Corollary, we see that v · n̂ is not generally zero so that a moving material boundary does
not coincide with a flow streamline (see discussion in Sections 17.7.2 and 17.7.3).

7As we discuss in Chapter 20, with multiple matter components a surface that follows the barycentric velocity
and so allows for zero net mass to cross it can still allow for the exchange of component matter in the presence of
matter diffusion. In the current chapter, we are only considering a single matter constituent, so that zero mass
crossing a surface also means there are no fluid particles crossing the surface.
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s(x, t) = s0

Figure 19.5: Illustrating the boundary condition for a moving material surface, on which n̂ · (v − v(s)) = 0
(equation (19.57)), so that no fluid particles cross the surface. The boundary condition means that the velocity of
the surface, v(s), has the same normal component as the velocity of a fluid particle, v. The material nature of
the surface is not compromised if v ≠ v(s), so long as their normal components are identical, n̂ · v = n̂ · v(s). For
many cases, we can specify the surface by the value of a function that is a constant on the surface: s(x, t) = s0 for
some constant s0 (equation (19.58)), in which case the unit normal direction is given by n̂ = |∇s|−1 ∇s (equation
(19.59)). For example, s could represent a surface of constant temperature, or a constant Archimedean buoyancy
(Chapter 30) in a buoyancy stratified fluid.

Specialized expression of the boundary condition

Now specialize the kinematic condition (19.57) to the case of a material surface, S, as specified
by a scalar function whose value remains a fixed constant when it is evaluated on the surface

s(x, t) = s0 when x ∈ S. (19.58)

An example of such a function is the Archimedean buoyancy (Chapter 30) or the Conservative
Temperature (Section 26.11). Correspondingly, the surface unit normal vector is given by

n̂ = |∇s|−1∇s. (19.59)

From Section 17.4.5, we know that a point fixed on an arbitrary surface has a velocity that
satisfies (see equation (17.19))

∂s

∂t
+ v(s) · ∇s = 0 on an iso-surface s(x, t) = s0. (19.60)

Note that we offer another derivation of this equation later in this subsection. Use of the identity

∂s

∂t
=

Ds

Dt
− v · ∇s (19.61)

renders

Ds

Dt
− v · ∇s+ v(s) · ∇s = Ds

Dt
+ (v(s) − v) · ∇s = 0. (19.62a)

Since (v(s) − v) · ∇s = 0 from the boundary condition (19.57), we are left with the material
constancy condition

Ds

Dt
=
∂s

∂t
+ v · ∇s = 0 on material surface s(x, t) = s0. (19.63)

Consequently, matter does not cross a surface of constant s as long as s is materially constant. This
is an important kinematic property that reappears in many forms throughout fluid mechanics.8

Boundary condition for a material interface

Consider the interface between two immiscible fluids. Assume this interface has an outward
normal that has a nonzero vertical component, so that there are no breaking waves, for example.

8As noted on page 137 of Serrin (1959), the kinematic condition (19.63) originates from Kelvin in 1848 and
Lagrange in 1781.
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X(t+ �t)

Figure 19.6: A surface within a fluid at two time instants, along with the position of a fluid particle on the surface
at X(t) and X(t+δt). The velocity of a point on the surface is given by v(s) = [X(t+δt)−X(t)]/δt = δX/δt. The
equation s(x, t) = z−η(x, y, t) = s0 specifies the vertical position for points on the surface as a function of horizontal
position and time. At both time instances the vertical position is determined by s(x, t) = s(x+ δx, t+ δt) = s0.

In this case we can express the vertical position of a point on the interface as

s(x, y, z, t) = z − η(x, y, t) = s0. (19.64)

The function η(x, y, t) is the vertical deviation of the interface relative to the horizontal. The
kinematic boundary condition (19.63) thus takes the form

Ds

Dt
=

D(z − η)
Dt

= 0. (19.65)

Hence, the vertical velocity component at the interface equals to the material time derivative of
the interface displacement

Dz

Dt
=

Dη

Dt
=⇒ w =

∂η

∂t
+ u · ∇η material b.c. at interface z = η(x, y, t). (19.66)

This boundary condition can be equivalently written in the form

v · n̂ =
∂η/∂t√
1 + |∇η|2

, (19.67)

where

n̂ =
∇ (z − η)
|∇ (z − η)| =

−∇η + ẑ√
1 + |∇η|2

(19.68)

is the outward unit normal at the material surface. These equations provide kinematic relation
for the motion of an surface within a perfect fluid. It also provides the kinematic relation for the
interface separating two immiscible fluid layers. A particular example concerns the boundary
condition placed on the ocean free surface in the special case of no water penetrating the surface
(i.e., no rain or evaporation).

A geometric derivation of the material boundary condition

The material invariance condition Ds/Dt = 0 is a key kinematic result. We thus offer an
alternative derivation to help solidify its meaning. As before, define the surface according to

s(x, t) = z − η(x, y, t) = s0, (19.69)

which specifies the vertical position of a point on the surface at time t. Now consider the position
of the surface after a small time interval, t+ δt (see Figure 19.6). The vertical position of the
surface at the new time is determined by the same condition

s(x+ δx, t+ δt) = s0, (19.70)
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where φ(t + δt) = x + δx is the displaced position of a point on the surface that started at
φ(t) = x, and

v(s) = [φ(t+ δt)−φ(t)]/δt = δx/δt (19.71)

is the velocity of a point stuck to the surface. Expanding equation (19.70) in a Taylor series to
leading order yields

s(x, t) + δx · ∇s+ δt ∂ts = s0. (19.72)

Since s(x, t) = s0 from equation (19.69) we thus have

∂s

∂t
+
δx

δt
· ∇s = ∂s

∂t
+
δx

δt
· n̂ |∇s| = 0, (19.73)

where n̂ = |∇s|−1∇s is the surface unit normal direction. This result means that when positioned
at a fixed point in space, it is the normal component of the displacement that corresponds to a
temporal modification of s(x, t)

∂s

∂t
= −v(s) · n̂ |∇s|. (19.74)

In contrast, any tangential displacement along an s-isosurface leaves s(x, t) unchanged. Hence,
when following motion of points on the surface, we are only concerned with motion along the
direction set by the normal component of the velocity of that point, n̂ (v(s) · n̂). It is this velocity
component that corresponds to movement of the surface normal to itself, thus leading to nonzero
motion through space.

Writing equation (19.74) in a more conventional form leads to the differential equation
satisfied by a point fixed on the moving surface

∂s

∂t
+ v(s) · ∇s = 0. (19.75)

Again, assuming the surface is material means that

v(s) · n̂ = v · n̂, (19.76)

so that motion of the surface normal to itself is identical to that of the fluid in the same direction.
Use of the boundary condition (19.76) in equation (19.75) renders the material invariance
condition

Ds

Dt
=
∂s

∂t
+ v · ∇s = 0. (19.77)

19.6.3 Dynamic and permeable surface
We now consider the kinematic boundary condition for a moving permeable surface that separates
two fluid media (e.g., ocean and atmosphere) or two regions within a single media (e.g., surface
of constant buoyancy within the ocean or within the atmosphere). As before, the kinematic
boundary condition is a statement about the mass transport through the boundary. Whereas
the previous conditions enforced a zero mass transport through the boundary at each point of
the boundary, here we allow for a generally non-zero transport (mass per time). We write this
transport condition as

ρ (v − v(s)) · n̂dS = −Qm dS moving non-material boundary condition. (19.78)

In this equation, dS is an infinitesimal area element on the surface, and Qm measures the mass
per time per surface area (mass flux) crossing the boundary. The minus sign is a convention
to be motivated in the following. We now massage this kinematic boundary condition into
alternative forms.
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n̂

Figure 19.7: Illustrating the boundary condition for a moving permeable surface, such as the interface between
two miscible fluid layers. On this surface, the boundary condition states that ρ (v− v(s)) · n̂ dS = −Qm dS (as per
equation (19.78)). In the special case of an ocean free surface with no overturns, this boundary condition reduces
to the surface kinematic boundary condition (19.94).

Coordinate representation of the permeable surface

The expression (19.60) for v(s) · n̂ holds for a point on an arbitrary surface, even if that surface
is permeable, so that

v(s) · n̂ = −∂s/∂t|∇s| . (19.79)

Furthermore, the projection of the fluid velocity onto the normal direction can be written

Ds

Dt
=
∂s

∂t
+ v · ∇s =⇒ v · n̂ =

1

|∇s|

[
Ds

Dt
− ∂s

∂t

]
. (19.80)

Bringing these results together leads to

ρ (v − v(s)) · n̂dS =
ρ dS

|∇s|
Ds

Dt
=⇒ Qm = − ρ

|∇s|
Ds

Dt
. (19.81)

This equation says that the mass transport crossing the surface is proportional to the material
time derivative of the surface coordinate. The material time derivative vanishes when there is
no mass transport across the surface, which is a result already seen in Section 19.6.2.

In terms of the horizontal projection of the surface area

Assume that the surface is not vertical, so that its normal direction has a nonzero component in
the vertical (e.g., waves that do not overturn). This assumption means that

∂s

∂z
̸= 0, (19.82)

so that we can further massage the boundary condition (19.81) by writing the area factor in the
form

dS

|∇s| =
dS√

(∂s/∂x)2 + (∂s/∂y)2 + (∂s/∂z)2
(19.83a)

=
dS

|∂s/∂z|
√

[(∂s/∂x)/(∂s/∂z)]2 + [(∂s/∂y)/(∂s/∂z)]2 + 1
(19.83b)

=
dS

|∂s/∂z|
√
1 + tan2 ϑ

(19.83c)

=

∣∣∣∣∂z∂s
∣∣∣∣ | cosϑ|dS (19.83d)

=

∣∣∣∣∂z∂s
∣∣∣∣ dA. (19.83e)
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dA = | cos#| dS

Figure 19.8: Illustrating the relation between an infinitesimal area element on a surface, dS, to its horizontal
projection, dA = | cosϑ| dS, according to equation (19.87). The angle, ϑ, must be bounded away from ±π/2, thus
enabling a nonzero horizontal area projection. For the specific case of a surface defined by s = z − η(x, y, t), then
∂s/∂z = 1 and dS =

√
1 + (∇η)2 dA (equation (19.91)).

The equality (19.83c) introduced the angle, ϑ, between the boundary surface and the horizontal
plane. The squared slope of this surface is given by

tan2 ϑ =
∇hs · ∇hs
(∂s/∂z)2

= ∇hsz · ∇hsz (19.84)

with

∇h = x̂
[
∂

∂x

]
y,z

+ ŷ

[
∂

∂y

]
x,z

(19.85)

the horizontal gradient operator on constant z surfaces, and

∇hs = x̂
[
∂

∂x

]
y,s

+ ŷ

[
∂

∂y

]
x,s

(19.86)

the horizontal gradient operator on constant s surfaces, along with z(x, y, s, t) for the vertical
position of the constant s surface.9 The equality (19.83d) made use of a trigonometric identity,
and the equality (19.83e) introduced the horizontal projection of the area,

dA = | cosϑ| dS. (19.87)

See Figure 19.8 for an illustration.

These results bring the kinematic boundary condition (19.81) into the form

ρ (v − v(s)) · n̂dS = −Qm dS (19.88a)

= ρ
Ds

Dt

∣∣∣∣∂z∂s
∣∣∣∣ dA (19.88b)

≡ −Qm dA. (19.88c)

As defined, the flux Qm is the net mass per time per horizontal area crossing the boundary
surface

Qm = −ρ (v − v(s)) · n̂ dS

dA
= −ρ Ds

Dt

∣∣∣∣∂z∂s
∣∣∣∣ . (19.89)

We motivate the minus sign through the ocean free surface case in the following.

9We study such operators in Chapter 63 as part of the mathematical development of generalized vertical
coordinates.
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Kinematic boundary condition at the ocean free surface

Consider the ocean free surface located at

s(x, y, z, t) = z − η(x, y, t) = 0 ocean free surface. (19.90)

For this boundary, ∂s/∂z = 1 so that the area elements are related by

dS = |∇(z − η)| dA =
√
1 + |∇η|2 dA. (19.91)

The normal projection for the velocity of a point fixed on the free surface is given by

v(η) · n̂ = −∂s/∂t|∇s| =
∂η/∂t

|∇(z − η)| =
∂η/∂t√
1 + |∇η|2

=⇒ v(η) · n̂dS = ∂tη dA, (19.92)

so that the mass flux crossing the free surface is

−Qm = ρ (v − v(η)) · n̂. (19.93)

The boundary condition (19.89) thus takes the form

ρ (v − v(η)) · n̂ dS

dA
= ρ

[
D(z − η)

Dt

]
= −Qm =⇒ w + ρ−1Qm =

∂η

∂t
+ u · ∇η. (19.94)

We now motivate the sign convention chosen for equation (19.88c) by considering the special
case of a flat free surface and a resting fluid with v = 0. Adding mass to the ocean raises the free
surface, so that ∂η/∂t > 0. Hence, the chosen sign convention means that Qm > 0 corresponds
to mass added to the ocean.

Kinematic boundary condition on a buoyancy surface

Now consider the interface to be a surface of constant potential density in the ocean (or
analogously a surface of constant specific entropy in the atmosphere). These buoyancy isosurfaces
are also known as isopycnals, and we use the symbol10

s = σ(x, y, z, t) (19.95)

for a particular isopycnal, σ. The mass transport crossing the isopycnal is written

Qm = ρ
Dσ

Dt

∣∣∣∣∂z∂σ
∣∣∣∣ ≡ ρw(σ̇), (19.96)

where we introduced the diapycnal transport velocity

w(σ̇) ≡ Dσ

Dt

∣∣∣∣∂z∂σ
∣∣∣∣ . (19.97)

A key aspect of physical oceanography concerns the development of theories for processes that
cause a non-zero diapycnal transport. Examples include breaking waves, which act to mix matter
across density surfaces; i.e., to entrain water from one density class to another.

10In this book, we use σ as an arbitrary generalized vertical coordinate, here chosen to be an isopycnal.
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19.7 Volume and mass budgets for a bounded fluid column
We close this chapter by deriving the budget for the volume per horizontal area in a column of a
bounded fluid, as well as the budget for the mass per horizontal area in this as shown in Figure
19.9. Such fluid columns are relevant to the study of mass budgets over the full depth of the
ocean. Since the upper boundary of the domain is the free surface, and since the free surface is
a function of time, the region is not strictly Eulerian even though the sides are fixed in space.
Furthermore, the free surface is permeable, as are the sides, so that the region is not material.
The derivation offers experience working with the kinematic boundary conditions, as well as
some exposure to the use of Leibniz’s rule from calculus.

19.7.1 Kinematic free surface equation
We here derive an equation for the free surface evolution, with this equation providing a budget for
the volume per horizontal area in the column. The derivation proceeds by vertically integrating
the mass continuity equation (19.16) over the depth of an ocean column, from z = ηb(x, y) at the
bottom to z = η(x, y, t) at the free surface. Use of the bottom and surface kinematic boundary
conditions renders a kinematic expression for the free surface time tendency.

z = ⌘b
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F(x)(x − Δx/2) F(x)(x + Δx/2)

Figure 19.9: A longitudinal-vertical slice of ocean fluid from the surface at z = η(x, y, t) to bottom at z = ηb(x, y).
The horizontal boundaries of the column at x−∆x/2 and x+∆x/2 are static and are penetrated by zonal mass
transport, F (x). The zonal mass transport is computed by integrating the zonal mass flux, ρ u over the area of the
column sides. A similar transport acts in the meridional direction as well. The ocean bottom at the solid-earth
boundary, z = ηb(x, y), is static with no mass crossing this interface. The ocean surface at z = η(x, y, t) is time
dependent with mass flux, Qm, crossing this interface.

Vertically integrating the continuity equation (19.16) for a compressible fluid renders

−
ˆ η

ηb

1

ρ

Dρ

Dt
dz =

ˆ η

ηb

∇ · v dz (19.98a)

= w(η)− w(ηb) +
ˆ η

ηb

∇h · udz (19.98b)

= w(η)− w(ηb) +∇h ·
[ˆ η

ηb

u dz

]
− u(η) · ∇hη + u(ηb) · ∇hηb (19.98c)

= [w(η)− u(η) · ∇hη]− [w(ηb)− u(ηb) · ∇hηb] +∇h ·
[ˆ η

ηb

udz

]
, (19.98d)
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where we made use of Leibniz’s rule from calculus in order to move the horizontal divergence
outside of the integral. Also note that ∇ · u = ∇h · u since u is the horizontal velocity, and
likewise for ∇ηb and ∇η since ηb and η are both functions of horizontal space and time, and so
have no z dependence.

Use of the surface kinematic boundary condition (19.94) and no-normal flow bottom boundary
condition yield

∂η

∂t
=

Qm

ρ(η)
−∇ ·U −

ˆ η

ηb

1

ρ

Dρ

Dt
dz (19.99)

where

U =

ˆ η

ηb

u dz (19.100)

is the depth integrated horizontal transport. Hence, as deduced from the mass continuity
equation, the ocean free surface time tendency is affected by the passage of mass across the
surface boundary (as normalized by the surface density), the convergence of depth integrated
flow, and the depth integral of the material changes in density. The density term contributes
to a positive sea surface height tendency when density decreases, and vice versa when density
increases. Griffies and Greatbatch (2012) provide a more complete analysis of the sea surface
height budget (19.99) by unpacking the physical processes leading to the material evolution of
density, which they refer to as the non-Boussinesq steric effect.

19.7.2 Budget for mass per horizontal area
The mass per horizontal area in the fluid column is given by

´ η
ηb
ρ dz. Use of Leibniz’s rule, the

bottom kinematic boundary condition, (19.56), surface kinematic boundary condition (19.94),
and the mass continuity equation (19.6), leads to

d

dt

[ˆ η

ηb

ρdz

]
= ρ(η)

∂η

∂t
+

ˆ η

ηb

∂ρ

∂t
dz (19.101a)

= ρ(η)
∂η

∂t
−
ˆ η

ηb

∇ · (ρv) dz (19.101b)

= ρ(η)

[
∂η

∂t
− w(η)

]
+ ρ(ηb)w(ηb)−

ˆ η

ηb

∇h · (ρu) dz (19.101c)

= ρ(η)

[
∂η

∂t
+ u · ∇η − w(η)

]
+ ρ(ηb) [w(ηb)− u(ηb) · ∇ηb]−∇h ·Uρ (19.101d)

= Qm −∇h ·Uρ, (19.101e)

where

Uρ =

ˆ η

ηb

ρudz. (19.102)

Hence, the mass per horizontal area within a column evolves according to

d

dt

[ˆ η

ηb

ρdz

]
= Qm −∇ ·Uρ, (19.103)

with terms on the right hand side representing the convergence of mass onto the column either
through the sides or upper surface. We consider an alternative derivation of this budget in
Exercise 19.3.
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19.8 Exercises
exercise 19.1: Velocity that does not penetrate a curve
Consider a static curve defined by

s(x, y) = x y = constant. (19.104)

Provide an example velocity, v = u x̂+ v ŷ + w ẑ, that has nonzero horizontal components and
that satisfies v · n̂ = 0, where n̂ is the unit normal to the curve. Be sure that your answer has
the proper dimensions for a velocity. Hint: see Section 38.4.5.

exercise 19.2: Center of mass motion
Consider a material fluid region, R(v), with constant mass written as

M =

ˆ
R(v)

ρ dV. (19.105)

Assume Cartesian coordinates throughout this exercise.11

(a) Show mathematically that the center of mass for the region moves with the region’s total
linear momentum

d

dt

[
1

M

ˆ
R(v)

x ρdV

]
=

1

M

ˆ
R(v)

Dx

Dt
ρdV =

1

M

ˆ
R(v)

v ρdV. (19.106)

Precisely describe the reasoning behind each step. Note: a brief solution is sufficient, so
long as the reasoning is sound.

(b) Show mathematically (or precisely describe why) that the time change in the linear
momentum for the region is given by

d

dt

[ˆ
R(v)

ρv dV

]
=

ˆ
R(v)

Dv

Dt
ρdV. (19.107)

Precisely describe the reasoning behind each step. Note: a brief solution is sufficient, so
long as the reasoning is sound.

exercise 19.3: Mass budget for a fluid column
We here provide an alternative derivation of equation (19.103), the budget for the mass per
horizontal area over a column of fluid.

The mass within an arbitrary fluid region is given by

M =

ˆ
R

ρ dV. (19.108)

Consider the fluid mass within the column shown in Figure 19.9. In this column, the vertical
side-walls are fixed in time, the bottom surface, z = ηb(x, y), is at the solid-earth boundary, and
the top, z = η(x, y, t), is the fluctuating ocean free surface. Convince yourself that the mass for
this column can be written

M =

¨ [ˆ η(x,y,t)

ηb(x,y)
ρ dz

]
dx dy, (19.109)

11Note the for a general manifold, the addition of vectors is only defined locally within a tangent space. This
limitation prevents us from integrating general tensors over a volume. However, for Cartesian tensors we can
perform integration in a naive manner just as for scalars.
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where the horizontal (x, y) integrals extend over the horizontal extent of the column. Mass
conservation for this column means that the change in mass arises just through boundary fluxes,
so that

dM

dt
= −

ˆ
ρ∆v · n̂dS, (19.110)

where n̂ is the outward normal to the surface of the fluid region, dS is the area of an infinitesimal
element on the surface, and the minus sign means that fluid leaving the region contributes to a
reduction in mass within the region. The term

∆v = v − v(s) (19.111)

is the velocity of the fluid relative to the velocity of the boundary; e.g., see the kinematic
boundary condition discussion in Section 19.6.3. We also derive a general form of this relation
in equation (20.50), though this exercise can be solved without knowing the details of that
derivation.

(a) Mass transported in the zonal direction (x̂) that crosses the column’s vertical boundary at
x is given by

F (x)(x, y, t) =

ˆ y+∆y/2

y−∆y/2

[ˆ η(x,y′,t)

ηb(x,y′)
u(x, y′, z′, t) ρ(x, y′, z′, t) dz′

]
dy′ (19.112a)

≡
ˆ y+∆y/2

y−∆y/2
Uρ(x, y′, t) dy′, (19.112b)

and similarly for mass transport in the meridional direction

F (y)(x, y, t) =

ˆ x+∆x/2

x−∆x/2

[ˆ η(x′,y,t)

ηb(x′,y)
v(x′, y, z′, t) ρ(x′, y, z′, t) dz′

]
dx′ (19.113a)

≡
ˆ x+∆x/2

x−∆x/2
V ρ(x′, y, t) dx′, (19.113b)

where

Uρ(x, y, t) =

ˆ η(x,y,t)

ηb(x,y)
u(x, y, z′, t) ρ(x, y, z′, t) dz′ = x̂Uρ + ŷ V ρ. (19.114)

What are the physical dimensions [in terms of length (L), mass (M), and time (T)] for the
mass transports, F (x) and F (y)?

(b) Using these expressions for the mass crossing the vertical side boundaries of a fluid column,
take the limit as the horizontal cross-sectional area of the column becomes infinitesimally
small to show that the evolution equation for the mass per unit area of the column is given
by

d

dt

[ˆ η

ηb

ρdz

]
= −∇ ·Uρ +Qm, (19.115)

where Qm is the mass transport entering the ocean through the surface, per horizontal area,
as defined by equation (19.88c), so that

ˆ
Qm dA = −

ˆ
ρ∆v · n̂dS at z = η. (19.116)

The derivation of equation (19.115) is part of this exercise, using methods distinct from
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Figure 19.10: Cross-section of the integration region for Exercise 19.4, with the region extending from the ocean
bottom at z = ηb(x, y) and the free surface at z = η(x, y, t). The sides are assumed to be vertical and rigid.
An infinitesimal column is shown with cross-sectional area dA, extending from the bottom to the surface. The
cross-sectional area for the column is time independent, so that a time derivative passes across the area integral
to act only on the upper limit z = η and the integrand in equation (19.119).

those used in Section 19.7.2.

(c) In words, the mass budget in equation (19.115) says that mass changes in a column of
fluid if there is a convergence of mass into the column across its vertical boundaries (first
term on right hand side), and a mass flux entering the column across the ocean surface
(second term on right hand side). What are the physical dimensions of all terms in equation
(19.115)?

exercise 19.4: Change in linear momentum of a fluid region
Consider a closed ocean basin with zero boundary fluxes of matter; i.e., zero precipitation/e-
vaporation and zero mass fluxes through the solid-earth bottom. Consequently, this region is
bounded by material surfaces and so it maintains constant matter content with fixed mass

M =

ˆ
R

ρ dV. (19.117)

Show that the time change in the linear momentum for this ocean basin is given by

d

dt

[ˆ
R

ρv dV

]
=

ˆ
R

Dv

Dt
ρ dV. (19.118)

This result is identical to that derived in Exercise 19.2. Rather than just repeating the solution
method used there, make use of Leibniz’s rule, the kinematic boundary condition detailed in
Section 19.6.2, and mass conservation.

As noted in the footnote for Exercise 19.2, addition of vectors is only defined locally within a
tangent space when working on a general manifold. This limitation prevents us from integrating
vectors over an arbitrary manifold. However, for Cartesian tensors in Euclidean space, we
can perform integration in a naive manner just as for scalars, thus enabling us to perform the
integration in equation (19.118). Hence, throughout this exercise we use Cartesian tensors in
Euclidean space.

Hint: Refer to Figure 19.10 for a schematic of the integration where we have expanded the
volume integral into the form

d

dt

[ˆ
R

ρv dV

]
=

d

dt

[ˆ (ˆ η

ηb

ρv dz

)
dA

]
, (19.119)

where the horizontal integral extends over the rigid and fixed horizontal area of the basin,
dA = dxdy is the time independent horizontal area element, z = ηb(x, y) is the solid-earth
bottom and z = η(x, y, t) is the ocean free surface. Time dependence appears in the upper
boundary at z = η and within the integrand. Perform the time derivative operation and make
use of mass continuity and the kinematic boundary condition. Also make use of the trigonometry
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presented in Section 19.6.3 (in particular equation (19.87)). Unlike the formulation in Exercise
19.2, there is no use of a material time derivative in this approach. Rather, it is a straightforward
(albeit tedious) use of integration over a domain with fixed horizontal/bottom boundaries and a
time dependent free surface boundary.
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Chapter 20

CONSERVATION EQUATIONS FOR MATERIAL TRACERS

As seen in Chapter 19, the assumption of mass conservation has many implications for the
motion of single-component fluids. In this chapter we extend that discussion to the case of a
fluid comprised of multiple matter constituents referred to as material tracers (e.g., seawater
comprised of fresh water, salt, nitrogen, oxygen, carbon, nutrients, biogeochemicals). In so doing
we develop differential and integral budget equations for extensive properties, such as mass or
tracer content, along with continuity equations for intensive properties, such as mass density
and tracer concentration. The Leibniz-Reynolds transport theorem provides the link between
the differential and integral formulations.

The barycentric velocity is a key element in the formulation of mass budgets with multiple
matter constituents, with the barycentric velocity equal to the center of mass velocity for
a fluid element. As we see in this chapter, the barycentric velocity plays the same role for
multi-component fluids as the fluid parcel velocity does for single-component fluids. Differences
between the barycentric velocity and the velocity of a specific fluid constituent can lead to the
exchange of matter constituents across the boundary of the fluid element, with that exchange
typically represented as diffusion.

The continuity equation describing material tracer concentration is referred to as the tracer
equation. As we see in Section 26.11.3, it is also the equation satisfied (to a high degree of
accuracy) by Conservative Temperature, which is the scalar field used to describe the relative
enthalpy of a fluid element. We thus have many opportunities in this book to encounter the
tracer equation.

reader’s guide to this chapter
The formulation pursued in this chapter is inspired by similar treatments in the chemical

physics literature (e.g., Chapter 11 of Aris (1962), Chapter II of DeGroot and Mazur
(1984), or Section 2.1 of Kreuzer (1981)), who develop a theory for transport processes in
multi-component fluids. For this chapter, we assume an understanding of the Eulerian and
Lagrangian kinematic descriptions detailed in Chapter 17 and the mass conservation analysis
in Chapter 19. Much of the material from this chapter is used for the study of scalar fields
such as potential enthalpy (i.e., Conservative Temperature) and material tracers. Furthermore,
the Leibniz-Reynolds transport theorem of Section 20.2.4 is a kinematic result central to all
finite volume budgets in fluid mechanics.
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20.1 The tracer equation

As defined in Section 17.2, a fluid element is an infinitesimal region of constant mass that lives
within the moving fluid continuum. Although possessing a constant mass, it generally has
a non-constant material composition. That is, a fluid element is a non-material fluid parcel.
Fluid element boundaries are open to the exchange of matter (i.e., tracers) with adjacent fluid
elements. They are also open to the exchange of thermodynamic properties such as temperature
and specific entropy.

The kinematics of fluid elements share certain features with material fluid parcels. For
example, we can uniquely specify the position of a fluid element’s center of mass by providing
a material coordinate and time. Correspondingly, we can generalize the Reynolds transport
theorem for integration over a constant mass fluid region (Section 20.2.4). We make use of
fluid elements to develop the mass budgets for multi-component fluids such as the ocean and
atmosphere. The constituent mass budgets are commonly referred to as tracer equations.

20.1.1 Mass conservation for each constituent

In this subsection we formulate the mass conservation equation for each constituent within the
fluid. The mass equation is formulated by taking an integral (weak formulation) over a fixed
(Eulerian) region.

Density and velocity for each matter constituent

Consider a fluid with n = 1, N matter constituents. For example, seawater has N = 2 when
concerned just with its freshwater and salt content, whereas N > 2 when also concerned
with other material constituents such as CO2 and biogeochemical species. Now focus on a
fixed (Eulerian) region of the fluid with volume, V , and total mass, M . Inside of the region,
assume we can somehow count the number of molecules of each constituent and determine their
corresponding velocities. This information can be used to construct the molecular center of mass
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velocity for each constituent, v(n), as well as the mass density,

ρ(n) = V −1M (n). (20.1)

In the continuum limit, the volume and mass in the region get tiny (V → dV and M → dM),
yet the mass density remains smooth and finite (see Figure 16.2 and corresponding discussion).
Hence, the constituent velocity and mass density are continuous fields whose values are available
at each point within the continuum fluid.

Integral formulation of the constituent mass budget

Consider an arbitrary region, R, assumed to be fixed in space (an Eulerian region). The mass of
component n within R is given by the integral

M (n) =

ˆ
R

ρ(n) dV, (20.2)

and it changes in time according to the finite volume budget equation (there is no implied
summation on the right hand side)

d

dt

ˆ
R

ρ(n) dV = −
˛
∂R
ρ(n) v(n) · n̂dS. (20.3)

This equation is a constituent form of the finite volume mass budget given for a single-component
fluid by equation (19.9). Since the region, R, is assumed to be fixed in space, we can move the
time derivative across the integral to reveal

ˆ
R

[
∂ρ(n)

∂t
+∇ · (ρ(n) v(n))

]
dV = 0, (20.4)

where we also used the divergence theorem to convert the surface integral to a volume integral.
Arbitrariness of the region means that this integral expression must be satisfied at each point of
the continuum, thus leading to the Eulerian form of the constituent mass continuity equation

∂tρ
(n) +∇ · (ρ(n) v(n)) = 0. (20.5)

This equation can also be written using a material time derivative

D(n)ρ(n)

Dt
= −ρ(n)∇ · v(n) for each of the n = 1, N constituents, (20.6)

where the constituent material time derivative is given by

D(n)

Dt
=

∂

∂t
+ v(n) · ∇. (20.7)

We thus have N statements of mass conservation corresponding to each constituent material
fluid parcel moving according to the velocity, v(n).

20.1.2 Total mass conservation

Summing the Eulerian mass continuity equation (20.5) over all constituents leads to the continuity
equation for the total mass

∂tρ+∇ · (ρv) = 0, (20.8)

CHAPTER 20. CONSERVATION EQUATIONS FOR MATERIAL TRACERS page 509 of 2158



20.1. THE TRACER EQUATION

where the total mass density and barycentric velocity are given by

ρ =

N∑
n=1

ρ(n) and v = ρ−1
N∑
n=1

ρ(n) v(n). (20.9)

Introducing the material time derivative following the barycentric velocity, D/Dt = ∂/∂t+ v · ∇,
leads to the equivalent material form for the mass conservation equation

Dρ

Dt
= −ρ∇ · v. (20.10)

The barycenter of a distribution of matter is the center of inertia for that matter. We choose
the term barycentric velocity for v to distinguish it from the molecular center of mass velocity,
v(n), of each material constituent. The barycentric velocity plays a key role in conservation laws
for multi-component fluids, largely since equations (20.8) and (20.10) are identical to the mass
conservation equations that hold for the homogeneous fluid derived in Section 19.2.

20.1.3 The tracer equation

Rather than keep track of each constituent velocity, v(n), and the corresponding material parcels,
it is generally more convenient to focus on the fluid element that moves with the barycentric
velocity. For this purpose, consider again the constituent mass continuity equation (20.5)

(∂t + v
(n) · ∇)ρ(n) = −ρ(n)∇ · v(n), (20.11)

and insert the barycentric velocity to both sides by adding 0 = v − v

[∂t + (v − v + v(n)) · ∇]ρ(n) = −ρ(n)∇ · [v − v + v(n)]. (20.12)

Rearrangment leads to

(∂t + v · ∇)ρ(n) = −ρ(n)∇ · v −∇ · [ρ(n) (v(n) − v)], (20.13)

which can be written
Dρ(n)

Dt
= −ρ(n)∇ · v −∇ · J (n), (20.14)

where we defined the constituent tracer mass flux

J (n) = ρ(n) (v(n) − v), (20.15)

which arises from the difference between the constituent velocity and the barycentric velocity.
The dimensions of J (n) are mass of constituent, n, per time per area.

The material mass conservation equation (20.14) takes on the Eulerian form

∂tρ
(n) +∇ · (v ρ(n)) = −∇ · J (n). (20.16)

Introducing the tracer concentration C(n) according to

C(n) =
ρ(n)

ρ
=
δM (n)

δM
=

mass of constituent n in fluid element

mass of fluid element
, (20.17)

leads to the tracer flux
J (n) = ρC(n) (v(n) − v), (20.18)
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Figure 20.1: A finite sized cube as in Figure 19.1, here used to illustrate the budget of tracer mass over an
Eulerian region. In addition to the advective flux of tracer moving with the barycentric velocity, v, there is a
flux, J , that arises from differences between the barycentric velocity and the constituent velocity. We here only
show fluxes in the ŷ direction, with corresponding fluxes in the x̂ and ẑ directions also contributing to the tracer
budget.

and the flux-form tracer budget

∂t(ρC
(n)) +∇ · (v ρC(n) + J (n)) = 0. (20.19)

In Figure 20.1 we illustrate the contributions to the tracer evolution according to equation
(20.19).

Eulerian and Lagrangian forms of the tracer equation

The flux-form equation (20.19) has a corresponding material time derivative form derived by
expanding the derivatives

C(n) ∂tρ+ ρ ∂tC
(n) + ρv · ∇C(n) + C(n)∇ · (ρv)

= C(n) (∂tρ+∇ · (ρv)) + ρ (∂t + v · ∇)C(n). (20.20)

The first term on the right hand side vanishes through mass continuity in the form of equation
(20.8). The second term on the right hand side is the material time derivative of the tracer
concentration. We are thus led to the equivalent forms for the tracer equation

∂t(ρC
(n)) +∇ · [v ρC(n)] = ρ

DC(n)

Dt
= −∇ · J (n). (20.21)

The same result was also derived in equation (19.50c) when discussing Reynolds transport
theorem for a single-component fluid.

Advective plus non-advective (diffusive) tracer fluxes

The above definitions allow us to decompose the advective tracer flux, defined according to the
tracer velocity, into an advective flux based on the barycentric velocity plus a non-advective flux

ρC(n) v(n) = ρC(n) (v(n) − v + v) = J (n) + ρC(n) v. (20.22)

The non-advective flux, J (n) = ρC(n) (v(n) − v) (equation (20.18)), vanishes when the tracer
velocity equals to the barycentric velocity, v(n) = v. Correspondingly, the non-advective flux
also vanishes for a single-component fluid, since in that case there is only one matter component
and so the constituent velocity equals to the barycentric velocity. We sometimes refer to the
non-advective flux as a diffusive flux since it is common in practice to parameterize this term as a
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downgradient diffusive flux. However, as seen in Section 26.10.2, not all non-advective processes
are downgradient. We also offer further discussion of diffusion due to turbulent processes in
Chapters 68 and 71.

20.1.4 Compatibility between total mass and tracer mass

By construction, the flux-form of the tracer equation (20.19) is compatible with the flux-form
continuity equation

∂t(ρC
(n)) +∇ · [ρvC(n) + J (n)] = 0⇐⇒ ∂tρ+∇ · (ρv) = 0. (20.23)

Compatibility is manifest by summing the tracer equation over all constituents and using the
identities

N∑
n=1

C(n) = 1 and

N∑
n=1

J (n) = 0. (20.24)

Furthermore, through use of the barycentric velocity (20.9), we are ensured that the continuity
equation (20.8) for the total density of a fluid element contains just the barycentric velocity.
There is no contribution from J (n) since

∑N
n=1 J

(n) = 0.

20.1.5 Passive tracers

As defined in equation (20.17), the concentration of a material tracer is the mass of the trace
constituent per mass of a fluid element. Such material tracers modify the barycentric velocity
(20.9) since they carry mass and thus affect the mass density. We here define the idealized or
theoretical construct known as a passive tracer. A passive tracer satisfies the advection-diffusion
equation, but it has zero impact on the velocity and is thus dynamically passive. The passive
tracer is thus analogous to the massless fluid particle of Section 17.2 whose trajectories define
the Lagrangian reference frame. However, the passive tracer is transported both via advection
and diffusion. Hence, we make use of passive tracers to probe the advective and diffusive features
of the flow without modifying the flow. For example, a passive tracer can be used to define
tracer pathways and time scales for transport between fluid regions. Passive tracers enable use
of Green’s function methods for describing their evolution, with some discussion given in Section
69.9, and a more thorough review provided by Haine et al. (2025) for ocean applications.

In Chapter 18 and Section 19.6.2, we discussed the notion of a material fluid object, which is
an object comprised of fluid particles that follow the velocity, v. In a single-component fluid,
such material objects are impenetrable to matter, by construction. For a multi-component fluid,
we can also consider objects that move with the barycentric velocity. However, trace matter
generally crosses the material object through diffusion since v(n) ̸= v. Hence, there is no perfectly
impenetrable fluid object in a fluid with any form of diffusion, including molecular diffusion.
Even so, we can consider a passive tracer that follows the barycentric velocity, and selectively
decide whether that passive tracer is affected by diffusion or not. Such theoretical options are
afforded the passive tracer given that it is a conceptual idealization used to probe the fluid
flow properties. Hence, the passive tracer is not subject to the same physical constraints as a
material tracer.

20.1.6 Summary of some conceptual points

What is a fluid element? How does it maintain constant mass but not constant matter? Here
we aim to review some of the conceptual points that answer these questions, building from our
initial specification of fluid elements and fluid parcels in Section 17.2.
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Revisiting a fluid element

The mass continuity equation (20.10) motivates us to define a fluid element as an infinitesimal
fluid parcel that moves with barycentric velocity, v, and maintains a constant total mass

δM =

N∑
n=1

δM (n). (20.25)

The fluid element does not maintain a constant mass for each constituent, since the fluid element
moves at the barycentric velocity, v, which generally differs from the constituent velocities, v(n).
Consequently, a fluid element boundary is permeable to matter transport that leaves its mass
constant but allows for exchanges of matter constituents with adjacent fluid elements. Hence, if
some matter leaves the fluid element, then an equal amount must enter the element in order to
maintain a constant mass.

The exchange of matter across a fluid element’s boundary can arise from the direct motion of
matter crossing the boundary, or from the motion of the fluid element boundary relative to the
matter. This point is central to resolving conundrums associated with the notion of constituent
matter exchange constrained to retain constant mass.

Conceptual summary of the formulation

The formulation pursued in this section is based on considering the multi-component fluid to be
a continuum with distinct matter constituents (e.g., salt and freshwater for the ocean or water
vapor and dry air for the atmosphere). Furthermore, the mass concentration for each constituent
is represented by a scalar field whose value at any point in space-time gives the mass of tracer
per mass of fluid. We then formulate mass conservation equations (i.e., continuity equations)
for each matter constituent following methods used for the single-component fluid in Chapter
19. By choosing to use the barycentric (center of mass) velocity for describing fluid flow, the
mass continuity equation for the total mass in a fluid element takes on the same form as for
a single-component fluid. The resulting constituent mass budgets (i.e., tracer equations) have
non-advective (diffusive) fluxes since the velocity of each matter constituent is generally distinct
from the barycentric velocity.

To expose a bit of the details, we saw in this section that the tracer equation expresses
the balance of mass for each trace constituent in the fluid. Furthermore, a nonzero tracer flux,
J (n) = ρC(n) (v(n) − v), arises when the barycentric velocity, v, differs from the constituent
velocity, v(n). In that case, matter and thermodynamic properties are exchanged between fluid
elements, with the exchange made without altering the mass of a fluid element. In the presence
of random motion within a turbulent fluid, or in the presence of random interactions with
molecular degrees of freedom, tracer exchange is akin to a random walk. Such exchange is
commonly parameterized by a diffusion process (see Chapter 68). Correspondingly, the mass of
tracers in a fluid element is altered in the presence of differences in tracer concentration between
fluid elements (i.e., tracer concentration gradients). However, the total mass of the element
remains fixed.

How to maintain constant mass

As defined, a fluid element provides a generalization to multi-component fluids of the notion of
a constant mass material fluid parcel that we used in describing a single-component fluid (see
Section 17.2). Later in this chapter we encounter a finite volume extension of the fluid element,
which we refer to as a Lagrangian region. A Lagrangian region has boundaries that follow the
barycentric velocity, v, so that the region maintains constant mass as per our discussion of
Reynolds transport theorem in Section 20.2.6.
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To maintain constant mass, any matter that leaves the fluid element by crossing its boundary
is compensated by an equal mass that enters the boundary. Kinematically, there are two means
for matter to cross a boundary. First, the matter itself can move across the boundary, with the
limiting case being a stationary boundary with matter moving across. Second, the boundary can
move relative to the matter, with the limiting case being stationary matter with the boundary
moving. In either case, by choosing to follow the barycentric velocity, a fluid element’s boundary
(or a corresponding Lagrangian region’s boundary) adjusts so that mass remains constant.

The strategic choice to formulate the kinematics of multi-component fluids using the barycen-
tric velocity is directly analogous to the choice in Newtonian mechanics to describe motion
relative to the center of mass for a system of many moving objects such as planets or point
particles (see Section 11.5). In particular, by describing the motion of a multi-component
fluid using the barycentric velocity, we simplify the kinematics by linking to the kinematics
of single-component fluids while also supporting a generalization in the form of constituent
tracer equations. As seen in Part V of this book, a dynamical description of fluid motion is also
facilitated by working with constant mass fluid elements/regions.

The importance of compatibility

In Section 20.1.4, we introduced the notion of compatibility between the tracer equation and
mass continuity equation. On first encounter, one might consider it a rather trivial consequence
of the formulation. Indeed, mathematically it is rather trivial, as it directly follows from our
choice to describe motion according to the barycentric velocity. However, it is a notion that
can sometimes be overlooked when in the midst of a formulation that decomposes the flow into
mean components and deviations, as occurs with studies of turbulent flows. The key point to
remember is that whatever form the mean-field mass continuity equation takes, one must retain
a clear formulation of mass conservation. Doing so may require modification of the effective
barycentric velocity in the presence of turbulent fluctuations.

As an example, let ρ and v be the mean density and mean velocity, where “mean” can
represent any number of averaging operators, and let primes denote deviations from the means.
The mass continuity equation for the mean density thus takes the form

∂tρ+∇ · (ρv) = 0. (20.26)

Introducing the density-weighted velocity

vH ≡ ρv/ρ = v + ρ′ v′/ρ (20.27)

renders the mean continuity equation

∂tρ+∇ · (ρvH) = 0. (20.28)

The density-weighted velocity, vH, is motivated by the work of Hesselberg (1926) and Favre
(1965), with further details for its use in the full suite of dynamical equations summarized in
Chapter 8 of Griffies (2004). Rather than pursue details here, we use it simply to illustrate
how one may choose to work with averaged equations in a manner that retains a clear sense for
mass conservation. Namely, by introducing vH, which can be considered a modified barycentric
velocity, the mean mass conservation equation (20.28) takes on the same form as the un-averaged
mass equation (20.8). In this manner we see that vH, rather than v, advects the mean fluid
mass density.
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20.1.7 Further study

We used many words in this section to develop the mass budget for fluid elements in a multi-
component fluid. The reason for such verbosity is that the formulation can be confusing on
first encounter. Even so, it is important to keep in mind that the basic notions are quite simple.
Further extension of these ideas incorporates chemical reactions that transfer mass from one
matter constituent to others, while retaining fixed net mass. This extension is relevant for
studies of atmospheric chemistry and ocean bioegeochemistry. Development of these extensions,
using nomenclature similar to that used here, is provided in Chapter 11 of Aris (1962), Chapter
II of DeGroot and Mazur (1984), and Section 2.1 of Kreuzer (1981).

The tracer fluxes introduced when formulating the tracer equation are typically parameterized
by downgradient diffusion. However, as discussed in our study of the ocean entropy budget
in Section 26.10, the transport of a scalar field can arise both from spatial gradients in that
field as well as gradients in other fluid properties. These fluxes arise as a result of fundamental
constraints from the second law of thermodynamics, and as such they are part of the suite of
processes contributing to the transport of scalar properties in a multi-component fluid.

20.2 Budgets for arbitrary fluid regions
Thus far in this chapter we have considered the evolution of mass within a variety of fluid regions,
including infinitesimal and finite domains either moving with the fluid or fixed in space. We have
also considered similar domains in Chapter 19 where the fluid domains were typically material
regions. In this section we synthesize these presentations by considering mass budgets over an
arbitrary finite sized domain within multi-component fluids. The resulting mass equations form
the basis for matter budgets used in geophysical fluid mechanics.

20.2.1 Extensive and intensive fluid properties

Consider a bucket of seawater that has homogeneous temperature and salinity. Removing a
cup of water from this bucket does not alter the temperature or salinity, but it does alter
the enthalpy, salt mass, and freshwater mass. We are thus motivated to characterize physical
properties as extensive or intensive. For the bucket of seawater, temperature and salinity are
intensive quantities, whose value does not change when removing seawater from the bucket.
Further intensive properties include number density (number of particles per volume), mass
density (mass of substance per volume), tracer concentration (mass of tracer per mass of fluid),
temperature, velocity (linear momentum per mass), kinetic energy per mass, entropy per mass,
and enthalpy per mass. An extensive property changes when the size of the sample changes,
with examples including particle number, mass, length, volume, kinetic energy, entropy, enthalpy,
and linear momentum.1

We are concerned in this section with how scalar extensive properties change as a function
of time.2 Determining the evolution of such properties constitutes a budget analysis for the
scalar property. What are the processes responsible for these changes? Where are the changes
coming from? Those are basic questions asked when performing a budget analysis. In addition
to physical and biogeochemical processes active within the fluid, details of the region over which
one performs a budget have an important impact on the budget. Is the region open to matter
and energy transport, or is it closed? Is the region static (Eulerian) or do boundaries move?
If the boundaries move, do they move with the barycentric velocity (Lagrangian) or are they
moving in some other manner?

1We again encounter intensive and extensive properties when studying thermodynamics in Chapter 22.
2We consider budget equations for vector linear momentum in Chapter 24.
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In the following, let Π represent an intensive scalar property of a fluid element so that Π ρ δV
is the corresponding extensive property

Π = intensive fluid property such as tracer concentration (20.29a)

Π ρ δV = extensive fluid property such as tracer mass. (20.29b)

For example, if Π is the tracer concentration in a fluid element (i.e., mass of tracer per mass
of fluid), then the corresponding extensive property, Π ρ δV , is the mass of tracer in the fluid
element. Anticipating our discussion in Section 26.11, then if Π is the Conservative Temperature,
Θ, of a fluid element, then the corresponding extensive property, Θ cp ρ δV , is the potential
enthalpy with cp the specific heat capacity.

We furthermore assume that Π satisfies the scalar conservation equation, written here in
both its material (or advective) form and flux-form

ρ
DΠ

Dt
= −∇ · J ⇐⇒ ∂(ρΠ)

∂t
+∇ · (ρΠv + J) = 0, (20.30)

where J is a flux such as that associated with the tracer equation derived in Section 20.1.3.
Depending on the context, the budget equation (20.30) is sometimes referred to as a conservation
law for Π. Notably, satisfaction of a conservation law does not mean that Π is constant either at
a point in space nor following a fluid particle. Instead, there are two cases of “constancy” that
naturally arise. First, with −∇ · J = 0, the scalar field is constant following a material fluid
particle

−∇ · J = 0 =⇒ DΠ

Dt
= 0. (20.31)

In this case we say that Π is a material invariant or a material constant. Second, if the Eulerian
time derivative vanishes, ∂tΠ = 0, then Π remains constant at a fixed spatial point in the fluid
and we say that Π is in a steady state. Furthermore, recall that the Eulerian reference frame is
stationary with respect to a laboratory frame, with the laboratory frame inertial when connected
by a Galilean transformation to the universal Newtonian reference frame (Section 17.1.2). Hence,
if the flow in one laboratory frame is steady, then flow in all laboratory frames is steady so long
as the laboratory frames are connected by a Galilean transformation (see Section 17.5).

20.2.2 General form of the finite domain integral

We are concerned here with the evolution of extensive fluid properties integrated over an arbitrary
region. Let us make use of the following notation for such integrals

I[R(t), t] =

ˆ
R(t)

Π ρ dV ≡
ˆ
R(t)

φdV, (20.32)

where we introduced the shorthand
φ = ρΠ. (20.33)

The integrand in equation (20.32) is a function of space and time, φ = φ(x, t), and the integration
region is generally a function of time, R(t). In previous sections, R was a material region of
fixed matter content (Section 19.3) or a constant mass fluid region open to the exchange of
matter with the surroundings (Section 20.1). In both of these cases the region was denoted by
R(v) since it moved with the fluid flow. Here we make no a priori assumption about the region.

The total time derivative of I can be written as

dI

dt
=

[
∂I

∂t

]
R

+
dR

dt

[
∂I

∂R

]
t

. (20.34)
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The first term on the right hand side is the time derivative of the integral when holding the
region fixed in space as per an Eulerian time derivative. The second term accounts for changes
due to evolution of the region as weighted by dependence of the integral on the region itself.
How the integral changes in time depends on both the evolution of the fluid property relative to
the chosen region and evolution of the fluid region itself. Equation (20.34) is directly analogous
to the total time derivative of a field in a moving fluid as given by equation (17.9).

20.2.3 Eulerian (static) domain

We first consider an Eulerian domain, which is fixed in space and thus static so that

dI

dt
=

[
∂I

∂t

]
R

=
∂

∂t

[ˆ
R

Π ρ dV

]
=

ˆ
R

[
∂(ρΠ)

∂t

]
dV. (20.35)

Movement of the time derivative across the integral sign is available since the domain boundaries
are static; i.e., the second term on the right hand side of equation (20.34) vanishes. Furthermore,
since the domain is static, the volume element, dV , provides a static partition of the total
domain volume so that dV does not appear inside the time derivative. This case corresponds to
the Eulerian budgets depicted in Figures 19.1, 19.2, and 20.1.

20.2.4 Deriving the Leibniz-Reynolds transport theorem

We now allow the domain boundaries to be time dependent so that both terms in the total
time derivative (20.34) contribute. The resulting Leibniz-Reynolds transport theorem is a general
expression of conservation over an arbitrary region. We derive this theorem here using two
methods, one naive and another a bit more rigorous. Interpretation and application of this
theorem are then presented in Section 20.2.5.

A rectangular region

Consider a one-dimensional domain with time dependent endpoints. Integrals of this type
commonly arise when integrating over the depth of the atmosphere or ocean, in which case the
boundary terms are replaced by the kinematic boundary conditions studied in Section 19.6. The
chain rule for differentiating integrals is known as Leibniz’s rule. It results in the time derivative
acting on the upper integral limit, the lower limit, and the integrand

d

dt

[ˆ x2(t)

x1(t)
φ(x, t) dx

]
=

ˆ x2(t)

x1(t)

∂φ

∂t
dx+

d

dt

[ˆ x2(t)

x1(t)

]
φ(x, t) dx (20.36a)

=

ˆ x2(t)

x1(t)

∂φ

∂t
dx+

dx2(t)

dt
φ(x2, t)−

dx1(t)

dt
φ(x1, t), (20.36b)

with the terms dx1,2/dt the velocities of the endpoints.

We can generalize the one-dimensional result (20.36b) to three dimensions by assuming the
three dimensional domain is expressible by Cartesian coordinates whose extents are mutually
independent. That is, we assume the domain, R(t), is rectangular. In this case we can
immediately generalize equation (20.36b) to

d

dt

[ˆ
R

φdV

]
=

ˆ
R

∂φ

∂t
dV +

˛
∂R
φv(b) · n̂dS, (20.37)
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where we introduced the shorthand for the velocity of a point on the region boundary

v(b) =
dx

dt
. (20.38)

The identity (20.37) is the Leibniz-Reynolds transport theorem.

An arbitrary simply connected region

We now present the derivation for an arbitrary simply connected domain, R(t), thus generalizing
the domain geometry while offering further insight into the transport theorem. For this purpose,
again let the region boundary, ∂R, have an outward unit normal, n̂, and let points on the
boundary move with the velocity, v(b). In Figure 20.2 we depict the region geometry as it evolves
over a time step of size, ∆t. In particular, this figure illustrates the identity3

R(t+∆t/2) = R(t−∆t/2) + [R(t+∆t/2)−R(t−∆t/2)], (20.39)

with the corresponding equation for the region volume given by

ˆ
R(t+∆t/2)

dV =

ˆ
R(t−∆t/2)

dV +

ˆ
R(t+∆t/2)−R(t−∆t/2)

dV. (20.40)

From Figure 20.2 we see that the volume of the time incremented region, R(t+∆t/2)−R(t−∆t/2),
in the limit ∆t→ 0, is given by

lim
∆t→0

1

∆t

ˆ
R(t+∆t/2)−R(t−∆t/2)

dV = lim
∆t→0

1

∆t

[ˆ
R(t+∆t/2)

dV −
ˆ
R(t−∆t/2)

dV

]
(20.41a)

=
d

dt

[ˆ
R(t)

dV

]
(20.41b)

=

˛
∂R(t)

v(b) · n̂dS. (20.41c)

The final equality follows since v(b) · n̂ measures the rate that the boundary is moving normal to
itself, so that its area integral over ∂R(t) measures the rate that the volume of R(t) changes.
It is the analog to the Lagrangian result (19.22) measuring the change in volume of a material
region following the fluid flow.

The above ideas used to derive the volume budget equation (20.41c) are now applied when
φ(x, t) is included within the integral, in which case we consider

d

dt

[ˆ
R(t)

φ(t) dV

]
= lim

∆t→0

1

∆t

[ˆ
R(t+∆t/2)

φ(t+∆t/2) dV −
ˆ
R(t−∆t/2)

φ(t−∆t/2) dV

]
.

(20.42)
Note that for brevity we suppressed the x functional dependence of φ(x, t). Expanding the first
integral on the right hand side around the central time leads to the expression, which is accurate
to O(∆t)2,

ˆ
R(t+∆t/2)

φ(t+∆t/2) dV

3For those familiar with numerical methods, note that we make use of centered finite time differences in this
discussion. Doing so offers a second order accurate expression of the finite difference approximations to the time
derivative, whereas forward or backward differences are only first order accurate. Central differences also provides
an intuitive centering of the time differences around the central time, t.
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Figure 20.2: Illustrating the geometry of the Leibniz-Reynolds transport theorem. The region at time t+∆t/2,
is written as R(t+∆t/2), which results from changing R(t−∆t/2) by the increment R(t+∆t/2)−R(t−∆t/2).
We here depict the case with an expanding boundary that renders a larger volume at t+∆t/2. At each point
along the boundary the velocity of the boundary, v(b), has an outward normal projection, v(b) · n̂. The product
v(b) · n̂∆t measures the distance that the boundary moves over the time increment, ∆t. Hence, area integrating
v(b) · n̂ over the boundary yields the rate that the region volume changes.

=

ˆ
R(t)

[
φ(t) +

∆t

2

∂φ(t)

∂t

]
dV +

ˆ
R(t+∆t/2)−R(t)

[
φ(t) +

∆t

2

∂φ(t)

∂t

]
dV. (20.43)

We have a similar expansion for the second integral in equation (20.42)

ˆ
R(t−∆t/2)

φ(t−∆t/2) dV

=

ˆ
R(t)

[
φ(t)− ∆t

2

∂φ(t)

∂t

]
dV +

ˆ
R(t−∆t/2)−R(t)

[
φ(t)− ∆t

2

∂φ(t)

∂t

]
dV, (20.44)

thus leading to the finite difference

ˆ
R(t+∆t/2)

φ(t+∆t/2) dV −
ˆ
R(t−∆t/2)

φ(t−∆t/2) dV

= ∆t

ˆ
R(t)

∂φ(t)

∂t
dV +

ˆ
R(t+∆t/2)−R(t−∆t/2)

φ(t) dV, (20.45)

which is again accurate to O(∆t)2. Following our derivation of equation (20.41c) leads us to

ˆ
R(t+∆t/2)−R(t−∆t/2)

φ(t) dV = ∆t

˛
∂R(t)

φv(b) · n̂dS, (20.46)

where all terms on the right hand side surface integral are evaluated at the central time, t.
Bringing the pieces together, and taking the limit as ∆t → 0, leads to the Leibniz-Reynolds
transport theorem

d

dt

[ˆ
R(t)

φ(t) dV

]
=

ˆ
R(t)

∂φ

∂t
dV +

˛
∂R(t)

φv(b) · n̂dS, (20.47)

which agrees with the earlier result given by equation (20.37).

20.2.5 Interpreting the Leibniz-Reynolds transport theorem
The Leibniz-Reynolds transport theorem (20.37) is a central kinematic result in fluid mechanics.
In particular, it forms the starting point for all finite volume budgets. Although we made use of
Cartesian coordinates for both derivations, the result is a coordinate invariant measure of how
an extensive fluid property evolves within a region. Hence, by the rules of tensor analysis from
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Chapter 4, the result holds for arbitrary coordinates. Furthermore, we can extend it to multiply
connected domains for which one sums over the distinct sub-domains to render the complete
budget. These results confirm our notions regarding extensive properties, such as fluid mass,
tracer mass, and enthalpy, and how they are budgeted throughout the fluid. Namely, these
quantities are simply counted over the various regions of the fluid.

Comments on the boundary velocity

The appearance of the boundary velocity, v(b), warrants some comment. As defined by equation
(20.38), it measures the velocity of a point on the domain boundary. Notably, the resulting
budget only requires information about the normal component to that velocity, v(b) · n̂. For
example, the domain boundary could be exhibiting arbitrary motion in the direction tangent to
the bounding surface. Yet such tangential motion is of no concern for a budget developed over
the domain since we are only concerned with transport across the boundary. Indeed, information
concerning the tangential component is not available without making dynamical assumptions
that go beyond the kinematics considered here. We encountered the same ideas when studying
the kinematic boundary conditions in Section 19.6.

Transport theorem for region volume

As part of the general derivation, we derived the expression (20.41c) for the volume changes of
the region, which is recovered by setting φ = 1 in the transport theorem (20.37)

d

dt

[ˆ
R

dV

]
=

˛
∂R
v(b) · n̂dS. (20.48)

This result says that the volume for an arbitrary region changes in time so long as there is motion
of the region boundary normal to itself. As noted above, we can compare this expression to that
for a material region given by equation (19.22), with the expressions identical when v(b) ·n̂ = v ·n̂
for a material region. Note that the general volume budget (20.48) holds for both divergent
and non-divergent flows, with further specialization to the non-divergent (incompressible) case
considered in Section 21.6.2.

Transport theorem for a scalar field

We can derive a corollary to the transport theorem (20.37) that proves useful for budget analyses
over moving regions. For this purpose, make use of the flux-form of the scalar conservation
equation (20.30) so that the transport theorem is written

d

dt

[ˆ
R

ρΠdV

]
= −

˛
∂R

[
ρΠ(v − v(b)) + J

]
· n̂dS. (20.49)

Setting Π = 1 gives an expression for the change in mass for the region

d

dt

[ˆ
R

ρdV

]
= −

˛
∂R
ρ (v − v(b)) · n̂dS. (20.50)

The transport theorem (20.49) has a straightforward interpretation. Namely, the left hand side
is the time tendency for the total Π-stuff within the moving region. The right hand side is the
surface area integral of the flux of Π-stuff through the boundary of the region. The first right
hand side term arises from the difference between the barycentric fluid velocity and the velocity
of the boundary, and the second term arises from the non-advective (e.g., diffusive) flux. Both
fluxes are projected onto the outward normal at the boundary and then integrated over the
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Figure 20.3: This figure depicts the contributions to the Leibniz-Reynolds transport theorem (20.49). The
theorem is applied to a domain corresponding to a numerical model grid cell with the top and bottom interfaces
defined by generalized vertical coordinates of Chapters 63, 64, and 65. In particular, the vertical cell faces are
assumed to have fixed positions, so that (v − v(b)) · n̂ = v · n̂ for these cell faces. Hence, the fluxes crossing these
faces are due to advection by the barycentric velocity plus and contributions from non-advective (e.g., diffusive)
fluxes. However, the top and bottom faces of the cell are allowed to move according to the generalized vertical
coordinate surfaces. Hence, transport through these faces must take into account the nonzero velocity of the
boundaries. Note that numerical models generally assume the top and bottom interfaces have a nonzero projection
in the vertical direction so that they never overturn (e.g., Griffies et al. (2020)).

surface area. Hence, the budget is not affected by fluxes tangential to the boundary. Finally,
for the mass budget (20.50), the non-advective flux vanishes since the mass of a fluid element
moves according to the barycentric velocity of Section (20.1.2).

In Figure 20.3 we illustrate the transport theorem (20.49) for the special case of a discrete
numerical model grid cell. This cell has fixed positions for the vertical sides whereas the top and
bottom interfaces are time dependent. This application of the transport theorem provides the
framework for finite volume methods in numerical models (e.g., Griffies et al. (2020)). We offer
further discussion of the kinematics of such general vertical coordinate models in Chapter 64 and
their dynamics in Chapter 65.

20.2.6 Revisiting Reynolds transport theorem

Consider the special case of a region that is moving with the fluid flow, in which case we provide
a more general derivation of the Reynolds transport theorem than originally given for material
regions in Section 19.5. The following results are special cases of the general expression (20.49).

Reynolds Transport Theorem

Let us apply the result (20.37) to a region that follows the fluid flow as defined by the barycentric
velocity, v. For this moving region, the time derivative of the region boundaries in equation
(20.37) is given by the fluid velocity thus leading to

d

dt

[ˆ
R(v)

φdV

]
=

ˆ
R(v)

[
∂φ

∂t
+∇ · (v φ)

]
dV =

ˆ
R(v)

[
Dφ

Dt
+ φ∇ · v

]
dV. (20.51)
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This result is the Reynolds transport theorem. The derivation given here is more general than
that in Section 19.5, with that derivation assuming the region to be material (i.e., no matter
crosses the region boundary). For the present derivation we only assumed that the region
boundaries move so that (v − v(b)) · n̂ = 0, where again v is the barycentric velocity. We did
not assume the region boundaries are material. We can thus make use of Reynolds transport
theorem (20.51) for constant mass regions of a multi-component fluid so long as (v−v(b)) · n̂ = 0.
Furthermore, the region boundary is generally permeable via the non-advective (diffusive) tracer
fluxes.

Alternative form of Reynolds Transport Theorem

We can put the Reynolds Transport Theorem (20.51) into another useful form by reintroducing
φ = ρΠ and making use of mass continuity

1

ρ

Dρ

Dt
= −∇ · v. (20.52)

Doing so yields the rather tidy result

d

dt

[ˆ
R(v)

Π ρdV

]
=

ˆ
R(v)

[
Dφ

Dt
+ φ∇ · v

]
dV Reynolds (20.51) (20.53a)

=

ˆ
R(v)

[
D(ρΠ)

Dt
+ ρΠ∇ · v

]
dV φ = ρΠ (20.53b)

=

ˆ
R(v)

[
Π

(
Dρ

Dt
+ ρ∇ · v

)
+ ρ

DΠ

Dt

]
dV product rule (20.53c)

=

ˆ
R(v)

DΠ

Dt
ρdV. mass continuity (20.10)

(20.53d)

Heuristically, this result follows since ρ dV is a constant when following the flow, so that passage
of the time derivative across the material integral only picks up the material derivative of Π.

We can take the result (20.53d) one more step by inserting the material form of the scalar
conservation equation (20.30) so that

d

dt

[ˆ
R(v)

Π ρdV

]
= −

˛
∂R(v)

J · n̂dS, (20.54)

which is a special case of the general transport theorem (20.49) found by setting (v−v(b)) · n̂ = 0
along the region boundary. This result says that the change in Π-stuff within a region moving
with the barycentric velocity arises only from the area integrated non-advective flux crossing
normal to the boundary. It is a finite volume generalization of the mass conservation statement
for a fluid element as discussed in Section 20.1.3. We can set Π = 1 to render a statement of
mass conservation for a Lagrangian region

d

dt

[ˆ
R(v)

ρdV

]
= 0, (20.55)

where the non-advective flux, J , vanishes for the mass.
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20.2.7 Summary of the time derivatives acting on integrals
We here summarize the variety of time derivatives acting on integrals of scalar fields

d

dt

ˆ
R

ρΠdV =


´
R
∂(ρΠ)
∂t dV = −

¸
∂R(ρvΠ+ J) · n̂dS Eulerian R´

R(v) ρ
DΠ
Dt dV = −

¸
∂R(v) J · n̂dS Lagrangian R(v)

−
¸
∂R [ρΠ(v − v(b)) + J ] · n̂dS arbitrary R,

(20.56)

with the scalar fields assumed to satisfy the flux-form conservation equation

ρ
DΠ

Dt
= −∇ · J ⇐⇒ ∂t(ρΠ) +∇ · (ρvΠ+ J) = 0. (20.57)

As discussed in Section 17.1.1, the partial differential equation (20.57) is referred to as the strong
formulation of the scalar budget, whereas the integral expressions in equation (20.56) provide a
variety of weak formulations. We thus see how the Leibniz-Reynolds transport theorem provides
the mathematical framework to move between the strong form and weak form of the scalar
bugets.

20.3 Brute force illustration of Leibniz-Reynolds
The Leibniz-Reynolds transport theorem

d

dt

[ˆ
R

ρΠdV

]
= −

ˆ
∂R

[
ρΠ(v − v(b)) + J

]
· n̂dS, (20.58)

is an incredibly useful and elegant expression of the scalar budget over an arbitrary domain.
Correspondingly, we make great use of it throughout this book. To further our understanding,
we here consider the scalar budget for an ocean domain such as in Figure 20.4. Rather than
make direct use of Leibniz-Reynolds, we use a brute force approach by expanding the volume
integral according to

d

dt

[ˆ
R

ρΠdV

]
=

d

dt

[ˆ
A(t)

dA

ˆ η

ηb

ρΠdz

]
. (20.59)

In this equation,
´
A(t) dA is an integral over the horizontal area of the domain, with the lateral

boundaries of the domain generally a function of time. This exercise requires the use of various
kinematic boundary conditions and provides further practice with the Leibniz rule.
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Figure 20.4: A depiction of fluid layers in which we formulate the budget for the total mass of scalar (e.g., tracer
or potential enthalpy). The scalar mass within the layer, such as that one denoted by R, is modified by dia-surface
transport across interior layer interfaces, as well as transport across the surface and bottom boundaries. Note
that an arbitrary layer might never intersect the bottom or surface boundaries. However, the layers depicted here
each intersect boundaries, with such layers requiring extra care in formulating their budgets.
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20.3.1 Leibniz’s rule plus kinematic boundary conditions

Performing the time derivative in equation (20.59) and using Leibniz’s rule yields

d

dt

[ˆ
R

ρΠdV

]
=

ˆ
A(t)

[∂tη (ρΠ)z=η] dA+
dA

dt

[ˆ η

ηb

ρΠdz

]
bounds

+

ˆ
A(t)

dA

ˆ η

ηb

∂(ρΠ)

∂t
dz.

(20.60)
The first term on the right hand side arises from time dependence to the free surface. This term
is present even if the horizontal boundaries are rigid. The second term on the right hand side is
evaluated along the lateral boundaries of the domain. If the boundaries are fixed in time, as in
a rectangular box of seawater or a periodic channel, then dA/dt = 0. The more general case
has a lateral boundary that is time dependent such as along a beach where fluid moves up and
down the sloping shoreline. However, in that case the thickness of fluid vanishes at the lateral
boundary, η − ηb = 0, thus again revealing that the second term on the right hand side drops
from the budget to render

d

dt

[ˆ
R

ρΠdV

]
=

ˆ
A(t)

[∂tη (ρΠ)z=η] dA+

ˆ
A(t)

dA

ˆ η

ηb

∂(ρΠ)

∂t
dz. (20.61)

For the second term on the right hand side of equation (20.61) we make use of the scalar
equation (20.57) and Leibniz’s rule to write

ˆ η

ηb

∂(ρΠ)

∂t
dz = −

ˆ η

ηb

∇h · (ρΠu+ Jh) dz −
ˆ η

ηb

∂(ρΠw + Jz)

∂z
dz (20.62a)

= −∇h ·
ˆ η

ηb

(ρΠu+ Jh) dz +∇(η − z) · (ρΠv + J)z=η

+∇(z − ηb) · (ρΠv + J)z=ηb (20.62b)

where we wrote J = Jh + ẑ J
z. The surface terms (z = η) combine with the ∂tη term appearing

in equation (20.61) to yield

ρΠ

[
∂η

∂t
+ u · ∇η − w

]
= ΠQm, (20.63)

where we used the surface kinematic boundary condition (19.94) to introduce the surface
boundary mass flux Qm. The bottom kinematic boundary condition eliminates the advective
contribution at the bottom, z = ηb, via the no normal flow condition (19.56)

∇(z − ηb) · v = w − u · ∇ηb = 0 at z = ηb(x, y). (20.64)

Finally, when integrated over the horizontal extent of the domain, the horizontal convergence
term from equation (20.62b) vanishes. The reason it vanishes is because either the thickness
of fluid vanishes at the horizontal boundaries (as along a beach); there is a no flux boundary
condition if the boundary is a vertical wall; or the domain is periodic.

20.3.2 Summarizing the result

Bringing the results together yields the budget equation

d

dt

[ˆ
R

ρΠdV

]
=

ˆ
z=η

(ΠQm +∇(η − z) · J) dA+

ˆ
z=ηb

∇(z − ηb) · J dA. (20.65)
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We now use the identity (19.83e) between horizontal area element, dA = dx dy, and area element
on the surface

n̂dS = −∇(η − z) dA at z = η (20.66a)

n̂dS = −∇(z − ηb) dA at z = ηb, (20.66b)

to write
d

dt

[ˆ
R

ρΠdV

]
= −

ˆ
z=η

(−ΠQm + n̂ · J)dS −
ˆ
z=ηb

n̂ · J dS, (20.67)

where
Qm dA = Qm dS = −ρ (v − v(η)) · n̂dS (20.68)

according to equation (19.88c). The budget for fluid mass is realized by setting Π to a constant
and thus dropping the non-advective flux

d

dt

[ˆ
R

ρdV

]
=

ˆ
z=η

Qm dS = −
ˆ
z=η

ρ (v − v(η)) · n̂dS. (20.69)

The manipulations in this section have succeeded in bringing the scalar and mass budgets into
the form of the Leibniz-Reynolds transport theorem (20.58). The process of doing so required
far more tedium as compared to the elegance of merely starting from equation (20.58). Even
so, our efforts provide a useful means to ground the formalism by unpacking the many steps
summarized by Leibniz-Reynolds. Furthermore, many of these steps are encountered in practical
calculations of finite volume budgets.

20.4 Boundary conditions

We here study the boundary conditions relevant at the variety of boundaries encountered by a
fluid. To be specific, consider Π to be a tracer concentration,

Π = C, (20.70)

though note that the formalism holds for an arbitrary scalar satisfying the budget equation

∂t(ρC) +∇ · (ρC v + J) = 0. (20.71)

We continue to focus on a fluid layer such as shown in Figure 20.4, paying particular interest to
fluid layers that intersect surface (as for the ocean) and/or bottom boundaries (as for the ocean
or atmosphere). We commonly think of this layer as defined by isosurfaces of generalized vertical
coordinates whose layers are monotonically stacked in the vertical according to the discussion
from Sections 63.9.1 and 64.2. However, the treatment given here allows for the layers to be
non-monotonic in the vertical (e.g., overturns are allowed), so that these results can be used for
the water mass transformation analysis discussed in Chapter 73. For example, the layers can
be defined by surfaces of constant Conservative Temperature or salinity within the ocean, with
these fields generally exhibiting regions of non-monotonic vertical stratification.

The Leibniz-Reynolds transport theorem (20.49) provides the starting point

d

dt

[ˆ
R

ρC dV

]
= −

ˆ
∂R

[
ρC (v − v(b)) + J

]
· n̂dS, (20.72)

The left hand side of equation (20.72) is the time tendency for the mass of tracer within the
region, such as the region R shown in Figure 20.4. This tendency is affected by transport across
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the layer boundaries, with three boundaries considered here. We ignore interior sources, though
note that the formalism can be readily extended in their presence.

20.4.1 Interior layer boundary conditions
The boundary transport across interior layer interfaces,

interior boundary transport = [ρC (v − v(b)) + J ] · n̂dS, (20.73)

measures the tracer mass transport due to advective fluxes across the moving layer boundaries
(first term) and sugbrid scale fluxes (second term). The advective flux is sometimes known as
the dia-surface transport, with the kinematics of this transport discussed in Section 64.3.

20.4.2 Solid-earth boundary conditions
At the static material bottom boundary, the no-normal flow condition means that

v · n̂ = 0. (20.74)

Consider the velocity of a point attached to the layer interface, v(b), and focus on where the
interface intersects the bottom boundary. At this point, v(b) tracks the position of the interface
as it intersects the bottom boundary. By construction, the movement of this intersection point is
tangential to the bottom boundary so that it too is orthogonal to the boundary outward normal
direction

v(b) · n̂ = 0. (20.75)

Hence, the only contribution to the tracer budget at the bottom boundary comes through the
non-advective flux, J

bottom boundary transport = −J · n̂dS. (20.76)

This equation says that if there is any transport through the bottom boundary (left hand side),
then it induces a non-advective transport within the ocean whose normal component at the
boundary equals to the bottom transport (right hand side).

Geothermal heating is the canonical solid-earth transport in the ocean. Assuming a known
geothermal heat flux, Qgeo-heat, it leads to a non-advective ocean boundary flux

Qgeo-heat = −cp J(Θ) · n̂, (20.77)

where cp is the ocean heat capacity and Θ is the Conservative Temperature (discussed in Section
26.11 and Chapter 72). Furthermore, if we assume the non-advective flux is parameterized as
the downgradient diffusive flux (as in equation (72.54)), then the geothermal boundary condition
(20.77) takes the form

Qgeo-heat = cp ρ (K · ∇Θ) · n̂, (20.78)

where K is the diffusion tensor (Chapters 68 and 71).
For those cases where the geothermal heating vanishes, or more generally for tracers that

have zero bottom boundary flux, then the tracer must satisfy the following no-normal flux
(Neumann) boundary condition

no flux bottom boundary = (K · ∇Θ) · n̂ = 0. (20.79)

In the case where diffusion next to the boundary is isotropic, as per molecular diffusion, then we
reach the simpler result

no flux bottom boundary = ∇C · n̂ = 0. (20.80)
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Namely, in this case, tracer isosurfaces are oriented normal to the boundary as depicted in Figure
20.5. Notably, this kinematic boundary condition holds at each point in time. For the dynamical
tracers like temperature and salinity, this boundary condition affects flow near the boundary by
modifying the density field and thus the pressure.
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Figure 20.5: In the absence of a bottom boundary tracer flux (e.g., geothermal heating), and in the presence of
isotropic downgradient diffusion, the isosurfaces of tracer, C, intersect solid boundaries normal to the boundary
as per equation (20.80): ∇C · n̂ = 0, where n̂ is the outward normal direction. This constraint holds at each time
instance.

20.4.3 Upper ocean surface boundary conditions

Let us write the upper ocean surface boundary tracer transport as

QC dS = net tracer mass per time crossing ocean surface. (20.81)

The surface boundary transport is generally comprised of two terms: a non-advective term just
like at the solid-earth in Section 20.4.2, plus an advective term afforded since the ocean surface
is permeable. If we assume that the tracer transported via the advected matter is either a
dissolved tracer, such as salinity, or a thermodynamic tracer, such as Conservative Temperature,
then we can write the net tracer flux as

QC = Cm Qm + Qnon-adv
C , (20.82)

where Qnon-adv
C is the non-advective tracer flux, Cm is the tracer concentration within the mass

transported across the surface, and Qm the mass per time per surface area of matter that crosses
the boundary, as defined according to the kinematic boundary condition (19.78)

Qm = −ρ n̂ · (v − v(η)) surface ocean boundary. (20.83)

As for the solid-earth boundary condition, specification of QC requires information concerning
the flux of tracer mass into or out of the ocean, and this flux equals to the net flux on the ocean
side of the surface

QC = Cm Qm + Qnon-adv
C ≡ −[ρC (v − v(b)) + J ] · n̂ = C Qm − J · n̂, (20.84)

We thus see that the surface transport of tracer mass induces the following non-advective flux
within the ocean at z = η

−J · n̂ = QC − C Qm = Qnon-adv
C + (Cm − C)Qm. (20.85)

Figure 20.6 offers a schematic to summarize these results. We make use of these results when
discussing the surface ocean boundary conditions in Sections 72.5 and 73.8.3.
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QC = CQm � J · n̂

Figure 20.6: A schematic of an infinitesimal region of the ocean surface boundary at z = η(x, y, t), with z < η
the ocean region. Qm dS is the mass transport (mass per time) that crosses the interface and carries a tracer
concentration, Cm. QC dS is the tracer mass transport that crosses the ocean surface. Continuity across the
z = η boundary means that the tracer mass transport at z = η − ϵ (ocean side) equals to that at z = η + ϵ
(atmospheric side), with ϵ > 0 a tiny number. The tracer concentration at the interface, C(z = η), is not
determined by kinematics. Many analyses and numerical model applications approximate C(z = η) as the bulk
tracer concentration within the upper few meters of the ocean, depending on details of the upper ocean turbulence.
However, as vertical grid spacing is refined to be finer than roughly a meter, this assumption must be reconsidered.

20.5 Evolution of region mean tracer
We here consider an application of the formalism developed in this chapter by deriving evolution
equations for the averaged tracer concentration as defined by

⟨C⟩ = 1

M

ˆ
R

ρC dV with M =

ˆ
R

ρdV, (20.86)

where the region domain, R, is arbitrary.

20.5.1 Formulation
Use of the product rule leads to

d[⟨C⟩M ]

dt
=M

d⟨C⟩
dt

+ ⟨C⟩ dM
dt

=M
d⟨C⟩
dt
− ⟨C⟩

˛
∂R
ρ (v − v(b)) · n̂dS, (20.87)

where the second equality made use of the mass budget (20.50). Inserting the transport theorem
(20.49) for the left hand side yields

M
d⟨C⟩
dt

= −
˛
∂R

[
ρ (C − ⟨C⟩) (v − v(b)) + J

]
· n̂dS. (20.88)

The first term on the right hand side vanishes if the averaged tracer concentration equals to the
boundary concentration. That is, the region averaged tracer concentration is unchanged if the
boundary fluxes of mass have a tracer concentration that matches the region average.

20.5.2 Application to a numerical ocean model grid cell
If the region is an ocean model grid cell that is adjacent to the ocean surface (see Figure 20.3 or
20.6), then use of the surface boundary condition (20.84) leads to

M
d⟨C⟩
dt

=

ˆ
z=η

(C − ⟨C⟩)Qm dA−
ˆ
∂Rint

ρ (C − ⟨C⟩) (v − v(b)) · n̂dS −
˛
∂R
J · n̂dS, (20.89)

where ∂Rint is the interior boundary to the grid cell. As noted above, the first term on the right
hand side vanishes if C(z = η) = ⟨C⟩. This situation is commonly assumed for temperature in
the surface grid cell of an ocean model. That is, the temperature of evaporation, precipitation,
and river runoff is commonly taken as the temperature in the surface model grid cell. In contrast,
C(z = η) = 0 is commonly the case for material tracers such as salt, whose concentration is
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commonly close to zero within boundary water fluxes.

20.6 Exercises
exercise 20.1: Equation for tracer mass per fluid volume
In some treatments it can be suitable to define a volumetric tracer concentration as the mass of
tracer per volume of fluid

ϕ =
mass of constituent n in fluid element

volume of fluid element
= C ρ, (20.90)

where C is the mass concentration defined by equation (20.17) and satisfying the tracer equation
(20.21). Derive the corresponding equation satisfied by ϕ.

exercise 20.2: Evolution of the integrated density weighted position
In Exercise 19.2 we developed an evolution equation for the center of mass motion for a region
with fixed mass. Here we derive a slightly more general result holding for an arbitrary region, R,
within the fluid. Namely, for Cartesian coordinates, use the Leibniz-Reynolds transport theorem
(20.37) as well as the mass continuity equation (19.6) to derive the identity

d

dt

ˆ
R

ρx dV =

ˆ
R

ρv dV +

˛
∂R
ρx [(v − v(b)) · n̂] dS, (20.91)

where x is the position vector for a point within the fluid. Notice that for a mass conserving
Lagrangian region (i.e., a region that moves with the fluid flow), the boundary term vanishes
since in this case (v − v(b)) · n̂ = 0, which then reduces equation (20.91) to equation (19.106)
derived in Exercise 19.2.
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Chapter 21

NON-DIVERGENT FLOWS

In this chapter, we study the kinematics of a non-divergent flow velocity field, ∇·v = 0. In many
areas of fluid mechanics, a non-divergent velocity1 is said to describe an incompressible flow,
with this term motivated by the case of flow within a constant density or incompressible fluid.
In other areas of fluid mechanics, non-divergent flows are referred to as solenoidal, in analog to
the non-divergent or solenoidal magnetic field occurring in classical electrodynamics. As seen
when studying the Boussinesq ocean in Chapter 29, a fluid with a non-divergent flow can still
experience compressibility effects and the associated density variations. That is, the study of a
Boussinesq ocean concerns the incompressible flow of a compressible fluid, thus exemplifying the
important distinction between a fluid property versus a flow property.

reader’s guide to this chapter
We presume an understanding of the kinematics of mass conservation from Chapter 19

as well as many of the results from Cartesian tensor analysis in Chapter 2. This chapter
introduces many concepts and tools of use in the remainder of the book.

21.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
21.2 Introduction to non-divergent flow . . . . . . . . . . . . . . . . . . . . . . 532
21.3 Kinematic boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 533
21.4 Streamfunction for two-dimensional flow . . . . . . . . . . . . . . . . . . 533

21.4.1 Streamfunction isolines are streamlines . . . . . . . . . . . . . . . 534
21.4.2 Streamfunction is constant on material boundaries . . . . . . . . 534
21.4.3 The streamfunction and fluid transport . . . . . . . . . . . . . . . 534
21.4.4 Gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
21.4.5 Exact differential formulation . . . . . . . . . . . . . . . . . . . . 535
21.4.6 Concerning the Helmholtz decomposition . . . . . . . . . . . . . 536
21.4.7 A caveat: transport with curl-free + divergent flow . . . . . . . . 537

21.5 Vector streamfunction for three-dimensional flow . . . . . . . . . . . . . 537
21.5.1 Gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
21.5.2 The streamfunction and transport through a surface . . . . . . . 537
21.5.3 Scalar streamfunctions and transport . . . . . . . . . . . . . . . . 538
21.5.4 Concerning a harmonic velocity potential . . . . . . . . . . . . . 539
21.5.5 The vertical gauge streamfunction . . . . . . . . . . . . . . . . . 540

21.6 Evolution of volume and area . . . . . . . . . . . . . . . . . . . . . . . . . 541
21.6.1 Material volumes and areas . . . . . . . . . . . . . . . . . . . . . 541
21.6.2 Arbitrary volume and area . . . . . . . . . . . . . . . . . . . . . . 542

21.7 Meridional-depth circulation . . . . . . . . . . . . . . . . . . . . . . . . . 543
21.7.1 The zonally integrated transport is non-divergent . . . . . . . . . 544

1A somewhat trivial example of a non-divergent fluid flow is given by v(x, y, z) = u(y, z) x̂+v(x, z) ŷ+w(x, y) ẑ.
There are many further flows that are non-divergent, such as realized by the Boussinesq ocean studied in Chapter
29.
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21.7.2 Meridional-depth streamfunction . . . . . . . . . . . . . . . . . . 545
21.7.3 Verifying that Ψ is a streamfunction . . . . . . . . . . . . . . . . 545
21.7.4 Generalizing to arbitrary domains . . . . . . . . . . . . . . . . . . 546
21.7.5 Ψ(y, z) does not generally delineate particle pathlines . . . . . . . 546

21.8 Kinematic free surface equation . . . . . . . . . . . . . . . . . . . . . . . 547
21.8.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
21.8.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

21.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

21.1 Loose threads
• Need more work for the general Ψ in Section 21.7.4 to prove that it is a streamfunction.

21.2 Introduction to non-divergent flow
For many purposes in fluid mechanics, we can make the simplifying assumption regarding the
fluid kinematics whereby the volume of a fluid element is approximated as a constant. In
particular, this situation holds for the Boussinesq ocean discussed in Chapter 29. Recalling the
expression

1

δV

D(δV )

Dt
= ∇ · v (21.1)

from Section 18.10.1, we see that a constant volume for a fluid element constrains the velocity
field to be non-divergent

1

δV

D(δV )

Dt
= 0 =⇒ ∇ · v = 0. (21.2)

Flow satisfying ∇ · v = 0 is said to be incompressible since the volume of a fluid element is
materially invariant. We illustrate this situation in Figure 21.1.

Figure 21.1: Illustrating volume continuity for a non-divergent velocity flow in a pipe. On the left the pipe has a
relatively large diameter whereas on the right the pipe is narrower. A plug of water on the left moves through the
pipe and becomes longer when it moves into the narrower region so that the volume of the plug remains the same.
Correspondingly, the speed of the flow increases when moving into the narrower portion of the pipe.

A slightly less onerous constraint arises from the anelastic approximation, whereby

∇ · (ρv) = 0. (21.3)

The anelastic approximation is sometimes motivated for the atmosphere. However, it is less
commonly used for atmospheric dynamics than the Boussinesq ocean is used for the ocean. We
thus focus on the Boussinesq case here, whereby ∇ · v = 0.

The non-divergence constraint (21.2) reduces by one the number of functional degrees of
freedom possessed by the velocity field. What that means in practice is that we need one fewer
velocity component to determine the flow since one component can be diagnosed from the other
two components. This property manifests by our ability to introduce a streamfunction to specify
the velocity, as further developed in this chapter.
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21.3 Kinematic boundary conditions

For non-divergent flow, there are slight modifications to the boundary conditions detailed in
Section 19.6. Whereas the material conditions remain identical, the non-material conditions are
applied with a constant reference density, ρo, rather than the local in situ density, ρ. The reason
is that we switch from specifying a mass transport condition as per equation (19.78) to a volume
transport condition

ρo (v − v(s)) · n̂dS = −Qm dS = −Qm dA moving non-material boundary condition, (21.4)

where the second equality introduced the mass flux per unit horizontal area, Qm, according to
equation (19.88c). Correspondingly, the kinematic boundary condition (19.94) applied at the
ocean free surface takes on the form

ρo
D(z − η)

Dt
= −Qm =⇒ w +

Qm

ρo
=
∂η

∂t
+ u · ∇η. (21.5)

Making use of the non-divergence condition on the velocity allows us to write this equation in
the equivalent forms2

∂tη −Qm/ρo = (ẑ −∇η) · v = ∇(z − η) · v = ∇ · [(z − η)v]. (21.6)

In Section 21.8 we derive the kinematic free surface equation (21.81), which also shows that
∂tη −Qm/ρo is a total divergence.

21.4 Streamfunction for two-dimensional flow

Vertical stratification of buoyancy plus the effects from planetary rotation inhibit vertical motion
in geophysical flows. Therefore, as an idealization it is sometimes useful to assume the geophysical
fluid flow is horizontal (two-dimensional) as well as non-divergent. The non-divergent constraint
for two-dimensional flow can be satisfied by writing the horizontal velocity in the form

u = ∇× (z∇ψ) = ẑ ×∇ψ = ẑ ×∇hψ = −x̂ ∂ψ
∂y

+ ŷ
∂ψ

∂x
, (21.7)

where
∇h = x̂ ∂x + ŷ ∂y (21.8)

is the horizontal gradient operator. The constraint ∇h · u = 0 is satisfied since the partial
derivative operators commute

∂2ψ

∂x∂y
=

∂2ψ

∂y∂x
. (21.9)

We refer to ψ as the streamfunction, with this name motivated by the following considerations.3

2In equation (21.6), we set z = η after applying the gradient operator in the penultimate expression and the
divergence in the final expression.

3In this section we could choose to relax notation by dispensing with the z subscript on the horizontal gradient
operator, ∇h, since we are here concerned only with two-dimensional horizontal flow. Even so, we find it useful to
be pedantic as doing so clearly distinguishes the two-dimensional formulations in this section from the analogous
three-dimensional case considered in Section 21.5.
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21.4.1 Streamfunction isolines are streamlines
At any fixed time instance, the exact differential of the streamfunction is

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = v dx− u dy, (21.10)

where the second equality follows from equation (21.7). Instantaneous lines along which ψ is a
constant satisfy

dψ = 0 =⇒ dx

u
=

dy

v
. (21.11)

Furthermore, the normal direction to constant ψ lines

n̂ =
∇hψ
|∇hψ|

=
v x̂− u ŷ
|u| (21.12)

is normal to the velocity
u · ∇hψ = u v − v u = 0. (21.13)

Consequently, at each time instance, lines of constant ψ are streamlines, which means (following
Section 17.7.2) that curves of constant ψ define integral curves for the instantaneous velocity
field. This property motivates the name streamfunction. Furthermore, through each point of a
two-dimensional non-divergent flow and at any particular time instance, there is one and only
one streamline passing through that point.

21.4.2 Streamfunction is constant on material boundaries
As a corollary to the results from Section 21.4.1, we know that the streamfunction is a spatial
constant when evaluated along static material boundaries where u · n̂ = 0. This property follows
from equation (21.13). We can also see it from

0 = u · n̂ = (ẑ ×∇hψ) · n̂ = (n̂× ẑ) · ∇hψ = t̂ · ∇hψ, (21.14)

where t̂ a unit vector pointing tangent to the boundary. The operator t̂ · ∇hψ is the derivative of
ψ computed along the boundary tangent at any given boundary point. Hence, t̂ · ∇hψ = 0 means
that ψ is a spatial constant along the boundary. Even though spatially constant, ψ along the
boundary is generally a function of time.

We emphasize that a constant streamfunction along a boundary, t̂ · ∇hψ = 0, is distinct from
a vanishing normal derivative at the boundary. Indeed, the streamfunction for a two-dimensional
non-divergent flow generally has a nonzero normal derivative at boundaries, n̂ · ∇hψ ̸= 0.

21.4.3 The streamfunction and fluid transport
Consider an arbitrary curve in the fluid with endpoints x1 and x2 as depicted in Figure 21.2.
At any particular time instance, the difference in streamfunction between these two points is
given by

ψ(x2)− ψ(x1) =

ˆ x2

x1

dψ =

ˆ x2

x1

[
dx

∂ψ

∂x
+ dy

∂ψ

∂y

]
=

ˆ x2

x1

∇hψ · dx =

ˆ x2

x1

∇hψ · t̂ ds. (21.15)

For the final equality we wrote
dx = t̂ ds, (21.16)

where
ds = |dx| (21.17)
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is the element of arc length along the curve, and t̂ is the unit tangent vector that points in the
direction along the curve from x1 to x2. Now introduce the unit normal vector along the curve
according to

t̂ = n̂× ẑ, (21.18)

where n̂ points to the left when facing in the t̂ direction. We thus have

ψ(x2)− ψ(x1) =

ˆ x2

x1

∇hψ · (n̂× ẑ) ds =
ˆ x2

x1

(ẑ ×∇hψ) · n̂ds =

ˆ x2

x1

u · n̂ds, (21.19)

with the final equality an expression for the net area transport of fluid normal to the curve
(dimensions of area per time). As the chosen curve connecting the points is arbitrary, we conclude
that the difference in streamfunction values between two points measures the transport across any
curve connecting the points. Correspondingly, the stronger the gradient in the streamfunction,
the larger the transport since

|u| = |∇hψ|. (21.20)

Given the connection between the transport between two points and the value of the stream-
function at those two points, we are motivated to name ψ the transport streamfunction.

x1

x2<latexit sha1_base64="WHwiUlrnFttyyzJpkA49vkRwVh4=">AAACCXicbZDLSgMxGIUz9VbrrerSTbAIrsqMirosunFZwV5gZiiZNNOGJpkh+UcoQ5/AtVt9Bnfi1qfwEXwL03YWWnsg8HHO/5PkRKngBlz3yymtrK6tb5Q3K1vbO7t71f2DtkkyTVmLJiLR3YgYJrhiLeAgWDfVjMhIsE40up3mnUemDU/UA4xTFkoyUDzmlIC1/GBIIA8iidWkV625dXcm/B+8AmqoULNX/Q76Cc0kU0AFMcb33BTCnGjgVLBJJcgMSwkdkQHzLSoimQnz2ZMn+MQ6fRwn2h4FeOb+3siJNGYsIzspCQzNYjY1l2aRXGb7GcTXYc5VmgFTdH5/nAkMCZ7WgvtcMwpibIFQze0XMB0STSjY8iq2G2+xif/QPqt7l/Xz+4ta46ZoqYyO0DE6RR66Qg10h5qohShK0DN6Qa/Ok/PmvDsf89GSU+wcoj9yPn8AifmabA==</latexit>

n̂
<latexit sha1_base64="9e29/93pVUuFgId77SNCF4/K1H8=">AAACCXicbZDLSgMxGIUz9VbrrerSTbAIrsqMirosunFZwV5gZiiZNNOGJpkh+UcoQ5/AtVt9Bnfi1qfwEXwL03YWWnsg8HHO/5PkRKngBlz3yymtrK6tb5Q3K1vbO7t71f2DtkkyTVmLJiLR3YgYJrhiLeAgWDfVjMhIsE40up3mnUemDU/UA4xTFkoyUDzmlIC1/GBIIA8iiWHSq9bcujsT/g9eATVUqNmrfgf9hGaSKaCCGON7bgphTjRwKtikEmSGpYSOyID5FhWRzIT57MkTfGKdPo4TbY8CPHN/b+REGjOWkZ2UBIZmMZuaS7NILrP9DOLrMOcqzYApOr8/zgSGBE9rwX2uGQUxtkCo5vYLmA6JJhRseRXbjbfYxH9on9W9y/r5/UWtcVO0VEZH6BidIg9doQa6Q03UQhQl6Bm9oFfnyXlz3p2P+WjJKXYO0R85nz+ToZpy</latexit>

t̂

<latexit sha1_base64="Gi6JMw+yf6UQ0qXLQlqTknm+i4Q=">AAACLHicbZDLSgMxFIYzXmu9VV26CRbBhZQZKepGKLpxWcFeoFNKJk3b0CQzJGeEOsxL+CCu3eozuBFxK/gWphe8tP0h8Oc753A4fxAJbsB135yFxaXlldXMWnZ9Y3NrO7ezWzVhrCmr0FCEuh4QwwRXrAIcBKtHmhEZCFYL+lfDeu2OacNDdQuDiDUl6Sre4ZSARa3csd8jkPiBxJBiH7hkBv8gleKL39992srl3YI7Ep413sTk0UTlVu7Lb4c0lkwBFcSYhudG0EyIBk4FS7N+bFhEaJ90WcNaRez6ZjK6KsWHlrRxJ9T2KcAj+nciIdKYgQxspyTQM9O1IZxbC+Q83Iihc95MuIpiYIqO93digSHEw+Rwm2tGQQysIVRzewKmPaIJBZtv1mbjTScxa6onBe+0ULwp5kuXk5QyaB8doCPkoTNUQteojCqIogf0hJ7Ri/PovDrvzse4dcGZzOyhf3I+vwEwpqfJ</latexit>

t̂⇥ n̂ = ẑ
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Figure 21.2: Depicting the transport between two points in a two-dimensional fluid. The transport is the line
integral,

´ x2

x1
u · n̂ds, from point x1 to x2, with the unit normal, n̂, pointing to the left when facing in the

direction of the local unit tangent vector, t̂. By construction, t̂× n̂ = ẑ, where ẑ points vertically out of the page.
For a two-dimensionally non-divergent flow, ∇h ·u = 0, the transport between any two points is the streamfunction
difference at these two points,

´ x2

x1
u · n̂ ds = ψ(x1)− ψ(x2). This result holds regardless the path taken between

these two points, so long as the path remains simple; i.e., it does not intersect itself.

21.4.4 Gauge symmetry

For a two-dimensional non-divergent flow, the constraint ∇h ·u = 0 reduces the functional degrees
of freedom from two (the two velocity components (u, v)) to one (the streamfunction). However,
the streamfunction is arbitrary up to a constant, k, since

ψ′ = ψ + k ⇒ u′ = u. (21.21)

So the value of the streamfunction at a particular point has no unambiguous physical meaning.
Rather, only the difference in streamfunction between two points is physically relevant. The
ability to add a constant to the streamfunction is termed a gauge symmetry.

21.4.5 Exact differential formulation

We here connect our discussion of velocity streamfunction to the discussion of exact differentials
in Section 2.8. For that purpose introduce the differential

A · dx ≡ (u× ẑ) · dx = v dx− u dy. (21.22)
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By construction
ẑ · (∇h ×A) = 0 since ∇h · u = 0, (21.23)

which means that A · dx is an exact differential (Section 2.8.1). Consequently, we can write

A · dx = (u× ẑ) · dx = ∇hψ · dx = dψ, (21.24)

which then leads to the results derived earlier in this section where ψ is the transport stream-
function.

21.4.6 Concerning the Helmholtz decomposition
We close the discussion in this section by tidying up some mathematical niceties concerning the
Helmholtz decomposition studied in Section 9.8. For two-dimensional flows the decomposition
takes the form

u = ẑ ×∇hΓ +∇hΦ, (21.25)

for some functions Γ and Φ. For non-divergent flows, Φ is constrained to be harmonic4

∇ · u = 0 =⇒ ∇2
h Φ = ∇h · ∇hΦ = 0. (21.26)

As summarized in Table 21.1, it is sufficient to make use of just a streamfunction, ψ, for vortical
flow and just a velocity potential, ϕ, for irrotational flow.5 In the following we verify why it is
sufficient to make use of this truncated version of the Helmholtz decomposition for non-divergent
two-dimensional flows.

non-divergent vortical flow non-divergent irrotational flow
∇h · u = 0 ∇h · u = 0
∇h × u ̸= 0 ∇h × u = 0
u = ẑ ×∇hψ u = ∇hϕ

ẑ · (∇h × u) = ∇2
h ψ ∇2

h ϕ = 0.

Table 21.1: Summarizing some mathematical properties of non-divergent two-dimensional velocity fields, ∇·u = 0.
The streamfunction is ψ whereas the harmonic velocity potential is ϕ.

Non-divergent vortical flow

Return to the exact differential formulation from Section 21.4.5. In that formulation we noted
that ∇h · u = 0 means that the differential A · dx = (u × ẑ) · dx is exact. Making use of the
Helmholtz decomposition (21.25) renders

A · dx = (u× ẑ) · dx (21.27a)

= [(ẑ ×∇hΓ)× ẑ +∇hΦ× ẑ] · dx (21.27b)

= [∇hΓ +∇hΦ× ẑ] · dx. (21.27c)

To reveal the exactness of the right hand side requires the harmonic property of Φ so that we
can write

ẑ · [∇h × (∇hΦ× ẑ)] = −∇2
h Φ = 0 =⇒ ∇hΦ× ẑ ≡ ∇hΥ, (21.28)

in which case
A · dx ≡ v dx− udy = d(Γ + Υ) ≡ dψ. (21.29)

4Recall our discussion of harmonic functions in Sections 2.2.2 and 6.5.1.
5The vorticity, ∇h × u, is a measure of the spin in the fluid and is the focus of Part VII of this book.
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We conclude that for non-divergent vortical flow, we lose no generality by working just with the
streamfunction, ψ, of Section 21.4.3. There is no need to also include a harmonic function.

Non-divergent irrotational flow

Consider now non-divergent and irrotational flow. The irrotational condition holds so long as Γ
is harmonic

ẑ · [∇h × (ẑ ×∇hΓ)] = ∇2
h Γ = 0. (21.30)

Consequently, we can write
ẑ ×∇hΓ = ∇hγ, (21.31)

in which case
u = ẑ ×∇hΓ +∇hΦ = ∇h (γ +Φ) ≡ ∇hϕ. (21.32)

Hence, for non-divergent irrotational flow, it is sufficient to work just with the harmonic velocity
potential, ϕ.

21.4.7 A caveat: transport with curl-free + divergent flow
Consider a horizontal velocity that has a non-zero divergence, ∇ · u ̸= 0, and yet it has a zero
curl, ∇× u = 0. The zero curl allows us to write u = ∇hϕ, with ϕ the velocity potential. Hence,
dΦ = ∇hϕ ·dx is an exact differential and so its closed loop integral vanishes:

¸
dΦ = 0. However,

there is no connection between velocity potential and transport. That is, we cannot conclude
anything about the net transport across a closed curve based on properties of ϕ.

21.5 Vector streamfunction for three-dimensional flow
A three-dimensional non-divergent velocity, ∇·v = 0, can be specified by a vector streamfunction

v = ∇×Ψ. (21.33)

The constraint ∇ · v = 0 is trivially satisfied since the divergence of the curl vanishes

∇ · (∇×Ψ) = 0. (21.34)

21.5.1 Gauge symmetry
For three-dimensional non-divergent flow, the constraint ∇ · v = 0 reduces the three functional
degrees of freedom down to two, meaning that one of the velocity components can be diagnosed
from the other two. Gauge symmetry manifests through the ability to add the gradient of an
arbitrary function to the streamfunction, Ψ, without altering v:

Ψ′ = Ψ+∇λ⇒ v′ = v, (21.35)

which follows since ∇ × ∇λ = 0. Hence, the vector streamfunction has no absolute physical
meaning since it can be modified by adding an arbitrary gauge function.

21.5.2 The streamfunction and transport through a surface
The volume transport (volume per time) of fluid crossing a surface is defined by the area integral

T(S) =

ˆ
S

v · n̂dS, (21.36)
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where n̂ is the outward unit normal vector on the surface. Introducing the vector streamfunction
and making use of Stokes’ Theorem (Section 2.6) then leads to

T(S) =

ˆ
S

v · n̂dS =

ˆ
S

(∇×Ψ) · n̂dS =

‰
∂S

Ψ · t̂ ds, (21.37)

where t̂ ds is the oriented arc distance increment along the boundary of S, and

∂S is the oriented

line integral around the boundary ∂S. Hence, the volume transport of fluid through the surface
depends only on the vector streamfunction on the perimeter of the surface. Furthermore, if
the transport through the surface vanishes (e.g., no-flux material surface such as a solid earth
boundary), then on the surface the vector streamfunction can be written as the gradient of an
arbitrary scalar field, Ψ = ∇χ, since

‰
∂S

Ψ · t̂ds =
‰
∂S
∇χ · t̂ ds =

‰
∂S
∇χ · dx =

‰
∂S

dχ = 0. (21.38)

Because Ψ has a connection to fluid transport, we sometimes refer to it as the transport
streamfunction, just as for the streamfunction ψ in two-dimensional non-divergent flows (Section
21.4.3).

21.5.3 Scalar streamfunctions and transport

We can expose the two degrees of freedom of the vector streamfunction by writing it as the
product of a scalar field and the gradient of another scalar field

Ψ = γ∇ψ (21.39)

so that the velocity is given by6

v = ∇×Ψ = ∇γ ×∇ψ. (21.40)

By construction the velocity satisfies

v · ∇γ = v · ∇ψ = 0, (21.41)

so that the velocity is parallel to surfaces of constant γ and ψ. Correspondingly, the velocity
streamlines are intersections of the γ and ψ isosurfaces, as depicted in Figure 21.3. We thus
refer to γ and ψ as the two scalar streamfunctions for the three dimensional non-divergent flow.
However, note that γ and ψ have different dimensions. By convention, we choose γ to have
dimensions of length, so that it is not a traditional streamfunction, whereas ψ has the traditional
streamfunction dimensions of length squared per time.

As a check that the formalism is sensible, consider the special case of two-dimensional flow
so that all streamlines are in the horizontal x-y plane. Taking γ = z then renders

Ψ = z∇ψ and v = ∇×Ψ = ẑ ×∇ψ, (21.42)

which agrees with the scalar streamfunction in equation (21.7) for two dimensional non-divergent
flow.

The volume transport through a surface defined by the two streamfunction isosurfaces takes

6Equation (21.40) is sometimes referred to as Euler’s form, for, as noted on page 21 of Truesdell (1954), it
was Euler who originally proved its validity.
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Figure 21.3: Isosurfaces of constant scalar streamfunctions, γ and ψ, for a three dimensional non-divergent flow.
Streamlines are defined by the intersections of the γ and ψ isosurfaces, as shown by four streamlines along the
corners of this particular volume. The volume transport of fluid through the surface, S, is determined by the line
integral,


∂S
γ dψ = −


∂S
ψ dγ = (γ1 − γ2) (ψ2 − ψ1), around the boundary circuit.

the form

T(S) =

ˆ
S

v · n̂dS =

‰
∂S

Ψ · t̂ ds =
‰
∂S
γ∇ψ · t̂ds =

‰
∂S
γ dψ = −

‰
∂S
ψ dγ. (21.43)

To reach the penultimate step we set

dψ = ∇ψ · dx = ∇ψ · t̂ds, (21.44)

and for the final step we used the identity

‰
∂S
γ dψ =

‰
∂S

d(γ ψ)−
‰
∂S
ψ dγ = −

‰
∂S
ψ dγ. (21.45)

This identity follows from ‰
∂S

d(γ ψ) = 0, (21.46)

which holds since d(γ ψ) is an exact differential and its line integral vanishes when computed
around a closed path.7 The volume transport for the particular surface shown in Figure 21.3 is
given by

T(S) =

‰
∂S
γ dψ = γ1 (ψ2 − ψ1) + γ2 (ψ1 − ψ2) = (γ1 − γ2) (ψ2 − ψ1). (21.47)

Hence, the volume transport through a streamtube defined by isosurfaces of γ and ψ is given by
the product of the difference between the isosurfaces.

21.5.4 Concerning a harmonic velocity potential

As for the two-dimensional case discussed in Section 21.4.6, we consider the relevance of an
arbitrary harmonic velocity potential, χ, so that the velocity takes the form

v = ∇× Γ+∇χ with ∇2χ = 0. (21.48)

7The identity (21.46) follows from the fundamental theorem of calculus, whereby the closed loop integral of
an exact differential vanishes.
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Since ∇ · ∇χ = 0 we can write ∇χ as the curl of another vector

∇ · ∇χ = 0 =⇒ ∇χ = ∇×Λ, (21.49)

in which case the velocity takes the form

v = ∇× Γ+∇χ = ∇× (Γ+Λ) ≡ ∇×Ψ. (21.50)

Consequently, just as for the two-dimensional case, we are at liberty to work with the transport
streamfunction Ψ if that suits our needs. Otherwise, we can work with the harmonic potential,
χ, which is commonly used when the velocity is both non-divergent and irrotational, such as for
our studies of surface gravity waves in Chapter 52.

21.5.5 The vertical gauge streamfunction

To explicitly reveal the two functional degrees of freedom possessed by the non-divergent velocity
field, we establish that the velocity field can be constructed from the following vertical gauge
streamfunction8

Ψvg = x̂Ψvg

1 + ŷΨvg

2 , (21.51)

which has a zero vertical component, Ψvg

3 = 0. In addition to proving that v = ∇×Ψvg, we
show that Ψvg provides a measure of the horizontal volume transport of fluid beneath a chosen
depth. It is this property of Ψvg that makes it commonly used for studies of ocean mesoscale
eddy parameterizations, such as in Section 69.5.1.

Proof that v = ∇×Ψvg

In terms of the vertical gauge streamfunction, the velocity components are given by

u = −∂Ψ
vg

2

∂z
and v =

∂Ψvg

1

∂z
and w =

∂Ψvg

2

∂x
− ∂Ψvg

1

∂y
. (21.52)

Vertically integrating the u, v equations from the bottom at z = ηb(x, y) up to an arbitrary
geopotential leads to9

Ψvg(x, y, z, t) =

ˆ z

ηb(x,y)
u(x, y, z′, t) dz′ × ẑ ≡ U(x, y, z, t)× ẑ, (21.53)

where

U(x, y, z, t) =

ˆ z

ηb(x,y)
u(x, y, z′, t) dz′ (21.54)

is the horizontal transport of fluid from the bottom up to a chosen vertical position above the
bottom. We trivially see that u = −∂Ψvg

2 /∂z and v = ∂Ψvg

1 /∂z. It takes a bit more work to
verify that this streamfunction also renders w through noting that

∂Ψvg

2

∂x
= u(ηb) ∂xηb −

ˆ z

ηb

∂xu dz
′ and

∂Ψvg

1

∂y
=

ˆ z

ηb

∂yv dz
′ − v(ηb) ∂yηb, (21.55)

8There are occasions in which it is suitable to use either Ψ = x̂Ψ1 + ẑΨ3 or Ψ = ŷΨ2 + ẑΨ3. In this section
we focus on the vertical gauge (21.51) since that is more commonly used in applications.

9We expose the functional dependencies in equations (21.53) and (21.54), as it can be useful when first
encountering these equations. Otherwise, we typically use a more terse notation.
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so that

∂Ψvg

2

∂x
− ∂Ψvg

1

∂y
= u(ηb) · ∇ηb −

ˆ z

ηb

[
∂u

∂x
+
∂v

∂y

]
dz′ = w(ηb) +

ˆ z

ηb

∂w

∂z′
dz′ = w(z), (21.56)

where we used the bottom kinematic boundary condition (19.56) to write u(ηb) · ∇ηb = w(ηb).
We conclude that knowledge of the vector streamfunction (21.53), which just has two functional
degrees of freedom, contains all the information of the three velocity components.

We close by noting that the transport through the solid-earth bottom, z = ηb(x, y), vanishes
according to equation (21.37) discussed below. We can trivially verify this result for the vertical
gauge since

Ψvg(z = ηb) = 0, (21.57)

so that

∂S Ψvg · t̂ds = 0 on the bottom.

Comments on the vertical gauge streamfunction

Consider a streamfunction with nonzero components in all three directions

Ψ = x̂Ψ1 + ŷΨ2 + ẑΨ3. (21.58)

Following Section 21.5.1, introduce a gauge transformation so that

Ψ = Ψ+∇λ. (21.59)

Is it possible to remove one of the components of Ψ? For example, can we find a λ so that Ψ is
a horizontal vector and is thus a vertical gauge streamfunction? For that to occur we need, at
each time instance, to satisfy

∇λ(x, y, z) = −ẑΨ3(x, y, z). (21.60)

This equation is not generally solvable since the gradient of a function, λ(x, y, z), has vector
components in all three directions rather than just in the vertical. We conclude that the vertical
gauge streamfunction is not the result of a gauge transformation from a streamfunction of the
form (21.58). Even so, it is a legitimate streamfunction, as noted by the above proof that
v = ∇×Ψvg.

21.6 Evolution of volume and area
In this section we develop kinematic equations for the evolution of volume and area within a
non-divergent flow, starting with a material region and then considering an arbitrary region.

21.6.1 Material volumes and areas
As shown by equation (21.2), the volume of a fluid element remains constant in a non-divergent
flow. Correspondingly, a fluid region moving with the velocity field maintains a constant volume

d

dt

ˆ
R(v)

dV =

ˆ
R(v)

D(δV )

Dt
=

ˆ
R(v)

(∇ · v) dV =

˛
∂R(v)

v · n̂dS = 0. (21.61)

The appearance of a material time derivative on the inside of the integral arises since the integral
is computed following fluid particles whose trajectories define integral curves of the flow (see
Section 20.2.7). Likewise, following from the area element equation (18.135), the area of a region
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moving with a two-dimensional non-divergent flow remains materially constant

d

dt

ˆ
S(v)

dS =

ˆ
S(v)

D(δS)

Dt
=

ˆ
S(v)

(∇ · u) dS =

˛
∂S(v)

u · n̂ds = 0. (21.62)

This area preservation property is illustrated in Figure 21.4, in which a two-dimensional non-
divergent flow is seen to deform an initially square patch of fluid while retaining a constant area
for the patch.

Figure 21.4: Illustrating the rotation and straining of fluid patches in a two-dimensional circular and non-
divergent flow with non-dimensional velocity, v = f(|x|) ẑ×x = f(|x|) (x ŷ−y x̂) = f(|x|) ϑ̂, where x = x x̂+y ŷ
is the position vector for a fluid particle relative to the origin (at center of the panels), and ϑ̂ is the angular unit
vector pointed counter-clockwise relative to the positive x-axis (see Section 4.22). As discussed in Section 21.6,
the area of each fluid patch remains fixed as it moves with the non-divergent flow. The top row shows a rigid
rotational flow (pure rotation with zero strain) with f(|x|) = 1, with time increasing to the right and with the
right-most column showing the rigid rotating fluid flow. The bottom row shows the result from a rotating and
straining flow with f(|x|) =

√
x2 + y2. Thanks to Kentaro Hanson for providing the Python notebook to generate

the grid advection panels.

21.6.2 Arbitrary volume and area

We make use of the Leibniz-Reynolds transport theorem from Section 20.2.4 to develop the
evolution equation for the volume of an arbitrary region. In particular, equation (20.48) gives

d

dt

[ˆ
R

dV

]
=

˛
∂R
v(b) · n̂dS. (21.63)

This result holds for both divergent and non-divergent flows. But for non-divergent flows we can
go one step further by noting that

0 =

ˆ
R

∇ · v dV =

˛
∂R
v · n̂dS. (21.64)

Importantly, this result holds only when integrating around the boundary of the closed volume,
∂R. It does not necessarily mean that v · n̂ = 0 holds at every point along the boundary. Indeed,
when the boundary is time dependent, then v · n̂ ̸= 0 generally holds along the boundary.

Making use of equation (21.64) allows us to write

d

dt

[ˆ
R

dV

]
=

˛
∂R
v(b) · n̂dS = −

˛
∂R

(v − v(b)) · n̂dS. (21.65)
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This result is identical to the mass budget equation (20.50) for the special case of a constant
reference density appropriate for a Boussinesq ocean. The dia-surface transport, (v−v(b)) · n̂ dS,
measures the volume per time crossing the boundary of the region, whether that region has a
static or moving boundary. For example, if the boundary is the ocean free surface, then we can
make use of the surface kinematic boundary condition (21.4).

21.7 Meridional-depth circulation

Geophysical fluid flow is generally three-dimensional. However, it is sometimes useful to
summarize aspects of that flow by integrating the mass transport over one of the directions. A
common approach is to integrate over the zonal direction either between two solid-wall boundaries
(as in an ocean basin) or over a periodic domain (as in the atmosphere or within the Southern
Ocean). Doing so leaves a two-dimensional transport in the meridional-depth plane

V ρ =

ˆ x2

x1

ρ v dx and W ρ =

ˆ x2

x1

ρw dx, (21.66)

where
x1 = x1(y, z) and x2 = x2(y, z) (21.67)

are expressions for the zonal boundaries as a function of (y, z), with Figure 21.5 offering a
schematic. In some cases the zonal direction is periodic, as in the case of the global zonally
integrated circulation in the atmosphere or for the Drake Passage latitudes in the Southern Ocean.
In such cases we can dispense with x1 and x2 as the integration extends around the periodic
domain. In other cases the basin has zonal boundaries, as in the Atlantic and Indian-Pacific
oceans, and as depicted in Figure 21.5.
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Figure 21.5: Geometry needed to compute the meridional-depth streamfunction. The zonal boundaries are
written x = x1(y, z) and x = x2(y, z), which are generally functions of latitude and vertical position. The bottom
is written as z = ηb(x, y) and the vertical position of an arbitrary constant depth surface is written z = constant.
We also display the constant zonal positions, xrock1,2 , which are fully within the rock, as well as the bottom position,
ηrockb , which is also within the rock. These rock coordinates allow us to dispense with much of the kinematic
formalities needed to compute the streamfunction, with fluid flow taken as zero inside the rock.

In this section we derive a streamfunction for the zonally integrated flow, with a streamfunction
available when the zonally integrated flow is non-divergent. We focus on the meridional-depth
streamfunction, with extention in Section 64.11 to the case of a circulation partitioned according
to generalized vertical coordinates.
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21.7.1 The zonally integrated transport is non-divergent

In Section 5.1.3 we introduced the geometry of surfaces specified by the zonal position as in
equation (21.67). There, we noted that by writing the functions x1(y, z) and x2(y, z), we must
assume that the normal direction along the boundary everywhere has a nonzero and single-signed
projection in the x̂ direction. If that is indeed the case (we dispense with this assumption below),
then we can write the normal direction as

n̂i =
∇(x− xi)
|∇(x− xi)|

=
x̂− ŷ ∂yxi − ẑ ∂zxi

|
√
1 + (∂yxi)2 + (∂zxi)2|

, (21.68)

for boundaries i = 1, 2. Furthermore, the no-normal flow boundary condition at the bottom
(Section 19.6.1) takes on the form

v · n̂i = 0 =⇒ u = v ∂yxi + w ∂zxi at x = xi(y, z). (21.69)

We make use of this boundary condition in this section to prove that the zonally integrated flow
is non-divergent.

To see how to create a streamfunction, consider the zonal integrated area transport for a
non-divergent flow10

V (y, z, t) =

ˆ x2(y,z)

x1(y,z)
v(x′, y, z, t) dx′ and W (y, z, t) =

ˆ x2(y,z)

x1(y,z)
w(x′, y, z, t) dx′. (21.70)

Taking the meridional derivative of the meridional transport, and making use of Leibniz’s rule
and the non-divergence condition, leads to

∂V

∂y
=

∂

∂y

[ˆ x2

x1

v(x′, y, z) dx

]
(21.71a)

= v(x2) ∂yx2 − v(x1) ∂yx1 +
ˆ x2

x1

∂v

∂y
dx (21.71b)

= v(x2) ∂yx2 − v(x1) ∂yx1 −
ˆ x2

x1

[
∂u

∂x
+
∂w

∂z

]
dx (21.71c)

= −[u− v ∂yx− w ∂zx]x=x2 + [u− v ∂yx− w ∂zx]x=x1 −
∂

∂z

ˆ x2

x1

w(x′, y, z) dx (21.71d)

= −∂W
∂z

. (21.71e)

To reach the final equality we made use of the no-normal flow boundary condition in the form
of equation (21.69), so that the boundary terms vanish identically. We thus conclude that the
zonally integrated transport is non-divergent

∂V

∂y
+
∂W

∂z
= 0. (21.72)

10The case for a steady compressible flow follows analogously since in that case ∇ · (ρv) = 0, in which case we
would consider (ρ v, ρw) rather than (v, w).
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21.7.2 Meridional-depth streamfunction
As a consequence of the non-divergence condition (21.72), we can introduce a meridional-depth
streamfunction

Ψ(y, z, t) = −
ˆ z

ηrockb

V (y, z′, t) dz′ = −
ˆ z

ηrockb

[ˆ x2(y,z′)

x1(y,z′)
v(x′, y, z′, t) dx′

]
dz′, (21.73)

whose derivatives specify the zonally integrated flow. An idealized version of the meridional-depth
circulation is shown in Figure 21.6, with this circulation in the form of an overturning cell.
Note that the z dependence for the streamfunction (21.73) arises just from the upper limit
of the vertical integral. Furthermore, the lower limit of z = ηrock

b is a spatial constant that is
chosen so that the lower limit on the integral is beneath the fluid anywhere in the full domain,
with the convention that there is zero transport for any region below the fluid bottom (i.e.,
no fluid transport in rock). This specification for the lower integration limit ensures that the
streamfunction has its spatial dependence just on (y, z). We further discuss this extension into
the rock in Section 21.7.4.

y

z

Ψ

Figure 21.6: An idealized depiction of a steady meridional-depth overturning circulation for the zonally
integrated flow. Shown here are streamlines (isolines of constant Ψ) for the zonally integrated flow between two
solid boundaries or over a zonally periodic domain. The flow is assumed to be non-divergent, as per equation
(21.72). In the upper reaches of the fluid, flow moves northward (positive y), with downward motion as it reaches
the northern boundary, then southward motion at depth and eventual return towards the surface near the southern
boundary.

21.7.3 Verifying that Ψ is a streamfunction
It is a useful exercise to verify that Ψ as defined by equation (21.73) is indeed a streamfunction
for the zonally integrated flow. Suppressing the time dependence for notational brevity, we first
show that

∂Ψ

∂z
= − ∂

∂z

[ˆ z

ηrockb

V (y, z′) dz′

]
= −V (y, z), (21.74)

where we used Leibniz’s rule and noted that only the upper integration limit is a function of z.
For the meridional derivative we have

∂Ψ

∂y
= −
ˆ z

ηrockb

∂V (y, z′)

∂y
dz′ =

ˆ z

ηrockb

∂W (y, z′)

∂z′
dz′ =W (y, z), (21.75)

where we used the non-divergent condition (21.72), and we also set

W (z = ηrock
b ) = 0, (21.76)

which follows from our convention that ηrock
b is below the deepest fluid region. Also, we are able

to move the ∂/∂y derivative across the lower limit of the integral since ηrock
b is a constant. We

have thus shown that Ψ is a streamfunction since its derivatives equal to the zonally integrated
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flow.

To evaluate the streamfuction (21.73) at the ocean surface, z = η(x, y, t), we follow a method
similar to how we deal with the bottom. Namely, introduce a constant ηair that is larger than
any value of η(x, y, t) and with the convention that the transport is zero in regions above the
ocean surface. In this case the streamfunction computed across the full depth of the domain is
given by minus the net meridional transport across the chosen latitude

Ψ(y, z = ηair) = −
ˆ ηair

ηrockb

V dz′ = −
ˆ ηair

ηrockb

[ˆ x2

x1

v dx

]
dz′. (21.77)

Volume conservation means that this transport vanishes in the steady state but it is generally
nonzero in the presence of transients or boundary volume fluxes.

21.7.4 Generalizing to arbitrary domains
The method of extending the integration into the rock, and thus transforming a spatially
dependent integration limit to a constant, serves to capture the flow while simplifying the
practical calculation of the streamfunction. Indeed, it is a necessary method for computing the
streamfunction in realistic domains such as those where the zonal boundaries are not monotonic
functions of latitude or depth. A further generalization is found by introducing zonal rock
coordinate values, xrock

1,2 , which are fully outside of the ocean fluid domain as depicted in Figure
21.5. Making use of these values allows us to write the streamfunction (21.73) in the equivalent
form

Ψ(y, z, t) = −
ˆ xrock2

xrock1

[ˆ z

ηb(x′,y)
v(x′, y, z′, t) dz′

]
dx′. (21.78)

Relative to equation (21.73), we moved the zonal integral to the outside and vertical integral to
the inside. Reference to Figure 21.5 offers a pictural explanation for why this integral is identical
to equation (21.73). The streamfunction expression (21.78) offers a more suitable framework for
studying circulation partitioned according to surfaces of constant generalized vertical coordinate
rather than constant depth. That formulation requires kinematics arising from generalized
vertical coordinates, and so its discussion is postponed until Section 64.11.

21.7.5 Ψ(y, z) does not generally delineate particle pathlines
In Section 17.7 we showed that a fluid particle pathline equals to a streamline when the flow
is steady, and then in Section 21.4.1 we showed that streamfunction isolines are streamlines.
One might then be led to infer that for a steady flow, the meridional-depth streamfunction
delineates fluid particle pathlines in the y-z plane. That inference, however, is generally wrong.
The reason is that that zonal integration removes spatial degrees of freedom that can hide crucial
flow properties.

Two examples are the Ferrel Cell in the atmosphere (Andrews et al., 1987) and overturning
circulation in the Southern Ocean (Döös and Webb, 1994) (see Karoly et al. (1997) for a unified
discussion of their streamfunctions). For both of these circulations, fluid particles in the fluid
interior are mostly confined to constant potential density or specific entropy surfaces. Since these
surfaces are not flat, and generally have slopes in the zonal direction, then closed north-south
motion on such surfaces can appear as closed isolines when projected into the meridional-depth
plane. The accumulation of such motions on vertically stacked potential density surfaces creates
a single closed meridional-depth streamfunction contour. This closed streamfunction contour
suggests that fluid particle motion extends from near the top of the fluid column to near the
bottom of the fluid column. In fact, no such motion occurs for a single fluid particle since the
potential density surfaces generally do not extend from the top to bottom of the column.
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This example motivates the study of overturning circulation as projected onto potential
density coordinates (for the ocean) or isentropic coordinates (for the atmosphere). The associated
circulation streamfunctions expose flow properties that are complementary to the meridional-
depth streamfunction. We postpone the development of such streamfunctions until Section 64.11,
after developing the kinematics of generalized vertical coordinates.

21.8 Kinematic free surface equation
We here derive the volume budget over a column of fluid. This budget provides a kinematic
expression for the free surface evolution in a non-divergent flow.

21.8.1 Derivation
Vertically integrate the constraint, ∇·v = 0, over the depth of an ocean column, from z = ηb(x, y)
at the bottom to z = η(x, y, t) at the free surface and use the bottom and surface kinematic
boundary conditions. This calculation yields

0 =

ˆ η

ηb

∇ · v dz (21.79a)

= w(η)− w(ηb) +
ˆ η

ηb

∇ · u dz (21.79b)

= w(η)− w(ηb) +∇ ·
[ˆ η

ηb

udz

]
− u(η) · ∇η + u(ηb) · ∇ηb (21.79c)

= [w(η)− u(η) · ∇η]− [w(ηb)− u(ηb) · ∇ηb] +∇ ·
[ˆ η

ηb

udz

]
, (21.79d)

where we made use of Leibniz’s Rule to move the horizontal divergence outside of the integral.
We now make use of the surface kinematic boundary condition (21.5) and the bottom no-flow
condition

w(η)− u · ∇η = −Qm/ρo + ∂tη z = η (21.80a)

w = u · ∇ηb z = ηb (21.80b)

to render the free surface equation for a fluid with a non-divergent flow

∂tη = Qm/ρo −∇ ·U , (21.81)

where

U =

ˆ η

ηb

u dz (21.82)

is the depth integrated horizontal transport. For the special case of a steady state with zero
boundary mass flux, the depth integrated flow is non-divergent

∇ ·U = 0 if Qm = 0 and ∂η/∂t = 0. (21.83)

21.8.2 Comments

Comparing to the surface kinematic boundary condition

Recall that we can write the surface kinematic boundary condition for a non-divergent flow in
the special form of equation (21.6). Comparing to the free surface equation (21.81) renders the
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identity
∂tη −Qm/ρo = −∇ ·U = ∇ · [(z − η)v], (21.84)

where the final expression is evaluated at z = η after evaluating the divergence.

Concerning the evolution of sea level

Comparing the free surface equation (21.81) holding for a non-divergent flow to the free surface
equation (19.99) holding for a divergent flow indicates that the non-divergent case is missing a
contribution from the material changes in density

∂η

∂t
=
Qm

ρo
−∇ ·U Boussinesq ocean (∇ · v = 0) (21.85a)

∂η

∂t
=

Qm

ρ(η)
−∇ ·U −

ˆ η

ηb

1

ρ

Dρ

Dt
dz non-Boussinesq ocean (∇ · v ̸= 0). (21.85b)

The material time changes to density arise from mixing and boundary fluxes of buoyancy. The
particular absence of an impact from surface buoyancy fluxes means that the free surface in
a Boussinesq ocean is not impacted by global thermal expansion, such as that arising from
ocean warming. Greatbatch (1994) and Griffies and Greatbatch (2012) provide a recipe for
diagnostically addressing this formulational limitation, thus enabling a study of global mean sea
level with Boussinesq ocean models.

21.9 Exercises
exercise 21.1: Non-divergent and irrotational flow in polar coordinates
Consider the following two-dimensional velocity field written using polar coordinates (Section
4.22)

u(r, ϑ) = r̂U (1− a2/r2) cosϑ− ϑ̂U (1 + a2/r2) sinϑ, (21.86)

with U and a constants.

(a) Show that the flow is non-divergent, ∇ · u = 0.

(b) Show that the flow is irrotational, ∇× u = 0.

exercise 21.2: Non-divergent flow and trajectories
This exercise is based on Q1.8 of Johnson (1997). Consider a fluid particle trajectory given by

X(T ) = X0 e
αT x̂+ Y0 e

β T ŷ + Z0 e
γ T ẑ = X(T ) x̂+ Y (T ) ŷ + Z(T ) ẑ, (21.87)

where X0 is the initial particle position, and α, β, γ are constants with dimensions of inverse
time.

(a) Show that the Eulerian velocity field, v, is steady so that it is independent of time, v(x).

(b) What condition ensures that the flow is non-divergent, ∇ · v = 0?

exercise 21.3: Streamlines for cellular flow
Sketch the velocity field for this streamfunction

ψ(x, y) = A sin(k x) sin(l y), (21.88)
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where (k, l) are the zonal and meridional components to the wavevector, respectively. Hint:
assume any convenient value for k,l and the amplitude, A, but indicate what values were chosen.
Furthermore, show vectors so that the sense of the flow is clear.

exercise 21.4: Zero net area transport through static closed curve
For a two-dimensional non-divergent flow, show that there is zero net area transport of fluid
crossing an arbitrary static and simply connected closed curve. Consequently, the area remains
unchanged for any closed region moving with the fluid flow. Note that in two space dimensions,
the area transport of fluid across a line has dimensions L2 T−1, thus representing an area
transport.

exercise 21.5: Zero net volume transport through static closed surface
For a three-dimensional non-divergent flow, show that there is zero net volume transport of fluid
crossing an arbitrary static and simply connected closed surface within the fluid interior. Note
that in three space dimensions, the transport of fluid across a surface has dimensions L3 T−1,
thus representing a volume transport.

exercise 21.6: Net fluid transport across an arbitrary surface
Consider flow in a container with static sides/bottom. Draw an arbitrary static surface, S,
within the fluid from one side of the container to the other as in Figure 21.7. Integrate the fluid
volume transport over the surface,

´
S
v · n̂dS.

(a) For a non-divergent flow, show that the volume transport,
´
S
v · n̂dS, vanishes. That is,

the net volume transport across the surface is zero.

(b) Specialize the above result to a horizontal surface so that we see there is zero integrated
vertical volume transport across the surface,

´
S
w dxdy = 0. Discuss these results. Note:

see Section 64.3.8 for the more general case of a non-static surface.

(c) Rework part (a) for the case of a compressible fluid so that fluid elements conserve their
mass rather than their volume, in which case mass continuity is given by equation (19.10)

1

ρ

Dρ

Dt
= −∇ · v. (21.89)

Again, we are to compute the volume transport across a surface, but now for the case of a
compressible flow rather than non-divergent flow.

𝒮
∇ ⋅ v = 0

z

v ⋅ n̂

Figure 21.7: Schematic for exercise 21.6, whereby we show that the net flow vanishes across a static surface, S,
that extends from one boundary to the other within a non-divergent flow.
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exercise 21.7: Rigid-body rotation
Consider a velocity field corresponding to a time-independent rigid-body rotation on a plane

u = Ω ẑ × x = Ω(−y x̂+ x ŷ), (21.90)

where Ω > 0 is a constant rotation rate.

(a) Compute the relative vorticity, ω = ∇× u.

(b) Compute the streamfunction u = ẑ × ∇ψ. Draw streamfunction contours; i.e., lines of
constant streamfunction. Put arrows to orient the flow along the streamlines.

(c) Describe the geometry of material lines. Hint: since the velocity field is time-independent,
material parcel trajectories are coincident with streamlines.

exercise 21.8: Alternative form of meridional-depth streamfunction
In equation (21.73), we introduced the meridional-depth overturning streamfunction

Ψ(y, z, t) = −
ˆ z

ηmin
b

V (y, z′, t) dz′. (21.91)

Show that an alternative streamfunction is given by

Γ(y, z, t) =

ˆ y

ys

W (y′, z, t) dy′, (21.92)

where ys is a constant latitude southward of the southern-most latitude where fluid exists. That
is, show that

∂Γ

∂y
=W and

∂Γ

∂z
= −V. (21.93)

exercise 21.9: Volume transport through streamtube ends
Recall our discussion of streamtubes in Section 17.7.2 (see in particular Figure 17.5). Show
that for a non-divergent flow field, the volume transport (volume per time) through the two
streamtube ends balances ˆ

S1

v · n̂1 dS +

ˆ
S2

v · n̂2 dS = 0, (21.94)

where n̂1 and n̂2 are the outward normals at the two end caps S1 and S2. Since the end caps
have oppositely directed outward normals, equation (21.94) says that the volume transport
entering one streamtube end equals to that leaving the other end. Furthermore, the area of the
streamtube is inversely proportional to the local normal velocity, so that flow speeds up when
moving through a narrower region of the tube.

The identity (21.94) holds whether the flow is steady or not. Yet for an unsteady flow,
streamlines and pathlines are not generally equivalent. So although the volume transport through
the two ends is the same, the material contained in that transport is not necessarily the same.
That is, the pathlines of fluid particles are not necessarily parallel to streamlines, so that fluid
particles can generally cross the streamtube boundaries.

exercise 21.10: Area average of free surface time tendency
Consider a non-divergent ocean flow bounded by a free upper surface and a solid bottom. Let
z = ηb(x, y) be the vertical position of the static bottom, and z = η(x, y, t) be the position of
the transient free surface, so that the thickness of the layer is h = −ηb + η (see Figure 21.8).
The horizontal extent of the layer is a function of time, and is defined by a vanishing thickness
h = −ηb + η = 0 (e.g., ocean water reaching the shoreline). Assume no material crosses either

page 550 of 2158 geophysical fluid mechanics



21.9. EXERCISES

∇ ⋅ v = 0
̂z

z = η(x, y, t)

z = ηb(x, y)

h = η − ηb

ℛ

Figure 21.8: Schematic for exercise 21.10 with z = η(x, y, t) the free surface at the top of the fluid. This exercise
shows that the area integrated time tendency for the free surface vanishes in the absence of mass transport across
the free surface.

the surface or bottom boundaries, so that both boundaries are material surfaces. Show that the
free surface has a time derivative, ∂η/∂t, whose area average vanishes. Discuss this result.

exercise 21.11: Volume integral of the non-divergent Cartesian velocity field
Consider a non-divergent ocean flow in Cartesian coordinates bounded by a free upper surface
and a solid bottom over a domain R. Let z = ηb(x, y) be the vertical position of the static
bottom, and z = η(x, y, t) be the position of the transient free surface as in Figure 21.8. Prove
that the domain integral of the velocity is given by

ˆ
R

v dV =

ˆ
z=η

x (v · n̂) dS =

ˆ
z=η

x (∂tη −Qm/ρo) dx dy. (21.95)

Hint: make use of the results from Section 2.7.7 and then use the kinematic boundary conditions
from Section 21.3. Note that to enable this exercise we assume Cartesian coordinates, which is
required when integrating a vector.

exercise 21.12: Verifying that Ψ is a streamfunction
In Section 21.7.3 we verified that the meridional-depth streamfunction, Ψ, is indeed a stream-
function when it is written in the form of equation (21.73). Provide an analogous derivation to
show that the alternative expression in equation (21.78) is indeed also a streamfunction. Hint:
the derivation closely follows that in Section 21.7.3.
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Thermodynamics is a phenomenological discipline focused on relations between macroscopic
properties of physical systems, in particular how those properties change as the system transitions
from one state to another. Thermodynamics is a necessary ingredient for understanding the
stability, evolution, and transformation of macroscopic systems, with such topics at the heart
of geophysical fluid mechanics. In this part of the book we develop elements of equilibrium
thermodynamics relevant to a multi-component fluid. We limit concern to a single phase of
matter (liquid or gas), noting that a more complete treatment relevant to geophysical fluids
must consider multiple phases and their transitions.

We focus on classical thermodynamics, which means we are generally concerned with
macroscopic states of a fluid system; i.e., a macrostate that is specified by a few macroscopic
properties such as temperature, pressure, and matter concentration. For our purposes, a
macrostate is synonymous with thermodynamic state. This nomenclature must be modified when
discussing statistical mechanics and quantum mechanics, whereby the complementary notion of
a microstate takes on a far more central role than considered in this book.

The name “thermodynamics” suggests that the discipline concerns how heat moves through
a system. Indeed, that topic formed the focus of the subject in the 19th century, as exemplified
by Maxwell (1872). However, treatments following the formulation from Gibbs generally focus
on energy and entropy, from which temperature is derived. Energy and entropy are logically
distinct concepts that together form the basis for thermodynamics. Energy is a concept borrowed
from mechanics. Internal energy refers to the energy of microscopic degress of freedom, with
this energy the concern of Chapter 22, where we focus on transitions between thermodynamic
equilibrium states in the absence of gravity. In Chapter 23 we extend the equilibrium theory to
include a geopotential, with this study directly relevant to geophysical fluid mechanics.

Our study of thermodynamics is incompletely addressed in this part of the book. Further
treatment concerns the melding of thermodynamics with the mechanics describing macroscropic
fluid motion. After introducing the basics of momentum and mechanical energy for macroscopic
motion in Chapter 24, we return to thermodynamics in Chapter 26 as applied to a moving
fluid. That study necessarily moves beyond the restrictions of equilibrium thermodynamics
considered in Chapters 22 and 23, but only slightly. The key assumption we make in Chapter
26 is that each fluid element is locally within thermodynamic equilibrium. The assumption
of local thermodynamic equilibrium allows us to bring forward the key facets of equilibrium
thermodynamics to the nonequilibrium thermodynamics required for moving fluids.

Thermodynamics is a deep subject whose subtleties rarely cease to puzzle and amaze both
the novice and expert. For some perspective, consider the following reflections from two giants
of physics on the enduring and profound nature of thermodynamics.

Thermodynamics is a funny subject. The first time you go through it, you do not understand
it at all. The second time you go through it, you think you understand it, except for one
or two points. The third time you go through it, you know you do not understand it, but
by that time you are so used to the subject it does not bother you anymore. Attributed to
Arnold Sommerfeld, unknown source

A theory is the more impressive the greater the simplicity of its premises, the more different
kinds of things it relates, and the more extended is its area of applicability. Therefore the
deep impression which classical thermodynamics made upon me. It is the only physical
theory of universal content concerning which I am convinced that, within the framework of
the applicability of its basic concepts, it will never be overthrown. Einstein (1949)



Chapter 22

EQUILIBRIUM THERMODYNAMICS

We here study equilibrium thermodynamics following classical treatments, with emphasis on
the needs for atmosphere and ocean fluid mechanics. Thermodynamics is conceptually subtle
but technically straightforward, thus making this chapter relatively long on words yet short on
equations.

chapter guide

Our treatment follows Callen (1985), Reif (1965), chapter 2 of Landau and Lifshitz
(1980), and chapter 2 of Ebeling and Feistel (2011). Mathematical tools required for
thermodynamics include the basics of partial differential calculus from Chapter 2.
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22.1 Conceptual foundations
In our study of equilibrium thermodynamics, we are concerned with macroscopic fluid systems
whose evolution tends toward states in which its properties are determined by intrinsic factors
rather than depending on memory of previous external influences. These particular macrostates
are known as thermodynamic equilibria. One aim for thermodynamics is the determination of a
new thermodynamic equilibrium after the removal of a constraint. When a constraint is removed,
the system moves through a sequence of macrostates as it evolves towards its new equilibrium,
with the time evolution through such macrostates referred to as a process. Any macrostate is
comprised of a huge number of microscopic degrees of freedom; i.e., microstates. The allure of
thermodynamics is that we can describe macroscopic systems, and the process of moving from
one thermodynamic equilibria to another, using just a handful of macroscopically measurable
properties.

22.1.1 Thermodynamic equilibrium

Equilibrium thermodynamics is the study of physical systems in thermodynamic equilibrium
and how these systems transit from one thermodynamic equilibrium state to another through
quasi-static processes. We explore the defining characteristics of thermodynamic equilibrium
within this chapter. At a basic level, a system in thermodynamic equilibrium could remain in
that state for all time, with details of the equilibrium dependent on the constraints imposed on
the system. When such constraints are removed, then a system generally transitions to another
equilibrium state. Note that “for all time” is a loaded term. More precisely, we mean “for a time
extremely long compared to any time scale relevant to the physical system under consideration”.

A system in thermodynamic equilibrium experiences no time changes to the system’s macro-
scopic properties. However, all mechanical steady states are not necessarily in thermodynamic
equilibrium. For example, consider a region of fluid with nonzero heat fluxes yet with no heat
flux convergence so the temperature of the region does not change. As we see in this chapter, a
temporally constant temperature is a signature of a macroscopic steady state, whereas the flow
of heat is the sign of thermodynamic disequilibrium. The distinction is sometimes subtle and
always important.

To provide motivation for the study of thermodynamic equilibrium, consider an isolated
system, defined as a physical system that does not exchange heat, matter, or mechanical forces
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with its surroundings, though possibly experiencing body forces such as from gravity.1 Given
sufficient time, all isolated systems will reach their thermodynamic equilibrium consistent with
the constraints on that system. Geophysical fluids are routinely exposed to mechanical and
thermal interactions with their surrounding environment, and as such as they are not isolated.
Even so, it is useful to understand the basic properties of isolated systems and their corresponding
thermodynamic equilibrium, as doing so provides the starting point for understanding how
systems deviate from thermodynamic equilibrium. Furthermore, a fundamental assumption
of thermodynamics applied to moving fluids (Chapter 26) is that each fluid element is in a
local thermodynamic equilibrium, even while the macroscopic fluid does not reach a global
thermodynamic equilibrium. Hence, we are motivated to study equilibrium thermodynamics
since it forms the foundations for a study of moving fluids, even when those moving fluids are
globally far from thermodynamic equilibrium.

22.1.2 Exchanges between thermodynamic systems

In the study of thermodynamics it is important to characterize how a physical system interacts
with its surrounding environment through mechanical, thermal, and material interactions and
exchanges. Infinitesimal fluid elements, and their accumulation into finite fluid regions, constitute
the physical systems we are concerned with in this book.2 We are concerned with systems that
routinely interact mechanically with their surroundings so that the systems are mechanically
open; i.e., they feel pressure from the surrounding environment. Hence, we here focus on
characterizing how a physical system interacts thermally and materially with its surroundings.

• thermally open (diabatic) and materially open: An open physical system exchanges
matter, thermodynamic properties, and mechanical forces with its surrounding environment.
All naturally occuring fluid systems are open in this manner.

• thermally open (diabatic) and materially closed: We have occasion to consider
a thermodynamic system that is mechanically and thermally open yet materially closed.
Such systems maintain a fixed matter content yet exchange thermal and mechanical energy
with their surrounding environment.

• thermally closed (adiabatic) and materially closed: We sometimes consider a
thermodynamic system that is both materially and thermally closed and yet mechanically
open. In fluid mechanics, such systems constitute material fluid parcels (Section 17.2),
defined as infinitesimal regions that maintain fixed matter and thermal properties yet move
according to the mechanical forces acting on the parcel. A perfect fluid is a continuum of
infinitesimal material fluid parcels.

Again, each of the above interactions is mechanically open, so that the system is exposed
to mechanical forces, either contact forces such as pressure and friction or body forces such as
gravity and Coriolis. For pedagogical purposes we first study thermodynamics of fluid elements
that are thermally open yet materially closed and then extend to fluid elements that are both
thermally and materially open. As a somewhat overloaded terminology, “adiabatic” in fluid
mechanics is often used for a fluid element that is both thermally closed and materially closed.
However, we maintain the distinction in our treatment to maintain consistency with the physics
literature.

1We define body and contact forces in Section 24.2 when studying Newton’s second law.
2See Section 17.2.4 for a reminder of how we define fluid elements.
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22.1.3 Extensive and intensive properties
We characterize thermodynamic properties according to whether they are extensive or intensive.
Extensive properties scale with the size of the system, with examples including mass, internal
energy and entropy. Mathematically, we say that extensive properties scale with a power 1 with
the size of the system (we return to this point in Section 6.8).

A homogeneous fluid is one in which all intensive properties are identical, with temperature,
pressure, and chemical potential the canonical examples. This characteristic of intensive
properties contrasts to extensive properties. Hence, intensive properties do not scale with the
size of a system. That is, intensive properties are scale invariant and thus scale with power
0 as the size of the system changes. Intensive properties describe possible gradients within a
thermodynamic system. In the absence of an externally imposed force field such as gravity,
intensive properties are uniform for systems in thermodynamic equilibrium (we show this property
in Sections 22.2.8 and 23.1.2). However, as discussed in Section 23.1, hydrostatic balance is
realized in thermodynamic equilibrium for a fluid in an externally imposed gravity field, in which
case pressure is not uniform.

Extensive and intensive properties come as conjugate pairs in thermodynamics, whereby
intensive properties always multiply their conjugate extensive property (e.g., pressure-volume and
temperature-entropy) when appearing in the various forms of the first law of thermodynamics.
In this chapter, extensive properties are labeled with a superscript e (except for the mass and
volume), with this label not a tensor index. In Section 22.5 we introduce the internal energy
per mass and entropy per mass, as doing so is most convenient when studying thermodynamic
systems of fixed mass. In this manner we can convert the extensive properties to their specific
(per mass) form in which case we drop the e superscript. It is the specific form of extensive
properties that provides a straightforward transfer to the study of constant mass fluid elements.

22.1.4 Thermodynamic configuration space
The configuration space of a thermodynamic system is not specified by coordinates in geographical
space. Rather, it is specified by a suite of continuous thermodynamic properties and then
studying how those properties change for processes arising from the removal of constraints. In
this manner, we conceive of thermodynamic properties as defining coordinates for a point within
thermodynamic configuration space.3 Each point in thermodynamic configuration space is a
thermodynamic equilibrium state, whereas non-equilibrium thermodynamic states.

We observe that one commonly encounters thermodynamic configuration space diagrams
with orthogonal axes specifying values of thermodynamic properties. However, there is no notion
of distance or angle between points in thermodynamic configuration space since there is no
metric structure.4 Mathematically, we say that thermodynamic configuration space comprises a
differentiable manifold.5

22.1.5 Reversible processes and quasi-static processes
In our study of classical point particle mechanics in Section 14.2, we noted that the particle
motion time reversal symmetric in the absence of dissipation.6 That is, for mechanically

3We follow Section 4.2 of Callen (1985) in this presentation of thermodynamic configuration space.
4See Section 4.1 for a discussion of the metric tensor used in geographic space.
5A summary of the mathematical structure of equilibrium thermodynamics can be found in this online tutorial

from Salamon et al. Note that there are some formulations of thermodynamics that do introduce a metric through
properties of the entropy. In so doing, these formulations transform the differentiable manifold to a Riemannian
manifold. There are tradeoffs when doing so, with Andresen et al. (1988) offering a survey of the tradeoffs. Here,
we follow the approach of Gibbs as articulated in the books by Reif (1965) and Callen (1985).

6We extend the point particle discussion to a perfect fluid in Section 25.8.12.
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reversible processes, there is no physical means to distinguish the time direction. Consequently,
an animation of the motion looks sensible when viewed either forward or backward in time.

We here extend the notion of mechanical reversibility to thermodynamic processes. Namely,
a thermodynamically reversible process can traverse a path through thermodynamic configuraton
space in either direction. It follows that a reversible process continuously moves between
thermodynamic equilibria, which in turn means that a reversible process traces out a continuous
path through thermodynamic configuration space. As seen in Section 22.2.7, the net entropy of
a physical system plus its surrounding environment remains unchanged by reversible processes,
whereas irreversible processes are characterized by an increase in the net entropy.

Like a reversible process, a quasi-static process moves continuosly between thermodynamic
equilibrium states, so it traces out a path in thermodynamic configuration space. However, a
quasi-static process can be either reversible or irreversible. If a quasi-static process is irreversible,
then its path in thermodynamic configuration space is in a direction that increases the net
entropy of the system plus environment, whereas if it is reversible then the path leaves the
net entropy unchanged. In this manner, all reversible processes are quasi-static, and yet some
quasi-static processes are irreversible.7

A quasi-static process is fully defined by its continuous path through thermodynamic
configuration space. Hence, it does not involve time or rates of change. Evidently, a quasi-static
process is not a real physical process. However, we can use a real physical process to approximate
a quasi-static process, so long as the quasi-static process has a monotonically nondecreasing
entropy. For example, consider a quasi-static path that moves from point A to point B in
thermodynamic configuration space. Approximating this path with a real physical process
involves intermediate states that are not in necessarily thermodynamic equilibrium, so that the
intermediate states are not representable by points in a thermodynamic configuration space.
The accuracy of the approximation is a function of the rate to which thermodynamic equilibrium
is approached, which itself is a function of the degree to which constraints are modified as the
real physical system moves from A to B.

We are afforded the means to unambiguously measure thermodynamic properties (e.g.,
temperature, pressure, chemical potential) only when a physical system is in thermodynamic
equilibrium. Hence, when a system traverses a quasi-static path through thermodynamic
configuration space, its properties are well defined, whereas when a system is out of equilibrium
the properties are fuzzy. This importance placed on thermodynamic equilibrium is of clear
concern when applying thermodynamics to a moving geophysical fluid, in which case the fluid
is generally far from equiliibrium. We return to this important point in Chapter 26 where we
introduce the hypothesis of local thermodynamic equilibrium, which is the foundation upon which
equilibrium thermodynamics is extended to continuous media such as a fluid.

22.1.6 Internal energy and total energy
As discussed in Chapter 16, there are a huge number of microscopic (molecular) degrees of
freedom that are averaged over when describing a fluid as a continuous media. Internal energy
embodies the energy of microscopic degrees of freedom not explicitly considered in a macroscopic
continuum treatment. Internal energy is not readily accessed or harnessed, which contrasts to
the mechanical energy of the macroscopic motion.

For a simple ideal gas (Section 23.4), internal energy arises from the translational kinetic
energy of molecular motion, as well as degrees of freedom associated with rotation and vibration.
Kinetic theory studies of a simple ideal gas suggests that we conceive of internal energy as thermal
energy. That is, we idealize molecules as point masses whose kinetic energy is directly related to

7Some authors do not make a distinction between a quasi-static process and a reversible process. Our treatment
follows Callen (1985) (see his sections 4.2 and 4.3) and Reif (1965) (see his sections 2.9 and 2.10), whereby
reversible processes are subsets of quasi-static processes.
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temperature, and with the internal energy of an ideal gas directly proportional to temperature.
However, for a general fluid, particularly for liquids, the internal energy is far more than a
measure of the kinetic energy of molecules, as real molecules exhibit intermolecular potential
energy arising from molecular interactions. In general, the concept of internal energy is rather
slippery. We are thus motivated to sidestep internal when getting serious about quantitative
notions, such as when studying energetics of fluid flow in Chapter 26. We do so by appealing to
the conservation of total energy as postulated in Section 22.1.7. Even so, to lay the foundations
we largely focus on internal energy in this chapter.

22.1.7 Postulates of thermodynamics
Thermodynamics is not a first principles theory, though it does have its roots in statistical
mechanics. We follow Callen (1985) by building thermodynamics from a set of postulates from
which deductive results are derived. The following postulates render a logical basis for the
subject, with the bulk of this chapter exemplifying these postulates and developing implications.

⋆ thermodynamic equilibrium: There exists states of thermodynamic equilibrium that
are completely characterized macroscopically by a few extensive properties, including
internal energy, volume, and mass (or mole number). For each thermodynamic equilibrium
there exists a scalar intensive property, called the thermodynamic temperature, or more
brielfly the temperature, that is uniquely defined. Furthermore, the termpature has the
same value for two systems in thermodynamic equilibrium with one another.

⋆ zeroth law of thermodynamics: When two systems, A and B, are each separately in
thermodynamic equilibrium with a third system, C, then the systems A and B are also in
thermodynamic equilibrium with one another.

⋆ maximum entropy: Entropy is an extensive property of a macrostate. The values assumed
by the other extensive properties are those that maximize the entropy over the manifold
of constrained thermodynamic equilibrium states. This postulate is fundamental to how
we determine properties of thermodynamic equilibria.

⋆ entropy increases: The entropy of a composite macroscopic system is additive over the
constituent subsystems. Furthermore, entropy is a continuous and differential function that
is a monotonically increasing function of the internal energy. This postulate is fundamental
to how we use thermodynamics for composite systems such as a fluid.

⋆ total energy is conserved: The total energy of a thermodynamic system is locally
(in space and time) conserved while undergoing a thermodynamic process. This property
constitutes the first law of thermodynamics. For a macroscopic fluid, total energy is the
sum of the internal energy arising from microscopic degrees of freedom plus the mechanical
energy of macroscopic degrees of freedom. In this chapter, as well as Chapter 23, we are
mostly concerned with internal energy, whereas Chapters 24 and 26 extend the discussion
to include mechanical energy. Space and time locality of total energy conservation means
that physical processes are not allowed in which total energy disappears from one point in
space or time only to reappear at a distant point. As a corollary, we are afforded a local
budget equation for total energy, whereby energy is transferred from one form to another
and with particular forms of this budget equation a topic of Chapter 26. Note that energy
is well defined for both microstates and macrostates, whereas entropy is only defined for
macrostates.

⋆ third law of thermodynamics: Internal energy and entropy are extensive scalar
quantities that are finite for finite systems and bounded from below. In the limit of
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zero thermodynamic temperature for single-phase systems (single state of matter), the
derivatives of entropy with respect to extensive variables disappear asymptotically. Many
take the zero temperature limit to have zero entropy, though statistical fluctuations break
this assumption (see page 51 of Ebeling and Feistel (2011) for discussion). We have little
direct use for the third law, though it takes on an important role when considering quantum
statistical mechanics.

The two postulates concerning entropy (entropy maximum and entropy increasing) constitute
the second law of thermodynamics. Statistical mechanics reveals the statistical nature of entropy
and the second law. In Sections 22.2.8 and 23.1.2, we see how it provides the basis for determining
properties at thermodynamic equilibrium, and for how systems approach equilibrium. We make
further use of the second law in Chapter 26 to constrain certain processes acting in a multi-
component fluid.

22.2 Materially closed systems
We here apply the foundational concepts from Section 22.1 to develop the thermodynamics of a
physical system that is materially closed.

22.2.1 First law of thermodynamics
The first law of thermodynamics for a materially closed system establishes a relationship between
infinitesimal changes of internal energy of a physical system, the work done to or by the system,
and the thermal energy transferred between the system and its surrounding environment. The
first law takes on the mathematical form

dIe = d̄W+ d̄Q ⇐= materially closed. (22.1)

In this equation, dIe is the exact differential of the internal energy; d̄W is the change in internal
energy due to work applied to the system (working); and d̄Q is the internal energy change
due to thermal energy transferred to the system (heating). We only have occasion to study
mechanical work in this book, though note that there are other forms such as those arising from
electromagnetic forces.

The first law of thermodynamics is a statement of energy conservation for a physical system,
where energy changes arise from working and heating applied to the system or by the system.
We are only interested in changes to the energy, with the absolute value of the energy of no
concern. We focus on the internal energy by ignoring the mechanical energy associated with
moving fluids. This assumption is relaxed in Chapter 26, where we include mechanical energy of
macroscopic motion (Section 26.4) along with internal energy, thus forming the total energy of a
moving fluid.

22.2.2 The nature of working and heating
Working and heating are both path-dependent thermodynamic processes that transform a
system from one thermodynamic state to another. That is, working and heating represent path
functions whose value depends on their history. They are mathematically represented by inexact
differentials as denoted by the d̄ symbol. It is remarkable that the first law in equation (22.4)
shows that the sum of two inexact differentials equals to an exact differential which, in the
absence of macroscopic motion, is the exact differential of the internal energy.

The internal energy is a state function that is a property of the thermodynamic state of a
system and not a function of the path history taken to reach that state. The term thermodynamic
potential is synonymous with state function. It follows that if the internal energy change occurs
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in the absence of heating then the working process must occur as a path independent process.
The converse holds if internal energy changes without any working. Furthermore, the first law
(22.4) allows us to decompose changes to internal energy according to mechanical and thermal
contributions. However, it is not possible to perform that decomposition for the internal energy
itself.

Working and heating denote actions applied to a system (verbs) rather than properties of a
system (nouns). They are energy in transition that arise at the boundary of a thermodynamic
system. We raise this somewhat pedantic yet subtle point since the terms “work” and “heat” are
often used instead of “working” and “heating”. Indeed, we will often make use of that language
in this book. However, such usage should be used with care as it can spuriously lead one to
seek information concerning the “work content” or “heat content” of a physical system; i.e., to
incorrectly consider work and heat as state properties (i.e., nouns). Rather, in thermodynamics
we only consider the work imparted to change a system’s energy (working), or likewise the
thermal energy used to change a system (heating).

These conceptual points are particularly relevant when asking questions about the heat
transported by a fluid (with dimensions energy per time and SI units of Watt = Joule per
second). One is then led to analyze a heat budget, in which it is tempting to define the “heat
content” of a fluid element or fluid region according to its temperature, mass, and heat capacity.
But the notion of heat content spuriously conflates a thermodynamic process whereby a system
moves from one state to another (heating) with a thermodynamic state property (e.g., enthalpy,
which is a property of the state; see Section 22.6.4). Furthermore, any definition of heat content
is ambiguous due to the arbitrariness of the temperature scale; i.e., heat content based on the
Celsius scale is distinct from that based on the Kelvin scale. Therefore, when working with heat
transport, care should be exercised if also including the notion of heat content. One way to detect
an error is to ask whether a particular conclusion is modified by changing the temperature scale.
If so, then one should revisit assumptions of the analysis since the results might be unphysical.

22.2.3 Mechanical work from pressure
As forces do work on a physical system they change its internal energy and mechanical energy.
We are here concerned only with the effects on internal energy, though note that mechanical
changes that alter internal energy are generally balanced by compensating changes to mechanical
energy (see Section 26.7). One way to perform mechanical work is via changes to the volume of
a fluid element through the action of pressure (a contact force per area) on the boundary of the
fluid element. For example, if a fluid element increases its volume, it must do work against the
surrounding environment to overcome the compressive force from pressure.

When volume changes occur quasi-statically, then we can write the pressure work in the
mathematical form

d̄W = −p dV, (22.2)

where p is the pressure that acts on the boundaries of the fluid element. The assumption that
the mechanical process is quasi-static allows us to unambiguously define pressure acting on
the system, and thus to write equation (22.2) for the work. The negative sign arises since the
compression of a fluid element into a smaller volume, dV < 0, requires positive mechanical work
be applied to the fluid element, d̄W > 0. The mathematical form of pressure work derives from
the general form of mechanical work given by

work = force× distance = force/area× distance× area = force/area× volume. (22.3)

Stated alternatively, we note that pressure is a force per unit area acting on a surface, and the
product of the surface area and its normal displacement is the volume swept out during a time
increment.
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We offer the following points in regards to this form of mechanical work.

• Pressure is an intensive property that measures the intensity of a force (per area) that
is conjugate to the extensive property, V . In general, work applied to a thermodynamic
system, thus leading to a change in the internal energy, takes on the form of an intensive
property multiplying the change of an extensive property.

• From a mathematical perspective, pressure is the integrating factor that connects the
inexact (path dependent) differential d̄W to the exact differential dV . We studied the
mathematics of inexact differentials in Section 2.8.

• For a quasi-static process, pressure changes the internal energy of a fluid through the
pressure work according to equation (22.2). As seen in Section 26.3, pressure also changes
the kinetic energy of a moving fluid by changing the fluid speed. When combining the
internal energy and mechanical energy budgets in Section 26.7, we see how pressure affects
the total energy of a fluid element.

• Surface tension acting on fluid interfaces can give rise to mechanical work. However, we
generally ignore surface tension in this book since it is negligible for scales larger than a
few centimeters (see Section 25.11).

22.2.4 Entropy and the quasi-static transfer of internal degrees of freedom
The internal energy of a thermodynamic system can change when the molecular degrees of
freedom are energized. For a materially closed system whose internal energy changes in a
quasi-static manner, we consider the thermal energy change as relates to entropy changes via

d̄Q = T dSe materially closed system. (22.4)

T is the thermodynamic temperature (measured relative to absolute zero) and it is an intensive
variable whereas Se is the extensive form of entropy. Entropy is an extensive state function
so that T provides the integrating factor connecting the inexact differential d̄Q to the exact
differential dSe. A nonzero d̄Q in a geophysical fluid can arise from radiative fluxes external to
the fluid element; internal sources from viscous friction; and the exchange of thermal energy
through the mixing of fluid properties. Since heating has dimensions of energy, the entropy has
dimensions of energy per temperature.

22.2.5 Gibbs’ fundamental thermodyanamic relation
We summarize the discussion of this section by writing the first law for quasi-static materially
closed processes

dIe = −pdV + T dSe ⇐= quasi-static materially closed processes. (22.5)

This equation is known as the Gibbs relation or more commonly the fundamental thermodyanamic
relation for quasi-static materially closed processes moving from one thermodynamic equilibrium
state to another. This relation suggests that we interpret minus the pressure as the amount of
internal energy required to add one unit of volume to the system while holding entropy fixed.
Likewise, temperature is the internal energy required to add one unit of entropy to the system
while holding volume fixed.

The fundamental thermodynamic relation (22.5) is an integrable differential equation, with
a solution found by performing a path integral within thermodynamic configuration space. The
solution provides one of the extensive properties, such as internal energy or entropy, as a function
of the other extensive properties. However, we generally do not require this solution since it is
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the differentials, as determined by the Gibbs relation, that are sufficient for determining practical
thermodyanamic properties such as temperature, pressure, and chemical potential.

All differentials within the fundamental thermodynamic relation (22.5) are exact differentials
of state functions. This property is a result of assuming the thermodynamic processes are
quasi-static, in which case we can determine the integrating factors pressure and temperature
to thus replace the inexact differentials d̄W and d̄Q with exact differentials. Even with the
quasti-static restriction, equation (22.5) offers great utility (with its extension to materially
open systems given in Section 22.5). Since we are only concerned with quasi-static changes to
fluid elements in this book, the fundamental thermodynamic relation (22.5) provides the central
expression of the first law of thermodynamics for our purposes.

It follows from the first law expression in equation (22.5) that the internal energy is a natural
function of volume and entropy

dIe = −p dV + T dSe =⇒ Ie = Ie(V, Se). (22.6)

Conversely, the entropy for a materially closed system is naturally a function of volume and
internal energy

T dSe = dIe + p dV =⇒ Se = Se(V, Ie). (22.7)

We see that both of the extensive state functions, Ie and Se, are functions of extensive properties,
with such dependence having implications for the scaling discussed in Section 22.3.1. Furthermore,
we note that both Ie and Se are functions of the volume of a system, but not of the shape. This
behavior is strictly only appropriate for fluids, and it ignores effects from interfaces. Both of
these assumptions are suitable for our study of geophysical fluids.

22.2.6 Partial derivatives

The fundamental thermodynamic relation (22.6) appears in terms of internal energy, which is
written as a natural function of the extensive properties volume and entropy. We arrive at two
partial derivative identities by expanding the exact derivative of internal energy

dIe =

[
∂Ie

∂V

]
Se,M

dV +

[
∂Ie

∂Se

]
V,M

dSe (22.8)

and then identifying this expression with the fundamental thermodynamic relation (22.6) to
reveal [

∂Ie

∂Se

]
V,M

= T (22.9)[
∂Ie

∂V

]
Se,M

= −p. (22.10)

Each equation relates an intensive property (right hand side) to the partial derivative of internal
energy with respect to an extensive property. Furthermore, since each of the extensive properties
is a homogeneous function of degree one, then it follows that the intensive properties are
homogeneous functions of degree zero. That is, the intensive properties, T and p, do not scale
with the size of the system. Rather, intensive properties are scale invariant. We arrive at
analogous partial derivative identities for entropy, Se(V, Ie), by expanding its exact differential
and then comparing to equation (22.7) [

∂Se

∂Ie

]
V,M

=
1

T
(22.11)
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[
∂Se

∂V

]
Ie,M

=
p

T
. (22.12)

Recall that partial derivatives are defined with the complement variables held fixed during
the differentiation. Hence, so long as we are clear about functional dependence, extra subscripts
such as those exposed in equations (22.9)-(22.10) are not needed for the partial derivatives.
Nonetheless, traditional thermodynamic notation exposes all of the subscripts in order to remain
explicit about the dependent and independent variables. Such notation, though clumsy, can
be essential when in the midst of manipulations with thermodynamic potentials and their
derivatives.

22.2.7 Entropy and thermodynamic processes
A reversible process can, at each stage, go either forward or backward in time so that there is
symmetry in time. In the absence of non-conservative forces (e.g., dissipation such as friction),
Newton’s dynamical laws are reversible. For example, one observes nothing unphysical about
the motion of an ideal pendulum with time moving backward rather than forward.8

From a thermodynamic perspective, a reversible process does not alter the net entropy of
a physical system plus its surrounding environment. Reversible thermodynamic processes are
quasi-static and yet not all quasi-static processes are reversible. For example, a process that
involves friction can evolve quasi-statically and yet frictional processes, as with any dissipative
process, increases entropy. When the net entropy changes, we say the process occurs irreversibly,
with the second law of thermodynamics stating that the net entropy change is positive. Quasi-
static is a property of how a system changes, whereas reversibility is a statement about how
both the system and its surrounding environment change. Any natural process is irreversible,
with irreversibility providing an arrow for the evolution of physical systems; i.e., it breaks the
symmetry between past and future.

The entropy differential for a quasi-static process in a materially closed system is given by
dSe = d̄Q/T , with T > 0 (recall T is the Kelvin thermodynamic temperature) so that the entropy
differential has the same sign as the heating differential, and entropy for a materially closed
system remains unchanged in the absence of heating. The idealization of a heat bath allows us
to perform reversible heating; i.e., heating without change in net entropy for a thermodynamic
system plus the heat bath. Heat baths are held at a fixed temperature, which is the idealization
of the case when the surrounding environment is arbitrarily larger than the thermodynamic
system under consideration. Now imagine exchanging heat between a thermodynamic system
and a series of heat baths to progressively alter the system’s temperature by differential, dT .
In each exchange of heat, the entropy of the system plus heat bath is constructed to remain
unchanged since we are exchanging an equal magnitude of entropy between them

dSenet = dSesystem + dSebath = d̄Q/T − d̄Q/T = 0. (22.13)

To reverse the process, we merely reverse the heat exchanges between the thermodynamic system
and the heat baths.

As noted above, when any thermodynamic process occurs irreversibly there is a net increase
in entropy of the universe, which is a statement of the second law of thermodynamics. In
statistical mechanics, entropy is computed by counting the number of microstates accessible to
any given macrostate. Reversible processes do not modify the number of accessible microstates
so there is zero change in the entropy. In contrast, irreversible processes increase entropy by
increasing the number of accessible microstates.

8We briefly discussed time-reversal symmetry in Section 14.2. We also consider time symmetry for the perfect
fluid equations (Euler equations) in Section 25.8.12.
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22.2.8 Properties of thermodynamic equilibrium

Consider two systems labelled9 by α and β that are separately in thermodynamic equilibrium with
internal energies, Ieα, I

e
β , and volumes, Vα, Vβ . Allow these two systems to interact mechanically

and thermally, but do not allow for any exchange of matter. Furthermore, assume that the
interactions conserve the total internal energy and volume of the combined system so that the
system maintains the following constraints during the interaction process

d(Ieα + Ieβ) = 0 and d(Vα + Vβ) = 0. (22.14)

When the composite system reaches thermodynamic equilibrium, the entropy maximum postulate
forming the second law of thermodynamics (Section 22.1.7) means that

dSe = d(Seα + Seβ) = 0 (22.15)

for the combined composite system. Importantly, this condition holds only at equilibrium,
whereas the constraints (22.14) hold throughout the process of reaching equilibrium. From
equation (22.7) we know that entropy is naturally a function of volume and internal energy so
that

dSe =

[
∂Seα
∂Ieα

]
Vα,Mα

dIeα +

[
∂Seα
∂Vα

]
Ieα,Mα

dVα +

[
∂Seβ
∂Ieβ

]
Vβ ,Mβ

dIeβ +

[
∂Seβ
∂Vβ

]
Ieβ ,Mβ

dVβ (22.16a)

=
1

Tα
dIeα +

pα
Tα

dVα +
1

Tβ
dIeβ +

pβ
Tβ

dVβ (22.16b)

=

[
1

Tα
− 1

Tβ

]
dIeα +

[
pα
Tα
− pβ
Tβ

]
dVα, (22.16c)

where we used the partial derivative identities (22.11) and (22.12) for the second equality, and
the constraints (22.14) for the final equality. Again, dSe = 0 at thermodynamic equilibrium, and
this condition holds for arbitrary and independent dIeα and dVα. We are thus led to the thermal
and mechanical equilibrium conditions

Tα = Tβ and pα = pβ at thermodynamic equilibrium. (22.17)

That is, the temperature and pressure are uniform when the composite system reaches thermo-
dynamic equilibrium.10

To understand how the two systems thermally approach thermodynamic equilibrium, assume
the volumes of the two systems are fixed so that there is no mechanical work from pressure.
Furthermore, assume the two systems are initially separated by an adiabatic wall with initial
temperatures T init

α > T init
β . Now allow for the flow of heat by switching from an adiabatic wall to

a diathermal wall. Since the temperature differs for the two systems, they are mutually out of
equilibrium. Heat flows in a manner to bring the two systems into equilibrium, during which
time entropy of the composite system increases. At the new equilibrium, temperature is uniform
and entropy has reached its maximum within the constraints imposed on the composite system.
At a time instant after the wall changes from adiabatic to diathermal, the infinitesimal entropy
change takes the form

dSe =

[
1

T init
α

− 1

T init
β

]
dIeα > 0, (22.18)

9The labels α and β are not tensor labels. Instead, they merely label the system under consideration.
10As seen in Chapter 23, pressure at thermodynamic equilibrium is not a uniform constant for a system within

a gravity field.
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where the inequality follows from the second law of thermodynamics (Section 22.1.7). If
T init
α > T init

β , then an increase in entropy requires dIeα < 0, which means that heat leaves the
system α and flows to the system β. Hence, as the composite system approaches thermodynamic
equilibrium, heat flows from the region with higher temperature to the region with lower
temperature. This result, deduced from the second law of thermodynamics, accords with
common experience.

Further to the time scale for equilibration, we note that mechanical equilibrium (pressure
equality) generally arises much sooner than thermal equilibrium (temperature equality). The
reason is that mechanical equilibrium is facilitated by force imbalances that lead to macroscopic
motion (e.g., acoustic waves), whereas thermal equilibrium arises from microscopic motion (e.g.,
molecular diffusion). This time scale separation means that real fluid systems are far closer to
mechanical equilibrium than thermal equilibrium.

22.3 Characterizing materially open systems
A thermodynamic system is generally open to the transfer of matter across its boundaries. We
here summarize methods used to characterize systems and processes that allow for the movement
of matter, with extensive use of Euler’s theorem for homogeneous functions as presented in
Section 6.8.

22.3.1 Homogeneous functions
Following Section 6.8, consider a suite of Q independent variables, X1, X2, ...XQ, and an arbitrary
function of these variables, F (X1, X2, ...XQ). We say that this function is a homogeneous function
of degree γ if the following property holds

F (λX1, λX2, ...λXQ) = λγ F (X1, X2, ...XQ), (22.19)

with λ an arbitrary scalar. The left hand side is the function evaluated with each of the
independent variables scaled by the same number, λ. The right hand side is the function
evaluated with the unscaled variables, but multiplied by the scale raised to the power γ. As
proved in Section 6.8, Euler’s theorem for homogeneous functions states that

Q∑
q=1

Xq

[
∂F (X1, X2, ...XQ)

∂Xq

]
Xr ̸=q

= γ λγ−1 F (X1, X2, ...XQ). (22.20)

The simplest homogeneous function are those of degree γ = 0, with examples including
intensive thermodynamic propertie, meaning these properties are scale invariant. For example, a
bucket of homogeneous water has the same temperature whether or not we remove an arbitrary
sample of the water. In contrast, as discussed below, extensive thermodynamic properties are
homogeneous functions of degree γ = 1.

Both the internal energy, Ie, and entropy, Se, are extensive properties of a fluid system.
Consequently, the transfer of matter across the system boundaries leads to an additive change
in Ie and Se. The internal energy and entropy thus have their natural functional dependencies
(22.6) and (22.7) extended to include the matter content

Ie = Ie(V, Se,Mn) and Se = Se(V, Ie,Mn), (22.21)

where the Mn argument is shorthand for M1,M2...MN for the N matter constituents.11

11Note that in this subsection the subscript refers to the matter constituents, n = 1, ...N , whereas in Section
22.3.1 we used q = 1., , , Q to label the number of independent variables.
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What happens when we scale the system by an arbitrary parameter λ? Under this scale
operation, the extensive variables, Ie, Se, as well as the volume, V , and masses, Mn, scale by
the same scale factor. The relation (22.21) thus leads to the scaling

λ Ie(V, Se,Mn) = Ie(λV, λ Se, λMn) and λ Se(V, Ie,Mn) = Se(λV, λ Ie, λMn), (22.22)

thus revealing that Ie(V, Se,Mn) and Se(λV, λ Ie, λMn) are homogeneous functions of degree
one. Making use of Euler’s theorem (22.20) with γ = 1 leads to

Ie(V, Se,Mn) = V

[
∂Ie

∂V

]
Se,Mn

+ Se
[
∂Ie

∂Se

]
V,Mn

+
N∑
n=1

Mn

[
∂Ie

∂Mn

]
V,Se,Mm ̸=n

(22.23a)

Se(V, Ie,Mn) = V

[
∂Se

∂V

]
Ie,Mn

+ Ie
[
∂Se

∂Ie

]
V,Mn

+
N∑
n=1

Mn

[
∂Se

∂Mn

]
V,Ie,Mm ̸=n

. (22.23b)

These are very special expressions for the internal energy and entropy that are of great use
throughout thermodynamics.

22.3.2 Chemical potential and the Euler form
We can further massage the results (22.23a) and (22.23b) by making use of the partial derivative
identities from Section 22.2.6 to render

Ie = −p V + T Se +
N∑
n=1

Mn

[
∂Ie

∂Mn

]
V,Se,Mm ̸=n

(22.24)

T Se = p V + Ie +
N∑
n=1

T Mn

[
∂Se

∂Mn

]
V,Ie,Mm ̸=n

. (22.25)

Self-consistency requires [
∂Ie

∂Mn

]
V,Se

= −T
[
∂Se

∂Mn

]
V,Ie,Mm ̸=n

, (22.26)

which motivates defining the chemical potential

µn ≡
[
∂Ie

∂Mn

]
V,Se,Mm ̸=n

= −T
[
∂Se

∂Mn

]
V,Ie,Mm ̸=n

(22.27)

thus leading to

Ie = T Se − p V +
N∑
n=1

µnMn ⇐⇒ T Se = Ie + p V −
N∑
n=1

µnMn. (22.28)

These are the Euler forms for the internal energy and entropy.
By definition, the chemical potential, µn, is an intensive property that measures the change in

the internal energy, Ie, when altering the mass, Mn, of the constituent n, while fixing the entropy,
volume, and mass of the other components. Equivalently, it is minus the temperature weighted
change in the entropy, Se, when altering the mass, Mn while fixing the volume, internal energy,
and mass of the other components. We can define a chemical potential for a single component
system, in which it is the change arising from altering the mass of the system. Despite its name,
the chemical potential does not necessarily refer to the existence of chemical reactions, though
we note that it does appear prominently in the thermodynamics of chemical reactions (Atkins
and de Paula, 2006).
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22.3.3 Molar mass and molar chemical potential

It is sometimes convenient to write the mass of a constituent as the product of the number of
moles, Nn, and the mass per mole, Mn (the molar mass), so that

Mn = NnMn no implied sum. (22.29)

In this way, an infinitesimal mass change is given by

dM =
N∑
n=1

dMn =
N∑
n=1

d(NnMn) =
N∑
n=1

Mn dNn, (22.30)

so that mass changes are signalled by changes in the number of moles. We furthermore note the
identity (no implied sum)

Mn µn =Mn

[
∂Ie

∂Mn

]
V,Se,Mm ̸=n

= NnMn

[
∂Ie

∂(NnMn)

]
V,Se,Nm ̸=n

= Nn µ̃n, (22.31)

where we defined the molar chemical potential determined according to mole number

µ̃n =

[
∂Ie

∂Nn

]
V,Se,Nm ̸=n

= Mn µn. (22.32)

We are similarly led to the identities (no implied sum)

Mn dµn = Nn dµ̃n and µn dMn = µ̃n dNn. (22.33)

22.3.4 Chemical work and the Gibbs-Duhem relation

Changes to the matter composition of a system changes the internal energy through chemical
work, written as d̄C. If the changes to the matter composition occur quasi-statically then the
chemical work is written

d̄C =
N∑
n=1

µn dMn =
N∑
n=1

µ̃n dNn (22.34)

so that the chemical potential is the integrating factor connecting the inexact differential
measuring the chemical work to the exact differential change in matter content. The chemical
potential is the energy absorbed or released due to an infinitesimal change in the matter content.
As shown in Section 23.1.2, matter in a mixture tends to move from regions of high chemical
potential to lower chemical potential, thus motivating the name “potential” in analog to the
gravitational potential.

The inclusion of chemical work brings the first law of thermodynamics to the form

dIe = d̄W+ d̄Q+ d̄C materially open (22.35a)

dIe = −p dV + T dSe +
N∑
n=1

µn dMn quasi-static and materially open. (22.35b)

Use of the quasi-static form of the first law (22.35b) along with the differential of the result
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(22.28) leads to the Gibbs-Duhem relation12

Se dT − V dp+

N∑
n=1

Mn dµn = 0. (22.36)

As a corollary we see that for processes occuring at constant temperature and pressure that

N∑
n=1

Mn dµn =

N∑
n=1

Nn dµ̃n = 0 constant T, p. (22.37)

22.3.5 Gibbs potential

We offer a formal study of thermodynamic potentials in Section 22.6. Among those, we find
Gibbs potential of particular use for geophysical fluid mechanics and thus introduce it here

Ge = Ie − T Se + p V =
N∑
n=1

µnMn. (22.38)

The reason that the Gibbs potential is so useful is that it is a natural function of temperature,
pressure, and matter content,

Ge = Ge(T, p,Mn), (22.39)

with T, p,Mn readily measured fluid properties. This convenient functional dependence is
confirmed by taking the differential, dGe, and using the fundamental thermodynamic relation
(22.35b) to find

dGe = −Se dT + V dp+

N∑
n=1

µn dMn. (22.40)

In turn, we can derive the following partial derivatives,[
∂Ge

∂T

]
p,Mn

= −Se and

[
∂Ge

∂p

]
T,Mn

= V and

[
∂Ge

∂Mn

]
p,T,Mm ̸=n

= µn (22.41)

along with the second derivative identities[
∂µn
∂p

]
T,Mn

=
∂

∂p

]
T,Mn

[
∂Ge

∂Mn

]
p,T,Mm ̸=n

=
∂

∂Mn

]
p,T,Mm ̸=n

[
∂Ge

∂p

]
T,Mn

=

[
∂V

∂Mn

]
p,T,Mm ̸=n

(22.42a)[
∂µn
∂T

]
p,Mn

=
∂

∂T

]
p,Mn

[
∂Ge

∂Mn

]
p,T,Mm ̸=n

=
∂

∂Mn

]
p,T,Mm ̸=n

[
∂Ge

∂T

]
p,Mn

= −
[
∂Se

∂Mn

]
p,T,Mm ̸=n

.

(22.42b)

The second derivative identities are particular examples of Maxwell relations, wtih Maxwell
relations the result from commutativity of the partial derivative operation.

22.3.6 Extensive functions of (T, p,Mn)

Just as for the internal energy and entropy, the Gibbs function, Ge(T, p,Mn), is an extensive
function. Since the temperature and pressure are both intensive properties, we follow the scale

12In Exercise 22.1 we work through the derivation of Gibbs-Duhem (22.36) in a bit more detail.
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analysis from Section 22.3.1 to arrive at the Euler form of the Gibbs function

Ge(T, p,Mn) =

N∑
n=1

Mn

[
∂Ge

∂Mn

]
p,T,Mm ̸=n

=

N∑
n=1

µnMn, (22.43)

which is consistent with the definition (22.38). Indeed, any extensive property written as a
function of (T, p,Mn) can be written in the same fashion. For example, the internal energy,
entropy, and volume take the form

Ie(T, p,Mn) =
N∑
n=1

Mn

[
∂Ie

∂Mn

]
p,T,Mm ̸=n

=
N∑
n=1

Nn

[
∂Ie

∂Nn

]
p,T,Nm ̸=n

(22.44a)

Se(T, p,Mn) =
N∑
n=1

Mn

[
∂Se

∂Mn

]
p,T,Mm ̸=n

=
N∑
n=1

Nn

[
∂Se

∂Nn

]
p,T,Nm ̸=n

(22.44b)

V (T, p,Mn) =
N∑
n=1

Mn

[
∂V

∂Mn

]
p,T,Mm ̸=n

=
N∑
n=1

Nn

[
∂V

∂Nn

]
p,T,Nm ̸=n

. (22.44c)

The partial derivatives, [∂(Ge, Ie, Se, V )/∂Nn]p,T,Nm ̸=n
, are intensive properties known as the

partial Gibbs potential, partial internal energy, partial entropy, and partial volume. These relations
mean that we can regard each of the extensive quantites as the sum of contributions from each
of the material components as determined by their partial properties. For the particular case of
a single matter component we have

Ge(T, p,M) =M

[
∂Ge

∂M

]
p,T

= µM (22.45a)

Ie(T, p,M) =M

[
∂Ie

∂M

]
p,T

= N

[
∂Ie

∂N

]
p,T

(22.45b)

Se(T, p,M) =M

[
∂Se

∂M

]
p,T

= N

[
∂Se

∂N

]
p,T

(22.45c)

V (T, p,M) =M

[
∂V

∂M

]
p,T

= N

[
∂V

∂N

]
p,T

. (22.45d)

22.4 Thermodynamic equilibrium with matter flow

Consider a single-component fluid (N = 1) that consists of two regions or systems, labelled by
α and β, with each of these two systems separately in thermodynamic equilibrium. Assume
the composite system is enclosed in a container with fixed volume, Vα + Vβ = V . Allow the
two systems to interact thermally, mechanically, and materially. What are the properties of
thermodynamic equilibrium for the composite system, α⊕ β?

To answer this question, we follow the procedure in Section 22.2.8, here here considering the
case where matter flows between the systems in addition to thermal transfer and mechanical
interactions. Such processes occur as the composite system approaches thermodynamic equilib-
rium. Initially, the α and β systems are separately in thermodynamic equilibrium with internal
energies, (Ieα, I

e
β), volumes, (Vα, Vβ), and masses, (Mα,Mβ). During the process of reaching

thermodynamic equilibrium, the internal energy, volume, and mass of the composite system
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remains constant so that13

d(Ieα + Ieβ) = 0 and d(Vα + Vβ) = 0 and d(Mα +Mβ) = 0. (22.46)

From equation (22.21) we know that entropy is a natural function of volume, internal energy,
and mass of each matter constituent. With only a single matter constituent we have

dSe =
1

Tα
dIeα +

pα
Tα

dVα −
µα
Tα

dMα +
1

Tβ
dIeβ +

pβ
Tβ

dVβ −
µβ
Tβ

dMβ (22.47a)

=

[
1

Tα
− 1

Tβ

]
dIeα +

[
pα
Tα
− pβ
Tβ

]
dVα −

[
µα
Tα
− µβ
Tβ

]
dMα, (22.47b)

where we used the partial derivative identities (22.11), (22.12), and (22.27). As before, dSe = 0
at thermodynamic equilibrium, and this condition holds for arbitrary and independent dIeα,
dVα, and dMα. We are thus led to the thermal, mechanical, and material conditions for
thermodynamic equilibrium

Tα = Tβ and pα = pβ and µα = µβ. (22.48)

That is, the temperature, pressure, and chemical potential are uniform when the composite
system reaches thermodynamic equilibrium. Note that this thermodynamic equilibrium condition
means that each term in the Gibbs-Duhem relation (22.36) separately vanishes. Furthermore,
since the Gibbs potential equals to the mass times the chemical potential for a single component
system (equation (22.43)), equality of the chemical potentials at equilibrium means that

µα = µβ =⇒ Ge
α

Mα
=

Ge
β

Mβ
. (22.49)

As for the direction of heat flow discussed in Section 22.2.8, we can determine the direction
for matter flow as α⊕ β approaches thermodynamic equilibrium. For this purpose, assume the
temperature and volumes are already uniform, but the matter content initially differs. At the
instance the two systems start interacting, the entropy differential is given by

T dSe = −(µα − µβ) dMα > 0, (22.50)

where T is the equilibrium temperature of the two systems, and where the inequality holds
according to the second law of thermodynamics (Section 22.1.7). If µα > µβ , then this inequality
requires dMα < 0. Hence, in the process of approaching thermodynamic equilibrium, matter
flows from regions of high chemical potential to regions of low chemical potential. This behavior
allows us to consider the chemical potential in a manner directly akin to temperature. That
is, temperature differences measure the potential for heat to be fluxed, and likewise chemical
potential differences measure the potential for matter to be fluxed. The chemical potential is
central to the study of changes in matter states (e.g., solid to liquid, liquid to gas), as well as for
chemical reactions (e.g., Guggenheim, 1967; Atkins and de Paula, 2006).

22.5 Materially open systems with fixed total mass
In our study of geophysical fluids, we make use of a continuum of fluid elements. Each fluid
element is open mechanically, thermally, and materially while maintaining constant mass
as it quasi-statically evolves through local thermodynamic equilibrium states. Hence, when

13We here assume there is no macroscopic mechanical energy, so that the total energy is the internal energy. In
Section 26.8 we relax this assumption by considering macroscopic motion.
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formulating the equations of linear irreversible thermodynamics in Chapter 26, we make use
of thermodynamic equations written in their “per unit mass” form. Here we present these
equations, as well as extend our understanding of the formalism.

22.5.1 Matter concentrations

We generally make use of matter or tracer concentration as written

Cn =Mn/M =⇒
N∑
n=1

Cn = 1, (22.51)

with the constant mass constraint
∑N

n=1Cn = 1 meaning that only N − 1 of the concentrations
are linearly independent. Recall that we previously made use of tracer concentrations in Section
20.1 when developing the tracer equation.

22.5.2 Fundamental thermodynamic relation per unit mass

We scale away the mass of the system by setting the scale factor λ =M−1 in our discussion in
Section 22.3.1 of how extensive properties scale. The result is the specific (per mass) versions of
the extensive properties

Ie =M I (22.52a)

Se =M S (22.52b)

V =M/ρ =M νs (22.52c)

Mn =M Cn, (22.52d)

where
νs = 1/ρ (22.53)

is the specific volume and the total mass, M , is held fixed. In the equality (22.52d), Cn is the
mass fraction or concentration of species n in the fluid (Section 22.5.1). Substituting the specific
quantities (22.52a)-(22.52d) into the fundamental thermodynamic relation (22.35b) leads to the
fundamental thermodynamic relation in terms of specific thermodynamic quantities

dI = T dS− p dρ−1 +
∑
n

µn dCn. (22.54)

This is the form of the fundamental thermodynamic relation most commonly used in this book.
Again, this relation holds for quasi-static processes where the total mass of the system is fixed,
thus making it relevant for our study of constant mass fluid elements in Chapter 26.

22.5.3 Seawater as a binary fluid

The atmosphere is a multi-component and multi-phase fluid that is well approximated as a
mixture of water vapor and dry air. However, we do not consider moist atmospheric processes in
this book nor do we consider phases changes. In contrast, there are many occasions in this book
that require us to consider seawater as a binary fluid system of salt dissolved in fresh water so
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that their concentrations satisfy the constraint14

Csalt + Cwater = 1 =⇒ dCwater = −dCsalt. (22.55)

We are thus able to write the Gibbs fundamental thermodynamic relation (22.54) in the form

dI = T dS− p dρ−1 + µwater dCwater + µsalt dCsalt (22.56a)

= T dS− p dρ−1 + µdC, (22.56b)

where
C = Csalt (22.57)

is the concentration of salt (mass of salt per mass of seawater), and

µ = µsalt − µwater (22.58)

is the relative chemical potential, often referred to as the seawater chemical potential. We
return in Section 22.58 to discuss how the chemical potentials are computed according to partial
derivatives of the Gibbs potential, which is the preferred method for the ocean and atmosphere.

The absolute salinity S, with units parts per thousand (gram per kilogram), is related to
Csalt via

S = 1000Csalt. (22.59)

The range of absolute salinity in the ocean (roughly 0 ≤ S ≤ 40) is more convenient than the
range of Csalt, making salinity more commonly used in oceanography.

22.5.4 Further study
Chapters 1 and 2 of Olbers et al. (2012) provide a more complete suite of thermodynamic
relations for seawater.

22.6 Thermodynamic potentials
Internal energy and entropy are referred to as state functions (functions only of the current state)
as well as thermodynamic potentials, and they are related by equation (22.28), here written in
its specific form as appropriate for constant mass fluid elements

I = T S− p νs +
N∑
n=1

µnCn ⇐⇒ T S = I+ p νs −
N∑
n=1

µnCn. (22.60)

Each thermodynamic potential is a natural function of certain other thermodynamic properties,
as determined by the fundamental thermodynamic relation.

It is useful to have access to a suite of thermodynamic potentials (internal energy, entropy, en-
thalpy, Gibbs potential, Helmbolz free energy) that have different natural functional dependencies,
which in turn yield distinct expressions for the fundamental equation of state. Thermodynamic
potentials are related mathematically through a Legendre transformation. Motivation for their
introduction comes from the distinct laboratory and environmental conditions whereby the

14Salt in the ocean is largely comprised of chloride ions, sodium ions, sulphate ions, magnesium ions, calcium
ions, potassium ions, and hydro-carbonate ions. The composition of the principal ions in seawater is roughly a
constant, thus allowing us to be concerned only with the “salt” content and concentration rather than that for
the individual components. In turn, we can accurately consider seawater as a two-component fluid comprised of
fresh water and salt. See Section 1.4 of Kamenkovich (1977), Section 3.1 of Gill (1982), Section 1.2 of Olbers et al.
(2012), or Section 1.4 of Vallis (2017) for more details.
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controlling parameters may differ. In this section we introduce the variety of thermodynamic
potentials commonly used for fluid mechanics, and exhibit their natural functional dependencies.

In this section, we specialize to the case of a binary fluid, which is most commonly the case
for the ocean and atmosphere. If there are more than two matter constituents, then the term
µdC appearing in these formula become

∑N
n=1 µn dCn. Partial derivatives are also modified

accordingly. We choose the binary case since it is typically sufficient for the earth’s atmosphere
and ocean.

As a point of practice, it is important to commit to a single choice for the thermodynamic
potential when manipulating thermodynamic equations. The reason is that functional depen-
dencies change when switching to a different thermodynamic potential, thus exposing oneself to
mistakes when swapping formulations midstream.

22.6.1 Equations of state
Equations (22.9), (22.10), and (22.27) provide expressions for intensive properties, T , p, and µn,
in terms of the partial derivatives of the internal energy in terms of extensive functions Se, V ,
and Mn. Hence, we can write T , p, and µn in the functional form

T = T (Se, V,Mm) and p = p(Se, V,Mm) and µn = µn(S
e, V,Mm). (22.61)

These equations are known as equations of state. Knowledge of all the equations of state is
equivalent to knowledge of the fundamental thermodynamic relation (22.35b). In the following,
we develop similar equations of state based on other thermodynamic potentials.

22.6.2 Internal energy
Recall the fundamental thermodynamic relation (22.56b) written for a binary fluid

dI = T dS− p dνs + µ dC. (22.62)

Equation (22.62) identifies the specific internal energy, I, as a natural function of specific entropy,
S, specific volume, νs, and matter concentration, C

I = I(S, νs, C). (22.63)

Knowledge of the fundamental thermodynamic relation (22.62) allows us to derive a variety of
thermodynamic relations via partial differentiation. For example, we can identify[

∂I

∂S

]
νs,C

= T and

[
∂I

∂νs

]
S,C

= −p and

[
∂I

∂C

]
S,νs

= µ, (22.64)

which are the specific (per mass) forms of equations (22.9), (22.10), and (22.27).

We see that equations (22.64) provide a relation between T, p, µ as derivatives of a function,
the internal energy, which is itself a function I(S, νs, C). Hence, we may consider T, p, µ each as
a function of (S, νs, C), and thus write the equations of state

T = T (S, νs, C) and p = p(S, νs, C) and µ = µ(S, νs, C), (22.65)

which are the equations of state (22.61) written in terms of specific (per mass) quantities. In
turn, the exact differentials of the intensive properties are

T = T (S, νs, C) =⇒ dT =

[
∂T

∂S

]
νs,C

dS+

[
∂T

∂νs

]
C,S

dνs +

[
∂T

∂C

]
S,νs

dC (22.66)
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p = p(S, νs, C) =⇒ dp =

[
∂p

∂S

]
νs,C

dS+

[
∂p

∂νs

]
C,S

dνs +

[
∂p

∂C

]
S,νs

dC (22.67)

µ = µ(S, νs, C) =⇒ dµ =

[
∂µ

∂S

]
νs,C

dS+

[
∂µ

∂νs

]
C,S

dνs +

[
∂µ

∂C

]
S,νs

dC. (22.68)

22.6.3 Entropy
Rearrangement of the fundamental thermodynamic relation (22.62) leads to the exact differential
for specific entropy

dS =
1

T
dI+

p

T
dνs −

µ

T
dC. (22.69)

In this form, specific entropy has the functional dependence

S = S(I, νs, C), (22.70)

whose knowledge provides yet another form of the fundamental equation of state. This functional
dependence, along with equation (22.69), lead to the following identities[

∂S

∂I

]
νs,C

=
1

T
and

[
∂S

∂νs

]
I,C

=
p

T
and

[
∂S

∂C

]
I,νs

= −µ
T
. (22.71)

As for internal energy in Section 22.6.2, equation (22.71) provides a relation between T, p, µ
as derivatives of a function, the entropy, which is itself a function S(I, νs, C). Hence, we may
consider T, p, µ as each a function of (I, νs, C) to thus write the equations of state

T = T (I, νs, C) and p = p(I, νs, C) and µ = µ(I, νs, C). (22.72)

22.6.4 Enthalpy
Thus far we have worked only with the fundamental thermodynamic relation (22.62). We now
introduce the specific enthalpy

H = I+ p νs = T S+
N∑
n=1

µnCn, (22.73)

where the second equality made use of equation (22.60). Specializing to the case of a binary
fluid, such as the ocean or atmosphere, and use of the fundamental thermodynamic relation
(22.62), leads to the exact differential for enthalpy

dH = dI+ d(p νs) (22.74a)

= T dS− p dνs + µ dC + p dνs + νs dp (22.74b)

= T dS+ νs dp+ µ dC. (22.74c)

Recalling that for quasi-static processes, T dS equals to the thermal energy added to a fluid
element. Hence, for processes occuring at constant pressure and constant matter content,
changes in enthalpy are determined by the thermal energy added to the system. This connection
motivates the name heat function sometimes applied to enthalpy (e.g., page 4 of Landau and
Lifshitz (1987)).

Equation (22.74c) provides the fundamental thermodynamic relation with enthalpy rather
than internal energy. Consequently, the Legendre transformation (22.73) renders a functional
dependence for enthalpy

H = H(S, p, C), (22.75)

page 576 of 2158 geophysical fluid mechanics



22.6. THERMODYNAMIC POTENTIALS

which in turn leads to the following partial derivative identities[
∂H

∂S

]
p,C

= T and

[
∂H

∂p

]
S,C

= νs and

[
∂H

∂C

]
S,p

= µ. (22.76)

As for internal energy in Section 22.6.2, equations (22.76) provide a relation between T, νs, µ
as derivatives of a function, the enthalpy, which is itself a function H(S, p, C). Hence, we may
consider T, νs, µ as each a function of (S, p, C) to thus render the following equations of state

T = T (S, p, C) and νs = νs(S, p, C) and µ = µ(S, p, C). (22.77)

Enthalpy’s functional dependence (22.75) is more convenient for studies of geophysical fluids
than that for internal energy, I(S, νs, C), or for entropy S(I, νs, C).

• In the laboratory or field, we generally have direct mechanical means for measuring pressure
in a fluid, whereas specific volume requires indirect methods involving the equation of
state for density discussed in Section 30.3.

• Correspondingly, the interaction between fluid elements typically occurs at near constant
pressure. Hence, fluid elements exchange both their entropy and enthalpy when the
exchange occurs as constant pressure.

• Specific entropy remains constant on a fluid element in the absence of mixing or other
irreversible effects. Correspondingly, enthalpy remains constant for constant pressure
motion without mixing. Conversely, in the presence of mixing at constant pressure, fluid
elements mix their specific enthalpy, specific entropy, and tracer concentration.

22.6.5 Helmholtz free energy

The Helmholtz free energy is defined by the Legendre transformation

F = I− T S = −p νs +
N∑
n=1

µnCn, (22.78)

where the second equality made use of equation (22.60). The exact differential of the Helmholtz
free energy is given by

dF = dI− d(T S) (22.79a)

= dI− T dS− SdT (22.79b)

= −SdT − pdνs + µdC, (22.79c)

where we used the fundamental thermodynamic relation (22.56b) for the final equality. Isothermal
and constant concentration processes render the changes to the free energy equal to the pressure
work applied to the system.

The Helmholtz free energy has the functional dependence

F = F(T, νs, C), (22.80)

which then leads to the partial derivatives identities[
∂F

∂T

]
νs,C

= −S and

[
∂F

∂νs

]
T,C

= −p and

[
∂F

∂C

]
T,νs

= µ. (22.81)
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As for internal energy in Section 22.6.2, equations (22.81) provide a relation between S, p, µ as
derivatives of a function, the Helmholtz free energy, which is itself a function F(T, νs, C). Hence,
we may consider S, p, µ each as a function of (T, νs, C) to render the equations of state

S = S(T, νs, C) and p = p(T, νs, C) and µ = µ(T, νs, C). (22.82)

22.6.6 Gibbs potential

The Gibbs potential is defined by the Legendre transformation

G = I+ p νs − T S = H − T S =

N∑
n=1

µnCn, (22.83)

where the final equality made use of equation (22.60). The exact differential of the Gibbs
potential is given by

dG = dH − d(T S) (22.84a)

= T dS+ νs dp+ µdC − T dS− SdT (22.84b)

= −SdT + νs dp+ µdC, (22.84c)

where we made use of the fundamental thermodynamic relation (22.74c) written in terms of
enthalpy. The Gibbs potential has the functional dependence

G = G(T, p, C), (22.85)

which leads to the partial derivatives identities[
∂G

∂T

]
p,C

= −S and

[
∂G

∂p

]
T,C

= νs and

[
∂G

∂C

]
T,p

= µ. (22.86)

As for internal energy in Section 22.6.2, equations (22.86) provide a relation between S, νs, µ as
derivatives of a function, the Gibbs potential, which is itself a function G(T, p, C). Hence, we
may consider S, νs, µ each as a function of (T, p, C) to render the following functional relations

S = S(T, p, C) and νs = νs(T, p, C) and µ = µ(T, p, C). (22.87)

The form of the fundamental dependencies (22.85), and the associated equations of state
(22.87), are often used in fluid mechanics and physical chemistry. The reason is that temperature,
pressure, and concentration are readily measured in the laboratory and the environment. We
can thus readily measure the partial derivatives of G, and the functional dependence (22.87)
provides a convenient means to express S, νs, and µ (e.g., see the adiabatic lapse rate discussion
in Section 23.2).

Given its convenient functional dependence, the Gibbs potential plays a central role in
developing the thermodynamics of seawater as formulated by Feistel (1993) and codifed by IOC
et al. (2010). We thus endeavor to exhibit how quantities (e.g., response functions as in Section
22.7) can be computed based on knowledge of the Gibbs potential and its partial derivatives.
For example, use of equation (22.86) renders the expression for the enthalpy

H = G+ T S = G− T
[
∂G

∂T

]
p,C

. (22.88)
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22.6.7 Chemical potential and the Gibbs potential

Throughout this section we have displayed equations for the chemical potential of a binary fluid
in terms of the partial derivatives of the thermodynamic potentials, such as equation (22.86)
using the Gibbs potential. Here we consider some details that lead to further understanding of
the partial derivatives. We start by writing the chemical potential of fresh water and salt as
contained within seawater in terms of the partial derivatives of the extensive Gibbs potential

µwater =

[
∂Ge

∂Mwater

]
T,p,Msalt

and µsalt =

[
∂Ge

∂Msalt

]
T,p,Mwater

. (22.89)

The total mass of a sample of seawater is given by M =Mwater+Msalt. Consequently, to compute
these partial derivatives requires us to alter the mass of the sample as we hold the mass of one
component fixed while varying the mass of the other component. This sort of partial derivative
is less convenient for our purposes since we prefer to work with constant mass samples, such
as we encounter with constant mass fluid elements. For that purpose we introduce the specific
Gibbs potential, in which case the chemical potential of fresh water is

µwater =

[
∂Ge

∂Mwater

]
T,p,Msalt

=

[
∂(M G)

∂Mwater

]
T,p,Msalt

= G+M

[
∂G

∂Mwater

]
T,p,Msalt

. (22.90)

The specific Gibbs potential is a natural function of T, p, Cn, and since Cwater + Csalt = 1 we can
write the Gibbs potential in terms of just one of the concentrations, typically chosen as Csalt.
We are thus led to

µwater = G+M

[
∂G

∂Mwater

]
T,p,Msalt

(22.91a)

= G+M

[
∂G

∂Cwater

]
T,p

[
∂Cwater

∂Mwater

]
Msalt

(22.91b)

where the concentration partial derivative is given by[
∂Cwater

∂Mwater

]
Msalt

=

[
∂

∂Mwater

]
Msalt

[
Mwater

Mwater +Msalt

]
=
Csalt

M
, (22.92)

thus leading to the chemical potential of fresh water within seawater

µwater = G+ Csalt

[
∂G

∂Cwater

]
T,p

= G− Csalt

[
∂G

∂Csalt

]
T,p

. (22.93)

We are thus able to work with the specific Gibbs function for a constant mass fluid element
and compute its concentration partial derivative. Similar manipulations lead to the chemical
potential for salt within seawater

µsalt = G+ Cwater

[
∂G

∂Csalt

]
T,p

= G+ (1− Csalt)

[
∂G

∂Csalt

]
T,p

. (22.94)

We are thus led to the seawater chemical potential

µ = µsalt − µwater =

[
∂G

∂Csalt

]
T,p

, (22.95)

which agrees with equation (22.86).
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22.7 Response functions

Response functions measure the change in a thermodynamic property as the system is forced in
some manner. We here introduce the heat capacity, thermal expansion coefficient, and haline
contraction coefficient, which are three response functions commonly encountered in ocean and
atmospheric fluid mechanics.

22.7.1 Specific heat capacities

The heat capacity measures the change in heat associated with a change in temperature at
constant matter composition. There are two distinct heat capacities generally considered in fluid
mechanics: one with specific volume held fixed and the other with pressure held fixed

cv ≡
1

M

[
d̄Q

∂T

]
νs,C

SI units m2 s−2 K−1. (22.96)

cp ≡
1

M

[
d̄Q

∂T

]
p,C

SI units m2 s−2 K−1. (22.97)

Each of these quantities are specific heat capacities since we have divided by the mass. If heating
occurs quasi-statically, we can make use of the equation (22.4) that relates heating and entropy,
applied here in its specific (per mass) form M−1 d̄Q = T dS. The result is a state function form
of the specific heat capacities

cv = T

[
∂S

∂T

]
νs,C

= −T ∂

∂T

]
νs,C

[
∂G

∂T

]
p,C

(22.98)

cp = T

[
∂S

∂T

]
p,C

= −T ∂

∂T

]
p,C

[
∂G

∂T

]
p,C

(22.99)

where the second equalities in both of the above equations introduced the Gibbs potential
according to equation (22.86). Furthermore, we can make use of the fundamental thermodynamic
relation (22.54) with specific volume and matter concentration held fixed to yield

cv = T

[
∂S

∂T

]
νs,C

=

[
∂I

∂T

]
νs,C

. (22.100)

The second form of cv motivates the name internal energy capacity rather than heat capacity at
fixed volume. Equation (22.100) implies that internal energy, for a process occuring at constant
specific volume and constant tracer concentration, can be written in terms of a caloric equation
of state

I = I(T ) constant νs and C. (22.101)

Making use of the fundamental thermodynamic relation (22.74c) written in terms of enthalpy
leads to the constant pressure heat capacity

cp = T

[
∂S

∂T

]
p,C

=

[
∂I

∂T

]
p,C

+ p

[
∂νs
∂T

]
p,C

=

[
∂H

∂T

]
p,C

. (22.102)

The constant pressure heat capacity is equivalently referred to as the enthalpy capacity.
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22.7.2 Thermal expansion coefficient
The thermal expansion coefficient measures relative changes in density as temperature changes
at constant pressure and concentration

αT = −1

ρ

[
∂ρ

∂T

]
p,C

=
1

νs

[
∂νs
∂T

]
p,C

=
1

(∂G/∂p)T,C

∂

∂T

]
p,C

[
∂G

∂p

]
T,C

(22.103)

where the final equality introduced the Gibbs function according to equation (22.86). The
minus sign in the definition is introduced since density typically reduces when temperature
increases, so that for most substances αT > 0. Freshwater near its freezing point is an important
counter-example, with αT < 0 allowing for solid ice to float on liquid water.

22.7.3 Haline contraction coefficient
A similar response function measures changes to density arising from changes in the salt
concentration (salinity) in seawater

βS =
1

ρ

[
∂ρ

∂S

]
p,T

= − 1

νs

[
∂νs
∂S

]
p,T

= − 1

(∂G/∂p)T,S

∂

∂S

]
T,p

[
∂G

∂p

]
T,S

(22.104)

where S = 1000C is the salinity (22.59). Seawater density typically increases (fluid element
volume contracts) when salinity increases, so that βS > 0.

22.7.4 Speed of sound (acoustic) waves
Changes in density with respect to pressure at a fixed entropy define the inverse squared sound
speed15

1

c2s
=

[
∂ρ

∂p

]
S

= − 1

(νs)2

[
∂νs
∂p

]
S

= − 1

[(∂G/∂p)T,S ]2
∂

∂p

]
S

[
∂G

∂p

]
T,S

. (22.105)

The sound speed is a strong function of pressure, generally increasing with higher pressure, as
well as temperature, generally decreasing with lower temperature. For the ocean, these two
effects compete when moving into the ocean interior. In the upper 500 m to 1000 m, decreasing
temperatures cause the sound speed to reduce whereas at deeper regions the higher pressures
overcome the temperature effect thus increasing the sound speed. The result is a sound speed
minimum between 500 m and 1000 m. The sound speed minimum and the associated acoustic
waveguide play an important role in ocean acoustics, in particular for how certain whales are
able to communicate across ocean basins. We consider the sound speed for an ideal gas in
Section 23.4.8.

22.8 Maxwell relations for single component fluids
Thermodynamics makes use of basic properties of exact differentials for the purpose of developing
identities between partial derivatives. Maxwell relations refer to a suite of partial derivative
identities that follow from the equality of mixed second partial derivatives of thermodynamic
potentials. We already made use of some Maxwell relations in Section 22.3.5 when discussing
the Gibbs potential, and we use another in Section 23.2 for expressing the adiabatic lapse
rate in terms of readily measurable thermo-mechanical properties. In this section we develop
the Maxwell relations encountered with single component fluids, with similar relations readily
derived for multi-component fluids.

15We study sound waves in Chapter 51.
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22.8.1 Maxwell relation from internal energy

As seen from Section 22.6.2, the natural functional dependence for internal energy in a single-
component fluid is given by its fundamental thermodynamic relation (22.62)

dI =

[
∂I

∂S

]
νs

dS+

[
∂I

∂νs

]
S

dνs = T dS− p dνs =⇒ I = I(S, νs). (22.106)

The mixed second partial derivatives are equal

∂

∂νs

]
S,C

∂

∂S

]
νs,C

I =
∂

∂S

]
νs,C

∂

∂νs

]
S,C

I, (22.107)

so that, via the fundamental thermodynamic relation (22.106), we have the Maxwell relation[
∂T

∂νs

]
S

= −
[
∂p

∂S

]
νs

. (22.108)

22.8.2 Summary of the Maxwell relations

The other thermodynamic potentials, and their associated fundamental thermodynamical rela-
tions, lead to further Maxwell relations as summarized here

dI = T dS− p dνs =⇒
[
∂T

∂νs

]
S

= −
[
∂p

∂S

]
νs

(22.109)

dH = T dS+ νs dp =⇒
[
∂T

∂p

]
S

=

[
∂νs
∂S

]
p

(22.110)

dG = −SdT + νs dp =⇒
[
∂S

∂p

]
T

= −
[
∂νs
∂T

]
p

. (22.111)

dF = −SdT − pdνs =⇒
[
∂S

∂νs

]
T

=

[
∂p

∂T

]
νs

. (22.112)

These four Maxwell relations for single-component fluids involve permutations on cross derivatives
of (T, S) and (p, νs). In statistical mechanics, (T, S) determine the density of accessible microscopic
states forming the thermodynamic system, whereas (p, νs) involves an external control parameter
and its corresponding generalized force.

22.9 Exercises

exercise 22.1: Derivation of the Gibbs-Duhem relation
Show all of the steps leading to the Gibbs-Duhem relation (22.36).

exercise 22.2: Chemical potential identity
As seen in Section 26.6.6, we have need to consider the partial derivative[

∂H

∂C

]
T,p

(22.113)
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when determining the chemical work done by mixing within a fluid. Prove the identity[
∂H

∂C

]
T,p

=

[
∂H

∂C

]
S,p

− T
[
∂µ

∂T

]
C,p

= µ− T
[
∂µ

∂T

]
C,p

. (22.114)

Hint: as seen in Section 22.6.4, the natural functional dependence for enthalpy is H(S, p, C),
whereas in Section 22.6.6 we found the natural function dependence of the Gibbs potential to
be G(T, p, C). Equate the exact differential expressions for enthalpy using the two functional
dependencies H(S, p, C) and H(T, p, C), and then derive a Maxwell relation based on the
fundamental thermodynamic relation written in terms of the Gibbs potential.

exercise 22.3: Constant of motion for adiabatic processes
Show that for a simple ideal gas, isentropic processes (i.e., both adiabatic and of constant matter
concentration) maintain

p νcp/cvs = constant, (22.115)

where νs = ρ−1 is the specific volume.
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Chapter 23

THERMODYNAMICS WITH A GEOPOTENTIAL

We here extend the equilibrium thermodynamics from Chapter 22 to allow for gravitational effects
as embodied by the geopotential (which also includes the planetary centrifugal acceleration).
Thermodynamic equilibrium of a fluid in a constant gravitational field is consistent with
mechanical equilibrium; i.e., the fluid is in hydrostatic balance. We develop certain properties
of hydrostatic fluids, such as the adiabatic lapse rate, potential temperature, and a variety of
identities holding for an ideal gas (which offers a useful approximation to the atmosphere).

chapter guide

This chapter develops the rudiments of equilibrium thermodynamics in the presence of
gravity, building on the foundations established in Chapter 22. Surprisingly, there are
relatively few presentations of gravity within standard thermodynamic texts, even though
its presence is ubiquitous for terrestrial experiments. Chapter 9 of Guggenheim (1967) and
§25 of Landau and Lifshitz (1980) are notable exceptions that include external fields, such
as gravity, along with Section 1.8 of the oceanography text from Kamenkovich (1977).
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23.4.7 Isothermal compressibility . . . . . . . . . . . . . . . . . . . . . . 597
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23.1 Thermodynamic equilibrium with a geopotential

What does thermodynamic equilibrium look like in the presence of a gravity field? To answer
this question, we here consider a single-component system in the presence of a static gravity
field. To further connect to geophysical fluids, we let the geopotential, Φ, represent the effects
from central gravity plus the planetary centrifugal acceleration (Section 13.10.4). Throughout
this analysis, we assume the acceleration from the geopotential is prescribed and is thus not
affected by the mass of the thermodynamic system that feels the geopotential. Furthermore, we
assume the force from the geopotential is terrestrial, so that it is weak enough to ignore general
relativistic effects.1

23.1.1 The first law

As seen in Section 22.2.3, a thermodynamic system subjected to a pressure field undergoes
pressure work as its volume changes. Analogously, when the mass of a thermodynamic system
changes within a geopotential field, then it is subjected to geopotential work, which takes the
form

d̄Wgeopotential = ΦdM. (23.1)

We thus see that the geopotential is an intensive property with mass its corresponding extensive
property. Consequently, the first law for a quasi-static process is modified from equation (22.35b)
to now read

dIe = −pdV + T dSe + (µ+Φ)dM ⇐⇒ dSe = T−1 [p dV + dIe − (µ+Φ)dM ], (23.2)

where µ is the chemical potential in the absence of a geopotential[
∂Ie

∂M

]
V,Se

= µ+Φ and

[
∂Ie

∂M

]
V,Se,Φ=0

= µ. (23.3)

The corresponding Gibbs-Duhem relation (22.36) now takes on the form

−V dp+ Se dT +M d(µ+Φ) = 0. (23.4)

23.1.2 Thermodynamic equilibrium with varying volume

Following our discussion in Section 22.4, we consider two adjoining fluid regions that are allowed
to adjust toward thermodynamic equilibrium in the presence of a geopotential field. The entropy

1The relevant non-dimensional ratio is given by Φ/c2, with c the speed of light. See Santiago and Visser (2018)
for a concise review of how gravity leads to a spatially dependent temperature in thermal equilibrium through
Tolman’s temperature gradient. These considerations are important when Φ/c2 is order unity. For terrestrial
purposes, Φ/c2 ≪ 1, so that relativistic gravitational effects are entirely negligible.

page 586 of 2158 geophysical fluid mechanics



23.1. THERMODYNAMIC EQUILIBRIUM WITH A GEOPOTENTIAL

differential in equation (22.47b) now takes on the form

dSe =

[
1

Tα
− 1

Tβ

]
dIeα +

[
pα
Tα
− pβ
Tβ

]
dVα −

[
µα +Φα
Tα

− µβ +Φβ
Tβ

]
dMα, (23.5)

which follows from the constraints (22.46) that assume fixed internal energy, mass, and volume
for the composite system α ⊕ β. Equilibrium is characterized by dSe = 0, which leads to a
uniform temperature, as for the case with uniform Φ. A further extension of Section 22.4 suggests
that dp = 0 and d(µ+Φ) = 0 at equilibrium. However, our understanding of fluid statics leads
us to expect pressure to vary according to the hydrostatic balance discussed in Section 24.6.
That is, a uniform pressure does not arise for equilibrium with a nonuniform geopotential. For
that purpose we consider different constraints as seen below.

23.1.3 Thermodynamic equilibrium with fixed volume

To recover hydrostatic balance at thermodynamic equilibrium, consider the case with each
volume remaining fixed. In this manner we have

d(Ieα + Ieβ) = 0 and dVα = dVβ = 0 and d(Mα +Mβ) = 0. (23.6)

An example consists of two vertically positioned fluid boxes, with ∇Φ defining the local vertical
direction and with adjustment towards equilibrium consisting of mass moving from one box to
the other. By fixing each of the region volumes, pressure does no work so that internal energy
changes only through entropy and mass changes

dIe = T dSe + (µ+Φ)dM ⇐⇒ dSe = T−1 [dIe − (µ+Φ)dM ]. (23.7)

Correspondingly, we find that thermodynamic equilibrium results when

dT = 0 and d(µ+Φ) = 0. (23.8)

To interpret the equilibrium condition, d(µ + Φ) = 0, take the derivative with respect to
geopotential, holding temperature and mass fixed, to render[

∂µ

∂Φ

]
T,M

= −1. (23.9)

Anticipating the hydrostatic balance, we assume that pressure at thermodynamic equilibrium is
a monotonic function of Φ, so that[

∂µ

∂Φ

]
T,M

=

[
∂µ

∂p

]
T,M

[
dp

dΦ

]
T,M

= −1. (23.10)

Making use of the Maxwell relation (22.42a) and the identity (22.45d) leads to[
dp

dΦ

]
T,M

= −M/V = −ρ, (23.11)

where ρ =M/V is the mass density. We thus recover the exact hydrostatic balance2

dp = −ρ dΦ. (23.12)

2We discuss the exact hydrostatic balance in Section 24.6, and discuss the approximate hydrostatic balance in
Chapter 27.
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That is, thermodynamic equilibrium in a gravity field consists of a uniform temperature with
pressure satisfying the exact hydrostatic balance.

23.1.4 Vertical salinity gradient at thermodynamic equilibrium
Consider the case of seawater as approximated as a two-component fluid, so that the entropy
exact differential is given by

dSe = T−1 [pdV + dIe − (µsalt +Φ)dMsalt − (µwater +Φ)dMwater]. (23.13)

Separately holding the salt and freshwater masses fixed,3 we apply the same formalism as pursued
in Section 23.1.3 for a single component fluid, thus leading to

dT = 0 and d(µsalt +Φ) = 0 and d(µsater +Φ) = 0. (23.14)

Subtracting the second and third equilibrium condition leads to the equilibrium condition for
the seawater chemical potential,

d(µsalt − µwater) = dµ = 0. (23.15)

Now recall the seawater chemical potential is given by equation (22.95) in terms of the
salinity derivative of the specific Gibbs potential

µ = µsalt − µwater =

[
∂G

∂S

]
T,p

, (23.16)

where S = Csalt is the salt concentration. Hence, we may consider the seawater chemical potential
to be a function of the temperature, pressure, and salt concentration

µ = µ(T, p, S). (23.17)

The equilibrium conditions dT = 0 and dµ = 0 lead to

∂µ

∂S
dS +

∂µ

∂p
dp = 0. (23.18)

The hydrostatic relation dp = −ρ dΦ leads to

∂µ

∂S

dS

dΦ
= ρ

∂µ

∂p
. (23.19)

Of when the geopotential takes on the simple form, Φ = g z, then

∂µ

∂S

dS

dz
= g ρ

∂µ

∂p
. (23.20)

We thus conclude that at thermodynamic equilibrium, the salinity maintains a nonzero
geopotential gradient whereas the in situ temperature is uniform.

23.1.5 Comments and further study
A depth independent in situ temperature is not observed in the ocean or atmosphere. Likewise,
as noted on page 28 of Kamenkovich (1977), the vertical salinity gradient implied by the

3This constraint is appropriate since we are looking for the entropy extrema for an isolated system with no
boundary fluxes of either salt or freshwater.
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equilibrium relation (23.19) is not observed in the ocean. Both results point to the absence of
thermodynamic equilibrium for the macroscale atmosphere and ocean. The absence of global
thermodynamic equilibrium is expected since both the atmosphere and ocean are not isolated
systems. Furthermore, the fluids are both turbulently mixed rather than mixed solely by
molecular processes, with turbulent mixing not leading to thermodynamic equilibrium.4

Although we do not generally observe temperature close to thermodynamic equilibrium,
we do find a horizontally local hydrostatic balance to be well maintained by the large-scale
atmosphere and ocean. In addition to being a thermodynamic equilibrium state, hydrostatic
balance is a mechanical equilibrium state (Section 24.6). We thus conclude that for a moving
and turbulent geophysical fluid, the mechanical equilibrium state of hydrostatic balance is far
more robust than full thermodynamic equilibrium of in situ temperature and material tracers.
The reason is that mechanical equilibrium is enabled by macroscopic motion (e.g., acoustic
waves), whereas thermodynamic equilibrium required for uniform in situ temperature is enabled
by the far slower molecular diffusion.

The presentation in this section largely follows §25 of Landau and Lifshitz (1980) and Section
1.8 of Kamenkovich (1977).

23.2 Adiabatic lapse rate
The temperature of a fluid can change without the transfer of heat. This adiabatic temperature
change arises when the fluid pressure changes. We here introduce the adiabatic lapse rate, which
measures the vertical variations in temperature for a static fluid placed in a gravity field. There
are two lapse rates commonly considered: one related to height and one related to pressure.
We introduce some manipulations commonly performed with thermodynamic state functions
and their partial derivatives, with the goal of expressing the lapse rate in terms of commonly
measured response functions.

23.2.1 Isentropic rearrangement

Consider a finite region of a static fluid in a gravitational field. Assume the fluid is initially in
a horizontal layer in thermodynamic equilibrium so that it has a uniform in situ temperature.
Now rearrange the fluid into a vertical column, and do so without changing the entropy; i.e.,
without the transfer of heat across the fluid boundary (adiabatically) and without mixing any of
its matter constituents. Performing this rearrangement raises the center of mass of the fluid and
thus increases the gravitational potential energy. This process requires mechanical work against
the gravitational field.

Gravity makes pressure at the bottom of the vertical fluid column greater than at the top.
This pressure difference modifies the temperature in the column, thus putting the fluid out of
global thermodynamic equilibrium. We seek a general expression for how changes in pressure
affects changes in temperature for a static fluid, with the pressure changes imparted reversibly
and adiabatically so that entropy does not change. Mathematically, we seek an expression for
the partial derivative

Γ̂ ≡
[
∂T

∂p

]
C,S

, (23.21)

which is known as the adiabatic lapse rate. The adiabatic lapse rate can be measured directly,
with empirical expressions fit to laboratory measurements. Additionally, it is convenient to

4As emphasized in Section 22.1 and in Chapter 26, the macroscale atmosphere and ocean are not in ther-
modynamic equilibrium, and yet these fluids maintain local thermodynamic equilibrium at the scale of fluid
elements.
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express it in terms of other thermodynamic response functions in order to garner further physical
insight. The necessary manipulations form the bulk of this section.

23.2.2 Thermodynamic formulation
When the matter concentration is held fixed, the equation of state (22.87) allows us to consider
entropy as a function of temperature and pressure so that

dS =

[
∂S

∂T

]
p

dT +

[
∂S

∂p

]
T

dp. (23.22)

Substituting the definition of heat capacity from equation (22.99) leads to

T dS = cp dT + T

[
∂S

∂p

]
T

dp. (23.23)

It is useful to eliminate (∂S/∂p)T in favor of a more easily measurable quantity. For that purpose
we make use of the Maxwell relation (22.111) to write[

∂S

∂p

]
T

= −
[
∂νs
∂T

]
p

. (23.24)

Introducing the thermal expansion coefficient (22.103) yields an expression for changes in entropy
in terms of changes in temperature and pressure

T dS = cp dT − T
[
∂νs
∂T

]
p

dp = cp dT −
[
T αT

ρ

]
dp. (23.25)

Since cp and αT are readily measurable response functions, the expression (23.25) is a useful
means to compute infinitesimal entropy changes when matter concentration is held constant.

23.2.3 Adiabatic lapse rate for pressure changes
Equation (23.25) means that the change in temperature associated with changes in pressure,
with dS = 0 and dC = 0, can be written

Γ̂ =

[
∂T

∂p

]
C,S

=
T αT

ρ cp
. (23.26)

This relation holds for any form of pressure changes, such as those due to hydrostatic pressure
changes or pressure fluctuations in an acoustic wave (see Section 51.4.4). Temperature indeed
changes when pressure changes, even though there has been no heat exchanged with the
environment. With Γ̂ so defined, we can write the entropy change in equation (23.25) as

T dS = cp (dT − Γ̂ dp). (23.27)

The term dT − Γ̂ dp subtracts from the in situ temperature differential the pressure induced
changes in temperature. In Section 23.3 we introduce the potential temperature, which is defined
just for the purpose of removing changes due to pressure.

23.2.4 Adiabatic lapse rate for height changes
A static fluid in a gravity field is in exact hydrostatic balance, whereby the pressure at a point
equals to the weight per area above that point (Section 24.6). Hydrostatic balance in a constant
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gravity field maintains the following relation between the pressure differential and the vertical
differential

dp = −g ρ dz. (23.28)

Use of the chain rule within the lapse rate expression (23.26) leads to

Γ =

[
∂T

∂z

]
C,S

=

[
∂T

∂p

]
C,S

[
∂p

∂z

]
= −ρ g

[
T αT

ρ cp

]
= −g T αT

cp
. (23.29)

This form for the lapse rates measures the change in temperature (the lapse) within a constant
composition fluid element as it is isentropically moved vertically through a hydrostatic pressure
field.

23.2.5 Further study
In Section 23.4.9 we consider the adiabatic lapse rate for the special case of a simple ideal gas.
For this gas, the internal energy of a fluid element is represented entirely by its temperature,
and pressure is caused solely by molecular thermal motion. For water, however, molecular
interaction energies are important, and pressure arises not only from thermal motion but also
from interaction forces of the densely packed molecules. It is these differences between the
behavior of water and a perfect gas that were examined by McDougall and Feistel (2003) in
terms of molecular dynamics. In particular, they note that the lapse rate, being proportional to
the thermal expansion coefficient, can be negative when the thermal expansion is negative. A
negative thermal expansion coefficient occurs in cool fresh water, such as the Baltic Sea, whereby
its temperature decreases as work is done on the fluid element as pressure increases.

The addition of water to the atmosphere modifies the lapse rate, as the air is then no longer
well approximated by an ideal gas. Chapter 18 of Vallis (2017) offers a pedagogical discussion of
the thermodynamics of a moist tropical atmosphere.

23.3 Potential temperature
As discussed in Section 23.1, thermodynamic equilibrium of a fluid in a geopotential field sees
the hydrostatic pressure balancing the weight of fluid. Thermodynamic equilibrium is also
characterized by a uniform in situ temperature, T , which requires removal of the temperature
gradient associated with the adiabatic lapse rate discussed in Section 23.2. The molecular
diffusive processes (see Section 26.11) that homogenize in situ temperature are very slow, so
that geophysical fluids are rarely in thermodynamic equilibrium. We here introduce the notion
of potential temperature, which offers a measure of temperature that removes the adiabatic lapse
rate. With some qualifiers discussed below, turbulent mixing processes active in geophysical
fluids lead to a nearly homogenous potential temperature. As such, potential temperature is a
more practical thermodynamic tracer than in situ temperature.

23.3.1 Motivating the definition of potential properties
We observe that the processes of heating and cooling of the ocean occur predominantly near
the ocean surface. In contrast, transport in the ocean interior is nearly adiabatic and isohaline
(i.e., nearly isentropic). The physical picture is suggested whereby the surface ocean boundary
layer experiences irreversible processes that set characteristics of water masses that move quasi-
reversibly within the ocean interior. As a means to characterize and thus to label these water
masses, oceanographers prefer to use properties that maintain constant values when moving
within the quasi-isentropic ocean interior. Salinity is a good label for this purpose since it is
only altered by mixing between waters of varying concentrations, and in turn it is materially
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constant in the absence of mixing.5 This behavior constitutes a basic property of material
tracers (tracers that measure the mass per mass of a constituent as discussed in Section 20.1).
However, it is not a property of the in situ temperature, T , which changes even in the absence
of mixing due to pressure effects. We are thus motivated to seek a thermodynamic property
that evolves analogously to material tracers, so that it can be used as a second material label for
fluid elements. A similar motivation stems from the analysis of atmospheric motions.

A thermodynamic property that remains constant when a fluid element is moved from one
pressure to another, without the transfer of heat or matter and without any kinetic energy
dissipation, is said to be a potential property. The potential temperature is the example that
concerns us in this section. As we will see, in some special cases the potential temperature is
directly proportional to the specific entropy. More practically, it offers a means to estimate the
heat transport within a geophysical fluid.

Conservative Temperature, Θ, is another potential property discussed in Section 26.11, with
Conservative Temperature defined as the potential enthalpy divided by a constant heat capacity.
As detailed in McDougall (2003), Conservative Temperature provides a more convenient and
accurate measure of heat transport in a geophysical fluid than potential temperature. As such,
Θ is now more commonly used in applications than potential temperature, θ, (McDougall et al.,
2021).

23.3.2 Temperature changes from pressure changes
Motion of a fluid element, without exchange of heat (adiabatic) or matter (constant concentration),
generally changes the pressure of the fluid element. In turn, this motion causes the in situ
temperature to have a differential that is in proportion to the adiabatic lapse rate given by
(Section 23.2)

dT = Γ̂ dp. (23.30)

Consequently, and as already noted, the in situ temperature is not a useful thermodynamic
variable to label fluid elements since it changes even in the absence of irreversible mixing processes.
Instead, it is more useful to remove the adiabatic pressure effects. This is the key reason for
introducing potential temperature.

̂z

(T, C, p, 𝒮)

(θ, C, pR, 𝒮)
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z = ⌘b(x, y)

Figure 23.1: Potential temperature is the in situ temperature that a fluid element of fixed material composition
would have if isentropically displaced from its in situ pressure to a reference pressure, pR. The schematic here
depicts that displacement for a seawater fluid element with in situ temperature, T , salinity, S = 1000C, pressure,
p, and specific entropy, S. The element is moved to the ocean surface with the standard sea level atmospheric
pressure providing the reference pressure.

5There are nuances concerning what we mean by “salinity”, with details given by IOC et al. (2010) (in
particular, see Sections A.8 and A.9). We are not directly concerned with these nuances in this book, though note
that they are important for ocean measurements and the interpretation of salinity as used in numerical ocean
models (McDougall et al., 2021).
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23.3.3 Defining the potential temperature
Operationally, the potential temperature is based on removing adiabatic pressure effects from
in situ temperature. That is, potential temperature is defined as the in situ temperature that
a fluid element of fixed material composition would have if it were isentropically transported
from its in situ pressure to a reference pressure pR, with the reference pressure typically taken at
the ocean/land surface (see Figure 23.1). Mathematically, the potential temperature, θ, is the
reference temperature obtained via integration of dT = Γ̂ dp for an isentropic in situ temperature
change with respect to pressure

ˆ T

θ
dT ′ =

ˆ p

pR

Γ̂(T, p′, C) dp′ =⇒ T = θ(T, pR, C) +

ˆ p

pR

Γ̂(T, p′, C) dp′, (23.31)

with Γ̂ the lapse rate defined in terms of pressure changes (equation (23.26)). By definition, the
in situ temperature, T , equals the potential temperature, θ, at the reference pressure, p = pR.
Elsewhere, they differ by an amount determined by the adiabatic lapse rate. Furthermore, we
see that [

∂T

∂p

]
C,S

=

[
∂θ

∂p

]
C,S

+ Γ̂. (23.32)

However, by definition [
∂T

∂p

]
C,S

= Γ̂ (23.33)

so that [
∂θ

∂p

]
C,S

= 0. (23.34)

That is, by construction, the potential temperature depends explicity on the concentration, C,
and in situ temperature, T , and has a parametric dependence on the reference pressure. It has
no explicit dependence on the in situ pressure when holding tracer concentration and entropy
fixed. Finally, we emphasize that the potential temperature is a function of tracer concentration,
C. Hence, the potential temperature generally changes if the tracer concentration changes. For
example, potential temperature in the ocean changes if the salinity changes.

23.3.4 Potential temperature and specific entropy
An alternative definition of the potential temperature follows by noting that the entropy of a fluid
element remains unchanged as it is reversibly moved to the reference pressure. Consequently,
writing entropy as a function of the in situ temperature, pressure, and matter concentration as
in equation (22.87)

S = S(T, p, C) (23.35)

leads to the defining identity for potential temperature

S = S(T, p, C) = S(θ, pR, C). (23.36)

This relation directly connects changes in entropy to changes in potential temperature

dS =

[
∂S(θ, pR, C)

∂θ

]
C

dθ. (23.37)

Consequently, the reversible transport of a fluid element with constant matter concentration
(dC = 0) occurs with both a constant specific entropy and constant potential temperature.

We can go even further than the relation (23.37) by recalling that equation (23.27) relates
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the differential of specific entropy to temperature and pressure

T dS = cp (dT − Γ̂ dp), (23.38)

where Γ̂ is the adiabatic lapse rate defined in terms of pressure changes (equation (23.26)), and
we set dC = 0. To relate dT − Γ̂ dp to dθ we write the potential temperature equation (23.31)
in the form

θ(T, pR, C) = T −
ˆ p

pR

Γ̂(T, p′, C) dp′ = T −Ψ(T, p, C, pR), (23.39)

so that the differentials are related by

dθ = dT − dΨ. (23.40)

We evaluate dΨ using the chain rule and then specialize to the case of constant composition and
with a fixed reference pressure

dΨ =
∂Ψ

∂T
dT +

∂Ψ

∂p
dp+

∂Ψ

∂C
dC +

∂Ψ

∂pR
dpR (23.41a)

=
∂Ψ

∂T
dT +

∂Ψ

∂p
dp (23.41b)

≡
ˆ p

pR

∂Γ̂(T, p′, C)

∂T
dp′ + Γ̂(T, p, C) dp. (23.41c)

Evaluating this differentials at the reference pressure removes the integral so that

dΨ = Γ̂(T, pR, C) dp, (23.42)

in which case the potential temperature differential is

dθ = dT − Γ̂(T, pR, C) dp. (23.43)

Making use of this relation in equation (23.38) renders an expression for the entropy differential
in terms of the potential temperature differential

dS = cp θ
−1 dθ p = pR and dC = 0. (23.44)

Although evaluated at the reference pressure, as part of exercise 26.4 we see that this relation
holds for an ideal gas at all pressures. Furthermore, as part of exercise 26.5 we see that this
relation also holds for all pressures in certain liquids.

23.4 Thermodynamic relations for a simple ideal gas

In an ideal gas, we ignore the potential energy of intermolecular interaction forces between
molecules. Also, the molecules in an ideal gas are assumed to occupy zero volume (i.e., they
are point particles), although they do collide elastically. As a result, the internal energy of an
ideal gas is just due to translation, rotation, and vibration of molecules. We refer to a simple
ideal gas as an ideal gas where the internal energy is a linear function of temperature. In this
section we develop a variety of thermodynamic relations for a simple ideal gas atmosphere in
exact hydrostatic balance. Although the real atmosphere is moving, and thus not in exact
hydrostatic balance, and the real atmosphere is not a simple ideal gas (i.e., it has moisture and
that alters the thermodynamic relations), it turns out that many of the relations established
here are rather accurate approximations to the real atmosphere. Furthermore, by exposing these
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relations for the ideal gas, we further our understanding of the more general thermodynamic
relations established earlier in this chapter.

23.4.1 Equation of state
An ideal gas satisfies the following equation of state (see Section 16.3.2)

P V = nRg T, (23.45)

where p is the pressure, V is the volume, n is the number of moles,

Rg = 8.314 J mole−1 K−1 = 8.314 kg m2 s−2 mole−1 K−1 (23.46)

is the universal gas constant, and T is the absolute temperature in Kelvin (see Section 16.3.2).
The number of moles equals to the mass, M , of the gas divided by the mass per mole, Mmole

n =M/Mmole. (23.47)

The mass density, ρ =M/V , is thus given by

ρ =
pMmole

T Rg
≡ p

T RM
, (23.48)

where
RM = Rg/Mmole (23.49)

is the specific gas constant as defined by the universal gas constant normalized by the molar
mass for the constituent. For air we have (Section 16.3.2)

M air = 28.8× 10−3 kg mole−1 (23.50)

so that air’s specific gas constant is

Rair =
Rg

M air
=

8.314 kg m2 s−2 mole−1 K−1

28.8× 10−3 kg mole−1 = 2.938× 102 m2 s−2 K−1. (23.51)

The relation (23.48) is known as a thermal equation of state, or more succinctly just an
equation of state (see Section 30.3 for more discussion). It shows that the mass density of
an ideal gas is directly proportional to the pressure: increasing pressure increases density. In
contrast, mass density is inversely proportional to the temperature: increases in temperature
lead to lower mass density. This behavior for the ideal gas density is reflected in certain real
gases and liquids.6

23.4.2 Internal energy
An ideal gas is comprised of molecules that interact only through elastic collisions. There are
no inter-molecular forces. Furthermore, the volume of the individual molecules is ignored in
comparison to the volume of empty space between the molecules, so they are approximated as
point masses. Consequently, the internal energy for an ideal gas is independent of density and of
the matter concentration. It is hence a function only of the temperature, which measures the
kinetic energy of the elastic point molecules

I = I(T ) ideal gas. (23.52)

6A notable counter-example is water near its freezing point, which becomes more dense as temperature rises.
This anomalous behavior is why a body of water freezes from the top down rather than from the bottom up.
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Consequently, the exact differential of internal energy for an ideal gas is

dI = cv dT. (23.53)

The appearance of cv, the constant volume specific heat capacity discussed in Section 22.7.1,
arises in order for the ideal gas internal energy to satisfy the general equation (22.100). The heat
capacity for an ideal gas is generally a function of temperature. However, for many applications
it is sufficient to consider a simple ideal gas, in which cv is a constant so that

I = cv T + constant simple ideal gas. (23.54)

The arbitrary constant of integration is generally set to zero so that the internal energy vanishes
at absolute zero.

23.4.3 Heat capacity

The heat capacity is a constant for a simple ideal gas (equation 23.54). Results from statistical
mechanics show that the thermal/internal energy per molecule equals to kB T/2 per excited
molecular degree of freedom, where

kB = 1.3806× 10−23 m2 kg s−2 K−1 (23.55)

is the Boltzmann constant. Dry air is mostly comprised of the diatomic molecules N2 and O2.
Diatomic molecules at temperatures of the lower atmosphere have two rotational and three
translational degrees of freedom,7 so that Imolecule = 5 kB T/2.

We convert this energy per molecule to an energy per mole of diatomic molecules by
multiplying by Avogadro’s number (equation (16.12))

Imole diatomic = 5Av kB T/2 = 5Rg T/2, (23.56)

where the gas constant is given by

Rg = Av kB (23.57a)

=
(
6.022× 1023 mole−1

) (
1.3806× 10−23 m2 kg s−2 K−1

)
(23.57b)

= 8.314 kg m2 s−2 mole−1 K−1. (23.57c)

Finally, dividing by the molar mass for dry air (equation (16.13))

M air = 0.028 kg mole−1 (23.58)

leads to the simple ideal gas approximation to the dry air heat capacity

cv =
5Rg

2M air
= 742 m2 s−2 K−1. (23.59)

The measured heat capacity for dry air at standard temperature (300 K) is 718 m2 s−2 K−1, so
the simple ideal gas estimate is only (742− 718)/718 = 3.3% too large.

7At high temperatures, two vibrational degrees of freedom are also excited so that Imolecule = 7 kB T/2 at high
temperatures.
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23.4.4 Enthalpy

The enthalpy is generally given by equation (22.73), which for a simple ideal gas takes the form

H = I+ p/ρ = cv T +
T Rg

Mmole

= T (cv +RM) (23.60)

where RM = Rg/Mmole (equation (23.49)) is the specific gas constant for the gas. Recall that the
constant pressure heat capacity is given by equation (22.102)

cp = T

[
∂S

∂T

]
p,C

=

[
∂H

∂T

]
p,C

. (23.61)

Consequently, for a simple ideal gas we have

cp = cv +RM and H = cp T. (23.62)

23.4.5 Thermal expansion coefficient

The thermal expansion coefficient for an ideal gas is given by

αT = −1

ρ

∂ρ

∂T
=

1

T
, (23.63)

so that as temperature increases the thermal expansion decreases.

23.4.6 Fundamental thermodynamic relations

The fundamental thermodynamic relation, written in terms of internal energy (equation (22.56b))
and enthalpy (equation (22.73)), are given by

dI = T dS− pdνs + µdC (23.64)

dH = T dS+ νs dp+ µdC. (23.65)

For a simple ideal gas these relations take the form

cv dT = T dS− pdνs + µ dC (23.66)

cp dT = T dS+ νs dp+ µdC. (23.67)

23.4.7 Isothermal compressibility

The isothermal compressibility measures the change in volume when holding the temperature
and matter concentration fixed and it is determined by the partial derivatives

− 1

V

[
∂V

∂p

]
T,C

=
1

ρ

[
∂ρ

∂p

]
T,C

. (23.68)

For an ideal gas the compressibility is given by

− 1

V

[
∂V

∂p

]
T,C

=
1

p
, (23.69)

so that the compressibility decreases when pressure increases.
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23.4.8 Sound speed

As studied in Chapter 51, sound travels through a fluid through compression and expansion
of the fluid media. So we expect the sound speed to be related to the compressibility. But
rather than the isothermal compressibility considered above, sound waves are largely adiabatic
waves so that the entropy is constant. We are thus in need of the isentropic compressibility
to compute the sound speed. That is, as defined by equation (22.105), the sound speed is the
pressure derivative of density computed with entropy and matter concentration held fixed. We
make use of the fundamental relations (23.66) and (23.67), with dS = 0 and dC = 0 to have

cv
cp

=
p

ρ

[
∂ρ

∂p

]
S,C

= (p/ρ) c−2
s =⇒ c2s = (p/ρ)(cp/cv) = T RM (cp/cv). (23.70)

For an ideal diatomic gas, such as nitrogen and oxygen, the ratio cp/cv = 7/5. Taking RM =
2.938× 102 m2 s−2 K−1 for air from equation (23.51) then leads to

cs ≈ 350 m s−1 for T = 300 K. (23.71)

23.4.9 Adiabatic lapse rate

For an ideal gas, the thermal expansion coefficient is given by (equation (23.63)) αT = T−1 so
that the lapse rates are

Γ̂ =
1

ρ cp
and Γ = − g

cp
. (23.72)

The measured specific heat capacity for a dry atmosphere at standard temperature (300 K) is

cp = 1005 m2 s−2 K−1 (23.73)

so that the adiabatic lapse rate for a dry atmosphere is roughly

Γd = −9.8 K/(1000 m). (23.74)

Hence, temperature decreases by nearly 10 K when rising 1000 m in a dry and ideal gas
atmosphere.

23.4.10 Geopotential thickness

We now establish basic relations for a static atmosphere satisfying the hydrostatic balance.
These relations also hold to a very good approximation for the large-scale atmosphere given the
dominance of approximate hydrostatic balance for these scales (see Section 27.2).

From the hydrostatic equation (24.56) we know that the pressure on a geopotential, Φ1,
equals to

p(Φ1) =

ˆ ∞

Φ1

ρ(Φ) dΦ (23.75)

where we assumed that p(Φ2 =∞) = 0. Equation (24.55) allows us to write the integrand as

dΦ = −ρ−1 dp = −T R
air dp

p
, (23.76)

where the second equality assumed an ideal gas atmosphere. Vertical integration of equation
(23.76) leads to the hypsometric equation, which provides the geopotential thickness between
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two pressure isosurfaces

Φ(z2)− Φ(z1) = −Rair

ˆ p2

p1

T d(ln p). (23.77)

Recall that dp < 0 if dz > 0 since the hydrostatic pressure decreases when moving up in the
atmosphere. We define the geopotential height according to

Z = Φ/g, (23.78)

where g is the gravitational acceleration at sea level. The geopotential height is close to the
geometric height in the troposphere and lower stratosphere. The hypsometric equation (23.77)
says that the geopotential thickness between two isobars is

Z2 − Z1 =
Rair

g

ˆ p1

p2

T d(ln p). (23.79)

Defining the layer mean temperature

⟨T ⟩ =
´ p1
p2
T d(ln p)´ p1

p2
d(ln p)

(23.80)

and the layer mean scale height

H =
Rair ⟨T ⟩
g

(23.81)

leads to the geopotential thickness

Z2 − Z1 = −H ln(p2/p1) (23.82)

The geopotential thickness is thus directly proportional to the mean temperature within the
pressure layer, with thicker layers, for example, with higher mean temperatures.

We can invert the geopotential thickness relation (23.82) for the pressures to render

p1 = p2 e
−(Z1−Z2)/H . (23.83)

This relation, or more commonly its simplified version (23.87) discussed below, is sometimes
referred to as the law of atmospheres or the barometric law. The scale height is a function of
pressure through its dependence on the layer averaged temperature in equation (23.81). For
the special case of an atmosphere with a constant temperature, T , then the scale height is a
constant8

Hconst =
Rair Tconst

g
. (23.84)

Setting Tconst = 300 K and using the specific gas constant for air from equation (23.51) leads to
the scale height

Hconst =
2.938× 102 m2 s−2 K−1 × 300 K

9.8 m s−2
≈ 9× 103 m. (23.85)

It is furthermore convenient to set Z2 = 0 with p2 = pslp the sea level pressure, whose global
average is

⟨pslp⟩ = 101.325× 103 N m−2. (23.86)

8As we saw earlier in this chapter, a fluid has uniform temperature at thermodynamic equilibrium. However,
the effects from turbulent motions, even very modest turbulent motions, readily break thermodynamic equilibrium.
This topic was discussed on page 299 of Maxwell (1872), where he also credits input from Lord Kelvin.
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The pressure in an isothermal atmosphere thus decreases exponentially with geopotential height
according to the scale height

p(Z) = ⟨pslp⟩ exp(−Z/Hconst). (23.87)

23.4.11 Potential temperature
The fundamental thermodynamic relation for a simple ideal gas (23.67) takes on the following
form for an isentropic change

cp dT = νs dp. (23.88)

Dividing both sides by temperature and using the ideal gas relation

νs
T

=
RM

p
(23.89)

leads to
cp d(lnT ) = RM d(ln p). (23.90)

Since cp and R
M are constants, we can integrate this relation from the reference pressure to an

arbitrary pressure

cp

ˆ T

θ
d(lnT ) = RM

ˆ p

pR

d(ln p), (23.91)

which renders the explicit expression for the potential temperature of a simple ideal gas

θ = T

[
pR
p

]RM/cp

where cp =
7RM

2
, (23.92)

with cp the constant pressure heat capacity of a simple ideal gas of diatomic molecules (Section
23.4.3). In some treatments (e.g., Exercise 23.3) it is useful to introduce the Exner function

Π =
cp T

θ
= cp

[
p

pR

]RM/cp

. (23.93)

In Exercise 23.2 we show that ∂θ/∂p = 0 for the ideal gas, thus exemplifying the removal
of explicit pressure effects from the potential temperature. Furthermore, it follows from equa-
tion (23.92) that the potential temperature differential is related to temperature and pressure
differentials via

δθ

θ
=
δT

T
− δp

p
. (23.94)

In particular, if the differential is computed between points in space within a fluid at a particular
time instance, then we are led to the relationship between spatial gradients

∇θ
θ

=
∇T
T
− ∇p

p
. (23.95)

23.4.12 Further study
Atmospheric sciences and dynamic meteorology books have thorough discussions of ideal gas
thermodynamics. Some of the material in section 2.7 of Holton and Hakim (2013) was used in
the present section.
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23.5 Exercises
exercise 23.1: Geopotential height
The geopotential height is the height above the earth of a chosen pressure surface.

(a) Show that an ideal gas atmosphere in exact hydrostatic balance with a uniform lapse rate

dT

dz
= −|Γ| = constant (23.96)

has a geopotential height at a pressure p given by

z =
T0
|Γ|

[
1−

[
p0
p

]−RM |Γ|/g
]
, (23.97)

where T0 is the temperature at z = 0.

(b) For an isothermal atmosphere, obtain an expression for the geopotential height as a function
of pressure, and show that this result is consistent with the expression (23.97) in the
appropriate limit.

exercise 23.2: Potential temperature for an ideal gas
Show that ∂θ/∂p = 0 for the potential temperature of an ideal gas given by equation (23.92)

θ = T

[
pR
p

]RM/cp

. (23.98)

Hint: remember that ∂T/∂p ̸= 0 since the partial derivative is computed with other variables
fixed.

exercise 23.3: Thermodynamic relations for an atmosphere
In this exercise, we establish some relations for an ideal gas atmosphere, and one relation holding
for an arbitrary equation of state. We assume that the gravitational acceleration is constant
throughout the full depth of the atmosphere. This assumption becomes questionable when
integrating to the top of the atmosphere. We furthermore ignore differences in the horizontal
cross-sectional area of a fluid column at the bottom and top of the atmosphere arising from the
spherical nature of the planet. These two assumption are sufficient for our purposes.

(a) pressure-height identity: Prove the following identity and state your assumptions

ˆ ps

0
z dp =

ˆ ztop

z=0
p dz. (23.99)

This identity will be of use for some of the following questions.

(b) Ideal gas I+Φ integrated over depth of a hydrostatic atmosphere: For an ideal
gas atmosphere in exact hydrostatic balance, show that the integral of the gravitational
potential energy plus internal energy from the surface to the top of the atmosphere is
equal to the integral of the enthalpy of the atmosphere

ˆ ztop

0
(Φ + I) ρdz =

ˆ ztop

0
H ρdz, (23.100)

where
H = pα+ I (23.101)
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is the enthalpy per mass,
Φ = g z (23.102)

is the simple form of the geopotential, which is also the gravitational potential energy per
mass (Section 13.10.4), and I is the internal energy per mass. The height integral extends
from the surface where z = 0, to the top of the atmosphere where z = ztop.

(c) Vertical derivative of dry static energy: For an ideal gas atmosphere in hydrostatic
balance, show that

dσ

dz
= Π

dθ

dz
, (23.103)

where
σ = H +Φ (23.104)

is the dry static energy and
Π = cp (T/θ) (23.105)

is the Exner function introduced in equation (23.93).

(d) First identity for horizontal pressure gradient: For an ideal gas atmosphere
(either hydrostatic or non-hydrostatic), derive the following expression for the pressure
gradient acceleration

−1

ρ
∇p = −θ∇Π. (23.106)

It then follows that for any instant in time, we have the relation between differentials

ρ−1 dp = θ dΠ. (23.107)

(e) Second identity for horizontal pressure gradient: For an ideal gas atmosphere
(either hydrostatic or non-hydrostatic), derive the following expression for the pressure
gradient acceleration

−1

ρ
∇p = − c

2
s

ρ θ
∇(ρ θ), (23.108)

where cs is the sound speed.

(f) I + Φ integrated over depth of a hydrostatic atmosphere: Show that for a
hydrostatic atmosphere with an arbitrary equation of state

ˆ ps

0
(Φ + I) dp =

ˆ ps

0
H dp. (23.109)

That is, show that the relation in the first part of this problem holds even without making
the ideal gas assumption.

exercise 23.4: Unit Knudsen number
Recall from Section 16.2.2 that the Knudsen number is the ratio Kn = Lmfp/Lmacro, where
Lmacro ≈ 10−4 m is the macroscopic length scale used in the discussion of the continuum
approximation, and Lmfp is the molecular mean free path (Section 16.3.3). Throughout this
exercise make use of pstand = 101.325× 103 Pa for standard atmospheric pressure.

(a) Consider a mole of an isothermal and ideal gas atmosphere of T = 300K with a constant
gravitational acceleration. At what pressure is the Knudsen number unity? Write your
answer as a fraction of standard sea atmospheric pressure, pstand.
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(b) Compute the altitude corresponding to the above pressure, assuming the sea level pressure
is pslp and the geopotential is Φ = g z. Hint: make use of results from Section 23.4.10.

(c) Assuming p = pstand, at what temperature is Kn = 1? Hint: assume the ideal gas law holds
regardless the temperature.

(d) Comment on what is the least atmospherically relevant assumption made during this
exercise.
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Dynamics is the area of mechanics that examines the causes of motion. For a classical
mechanical system, such as a geophysical fluid, understanding the cause of motion requires
understanding forces and energies. The force approach follows the methods of Newtonian
mechanics whereas the energy approach follows the methods of Hamilton’s principle. The bulk
of this part of the book takes the Newtonian approach by studying the variety of forces acting
on a geophysical fluid. Even so, in Chapter 47 we establish elements of Hamilton’s principle as
applied to perfect geophysical fluids. Throughout this part of the book we encounter a suite of
theoretical concepts that form the foundations of geophysical fluid mechanics. Our presentation
typically moves from the general to the specific, with each chapter written in a manner that
allows it to be picked up without relying too much on other chapters. The general to specific
presentation allows us to establish general principles based on fundamental concepts and to then
see how those concept manifest in specific contexts.

Forces of concern in geophysical fluid mechanics include the body force acting on a fluid
element from the earth’s gravity field along with the contact forces from pressure and friction
that act between adjacent fluid elements. Additionally, by choosing to work in a non-inertial
rotating terrestrial reference frame, we encounter body forces from the Coriolis and planetary
centrifugal accelerations, just as encountered for geophysical particle mechanics in Part II of
this book. Each of these forces play important roles in determining the diversity of geophysical
fluid motion, and their analysis leads to dynamical insights into the nature and causes of fluid
motion. We observe that forces in fluids are commonly inferred from kinematic properties of the
motion, thus making use of the fluid kinematics from Part III.

summary of the dynamics chapters

We start the development of dynamics by formulating the equations of motion (linear
momentum and angular momentum) in Chapter 24 using Newtonian methods. In subsequent
chapters we study the forces appearing in these equations, including friction (Chapter 25),
pressure (Chapter 28), and buoyancy (Chapter 30). Buoyancy is the vertical pressure force,
arising from density inhomogeneities, that are not balanced by gravity. As such, our study of
buoyancy focuses on vertical forces, which contrasts to our study of pressure form stresses in
Chapter 28, which focus on horizontal forces.

When studying buoyancy in Chapter 30, we make use of an equation of state that provides the
mass density of a fluid element as a function of thermodynamical properties such as temperature,
pressure, and matter concentration. In Chapter 26 we study the flow of energy through the
fluid, including both mechanical energy of the macroscopic fluid and the internal energy of the
molecular degrees of freedom. We thus study how mechanical energy is exchanged with internal
energy in the presence of work done by pressure and heat generated by friction.

Chapters 27 and 29 introduce a variety of approximate equations that allow us to focus on
selected dynamical regimes by filtering away selected phenomena. It is here that we encounter
the hydrostatic approximation and the Boussinesq ocean approximation, both of which are
commonly used for large-scale models of the ocean and atmosphere. Approximate balances are
further examined in Chapter 31, where we study the mechanics of a rapidly rotating fluid. We
here encounter the geostrophic balance, which is a diagnostic balance appropriate for describing
large-scale geophysical flows in which the horizontal pressure acceleration is balanced by the
Coriolis acceleration. Geostrophic balance is one of the variety of balances considered in Chapter
32, which introduces balanced flow regimes pertaining to horizontal motions. Chapter 33
examines the physics of an Ekman boundary layer in which the Coriolis acceleration balances
vertical friction. Throughout this book, we generally assume a constant effective gravitational
acceleration. However, observations of the ocean typically encouter motions arising from spatial-
temporal variations of the gravity field that give rise to tides. Given this observation, we take a
brief look in Chapter 34 at how to formulate the equations of geophysical fluid mechanics in the
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presence of a space and time dependent gravitational acceleration. We close this part of the
book in Chapter 47 by developing Hamilton’s variational principle for perfect geophysical fluids.
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Chapter 24

MOMENTUM DYNAMICS

We here formulate the fluid mechanical equations for linear momentum and axial angular
momentum for geophysical fluid motions. We derive these equations of geophysical fluid
dynamics (GFD) using Newton’s laws of motion applied to a gravitationally stratified fluid
continuum moving on a rotating planet where the rotation rate is constant in time. Relative to
the point particle, the new dynamical feature afforded to the continuum concerns contact forces
between fluid elements, which lead to pressure and frictional forces from mechanical interactions.

reader’s guide to this chapter
We make liberal use of results from point particle mechanics studied in Part II as well as

fluid kinematics from Part III. There are various places in this chapter where we consider
integrals of vectors over finite regions, such as when forming the finite volume (weak form)
momentum budget as well as the angular momentum budget. As written, such discussions
hold for Cartesian tensors, such as for the planetary Cartesian coordinates from Chapter 13
or the tangent plane Cartesian coordinates from Section 24.5. More care than given here is
needed for general tensors on general manifolds.
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24.7.3 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
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24.1 Loose threads
• Figures needed

24.2 Linear momentum equation
We here summarize elements of classical continuum mechanics and in turn apply Newton’s second
law to derive the linear momentum budget for a fluid continuum. We present the momentum
budget over both a finite volume region of the fluid (weak formulation) and for an infinitesimal
fluid element (strong formulation).

24.2.1 Body forces
Forces acting on an arbitrary region, R, of a continuous matter distribution are of two general
types. The first involves forces that originate from outside of the matter and act throughout the
body, thus motivating the names external forces, body forces, or long range forces. Examples
include gravitational forces (including the planetary gravitational force as well as astronomical
tidal forces); planetary Coriolis force and planetary centrifugal force (due to the rotating planetary
reference frame); and electromagnetic forces (due to motion of charged matter moving through
an electromagnetic field, with such forces ignored in this book). The net body force acting on a
finite volume of continuum matter is the volume integral of the body force per unit mass, fbody,
multiplied by the mass of the matter

Fbody =

ˆ
R

fbody ρdV. (24.1)

For example, the effective gravitational force (combination of central gravity plus planetary
centrifugal) acting on a volume of fluid is given by

Feffective gravity =

ˆ
R

g ρdV, (24.2)

where g = −∇Φ is the effective acceleration of gravity with Φ the geopotential (Section 13.10.4).
Likewise, the Coriolis force acting on the volume is given by

FCoriolis = −2
ˆ
R

(Ω× v) ρdV. (24.3)

These body forces have the same appearance as for the point particle in Chapter 13, with the
only difference being the material is now a continuous media rather than a point mass, thus
requiring us to integrate over the region.

24.2.2 Contact forces
The second kind of forces are internal or contact forces, such as pressure forces and frictional
forces. Contact forces are molecular in origin, though we are unconcerned with details of the
molecular dynamics leading to these forces. In some areas of continuum mechanics, contact
forces are referred to as tractions. These forces act on a region of a continuous media through
the area integrated stresses acting on the boundary enclosing the region. Mathematically, we
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compute the contact force exerted on the region by area integrating the stress tensor projected
onto the normal direction along the region boundary

Fcontact =

˛
∂R

T · n̂dS, (24.4)

where n̂ is the outward normal direction orienting the domain boundary with dS the associated
area element, and T is the second order stress tensor. We have more to say about the stress
tensor in the following as well as in Chapter 25. For now, we must be satisfied regarding equation
24.4 as the definition of a contact force.

Contact forces affect continuous media and they do so through the nonzero spatial extent of
elements within the media, with this spatial extent allowing for interactions between adjacent
fluid elements. Point particles (Part II) do not experience contact forces since point particles
have no spatial extent. Hence, contact forces represent a fundamentally new feature, conceptually
and operationally, to the fluid dynamical equations relative to the equations of point particles.

Stresses from friction and pressure

As detailed in Chapter 25, there are two types of stress that concern us: diagonal stresses
associated with reversible momentum exchange through pressure, and stresses associated with
the irreversible exchange of momentum through friction. Hence, it is convenient to decompose
the stress tensor components according to

Tab = τab − p gab. (24.5)

In this equation, p is the pressure, which is a force per unit area acting in a compressive manner
on the area of a surface. The second order tensor, gab, is a chosen coordinate representation of
the inverse metric tensor and it equals to the Kronecker or unit tensor when choosing Cartesian
coordinates in Euclidean space (Section 4.1). The frictional stress tensor is written τab. It is
also known as the deviatoric stress tensor as it represents deviations from the static case when
stress is due solely to pressure. The friction stress tensor generally has zero trace, with pressure
comprising the trace portion of the full stress tensor.

Substitution of the stress tensor (24.5) into the contact force expression (24.4) leads to

Fcontact =

˛
∂R

(τ · n̂− p n̂) dS, (24.6)

where the integral is taken over the bounding surface of the domain whose outward normal is n̂.
Given this expression for contact forces acting on the boundary of a fluid domain, it is seen that
positive pressure (p > 0) acts in the direction opposite to the surface’s outward normal so that
pressure always acts in a compressive manner. Deviatoric stresses create more general forces
on the bounding surface, which can have compressive, expansive, shearing, and/or rotational
characteristics.

Exchange of momentum between fluid elements

We mathematically represent the exchange of momentum between fluid elements via a symmetric
stress tensor, with symmetry implied by statements about angular momentum conservation
(detailed in Section 25.4). The divergence of the stress tensor then leads to a force acting on
the fluid element. The forces arising from molecular viscosity provide an irreversible exchange
of momentum that reduce the kinetic energy of fluid elements (Section 26.3.3). This process
is dissipative and thus referred to as friction. Furthermore, when averaging over turbulent
realizations of a fluid, the impacts on the mean flow are generally far larger than those associated
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with molecular viscosity, with these exchanges commonly parameterized via a symmetric stress
tensor.

A gauge symmetry of pressure force

The contribution from pressure in the contact force (24.6) remains invariant if pressure is shifted
by an arbitrary function of time

p(x, t)→ p(x, t) + F (t). (24.7)

We see this invariance by noting that

˛
∂R
F (t) n̂dS = F (t)

˛
∂R
n̂dS = 0, (24.8)

where the final equality follows from a corollary of the divergence theorem as discussed in Section
2.7.3. Briefly, through the divergence theorem in Section 2.7.2 we know that

˛
∂R
p n̂dS =

ˆ
R

∇pdV, (24.9)

so that if pressure is shifted by a spatial constant then the pressure gradient body force remains
unchanged, as will the integrated pressure contact force.

We refer to this invariance of the pressure force as a gauge symmetry. It means that motion
of the fluid remains unchanged if pressure is modified by a spatial constant that can generally
be a function of time.

24.2.3 Equation of motion

The linear momentum of a fluid region is given by

P =

ˆ
R

v ρdV. (24.10)

Applying Newton’s law of motion to the continuum leads to the finite volume equation of motion

d

dt

ˆ
R

v ρdV =

ˆ
R

ρfbody dV +

˛
∂R

T · n̂dS. (24.11)

The time derivative can be material, as for a constant mass fluid region moving with the
barycentric velocity. Or it could be Eulerian, as for a fixed region in space (see Section 20.2),
or it could be a time derivative following an arbitrary fluid region. Applying the divergence
theorem (Section 2.7.2) to the area integral yields

d

dt

ˆ
R

ρv dV =

ˆ
R

(ρfbody +∇ · T) dV, (24.12)

where we brought the contact forces into the volume integral through exposing the divergence of
the stress tensor.
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General form of the equation of motion for a fluid element

Since the volume under consideration is arbitrary, the integral relation (24.12) is satisfied for an
arbitrary region. We apply the result to an infinitesimal fluid element moving with the flow

D(ρv δV )

Dt
= δV (ρfbody +∇ · T). (24.13)

Assuming the mass for the fluid element is constant then reveals the strong form of the equation
of motion

ρ
Dv

Dt
= ρfbody +∇ · T⇐⇒ ρ

Dva
Dt

= ρ fa + ∂bTba. (24.14)

This equation is a continuum expression of Newton’s equation of motion, and it is sometimes
referred to as Cauchy’s equation of motion. The right expression exposes the Cartesian tensor
labels, with the “body” label dropped for brevity.

Momentum equation for a rotating fluid in a gravitational field

We now specialize the momentum equation (24.14) to suit the needs of geophysical fluid mechanics.
We first write the stress tensor in terms of the deviatoric component from friction and a diagonal
component from pressure (equation (24.6))

ρ
Dv

Dt
= ρfbody −∇p+∇ · τ. (24.15)

Next, move to a rotating terrestrial reference frame and thus expose the Coriolis acceleration
and the effective gravitational force (Section 13.11)

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ−∇p+∇ · τ. (24.16)

This form of the equation of motion arises from extracting the rigid-body motion of the basis
vectors to define the Coriolis acceleration (see Section 13.9). Any remaining changes to the basis
vectors arise from motion of the fluid relative to the rigid-body rotating reference frame, and
thus appear when expanding the material time derivative. The form (24.16) for the equation of
motion offers a suitable starting point for studies of geophysical fluid dynamics. It sometimes
goes by the name of Navier-Stokes equation. However, that name is more commonly applied to
the non-rotating case with a specific form for the friction operator (see Section 25.8.7). We thus
refer to equation (24.16) as Newton’s law of motion for a rotating fluid.1

24.2.4 Euler equation for perfect fluid motion

The inviscid form of the momentum equation (24.15) is known as the Euler equation of perfect
fluid mechanics

ρ
Dv

Dt
= ρfbody −∇p, (24.17)

where the body force is conservative. That is, the Euler equation is concerned just with fluid
motion in the absence of dissipative processes. The inviscid form of the momentum equation
(24.16) leads to the Euler equation in the presence of rotation and gravitation

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ−∇p. (24.18)

1The Navier-Stokes equations were first derived by Claude-Louis Navier in 1822 and later independently
derived by George Stokes in 1845.
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We have many occasions in this book to ignore dissipation, in which case we work with a
particular form of the Euler equation. We further comment on the Euler equation in Section
25.8.7.

24.2.5 Further study

Chapter 5 of Aris (1962) offers an insightful discussion of continuum mechanics as applied to
a fluid. Section 2.2 Vallis (2017) provides a thorough derivation of the dynamical equations
of motion for the atmosphere and ocean. We offer further discussion of the mathematics and
physics of stress in fluids in Chapters 25 and 28.

24.3 Spherical/geopotential coordinates
Geophysical fluids move on a rotating planet with the planet commonly assumed to have an
oblate spherical geometry, though with the equations approximated by their spherical form using
the geopotential vertical coordinate. To display the equations of motion, we make use of the
acceleration as derived in Section 13.11.3 for the point particle, using the geopotential coordinate
to measure radial distances from the center of the sphere, as well as the longitude and latitude
angular coordinates defined by Figure 4.3. The point particle time derivative, which is computed
following the particle, translates into a material time derivative for fluid elements. We are thus
led to the spherical equations of motion in their full glory

Du

Dt
+
u (w − v tanϕ)

r
+ 2Ω (w cosϕ− v sinϕ) = − 1

ρ r cosϕ

∂p

∂λ
+ F λ (24.19)

Dv

Dt
+
v w + u2 tanϕ

r
+ 2Ωu sinϕ = − 1

ρ r

∂p

∂ϕ
+ F ϕ (24.20)

Dw

Dt
− u2 + v2

r
− 2Ωu cosϕ = −g − 1

ρ

∂p

∂r
+ F r, (24.21)

where we introduced the spherical components to the friction acceleration

F = F λ λ̂+ F ϕ ϕ̂+ F r r̂, (24.22)

which is determined by the divergence of the frictional stress tensor. We also note the spherical
coordinate form for the gradient operator (Section 4.23.8)

∇ =
λ̂

r cosϕ

∂

∂λ
+
ϕ̂

r

∂

∂ϕ
+ r̂

∂

∂r
, (24.23)

as well as the material time derivative operator

D

Dt
=

∂

∂t
+ v · ∇ =

∂

∂t
+

u

r cosϕ

∂

∂λ
+
v

r

∂

∂ϕ
+ w

∂

∂r
. (24.24)

We can write the spherical momentum equations in a bit more compact form by introducing
the spherical coordinate velocity field (see equation (13.47))

v = u+ r̂w = u λ̂+ v ϕ̂+ w r̂ (24.25)

and the corresponding spherical coordinate acceleration

Asphere =
Du

Dt
λ̂+

Dv

Dt
ϕ̂+

Dw

Dt
r̂. (24.26)
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We also introduce the expression (13.82c) for the metric acceleration to render

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ−∇p+ ρF , (24.27)

where we have the acceleration relative to the rotating frame

Dv

Dt
= Asphere +

1

r
[u tanϕ (r̂ × v) + wu− r̂ u · u] . (24.28)

For some purposes it is convenient to combine one piece of the metric acceleration to the Coriolis
acceleration to yield

Asphere +
1

r
[wu− r̂ u · u] +

[
2Ω+

u tanϕ r̂

r

]
× v = −∇Φ− ρ−1∇p+ F . (24.29)

24.4 Vector-invariant velocity equation

The metric terms appearing in the momentum equation (24.29) are those terms proportional to
r−1 that arise from spatial dependence of the spherical unit vectors.2 An alternative formulation
removes these terms in favor of the vorticity and kinetic energy. For that purpose we make use
of the identity for the nonlinear self-advection term (equation (2.44))

(v · ∇)v = ω × v +∇(v · v)/2, (24.30)

where ω = ∇ × v is the vorticity that is studied in Part VII of this book. We derive the
corresponding vector-invariant form of the velocity equation using Cartesian coordinates and then
invoke general coordinate invariance (Section 3.1) to extend the result to arbitrary coordinates.3

Making use of equation (24.30) thus leads to the material acceleration

Dv

Dt
=
∂v

∂t
+ ω × v +∇(v · v)/2 (24.31)

so that the momentum equation (24.16) becomes the vector-invariant velocity equation

∂v

∂t
+ (2Ω+ ω)× v = −∇(Φ + v · v/2) + (1/ρ) (−∇p+∇ · τ). (24.32)

The name vector-invariant is motivated since the form of this equation remains unchanged when
using Cartesian or spherical coordinates. However, this name seems rather unnecessary since
when formulated using the tensor formalism from Chapters 3 and 4, any mathematical physics
equation remains form invariant.

24.4.1 Dynamic pressure
The velocity equation (24.32) is mathematically equivalent to the momentum equation (24.16).
Even so, it provides a more convenient means to derive Bernoulli’s theorem in Section 26.9.3
and the vorticity equation in Chapter 40. Furthermore, it highlights certain physical processes
affecting accelerations that are not obviously seen from the momentum equation. One such
process is the dynamic pressure, which arises from the kinetic energy per mass appearing in
the velocity equation (24.32). Gradients in the kinetic energy per mass contribute a dynamical

2The metric terms are referred to as Christoffel symbols in Section 4.11, which is the section where we derive
the covariant derivative of a vector.

3See Section 4.4.4 of Griffies (2004) for a detailed derivation using general coordinates.
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pressure gradient that accelerates the fluid down the kinetic energy gradient, from regions of
high kinetic energy per mass to regions of low kinetic energy per mass. To help understand this
process, consider a Boussinesq fluid (Chapter 29), in which case the density factor is a constant,
ρ = ρo, so that we can write the accelerations from pressure and kinetic energy as

−(1/ρo)∇p−∇(v · v/2) = −ρ−1
o ∇(p+ ρo v · v/2) ≡ −ρ−1

o ∇pstagnation. (24.33)

In this equation we defined the stagnation pressure (page 149 of Kundu et al. (2016)), also called
the total head (Section 3.1 of Saffman (1992))

pstagnation ≡ p+ ρo v · v/2, (24.34)

which is the sum of the mechanical pressure, p, plus the dynamic pressure, ρo v · v/2.
The stagnation pressure is the mechanical pressure required to keep the local acceleration

unchanged if the dynamic pressure is set to zero as per a stagnant fluid. This situation arises in
practice in a device known as a Pitot tube used to measure the speed of flow in a pipe, with the
Pitot tube making use of the Bernoulli theorem formulated in Section 26.9. Stagnation points
also arise at special points along solid objects within a moving fluid, such as wings. The dynamic
pressure, ρo v · v/2, provides an isotropic force per area in addition to mechanical pressure, p.
Hence, the stagnation pressure is the total isotropic contact force per area, thus motivating some
treatments to refer the stagnation pressure as the total pressure.4

24.4.2 Magnus acceleration
The acceleration, −ω × v, appearing in the velocity equation (24.32) couples vorticity and
velocity. This acceleration is known as the Magnus effect or Magnus acceleration. Since it acts
only when there is both motion and vorticity, it is sometimes referred to as a vortex force.5

As discussed in Chapter 37, vorticity is a measure of the spin of a fluid element. Evidently,
the Magnus acceleration deflects a spinning fluid element in a direction perpendicular to its
trajectory in a manner analogous to the Coriolis acceleration.6

24.4.3 Nonlinear accelerations for some example flows
We here consider some example two-dimensional velocities to help garner insights into the
nonlinear accelerations. First note that there are certain flows where the self-advection term
vanishes identically so that

(v · ∇)v = 0 =⇒ ω × v +∇(v · v)/2 = 0. (24.35)

One example is a zonal flow with a meridional shear

v = u(y) x̂, (24.36)

in which case

(v ·∇)v = 0 and ω = −∂yu ẑ and ω×v = −u ∂yu ŷ and ∇(v ·v/2) = u ∂yu ŷ. (24.37)

4In many applications, the mechanical pressure, p, is referred to as the static pressure so that the total/stag-
nation pressure is the sum of the static plus dynamic pressures. See section 4.9 of Kundu et al. (2016) for more
discussion.

5Chapter 3 of Saffman (1992) pursues this interpretation in studying the forces acting on and by vortices.
6Besides causing a moving and spinning fluid element to deflect, the Magnus acceleration provides the

mechanism whereby a solid spinning body immersed in a moving fluid is deflected, such as commonly experienced
by spinning balls used for baseball, tennis, and cricket.
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Figure 24.1: Illustrating the various nonlinear accelerations contributing to the velocity time tendency as
per the vector-invariant velocity equation (24.32). Far left panel: the two-dimensional non-divergent velocity,
u = γ (−y x̂+ x ŷ). Middle left panel: self-advection acceleration −(u · ∇)u = γ2x. Middle right panel: Magnus
acceleration −ω × u = 2 γ2 x. Far right panel: dynamic pressure gradient acceleration, −∇(u2/2) = −γ2 x.
Notice that the Magnus acceleration acts to the right of the flow, whereas the acceleration from the dynamic
pressure gradient partially opposes the Magnus acceleration. The sum of the Magnus acceleration and dynamic
pressure gradient acceleration equals to the acceleration from self-advection. In each panel we set γ = 1 and used
arbitrary units.

An example flow with a nonzero self-advection is given by the two-dimensional flow of an
ideal vortex

u = ẑ ×∇ψ = γ (−y x̂+ x ŷ), (24.38)

where γ > 0 is a constant with dimensions of inverse time.7 This flow has zero horizontal
divergence, ∇ · u = 0, and constant vorticity

ẑ · ω = ζ = 2 γ. (24.39)

The accelerations from self-advection, Magnus, and dynamic pressure are given by

−(u · ∇)u = γ2 x and − ω × v = 2 γ2 x and −∇(u · u/2) = −γ2 x. (24.40)

We depict these three accelerations, along with the velocity field, in Figure 24.1. Notice how the
Magnus acceleration acts to the right of the flow, whereas the acceleration from the dynamic
pressure gradient partially opposes the Magnus acceleration.

24.5 The tangent plane approximation

Spherical coordinates are suited for the study of planetary fluid dynamics for cases where the
fluid samples the earth’s curvature. However, spherical coordinates remain more complicated to
work with than Cartesian coordinates. We are thus led to consider the utility of an idealized
tangent plane configuration as part of a hierarchy of theoretical models to help understand
geophysical fluid motion. This motivation leads to the f -plane and β-plane approximations,
which are the two cases of the tangent plane approximation. We here expose these equations,
with further use encountered later in the book. As formulated here, it is important to note
that the tangent plane approximation is not based on assuming a locally flat sphere. Rather,
the tangent plane approximation as based on assuming a locally flat geopotential. We further
comment on this subtle distinction in Sections 24.5.2 and 24.5.5.

7We made use of this velocity in Section 18.11 in our study of kinematics in two-dimensional flow.
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24.5.1 Basics of the tangent plane approximation

Consider a position at latitude ϕ = ϕ0 and introduce a local Cartesian set of coordinates
according to

(x, y, z) = (Re λ cosϕ0, Re (ϕ− ϕ0), z) (24.41)

(x̂, ŷ, ẑ) = (λ̂, ϕ̂, r̂). (24.42)

Use of these Cartesian coordinates leads to the following inviscid (i.e., no friction) equations of
motion local to ϕ = ϕ0

Du

Dt
+ 2 (Ωy w − Ωz v) = −1

ρ

∂p

∂x
(24.43a)

Dv

Dt
+ 2 (Ωz u− Ωxw) = −1

ρ

∂p

∂y
(24.43b)

Dw

Dt
+ 2 (Ωx v − Ωy u) = −1

ρ

∂p

∂z
− g, (24.43c)

with rotational vector components

Ω = Ω(cosϕ0 ŷ + sinϕ0 ẑ). (24.44)

Note the absence of metric terms due to the use of Cartesian coordinates on a flat geometry.

24.5.2 Tangent plane is a geopotential approximation

As formulated above, the tangent plane approximation originates from the geopotential vertical
coordinate system rather than the spherical coordinates (Section 13.11.3). In geopotential
coordinates, the effective gravitational acceleration (central gravity plus planetary centrifugal) is
aligned with the local vertical direction. Correspondingly, the resulting tangent plane equations
have the effective gravitational force aligned in the ẑ direction. This very convenient property of
the geopotential coordinate system was discussed in Section 13.10.4, with particular attention
given by Figure 13.4.

In contrast, when studying motion in a rotating tank, such as in Section 27.5, it is convenient
to separately account for the gravitational acceleration and rotating reference frame’s centrifugal
acceleration, so that both accelerations appear explicitly in the fluid equation of motion. It is
thus important to distinguish the tangent plane equations (which absorb the rotating reference
frame’s centrifugal acceleration into the effective gravity acceleration) from the equations used
for a rotating fluid in a laboratory tank (which separately account for gravity and centrifugal).8

24.5.3 Traditional approximation and the f -plane

The traditional approximation is discussed in Section 27.1.3, where we justify retaining only the
local vertical component of the rotation vector for the study of large-scale planetary flows, thus
resulting in

Du/Dt+ f ẑ × u = −ρ−1∇hp and Dw/Dt = −ρ−1 ∂zp− g. (24.45)

The f -plane makes further use of a constant Coriolis parameter

f = 2Ω sinϕ0 ≡ fo. (24.46)

8As noted by Durran (1993), confusion can arise when forgetting this distinction.
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The f -plane approximation is the simplest model for a rotating fluid on a locally flat geopotential,
and as such it provides an end member in the hierarchy of theoretical models for rotating
geophysical fluid flows.

24.5.4 β-plane approximation
As seen in Section 54.3, Rossby waves are planetary scale waves that sample the earth’s curvature.
The essential ingredient for their existence is the latitudinal dependence of the Coriolis parameter.
To capture Rossby waves on a tangent plane requires the meridional gradient of the Coriolis
parameter, with a linear dependence sufficient

f = fo +R−1
e (2Ω cosϕ0) (y − y0). (24.47)

The β-plane approximation only depends on the meridional gradient of the Coriolis parameter,
in which case we more succintly write

f = fo + β y (24.48)

β = ∂f/∂y = (2Ω/Re) cosϕ0, (24.49)

thus ignoring the constant −(2Ω cosϕ0) y0/Re. The β-plane approximation is formally valid so
long as the horizontal scale of motion, L, is not too large, in which case we require

β L≪ |fo|. (24.50)

24.5.5 Comments and caveats
We emphasized that the tangent plane assumes a locally flat geopotential, so that the gravitational
acceleration remains locally vertical. Additionally, for the traditional approximation we retain
only the local vertical component of the planetary rotation vector, which leads to a simpler
expression for the Coriolis acceleration. It is tempting to extrapolate the traditional tangent
plane to an infinite plane. However, doing so certainly breaks the assumption built into the
truncated Taylor series used to mathematically justify the tangent plane. Furthermore, it leads
to the unphysical situation of an infinite flat rotating plane without a centrifugal acceleration to
distinguish a center of rotation. Additionally, an infinite β-plane leads to an unbounded rotation
rate.

24.6 Exact hydrostatic balance
We are mostly interested in moving fluids within this book. Even so, it is useful to expose
the signature of a static fluid supporting the trivial solution, v = 0. The equation of motion
(24.16) has an exact static solution so long as the pressure gradient force balances the effective
gravitational force

∇p = −ρ∇Φ, (24.51)

and where the frictional stress tensor has zero divergence. Equation (24.51) constitutes the
exact hydrostatic balance. As justified in Section 27.2, the hydrostatic balance is a very good
approximation for the vertical momentum equation in large-scale geophysical fluids even when
those fluids are moving. We will thus commonly make the hydrostatic approximation for moving
fluids. For the current considerations, we are interested in a static fluid, in which case the
hydrostatic balance (24.51) is an exact solution to the equation of motion.
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24.6.1 Properties of exact hydrostatic balance
We make the following observations of the exact hydrostatic balance.

• Since ∇p is directly proportional to ∇Φ, surfaces of constant pressure (isobars) in a static
fluid correspond to surfaces of constant geopotential.

• Since the curl of the pressure gradient vanishes, a static fluid maintains its density gradients
parallel to geopotential gradients

∇ρ×∇Φ = 0, (24.52)

which in turn means that density surfaces are parallel to geopotentials so that

ρ = ρ(Φ) static fluid. (24.53)

For the geopotential Φ = g z, a static fluid is realized if the density depends only on the
vertical position

ρ = ρ(z) static fluid with Φ = g z. (24.54)

If the density gradient has any component perpendicular to ∇Φ, then pressure forces will
affect fluid flow thus implying that the fluid is not in an exact hydrostatic balance.

• Projecting both sides of equation (24.51) onto an infinitesimal space increment, dx, renders

dx · ∇p = −ρdx · ∇Φ =⇒ dp

dΦ
= −ρ. (24.55)

Hence, the difference in hydrostatic pressure between any two geopotentials is given by
the integral

p(Φ2)− p(Φ1) = −
ˆ Φ2

Φ1

ρ(Φ) dΦ. (24.56)

If Φ = g z then we recover

p(z2)− p(z1) = −g
ˆ z2

z1

ρ(z) dz, (24.57)

so that the difference in hydrostatic pressure between two geopotentials is given by the
weight per horizontal area of fluid between the two geopotentials. This relation is illustrated
for an infinitesimally thin layer in Figure 24.2.

24.6.2 Comparison to approximate hydrostatic balance
A static fluid in a gravitational field exhibits hydrostatic balance whereby pressure at a point is
a function solely of the geopotential, in which case p = p(z) when Φ = g z. Correspondingly,
dp/dz = −ρ g, which means that we determine hydrostatic pressure at a point by computing
the weight per horizontal area of fluid above that point. Likewise, density is just a function of
geopotential since ∇ρ×∇Φ = 0.

For an approximate hydrostatic fluid, pressure is a function of space and time, p = p(x, t),
as is density, ρ = ρ(x, t). Hence, we are no longer ensured that pressure and density isolines are
parallel. However, the approximate hydrostatic fluid retains a vertical pressure gradient given by

∂p

∂z
= −ρ g approximate hydrostatic. (24.58)
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z

dz ρ g dz

p(z)

p(z + dz)

p(z + dz) − p(z) = − ρ g dz

Figure 24.2: Illustrating the forces acting in a hydrostatically balanced fluid layer placed in a geopotential field
Φ = g z with g constant. The layer has an infinitesimal thickness dz > 0, density ρ, and horizontal cross-sectional
area dA. The pressure force acting on the top and bottom of the layer are compressive. Hence, the pressure
force at the top of the layer acts downward, F press(z + dz) = −ẑ p(z + dz) dA, whereas the pressure force at
the bottom of the layer acts upward, F press(z) = +ẑ p(z) dA. In a hydrostatically balanced fluid, the difference
in pressure across the layer is exactly balanced by the weight per area of fluid within the layer. Consequently,
p(z + dz)− p(z) = −g ρ(z) dz, so that pressure at the top of the layer is less than that at the bottom.

Hence, column by column, the pressure at a point in an approximate hydrostatic fluid is
determined by the weight per horizontal area of fluid above that point. This key property is
thus shared between fluids in exact and approximate hydrostatic balance. In Chapter 27 we
have much more to say about fluid flows maintaining approximate hydrostatic balance.

24.7 Axial angular momentum

Following our discussion of a point particle in Section 14.5, the axial angular momentum of a
fluid element is given by

Lz = (ρ δV ) r⊥ (u+ r⊥Ω) ≡ (ρ δV ) lz (24.59)

where
lz = r⊥ (u+ r⊥Ω) (24.60)

is the axial angular momentum per unit mass, and the distance to the polar rotation axis,

r⊥ = r cosϕ (24.61)

is the moment-arm for determining the torques acting on a fluid element. Making use of the
zonal momentum equation (24.19), as well as the material time derivative of the moment arm

Dr⊥
Dt

=
Dr

Dt
cosϕ− r Dϕ

Dt
sinϕ = w cosϕ− v sinϕ, (24.62)

we find the material time change

Dlz

Dt
= (u+ 2Ω r⊥)

Dr⊥
Dt

+ r⊥
Du

Dt
(24.63a)

= (u+ 2Ω r⊥)
Dr⊥
Dt

+ (u+ 2Ω r⊥) (v sinϕ− w cosϕ)− 1

ρ

∂p

∂λ
(24.63b)

= (u+ 2Ω r⊥)

[
Dr⊥
Dt

+ v sinϕ− w cosϕ

]
− 1

ρ

∂p

∂λ
(24.63c)

= −1

ρ

∂p

∂λ
, (24.63d)
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north

r⊥

r
ϕ

Ω

Figure 24.3: A ring of inviscid air circulating around a constant latitude circle over a smooth planet. This ring
conserves is axial angular momentum. Consequently, axial angular momentum conserving motion of the ring
induces a zonal acceleration if the ring alters its distance from the rotation axis, r⊥, by moving meridionally or
vertically.

so that

ρ
Dlz

Dt
= −∂p

∂λ
=⇒ ∂(ρ lz)

∂t
+∇ · (ρ lz v) = −∂p

∂λ
. (24.64)

In the absence of a zonal pressure gradient, the axial angular momentum for a fluid element
is materially invariant just like for the point particle discussed in Section 14.5. The physical
constraints for motion of the point particle, as described in Section 14.6, also hold for the fluid
element. In particular, we can equate the zonal Coriolis acceleration to the zonal acceleration
induced by axial angular momentum conservation. For example, a fluid element initially at rest
in a fluid with zero zonal pressure gradient will zonally accelerate when moved meridionally
(e.g., as from a meridional pressure gradient) according to the needs of axial angular momentum
conservation.

24.7.1 Axial angular momentum conserving motion of a ring of air

Atmospheric and oceanic flows rarely experience a zero zonal pressure gradient. However, on a
smooth spherical planet without meridional boundaries there is a zero zonally integrated zonal
pressure gradient ˛

ring

∂p

∂λ
dλ = 0. (24.65)

Hence, a constant mass material ring of fluid circling the smooth planet (Figure 24.3) will
preserve its axial angular momentum in the absence of friction

d

dt

˛
ring

ρ lz dV =

˛
ring

ρ
Dlz

Dt
dV = −

˛
ring

∂p

∂λ
dV = 0. (24.66)

We now consider some thought experiments to illustrate the zonal fluid motion induced by axial
angular momentum conservation. Each example has an analog in the point particle thought
experiments considered in Section 14.6.

Consider a latitudinal ring of constant mass inviscid fluid circling the earth at latitude ϕA

and radial position rA. If the ring is at rest in the rotating terrestrial reference frame, the angular
momentum per mass for this ring is due to just the rigid-body motion of the planet,

lz = Ω(rA cosϕA)
2. (24.67)
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Altering either the latitude (to ϕB) or radial position (to rB) induces a corresponding zonal
velocity, uB ̸= 0, that maintains fixed axial angular momentum

lz = Ω(rA cosϕA)
2 = rB cosϕB (uB +Ω rB cosϕB), (24.68)

which means that

uB = Ω
(rA cosϕA)

2 − (rB cosϕB)
2

rB cosϕB

. (24.69)

For example, moving the ring vertically to a radial distance, rB ̸= rA, while maintaining a
constant latitude, ϕB = ϕA, induces a zonal velocity

uB = ΩcosϕA

r2A − r2B
rB

. (24.70)

If the new radial position is less than the original, so that r2A > r2B, then axial angular momentum
conservation induces an eastward zonal velocity (uB > 0); i.e., westerly winds. The opposite
happens for an increase in the radial position. If we instead change the latitudinal position of the
ring (ϕA ̸= ϕB) while keeping the radial position fixed (rA = rB), then axial angular momentum
conservation induces the zonal velocity

uB = rA Ω
cos2 ϕA − cos2 ϕB

cosϕB

. (24.71)

Since −π/2 ≤ ϕ ≤ π/2, we know that cosϕ ≥ 0 on the sphere, and cosϕ decreases moving
poleward in either hemisphere. Hence, poleward latitudinal motion that preserves axial angular
momentum induces eastward flow (uB > 0), whereas eqatorward latitudinal motion induces
westward flow (uB > 0).

24.7.2 Realistic atmospheric axial angular momentum cycle

How realistic is it to have coherent rings of inviscid air circulating around the planet at all
latitudes? To answer this question we insert some numbers for a ring of radius Re that starts
with zero relative velocity at the equator, ϕA = 0, in which case equation (24.71) reduces to

uB = rA Ω
sin2 ϕB

cosϕB

. (24.72)

The westerly winds induced by axial angular momentum conserving motion have the following
speeds at a selection of latitudes

u(10◦) = 14 m s−1 u(20◦) = 58 m s−1 u(30◦) = 134 m s−1. (24.73)

The values at higher latitudes grow unbounded since cosϕ→ 0 as the poles are approached. So
there is a problem with an idealized theory of atmospheric circulation based on axial angular
momentum conserving rings of air.

Further investigation reveals that inviscid axial angular momentum conserving ideas extend
only so far as the Hadley circulation, which extends only to the middle latitudes. There are
two missing ingredients needed for a more realistic theory: (i) frictional dissipation between
the atmosphere and land, which occurs within the planetary boundary layer; (ii) baroclinic
eddies that contribute to poleward and vertical transport of angular momentum. It is outside of
our scope to detail these physical processes and the corresponding atmospheric circulation. A
pedagogical summary can be found in Section 10.3 of Holton and Hakim (2013) and Section 8.2
of Marshall and Plumb (2008).
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24.7.3 Further study
In Section 28.5 we consider the zonally integrated axial angular momentum budget for the ocean
with sloping solid-earth bottom boundary as well as the upper surface (ocean) boundary. In
particular, we see how boundary form stresses (Section 28.1) affect the angular momentum
in addition to boundary frictional stresses. That ocean analysis is analogous to that for the
atmosphere given in Section 10.3 of Holton and Hakim (2013).

24.8 Exercises
exercise 24.1: Pressure solution to Euler’s equation
This exercise is based on Q1.10 of Johnson (1997). Consider the Euler equation (24.18) in a
non-rotating reference frame (zero Coriolis) and with constant density

ρ
Dv

Dt
= −∇p− ρ g ẑ. (24.74)

Assume the Cartesian velocity field is given by

v(x, t) = τ−2 (x̂x t+ ŷ y t− 2 ẑ z t), (24.75)

where τ is a constant with dimensions of time.

(a) Show that the velocity field is non-divergent, ∇ · v = 0.

(b) Find the pressure field, p(x, t), satisfying p(x = 0, t) = P0(t).

exercise 24.2: Conditions for uniform flow without gravity and rotation
Consider the Euler equation (24.18) in the absence of rotation (zero Coriolis) and gravitation
(free space fluid)

ρ
Dv

Dt
= −∇p. (24.76)

Ignore all boundaries throughout this exercise, and assume density is a uniform constant.

(a) What equation does the pressure need to satisfy to ensure v ≡ v0, where v0 is a constant
in space and time?

(b) What equation does the pressure need to satisfy to ensure ∂t(∇ · v) = 0?

exercise 24.3: Diagnosing the pressure for a given flow
Consider a two-dimensional perfect fluid with constant density, ρ, that satisfies the Euler equation
in the absence of planetary rotation

ρ
Du

Dt
= −∇hp. (24.77)

Provide a suitable pressure (to within a constant) that corresponds to the following steady (i.e.,
time independent) velocity fields, with γ > 0 a constant having dimensions inverse time, and
x = x̂x+ ŷ y the horizontal position vector. Consider the following hints: (i) check your physical
dimensions, (ii) check that ∇× [(u · ∇)u] = 0, (iii) check that ∇ · u = 0, which is required since
ρ is a constant.

(a) u = γ x
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(b) u = −γ ẑ × x

(c) u = γ (x x̂− y ŷ).

exercise 24.4: Theorem of stress means (Aris (1962) exercise 5.12.2)
Make use of Cauchy’s equation of motion (24.14) and the divergence theorem to prove the
theorem of stress means

˛
∂R

ΨTpq n̂q dS =

ˆ
R

[
Tpq ∂qΨ+ ρΨ

(
Dvp
Dt
− fp

)]
dV, (24.78)

where Ψ is an arbitrary differentiable function, and n̂q is the q′th component of the outward
normal vector on ∂R. This theorem finds use in certain formulations of continuum mechanics.
Assume Cartesian tensors.

exercise 24.5: Area of a steady 1d laminar jet emanating from a downward
nozzle
Consider a steady state laminar jet of constant density and inviscid water emanating from a
downward facing nozzle with a constant prescribed volume flow rate, Q (dimensions volume
per time). Ignore surface tension and assume the air pressure acting on the surface of the jet
is constant all along the jet. You can solve this exercise by making use of the steady vertical
momentum equation and the steady mass continuity equation.

(a) Explain why we can set dp/dz = 0 within the jet once it leaves the nozzle.

(b) Determine an expression for the area of the jet, A(z), as a function of distance, z, from
the nozzle, with the nozzle placed at z = 0 and z < 0 a position beneath the nozzle. In
addition to z, your expression will contain Q, g, and A(0).

(c) Is the area of the jet getting smaller or larger as the water moves downward away from
the nozzle? Does this answer agree with your experience?

(d) If the downward speed of water at the nozzle is w(0) = 0.5 m s−1, then at what vertical
position, z, is the area of the jet four times different than at z = 0?

exercise 24.6: Rossby effect
Consider a horizontal region of fluid whose velocity is rotationally symmetric and depth inde-
pendent

u = Γ× r, (24.79)

where
Γ = Γ(r) ẑ (24.80)

is an angular velocity, ẑ is the vertical direction, and r is the radial distance to the origin.
Furthermore, let Γ(r) vanish for radial distances r ≥ R for some radius R. Let the fluid be
moving on a β-plane with Coriolis parameter f = fo + β y = fo + β r sinϑ, where ϑ is the polar
angle relative to the x-axis (see Section 4.22 for definition of polar coordinates). Derive an
integral expression for the Coriolis acceleration integrated over this fluid region. Discuss the
direction of the acceleration.

You may find the following hints of use.

• The resulting integrated Coriolis acceleration is solely in the ŷ direction, and it vanishes
when β = 0.

• The answer is given in Rossby (1948), and is sometimes known as the Rossby effect.
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• We further consider such interactions between rotating fluid motion and the Coriolis
parameter in Section 38.5.4 when studying the beta drift of axially symmetric vortices.
There, we find that the beta drift leads to a northwestward drift rather than the northward
drift from the Rossby effect. The reason for the discrepency is that Rossby (1948) ignored
pressure effects that set up a secondary flow that induces westward drift, in addition to
Rossby’s northward drift. For this exercise, we ignore these pressure effects.

exercise 24.7: Center of mass transport theorem
Consider a field, ψ, that satisfies the standard conservation law

ρ
Dψ

Dt
= −∇ · J , (24.81)

within a region, R(v), that moves with the fluid flow. We here derive some results that hold for
Cartesian coordinates in Euclidean space.

(a) Prove the transport theorem valid for Cartesian tensors

d

dt

ˆ
R(v)

ψ x ρdV =

ˆ
R(v)

(J + ρψ v) dV −
˛
∂R(v)

x (n̂ · J) dS. (24.82)

Hint: multiply both sides of equation (24.81) by xm.

(b) Offer an interpretation of equation (24.82). Hint: first consider the special case that the
total ψ-stuff, defined by Ψ ≡

´
R(v) ψ ρdV , is constant when following the flow. Further

hint: consider the more specialized case of ψ = 1 and J = 0, and then make use of Exercise
19.2.
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Chapter 25

STRESS IN FLUIDS

As a continuous region of matter, a fluid element experiences two kinds of forces. The first
concerns external or body forces and the second concerns internal or contact forces. Body forces
act throughout the fluid element such as from a force field whose source is external to the matter
acted upon. The accumulated effects from body forces within a fluid region result from volume
integrating the body forces over the region. In geophysical fluid mechanics, we are concerned
with body forces from the effective gravitational acceleration (central gravity plus planetary
centrifugal) plus the body force from the Coriolis acceleration. Body forces are also experienced
by the point particles studied in Part II in this book.

Internal or contact forces are the focus of this chapter, with such forces arising from
intermolecular forces within the fluid media. Macroscopically, they give rise to the local exchange
of dynamical properties between fluid elements, and they represent a fundamental distinction
between forces acting on a fluid element and those acting on a point particle (Part II in this
book). Dividing the contact force by the area upon which it acts leads to the Cauchy stress vector.
As a force per unit area, stresses are associated with two directions: the direction of the force
and the direction normal to the area acted upon by the force. Correspondingly, stresses acting
on a fluid element are naturally organized into a second order stress tensor.1 Details of the stress
tensor govern the dynamic response of a continuous media to kinematic and thermodynamic
properties of the media. Consequently, the equations of continuum mechanics posed by Cauchy
find their specialization when prescribing the stress tensor, with this specification known as a
constitutive relation.

We distinguish two types of mechanical stresses acting within a fluid: a normal stress and a
tangential stress, which is commonly called a shearing stress in the fluid mechanical literature.
Pressure is the canonical normal stress that acts normal to any surface within a fluid, and with
pressure acting in a compressive manner. The ability of a fluid to resist compression is a function
of the fluid’s compressibility. Fluids flow in the presence of tangential or shearing stresses, with
viscous friction acting to resist such motion.

Contact forces, which are given by the Cauchy stress times an area element, satisfy Newton’s
third law, also known as the action/reaction law (e.g., see beginning of Chapter 11). Hence,
the net contact force acting on a finite region arises just from the contact forces acting at the
region boundary. This property of contact forces means that a mechanically isolated region of a
continuous media (i.e., a region unaffected by external forces or boundary contact forces) does
not spontaneously translate its center of mass. Similarly, symmetry of the stress tensor means
that an isolated region does not spontaneously alter its angular momentum.

Surface tension is a stress that acts on the boundaries of a fluid media, such as the boundary
between oil and water or, more relevant to our study of geophysical flows, the boundary between
air and water. Surface tension is unique in this chapter in that it does not satisfy Newton’s third

1In the language of continuum mechanics, we here work exclusively with the Cauchy stress tensor. See Section
1.22 of Tromp (2025a) for more details.
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law. As shown in Section 25.11, surface tension is generally negligible for length scales larger
than a few centimeters. Even so, the effects of surface tension are important if studying physical
processes associated with air-sea interactions, such as tracer, heat, and momentum exchange
through bubbles, droplets, and capillary waves (we study capillary waves in Section 52.10).

chapter guide

We introduced contact forces in Chapter 24 when deriving the fluid equations of motion. In
the present chapter we dive deeper into the study of contact forces and their corresponding
stresses. We also discuss conditions placed on stress and velocity at boundaries. We
organize fluid stresses into a second order Cauchy stress tensor and further decompose this
stress into isoptropic (pressure) stresses and tangential (viscous) stresses. Understanding
the mathematical and physical aspects of stress is important for the suite of fluid models
studied in this book. Because the subject involves vectors and tensors, it can require
more patience than analogous chapters that discuss scalar fields. To make the formalism
less mathematically intense, we employ Cartesian tensors as discussed in Chapters 1 and
2, with all tensor indices downstairs. Results can be generalized to arbitrary coordinates
through the general tensor analysis detailed in Chapter 4.

There are various places in this chapter where we consider integrals of vectors over finite
regions, such as when forming the finite volume (weak form) momentum budget or angular
momentum budget. Such discussions hold only for Cartesian tensors, with integration of
general tensors requiring more care.
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25.1 Loose threads

• Schematic of viscous transfer as in Figure 12.6 of Kundu et al. (2016)

• More on existence and uniqueness of Navier-Stokes as per Doering and Gibbon (1995).

25.2 Cauchy’s stress principle and Newton’s laws
We here develop some general properties of contact forces and the associated stresses. For that
purpose, consider an arbitrary smooth closed region, R, of fluid with volume V =

´
R
dV and

mass M =
´
R
ρdV (Figure 25.1). Furthermore, let ∂R be the bounding surface for the region,

and let n̂ be the outward normal at a point on the boundary.

25.2.1 Cauchy’s stress principle

The bounding surface of a fluid region experiences mechanical interactions with the surrounding
fluid continuum (due to molecular forces) and these interactions lead to contact forces acting on
the boundary. Let τ be the stress vector (force per unit area) acting at a point on ∂R. Cauchy’s
stress principle asserts that the stress vector is a function of the position, time, and boundary
normal

τ = τ (x, t, n̂). (25.1)

The dependence on the boundary normal in equation (25.1) means that the stress acting on a
surface is generally a function of the orientation of that surface. This form of the stress trivially
holds for an exactly hydrostatic fluid where the stress vector is proportional to the pressure
(Section 24.6). Furthermore, the stress from pressure is oriented along the inward normal, thus
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reflecting the purely compressive nature of pressure

τ = −p(x, t) n̂ static fluid in hydrostatic balance. (25.2)

Cauchy’s stress principle is sensible for points within the fluid media, and its relevance
has been supported by experimental studies over the time since Cauchy made this assertion
in the 1820s. Furthermore, it holds for pressure and viscous stresses at the interface between
fluid media or at solid-earth boundaries. However, Cauchy’s stress principle does not hold for
surface tension, which is proportional to the curvature of the surface separating two fluid media
(e.g., atmosphere and ocean), where curvature involves spatial gradients of the normal vector.
As discussed in Section 25.11, surface tension is important for length scales on the order of
centimeters, and as such play a minor role in this book. Hence, with the single exception of
surface tension, we rely on Cauchy’s stress principle to formulate the fluid dynamical equations.

25.2.2 Newton’s third law and local equilibrium of stresses
Newton’s second law says that in an inertial reference frame, unbalanced forces acting on a
physical system affect a time change to the linear momentum. Consider a region, R(v), whose
fluid elements follow the barycentric velocity. Newton’s second law then states that the material
time evolution of the region’s linear momentum is given by

d

dt

ˆ
R(v)

v ρ dV =

ˆ
R(v)

f ρdV +

˛
∂R(v)

τ dS, (25.3)

where
´
R(v) f ρ dV is the domain integrated body force (from central gravity, planetary centrifugal,

and Coriolis). To develop a general property for the contact forces, consider this balance for
a region whose size gets infinitesimally small. Assuming the integrands for the two volume
integrals are well behaved (i.e., smooth and bounded) as the region size goes to zero, we see that
the volume integrals are proportional to L3, where L is a length scale measuring the size of the
region (e.g., side for a cubical region or diameter for a spherical region). In the same manner, we
assume the stresses are well behaved in the case of an infinitesimal region. However, the integral
of the contact forces goes to zero at the slower rate that is proportional to L2. Self-consistency
for the balance (25.3) over a region of infinitesimal size thus requires the contact forces to satisfy
the limiting behavior

lim
L→0

1

L2

˛
∂R(v)

τ dS = 0. (25.4)

This behavior means that contact forces at a point in the fluid must be in local equilibrium.
Equation (25.4) is sometimes referred to as Cauchy’s fundamental lemma.

A direct implication of the local equilibrium statement is that stress vectors that respect
Cauchy’s principle (25.1) satisfy

τ (x, t, n̂) = −τ (x, t,−n̂). (25.5)

For example, the stress vector on one side of a surface is equal and oppositely directed to the
stress vector acting on the other side. This equation is an expression of Newton’s third law
of mechanics (the action/reaction law; see Section 11.5), here written in terms of the stresses
acting in a continuous media. It is of fundamental importance throughout our study of contact
forces and their associated stresses acting within the fluid and at boundaries. We thus see how
an application of Newton’s second law, the linear momentum principle (25.3) for a continuous
media, leads to a statement of Newton’s third law in the form of equation (25.5) holding for
contact forces.

As an example of the above ideas, the simplest stress we consider in this chapter is that from
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pressure, with pressure acting solely in a compressive manner so that the stress vector takes the
form

τ press(x, t, n̂) = −p(x, t) n̂. (25.6)

This stress trivially satisfies the Newton’s third law relation (25.5) since

τ press(x, t, n̂) = −τ press(x, t,−n̂). (25.7)

Fbody

ℛ

τ

τ τ
τ

τ
τ

τ

Figure 25.1: Schematic of the net body force, Fbody, acting on a finite region of fluid, plus the accumulation of
stress vectors, τ , acting on the region boundaries. The net body force is determined by a volume integral of the
body force (gravity, centrifugal, and Coriolis) at each point within the volume. In contrast, since the stresses are
in local equilibrium, the volume integral of the stress divergence reduces to an area integral of the stress over the
region boundary. Stress arises from pressure (compressive and normal) and strains (which then lead to viscous
stresses when there is viscosity). The area integrated contribution from pressure to horizontal accelerations is
referred to as form stress. The form stress coming from the bottom boundary is called the topographic form stress.
The form stress appearing at the air-sea boundary is the atmospheric form stress if considering ocean dynamics
and oceanic form stress if considering atmospheric dynamics. We study form stress in Chapter 28.

25.2.3 Comments on the local equilibrium relation

The local equilibrium relation (25.4), and the corresponding expression of Newton’s third law,
(25.5), might suggest that stresses cannot lead to motion. However, that suggestion is incorrect
since stresses integrated over a finite region can lead to a net force that causes motion. Since
contact forces within the domain interior cancel pointwise, the local equilibrium relation (25.4)
says that the net contact force acting on the region arises only from the area integrated stresses
acting on the region boundary. Local or pointwise mechanical equilibrium does not imply
mechanical equilibrium for finite regions.

To further emphasize the above point, consider an ocean region bounded at its bottom by
the solid earth and its upper surface by a massive atmosphere. Variations (divergences) in
stresses over finite regions within the ocean fluid lead to accelerations; e.g., ocean circulation.
However, when integrated over the full ocean domain, all stresses cancel from the interior of the
fluid. Consequently, the net contact force acting on the full ocean domain reduces to the contact
force acting just on the ocean boundaries. The boundary contact forces arise from mechanical
interactions with the solid-earth and the overlying atmosphere. The center of mass for the ocean
basin remains static if the accumulation of forces sum to zero, which includes the contact forces
acting over its boundaries plus the volume integrated body forces from effective gravity (central
gravity plus planetary centrifugal) and Coriolis.

In Figure 25.2 we illustrate the net pressure force acting on an arbitrary fluid domain.
Pressure acts solely in a compressive manner as directed along the inward normal to the domain.
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Area integration over a domain boundary renders the net pressure force acting on the domain

F pressure = −
˛
∂R
p n̂dS = −

ˆ
R

∇p dV, (25.8)

where the second equality follows from application of Gauss’s divergence theorem for a scalar field
(Section 2.7.2). When decomposed according to coordinate axes, the pressure force acting on
the boundary has a component in both the vertical and horizontal directions, thus contributing
to both vertical and horizontal accelerations. The vertical accelerations are closely balanced by
the weight of fluid, with exact balance in the case of a hydrostatic fluid. The horizontal stresses
from pressure are known as form stress. This name arises since the stress depends on the form,
or shape, of the surface on which pressure acts.

ℛ

−p n̂
−p n̂−p n̂ −p n̂

−p n̂
−p n̂

−p n̂

−p n̂ −p n̂ −p n̂ −p n̂

z

Figure 25.2: Schematic of contact forces from pressure acting on the boundaries to an ocean domain. Pressure
forces are directed according to minus the local normal since pressure is a compressive force aligned with the
inward normal direction. As with all contact forces, the pressure forces acting in the interior of the ocean are
locally in mechanical equilibrium. Hence, when integrated over the global domain the net pressure forces only
arise at the domain boundaries. That is, the net pressure force acting on the full ocean domain arises only at the
interface between the solid-earth and the ocean, plus the interface between the atmosphere and the ocean. Note
that the pressure force has a component in both the vertical and horizontal directions as per the orientation of
the local normal vector. Further boundary stresses arise from viscous exchange, which generally have components
perpendicular to the boundary normal; i.e., tangential to the boundary. Such stresses also satisfy Newton’s third
law.

25.2.4 Historical comments

We find it useful to quote from Truesdell (1952), who provides the following description of
Cauchy’s stress principle as given by equation (25.1).

Upon any imagined closed surface, S, there exists a distribution of stress vectors, τ ,
whose resultant and moment are equivalent to those of the actual forces of material
continuity exerted by the material outside S upon that inside.

Worded in this manner, we can understand the relation between Newton’s third law and Cauchy’s
stress principle. The profound nature of Cauchy’s stress principle is further articulated, again
from Truesdell (1952).

[Cauchy’s stress principle] has the simplicity of genius. Its profound originality can
be grasped only when one realizes that a whole century of brilliant geometers had
treated very special elastic problems in very complicated and sometimes incorrect
ways without ever hitting upon this basic idea, which immediately became the
foundation of the mechanics of distributed media.
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25.3 The stress tensor

Cauchy’s stress principle reduces the mathematical complexity of describing stress vectors. A
further implication of this principle leads to Cauchy’s theorem, which states that the stress
vector, which is a function of space, time, and normal direction, can be expressed in terms of
a stress tensor (a function of space and time) projected into the direction of the normal. The
purpose of this section is to provide arguments supporting this theorem, with these arguments
largely following the original from Cauchy in 1827.

25.3.1 The stress tetrahedron

For this purpose, consider the tetrahedron fluid region shown in Figure 25.3, where three of the
four sides are aligned according to the Cartesian coordinate axes and the fourth side has an
outward normal, n̂ = (n̂1, n̂2, n̂3), projecting into all three directions. The results developed for
this rather contrived region using Cartesian coordinates also hold for an arbitrary region using
arbitrary coordinates. The reason for this generality is that once we derive a tensorially correct
result using one choice of coordinates, such as Cartesian used here, we can make use of general
tensor analysis (Chapters 3 and 4) to move from specific coordinates to arbitrary coordinates.

In the limit that the tetrahedron size goes to zero, local equilibrium of the contact forces
means that

−
3∑

m=1

τ (m) dAm + τ n̂ dA = 0, (25.9)

where we use the shorthand expression for the outward normal directed stress vector

τ (x, t, n̂) = τ n̂. (25.10)

In equation (25.9), τ (m) dAm (no implied summation) is the contact force vector acting on the
face with outward normal parallel to the corresponding coordinate axis and τ n̂ dA is the contact
force acting on the slanted face with outward normal n̂. The minus sign arises for the summation
term since the outward normals for these three faces point in the negative coordinate directions,
and our convention is for τ (m) to align with the positive coordinate directions. The areas for
each face are related to the slanted face area through

dAm = n̂m dA, (25.11)

so that the local equilibrium relation (25.9) becomes

τ n̂ =
3∑

m=1

n̂m τ (m). (25.12)

25.3.2 The stress tensor and stress vector

Equation (25.12) can be organized into a matrix-vector equation

[
(τn̂)1 (τn̂)2 (τn̂)3

]
=
[
n̂1 n̂2 n̂3

]  τ(1)1 τ(1)2 τ(1)3
τ(2)1 τ(2)2 τ(2)3
τ(3)1 τ(3)2 τ(3)3

 , (25.13)
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x

y

z

τn̂

−τ(y)

−τ(z)

−τ(x)

Figure 25.3: Cauchy’s tetrahedron region of fluid with stresses acting on the four faces. Note that the stresses
are not necessarily directed normal to the faces. Local equilibrium of stresses means that the accumulation of
these four stresses around the region adds to zero as the region volume goes to zero.

where each matrix element is the n-component of the m-stress τ (m). We introduce a less
cumbersome notation by writing

[
(τn̂)1 (τn̂)2 (τn̂)3

]
=
[
n̂1 n̂2 n̂3

]  T11 T12 T13
T21 T22 T23
T31 T32 T33

 , (25.14)

so that Tmn measures the force per area in the n-direction along a surface whose outward normal
points in the m-direction, as depicted in Figure 25.4. Making use of Tmn in the expression
(25.12) leads to

(τ n̂)n =
3∑

m=1

n̂m Tmn, (25.15)

which can be written more succinctly as

τ n̂ = n̂ · T . (25.16)

We thus see that the stress vector that acts on a surface that is oriented according to a normal
vector, n̂, equals to the projection of the stress tensor, T , onto the normal vector. Evidently,
τ n̂ is a vector with components within the tangent plane of the surface, as well as normal to the
surface. Exposing functional dependence to equation (25.16) reveals

τ n̂(x, t, n̂) = n̂ · T (x, t), (25.17)

which manifests Cauchy’s theorem. Namely, the stress vector τ n̂, which is a function of (x, t, n̂),
has been decomposed into a stress tensor, T , which is a function of (x, t), as well as the projection
of the stress tensor into a direction n̂. Finally, note a common example concerns the case of a
vertical normal direction, n̂ = ẑ, as for the stress acting on a nearly horizontal sea surface. In
this case the stress vector is

τ ẑ = x̂T31 + ŷ T32 + ẑ T33. (25.18)

The horizontal components are key to the transfer of horizontal stress between the atmosphere
and ocean, thus providing a mechanical forcing to the ocean circulation. The vertical stress is less
important particularly for hydrostatic fluids whose vertical momentum equation is dominated
by hydrostatic balance.
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T13

Figure 25.4: Illustrating the components to the stress tensor, Tmn and how they are organized according to the
coordinate axes. The component Tmn is the stress that points in the n-direction along the face with outward
normal in the m-direction.

25.3.3 Stress is a tensor

How do we know that Tmn form the components to a tensor rather than just being elements
of a 3 × 3 matrix? To answer this question we note that each component of T is a force per
area, with force a vector and area orientable by its outward normal. As it is built from vectors,
which are first order tensors, we suspect that T should be a proper second order tensor. This
suspicion is supported by the quotient rule from tensor analysis (Section 3.1.2). Namely, the
quotient rule means that equation (25.15) indeed yields Tmn that are components to a second
order tensor. As components to a second order tensor, the tensor components, Tmn, transform
under a coordinate transformation according to the rules developed in Chapter 1 for Cartesian
tensors and in Chapter 4 for general tensors. Through the power of tensor analysis, we thus see
that our considerations, based on the rather contrived tetrahedron region in Figure 25.3, hold
for an arbitrary region described by an arbitrary coordinate system.

25.4 Angular momentum and the stress tensor

The linear momentum principle afforded by Newton’s law of motion allowed us to deduce the
local equilibrium property (25.4) of the stress. We here derive a constraint placed on the stress
tensor that is imposed by studying angular momentum. Phenomenologically, we observe that
geophysical fluids, as with most common fluids, experience torques only as the moments of body
forces acting throughout the volume of a fluid region, or as moments of contact forces acting on
the surface bounding the fluid region. We now make use of this observation to deduce symmetry
of the stress tensor.2

2Page 11 of Batchelor (1967) and Section 5.13 of Aris (1962) offer brief discussions of fluids in which internal
force couplets lead to torques distinct from those considered here, and in which the stress tensor has an anti-
symmetric component. Dahler and Scriven (1961) provide a more thorough account of such polar materials.
Internal sources of angular momentum are studied in solid mechanics, with Section 5.3 of Malvern (1969) offering
a discussion.
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25.4.1 Basic formulation

Consider a constant mass fluid element that has a Cartesian position x relative to an arbitrary
origin. The angular momentum of the fluid element with respect to the origin is

L = ρ δV (x× v), (25.19)

and its material time evolution is

DL

Dt
= ρ δV x× Dv

Dt
, (25.20)

which follows since D(ρ δV )/Dt = 0, Dx/Dt = v, and v × v = 0. Making use of Cauchy’s form
for the equation of motion (24.14)

ρ
Dv

Dt
= ρf +∇ · T (25.21)

allows us to write the angular momentum evolution as

DL

Dt
= δV x × (ρf +∇ · T ). (25.22)

The first term arises from body forces (e.g., central gravity, planetary centrifugal, and Coriolis)
and the second term arises from the divergence of stresses. Expanding the stress divergence
term renders [

DLm
Dt

]
stress

= δV ϵmnp xn (∇ · T )p (25.23a)

= δV ϵmnp xn ∂qTpq (25.23b)

= δV ϵmnp [∂q(xn Tpq)− (∂qxn)Tpq] (25.23c)

= δV ϵmnp [∂q(xn Tpq)− Tpn], (25.23d)

where the final equality follows since ∂qxn = δqn. Bringing this result back into the full expression
(25.22) leads to

DLm
Dt

= δV ϵmnp [ρ xn fp + ∂q(xn Tpq)− Tpn]. (25.24)

25.4.2 Physical interpretation

To facilitate a physical interpretation of the terms appearing in equation (25.24), integrate over
an arbitrary Lagrangian region (region moving with the barycentric velocity, v) so that

d

dt

ˆ
R(v)

Lm =

ˆ
R(v)

ϵmnp [ρ xn fp + ∂q(xn Tpq)− Tpn] dV. (25.25)

As noted earlier, the first term on the right hand side arises from torques due to body forces
acting over the region

ˆ
R(v)

ϵmnp (ρ xn fp) dV =

ˆ
R(v)

(x× f)m ρdV. (25.26)
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The second term on the right hand side of equation (25.25) can be transferred into a surface
integral using the divergence theorem

ˆ
R(v)

ϵmnp ∂q(xn Tpq) dV =

ˆ
∂R(v)

ϵmnp xn Tpq n̂q dS =

ˆ
∂R(v)

(x× τ )m dS, (25.27)

where n̂q is the q′th component of the normal vector on the region boundary, ∂R(v), and

τp = Tpq n̂q (25.28)

is the p′th component to the stress vector that is normal to n̂ (see equation (25.16)). Hence, the
second term is the contribution to angular momentum evolution due to torques arising from the
moment of contact forces acting on the region boundary.

25.4.3 Symmetry of the stress tensor

As noted at the start of this section, geophysical fluids have their angular momentum affected
by torques arising from the moment of body forces acting throughout the fluid region, plus the
moment of contact forces acting on the region boundary. There is a third term in equation
(25.24) that does not fit into either category, and it is given by the volume integral

−
ˆ
R(v)

ϵmnp Tpn dV =

ˆ
R(v)

ϵmpn Tpn dV ≡
ˆ
R(v)

T×
m dV, (25.29)

where we defined
T×
m = ϵmpn Tpn. (25.30)

This term contributes a volume source to angular momentum and yet it is not associated with
body forces. We might refer to it as a torque density (torque source per volume). As already
noted, such torque sources are not relevant for geophysical fluids, in which case we conclude
that geophysical fluids are affected only by symmetric stress tensors

Tmn = Tnm =⇒ ϵmnp Tnp = 0. (25.31)

Symmetry of the stress tensor is a central property of the stresses acting on most fluids, including
geophysical fluids. We thus only consider symmetric stress tensors throughout this book.

To further support the above conclusion concerning a symmetric stress tensor, consider a
particular component of the torque density, such as the vertical

T×
3 = ϵ3pn Tpn = T12 − T21, (25.32)

with the corresponding torque applied to a fluid element given by

T×
3 δV = (T12 − T21) δx δy δz. (25.33)

What sort of angular acceleration is induced by this torque when computed relative to the fluid
element center? To answer this question, assume the fluid element is moving as a rigid body so
that we can compute its angular acceleration by dividing the torque by the moment of inertia
for the fluid element. The moment of inertia depends on the shape of the element, which is
unspecified. Even so, we can estimate the moment of inertia computed relative to a vertical axis
through the center of the element

I3 = α [(δx)2 + (δy)2] ρ δx δy δz, (25.34)
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where α is a dimensionless geometric factor. Dividing the torque (25.33) by the moment of
inertia thus leads to an estimate of the angular acceleration

angular acceleration ≈ T×
3

I3
≈ T12 − T21

[(δx)2 + (δy)2] ρα
. (25.35)

Now consider the continuum limit, found as δx and δy are reduced to zero. In the absence
of an unspecified counteracting torque, a finite angular acceleration in the continuum limit
(where (δx)2 + (δy)2 → 0) is ensured only if the stress tensor is symmetric so that the numerator
vanishes.

25.5 Forces and torques in an exact hydrostatic fluid
In this section we return to the study of a static fluid in a gravitational field originally considered
in Section 24.6. The exact solution is known as exact hydrostatic balance, which distinguishes
it from the approximate hydrostatic balance appropriate for moving geophysical fluids under
certain scaling regimes (Section 27.2). For a static fluid, all forces and all torques sum to zero at
any point. Similarly, the integrated forces and integrated torques acting on any finite fluid region
also vanish. The static fluid, although trivial dynamically, offers useful practice in applying the
formalism of continuum mechanics to a system where we know the answer. Furthermore, there
are interesting and important applications of these ideas, such as in the building of dams and
underwater structures, both of which we certainly hope will remain static!

25.5.1 Force balance
The force balance in an exact hydrostatic fluid was addressed in Section 24.6 where we deduced
the following relation between the pressure gradient and geopotential gradient

∇p = −ρ∇Φ. (25.36)

This equality holds at every point within the fluid, and as such it is a strong form of the
hydrostatic balance.3 Integrating over a finite fluid region, R, and using the divergence theorem
for scalar fields, (2.84), renders the finite volume or weak form of hydrostatic balance

ˆ
R

ρ∇ΦdV = −
ˆ
R

∇p dV = −
˛
∂R
p n̂dS. (25.37)

Expanding the above relations for the special case of Φ = g z leads to the differential statements

0 = x̂ · ∇p = ŷ · ∇p and ρ g = −ẑ · ∇p, (25.38)

with the first two equations implying that the exact hydrostatic pressure is only a function of z.
The corresponding weak form of hydrostatic balance reads

gM = −
ˆ
R

∇p · ẑ dV = −
˛
∂R
p (n̂ · ẑ) dS, (25.39)

where M =
´
R
ρ dV is the mass in the fluid region, and the weak form of horizontal balances are

0 =

ˆ
R

∇p · x̂dV =

˛
∂R
p (n̂ · x̂) dS (25.40a)

3Recall the discussion of weak and strong formulation in Section 17.1.1. In brief, the weak formulation provides
integral relations whereas the strong formulation provides differential relations.
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0 =

ˆ
R

∇p · ŷ dV =

˛
∂R
p (n̂ · ŷ) dS. (25.40b)

We emphasize that these finite volume balances hold for any arbitrarily shaped region within a
static fluid.

25.5.2 Pressure force balance for a homogeneous fluid

To further our understanding of the pressure force balances in a static fluid, consider a constant
density static ocean sitting under a massless atmosphere, in which case the hydrostatic pressure
is

p = −ρ g z, (25.41)

where z < 0 for the ocean. Now examine the pressure forces acting on the three sides of the
triangle in Figure 25.5. This geometry is simple enough to explicitly compute the pressure forces,
thus confirming the general properties in equations (25.39), (25.40a), and (25.40b).

The outward normal vectors along the three triangle faces are given by

n̂A = +ŷ and n̂B = −ẑ and n̂C = ẑ cosφ− ŷ sinφ, (25.42)

where

tanφ =
z2 − z1
y2 − y1

=
∆z

∆y
(25.43)

is the slope of the hypotenuse relative to the horizontal. The integrated pressure force along the
vertical face is thus given by

F press
A = −

ˆ
p n̂A dS = ŷ∆x

ˆ z2

z1

ρ g z dz = ŷ (ρ g/2) (z2 + z1)∆z∆x, (25.44)

where ∆x is the thickness of the triangle in the x̂ direction into the page. Note that F press
A

points in the −ŷ direction since z2 + z1 < 0. Likewise, the integrated pressure force along the
horizontal face is given by

F press
B = −

ˆ
p n̂B dS = −ẑ∆x

ˆ y2

y1

ρ g z1 dy = −ẑ ρ g z1∆y∆x, (25.45)

which points upward since z1 < 0.

The integrated pressure force along the sloped hypotenuse face, C, requires a bit of trigonom-
etry. For this purpose we make use of the formalism from Section 19.6.3, in which the vertical
position along the hypotenuse is written

z = η(y) = z2 − (y2 − y) tanφ, (25.46)

so that the horizontal projection of the surface area is given by equation (28.4)

dS = |∇(z − η)|dx dy =
dx dy

| cosφ| . (25.47)

Hence, the integrated pressure force on the hypotenuse is given by

F press
C = −

ˆ
p n̂C dS (25.48a)

=
n̂C

cosφ
∆x

ˆ y2

y1

ρ g η(y) dy (25.48b)
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= (ẑ − ŷ tanφ) ρ g∆x [z2∆y − y2∆z − (1/2) (y1 + y2)∆y tanφ] (25.48c)

= (ẑ − ŷ tanφ) ρ g∆x [z2∆y − y2∆z + (y1 + y2)∆z/2] (25.48d)

= (ẑ − ŷ tanφ) ρ g∆x∆y (z1 + z2)/2. (25.48e)

Bringing these results together renders the net pressure forces in the two directions

ŷ · (F press
A + F press

B + F press
C ) = (ρ g∆x/2) [(z1 + z2)∆z − tanφ (z1 + z2)∆y] = 0 (25.49a)

ẑ · (F press
A + F press

B + F press
C ) = ρ g∆x∆y∆z/2 =M g, (25.49b)

where the mass of the triangle is given by

M = ρ∆x∆y∆z/2. (25.50)

We thus see that the area integrated horizontal pressure forces vanish, whereas the area integrated
vertical pressure force balances the weight of the fluid. Again, these results are expected given
the general expressions (25.39), (25.40a), and (25.40b) of force balance. Even so, being able to
explictly compute the pressure forces acting around a region, and to confirm the general force
balances, is a useful means to become familiar with hydrostatic pressure.
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Figure 25.5: A right triangle region of fluid in a static ocean where z < 0. The positions for the three corners are
shown as (y1, z1), (y2, z1), and (y2, z2), along with the pressure forces acting on the three sides. In exact hydrostatic
balance, the area integrated pressure force acting over the triangle boundary vanishes, −

¸
∂R
p n̂dS = 0. If the

density of the fluid is assumed constant, then we can analytically compute the force balance as detailed in Section
25.5.2.

25.5.3 Torque balance

Torques arise in the presence of force couplets, which in turn lead to time changes in the angular
momentum. In our discussion of the stress tensor in Section 25.4, we saw that a symmetric stress
tensor removes volume sources of torque; i.e., there are no internal sources of force couplets. So
the only means to impart a nonzero torque is for force couplets to arise from body forces (forces
originating outside of the fluid region) and from contact forces that act between fluid elements
within the region. In this section, we show that for a static fluid then the net torque vanishes
both at an arbitrary point in the fluid as well as when integrated over an arbitrary region.
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Strong form: zero torques acting on a fluid element

The torque is the moment of a force computed about a chosen origin. For a static geophysical
fluid, the torque acting on a fluid element is given by the moment of the pressure force plus the
moment of the effective gravity force (central gravity plus planetary centrifugal)

x× f ρ δV = x× (−ρ−1∇p−∇Φ) ρ δV. (25.51)

As seen in Section 25.5.1, the pressure and effective gravitational forces exactly balance at each
point with a static fluid so that ∇p = −ρ∇Φ. Hence, there can be no torques at each point
since there are no net forces at each point.

Weak form: zero torques acting on a finite fluid region

To show that the torque vanishes for a finite fluid region, we can merely integrate the fluid
element result (25.51) over the finite region. Since the integral of zero is still zero, there are no
torques on the region. An alternative approach makes use of the weak formulation by following
the discussion in Section 25.4.2. In this approach, we start by writing the time change in angular
momentum acting on a static fluid region

d

dt

ˆ
R

L =

ˆ
R

[x× (−ρ∇Φ)] dV +

˛
∂R

[x× (−n̂ p)] dS. (25.52)

Note that although the discusssion in Section 25.4.2 focused on a Lagrangian region, R(v), there
is no distinction here between Lagrangian and Eulerian since the fluid is static.

The pressure contribution in equation (25.52) is written in its contact force form, which is
appropriate for a weak formulation. However, to compare its contribution to the torque with
that from effective gravity requires us to convert the area integral to a volume integral. For that
purpose we use Cartesian tensor notation and expose full details

˛
∂R

(n̂× x)a p dS = ϵabc

˛
∂R
n̂b xc p dS permutation symbol (Section 1.7.1)

(25.53a)

= ϵabc

ˆ
R

∂b(xc p) dV divergence theorem

(25.53b)

= ϵabc

ˆ
R

(δbc p+ xc ∂bp) dV product rule

(25.53c)

= ϵabc

ˆ
R

xc ∂bp dV ϵabc δbc = 0

(25.53d)

= −ϵacb
ˆ
R

xc ∂bp dV ϵabc = −ϵacb
(25.53e)

= −
ˆ
R

(x×∇p)a dV vector cross product notation.

(25.53f)
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This result then brings the angular momentum equation (25.52) to the form

d

dt

ˆ
R

L =

ˆ
R

[x× (−ρ∇Φ−∇p)] dV. (25.54)

At this point we can invoke the strong form force balance in equation (25.36), thus revealing
that the integrand on the right hand side vanishes at each point in the fluid. However, this
approach is no different than starting from the strong formulation of the torques in equation
(25.51) and integrating over a finite region. An alternative approach, remaining fully within the
weak formulation, states that if the region’s angular momentum remains constant, then that
defines a region experiencing zero net torque. This approach is the same as taken for the force
balance, whereby we say that a fluid region experiencing no acceleration is one that has zero net
forces acting on it. Hence, for a region with time invariant angular momentum we are led to the
finite volume (weak form) torque balance

ˆ
R

[x× (ρ∇Φ+∇p)] dV = 0 =⇒
ˆ
R

(x× ρ∇Φ) dV = −
ˆ
∂R

(x× n̂ p) dS, (25.55)

with this balance the direct analog for torques of the weak form of the force balances given by
equations (25.39), (25.40a), and (25.40b).

25.6 Flux-form Eulerian momentum equation

We often find it useful to consider Cauchy’s form of the momentum equation (25.21) in its
flux-form Eulerian expression. Making use of Cartesian tensors, we expand the material time
derivative acting on the velocity and introduce the mass conservation equation (19.6) so that

ρ
Dv

Dt
= ρ [∂tv + (v · ∇)v] (25.56a)

= ρ [∂tv + (v · ∇)v] + v (∂tρ+∇ · (ρv)] (25.56b)

= ∂t(ρv) +∇ · [ρv ⊗ v], (25.56c)

where v ⊗ v is the outer product of the velocity vector and it has Cartesian tensor components
written as

(v ⊗ v)mn = vm vn. (25.57)

Consequently, the momentum equation (25.21) takes on the flux-form Eulerian expression

∂t(ρv) +∇ · [ρv ⊗ v] = ρf +∇ · T. (25.58)

Alternatively, we can move the advection of momentum term onto the right hand side so that

∂t(ρv) = ρf +∇ · [T − ρv ⊗ v], (25.59)

which takes on the component form

∂t(ρ vm) = ρ fm + ∂n[Tmn − ρ vm vn]. (25.60)

In this form we see that momentum advection can be interpreted as a stress that modifies the
linear momentum per volume at a point in space. We refer to the stress,

T kinetic
mn = −ρ (v ⊗ v)mn = −ρ vm vn, (25.61)
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as the mechanical stress or kinetic stress, which arises from the mechanical interactions between
moving fluid elements. The turbulent contribution to the mechanical stress is known as the
Reynolds stress.

For a rotating fluid in a gravity field we set the body force to

ρf = −2 ρΩ× v − ρ∇Φ, (25.62)

and the divergence of the stress tensor is

∇ · T = −∇p+ ρF , (25.63)

with F the frictional acceleration (see Section 25.8). In this case, Cauchy’s equation (25.58)
takes on the form

∂(ρv)

∂t
+∇ · (ρv ⊗ v) + 2 ρΩ× v = −∇p− ρ∇Φ+ ρF . (25.64)

25.7 Linear momentum for arbitrary regions
Consider the budget of linear momentum for an arbitrary region, R, moving in an arbitrary
manner within the fluid. For this purpose we make use of the Leibniz-Reynolds Transport
Theorem (20.37)

d

dt

[ˆ
R

φdV

]
=

ˆ
R

∂φ

∂t
dV +

˛
∂R
φv(b) · n̂dS, (25.65)

where v(b) is the velocity of the region boundary, ∂R, with n̂ the outward normal along the
boundary. Applying this result to a component of the linear momentum per volume, φ = ρ vm
(again, assuming Cartesian tensors), and making use of the flux-form Eulerian momentum
equation (25.60) leads to

d

dt

[ˆ
R

ρ vm dV

]
=

ˆ
R

∂t(ρ vm) dV +

˛
∂R

(ρ vm)v
(b) · n̂dS (25.66a)

=

ˆ
R

[ρ fm + ∂n(Tmn − ρ vm vn)] dV +

˛
∂R

(ρ vm)v
(b) · n̂dS (25.66b)

=

ˆ
R

ρ fm dV +

˛
∂R

(Tmn − ρ vm vn) n̂n dS +

˛
∂R

(ρ vm)v
(b) · n̂dS (25.66c)

=

ˆ
R

ρ fm dV +

˛
∂R

[Tmn + ρ vm (v(b)n − vn)] n̂n dS. (25.66d)

We can write this relation as

d

dt

[ˆ
R

ρv dV

]
=

ˆ
R

ρf dV +

˛
∂R

[T + ρv ⊗ (v(b) − v)] · n̂dS. (25.67)

We conclude that the evolution of linear momentum over an arbitrary region is affected by the
volume integrated body force acting over the region, plus the impacts from stresses acting on
the region boundary. Notably, the stresses have a contribution from the advection of linear
momentum across the region boundary, with advection computed relative to motion of the
boundary. In Section 25.10 we specialize the budget (25.67) to an infinitesimally thin interface.
That analysis is then used to develop stress conditions for a surface within a single fluid media,
and the stress condition at the boundary between two fluids.

We refer to a Lagrangian region as one that moves so that the surface velocity and barycentric
velocity satisfy v(b) · n̂ = v · n̂, in which case the mechanical stress is eliminated from the finite
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volume momentum budget (25.67). Recall from our discussion of Lagrangian regions in Section
19.3.1, we denote a Lagrangian region by writing R(v) to emphasize that the region moves with
the barycentric fluid velocity, v. For this case the linear momentum is only affected by body
forces as well as stresses contained in the stress tensor

(v − v(b)) · n̂ = 0 =⇒ d

dt

[ˆ
R(v)

ρv dV

]
=

ˆ
R(v)

ρf dV +

˛
∂R(v)

T · n̂dS. (25.68)

This relation is Reynold’s transport theorem (Section 20.2.6) as applied to linear momentum.

25.8 Constitutive relation between stress and strain rate
Thus far we have offered a rather general treatment of stress, developing its properties according
to the conservation of linear momentum and angular momentum. We now develop constitutive
relations, which relate stress to properties of the fluid as well as properties of the fluid flow.

25.8.1 Thermodynamic pressure and mechanical pressure
Consider a fluid in which the stress on an area element is always normal to the area element and
is independent of the orientation. This fluid is in hydrostatic balance and the corresponding
stress tensor and stress vector are written

Tmn = −p δmn ⇐⇒ T · n̂ = −p n̂, (25.69)

where p is the hydrostatic pressure field. Since the pressure introduced here arises from purely
mechanical considerations, we refer to it as the mechanical pressure. For a compressible fluid
at rest, we can identify the mechanical pressure with the thermodynamic pressure encountered
in our study of equilibrium thermodynamics (Chapter 22). Furthermore, if we assume that
local thermodynamic equilibrium is maintained for fluid elements within a moving fluid, then
we are motivated to continue making this identification between mechanical pressure and
thermodynamical pressure (see Section 4.5 of Kundu et al. (2016) or Section 1.10 of Salmon
(1998)). However, we note that there is no fully deductive theory supporting this equality of
pressures. The reader in search of a deductive theory will need to start by studying nonequilibrium
statistical mechanics, which is outside our scope.

When the fluid flow is non-divergent (Chapter 21), we lose the equality between mechanical
pressure and thermodynamical pressure, even when the fluid is at rest. The reason is that
a non-divergent fluid flow is unable to do pressure work on a fluid element since the flow
cannot change the fluid element’s volume. Hence, for non-divergent flow there is no connection
between pressure and changes to internal energy as per the first law of thermodynamics (Section
22.2). A non-divergent flow only has access to the mechanical pressure as revealed through the
measurement of stresses. Furthermore, the mechanical pressure instantaneously conforms to the
needs of non-divergence throughout the fluid (see Section 29.3 and Section 38.4). Correspondingly,
energetic consistency requires us to make use of the geopotential in the equation of state for in
situ density in an oceanic Boussinesq fluid (in which the velocity is non-divergent), rather than
the thermodynamic pressure. We explore this point in Section 29.8.

25.8.2 Couette flow and the frictional stress tensor
Couette flow arises when fluid is placed between two long and straight concentric cylinders that
can rotate. Relative motion between the two cylinders leads to fluid motion. For example, if
the inner surface rotates, then fluid next to the cylinder wall will move with the cylinder. Any
normal stresses on the fluid imparted by the cylinders are directed toward the cylinder axis and
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so cannot render any tangential motion. This elegant experiment proves that fluid motion can
be induced by purely tangential stresses. Furthermore, the tangential stress imparted by the
inner cylinder transfers through the fluid to the outer cylinder. Indeed, if the inner cylinder
rotates at a constant rate, then eventually the whole fluid-cylinder system rotates as a solid
body. Couette flow thus exhibits how real fluids can support tangential stresses in response
to tangential strains, thus providing a clear distinction from a perfect fluid where only normal
stresses (i.e., pressure) are supported.

As evidenced by the Couette flow, a moving fluid has a more complex stress relation than a
static fluid. In particular, the presence of tangential stresses in the fluid provides evidence for
an additional piece to the stress tensor that we write as

Tmn = −p δmn + τmn ⇐⇒ T = −p I + τ. (25.70)

The pressure term remains isotropic as for a fluid at rest, thus imparting normal stresses. The
additional tensor, τ, is referred to as the frictional stress tensor or sometimes the viscous stress
tensor.4 The friction tensor captures the irreversible exchanges of momentum between moving
(relative to one another) fluid elements, such as in Couette flow, with the irreversible momentum
exchange supported by fluid viscosity. Viscosity is assumed to be identically zero in a perfect
fluid, so that a perfect fluid can only support normal stresses from pressure even when the
perfect fluid has relative motion.

As noted above, we assume the frictional stress tensor vanishes when there is zero relative
motion within the fluid.5 The physical idea is that fluid strains are needed to generate friction
between fluid elements to support the transfer of momentum through the presence of viscosity.
The determination of frictional stresses from kinematic properties (such as strain) requires a
constitutive relation. The constitutive relation commonly used for geophysical fluids follows that
for a Newtonian fluid, which is a particular type of Stokesian fluid whose frictional stresses are
assumed to be linearly proportional to the strain rate.

The diagonal stresses, T11, T22, and T33, are known as the direct stresses or normal stresses,
whereas the off-diagonal stresses are shear stresses. The sum of the direct stresses forms the
trace of the stress tensor and is given by

Tqq = T11 + T22 + T33 = −3 p+ τqq. (25.71)

If τqq = 0 then it is known as the deviatoric friction tensor. As argued in Section 25.8.6, a devia-
toric friction tensor is consistent with the assumption of equal mechanical and thermodynamical
pressures.

25.8.3 D’Alembert’s theorem for perfect fluids
Consider a finite impermeable solid body placed in a steady fluid flow, with the flow assumed to
be uniform upstream and downstream. A particular realization is an arbitrarily long pipe flow
with a solid object in the middle of the pipe. D’Alembert’s theorem says that the force exerted
by a perfect fluid on the solid body has no component along the direction of the pipe’s central
axis. A proof of this theorem, as provided in Section 13 of Meyer (1971), makes use of basic
insights into momentum balances.

D’Alembert’s theorem suggests a behavior that is contrary to common experience, whereby
an object placed in a real fluid flow experiences a net force in the direction of the flow, so
that there is a transfer of momentum between the fluid and the solid body. Consequently,
D’Alembert’s theorem became known as D’Alembert’s paradox, thus motivating research during

4The viscous tensor is distinct from the viscosity tensor, which is a fourth order tensor not considered in this
book. Section 4.5 of Kundu et al. (2016) and Chapter 17 in Griffies (2004) for a discussion of the viscosity tensor.

5This assumption follows those for a Stokes fluid as discussed in Section 5.21 of Aris (1962).
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the 19th and early 20th centuries to understand stresses acting between a fluid and solid. It
further put into question the ability to consider a fluid with arbitrarily small, but nonzero,
viscosity as approximately a perfect fluid, where the viscosity identically vanishes.

The nonzero viscosity present in real fluid supports tangential stresses, in addition to normal
(pressure) stresses present in perfect fluids. It is the tangential stresses, no matter how small
in magnitude (but nonzero), that lead to a net force on the solid body. These ideas highlight
the subtle nature of taking the limit of vanishing viscosity. Namely, a real fluid, no matter how
small its viscosity (so long as it is nonzero), displays fundamentally distinct behavior relative to
the perfect fluid. We return to this point in Section 25.8.7 when discussing the relation between
the Navier-Stokes equation and the Euler equation.

25.8.4 Guidance from Galilean invariance

Consider a fluid in uniform motion in free space. Boosting the reference frame allows us to move
to a reference frame where the fluid is static. Through Galilean invariance (Section 17.5) we
expect the dynamics to remain unchanged. Since we assume friction vanishes when the fluid is
static (as per a Stokesian fluid), Galilean invariance implies that the frictional stresses vanish
when the fluid undergoes uniform motion in any direction.

Uniform motion of fluid elements is reflected in zero velocity gradients, which offers a key
insight into how friction depends on strains. Namely, these considerations suggest that the
friction tensor is a function of gradients in the velocity field, ∂mvn. Furthemore, as the stress
tensor must be symmetric (Section 25.4), the simplest expression for the friction tensor is one
that is linearly proportional to the strain rate tensor introduced in Section 18.8. Symmetry thus
removes any dependence on the rotation (spin) tensor (Section 18.8.5).6 Fluids that satisfy a
linear constitutive relation between stress and the strain rate are known as Newtonian fluids.
Furtheremore, this constitutive relation takes the same mathematical form as Hooke’s Law used
in the study of elastic materials or simple harmonic oscillators (see Section 15.6).7

25.8.5 A comment on Rayleigh drag

Rayleigh drag is a particular form of friction that makes use of the acceleration

FRayleigh = −γ v, (25.72)

where γ > 0 is an inverse time scale. Rayleigh drag is not Galilean invariant since it decelerates
all flows, even uniformly moving flows, towards rest where rest is defined by the laboratory
frame. Furthermore, Rayleigh drag is not equal to the divergence of a frictional stress tensor,
and so it does not arise from a contact stress. Even so, it has found some use for rudimentary
purposes, particularly when aiming to derive analytic expressions for how friction acts on flows
in a bulk sense. We provide an example in the study of Ekman dynamics in Section 33.2.3.

25.8.6 Constitutive relation for Newtonian fluids

There are many details involved with deriving the Newtonian fluid constitutive relation, with
discussions provided in Section G of Serrin (1959), Chapter 5 of Aris (1962), Section 3.1 of
Segel (1987), and Section 4.5 of Kundu et al. (2016) for general fluids, and Chapter 17 and 18 of
Griffies (2004) for stratified fluids with particular focus on the ocean. We here offer a taste of

6The absence of a dependence on the rotation tensor is to be expected, since this tensor renders a rigid
rotation on fluid elements, thus inducing no change in the distance between fluid particles. See Section 18.8.4.

7In fact, Hooke’s Law provides a linear relationship between stress and strain, whereas for Newtonian fluids
we consider a linear relationship between stress and strain rate.
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these considerations by starting with the constitutive relation

τmn = ρ (2 ν Smn + λ∇ · v δmn), (25.73)

with Smn the components to the strain rate tensor introduced in Section 18.8.4 and whose trace
equals to the velocity divergence

Sqq = ∇ · v. (25.74)

The first contribution to the frictional stress (25.73) includes the strain tensor multiplied by the
first kinematic viscosity, ν > 0 (dimensions of squared length per time). The second contribution
arises just from flow divergence as scaled by a second kinematic viscosity, λ. The sum

νbulk = ρ (λ+ 2 ν/3) (25.75)

is known as the bulk viscosity, which, as discussed in the following, will be set to zero. Finally,
one sometimes finds it more convenient to work with the dynamic viscosity

µvsc = ρ ν. (25.76)

Note that we set ρ to the constant Boussinesq reference density, ρo (Chapter 29), when working
with a Boussinesq fluid.

Deviatoric friction tensor

As noted in Section 25.8.1, the pressure appearing in the stress tensor is a mechanical pressure
that equals to minus one-third the trace of the stress tensor when the fluid is at rest

T static
qq = −3 p. (25.77)

We assume that the frictional stress tensor does not alter this trace, so that the frictional stress
tensor has zero trace and is known as a deviatoric friction tensor8

τqq = 0 = 3 νbulk∇ · v =⇒ λ = −2 ν/3, (25.78)

so that the total stress tensor is given by

Tmn = −δmn p+ 2µvsc Sdev
mn with Sdev

mn = Smn − δmn Sqq/3, (25.79)

where Sdev is the deviatoric strain rate tensor. We next offer arguments for why the friction
tensor used for geophysical flows should have zero trace.

Equality of the mechanical and thermodynamic pressures

The frictional stress tensor (25.73) is not the precise form typically used in geophysical fluid
modeling. Instead, the velocity divergence term is generally dropped even for compressible flows,
and the viscosity is anisotropic and more generally takes the form of a fourth order viscosity
tensor (see Chapter 17 and 18 of Griffies (2004) for the ocean). Furthermore, what is generally
respected in most geophysical applictions is the deviatoric nature of the friction tensor. That
property is maintained since it is consistent with our assumption in Section 25.8.1 that the
mechanical pressure equals to the thermodynamic pressure.

To see this equality between the pressures, introduce the mechanical pressure, pmech, according

8A second order tensor in 3-dimensions, D, has a deviator with components given by Ddev
mn = Dmn−(1/3) δmn Dqq.

By construction, the trace of the deviator vanishes: Ddev
qq = 0.
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to the trace of the stress tensor
Tqq = −3 pmech. (25.80)

That is, mechanical pressure is minus one-third the trace of the stress tensor whether the fluid is
at rest or in motion. We can, in principle, measure this pressure by measuring the stresses. If
we now return to the general form of the stress tensor

Tmn = −δmn p+ ρ (λ∇ · v δmn + 2 ν Smn), (25.81)

with p here given by the thermodynamic pressure, then the trace is

Tqq = −3 p+ ρ (3λ+ 2 ν)∇ · v. (25.82)

Setting the two traces (25.80) and (25.82) equal then leads to

pmech − p = −νbulk∇ · v. (25.83)

Hence, in regions where the flow converges, the mechanical pressure is greater than the thermo-
dynamical pressure, pmech > p, whereas where flow diverges then pmech < p.

Stokes assumed p = pmech by taking a zero bulk viscosity, and he used arguments from kinetic
theory of gases to support that choice.9 This choice is generally taken for geophysical fluid
applications, largely based on the assumption of local thermodynamic equilibrium mentioned in
Section 25.8.1, and by noting that the flows are predominantly close to divergence-free.

Local thermodynamical equilibrium is not a good assumption in supersonic flows (e.g.,
shock waves), in which case p ̸= pmech and the bulk viscosity is nonzero. Correspondingly, the
divergence term and the second kinematic viscosity, λ ̸= −2 ν/3, are important. Additionally,
the second viscosity is important when concerned with the damping of acoustic waves (e.g.,
sounds absorption). Neither topics are considered in this book so that we have no further concern
for the second viscosity.

Frictional force per volume

Taking the mechanical and thermodynamic pressures equal, so that the second kinematical
viscosity satisfies equation (25.78), renders the frictional force per volume as given by the
divergence of the frictional stress tensor

ρFn = ∂mτmn = 2 ∂m(µvsc Sdev
mn). (25.84)

The special case of a Boussinesq ocean with ∇ · v = 0

For a Boussinesq ocean (Chapter 29), the viscous friction (25.84) simplifies to

ρo Fn = 2 ρo ∂m(ν Smn). (25.85)

To reach this equality we set the dynamic viscosity to µvsc = ρo ν, with ρo the constant Boussinesq
reference density. Furthermore, as studied in Chapter 29, the Boussinesq ocean has a non-
divergent flow field so that ∇ · v = ∂mvm = 0, in which case

Sdev
mn = Smn if ∇ · v = 0. (25.86)

Finally, for the case of a constant kinematic viscosity, we have the Boussinesq result reducing

9As noted in Section 62 of Serrin (1959), Stokes later admitted to having little confidence in this assumption.
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to the Laplacian form, which is seen by

ν−1 Fn = 2 ∂mSmn (25.87a)

= ∂m(∂nvm + ∂mvn) (25.87b)

= ∂m(∂nvm) + ∂m(∂mvn) (25.87c)

= ∂n(∂mvm) +∇2vn (25.87d)

= ∇2vn, (25.87e)

so that
F = ν∇2v. (25.88)

The relatively simple form of the Laplacian friction operator is commonly used for scale analysis,
such as when introducing the Reynolds number in Section 25.9.

25.8.7 Navier-Stokes and Euler equations

The Navier-Stokes equation is a special form of the momentum equation found by assuming
a Newtonian fluid constitutive relation. In this case the Navier-Stokes momentum equation
(24.16), in the presence of rotation and gravity, takes on the form

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ−∇p+∇ · (2µvsc Sdev), (25.89)

where we set the friction tensor equal to τ = 2µvsc Sdev. Quite often when examining the
mathematical properties of the Navier-Stokes equation, one assumes the flow to be non-divergent,
in which case Sdev = S since Sqq = ∇ · v = 0. A further simplification occurs by assuming a
constant density, ρ, and constant kinematic viscosity, ν, in which case the friction tensor reduces
to the Laplacian form (25.88) so that the Navier-Stokes equation becomes

Dv

Dt
+ 2Ω× v = −∇Φ− ρ−1∇p+ ν∇2v. (25.90)

This form, or even simpler when ignoring rotation and gravity, is commonly studied by mathe-
maticians concerned with existence and uniqueness properties of fluid flow solutions (e.g., see
Doering and Gibbon (1995)). When assuming the fluid to be perfect, so that there are no viscous
forces, the momentum equation is referred to as the Euler equation10

Dv

Dt
+ 2Ω× v = −∇Φ− ρ−1∇p. (25.91)

It is tempting to consider the Euler equations to be a continuous limit of the Navier-
Stokes equation as the viscosity goes to zero. However, there is a key distinction between the
two equations. Namely, the Navier-Stokes equations admit solutions that display statistically
equilibriated turbulent motions, whereby energy cascades to the small scales through vortex
stretching in three dimensional flows. This energy is ultimately dissipated by viscosity at the
small spatial scales, and this mechanism holds no matter how small the viscosity, so long as it is
nonzero. In contrast, for the Euler equations, with identically zero viscosity, energy cannot be
dissipated at the small scales so that an equilibrium turbulent cascade is unavailable.

10Note that some authors refer to the Euler equations only in the case of a perfect fluid that has no body force,
so that both rotation and gravitation vanish.
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25.8.8 No-slip boundary conditions on solid boundaries
Another fundamental distinction between the Euler equation and Navier-Stokes equation concerns
the boundary conditions. For the Navier-Stokes equation, the presence of a second order operator
(the Laplacian), weighted by the viscosity, signals a distinct behavior of the flow next to boundaries.
The Euler equation can only maintain a no-normal flow kinematic boundary condition at a
boundary, with the kinematics detailed in Section 19.6. Yet the viscous fluid described by the
Navier-Stokes equation must satisfy an additional boundary condition.

Evidence based on research in the 19th and 20th centuries suggests that fluids, such as air and
water, adhere to solid boundaries and thus satisfy the no-slip boundary condition. Writing n̂ as
the outward normal along the solid boundary, a no-slip boundary condition at a stationary solid
boundary means that the flow has a zero component in the direction tangent to the boundary

v − n̂ (n̂ · v) = 0 for x on solid boundary. (25.92)

When combined with the kinematic boundary condition, n̂ · v = 0, we find that a no-slip
boundary condition requires the fluid velocity to vanish at the solid boundary.11 This boundary
condition has basic implications for how stress acts between fluids and solids. We have more to
say concerning this boundary condition in Section 25.10.12

25.8.9 Laplacian friction in terms of vorticity and divergence
The Laplacian friction operator with a constant viscosity is afforded the following decomposition

ν−1 Fn = ∂m(∂mvn) (25.93a)

= ∂m(∂mvn − ∂nvm + ∂nvm) (25.93b)

= ∂m(∂mvn − ∂nvm) + ∂n(∂mvm) (25.93c)

= −2 ∂mRmn + ∂n∇ · v (25.93d)

= ∂m(ϵmnp ωp) + ∂n∇ · v (25.93e)

= −ϵnmp ∂mωp + ∂n∇ · v (25.93f)

= −(∇× ω)n + ∂n∇ · v. (25.93g)

In the fourth equality we introduced the rotation tensor (18.99)

Rmn = (1/2) (∂nvm − ∂mvn), (25.94)

which is related to the vorticity, ω = ∇× v, via equation (18.102)

Rmn = −ϵmnp ωp/2. (25.95)

These manipulations have served to decompose the Laplacian viscous acceleration, with a
constant viscosity, into the two terms

F = ν [−∇× ω +∇(∇ · v)] . (25.96)

The Laplacian friction acceleration is thus due to the curl of the vorticity plus gradients in the
velocity divergence. Many geophysical flows are dominated by vorticity, with the divergence
relatively small. Indeed, the Boussinesq ocean discussed in Chapter 29 has ∇ · v = 0, in which

11More generally, if the solid boundary is moving, then the no-slip condition means that there is zero relative
flow between the fluid and solid.

12See also the comments and footnote on page 86 of Segel (1987) as well as pages 83-84 of Meyer (1971).
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case frictional acceleration arises only when the vorticity has a nonzero curl. Correspondingly,
irrotational flows (where ω = 0) that are also non-divergent have zero Laplacian frictional
acceleration.

25.8.10 Frictional stresses in a sheared flow

As a means to connect the above ideas in this section to the Couette flow discussed in Section
25.8.2, consider a non-divergent velocity that only has a zonal component with a vertical shear
(Figure 25.6)

v = u(z) x̂. (25.97)

In this case the only nonzero components to the strain rate tensor are due to the vertical shear,
S13 = S31 = ∂zu/2. Now consider a horizontal area whose outward normal is parallel to the ẑ
direction. The frictional force acting on that area is given by the area integral of the frictional
stress

Farea =

ˆ
τ · n̂dS =

ˆ
τ · ẑ dx dy = ρo

x̂

2
ν A

∂u

∂z
, (25.98)

where A =
´
dx dy is the horizontal area, and where we used the constant reference density, ρo,

for a Boussinesq fluid. Hence, the zonal stress arises from the nonzero vertical shear.

Momentum is deposited in regions where there is a divergence in the stress, in which case
momentum is transferred from regions of high vertical shear to low vertical shear. At a point,
the momentum is affected by the divergence of the friction stress at that point. For v = u(z) x̂
we have [

∂(ρ vm)

∂t

]
viscous

= ∂nτnm =⇒
[
∂(ρ u)

∂t

]
viscous

= ∂z (µvsc ∂zu), (25.99)

so that zonal momentum is preferentially deposited to or removed from regions with high vertical
curvature in the zonal velocity. Spatial variations in the dynamic viscosity, µvsc = ρo ν, also
contribute to friction.

z

u(z)

x

Figure 25.6: Sample profile of zonal velocity possessing a vertical shear: v = u(z) x̂ and with a no-slip boundary
condition at z = 0. The resulting zonal frictional stress arises from the nonzero vertical shear in the presence of
viscosity.

25.8.11 The net stress tensor

Combining the frictional stress tensor with pressure and kinetic stress yields the flux-form
momentum equation (25.64)

∂(ρv)

∂t
+ 2 ρΩ× v + ρ∇Φ = ∇ · T net, (25.100)
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where we introduced the net stress tensor

T net = −p I− ρv ⊗ v + τ =

 −p− ρ u2 + τ11 −ρ u v + τ12 −ρ uw + τ13
−ρ u v + τ12 −p− ρ v2 + τ22 −ρ v w + τ23
−ρ uw + τ13 −ρ v w + τ23 −p− ρw2 + τ33

 . (25.101)
The left hand side of the momentum equation (25.100) includes the local time tendency plus
the body forces from Coriolis and effective gravity. The right hand side is the divergence of the
net stress tensor, with this tensor combining the pressure stress, kinetic stress, and frictional
stress. Varieties of the net stress tensor appear in subsequent chapters of this book, with details
dependent on the chosen approximations.

25.8.12 Properties under time reversal13

Make an animation of a dynamical system over a period of time, and then play the animation
backwards in time. Is there anything about the time reversed animation to indicate it is not
physically realizable? If not, then the dynamical system possesses symmetry under the reversal
of time. We considered this question in Section 14.2 for the motion of a point particle. Here we
ask the same question for the perfect fluid satisfying the Euler equation (25.91) in a rotating
reference frame, in which we show there is time symmetry. We then show that time reversal
symmetry is broken by viscous friction in the Navier-Stokes equation (25.90).

Perfect fluid satisfying the rotating Euler equation

Consider a particular solution, v(x, t), to the Euler equation in a rotating reference frame
in either free space (i.e., no boundaries) or with static material boundaries where the flow
satisfies the no normal flow boundary condition, v · n̂ = 0. What transformation properties for
the pressure, p(x, t), density, ρ(x, t), geopotential, Φ(x, t), and rotation, Ω, are sufficient for
v∗(x, t∗) = −v(x,−t) to be a solution? That is, by running time backwards, and changing the
sign of the velocity, does this flow also satisfy the Euler equations?

In the following, we retain the space position unchanged. Hence, for brevity, we suppress the
x dependence just focus on time, in which case we have the Euler equation (25.91) is written as

ρ(t)
Dv(t)

Dt
+ 2 ρ(t)Ω× v(t) = −ρ(t)∇Φ(t)−∇p(t). (25.102)

We can ensure time reversal symmetry by assuming the following properties

v∗(x, t) = −v(x,−t) velocity reverses direction (25.103a)

p∗(x, t∗) = p(x,−t) pressure retains same sign (25.103b)

ρ∗(x, t∗) = ρ(x,−t) density retains same sign (25.103c)

Φ∗(x, t∗) = Φ(x,−t) geopotential retains same sign (25.103d)

Ω∗ = −Ω. rotation reverses direction. (25.103e)

That is, if the rotating Euler equation is satisfied by v(x, t), p(x, t), ρ(x, t), Φ(x, t), and Ω, then
the rotating Euler equation is also satisfied by −v(x,−t), p(x,−t), ρ(x,−t), Φ(x,−t), and −Ω.
More explicitly, we verify time reversal symmetry by writing out the terms in the Euler equation

13This subsection was inspired by the discussion on page 77 of Meyer (1971), with the added feature here of
the Coriolis acceleration.
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Dv∗(t∗)

Dt∗
=

Dv(−t)
Dt

(25.104a)

ρ∗(t∗)Ω∗ × v∗(t∗) = ρ(−t)Ω× v(−t) (25.104b)

ρ∗(t∗) Φ∗(t∗) = ρ(−t) Φ(−t) (25.104c)

∇p∗(t∗) = ∇p(−t), (25.104d)

so that satisfying the Euler equation (25.102) implies that also

ρ(−t) Dv(−t)
D(−t) + 2 ρ(−t)Ω× v(−t) = −ρ(−t)∇Φ(−t)−∇p(−t). (25.105)

Note that a special case for the density condition (25.103c) is realized by a barotropic fluid14,
in which

ρ(x, t) = ρ[p(x, t)]. (25.106)

The geopotential condition (25.103c) generally holds for static geopotentials, Φ = g z, so that the
gravity field does not care about the time direction. This property of gravity is characteristic of
conservative forces. As noted in Section 14.2, the condition on rotation arises since the Coriolis
acceleration is a function of the velocity.

Real fluid satisfying the rotating Navier-Stokes equation

Real fluids are not time reversible. For example, water leaving a tea pot does turn around and
reenter the pot. Also, if air were a perfect fluid then one could only survive through breathing
in a cross-wind since otherwise we would breath in the same air we just breathed out. Even
though perfect fluids suffer from unrealistic features, it is of interest to expose symmetries of the
Euler equations and to then study how these symmetries are broken. To see how dissipation
breaks time reversal symmetry, consider the Laplacian viscous friction acceleration appearing in
the Navier-Stokes equation (25.90)

F = ν∇2v, (25.107)

where ν > 0 is the kinematic viscosity. So long as the viscosity stays positive, we see that
frictional acceleration changes sign under the transformation v∗(t∗) = −v(−t), so that the
friction operator becomes an anti-dissipation operator when time is reversed. As such, time
reversed motion in the presence of viscous friction (again, with ν > 0) is distinct from time
forward motion. That is, friction breaks time reversal symmetry so that the Navier-Stokes
equations are not time symmetric, meaning that we can distinguish between motion that is
forward in time versus motion that is backward in time.

25.8.13 Comments and further study
There are more elaborate constitutive relations between the frictional stress tensor and strain
rate tensor than those considered in this section. The most general form for a Newtonian fluid
introduces a fourth-order viscosity tensor as in Section 4.5 of Kundu et al. (2016) and Chapter
17 in Griffies (2004). We also recommend the presention of stress in Chapter 5 of Aris (1962).

Geophysical fluids such as air and water are generally well treated using Newtonian con-
stitutive relations. However, there are some geophysical turbulence theories that propose a
non-Newtonian constitutive relation for part of their closures, whereby the constitutive rela-
tion makes use of products of the strain rate tensor for computing stress. Anstey and Zanna

14Barotropic fluids have a functional relation ρ = ρ(p), and are discussed in Section 40.2.3.
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(2017) offer a compelling approach with a subgrid scale stress tensor that is non-Newtonian
and furthermore contains a non-zero trace, thus resulting in a modification to the mechanical
pressure. Additional nonlinear relations can arise when the viscous tensor is a function of the
flow, such as with the Smagorinsky scheme commonly used for Large Eddy Simulations (LES)
(see Smagorinsky (1993) or Chapter 18 of Griffies (2004)).

25.9 Reynolds number and flow regimes

How important is friction relative to other terms in the momentum equation? In particular, how
does it compare to the material acceleration? We consider that question in the context of the
non-rotating and constant density Navier-Stokes equations with a constant viscosity, ρ,

∂v

∂t
+ (v · ∇)v = −ρ−1∇p+ ν∇2v. (25.108)

25.9.1 Non-dimensional Navier-Stokes

We non-dimensionalize the Navier-Stokes equation (25.108) to garner an understanding of
relative magnitudes of the various terms. For that purpose, introduce the dimensional scales
and corresponding non-dimensional fields

L = length scale U = velocity scale P = pressure scale T = time scale, (25.109)

so that equation (25.108) takes the form

∂v̂

∂t̂
+
U T

L
(v̂ · ∇̂) v̂ = − T P

ρU L
∇̂p̂+ T ν

L2
∇̂2v̂, (25.110)

where the hat fields are non-dimensional and defined according to

∇ = L−1 ∇̂ ∂t = T−1 ∂t̂ v = U v̂ p = P p̂. (25.111)

25.9.2 Ratio of inertial to frictional accelerations

We are concerned with three dimensional flows with only a single length and velocity scale, L
and U . For the time scale we assume that it is determined by the fluid particle time scale, which
is the advective time

T = L/U. (25.112)

Furthermore, we assume that the scale of mechanical pressure is comparable to the dynamical
stress induced by the flow itself, thus leading to the dynamical pressure scaling15

P = ρU2. (25.113)

These assumed scales for time and pressure bring the non-dimensionl Navier-Stokes equation
(25.110) into the rather tidy form

∂v̂

∂t̂
+ (v̂ · ∇̂) v̂ = −∇̂p̂+ 1

Re
∇̂2v̂. (25.114)

15When considering flows close to geostrophic balance in Sections 33.3.2 and 43.7.4, we find that pressure scales
as ρ f U L, where f is the Coriolis parameter, which is distinct from the ρU2 scaling found for flows not feeling
the Coriolis acceleration.
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Flow regimes of the non-dimensional Navier-Stokes equation are specified by the non-dimensional
number, Re = LU/ν, which is the Reynolds number. By definition, the Reynolds number is the
ratio of scales for material (inertial) acceleration to frictional acceleration

Re =
inertial accelerations

frictional accelerations
=

U/T

ν U/L2
=
L2/T

ν
=
LU

ν
. (25.115)

25.9.3 Reynolds numbers for some example flows
Laboratory experiments with flow around and within various objects indicates the following
regimes of flow as a function of the Reynolds number:

Re ∼


≤ 102 laminar
102 − 103 quasi-periodic flow
103 − 104 transition to turbulence
≥ 104 fully turbulent.

(25.116)

These numbers are fuzzy given dependence on the geometry of the objects placed in the flow
and their characteristic length scale. What is more general concerns the behavior of the flow,
with a transition from laminar to turbulent typically occuring as the flow moves from relatively
low to high Reynolds number.

For a given molecular kinematic viscosity, the Reynolds number is dependent on the velocity
and length scales. Let us consider some examples. First, place a finger into a flowing stream of
water, such as in a gentle mountain creek. Let the length scale for the finger be 10−2 m and the
stream flow at a speed of U ≈ 0.1− 1 m s−1. With the kinematic viscosity of water given by
(page 75 of Gill (1982))

νwater = 10−6 m2 s−1, (25.117)

our finger poking into the mountain stream is associated with a flow Reynolds number on the
order of

Refinger in stream = 103 − 104. (25.118)

Evidently, mountain stream flow around a finger is at the lower end of the turbulent regime. We
thus expect to see slightly turbulent whirls and eddies downstream from the finger.

Now consider an oceanographic length scale given by a Gulf Stream ring (see Figure 31.1) in
which L ≈ 105 m. Assuming the flow speed is on the same order as the mountain stream (good
assumption) leads to a huge Reynolds number for Gulf Stream flow

ReGulf Stream = 1010 − 1011. (25.119)

For the atmosphere, we take L = 106 m for a typical atmospheric weather system, U = 10 m s−1

for the speed, and
νair = 1.4× 10−5 m2 s−1, (25.120)

for the kinematic viscosity of air at standard pressure (page 75 of Gill (1982)). Given the larger
length and velocity scales, the Reynolds number for large-scale atmospheric circulation features
is

Reweather system = 1012. (25.121)

Note that these large Reynolds numbers are associated with horizontal scales of geophysical
flows. Vertical motions have much smaller L and U , so that the Reynolds number for vertical
motions are significantly smaller than horizontal scales.

The above values for the Reynolds number from horizontal geophysical motions are huge
relative to typical values found in engineering flows, with the large values arising from the large
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length scales of the flows. Large Reynolds numbers signal the minor role that molecular friction
plays in large-scale geophysical fluid flows. Even so, molecular friction is the process leading
to mechanical energy dissipation at the small scales. A fundamental feature of large Reynolds
number flow is the presence of turbulent motions. Turbulent flows are highly nonlinear and
affect a transfer of mechanical energy across length and time scales. This cascade leads to the
dissipation of mechanical energy at the small scales. It is at the small scales that flow curvature
can be large enough for the relatively tiny values of molecular viscosity to dissipate the energy,
thus preventing an ultraviolet catastrophe; i.e., preventing the unbounded pile up of mechanical
energy at the smallest scales.16

The ocean and atmosphere exhibit a huge variety of turbulent regimes, from the macro-
turbulence of quasi-geostrophic eddies to the microturbulence of boundary layers. Turbulence
is not directly considered in this book. However, certain of its implications are identified in
various places given that it is so basic to the ocean and atmosphere flows. Vallis (2017) offers a
pedagogical entry point for the physics and maths of geophysical turbulence.

25.10 Stress on an interface

In this section we study the stress acting on an interface. This analysis applies to an arbitrary
surface within a single media as well as for the boundary interface separating a liquid and a gas
(air-sea boundary) or between a fluid and a rigid boundary (air-land or ocean-land). We ignore
the effects from surface tension discussed in Section 25.11 since we are interested in length scales
on the order of meters or larger (see in particular Section 25.11.5).

25.10.1 General formulation

Formulation of the stress boundary conditions follows from applying the finite volume momentum
equation (25.67) to a cylindrical region straddling a moving interface such as that shown in
Figure 25.7. The sides of the cylinder have thickness h and the top and bottom have area δS.
In the limit that the cylinder thickness goes to zero, the volume integrals in equation (25.67)
vanish under the assumption of a smooth velocity field on both sides of the interface as well as
smooth body forces. We are thus left with the constraint that the area integrated contact forces
must vanish when integrated around the cylinder boundary

˛

∂cylinder

[T + ρv ⊗ (v(b) − v)] · n̂dS =

˛

∂cylinder

[−p I + τ + ρv ⊗ (v(b) − v)] · n̂dS = 0. (25.122)

The end-caps on the cylinder vanish as h→ 0, in which case we have no constraint based on the
stresses acting on the end-caps. Instead, the h→ 0 limit leads us to conclude that the contact
force on one side of the interface is equal and opposite to that on the other side. This condition
is a direct statement of the Newton’s third law as manifest via the local equilibrium of stresses
discussed in Section 25.2.2. For the stresses acting on the interface in Figure 25.7 we have

[−pA I + τA + ρA vA ⊗ (v(b) − vA)] · n̂A + [−pB I + τB + ρB vB ⊗ (v(b) − vB)] · n̂B = 0. (25.123)

Setting n̂ = n̂B = −n̂A leads to

[−pA I + τA + ρA vA ⊗ (v(b) − vA)] · n̂ = [−pB I + τB + ρB vB ⊗ (v(b) − vB)] · n̂, (25.124)

16Ultraviolet refers to the high wavenumber end of the flow spectrum. The name refers to the violet part of
the visible electromagnetic spectrum, which has a higher wavenumber than the infrared part of the spectrum.
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which is an expanded expression of Newton’s third law given by equation (25.5). Recall that we
are ignoring surface tension, which means there is no pressure jump across the interface (see
Section 25.11). Hence, setting pA = pB allows us to cancel pressure thus leaving an interface
stress condition involving just the frictional stress and kinetic stress

[τA + ρA vA ⊗ (v(b) − vA)] · n̂ = [τB + ρB vB ⊗ (v(b) − vB)] · n̂, (25.125)

which is sometimes more suitably written as

(τA − τB) · n̂ = vB [ρB (v
(b) − vB) · n̂]− vA [ρA (v(b) − vA) · n̂]. (25.126)

Recall from Section 25.3 that τA · n̂ and τB · n̂ pick out that portion of the frictional stress tensor
that acts on a surface whose outward normal is n̂. We now consider some examples to unpack
the boundary condition (25.126).

z = η(x, y, t)

h
δ𝒮z
⇢A
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Figure 25.7: An infinitesimal cylindrical region used in formulating the stress boundary condition at an interface.
The interface can be one that separates two fluid regions with densities ρA and ρB. It can also represent the
boundary between a fluid (region A) and solid (region B). The interface generally moves with velocity v(b). We
orient the interface through the outward normals according to (recall h is infinitesimal) n̂ = n̂B = −n̂A, so
that the outward normal for region A points into region B whereas the outward normal for region B points into
region A. For this particular interface, the normal direction has a nonzero projection in the vertical, n̂ · ẑ ̸= 0,
thus allowing us to define the interface vertical position according to z = η(x, y, t). This interface represents an
idealized geometry useful to formulate the stress condition at the boundary between fluid media, such as the
air-sea interface, fluid-land interface, or interior fluid interface (e.g., buoyancy surface). The single geometric
assumption is that there are no overturning motions so that n̂ · ẑ ̸= 0, with this assumption based on convenience.
The stress condition is general and so does not require this assumption.

25.10.2 Solid material boundary
Consider a solid material boundary through which no matter crosses. Let region B be the solid
side of the interface and region A the fluid side (region A is either the ocean or atmosphere).
The material nature of the boundary means that no matter crosses it, in which case (see Section
19.6.2)

(v(b) − vA) · n̂ = (v(b) − vB) · n̂ = 0. (25.127)

A nonzero v(b) corresponds here to a moving solid boundary, such as the region next to the
grounding line of an ice-shelf. More commonly, in geophysical fluid applications we have v(b) = 0
for solid boundaries. In either case, there is no contribution from the kinetic stress so that the
stress condition (25.125) reduces to

τA · n̂ = τB · n̂⇐⇒ τA · n̂A = −τB · n̂B. (25.128)

This identity is consistent with

τA · n̂ = τ friction A(x, t, n̂) = −τ friction A(x, t,−n̂) = τB · n̂ = τ friction B(x, t, n̂), (25.129)

which expresses Newton’s third law in the form of Cauchy’s principle in equation (25.5). Hence,
the frictional force imparted by the land on the fluid is equal and opposite to that imparted by
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the fluid on the land.

25.10.3 No-slip condition at a static boundary
At solid boundaries, the kinematic boundary condition from Section 19.6.1 sets the normal
component of the velocity to zero17

v · n̂ = 0 kinematic no-flux condition on static material boundary. (25.130)

However, kinematic is unable to specify the tangential component of the velocity along a solid
boundary. What is it?

v ⋅ n̂ = 0

v ⋅ ̂t = 0

z
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v = 0

Figure 25.8: The no-slip boundary condition means that fluid has a zero tangential velocity component at the
solid-fluid boundary, v · t̂ = 0. Together, the kinematic no-normal flow boundary condition, v · n̂ = 0, plus the
dynamic no-slip boundary condition, v · t̂ = 0, mean that the fluid sticks to the solid boundary. That is, the fluid
particle velocity vanishes at a solid boundary when the no-slip condition holds.

Laboratory experiments over the 19th and 20th centuries indicate that there is no relative
motion of molecules at solid-fluid interfaces.18 That is, a fluid at the solid-fluid interface has
a velocity matching that of the solid so that the fluid sticks to the solid boundary as depicted
in Figure 25.8. The no-slip boundary condition means that both the normal and tangential
components of the fluid velocity vanish next to static solid boundaries

v · n̂ = v · t̂ = 0 no-slip condition on static solid boundaries. (25.131)

The no-slip boundary condition gives rise to an exchange of momentum between the solid and
fluid, with this exchange mediated by viscosity. This boundary condition is the origin of the
tangential stresses found in the Couette flow discussed in Section 25.8.2. In the absence of viscous
friction, as per an inviscid perfect fluid, the no-slip boundary condition cannot be imposed
since doing so would mathematically over-specify the flow. Consequently, for inviscid fluids the
tangential component of the velocity remains unspecified at solid boundaries.

25.10.4 Lagrangian interface
Consider a Lagrangian interface within the fluid, with this interface defined so that

(v(b) − vA) · n̂ = (v(b) − vB) · n̂ = 0. (25.132)

This condition is identical to the solid material boundary condition (25.127), so that the kinetic
stress contribution to equation (25.125) vanishes. We thus have the frictional stress condition

17For convenience we here assume the solid boundary is static. Generalizations to moving solid boundaries are
straightforward, requiring one to merely replace v with v − v(b) in the results of this subsection.

18As discussed in the historical essay by Anderson (2005), it was the work of Prandtl in 1905 that first exposed
the fundamental nature of the no-slip boundary condition, and its role in establishing boundary layers around
solid bodies immersed in a fluid flow.
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(25.128) and a Newton’s third law interpretation (25.129), yet now the frictional transfer takes
place between two regions of the same fluid.

25.10.5 Permeable interface
Now allow for the interface to be permeable to matter, with matter conservation meaning that

ρA (vA − v(b)) · n̂ = ρB (vB − v(b)) · n̂. (25.133)

The kinetic stress thus adds to the frictional contribution in the stress boundary condition
(25.125), with the kinetic stress providing a transfer of momentum across the interface through
the transfer of matter that carries a nonzero linear momentum. Rearrangement of the stress
boundary condition (25.125) with use of mass conservation (25.133) leads to

(τA − τB) · n̂ = (vA − vB) [ρA (vA − v(b)) · n̂]. (25.134)

We unpack this boundary condition by considering two cases.

Single continuous fluid media

If the interface is within a single continuous fluid media, then vA = vB so that the frictional
stress tensor boundary condition (25.128) again holds: (τA − τB) · n̂ = 0.

Air-sea boundary interface

Consider now the air-sea boundary where region B is the ocean and region A the atmosphere.
Introduce the dia-surface mass flux according to equation (19.78)

ρA (vA − v(b)) · n̂ = ρB (vB − v(b)) · n̂ = −Qm, (25.135)

where Qm is the mass per time per surface area crossing the boundary. The minus sign is implied
by the convention that Qm > 0 means that mass enters the ocean side of the interface and leaves
the atmosphere side. The stress boundary condition (25.134) takes the form

(τatm − τocn) · n̂ = −(vatm − vocn)Qm (25.136)

We might consider the velocity of the atmosphere to be unequal to that of the ocean, in which
case the surface normal projection of the frictional stress tensor satisfies a jump condition in
the presence of mass transport across the air-sea interface. However, following Section 1.9 of
Batchelor (1967), available evidence suggests that when approaching the boundary interface,
the velocity of the two media match, both their normal and tangential components. In this case
we again return to the friction boundary condition (25.128), in which the normal projection of
the frictional stress tensors match, even in the presence of mass transport across the boundary.

25.10.6 Summary comments
There are three terms in the general expression for the stress boundary condition (25.124),
with contributions from pressure, friction, and kinetic stress. In the absence of surface tension
(Section 25.11), pressure is continuous at the interface; i.e., its value is the same on both sides of
the interface. In the absence of mass transport across the interface, then we find a continuous
kinetic stress at the interface that then leads to a continuous frictional stress. However, mass
transport crossing the interface leads to a jump in the friction for those cases where velocity has
a jump across the interface. Even so, empirical evidence suggests that the velocity has no jump
across the interface, in which case there is no jump in the normal stress.
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The subject of boundary conditions for momentum are not simple, particularly in the presence
of mass transport across the boundary. We have only briefly touched on the topic, with similar
discussions provided by Section 1.9 of Batchelor (1967) and Section 4.10 of Kundu et al. (2016).
Specialized treatments are needed when pursuing these topics in more detail.

25.10.7 Comments on boundary layers
A fundamental advance in the relevance of fluid mechanics for describing observed flows came
from the 20th century work of Prandtl and others who noted the central role of viscosity, even
the tiny molecular values, in forming boundary layers when fluids flow next to rigid bodies.19

Prandtl’s work focused on flows around airplane wings, thus supporting the development of
aerodynamics as a scientific and engineering discipline. The key ideas transfer to geophysical
flows where boundary layers form in the atmosphere and ocean as these fluids interact with
the solid earth. Boundary layers also form where the atmosphere and ocean interact with one
another.

A key facet of geophysical boundary layers concerns the dominance of turbulence in producing
an eddy viscosity that is many orders larger than molecular viscosity. Indeed, molecular viscosity
plays a role only in a very small region (the laminar subregion) immediately adjacent to the
boundary. In contrast, the bulk of the boundary layer is dominated by turbulent flows. In
Chapter 33 we study geophysical boundary layers that are affected by pressure, Coriolis, and
turbulence induced friction. The role of rotation distinguishes geophysical boundary layers from
engineering applications. The associated Ekman boundary layers are crucial for understanding
circulation and transport in both the atmosphere and ocean.

25.11 Surface tension
Surface tension arises from the anisotropic forces acting on molecules that are within a mean
free path distance from the surface between two immiscible liquids, between a liquid and gas,
or between a fluid and a solid. Energetically, it arises since molecules have a preferance for
locations within the bulk of the fluid (surrounded by identical neighbors) rather than at the
boundary (where it encounters fewer identical neighbors). Surface tension acts to resist forces
that act to increase the surface area, and it has many physical consequences that are part of our
common experience. For example, it allows certain insects to walk on water even though their
body density is greater than water. It also accounts for the predominantly spherical shape of
rain drops and gas bubbles in liquids. As we study in Section 52.10, surface tension gives rise to
capillary waves when there is a very slight breeze on the ocean surface, or when a tiny stone is
thrown into a still pond (gravity waves dominate for larger stones). In the present section we
focus on the mechanics of surface tension. Note that a first principles understanding of surface
tension involves tools from physical chemistry that are outside of the scope of this book. Here,
we develop the subject phenomenologically.

25.11.1 Capillary tube
Atmospheric pressure at the earth’s surface is roughly patm = 105 N m−2. As we saw in Section
25.8, pressure acts normal to a surface regardless the surface orientation. So fill a container of
water whose weight per horizontal area is less than the atmospheric pressure, ρ g h < patm and turn
the container upside-down as in Figure 25.9. Does the water spill from the container? Common

19For a historical treatement of boundary layer theory see Anderson (2005), or for a pedagogical study see
Tennekes and Lumley (1972). The associated mathematical methods of singular perturbation theory and matched
asymptotic expansions (e.g., Dyke (1975)) offer an example of how the study of physical systems can spawn the
development of new mathematical methods.
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experience with drinking glasses indicate that water will spill. But what about containers with a
very small cross-sectional area such as the pipettes used in chemistry laboratories? Pipettes, or
more generally capillary tubes, hold the liquid regardless the orientation. They do so since their
cross-sectional area is small enough to allow forces from surface tension to overcome gravitational
instabilities acting at the liquid-gas interface. We return to this point in Section 60.2.3 when
studying the Rayleigh-Taylor instability in the presence of surface tension. In the remainder of
this section we discuss elements of surface tension with the goal to develop intuition as well as
to determine the length scales where it becomes important.

h

patm

ρ g h

gravity

Figure 25.9: A container of water with density ρ and height h is placed upside-down. Atmospheric pressure,
patm, will support water with thickness h < patm/(ρ g) ≈ 10 m if the cross-sectional area of the container is small
enough to allow for surface tension to overcome the gravitationally unstable waves that otherwise allow water
to spill from the container. The liquid-gas interface supports both gravity waves (Section 52.3) and capillary
waves (Section 52.10). If the wavelength is small enough then surface tension suppresses the growth of unstable
gravity waves so that the liquid remains within the capillary tube. However, for longer waves allowed by increasing
the cross-sectional area, then fluctuations allow the gravitational instability to overcome surface tension, thus
breaking the interface and releasing water.

25.11.2 Force balance on an air-water interface
Consider two fluids with distinct densities. Air and water provide one example of special
importance to understanding physics at the ocean-atmosphere boundary. Another example
concerns two immiscible layers of water within the ocean or two layers of air within the atmosphere.
For molecules well within either of the fluid regions, the intermolecular forces are statistically
isotropic. In contrast, intermolecular forces are not isotropic for molecules within a mean free
path distance from the interface.20 Attractive (cohesive) intermolecular (van der Waals) forces
dominate within a liquid whereas gas molecules generally feel more repulsive forces. Hence,
a liquid molecule within the liquid-gas interface preferentially experiences an attractive force
towards the liquid side of the interface, as depicted in Figure 25.10. Surface tension arises from
the cohesive force per area acting between molecules in a direction that parallels the interface,
with surface tension acting to resist perturbations to the interface shape.

Anisotropic attractive intermolecular forces cause the interface between the two fluids to
behave as a stretched membrane that experiences a tensile force resisting any stretching of the
interface. The magnitude of the tensile force per unit length (or energy per unit area) is the
surface tension, γ (SI units N m−1 = kg s−2), which measures the force needed to change the
interface a unit length. Equivalently, the surface tension is the energy per area needed to change
the surface area. The surface tension is a property of the two fluids, including their temperature,

20As discussed in Section 16.2, the mean free path is a statistical measure of the distance a molecule moves
before hitting another molecule.
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Lmfp

Figure 25.10: Surface tension at a liquid-gas interface arises from the anisotropic cohesive forces acting on liquid
molecules within a mean-free-path distance, Lmfp, from the interface, which contrasts to the isotropic cohesive
forces acting away from the interface. The net intermolecular force vanishes for interior molecules, whereas the
net force acts inward on molecules at the interface. Surface tension refers to the cohesive force per area acting
between molecules in a direction that is parallel to the interface.

as well as any impurities that might be included on the interface; e.g., oil on the surface of water
effects properties of the capillary waves found on the air-sea interface (see Section 52.10). In the
following we focus on the liquid-gas example to be specific and to expose issues that arise in
studies of the air-sea interface. For a liquid-gas interface surrounding a liquid drop, the tensile
force acts to curve the interface towards the liquid into a spherical shape.

The tensile force along a line segment is directed normal to the line and tangent to the
interface

finterface = −γ n̂× δx, (25.137)

where n̂ is a normal vector pointing towards the center of the curved interface, and δx is a
line element oriented so that the normal n̂ points to the left facing in the direction of the line
increment. Figure 25.11 depicts the surface tensile forces acting on the surface of a spherical
bubble of water. Note that it is sometimes useful to consider the product γ dS as the work
(units of N m−1 = Joule) required to create an area, dS, on the interface. We make use of this
energetic perspective in Section 25.11.3.

To develop an expression for the pressure jump across the liquid-gas interface, consider a
spherical droplet of radius R shown in Figure 25.11 and focus on the circular cross-section cut
through the center of the sphere. The net tensile force acting on the circumference of the circle is

Fcircle =

‰

circle

finterface = −
‰

circle

γ n̂× δx = −2πRγ ẑ. (25.138)

Equilibrium of the spherical droplet is realized by a pressure jump across the circular cross-
sectional area

πR2 (pin − pout) = 2πRγ =⇒ (pin − pout) = 2γ/R. (25.139)

Hence, the pressure jump is determined by the surface tension (a property of the two fluids) and
the curvature of the sphere, R, which is also the radius of curvature for the sphere. Pressure is
higher inside of the sphere (i.e., on the concave side of the interface), with this pressure required
to balance the pressure outside the sphere plus the surface tension. Notably, equilibrium for
smaller bubbles (with R→ 0 ) requires a larger pressure difference than for larger bubbles.

The pressure jump is known as the capillary pressure. It arises from surface tension and
curvature of the interface. The relation (25.139) is a special case of the Young-Laplace formula,
specialized here to a sphere.
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n̂
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̂z

Figure 25.11: Surface tension on a spherical water droplet, with water on the inside of the sphere and air on
the outside. The tensile forces act parallel to the spherical interface between the water and air. When cutting a
circular cross-section as shown here, the surface tensile force acts downward. In equilibrium, the net tensile forces
acting downward along the circumference of the hemisphere (2πRγ) are balanced by a pressure jump across the
droplet, with the interior pressure larger than the exterior pressure. Focusing on the circular cross-section, this
area remains static so long as 2πRγ = πR2 (pin − pout), leading to a pressure jump across the droplet interface
pin − pout = 2 γ/R. This result is general: namely, according to the Young-Laplace formula (25.149), pressure is
greater on the concave side of the interface than on the convex side.

25.11.3 Young-Laplace formula

We garner added insight into the physics of surface tension by considering the energetics required
to enable a virtual displacement of a surface through a pressure field along with the work required
to change the area of the surface. The resulting equation for the pressure jump across the surface
is referred to as the Young-Laplace formula, which expresses the pressure jump in terms of the
surface tension and the principle radii of curvature for the surface.

Consider a horizontal surface depicted in Figure 25.12 that represents the interface seperating
fluid-A from fluid-B, with n̂ a unit normal vector oriented from fluid-A to fluid-B. Now consider a
virtual displacement of each point along the interface by an infinitesimal distance, δh = η(x, y, t),
with n̂ δh connecting points on the initial position of the interface to the displaced position,
where δh > 0 if the displacement is directed towards fluid-B and δh < 0 if directed towards
fluid-A. The (signed) volume swept out by an infinitesimal area dA is given by δhdA. There
are two forms of work required to move the surface: pressure work required to change the fluid
volume and area work required to change the surface area. The pressure work is given by

Wvolume = −pA δVA − pB δVB = (pB − pA) δVA = (pB − pA) δhdA, (25.140)

where we set δVA = −δVB = δh dA. For example, if pB > pA and the displacement is into fluid-B
(δh > 0), then Wvolume > 0. We thus find that Wvolume > 0 to displace the surface into the fluid
region with higher pressure, whereas Wvolume < 0 if displacing the interface into a region with
lower pressure.

In the presence of surface tension, work is needed to change to the interface area

Warea = γ δA, (25.141)

where δA is the change in area of an infinitesimal element on the interface

δA = dS − dA (25.142a)

= dA
[√

1 + (∇δh)2 − 1
]

(25.142b)

≈ dA (∇δh)2/2. (25.142c)

To reach this result we made use of equation (5.33) that relates the area of an infinitesimal
element on a curved surface to the area of its horizontal projection (see Section 5.3.1). We next
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Figure 25.12: Left panel: initial position of a material interface separating two fluid regions, fluid-A and fluid-B.
Right panel: infinitesimal displacement of the interface sweeps out a volume in space, here depicted with the
interface moving upward. To determine the volume, extend a unit normal vector, n̂, from the initial interface
position and pointing towards fluid-B. For this example, n̂ = ẑ. Let δh = η be the distance along that normal to
the new position, with δh > 0 if the displacement moves towards fluid-B and δh < 0 for displacements pointing to
fluid-A. We assume that displacements at each interface point can move independently of adjacent points, so that
the interface area generally changes. The Young-Laplace formula (25.149) says that the pressure jumps when
crossing an interface that is subject to surface tension, with pressure higher on the concave side. In this example,
Young-Laplace says pressure is higher on the Fluid-A side since that it is the concave side.

make use of the surface curvature detailed in Section 5.3.2, where equation (5.38) shows that
the vertical displacement is given, for small displacements, by

−δh ≈ 1

2
R−1

1 (x · e1)2 +
1

2
R−1

2 (x · e2)2. (25.143)

R−1
1 , R−1

2 are the eigenvalues and e1, e2 are the corresponding eigenvectors of the matrix of
second partial derivatives of δh(x, y), whereas the inverse eigenvalues, R1, R2, are the radii of
curvature of the displaced surface. To get signs correct, it is important to note that the radius
of curvature is positive if the surface curves towards the outward normal direction, and negative
otherwise (see Figure 5.5). For the example depicted in the right panel of Figure 25.12, and both
radii of curvature are negative since the surface curves away from the outward normal (pointing
from A to B). This convention explans the minus sign on the left side of equation (25.143).

Orienting the Cartesian axes along the eigenvector directions renders

(∇δh)2 ≈ (x/R1)
2 + (y/R2)

2 = (−δh)
[
1

R1
+

1

R2

]
, (25.144)

where we set
(−δh)/R1 = (x/R1)

2 and (−δh)/R2 = (y/R2)
2. (25.145)

We are thus led to the area difference

δA ≈ dA (−δh)
[
1

R1
+

1

R2

]
. (25.146)

Note that δA > 0 whether displacing the surface into a concave or convex direction, since the
sign of δh accounts for the sign of the radii of curvature. For small displacements of the surface
from its horizontal position, equation (5.41) allows us to connect the radii of curvature for a
surface with the Laplacian of the displacement of the surface, in which case equation (25.146)
takes on the form

δA ≈ −dAδh∇2(δh). (25.147)

Total work for the interface displacement is given by the sum of the area work and volume
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work

Warea +Wvolume = dAδh
[
−γ (R−1

1 +R−1
2 ) + pB − pA

]
= dAδh

[
−γ∇2η + pB − pA

]
, (25.148)

and equilibrium results if the net work vanishes, in which case

pB − pA = γ (R−1
1 +R−1

2 ) = γ∇2η, (25.149)

where we set δh = η as per Figure 25.12. This equation is the Young-Laplace formula, which
reduces to equation (25.139) if R1 = R2 as for a sphere. It says that there is a pressure jump,
known as the capillary pressure, across an interface as given by the surface tension times the
sum of the inverse principle radii of curvature, or equivalently the surface tension times the
Laplacian of the displacement. To help remember signs, note that the Young-Laplace formula
(25.149) says that the pressure on the concave side of an interface is higher than on the convex
side. Hence, pressure is higher on the inside of a bubble/droplet. For the example depicted in
Figure 25.12, ∇2η < 0 since the surface is a local maximum, in which case pA > pB since fluid A
is on the concave side of the interface.

25.11.4 Soluble gas bubbles inside water
The previous considerations hold whether there is liquid or gas inside a spherical bubble or drop.
As an example, consider a spherical gas bubble of radius R = 10−6 m inside water and make
use of the air-water surface tension γ = 0.072 N m−1 = 0.072 kg s−2. We thus find the pressure
jump is

pin − pout = 2 γ/R ≈ 144× 103 N m−2 = 1.42 patm, (25.150)

where patm = 1.01× 105 N m−2 is standard atmospheric pressure. If the gas inside the bubble is
water soluble, then the enhanced pressure inside the bubble will induce more gas to dissolve in
the water, which in turn will cause the bubble to shrink and thus increase the pressure inside
the bubble. Small bubbles of soluble gases can thus be squeezed towards zero radius by the
effects of surface tension induced pressure.

25.11.5 When we can ignore surface tension
The sizable pressure jump (25.150) arises from the tiny radius of curvature of the bubble, with
the pressure jump decreasing as the bubble radius increases. Rather than a bubble, consider an
ocean surface capillary-gravity wave, such as those observed from a boat (e.g., Sections 52.3 and
52.10). Such waves may have wavelength on the order of 10−2 m or longer. If we set the radius
of curvature to R ∼ 10−2 m, then equation (25.150) finds an entirely negligible pressure jump of
∆p ≈ 10−4 pa.

Most geophysical fluid motion of concern in this book is associted with material interfaces
having a radius of curvature on the order of meters or larger. It is for this reason that surface
tension is generally ignored when studying geophysical fluid motion. That is, we can safely
assume there is no pressure jump when approaching an interface between two fluid media, or
between a fluid and a solid boundary. This discussion then justifies the approach considered in
Section 25.10 when studying stresses at interfaces, in which we made use of Newton’s third law
at the interface.

Even so, the role of surface tension is central to the fundamental mechanisms of how matter,
momentum, and energy are transferred across the air-sea interface. Relatedly, as we show in
Section 52.10, capillary waves arise from surface tension, with capillary waves the initial response
of the ocean free surface upon the imposition of a wind stress.
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25.11.6 Further study
This 30-minute video from Prof. Trefethen provides a pedagogical summary of surface tension.
The upside-down container of water in Figure 25.9 is based on a discussion of capillary-gravity
waves in Section 3.1.3 of Falkovich (2011). We study capillary-gravity waves in Section 52.10.
Section 1.9 of Batchelor (1967) discusses how surface tension acts between two fluid media, with
that discussion extended into his Section 3.3 to develop boundary conditions for velocity and
stress. The bubble example in Section 25.11.4 is taken from Section 1.3 of Kundu et al. (2016).
Section 4.10 of Kundu et al. (2016) provides a detailed accounting of the force balance at an
interface, offering more details than found in Batchelor (1967). The energetic arguments used to
derive the Young-Laplace formula follows Section 61 of Landau and Lifshitz (1987). Section 46
of Fetter and Walecka (2003) discuss the dynamics of membranes under tension.

25.12 Exercises
exercise 25.1: Force balance for a non-accelerating tangent plane ocean
Consider an ocean basin, R, on the rotating tangent plane as in Figure 25.2, with bottom
interface separating the ocean fluid from the solid-earth, and upper interface separating the
ocean fluid from the atmosphere, and where the atmosphere has a nonzero mass.21 Assume no
matter crosses the ocean boundaries; i.e., no evaporation, precipitation, nor river runoff. Hence,
the ocean domain maintains a fixed mass

M =

ˆ
R

ρ dV (25.151)

as well as fixed matter. In this case, the ocean domain is materially closed and so its center of
mass position

Xcom =M−1

ˆ
R

x ρ dV (25.152)

has a velocity given by
dXcom

dt
=M−1

ˆ
R

v ρ dV, (25.153)

and corresponding acceleration

d2Xcom

dt2
=M−1

ˆ
R

Dv

Dt
ρdV. (25.154)

Apply a horizontal stress over the ocean surface with a stress vector τ surf. This stress leads to
motion of the ocean fluid. Allow for the ocean bottom to exchange momentum with the static
solid-earth through a horizontal bottom turbulent stress, τ bott. Assume there are no vertical
components to τ surf and τ bott. Also use Cartesian coordinates so that Cartesian vector/tensor
analysis is sufficient for this tangent plane analysis.

(a) What is the force balance for the full ocean domain if the center of mass experiences no
acceleration. Express the corresponding force balance in words and in equations. Expose
the contact forces arising from pressure and from turbulent stresses, as well as the body
forces from Coriolis and gravity. The answer should be generally stated, with no need

21In some applications it is suitable to assume a zero mass atmosphere. For this exercise, however, we do not
make that assumption.
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for specific details. Hint: consider Figure 25.2 and include the missing forces to this
diagram. Mathematically express the force balance as an integral expression as per the
weak formulation of fluid mechanics (see Section 17.1.1).

(b) Express the vertical component of the force balance assuming the fluid is in an approximate
hydrostatic balance, meaning that the pressure and gravitational forces are balanced.22

(c) Consider an ocean without any turbulent contact stresses at the boundaries, τ surf = τ bott =
0 and assume there is no motion anywhere in the fluid. What integral constraints are
satisfied by the horizontal components of the pressure contact force? Hint: recall equations
equations (25.40a) and (25.40b). Also note assume that the free surface is flat, which is
consistent with the absence of motion.

(d) Assume the ocean is on an f -plane (Section 24.5) so that Ω = ẑΩ = ẑ (f/2) is a constant
vector. Also assume that the center of mass velocity vanishes,

´
R
ρv dV = 0. Discuss the

resulting zonal and meridional force balance. Hint: one of the forces appearing in part (a)
now vanishes.

22In Section 27.2 we provide a discussion of when this approximation is appropriate for moving fluids. That
discussion is not needed for the current exercise. Instead, we merely assume the vertical momentum balance is
hydrostatic.
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Chapter 26

ENERGY AND ENTROPY IN A MOVING FLUID

In this chapter we study the energetics of fluid flow. In particular, we are concerned with how
energy is partitioned between the mechanical energy of macroscopic motion and the internal
energy associated with internal degrees of freedom. To fully specify energy in fluid flows requires
us to study the flow of entropy and the associated constraints arising from the second law of
thermodynamics. For this purpose we extend the equilibrium thermodynamics of Chapters 22
and 23 to include time dependent moving fluid phenomena. Making this transition requires the
hypothesis of local thermodynamic equilibrium.

reader’s guide for this chapter
This chapter builds from the momentum dynamics of Chapter 24 and the thermodynamics

of Chapters 22 and 23. In addition to developing the budgets for mechanical energy and
total energy (mechanical plus internal), we derive budgets for entropy and potential enthalpy.
A particularly important practical outcome of this chapter concerns the derivation of the
equation for potential enthalpy or Conservative Temperature, with this equation completing
the suite of fundamental equations describing the evolution of a geophysical fluid. Finally, we
also present a derivation of the momentum equation using Hamilton’s variational principle,
which makes use of Hamilton’s principle for continuous fields in Chapter 46, and the methods
of analytical mechanics in Chapter 12. To make the formalism less mathematically intense, we
employ Cartesian tensors as discussed in Chapters 1 and 2, with all tensor indices downstairs.
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26.2 Gravitational potential energy
Geophysical fluids move within a gravitational field created by the mass of the planet, including
the mass of the fluid itself. We typically focus on a rather simple form for the effective
gravitational acceleration exemplified by the geopotential Φ = g z, where g is the gravitational
acceleration that includes effects from both central gravity plus planetary centrifugal (Section
13.10.4). However, we offer some discussion of astronomical tide producing forces in Chapter
34, whereby the geopotential is a more complicated function of space and time, Φ(x, t). In this
section we study the potential energy of a fluid element due to its presence in a gravitational
field, with the geopotential providing the effective gravitational potential energy per mass of
fluid elements.1

26.2.1 Material evolution

The gravitational potential energy per mass of a fluid element is given by the geopotential, Φ, so
that the gravitational potential energy is Φ ρ δV . Hence, the evolution of potential energy for a
constant mass fluid element is given by

D(Φ ρ δV )

Dt
= ρ δV

DΦ

Dt
, (26.1)

where D(ρ δV )/Dt = 0 since the fluid element has a constant mass. The material time derivative
for the geopotential

DΦ

Dt
=
∂Φ

∂t
+ v · ∇Φ, (26.2)

contains a local time dependence that arises from astronomical tide forcing or movement of mass
on the planet (Chapter 34). As further explored in Section 26.4, the advective term represents
an exchange of mechanical energy between the kinetic energy contained in fluid motion and the
gravitational potential energy due to the fluid being within a gravitational field. This energy
exchange arises from fluid motion across constant geopotential surfaces. For example, motion up
the geopotential gradient, v · ∇Φ > 0, increases gravitational potential energy and motion down
the geopotential gradient decreases potential energy. With the geopotential Φ = g z, we have

v · ∇Φ = g w, (26.3)

so that vertically upward motion (w > 0) increases potential energy.

26.2.2 Flux-form potential energy equation

Another way to reveal the same ideas is to make use of the kinematic identity (19.50c), so that
the density weighted material time derivative of the geopotential is given by

ρ
DΦ

Dt
= ∂t(ρΦ) +∇ · (ρvΦ). (26.4)

For the simple geopotential, Φ = g z, we thus find

ρ
DΦ

Dt
= ρ g w ⇐⇒ ∂t(ρΦ) +∇ · (ρvΦ) = ρ g w. (26.5)

1In this chapter we generally refer to the more concise “gravitational potential energy” or even briefer
“potential energy” rather than “potential energy from the effective gravitational field.”

CHAPTER 26. ENERGY AND ENTROPY IN A MOVING FLUID page 671 of 2158



26.2. GRAVITATIONAL POTENTIAL ENERGY

26.2.3 Reference geopotential

There is no change to the energetics if we modify the gravitational reference state by modifying
the geopotential

Φ→ Φ+ Φr (26.6)

with Φr an arbitrary constant. In particular, this offset has no effect on the evolution of
gravitational potential energy of the constant mass fluid element since

D(Φr ρ δV )

Dt
= Φr

D(ρ δV )

Dt
= 0. (26.7)

Hence, as is well known from classical mechanics, it is not the value of the gravitational potential
energy that is important, but instead it is the space and time changes that affect energetics.

26.2.4 Regionally integrated gravitational potential energy

Now consider the evolution of the gravitational potential energy integrated over a finite region
R. If the fluid region is closed to mass transport, as per a material boundary, then we can make
use of the Leibniz-Reynolds transport theorem in the form of equation (20.53d) to write

d

dt

ˆ
R

Φ ρdV =

ˆ
R

DΦ

Dt
ρdV, (26.8)

which is an extension of the material evolution equation (26.1). If the region is open to material
mass transport, we make use Leibniz-Reynolds transport theorem in the form of equation (20.37)
to find

d

dt

ˆ
R

ρΦdV =

ˆ
R

∂(ρΦ)

∂t
dV +

˛
∂R
ρΦv(b) · n̂dS (26.9a)

=

ˆ
R

[
ρ
DΦ

Dt
−∇ · (ρΦv)

]
dV +

˛
∂R
ρΦv(b) · n̂dS (26.9b)

=

ˆ
R

ρ
DΦ

Dt
dV +

˛
∂R
ρΦ (v(b) − v) · n̂dS, (26.9c)

where v(b) is the velocity of a point on the boundary of the domain. The evolution thus consists
of the mass integrated material time evolution of the geopotential, plus a surface term that
contributes to the transport of the geopotential across the regional boundaries.

If the region is a vertical column of ocean fluid with fixed horizontal cross-section, extending
from the ocean surface to the ocean bottom, then there is horizontal transport across the vertical
column bounds, plus vertical transport of mass across the ocean free surface. For the free surface
we make use of the surface kinematic boundary condition (19.88c) to write

ˆ
z=η

ρΦ (v(b) − v) · n̂dS =

ˆ
z=η

Qm ΦdA. (26.10)

In this equation, Qm is the mass per time per horizontal area of matter crossing the ocean free
surface at z = η where Qm > 0 for matter entering the ocean domain, and dS is the area element
on the free surface with dA its horizontal projection. As noted in Section 26.2.3, we can add a
constant to the geopotential without affecting the energetics, which is here seen by noting that
mass conservation means that

d

dt

ˆ
ρdV = −

ˆ
R

∇ · [ρ (v − v(b))]dV, (26.11)
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which results from setting Φ = 1 in equation (26.9c). In general, we expect the transfer of mass
across the surface boundary to affect the gravitational potential energy both because it adds or
removes mass to the ocean domain, and because it affects the geopotential. To help interpret the
sign from the boundary term, it is useful to define the reference state geopotential so that Φ > 0
at the ocean surface, no matter what the value of η. We can do so by defining the reference
geopotential at or below the ocean bottom. In this case, adding mass increases the gravitational
potential energy and removing mass reduces it.

Consider the special case of a geopotential Φ = g z, so returning to a z = 0 reference state,
in which case the global ocean potential energy equation is written

d

dt

ˆ
ρ z dV =

ˆ
ρw dV +

ˆ
Qm η dA, (26.12)

where we cancelled the constant gravitational acceleration. Now decompose Qm and η into their
global area means and deviations

Qm = Qm +Q′
m and η = η + η′, (26.13)

so that

g

ˆ
Qm η dA = g Qm η A+ g

ˆ
Q′

m η
′ dA. (26.14)

As before, the Qm η term alters potential energy relative to the arbitrary reference state, here
taken as z = 0. The area correlation term increases potential energy in regions where Q′

m η
′ > 0,

which acts to increase the relative deviation of the free surface from its mean value. That is,
Q′

m η
′ > 0 in regions where Q′

m > 0 and η′ > 0 as well as in regions where Q′
m < 0 and η′ < 0.

Conversely, the correlation term reduces potential energy where Q′
m and η′ are anti-correlated,

which acts to decrease the relative deviation of the free surface height.

26.2.5 Potential energy and vertical stratification

Consider the potential energy of a region of horizontally homogeneous fluid centered at a vertical
position, z = zc, and with constant horizontal cross-sectional area, A. Assuming we do not move
vertically far away from the central position, we can write the density in the linear form

ρ(z) = ρ(zc) +
dρ(zc)

dz
(z − zc) ≡ ρc −K (z − zc), (26.15)

where K = −dρ(zc)/dz > 0 is a shorthand for the vertical density gradient at the central
point. The potential energy per volume (∆V = A∆z) for fluid in the vertical region z ∈
[zc −∆z/2, zc +∆z/2] is given by

(g/∆z)

ˆ
z ρdz = (g/∆z)

ˆ zc+∆z/2

zc−∆z/2
[ρc −K (z − zc)] z dz (26.16a)

= g ρc zc − g K (∆z)2/12. (26.16b)

We thus see that the gravitational potential energy decreases as the vertical stratification, K > 0,
increases, with the maximum potential energy when the stratification vanishes, K = 0. As seen
in Section 26.2.6, potential energy is maximized when K = 0 since the center of mass moves
vertically upward as the stratification reduces to zero.
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26.2.6 Gravitational potential energy and mixing
Consider a fluid in exact hydrostatic balance (Section 24.6) with a gravitationally stable vertical
stratification where light fluid is above heavy fluid.2 Now introduce a physical process, such as
vertical mixing associated with a kinetic energy source, that reduces the vertical stratification.
Reducing vertical stratification requires mixing to move heavy fluid up and light fluid down.
In so doing, the kinetic energy supporting the mixing is converted into gravitational potential
energy since the center of mass for the fluid column rises.

We can formulate this thought experiment by considering a column of seawater that is
vertically stratified in salinity, S, and Conservative Temperature, Θ, and another column that
is vertically unstratified with constant values Sm and Θm.

3 We assume the mass of the two
columns is the same so that the bottom pressure, pb, and surface pressure, pa, are the same for
the two columns. However, the volumes will generally differ since the density differs, so that
the two free surfaces, η and ηm, differ. Assuming a geopotential for the homogenized column,
Φ = g zm, leads to the integrated potential energy

g

ˆ ηm

ηb

ρ(Sm,Θm, p) zm dzm = −
ˆ pa

pb

zm dp, (26.17)

where we used the hydrostatic balance to write

dp = −g ρ(Sm,Θm, p) dzm. (26.18)

Likewise, the stratified column has an integrated potential energy

g

ˆ η

ηb

ρ(S,Θ, p) z dz = −
ˆ pa

pb

z dp, (26.19)

so that the difference between the gravitational potential energies per horizontal area in the two
columns is given by

g

ˆ ηm

ηb

ρ(Sm,Θm, p) z dz − g
ˆ η

ηb

ρ(S,Θ, p) z dz =

ˆ pb

pa

(zm − z) dp = (pb − pa) (zm − z). (26.20)

In this equation we introduced the center of mass positions for the vertically homogeneous
column, zm, and the stratified column, z, defined by

zm =
1

pb − pa

ˆ pb

pa

zm dp and z =
1

pb − pa

ˆ pb

pa

z dp. (26.21)

There are two contributions to the potential energy difference in equation (26.20). The first
is the mass per horizontal area, as measured by the difference in bottom pressure and applied
surface pressure, (pb − pa)/g > 0. The second is the difference between the center of mass for
the two columns, zm − z, which is a positive number since homogenizing a fluid column moves
heavier water up and lighter water down so that zm > z. Hence, the potential energy of the
homogenized column is larger than the stratified column. We develop more experience with the
energetics of mixing in Exercise 26.1.

2See Section 30.5 for a more precise discussion of gravitational stability.
3See Section 30.3 for discussion of the seawater equation of state. For present purposes it is sufficient to know

that seawater density is a function of the material tracer S, the thermodynamic tracer, Θ, and pressure, p. When
a column is vertically homogenized that means S and Θ are constant throughout the column. However, pressure
remains hydrostatic and thus is not vertically constant. Since density is a function of pressure, it too retains a
vertical gradient.
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26.3 Kinetic energy of macroscopic motion

Mechanical energy is a dynamical property formed by adding the energy due to motion of
fluid elements (kinetic energy) to the energy arising from the position of a fluid element within
the gravitational field (gravitational potential energy). We studied the gravitational potential
energy budget in Section 26.2. Here, we develop the budget for kinetic energy and then the
full mechanical energy (kinetic plus gravitational potential) in Section 26.4. In Section 26.7 we
then add the mechanical energy from macroscopic motion to the internal energy to develop the
budget for total energy.

26.3.1 Kinetic energy budget from Cauchy’s equation

We start the analysis by considering general features of the kinetic energy budget as seen from
Cauchy’s equation of motion (24.14)

ρ
Dv

Dt
= ρfbody +∇ · (−p I + τ), (26.22)

with a body force per mass, fbody, and contact stress from pressure, p, and the symmetric
frictional stress tensor, τ. Taking the scalar product with v leads to

ρ
DK

Dt
= ρv · fbody + vn ∂m(−p δmn + τmn), (26.23)

where
K = v · v/2 (26.24)

is the kinetic energy per mass. We thus see that the kinetic energy of a fluid element is affected
by work done by the body forces, ρv · fbody, along with work done by stresses through both
pressure and friction.

Rearranging the stress term in equation (26.23) leads to

ρ
DK

Dt
= ρv · fbody +∇ · (−pv + v · τ) + p∇ · v − (∂mvn) τmn. (26.25)

The ∇ · (−pv + v · τ) contribution represents the divergence of a flux arising from pressure and
viscous stress, whereas the term p∇ · v arises from pressure work done on a fluid element as it
changes volume. For the final term in equation (26.25), as note that the frictional stress tensor
is symmetric so that

(∂mvn) τmn = Smn τmn, (26.26)

where we introduced the strain rate tensor from equation (18.90a)

2Smn = ∂nvm + ∂mvn. (26.27)

As shown in Section 26.3.3, the frictional stress tensors resulting from the constitutive relations
in Section (25.8) mean that Smn τmn is non-negative, in which case viscous stresses dissipate
kinetic energy.

26.3.2 Kinetic energy budget for a geophysical fluid

We now develop the kinetic energy budget for a fluid in a rotating reference frame, in which
case the body force is provided by the effective gravity and Coriolis. For this purpose we make
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use of the momentum equation (24.16), repeated here for convenience

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ+∇ · (−p I + τ) (26.28a)

= −ρ∇Φ−∇p+ ρF , (26.28b)

where we wrote
F = ρ−1∇ · τ (26.29)

for acceleration due to viscous friction that arises from the divergence of the frictional stress
tensor. Taking the scalar product the momentum equation in the form of equations (26.28a)
and (26.28b) renders

ρ
DK

Dt
= −ρv · ∇Φ− v · ∇p+ ρv · F . (26.30)

We thus see that the kinetic energy of a fluid element is affected by work done by the geopotential,
−ρv · ∇Φ, along with work done by stresses through both pressure and friction. We detail these
processes in the following.

Contribution from the geopotential

Kinetic energy increases for motion directed down the geopotential gradient

v · ∇Φ < 0 =⇒ increases kinetic energy. (26.31)

For example, with a simple geopotential, Φ = g z, kinetic energy increases where the vertical
velocity is downward,

w < 0 =⇒ −w g ρ > 0←→ downward motion increases K of a fluid element. (26.32)

As seen in Section 26.2.1, this increase in kinetic energy due to motion down the geopotential
gradient is exactly balanced by a decrease in gravitational potential energy. That is, an increase
in kinetic energy through motion down the geopotential comes at the cost of a decrease in
the gravitational potential energy. This exact conversion between kinetic energy and potential
energy is also seen in Section 14.7 for motion of the point particle.

Contribution from the pressure gradient body force

Kinetic energy increases in regions where the velocity projects down the pressure gradient,

v · ∇p < 0 =⇒ increase kinetic energy, (26.33)

thus resulting in an increase in fluid speed imparted by the pressure gradient force. Conversely,
kinetic energy is reduced in regions where the flow is directed up the pressure gradient. It is
notable that geostrophic flows, studied in Section 31.4, have a velocity given by

vg = (g ρ)−1 ẑ ×∇p. (26.34)

Consequently, geostrophic flows have vg · ∇p = 0, so that the pressure gradient force has no
impact on the horizontal kinetic energy of a geostrophic fluid.

Contribution from friction

Kinetic energy is reduced in regions where the velocity has a negative projection onto the
direction of the friction vector, ρv · F < 0. As detailed in Section 26.3.3, the friction arising
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from a viscous stress tensor appropriate for a Newtonian fluid gives rise to two contributions to
kinetic energy: the divergence of a viscous flux plus a sign-definite sink.

26.3.3 Frictional dissipation of kinetic energy

We here detail the role of friction on kinetic energy

friction power per volume = ρv · F = v · (∇ · τ), (26.35)

which is the frictional power per volume (energy per time per volume) that modifies the kinetic
energy per volume of a fluid element, and with the frictional stress tensor, τ, determined by
the constitutive equation (25.79). We anticipated this contribution in the general discussion of
Section 26.3.1, and here provide details.

To proceed, we expose Cartesian tensor labels to have

ρv · F = vm ρFm (26.36a)

= vm ∂nτnm (26.36b)

= 2 vm ∂n(ρ ν Sdev
mn) (26.36c)

= 2 ∂n(ρ ν vm Sdev
mn)− 2 ρ ν ∂nvm Sdev

mn (26.36d)

= 2∇ · (ρ ν v · Sdev)− 2 ρ ν Smn Sdev
mn, (26.36e)

where we recall from Section 25.8.6 that the deviatoric strain rate tensor has elements given by

Sdev
mn = Smn − δmn Sqq/3 with Sqq = ∇ · v. (26.37)

To reach equation (26.36e) required the identity

2 ∂nvm Sdev
mn = (∂nvm + ∂mvn)Sdev

mn + (∂nvm − ∂mvn)Sdev
mn = 2Smn Sdev

mn, (26.38)

where
(∂nvm − ∂mvn)Sdev

mn = 2Rmn Sdev
mn = 0 (26.39)

due to symmetry of the deviatoric strain rate tensor, Sdev
mn = Sdev

nm, and anti-symmetry of the
rotation tensor, Rmn (see Section 18.8 as well as Exercise 1.2). We can show that the second
term in equation (26.36e) is sign-definite by noting that

Sdev
mn Sdev

mn = (Smn − δmn Sqq/3)
2 (26.40a)

= Smn Smn + δmn δmn Sqq Sqq/9− 2Smn δmn Sqq/3 (26.40b)

= Smn Smn + (Sqq)
2/3− 2 (Sqq)

2/3 (26.40c)

= Smn (Smn − δmn Sqq/3) (26.40d)

= Smn Sdev
mn. (26.40e)

We are thus left
ρv · F = 2∇ · (ρ ν v · Sdev)− 2 ρ ν Sdev

mn Sdev
mn. (26.41)

We interpret the two contributions to the frictional power in equation (26.41) as

ρv · F = divergence of viscous flux− viscous dissipation. (26.42)

The divergence theorem means that when integrated over the full domain, the divergence of the
viscous flux becomes a contribution from boundary stresses, and boundary stresses can either
increase or decrease kinetic energy according to details of the boundary processes. In contrast,
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the sign-definite dissipation term provides a sink to the kinetic energy at each point in the fluid
interior. This frictional dissipation is commonly written

ϵ ≡ [v · F ]
dissipate

= 2 ν Sdev
mn Sdev

mn ≥ 0. (26.43)

The dimensions of ϵ are L2 T−3, which in SI units are m2 s−3 = W kg−1. We thus refer to ϵ as
the kinetic energy dissipation per mass arising from viscous effects. It is also sometimes referred
to as the viscous power per mass. Note that we know that ϵ > 0 since Sdev

mn Sdev
mn is the sum of

nine perfect squares, which is seen by expanding the Einstein summation convention

Sdev
mn Sdev

mn = Sdev
1n Sdev

1n + Sdev
2n Sdev

2n + Sdev
3n Sdev

2n , (26.44)

where
Sdev
1n Sdev

1n = Sdev
11 Sdev

11 + Sdev
12 Sdev

12 + Sdev
13 Sdev

13 , (26.45)

and likewise for Sdev
2n Sdev

2n and Sdev
3n Sdev

3n .

26.3.4 Further study

The study of physical processes contributing to kinetic energy dissipation is central to the study
of ocean mixing. The review by MacKinnon et al. (2013) provides a pedagogical starting point
for this active area of physical oceanography.

As shown in Section 17.8 of Griffies (2004), we can relate the global integral of the kinetic
energy dissipation to the friction vector by taking the functional derivative of the dissipation with
respect to the velocity field. This connection follows from the self-adjoint nature of the friction
operator and it can be a useful mathematical framework for developing numerical discretizations
of the viscous friction operator (e.g., Griffies and Hallberg (2000)). In Section 68.5 we consider
a similar connection between the tracer diffusion operator and tracer variance.

26.4 Mechanical energy budget
Mechanical energy of the macroscopic motion is the sum of the kinetic energy plus gravitational
potential energy. We here develop the budget, both differential and integral, for mechanical
energy.

26.4.1 Differential mechanical energy budget

Adding the material time evolution equations for kinetic energy per mass (equation (26.30))
and gravitational potential energy per mass (equation (26.5)) leads to the material form of the
mechanical energy per mass

ρ
DM

Dt
= −v · ∇p+ 2∇ · (ρ ν v · Sdev) + ρ (−ϵ+ ∂tΦ) (26.46a)

= −∇ · (pv − 2 ρ ν v · Sdev) + p∇ · v + ρ (−ϵ+ ∂tΦ) (26.46b)

= −∇ · Jmech + p∇ · v + ρ (−ϵ+ ∂tΦ), (26.46c)

where
M = K +Φ (26.47)

is the mechanical energy per mass of a fluid element. Equation (26.46c) introduced the mechanical
energy flux

Jmech = pv − 2 ρ ν v · Sdev = −v · (−p I + τ) = −v · T, (26.48)
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where T is the stress tensor for a Newtonian fluid given by equation (25.79) . We can write the
material time evolution equation (26.49) as a flux-form conservation equation

∂t(ρM) +∇ · (ρM v + Jmech) = p∇ · v + ρ (−ϵ+ ∂tΦ). (26.49)

Equation (26.46c) says that the material evolution of mechanical energy per mass arises
from the convergence of the mechanical energy flux, Jmech, plus the work done by pressure in a
fluid with non-zero flow divergence, along with frictional dissipation (more discussed in Section
26.7.3), and time changes to the geopotential. Furthermore, as shown when studying total energy
in Section 26.7, mechanical energy is exchanged with internal energy through pressure work
and frictional dissipation. This exchange provides the fundamental link between the mechanical
energy of macroscopic motion and the internal energy of microscropic degrees of freedom. As
already anticipated, there is a cancellation of the mechanical energy exchanged between kinetic
and potential energy due to motion through the gravitational field. However, the time-dependent
geopotential provides a source of mechanical energy arising from processes external to the fluid,
such as astronomical effects that drive tidal motions.

26.4.2 Gravitational potential energy budget for a finite volume
We here develop the gravitational potential energy budget for a finite volume, R. Using the
Leibniz-Reynolds transport theorem in the form of equation (20.47) yields

d

dt

[ˆ
R

ρΦdV

]
=

ˆ
R

∂t(ρΦ) dV +

˛
∂R
ρΦv(b) · n̂dS, (26.50)

where v(b) is the velocity of a point on the region boundary, ∂R, and n̂ is the boundary outward
normal. Next we replace the partial time derivative with

∂t(ρΦ) = ρ
DΦ

Dt
−∇ · (ρvΦ), (26.51)

in which case
d

dt

[ˆ
R

ρΦdV

]
=

ˆ
R

ρ
DΦ

Dt
dV −

˛
∂R
ρΦ (v − v(b)) · n̂dS. (26.52)

For the case of the full ocean domain we use the surface kinematic boundary condition (19.88a),
and no-flux boundary condition on the bottom, to yield

d

dt

[ˆ
R

ρΦdV

]
=

ˆ
R

ρ
DΦ

Dt
dV +

˛
∂R

ΦQm dA, (26.53)

with Qm the mass flux crossing the upper boundary at z = η, and dA the horizontal area element.
For the simple geopotential, Φ = g z, this equation takes the form

d

dt

[ˆ
R

ρΦdV

]
=

ˆ
R

ρ g w dV +

˛
∂R

ΦQm dA. (26.54)

This budget says that the gravitational potential energy for the global ocean domain changes
due to the domain integrated vertical motion, plus contributions from the transfer of mass across
the free surface boundary.

26.4.3 Mechanical energy budget for a finite volume
We here consider the mechanical energy budget for a finite volume region of fluid, first deriving
the budget for a real fluid and then specializing to the perfect fluid without flow divergence.

CHAPTER 26. ENERGY AND ENTROPY IN A MOVING FLUID page 679 of 2158



26.5. HYPOTHESIS OF LOCAL THERMODYNAMIC EQUILIBRIUM

Budget for a real fluid

To derive the finite volume budget we make use of the Leibniz-Reynolds transport theorem in
the form of equation (20.49), as well as the flux-form mechanical energy budget (26.49), thus
leading to

d

dt

[ˆ
R

ρM dV

]
= −
˛
∂R
ρM (v − v(b)) · n̂dS −

˛
∂R
Jmech · n̂dS

+

ˆ
R

[p∇ · v + ρ (−ϵ+ ∂tΦ)] dV. (26.55)

The first term on the right hand side arises from the advective transport of mechanical energy
across the moving boundary. The second term arises from the boundary work done by pressure
and viscous stresses, with equation (26.48) yielding the equivalent expression in terms of the
stress tensor

−
˛
∂R
Jmech · n̂dS =

˛
∂R
v · T · n̂dS. (26.56)

The third term in equation (26.55) is a volume source arising from pressure work applied to each
fluid parcel, viscous dissipation, and time tendencies in the geopotential.

Budget for a perfect fluid with zero flow divergence

Consider the particular case of a non-divergent flow (∇ · v = 0), as in the Boussinesq ocean
studied in Chapter 29. In this case, pressure does no work on fluid elements since each element
maintains a constant volume.4 Furthermore, assume the fluid is perfect and so do not have
any viscous stresses. Finally, assume the geopotential is constant in time (∂tΦ = 0). These
assumptions bring the finite volume mechanical energy equation (26.55) to the form

d

dt

[ˆ
R

ρM dV

]
= −
˛
∂R
ρM (v − v(b)) · n̂dS −

˛
∂R
pv · n̂dS. (26.57)

For this fluid, mechanical energy over a finite region changes via the advective transport of M
across the region boundary, taking into account the distinctions between the fluid velocity and
the velocity of the region boundary. Mechanical energy is also modified by pressure work acting
on the region boundary. It is notable that even though the flow is non-divergent at each point,
so that pressure cannot do work on fluid elements, pressure can still do work on the finite region
through boundary effects. Indeed, if the region is material, then (v − v(b)) · n̂ = 0, in which case
mechanical energy is modified only through pressure work integrated over the region boundary.
It follows that a steady state mechanical energy is realized for material regions only with a
vanishing steady state boundary integrated pressure work.

26.5 Hypothesis of local thermodynamic equilibrium
We make use of the hypothesis of local thermodynamic equilibrium in Section 26.6 to couple
the equilibrium thermodynamics in Chapters 22 and 23 to fluids in macroscopic motion. This
hypothesis presumes that macroscopic fluid motion is comprised of a continuum of moving
fluid elements5 that are, individually, in local thermodynamic equilibrium. For a perfect fluid,
macroscopic motion does not alter the entropy for a fluid element. That is, in the absence of
mixing of fluid elements, advective transport is a reversible process. In contrast, mixing of
properties between real fluid elements is irreversible and thus increases entropy.

4In Section 21.2 we show that ∇ · v = 0 means that fluid elements maintain a materially constant volume.
5See Section 17.2.4 for a reminder of fluid elements.
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26.5.1 Elements of the local thermodynamic equilibrium hypothesis
For a real fluid, any finite sized region is generally out of thermodynamic equilibrium, as
evidenced, say, by a non-uniform temperature over macroscopic length scales. Even so, the
local thermodynamic equilibrium hypothesis assumes that infinitesimal fluid elements are in
local thermodynamic equilibrium, thus affording the means to determine intensive thermody-
namic properties (e.g., temperature, pressure, chemical potential) at each point within the
fluid continuum. Furthermore, the hypothesis means that the functional dependence of state
functions (e.g., internal energy, entropy, enthalpy) remains the same for the moving fluid as
in thermodynamic equilibrium. This particular implication of the hypothesis provides the key
operational means for extending to a moving real fluid the differential relations developed for
equilibrium thermodynamics in Part IV of this book.

Theoretical foundations for the hypothesis of local thermodynamic equilibrium are rather
difficult and somewhat unresolved. Indeed, many presentations postulate that the equations of
equilibrium thermodynamics can be extended to moving continuous media, with justification
provided a posteriori based on the resulting implications (e.g., Section III.2 of DeGroot and
Mazur (1984)). We follow this approach here.6 Fortunately, the hypothesis has proven successful
for the atmosphere and ocean motions studied in this book, so that we accept it for our studies.7

Further discussion of the hypothesis of local thermodynamic equilibrium can be found in Section
49 of Landau and Lifshitz (1987), chapter 5 of Huang (1987), and Section 19.2 of Woods (1975).8

26.5.2 Processes facilitating local equilibration
How does local thermodynamic equilibration come about, and how well should we expect it to
be satisfied? If we assume a fluid element has length scale Lmacro = 10−4 m, as motivated in
Section 16.2, then the question reduces to determining the time scale for a fluid element to be
in have its mechanical and thermodynamical properties homogenized. We consider mechanical
equilibrium to be related to the time scales for pressure to equilibrate, whereas thermodynamic
equilibrium requires the additional considerations of material and thermal diffusion.

Pressure signals are transmitted by acoustic waves with speeds cs (Chapter 51), so that we
assume pressure equilibration times are proportional to Lmacro/cs. The sound speed for air at
room temperature is roughly 350 m s−1, so that pressure fluctuations are transmitted across an
air element within roughly 3× 10−7 s. The sound speed is about five times higher in water, thus
leading to roughly 6× 10−8 s for the pressure signal to cross an element of water. Both of these
time scales are extremely tiny from a macroscopic perspective, thus supporting the assumption
that pressure is rapidly equilibrated over the length scales of a fluid element.

The time scale for homogenization of temperature and matter concentrations are given by
L2

macro/κ, where κ is the respective molecular kinematic diffusivity for temperature or matter,
which is on the order of 10−6−10−5 m2 s−1. Hence, the time scale for a fluid element to homogenize
its temperature and tracer concentration, through molecular diffusion, is 10−3−10−2 s. This time
scale is far larger than the pressure time scale, yet it is still small relative to typical macroscopic
processes associated with fluid particle motion.

6The hypothesis of local thermodynamic equilibrium can be motivated by noting that the microscopic motions
of molecules have a much shorter equilibration time scale relative to the longer time scale of macroscopic processes
of interest for fluid flow (Section 16.3.5). Even so, pursuit of that motivation has some nuances that go beyond
our goals. Hence, our perspective is pragmatic, in which we assume local thermodynamic equilibrium and see
what it implies.

7The hypothesis of local thermodynamic equilibrium is questionable for rarefied gas dynamics of the upper
atmosphere, which is a subject outside the scope of this book.

8The extension of equilibrium thermodynamics to a moving fluid falls under the discipline of quasi-equilibrium
thermodynamics or linear irreversible thermodynamics. The term “linear” in the name refers to an assumption
that the system is close to thermodynamic equilibrium throughout its motion so that thermodynamic fluxes are
linear functions of the gradients of the thermodynamic state variables.
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26.6 Thermodynamics of a moving fluid

We here extend the formalism of equilibrium thermodynamics from Chapters 22 and 23 to the
case of a moving fluid. One practical outcome of this development is a framework to understand
how the internal energy of microscopic degrees of freedom is exchanged with the mechanical
energy of macroscopic fluid motion. For that purpose, recall the fundamental thermodynamic
relation (22.56b) for a two-component fluid such as seawater or the atmosphere

dI = T dS− p d(1/ρ) + µdC. (26.58)

This equation expresses the first law of thermodynamics for a quasi-static process (Section
22.1.5), thus relating the exact differential of specific internal energy, I, to the specific entropy, S,
specific volume, 1/ρ, and matter concentration, C, along with the thermodynamic temperature,
T , the pressure, p, and the relative chemical potential, µ.

Now consider a finite region of fluid comprised of a continuum of fluid elements. The fluid
region is generally exposed to mechanical and thermal processes that support macroscopic fluid
motion. However, as discussed in Section 26.5, we assume that each fluid element is in local
thermodynamic equilibrium and separately satisfies the fundamental thermodynamic relation
(26.58). We furthermore assume that the thermodynamic potentials have the same functional
relation across all of the fluid elements. This assumption is basic to our ability to maintain
a field theoretic description of the continuum. Namely, there is no objective definition of a
fluid element. Instead, they are infinitesimal regions of a continuum. So we must make use of
the same functional expression for thermodynamic potentials across all of the fluid elements.
This assumption allows us to take space and time derivatives of thermodynamic potentials as
considered next.

26.6.1 Concerning the transition to a continuous fluid

For a continuum fluid, each of the thermodynamic properties in the fundamental thermodynamic
relation (26.58) are continuous functions of space and time. Furthermore, equation (26.58)
provides a relation between exact differentials as detailed in Section 2.8. As exact differentials of
continuous fields, we can make use of the space and time differentials detailed in Section 17.4.1
to write

dΨ = Ψ(x+ dx, t+ dt)−Ψ(x, t) = dt ∂tΨ+ dx · ∇Ψ, (26.59)

where Ψ is one of the thermodynamic properties, dt is the time differential, and dx is the vector
of space differentials. Following the discussion in Section 17.4.2, we are led to the total time
derivative for a property following an arbitrary trajectory x =X(t)

dΨ

dt
=
∂Ψ

∂t
+

dX

dt
· ∇Ψ. (26.60)

Restricting the trajectory to that defined by a fluid particle, so that v = dX/dt, renders the
material time derivative as in Section 17.4.4

DΨ

Dt
=
∂Ψ

∂t
+ v · ∇Ψ. (26.61)

We make use of this result in Section 26.6.4 to transition the quasi-static relation (26.58) to a
moving fluid.
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26.6.2 Space-time derivatives and thermodynamic partial derivatives
We need one more piece of formalism prior to transitioning the quasi-static relation (26.58) to a
moving fluid. For this purpose, consider the particular case of specific enthalpy, in which case

H = H(x, t) = H[S(x, t), p(x, t), C(x, t)], (26.62)

where the second equality exposed the natural functional dependence based on the fundamental
thermodynamic relation (22.74c)

dH = T dS+ (1/ρ) dp+ µ dC, (26.63)

which holds for transitions between equilibrium states (Section 22.6.4). Again, this same
functional dependence is assumed to hold for the case of an evolving fluid, so long as the
evolution time scales are much slower than the time scales for reaching local thermodynamic
equilibrium. We next make use of the chain-rule to render the spatial gradient

∇H =

[
∂H

∂S

]
p,C

∇S+

[
∂H

∂p

]
S,C

∇p+
[
∂H

∂C

]
S,p

∇C. (26.64)

This spatial gradient probes properties of the field, H(x, t), which is a function of three other
fields, S(x, t), p(x, t), C(x, t). From this field theory perspective, the thermodynamic partial
derivatives are computed by holding the value of the complement thermodynamic properties
fixed at a point in space and time. For example, exposing space and time positions renders the
awkward, yet unambiguous, expression[

∂H

∂S

]
p,C

=

[
∂H[S(x, t), p(x, t), C(x, t)]

∂S(x, t)

]
p(x,t),C(x,t)

. (26.65)

We next apply the thermodynamic partial derivative identities (22.76) to write[
∂H

∂S

]
p,C

=

[
∂H[S(x, t), p(x, t), C(x, t)]

∂S(x, t)

]
p(x,t),C(x,t)

= T (x, t) (26.66a)[
∂H

∂p

]
S,C

=

[
∂H[S(x, t), p(x, t), C(x, t)]

∂p(x, t)

]
S(x,t),C(x,t)

= 1/ρ(x, t) (26.66b)[
∂H

∂C

]
S,p

=

[
∂H[S(x, t), p(x, t), C(x, t)]

∂C(x, t)

]
S(x,t),p(x,t)

= µ(x, t), (26.66c)

thus leading to9

∇H = T ∇S+ ρ−1∇p+ µ∇C. (26.67)

An analogous relation also holds for time derivatives, in which case

∂tH = T ∂tS+ ρ−1 ∂tp+ µ∂tC. (26.68)

We thus find a direct connection between exact differentials satisfied by the fundamental
thermodynamic relations in equilibrium thermodynamics (Chapters 22 and 23), and partial

9Equation (26.67) is used on page 193 of Landau and Lifshitz (1987) as part of their derivation of the entropy
budget for a moving fluid in the presence of heat conduction. It is also used on their page 229 to derive energetics
for a fluid with both heat conduction and matter diffusion. See also their page 4 for more general discussion of
how equilibrium thermodynamic relations imply relations between the space and time structure of thermodynamic
functions in a moving fluid. Other treatments in the literature typically gloss over the transition of the fundamental
thermodynamic relation of equilibrium thermodynamics to the quasi-equilibrium thermodynamics needed for
moving fluids.
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derivatives in both space and time. Such connections prove particularly useful in connecting
between the mechanical force from pressure and gradients in thermodynamic properties. That
is, the identity (26.67) offers an alternative means to express the pressure gradient acceleration
appearing in the momentum equation (e.g., equation (24.15))10

−ρ−1∇p = −∇H + T ∇S+ µ∇C. (26.69)

26.6.3 A caution for thermodynamic partial derivatives
One common confusion arises when not being clear on whether a mathematical expression
refers to an equilibrium thermodynamic relation between thermodynamic variables, as in the
fundamental thermodynamic relation (26.58), or whether it expresses a relation involving space-
time field representations of thermodynamic properties. The distinction is particularly important
when considering derivatives and integrals since it is necessary to know what variables are held
fixed in the process of performing the operations.

For example, consider the middle relation in equation (22.86), which says that the partial
derivative of the Gibbs potential with respect to pressure, holding temperature and tracer
concentration fixed, equals to the specific volume[

∂G

∂p

]
T,C

= νs = ρ−1. (26.70)

However, if we encounter the Gibbs potential as a space-time function, and we use pressure
as a generalized vertical coordinate, then we might find need to compute the distinct partial
derivative [

∂G

∂p

]
x,y,t

̸=
[
∂G

∂p

]
T,C

. (26.71)

When appropriate, we offer reminders to help avoid a cascade of misunderstandings. One point
where this reminder is particularly useful is when discussing energetics for a Boussinesq fluid in
Section 29.6.

26.6.4 First law for a moving fluid element
Sections 26.6.1 and 26.6.2 provide the key operational means for developing the equations of
quasi-equilibrium thermodynamics, in which we apply the equilibrium thermodynamic relations
to moving and evolving fluid elements. Consequently, the fundamental thermodynamic relation
(26.58), which is the first law for a quasi-static process transitioning between thermodynamic
equilibria, becomes for a moving fluid element

DI

Dt
= T

DS

Dt
+

p

ρ2
Dρ

Dt
+ µ

DC

Dt
. (26.72)

Making use of the space and time derivative results from Section 26.6.2 leads to the gradient
and Eulerian time derivative identities

∇I = T ∇S+ p ρ−2∇ρ+ µ∇C (26.73a)

∂tI = T ∂tS+ p ρ−2 ∂tρ+ µ∂tC. (26.73b)

We can further massage the first law (26.72) by recalling that mass conservation as discussed
in Section 19.2 means that changes in the volume of a fluid element are related to density changes

10We make use of the identity (26.69) for studies of circulation in Section 40.2.5 and for potential vorticity in
Section 41.6.
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via
1

δV

D(δV )

Dt
=

1

νs

Dνs
Dt

= −1

ρ

Dρ

Dt
. (26.74)

Hence, equation (26.72) can be written

δM
DI

Dt
= T δM

DS

Dt
− p D(δV )

Dt
+ µ δM

DC

Dt
, (26.75)

where δM = ρ δV is the mass of the fluid element. Since the mass of the fluid element is
constant, equation (26.75) is the fluid element extension of the first law given by equation (26.58).
Alternatively, we can use the further result from mass conservation (equation (19.25))

1

δV

D(δV )

Dt
= ∇ · v (26.76)

to write
DI

Dt
= T

DS

Dt
− (p/ρ)∇ · v + µ

DC

Dt
. (26.77)

Processes affecting internal energy that appear on the right hand side are (i) entropy production,
whose form is developed in Sections 26.10 and 26.7, (ii) mechanical work from pressure modifying
the volume of the fluid element, and (iii) mixing (chemical work) through the exchange of matter
constituents between fluid elements. We provide further details for the first law in Section 26.7
when considering the budget for the total energy of a fluid element.

26.6.5 Enthalpy budget

It is often more convenient to consider the specific enthalpy (Section 22.6.4),

H = I+ p/ρ = I+ p νs. (26.78)

The mass continuity equation (19.19) and the internal energy equation (26.77) yield

DH

Dt
=

DI

Dt
+

1

ρ

Dp

Dt
− p

ρ2
Dρ

Dt
=⇒ DH

Dt
= T

DS

Dt
+

1

ρ

Dp

Dt
+ µ

DC

Dt
, (26.79)

with the second expression consistent with equations (26.67) and (26.68) for the gradient and
local time tendency of the specific enthalpy.

The specific enthalpy equation (26.79) says that for constant pressure processes, changes
to specific enthalpy of a moving fluid element arise just from those processes that give rise to
changes in specific entropy and changes in matter concentration

Dp

Dt
= 0 =⇒ DH

Dt
= T

DS

Dt
+ µ

DC

Dt
. (26.80)

Since many boundary processes occur approximately at near constant pressure (e.g., air-sea
fluxes), this result motivates formulating boundary fluxes of matter and thermal energy in terms
of enthalpy fluxes rather than internal energy fluxes. Also, the mixing of fluid elements occurs
locally in space so that pressure of fluid elements is the same when they mix, again making
enthalpy a useful thermodynamic potential for the study of mixing.
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26.6.6 Thermal and chemical processes and fluxes

The internal energy of a fluid element is modified by the diabatic transfer of thermal energy. We
are generally concerned with two thermal fluxes, one due to conduction and one due to radiation

Jtherm = Jcond + Jrad. (26.81)

Details of the radiant flux require topics outside our scope so we leave it unspecified. However,
we consider forms for heat conduction in Section 26.10, with the simplest form being Fourier’s
law whereby Jcond is directed down the temperature gradient.

The internal energy of a fluid element also changes through changes in the matter concentra-
tion. This change occurs when fluid elements mix at constant pressure. As mentioned in Section
26.6.5, enthalpy is the proper thermodynamic potential to consider for examining the mixing of
matter concentrations. We thus assume that the transfer of chemical energy associated with a
matter flux, JC , leads to a corresponding chemical energy flux given by

Jchem =

[
∂H

∂C

]
T,p

JC . (26.82)

The enthalpy partial derivative is computed at constant pressure and temperature so to isolate
the energy change associated just with mixing of matter. It is important to distinguish this
partial derivative with the distinct derivative that leads to the chemical potential as in equation
(22.76) [

∂H

∂C

]
S,p

= µ. (26.83)

As shown by Exercise 22.2, the two partial derivatives are related by[
∂H

∂C

]
T,p

= µ− T
[
∂µ

∂T

]
p,C

, (26.84)

so that

Jchem =

[
µ− T

[
∂µ

∂T

]
p,C

]
JC . (26.85)

We make use of this relation when studying the entropy budget in Section 26.10.

Details of the thermal and chemical fluxes are undetermined at this point. We garner further
insights through studying the entropy budget and second law of thermodynamics in Section
26.10 and the budget for total energy in Section 26.7. It is remarkable how far the laws of
thermodynamics can be used to constrain the molecular flux laws. Even so, we note that the
conductive and chemical fluxes are those that arise from molecular motions rather than turbulent
motions, with turbulent fluxes determined by properties of the flow whereas Jcond and Jchem are
determined by properties of the fluid.

26.6.7 First law in terms of potential temperature

Equation (23.44) says that the change in entropy for a fluid element moving with constant
matter concentration and at the reference pressure is given in terms of the potential temperature

DS

Dt
=
cp
θ

Dθ

Dt
(26.86)
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For a single-component fluid, the potential temperature equals to the in situ temperature when
p = pR, in which case

cp
Dθ

Dt
= θ

DS

Dt
at p = pR and dC = 0. (26.87)

In general, this relation has little practical value since a fluid element generally does not maintain
pressure at the reference pressure. Even so, in Exercise 26.4 we see that the relations hold for
all pressures for the special case of an ideal gas, and in Exercise 26.5 we see they also hold for
some liquids at all pressures.

26.6.8 Materially constant specific entropy for a perfect fluid
Each material fluid parcel within a perfect fluid maintains a constant specific entropy given that
it experiences no dissipation (friction is absent), maintains a constant composition (mixing is
absent), and encounters no heating (adiabatic). Consequently, specific entropy for each fluid
parcel is reversibly stirred through advection

DS

Dt
=
∂S

∂t
+ v · ∇S = 0. (26.88)

A perfect fluid generally admits nonzero gradients of specific entropy, even as each fluid parcel
moves without altering its specific entropy. The homentropic fluid is a special case where the
entropy is a space-time constant throughout the fluid domain.

26.6.9 Further study
DeGroot and Mazur (1984) provide an authoritative accounting of quasi-equilibrium thermody-
namics as applied to continuum matter such as a fluid. Gregg (1984) and Davis (1994) apply
these methods to small-scale mixing in the ocean. Slightly different formulations can be found
in Landau and Lifshitz (1987) and Batchelor (1967).

26.7 Budget for total energy
Recall from Section 14.7 that a point particle conserves its mechanical energy in the absence of
friction. In contrast, the mechanical energy for a fluid element is not materially constant even
when only conservative forces act on the element. The reason is that for the continuum fluid,
there is (i) a conversion between mechanical energy and internal energy as pressure does work
to alter the volume of fluid elements, and (ii) frictional dissipation of kinetic energy irreversibly
converts some kinetic energy to internal energy through Joule heating (Section 26.7.3). In this
section we combine the mechanical energy budget from Section 26.4 to the internal energy budget
from Section 26.6, thus rendering the budget for total energy of a fluid element. We furthermore
postulate that the domain integrated total energy changes only due to boundary effects, as well
as possible changes in the geopotential such as via astronomical effects. This assumption then
leads to further specifications of the processes contributing to the internal energy and enthalpy
budgets.

26.7.1 Postulating the budget for total energy
In their specific (per mass) forms, the total energy of a fluid element is the sum of the internal
energy, I, of internal degress of freedom, plus the mechanical energy, M, from macroscropic
motion, with the mechanical energy the sum of the kinetic energy plus potential energy

E = I+M = I+K +Φ. (26.89)

CHAPTER 26. ENERGY AND ENTROPY IN A MOVING FLUID page 687 of 2158



26.7. BUDGET FOR TOTAL ENERGY

We postulate that this total energy per mass satisfies a conservation law whereby it is affected
only by the convergence of a total energy flux, plus a source due to temporal changes in the
geopotential

ρ
DE

Dt
= −∇ · JE + ρ ∂tΦ. (26.90)

Correspondingly, the flux-form equation for total energy is

∂(ρE)

∂t
+∇ · (ρv E + JE) = ρ ∂tΦ. (26.91)

The flux of total energy is given by

ρv E + JE = ρv E + Jtherm + Jchem + Jmech (26.92a)

= ρv E + Jtherm + Jchem − v · (−p I + τ) (26.92b)

= ρv (E + p/ρ) + Jtherm + Jchem − v · τ, (26.92c)

where Jtherm and Jchem were discussed in Section 26.6.6, and Jmech was derived in Section 26.4.
We have more to say concerning the flux of total energy in Section 26.9 when studying the
Bernoulli potential.

We are led to postulate the total energy equation (26.90) through assuming that
´
R
ρE dV

remains constant in time for a region, R, that is closed to thermal, material, and mechanical
interactions, and one where the geopotential is constant in time. This assumption is based on
our understanding of molecular and atomic mechanics.

26.7.2 First law of thermodynamics for a moving fluid

We now have the total energy budget as postulated in the form of equation (26.90), along
with the mechanical energy budget derived in equation (26.49). Subtracting the two yields the
internal energy budget

ρ
D(E −M)

Dt
= ρ

DI

Dt
= −∇ · (Jtherm + Jchem)− p∇ · v + ρ ϵ. (26.93)

This equation provides yet another expression for the first law of thermodynmics for a moving
fluid element. It says that the internal energy of a fluid element is modified through the
convergence of thermal and chemical fluxes, pressure work that alters the volume of a fluid
element, and frictional dissipation through viscosity. Both the pressure work and frictional
dissipation are exchanged with mechanical energy, and so they appear with opposite signs in
the budget for mechanical energy. We specify the thermal and chemical fluxes in Section 26.10
when studying the entropy budget.

We can make use of the enthalpy equation (26.79) to render the enthalpy budget

ρ
DH

Dt
− Dp

Dt
= −∇ · (Jtherm + Jchem) + ρ ϵ. (26.94)

This equation is used in Section 26.11 when studying the evolution of temperature.

26.7.3 Joule heating from friction

Frictional dissipation, ϵ > 0, measures the conversion of kinetic energy into heat, and it is thus a
conversion from mechanical energy to internal energy

Q̇Joule ≡ ϵ. (26.95)
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This term is referred to as Joule heating in analog to the process that occurs in electrical circuits.
The Joule heating of a fluid by molecular viscosity is larger in regions where the fluid strains are
larger, signalling a more efficient transfer of power to the microscales where molecular viscosity
can act on the flow.

In the ocean interior, measurements indicate that ϵ ≈ 10−9 W kg−1. Dividing by cp =
3900 J kg−1 K−1 leads to a heating rate of less than 10−3 K century−1, which is a very small
rate of ocean heating. Consequently, ocean Joule heating has a negligible role in the ocean heat
budget and as such is generally ignored. Atmospheric flows are roughly two orders faster so that
the kinetic energy per mass is four orders larger. The larger flow speeds lead to larger shears
thus creating larger viscous dissipation that reaches roughly ϵ ≈ 2 W m−2 globally averaged.
Hence, Joule heating is an important part of the global atmosphere enthalpy budget (Becker ,
2003).

26.7.4 Comments on gauge symmetry
Consider again the flux-form equation for total energy (26.91). It is notable that the time
tendency for the total energy remains unchanged if we shift the flux of total energy by a curl,

ρE v + JE → ρE v + JE +∇×G, (26.96)

with G referred to as a gauge function. This arbitrariness in the definition of total energy
flux is ubiquitous in physics; e.g., see the discussion of the electromagnetic field energy flux in
Section 27-4 in Volume II of Feynman et al. (1963).11 We conclude that the energy flux has no
unique local physical meaning. Instead, it is only the convergence of the energy flux that has an
unambiguous meaning given by its role in affecting a time change to the energy at a point in
space.

We also encounter such gauge symmetry in the potential vorticity flux discussed in Chapter
42, as well as the vector streamfunction for an incompressible fluid in Section 21.5.1. In some
cases we can exploit the symmetry to our subjective desires, such as discussed in Section 42.5.6
for potential vorticity. However, we know of no strategic use of gauge symmetry for the study of
energy budgets.

26.7.5 Further study
The postulate of globally integrated total energy conservation in Section 26.7.1, and the associated
discussion of energy budgets, follow that from Section 33 of Serrin (1959), Section II.4 of DeGroot
and Mazur (1984), Chapter 14 of Callen (1985), Sections 49 and 58 of Landau and Lifshitz
(1987), Chapters 3 and 4 of Müller (2006), Appendix B of IOC et al. (2010), Section 2.4 of
Olbers et al. (2012), Chapter 1 of Vallis (2017), and Section 13.5.5 of Thorne and Blandford
(2017).

26.8 Thermodynamic equilibrium with macroscopic motion
We derived the properties of thermodynamic equilibria in Section 22.2.8 for a single component
fluid, and in Section 23.1 for a binary fluid in the presence of a geopotential. We here extend
those discussions to the case of a finite region of a fluid undergoing macroscopic motion in the
absence of gravity. We assume no external forces or torques, so that the total linear momentum
and total angular momentum remain constant. As in our earlier discussions, we derive the
properties of thermodynamic equilibrium by assuming entropy is an extremum at equilibrium.
Furthermore, the extremum must be consistent with the variety of conserved quantities, thus

11The Feynman lectures are available online through the California Institute of Technology.
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motivating the use of Lagrange multipliers as part of the formalism needed to determine the
extremum.

26.8.1 Deriving the equilibrium conditions

To focus on the allowed macroscopic motion, we ignore external fields such as from gravity, in
which case the total energy is the sum of the internal energy plus kinetic energy

Ee = Ie + P 2/(2M), (26.97)

where P = M v is the linear momentum of the system with velocity v and mass M , and
P 2 = P ·P is the squared momentum. If the macroscopic system is materially and mechanically
closed then total energy remains constant, as does the linear momentum and angular momentum.
Thermodynamic equilibrium is realized by maximizing the function

Ψ = Se +A · P +B · (x× P ), (26.98)

where x is the position of the macroscopic system, and the vectors A and B are constant
Lagrange multipliers. Note that for convenience we assume the system to be macroscopically
small but microscopically large (e.g., a fluid element) so that we can assign a single position
vector to the system.

Should entropy be a function of the total energy (which is a constant of the motion) or
remain a function of just the internal energy? To answer this question we appeal to the statistical
interpretation of entropy whereby the number of microstates corresponding to a particular
macrostate is Galilean invariant.12 The local rest state, where total energy equals to internal
energy, is thus sufficient for defining the functional dependence13

Se = Se(V, Ie) = Se[V,Ee − P 2/(2M)]. (26.99)

Hence, maximizing Ψ with respect to the linear momentum component, Pm, requires the
derivative [

∂Se

∂Pm

]
V

=

[
∂Se

∂Ie

]
V

∂Ie

∂Pm
= − 1

T

Pm
M

= −vm
T
, (26.100)

so that the macroscopic velocity at equilibrium is

∂Ψ

∂Pm
= 0 =⇒ v = T (A+B × x). (26.101)

With temperature uniform throughout the macroscopic system at thermodynamic equilibrium,
we find a velocity decomposed into a uniform translation plus a rigid-body rotation. That
is, a closed macroscopic system in thermodynamic equilibrium can, at most, exhibit uniform
translation plus rigid-body rotation. More general macroscopic motion is not possible when
the system is in thermodynamic equilibrium. Furthermore, note that each component of the
strain rate tensor vanishes for uniform translation plus a rigid-body rotation (see Exercise 18.2).
For the Newtonian fluids considered in this book, a zero strain rate tensor means there are no
frictional stresses (Section 25.8.6), thus ensuring no frictionally generated entropy.

The Cauchy-Stokes decomposition from Section 18.8.6 shows that at each time instance,
motion of a fluid element can be kinematically decomposed into translation, rotation, and
dilation. Dilation occurs through mechanical work. In its absence, and without heating or
mixing, the fluid element moves through sequences of translations and rotations that maintain

12Recall our discussion of Galilean invariance in Section 17.5.
13See footnote on page 36 of Landau and Lifshitz (1980) for more discussion.
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thermodynamic equilibrium. With dilation, heating, and/or matter mixing, we conceive of
a moving fluid as a continuum of fluid elements that, on a time scale that is tiny relative to
macroscopic processes, adjusts to thermodynamic equilibrium in response to interactions with
the surrounding fluid environment.

26.8.2 Further study

We here followed the dicussion of §10 in Landau and Lifshitz (1980). See also a complementary
discussion in Section 1.8 of Kamenkovich (1977), who considers a two-component fluid in the
presence of gravity. Kamenkovich (1977) finds that although in situ temperature is a uniform
constant in thermodynamic equilibrium, the salinity is not constant.

26.9 Bernoulli’s theorem

The total energy equation (26.90) reveals that the material time change for the total energy of a
fluid element is affected by the convergence of pressure times velocity. Hence, even in the absence
of irreversible processes (i.e., a perfect fluid) and with a time-independent geopotential, the total
energy of a fluid element is not materially invariant. The pressure flux, pv, is a fundamental
contribution to energy within the continuum. As shown in this section, it is the pressure work
required for the fluid element to mechanically exist within the continuum. We thus refer to pv
as the mechanical injection work. This conceptualization of pv arises in the context of exploring
the remarkably versatile Bernoulli theorem, which is particularly useful in diagnosing energetic
properties of steady flows.

26.9.1 Bernoulli potential

Consider the flux-form equation for the total energy, (26.91), written here as

∂(ρE)

∂t
+∇ · [ρv (E + p/ρ) + Jtherm + Jchem − v · τ] = ρ ∂tΦ. (26.102)

The left hand side indicates that total energy of a fluid element is locally modified by the
advective transport of the quantity

E + p/ρ = (K +Φ) + (I+ p/ρ) = M +H ≡ B, (26.103)

where we introduced the Bernoulli potential, which is the sum of the mechanical energy per
mass plus the enthalpy per mass

B = M+H = K +Φ+ I+ p/ρ. (26.104)

For a perfect fluid there is no irreversible transfer of heat, matter, or momentum so that

perfect fluid =⇒ Jtherm = 0 and Jchem = 0 and τ = 0. (26.105)

Hence, we see that integration over a region with zero boundary transfer of vB leads to the
conservation of total energy for a perfect fluid with a time independent geopotential. Note that
for some purposes it can be useful to write the total energy equation (26.102) as an equation for
the Bernoulli function, which takes the form

∂(ρB)

∂t
+∇ · [ρvB+ Jtherm + Jchem − v · τ] = ∂tp+ ρ ∂tΦ. (26.106)
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26.9.2 Mechanical injection work

Why is ρE affected by the convergence of ρvB rather than the convergence of ρv E? To answer
this question,14 again note that the Bernoulli potential is the sum of the total energy per mass
of a fluid element, E, plus the term p/ρ. So what is p/ρ? Imagine carving out a tiny region from
within a continuous fluid with pressure p and specific volume 1/ρ, leaving behind a “hole”. The
mechanical work required to carve out this hole is precisely equal to p/ρ. Correspondingly, we
interpret p/ρ as the mechanical work required to inject a unit mass of fluid with specific volume
1/ρ into a region with pressure p. We thus refer to p/ρ as the injection work, and we in turn see
that specific enthalpy, H = I+ p/ρ (equation (26.78)), measures the internal energy plus the
mechanial work required for a fluid element to exist within a continuum.

We can support the above interpretation by considering the flux, ρvB, in a perfect fluid
that penetrates a static closed fluid region

˛
∂R
ρvB · n̂dS =

˛
∂R
ρv E · n̂dS +

˛
∂R
pv · n̂dS. (26.107)

The first term on the right hand side is the flux of total energy (mechanical plus internal) that
penetrates the region boundary, ∂R. The second term is the mechanical work done by pressure
acting on the boundary. The example in Section 26.9.5 further supports this perspective, whereby
we develop the energetics of a control volume of fluid moving through a pipe.

26.9.3 Bernoulli’s theorem for a steady perfect fluid

Consider a perfect fluid flow in steady state (vanishing Eulerian time derivatives). Steady state
mass conservation means that

∂ρ

∂t
= −∇ · (ρv) = 0. (26.108)

This relation, along with a steady state energy in equation (26.102) (absent friction, heating,
mixing, and with a time-independent geopotential), means that the steady state velocity field is
locally tangent to isosurfaces of the Bernoulli potential

v · ∇B = 0. (26.109)

We thus see that for the perfect fluid to be in a steady state, the Bernoulli potential is constant
along streamlines, which is a result known as Bernoulli’s theorem. Hence, as the fluid moves
along a streamline, there is an exchange between the total energy per mass, E, and the injection
work, p/ρ, such that their sum remains constant.

A constant Bernoulli potential for steady flow is used frequently in engineering fluid dynamics
to interpret flow around objects, such as for flow around a wing, in which case the sum p+ρv2/2
is sometimes referred to as the total pressure or stagnation pressure. It leads to a realization of
Bernoulli’s principle, whereby in regions of low pressure the energy per mass is relatively large,
whereas the converse holds in regions of high pressure. The change in energy is largely due to a
change in the kinetic energy, so that flow is fast in regions of low pressure (e.g., top of the wing,
flow around a train moving through a tunnel) and slow in regions of high pressure (e.g., bottom
of the wing).15 That is, the Bernoulli principle provides an energetic expression for why a fluid
slows down when moving into a region of relatively high pressure, and speeds up when moving
to a region of low pressure.

14This argument follows Section 13.5.4 of Thorne and Blandford (2017) as well as Section 6 of Landau and
Lifshitz (1987).

15See this discussion and video for why it is incorrect to use Bernoulli’s theorem for explaining the lift on an
airplane wing.
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26.9.4 Traditional derivation of Bernoulli’s theorem
For completeness we offer a second derivation of Bernoulli’s theorem that follows a more
traditional route and reveals some useful manipulations. For this purpose, convert the advective-
form momentum equation (24.16) into its vector-invariant form by making use of the vector
identity (see Section 2.3.4)

ω × v = −K + (v · ∇)v. (26.110)

This identity allows us to eliminate velocity self-advection in favor of the vorticity and kinetic
energy per mass

∂v

∂t
+ ωa × v = −1

ρ
∇p−∇M, (26.111)

where
ωa = ω + 2Ω (26.112)

is the absolute vorticity (see Chapter 40) and we set the irreversible terms to zero since we
are assuming a perfect fluid. The Eulerian time evolution for the kinetic energy per mass is
therefore given by

∂K

∂t
= −1

ρ
v · ∇p− v · ∇M, (26.113)

where we set v · (ωa × v) = 0.

For Bernoulli’s theorem we are interested in the steady state, with a steady kinetic energy
per mass realized by the balance

ρ−1 v · ∇p = −v · ∇M. (26.114)

We can connect this steady state balance to the Bernoulli potential by noting that for a steady
perfect and single-component fluid, equation (26.69) allows us to write

ρ−1 v · ∇p = v · (∇H − T ∇S). (26.115)

Combining with equation (26.114) renders

v · (∇H +∇M − T ∇S) = v · (∇B− T ∇S) = 0. (26.116)

A perfect fluid maintains materially constant specific entropy (Section 26.6.8), which in a steady
state means that

v · ∇S = 0 and v · ∇B = 0 ⇐= steady state perfect fluid. (26.117)

That is, for a steady perfect fluid the velocity is aligned with isosurfaces of specific entropy and
Bernoulli potential.

26.9.5 Steady flow in a pipe
To help further understand Bernoulli’s theorem and the contribution from the mechanical work
provided by pressure forces, consider the steady flow of a constant density perfect fluid in a
frictionless pipe as depicted in Figure 26.1. For this system, Bernoulli’s theorem says that the
following simplified form of the Bernoulli potential is constant for flow along a streamline

B = v2/2 + p/ρ+ g z = constant. (26.118)

Note that internal energy dropped out since for a constant density fluid the internal energy is a
constant and so plays no role in the energetics. Equation (26.118) means that there is a precise
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balance between the kinetic energy per mass, injection work, and geopotential for a steady
and constant density fluid. For example, for flow following a constant geopotential, pressure is
relatively low in regions of large kinetic energy whereas pressure is relatively high in regions
of small kinetic energy. We further pursue this understanding by showing that the statement
(26.118) of Bernoulli’s theorem can be derived through traditional energetic arguments, whereby
the mechanical work done on the fluid system equals to the system’s change in kinetic energy
(see Section 11.1.4 for the particle mechanics version of this work-energy theorem).

For this purpose, let the system under examination be a control volume of fluid as described
in the caption to Figure 26.1, and examine the work done on the control volume over an arbitrary
time increment, ∆t. During this time, a mass of fluid given by

M = ρA1 u1∆t = ρA2 u2∆t (26.119)

moves through the pipe, with A1 u1 = A2 u2 following from volume conservation, and we assumed
that the u1,2 = ∆x1,2/∆t measures the average velocity across the pipe cross-section. Mechanical
work is applied to the fluid in the control volume by pressure acting on the end caps (contact
force) and by gravity acting throughout the fluid (body force).

• pressure work: At the left end cap, pressure from fluid to the left of the control volume
does work on the control volume by the amount p1A1∆x1 = p1M/ρ. On the right end,
the control volume does work on the fluid to its right, which means that a negative work
is applied to the control volume in the amount −p2A2∆x2 = −p2M/ρ.

• gravitational work: Fluid downstream at the right end is higher than fluid upstream
on the left end. The control volume must do work against gravity to achieve this altitude
increase and this work is given by −gM (z2 − z1).

As the fluid moves from left to right, the control volume changes its kinetic energy by the
amount (M/2) (u22 − u21). Equating this kinetic energy change to the work applied to the control
volume renders

(1/2) (u22 − u21) = (1/ρ) (p1 − p2)− g (z2 − z1), (26.120)

where the mass, M , dropped out. Rearrangement then leads to

u2/2 + p/ρ+ g z = constant, (26.121)

which is a statement of Bernoulli’s theorem (26.118).
Making use of volume conservation allows us to rearrange equation (26.120) to determine

the pressure difference between the left and right end of the pipe

p1 − p2 = ρ g (z2 − z1)− (ρ/2)u21 [1− (A1/A2)
2]. (26.122)

To help understand this result, consider two special cases starting with A1 = A2. We see that
for equal cross-sectional areas, the pressure drop equals to the increase in gravitational potential
energy,

p1 − p2 = ρ g (z2 − z1) > 0 with A2 = A1, (26.123)

so that the pressure work equals to the gravitational work required to lift the fluid. Next consider
z2 = z1 so that there is no change in gravitational potential energy but there is a change in
cross-sectional area, in which case

p1 − p2 = −(ρ/2)u21 [1− (A1/A2)
2] < 0 with z2 = z1. (26.124)

In this case there is a pressure increase as the fluid moves into a region with larger cross-sectional
area (A2 > A1). This pressure increase slows the fluid speed, which accords with volume

page 694 of 2158 geophysical fluid mechanics



26.9. BERNOULLI’S THEOREM
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Figure 26.1: An example to illustrate the basic physics of Bernoulli’s theorem and pressure work, whereby we
depict the flow of a perfect and constant density fluid from left to right in a pipe of variable cross-section and
variable height. We study the energetics of a control volume (dark blue region) moving with the fluid. The top
panel shows the control volume at one time and the lower panel shows the control volume at a time ∆t later, after
which a mass of fluid,M , has moved through the system. Volume conservation means that (u1 ∆t)A1 = (u2 ∆t)A2,
where ∆x1,2 is the horizontal displacement of the fluid plug over time ∆t, u1,2 is the cross-sectional area average
velocity, A1,2 is the pipe cross-sectional area, and M = ρ∆x1A1 = ρ∆x2A2 is the mass of fluid moving over the
∆t time increment. Pressure forces, p1,2, at the end caps point inward (compressive), with pressure on the left
larger than that on the right to support the fluid moving to the right. As the fluid moves upward it increases its
gravitational potential energy and in so doing the fluid does work against gravity.

conservation.

These examples support our understanding of how pressure provides mechanical work on
fluid control volume boundaries, with that work required to maintain conservation of mechanical
energy (seen in the above case with A2 = A1) and conservation of volume (see in the above
case with z2 = z1). Indeed, taking the control volume to be a tiny fluid element furthers our
understanding of the p/ρ injection work contribution to the Bernoulli potential (26.103).

26.9.6 Steady flow over a topographic bump

We build from the discussion of steady pipe flow in Section 26.9.5 by describing a more
geophysically relevant case of steady single-component perfect fluid flowing over a topographic
bump. In Figure 26.2 we illustrate this flow in the absence of rotation. As the fluid moves
over the bump, it speeds up in order to maintain volume continuity. In regions of faster flow,
Bernoulli’s theorem (26.118) says that the pressure is lower, which is realized here by a lowering
of the sea surface height over the bump. For a small bump, we can imagine that the flow remains
symmetric with respect to the bump, so that the flow downstream of the bump is a reflection of
the upstream flow. To maintain steady flow in the presence of a larger bump requires a larger
pressure drop, which will eventually break the symmetry between downstream and upstream.
For an even larger topographic bump, we find there is no way to satisfy Bernoulli’s theorem, in
which case the flow transitions into a time dependent hydraulic jump.

As for the pipe flow, the steady flow maintains two flow constants: the volume flow rate and
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the simplified form of the Bernoulli potential in equation (26.118)

T = v h∆ and B = v2/2 + p/ρ+ g z, (26.125)

where h is the thickness of the layer and ∆ the width in the direction perpendicular to the flow.
Also, recall that the Bernoulli potential is a constant along a particular streamline. However,
for a constant density layer the Bernoulli potential is independent of depth, as we illustrate
below. For simplicity we assume the flow is only a function of the along-stream coordinate, y,
and furthermore assume the pressure on the upper interface is a uniform constant pa. We also
assume the top and botton interfaces of the layer are material, which then means they are each
streamlines.

It is more convenient to work with the flow rate, T = v h∆, than the velocity, v, in which
case the Bernouilli potential is given by

B = T2/(2h2∆2) + p/ρ+ g z. (26.126)

Far upstream of the bump the layer thickness takes on its unperturbed value, H, so that the
Bernoulli potential along the surface streamline at z = H is given by

B = T2/(2H2∆2) + pa/ρ+ g H. (26.127)

Notice how every term on the right hand side is positive, so that B > 0. Also notice that the
Bernoulli potential along the bottom streamline takes the same value

B = T2/(2H2∆2) + pb/ρ = T2/(2H2∆2) + (pa + ρ hH)/ρ, (26.128)

which results since the layer has constant density. Now express the Bernoulli potential in a
region affected by the bump, in which case

B = T2/(2h2∆2) + pa/ρ+ g η = T2/(2h2∆2) + pa/ρ+ g (h+ ηb). (26.129)

We observe that
B− g ηb = T 2/(2h2∆2) + pa/ρ+ g h ≥ 0, (26.130)

with this quantity referred to as the Bernoulli head. The condition B− g ηb ≥ 0 holds so long as
the flow maintains the assumptions of Bernouili’s theorem. However, if the topography is too
tall, then B− g ηb ≤ 0, in which case the flow can no longer satisfy the Bernoulli theorem. This
result leads us to define a critical topography height

ηcrit
b = B/g = T2/(2H2∆2 g) + pa/(ρ g) +H. (26.131)

When topography is larger than this height, the flow cannot reach a steady state and/or the
flow develops a dependence on the direction perpendicular to the page. In either case, the
assumptions of Bernoulli’s theorem breakdown.

26.9.7 Further study

For an examination of Bernoulli’s theorem for flows in a non-rotating reference frame, such as
flow in laminar boundary layers, see this video from Prof. Shapiro. Chapter 3 of Acheson (1990)
and the text from Pratt and Whitehead (2008) make use of Bernoulli’s theorem for understanding
flows over obstacles with and without the Coriolis acceleration. Their Section 1.4 forms the
basis for the discussion in Section 26.9.6. See also Exercise 8.6 of Klinger and Haine (2019).
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Figure 26.2: Depicting steady flow of a single-component fluid with constant density, ρ, flowing over a topographic
bump and viewed from a non-rotating reference frame so there is no Coriolis acceleration. We assume all properties
are a function only of the along-stream position, y, and z = 0 is taken at the position of a flat topography. For
steady flow of a constant density fluid, the volume transport, T, is constant and given by T = v h∆, where
∆ is the width of the flow in the direction perpendicular to the page, and h = η − ηb is the layer thickness.
The simplified form of the Bernouilli potential given by equation (26.118) is also constant along any streamline,
B = v2/2 + p/ρ + g z = constant. The top panel shows the flow for a very small topographic bump, so that
the flow is symmetric around the bump. The lower panel show flow for a larger bump that requires more fluid
upstream of the bump to support enough pressure drop for steady flow to make it over the bump.

26.10 Entropy budget for the ocean

In this section we consider the entropy budget for the ocean and make use of the second law of
thermodynamics to infer specific forms for the thermal and chemical fluxes introduced in Section
26.6.6. The discussion also holds for the atmosphere in the absence of phase transitions, though
we focus on the ocean application to be specific. Hence, the matter concentration in this section
is the salt concentration for seawater.

The entropy budget follows by rearranging the enthalpy equation (26.79)

T ρ
DS

Dt
= ρ

DH

Dt
− Dp

Dt
− µρ DC

Dt
, (26.132)

with the enthalpy budget in the form (26.94) yielding

T ρ
DS

Dt
= −∇ · (Jtherm + Jchem) + ρ ϵ+ µ∇ · JC , (26.133)

where we wrote the tracer equation as

ρ
DC

Dt
= −∇ · JC, (26.134)

following Section 20.1.3. Through manipulations pursued in Section 26.10.1, we identify a
non-advective entropy flux and a corresponding entropy source. This form of the entropy budget
is useful since we can then invoke the second law to insist that the entropy source is non-negative,
and that statement renders some constraints on the thermal and chemical fluxes.
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26.10.1 Non-advective entropy flux and entropy source

To start the manipulations, divide equation (26.133) by T and rewrite in terms of a flux
convergence plus a source

ρ
DS

Dt
= −∇ ·

[
Jtherm + Jchem − µJC

T

]
+∇(1/T ) · (Jtherm + Jchem − µJC)− (JC/T ) · ∇µ+

ρ ϵ

T
.

(26.135)
Recall from the identity (26.84) that we can write the chemical energy flux as

Jchem =

[
∂H

∂C

]
T,p

JC =

[
µ− T

[
∂µ

∂T

]
C,p

]
JC = (µ− T µT )JC , (26.136)

where we introduced a shorthand for the third equality. This identity then leads to

Jchem − µJC = −T µT JC , (26.137)

in which case the entropy equation (26.135) becomes

ρ
DS

Dt
= −∇ ·

[
Jtherm − T µT JC

T

]
+∇(1/T ) · (Jtherm − T µT JC)− (JC/T ) · ∇µ+

ρ ϵ

T
. (26.138)

We thus identify the non-advective entropy flux

JS =
Jtherm

T
−
[
∂µ

∂T

]
p,C

JC =
Jtherm

T
+

[
∂S

∂C

]
T,p

JC , (26.139)

where the second equality made use of the Maxwell relation

−
[
∂S

∂C

]
T,p

=

[
∂µ

∂T

]
p,C

, (26.140)

which is derived as part of the solution to Exercise 22.2. The additional terms comprise the
entropy source

ΣS =
ρ ϵ

T
+∇(1/T ) · (Jtherm − T µT JC)− (JC · ∇µ)/T (26.141a)

=
ρ ϵ

T
+
∇T
T 2
· (T µT JC − Jtherm)− (JC · ∇µ)/T (26.141b)

=
ρ ϵ

T
− ∇T · Jtherm

T 2
+
JC · (µT ∇T −∇µ)

T
(26.141c)

=
ρ ϵ

T
− ∇T · Jtherm

T 2
− JC · (µC ∇C + µp∇p)

T
(26.141d)

=
ρ ϵ

T
− ∇T · Jtherm

T 2
− JC

T
·
[[

∂µ

∂C

]
T,p

∇C +

[
∂µ

∂p

]
T,C

∇p
]
, (26.141e)

where we wrote the gradient of the chemical potential, µ(T, p, C), as

∇µ =

[
∂µ

∂T

]
p,C

∇T +

[
∂µ

∂p

]
T,C

∇p+
[
∂µ

∂C

]
T,p

∇C = µT ∇T + µp∇p+ µC ∇C. (26.142)

The non-advective entropy flux (26.139) arises from the thermal and chemical fluxes, and
the entropy source (26.141e) includes contributions from those fluxes as well as the frictional
dissipation of mechanical energy.
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26.10.2 Constraints from the second law of thermodynamics
The second law of thermodynamics states that the entropy source is non-negative

ΣS ≥ 0⇐= second law of thermodynamics. (26.143)

This condition imposes constraints on the frictional dissipation, thermal flux, and tracer flux.
Since frictional dissipation in Newtonian fluids (equation (26.43)) is non-negative, ϵ ≥ 0, we
make use of the second law to constrain just the thermal flux and tracer flux. Furthermore,
recall from equation (26.81) that the thernal flux is comprised of a radiant flux and conductive
flux. We assume that radiant flux is determined by processes external to the fluid. We thus use
the second law to constrain just the conductive portion of the thermal flux along with the tracer
flux. That is, from the entropy source (26.141e) we have the second law constraint

−∇T · Jcond − T µC JC ·
[
∇C +

µp
µC
∇p
]
≥ 0. (26.144)

This constraint can be satisfied by assuming the conductive and tracer fluxes are of the form

ρ−1 Jcond = −cp κT ∇T − κTC
[
∇C +

µp
µC
∇p
]

(26.145a)

ρ−1 JC = −κC
[
∇C +

µp
µC
∇p
]
− κCT ∇T. (26.145b)

The variety of molecular fluxes

The first term in the conductive thermal flux (26.145a) is known as Fourier’s law of conduction

JFourier
cond = −ρ cp κT ∇T, (26.146)

in which case the conductive thermal flux is directed down the gradient of the in situ temperature.
The second term leads to a conductive thermal flux in the presence of matter concentration
gradients and pressure gradients, and this process is known as the Dufour effect

JDufour
cond = −ρ κTC

[
∇C +

µp
µC
∇p
]
. (26.147)

The first term in the matter flux (26.145b) is known as Fick’s law of diffusion

JFick
C = −ρ κC ∇C. (26.148)

The second term in in the matter flux (26.145b) is known as barodiffusion

Jbarodiff
C = −(ρ κCT µp/µC)∇p, (26.149)

which is a matter flux arising from a pressure gradient. Finally, the matter flux arising from
temperature gradients is known as the Soret effect

JSoret
C = −ρ κCT ∇T. (26.150)

Thermodynamic equilibrium and the vertical gradient of salinity

In Section 23.1, we learned that thermodynamic equilibrium for a fluid in a gravity field leads
to a uniform temperature, T , and a pressure in exact hydrostatic balance. The salt flux must
vanish in thermodynamic equilibrium, but in the presence of a pressure gradient we have a
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nonzero vertical salinity gradient from equation (26.145b) given by

dC

dz
= − µp

µC

dp

dz
=
µp ρ g

µC
. (26.151)

This relation is identical to equation (23.20) resulting from our study of conditions for ther-
modynamic equilibrium of a binary fluid in a gravity field. It is satisfying to see the same
thermodynamic equilibrium condition arise from the rather different path taken here.

Invoking Onsager reciprocity condition

The Onsager reciprocity conditions16 are now invoked to relate the two off-diagonal coefficients
according to

T µC κCT = κTC , (26.152)

which brings the entropy condition to the form

cp κT |∇T |2 + κC µC T

∣∣∣∣∇C +
µp
µC
∇p
∣∣∣∣2 + 2κTC ∇T ·

[
∇C +

µp
µC
∇p
]
≥ 0. (26.153)

This condition then constrains the phenomenological constants κC , κT and κTC so that

|κTC |2 ≤ κT κC cp T µS . (26.154)

Comments on measurements

The cross-diffusion coefficients, κTC and κCT , are both measured to be very small for seawater,
so that the Dufour effect and Soret effect are commonly ignored. Furthermore, in an ocean
in thermodynamic equilibrium, the vertical salinity gradient implied by equation (26.151) is
roughly 3 g kg−1 per 1000 m. This vertical salinity gradient is far larger than measured in the
ocean, thus providing evidence that turbulent fluxes, even in the ocean interior, dominate over
molecular fluxes. That is, the observed ocean has sufficient turbulence to keep it well away from
thermodynamic equilibrium.

26.10.3 A summary presentation

We here summarize the previous material by skipping details for the entropy flux, thermal flux,
and matter flux. For this purpose, write the budget for the total energy in the form

ρ
DE

Dt
= −∇ · (pv − v · τ) + ρ

[
−ϵ+ T

DS

Dt
+ µ

DC

Dt

]
+ ρ ∂tΦ. (26.155)

Now assume that the specific entropy and matter concentration satisfy the evolution equations

ρ
DS

Dt
= −∇ · JS +ΣS and ρ

DC

Dt
= −∇ · JC , (26.156)

thus rendering

ρ

[
T
DS

Dt
+ µ

DC

Dt

]
= −T ∇ · JS + T ΣS − µ∇ · JC (26.157a)

= −∇ · (T JS + µJC) +∇T · JS +∇µ · JC + T ΣS, (26.157b)

16See Chapter 14 of Callen (1985) for these conditions and their underlying dynamical connections.
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which then brings the total energy equation (26.155) into the form

ρ
DE

Dt
= −∇ · (pv − v · τ + T JS + µJC) + [−ρ ϵ+∇T · JS +∇µ · JC + T ΣS] + ρ ∂tΦ. (26.158)

We now postulate that the globally integrated total energy is constant in the absence of boundary
processes and with a time independent geopotential. In the presence of mechanical dissipation
and matter constituent mixing, a necessary condition for such global energy conservation is for
the specific entropy source to take the form

T ΣS = ρ ϵ−∇T · JS −∇µ · JC. (26.159)

That is, the entropy source arises from frictional dissipation, entropy mixing, and matter mixing.
With this form for the entropy source, the total energy budget (26.158) is given by the material
form and the equivalent flux-form expressions

ρ
DE

Dt
= −∇ · (pv − v · τ + T JS + µJC) + ρ ∂tΦ (26.160a)

∂(ρE)

∂t
= −∇ · (E v + pv − v · τ + T JS + µJC) + ρ ∂tΦ. (26.160b)

The modified form of the internal energy budget (26.77) is found by subtracting the mechanical
energy budget (26.49) from the total energy budget (26.160a)

ρ
DI

Dt
= ρ

D(E−M)

Dt
= −p∇ · v −∇ · (T JS + µJC) + ρ ϵ. (26.161)

The corresponding enthalpy budget (26.79) is given by

ρ
DH

Dt
− Dp

Dt
= −∇ · (T JS + µJC) + ρ ϵ = −∇ · JH + ρ ϵ. (26.162)

In the second equatlity we defined the enthalpy flux

JH = T JS + µJC (26.163a)

= Jtherm − T
[
∂µ

∂T

]
p,C

JC + µJC (26.163b)

= Jtherm +

[
∂H

∂C

]
T,p

JC (26.163c)

= Jtherm + Jchem, (26.163d)

where we used equation (26.139) for the entropy flux, JS, equation (26.136) for the chemical flux,
Jchem, and the thermodynamic identity (26.84) for the third equality. Furthermore, recall that
the thermal flux, Jtherm, is the sum of a conductive plus radiative contribution as per equation
(26.81).

26.10.4 Comments
It is remarkable how the second law of thermodynamics is able to predict new physical processes
through considering the various forms that the thermal and matter fluxes can take to ensure
a positive entropy source. Caldwell (1973) and Caldwell and Eide (1981) estimate the Soret
effect for seawater, where they propose some relevance of this effect in quiescent ocean regions
with strong gradients. In contrast, for liquids the Dufour effect is about 1000 times smaller
than Fickian heat conduction and so it is safely ignored throughout the ocean. McDougall and
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Turner (1982) and McDougall (1983) studied double-diffusive convection in the presence of
cross-diffusion, extending the oceanographic applications to arbitrary solutions with a pair of
solutes. None of these studies consider the role of pressure gradients in generating fluxes.

For most purposes of oceanography, the fluxes considered in this section are far smaller than
those induced by turbulent flow processes. In this case, the flux relations reduce to the Fickian
and Fourier expressions yet with turbulent exchange coefficients rather than their molecular
values. Turbulence thus makes molecular diffusive processes generally negligible for the ocean.
Indeed, we already made this conclusion when noting that thermodynamic equilibrium implies
a sizable vertical salinity gradient as given by equation (26.151). Whereas turbulence acts
to produce a homogenous salinity (as well as potential temperature and potential enthalpy),
molecular diffusion leads to a rather large vertical salinity gradient. Since the vertical salinity
gradient implied by thermodynamic equilibrium is much larger than that measured in the ocean,
we conclude that the ocean is far from a thermodynamic equilibrium state.

26.10.5 Further study

Much of our presentation in this section followed that from Sections 2.4 and 2.5 from Olbers
et al. (2012) and Appendix B of IOC et al. (2010). Graham and McDougall (2013) extend these
ideas to a turbulent ocean. The physical ideas underlying the Onsager reciprocity conditions are
lucidly discussed in Chapter 14 of Callen (1985).

26.11 Temperature evolution

In specifying the state of a fluid element it is sensible to make use of the temperature, pressure,
and tracer concentration given that these state properties are readily measured in the laboratory
and environment. Furthermore, these properties are the natural variables for the Gibbs potential
(Section 22.6.6). Hence, given values for (T, p, C) we can determine the Gibbs potential and
then determine all other thermodynamic properties by taking partial derivatives.

How do we specify the evolution of (T, p, C) for a fluid element? Evolution of the matter
concentration follows from the tracer equation (an advection-diffusion equation) as developed in
Section 20.1. Pressure measures the compressive stress acting on each fluid element (Section
25.8), with its specification depending on the dominant dynamical balances (see Section 26.13).
Temperature reflects the energy of the internal microscopic degrees of freedom within a fluid
element, with its evolution the subject of this section. We show how Conservative Temperature,
Θ, rather than in situ temperature, T , or potential temperature, θ, offers the simplest prognostic
equation of the three temperature variables. The key reason is that Θ evolves almost precisely
like a material tracer, driven by the convergence of fluxes, whereas the equations for T and θ
contain extra source terms in additon to flux convergences.

26.11.1 Evolution of in situ temperature

In developing the temperature equation it is useful to start from the prognostic equation for
enthalpy as developed in Sections 26.6.5. For that purpose we write the enthalpy equation
(26.162) as

ρ
DH

Dt
=

Dp

Dt
−∇ · JH + ρ ϵ, (26.164)

with the enthalpy flux, JH, written in terms of the entropy and tracer fluxes as per equation
(26.163d).

To reveal a prognostic equation for temperature, we write enthalpy as a function of (T, p, C)
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so that
DH

Dt
=

[
∂H

∂T

]
p,C

DT

Dt
+

[
∂H

∂p

]
T,C

Dp

Dt
+

[
∂H

∂C

]
T,p

DC

Dt
. (26.165)

The partial derivatives can be related to response functions via the following. First, the specific
heat capacity at constant pressure is given by equation (22.102)[

∂H

∂T

]
p,C

= cp. (26.166)

Next, we make use of the Gibbs potential identities in Section 22.6.6 to write[
∂H

∂p

]
T,C

=

[
∂G

∂p

]
T,C

− T
[
∂

∂p

]
T,C

[
∂G

∂T

]
p,C

(26.167a)

= νs − T
[
∂

∂T

]
p,C

[
∂G

∂p

]
T,C

(26.167b)

= νs − T
[
∂νs
∂T

]
p,C

(26.167c)

= νs (1− T αT), (26.167d)

where αT is the thermal expansion coefficient given by equation (22.103). Use of these identities
in the enthalpy equation (26.165) and rearrangement leads to the in situ temperature equation

cp ρ
DT

Dt
= −∇ · JH +

[
∂H

∂C

]
T,p

∇ · JC + αT T
Dp

Dt
+ ρ ϵ. (26.168)

The in situ temperature of a fluid element thus evolves according to convergence of the enthalpy
fluxes, divergence of matter concentration fluxes, material time changes to pressure, and frictional
dissipation. We can massage this expression a bit more by introducing the enthalpy flux (26.163c)
so that

cp ρ
DT

Dt
= −∇ · Jtherm − JC · ∇

[
∂H

∂C

]
T,p

+ αT T
Dp

Dt
+ ρ ϵ, (26.169)

where constraints on the conductive portion of the thermal flux were discussed in Section 26.10.2.

26.11.2 Evolution of potential temperature
We can convert the in situ temperature equation (26.168) into a version of the potential
temperature equation by recalling the expression (23.26) for the lapse rate

Γ̂ =

[
∂T

∂p

]
C,S

=
T αT

ρ cp
(26.170)

so that equation (26.168) takes the form

cp ρ

[
DT

Dt
− Γ̂

Dp

Dt

]
= −∇ · JH +

[
∂H

∂C

]
T,p

∇ · JC + ρ ϵ. (26.171)

Making use of the definition (23.31) for potential temperature renders

cp ρ
Dθ

Dt
= −∇ · JH +

[
∂H

∂C

]
T,p

∇ · JC + ρ ϵ. (26.172)

As expected, pressure changes are removed from the evolution equation for potential temperature.
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26.11.3 Conservative Temperature for the ocean
Rather than expressing enthalpy as a function H(T, p, C), we make use of its natural coordinate
dependence H(S, p, C) from Section 22.6.4, which leads to the enthalpy equation in the form
(26.162)

ρ
DH

Dt
=

Dp

Dt
−∇ · JH + ρ ϵ. (26.173)

The pressure term arises just like for in situ temperature. Its presence suggests we introduce the
potential enthalpy.

Potential enthalpy and Conservative Temperature

The potential enthalpy is defined to be the enthalpy of a fluid element moved to a reference
pressure, pR, while maintaining fixed specific entropy and fixed tracer concentration

Hpot(S, C) = H(S, pR, C). (26.174)

As for potential temperature (Section 23.3.3), it is most convenient to take pR as the standard
atmospheric pressure, thus corresponding to the standard pressure at the air-sea interface. This
definition parallels that for potential temperature given by equation (23.36). It is also motivated
by the exchange of enthalpy (heat) across the air-sea boundary, thus providing a natural means
to study coupled air-sea processes.

By construction, the material time derivative of potential enthalpy is given by

ρ
DHpot

Dt
= ρ

[
∂Hpot

∂S

]
C

DS

Dt
+ ρ

[
∂Hpot

∂C

]
S

DC

Dt
(26.175a)

= θ (−∇ · JS +ΣS)− µR∇ · JC (26.175b)

= (θ/T ) [ρ ϵ−∇ · JH]− [µR − (θ/T )µ]∇ · JC, (26.175c)

where we set

θ =

[
∂Hpot

∂S

]
C

and µR =

[
∂Hpot

∂C

]
S

(26.176)

and used equation (26.159) for the entropy source, ΣS. Now define the Conservative Temperature,
Θ, via

crefp Θ ≡ Hpot(S, C) = H(S, pR, C), (26.177)

where crefp is an arbitrary reference specific heat capacity. For the ocean, McDougall (2003)
suggested that crefp be chosen so that Θ = θ at a salinity of 35 parts per thousand. McDougall
(2003) furthermore argued that the terms appearing in the potential enthalpy equation (26.175c)
are well approximated for the ocean by just the convergence of the enthalpy flux. Hence, the
Conservative Temperature satisfies, to a very good approximation, the source-free tracer equation

ρ crefp

DΘ

Dt
= −∇ · JH. (26.178)

Key points regarding the Conservative Temperature equation

The Conservative Temperature equation (26.178) is mathematically identical to the material
tracer equation, and as such it offers an elegant means to prognose thermodynamic properties of
the fluid and to perform budget analyses. We further emphasize two points in regards to this
equation relative to the potential temperature equation (26.172).

• The source terms (those not associated with flux convergences) on the right hand side
of the potential temperature equation are much larger than those in the Conservative
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Temperature equation. In particular, McDougall (2003) and Graham and McDougall
(2013) showed that the potential temperature sources are roughly 100 times larger in
certain regions of the ocean than the Conservative Temperature sources.

• The heat capacity appearing in the Conservative Temperature equation is a fixed constant,
by construction. This feature contrasts to the space-time variable heat capacity, cp,
appearing in both the in situ temperature equation (26.168) and potential temperature
equation (26.172). The space-time variations of cp are not negligible (e.g., order 5% for
the global ocean), thus making the non-constant heat capacity required for the T and θ
equations very inconvenient for purposes of budget analyses (see McDougall et al. (2021)
for more on this point).

We close by noting that the enthalpy flux, JH, is related to the entropy flux and concentration
flux as per equation (26.163d). As discussed in Section 2.6 of Olbers et al. (2012), the dominant
terms appearing in this flux arise from entropy, which itself is largely due to fluxes of temperature.
Consequently, the flux JH is well approximated as a flux just of Θ.

26.11.4 Alternative functional dependencies for specific enthalpy
Thus far in this section, we have considered specific enthalpy to be a function of (T, p, C) as well
as its natural functional dependence, (S, p, C). The introduction of potential temperature and
Conservative Temperature allow us to consider two more functional depenencies

H = Hnatural(S, p, C) = HT(T, p, C) = Hθ(θ, p, C) = HΘ(Θ, p, C). (26.179)

We use distinct notations for the functions since they each return specific enthalpy yet when
fed distinct input. Given the more common use of either potential temperature or Conservative
Temperature in atmosphere and ocean sciences, the final two functional dependencies are most
commonly used in practice. Note that for brevity, we often drop the extra notation adorning
the specific enthalpy symbol, except where confusion may arise. As an example of the above
functional dependence, consider the exact differential of specific enthalpy when written using
the (Θ, p, C) dependence, in which

dH =

[
∂HΘ

∂Θ

]
p,C

dΘ +

[
∂HΘ

∂p

]
Θ,C

dp+

[
∂HΘ

∂C

]
Θ,p

dC (26.180a)

=

[
∂HΘ

∂Θ

]
p,C

dΘ + ρ−1 dp+

[
∂HΘ

∂C

]
Θ,p

dC, (26.180b)

where we set

ρ−1 =

[
∂HΘ

∂p

]
Θ,C

, (26.181)

which is a generalization of the partial derivative (22.76) holding for the natural functional
dependence. Further discussion of the other partial derivatives are provided in Graham and
McDougall (2013) as well as Appendices A.10 and A.11 of IOC et al. (2010).

26.11.5 Further study
The discussion in this section largely followed the more complete ocean discussion given in
Section 2.6 of Olbers et al. (2012), which is itself based on McDougall (2003) and Graham and
McDougall (2013).

Considerations for a realistic atmosphere involve phase changes (liquid-vapor and liquid-solid),
with the associated latent heat exchanges are leading order contributions to the enthalpy budget
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(see Lauritzen et al. (2022) for a comprehensive review). Additionally, the role of frictional
dissipation is not negligible in the atmosphere whereas it is negligible in the ocean (see Section
26.7.3).

26.12 Conservation laws and potential properties
A central facet of theoretical physics concerns the development of concepts and tools to expose
conservation laws and their underlying symmetries.17 We routinely make use of such laws in
geophysical fluid mechanics to provide constraints on the fluid motion and to study budgets of
corresponding properties to help understand fundamental processes. As such, conservation laws
offer great physical insight and predictive utility. We close this chapter by summarizing some
conceptual points concerning conservation laws. In particular, we identify the need to distinguish
laws that involve just the convergence of a flux from those that also include non-conservative
“source” terms. We also distinguish between material and non-material conservation laws, in
which properties satisfying material conservation laws are materially invariant in the absence of
local mixing processes.

26.12.1 Flux-form conservation laws
Certain scalar properties studied in fluid mechanics satisfy conservation laws that are written as

ρ
Dψ

Dt
= −∇ · J ⇐⇒ ∂(ρψ)

∂t
= −∇ · (ρv ψ + J). (26.182)

The right hand side of the flux-form expression (second equation) involves a flux that is comprised
of an advective term, ρv ψ, plus a non-advective term, J . Examples of conservation laws of this
type include the material tracer concentration, ψ = C, as in equation (26.188); the Conservative
Temperature, ψ = Θ, as in equation (26.189); the total energy, ψ = E, in the absence of
astronomical forces, as in equation (26.160b); and the potential vorticity, ψ = Q, as in equation
(41.49). In Chapter 20, we saw how this differential equation leads to finite volume conservation
properties for the integral of ψ-stuff within a region,

´
R
ψ ρdV , with the evolution of this

integral only affected by area integrated fluxes, ρv ψ + J , penetrating the region boundary
(mathematically seen by applying the divergence theorem).

Conservation laws of the form (26.182) are a direct consequence of the local conservation
of ψ-stuff within the fluid. That is, the amount of ψ-stuff changes at a point only through the
local convergence of fluxes onto that point, and likewise for a finite region. Such conservation
laws are consistent with basic notions of causality and locality that appear throughout physics,
with a discussion of such conservation laws offered in Section 27-1 of Feynman et al. (1963).

26.12.2 Conservation laws that are not flux-form
The presence of source/sinks are relevant for chemical or biogeochemical reactions, whereby
matter is converted from one form to another. Such processes are not mathematically represented
as the convergence of a flux. As such, they are not contained in the conservation law (26.182)
and they are correspondingly referred to as non-conservative processes. Even without chemical
reactions, not all fluid properties satisfy flux-form conservation laws of the form (26.182). For
example, linear momentum of a fluid element is affected by pressure, Coriolis, and effective
gravity, and these processes are not represented as the convergence of a flux.

As discussed in Chapter 14, conservation laws are associated with symmetries of the physical
system. Correspondingly, non-conservative terms appearing in an evolution equation often reflect

17See Chapter 14 for the connection between conservation laws and symmetries, as embodied by Noether’s
theorem.
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the breaking of a symmetry. For example, motion around a sphere does not conserve linear
momentum even in the absence of forces, whereas linear momentum is conserved for free motion
in a planar geometry.

26.12.3 Non-material or wave-like transport of properties
Pressure is of particular note since pressure perturbations travel through a compressible fluid via
acoustic waves (Chapter 51), or, in the case of an incompressible flow, a pressure perturbation is
felt globally and instantaneously as reflected in the elliptic Poisson equation satisfied by pressure
(Section 29.3). More generally, the wave mediated transfer of forces, or other fluid properties
such as momentum or mechanical energy, is an example of a non-material transfer; i.e., a transfer
of information not arising from the transfer of matter. Non-material wave mediated transfer
often occurs much faster than material transfer, with matter transport only mediated through
advection and diffusion. Correspondingly, material substances (and potential enthalpy) are not
directly affected by wave transport. Rather, waves affect material substances only so far as they
affect advection and diffusion.

26.12.4 Material and non-material conservation laws
Mass invariance for a fluid element reflects matter conservation in classical physics, which in turn
motivates the kinematic perspective pursued throughout this book that follows fluid elements
whose mass remains constant. Relatedly, in the absence of irreversible mixing, the matter content
of the fluid element remains invariant so that its tracer concentration is materially constant

ρ
DC

Dt
= 0. (26.183)

For example, in the absence of mixing, the salt content of seawater and the water content of
moist air are materially invariant, so that the salt concentration and water concentration in a
fluid element remains invariant. Correspondingly, in the presence of mixing between two fluid
elements, the net material tracer in the combined fluid element equals to the sum of the tracer
content in the contributing elements. We refer to fluid properties satisfying such conservation
laws as materially conservative properties.

What about fluid properties that satisfy a local flux-form conservation law of the form
(26.182), and yet do not remain materially invariant in the absence of mixing? For example,
consider the total energy, E, from Section 26.7. Even in the absence of entropy sources (i.e., no
mixing) and astronomical forces (i.e., constant gravity), mechanical work from pressure modifies
the internal energy of the fluid element via the energy equation (26.160a)

ρ
DE

Dt
= −∇ · (pv). (26.184)

Pressure work means that when two fluid elements are combined, the total energy of the combined
fluid, E12, is not generally equal to the sum of their separate total energies,

E12 ̸= E1 + E2. (26.185)

So although total energy is locally conserved in the sense that it is affected by a local flux
convergence, it does not satisfy a material-like conservation law. We say that total energy is a
non-materially conservative fluid property. Notably, when integrated globally over a domain
closed to energy fluxes, including mechanical energy fluxes (meaning there is no pressure work
applied to the domain boundaries), and when there are no time dependent astronomical forces,
then the domain integrated total energy,

´
ρE dV , remains constant. This global conservation

CHAPTER 26. ENERGY AND ENTROPY IN A MOVING FLUID page 707 of 2158



26.13. EQUATIONS FOR ROTATING AND STRATIFIED FLUIDS

law means that the total energy is conserved globally. Conservation laws for non-materially
conserved properties, such as total energy, offer a less powerful constraint on fluid motion than
the material conservation laws. Even so, global conservation can be of great use when studying
energy transformations within a closed domain.

We summarize the above discussion by noting that for a fluid property to be locally conser-
vative, it is necessary that the density weighted material derivative of that property be given
by the convergence of a flux as in equation (26.182). To be materially conservative, a property
must have its flux convergence vanish in the absence of mixing processes that are local in space
and time. A diffusive flux satisfies this property (see Chapter 69 for more on diffusion). In
contrast, the pressure flux convergence acting to modify total energy, −∇ · (pv), can be nonzero
even in regions where there is no mixing of matter since pressure is transported by waves
(Section 26.12.3). So although total energy is locally conserved, its flux is dependent on non-local
processes as mediated by waves, so that total energy satisfies a non-material conservation law.

26.12.5 Concerning potential properties

As introduced in Sections 23.3 and 26.11.3, to study fluid mixing it is useful to work with scalar
fields that are not affected by adiabatic and isentropic pressure work. For this reason, rather
than in situ temperature, we prefer to work with potential temperature, θ, or Conservative
Temperature, Θ, both of which are potential properties as discussed in Section 23.3.1. Some
potential properties are also endowed with the local conservation property discussed above,
which makes local budgets available just like for a material tracer. For example, Conservative
Temperature is very well approximated as a conservative property, with its non-flux form sources
far smaller than potential temperature (Section 26.11.3). In contrast, neither in situ temperature
nor total energy are potential properties since an adiabatic and isentropic change in pressure
alters the in situ temperature and total energy of a fluid element.

26.12.6 Further study

Much from this section is motivated by the more extensive discussion in Sections A.8 and A.9 of
IOC et al. (2010).

26.13 Equations for rotating and stratified fluids

We close this chapter by summarizing the physical content of the suite of partial differential
equations describing rotating and stratified fluids.

ρ
Dv

Dt
+ 2 ρΩ× v = −ρ∇Φ−∇p+∇ · τ momentum (26.186)

Dρ

Dt
= −ρ∇ · v mass continuity (26.187)

ρ
DC

Dt
= −∇ · J(C) matter conservation (26.188)

ρ
DΘ

Dt
= −∇ · J(Θ) potential enthalpy conservation (26.189)

ρ = ρ(C,Θ, p) equation of state. (26.190)

It is a testament to the success of classical continuum mechanics that these equations are of
use for describing fluid phenomena from the millimetre scale to the astrophysical scale. We
summarize the following terms in these equations.
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• linear momentum and velocity: Newton’s second law of motion, as developed for a
fluid in Chapter 24, provides the prognostic equation for the velocity field, v. Each of the
three velocity components evolves according to its respective dynamical equation (26.186).
As noted at the end of Section 24.2.3, we write the momentum equation in the form (26.186)
by separating the time dependence of the basis vectors into a term arising from rigid-body
rotation (which leads to planetary Coriolis and planetary centrifugal accelerations) and a
term arising from the motion of the fluid relative to the rotating sphere (which leads to
the metric acceleration when using non-Cartesian coordinates).

• mass conservation: Kinematics provides a constraint on the velocity field according to
the needs of mass conservation for a fluid element (Section 19.2). This constraint leads to
the continuity equation (26.187).

• material tracer conservation: Kinematic constraints from the conservation of matter
(Section 20.1) leads to the material tracer equation (26.188). Evolution is determined
by the convergence of tracer fluxes, J , with this flux specified by molecular diffusion as
discussed in Section 68.3, or through other parameterized processes when sampling flow
on scales larger than millimetres (see Chapter 71).

• thermodynamic tracer: The Conservative Temperature, Θ, (Section 26.11.3), evolves
according to the convergence of fluxes, just like a material tracer.

• density: The in situ density can be updated in time via mass continuity (equation
(26.187)) or via knowledge of (C,Θ, p). We discussed the many forms of density for the
ocean and atmosphere in Section 30.3.

• pressure: There is no prognostic equation for pressure. Rather, pressure is diagnosed
based on knowledge of other fields. Here are sketches of how that diagnostic calculation is
performed.

– For an ideal gas, pressure is diagnosed from the ideal gas relation (23.48) using the
density and temperature.

– For fluid flow maintaining an approximate hydrostatic balance (Section 27.2), pressure
is diagnosed at a point through knowledge of the weight per area above the point.

– For a non-divergent fluid flow as per the oceanic Boussinesq fluid (Chapter 29), pressure
is no longer connected thermodynamically to partial derivatives of the thermodynamic
potentials (Section 22.6). Instead, pressure is determined kinematically by the non-
divergence constraint. In particular, for a non-hydrostatic Boussinesq fluid, pressure
is diagnosed by solving a Poisson equation derived from taking the divergence of the
momentum equation (see Section 29.3).

• geopotential: The geopotential, Φ, is a function of the mass distribution of the planet
and any relevant astronomical bodies. The simple geopotential is generally used in this book,
with the single exception of Chapter 34 where we develop the equations for astronomical
tides. The simple geopotential is specified by both the radial position (to give the height
above an arbitrary reference level) plus the latitude (to give the centrifugal potential) (see
Section 13.10.4). For geophysical fluid studies, the reference level is generally taken at the
level of a resting sea surface. We thus often write the radial coordinate as

r = Re + z (26.191)

where Re = 6.371× 106 m is the radius of a sphere whose volume approximates that of
the earth (equation (13.117)), and z is the geopotential coordinate measuring the height
above sea level.
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• earth’s spin: The earth’s angular velocity, Ω, is time constant for geophysical fluid
studies of concern here. Its value is discussed in Section 13.1.

• friction: The friction vector,
ρF = ∇ · τ, (26.192)

is the divergence of a symmetric and trace-free deviatoric stress tensor, τ (Section 25.8).
The stress tensor is determined through a constitutive relation as a function of the strain
and viscous properties.

• kinematic and dynamic boundary conditions: Kinematic and dynamic boundary
conditions consist of the exchange of matter, momentum, and enthalpy with the surrounding
media, such as the solid earth or another fluid component (e.g., atmosphere-ocean exchange).
We discuss the boundary conditions for matter in a homogeneous fluid in Section 19.6;
matter in a multi-constituent fluid in Section 20.4; for momentum in Section 25.10; and
for ocean buoyancy in Section 72.6.

26.14 Exercises
exercise 26.1: Energetics of ocean mixing
In this exercise we develop some basics for the energetics of mixing, thus providing more
experience with the ideas developed in Section 26.2.6. We do so by examining a vertical column
of seawater with uniform horizontal cross-sectional area, A. Let the initial conditions consist of
two homogeneous regions stacked vertically, with thickness hn, massMn, density ρn, Conservative
Temperature Θn, and salinity Sn, where n = 1 is the lower region and n = 2 the upper region.
Assume this column to be stably stratified so that ∆ρ = ρ1−ρ2 > 0. We then completely mix the
two regions to produce a homogeneous column of fluid of mass M , salinity S, and Conservative
Temperature Θ. We ignore pressure effects on density, so that the density is uniform in the
two regions prior to mixing, and uniform in the full column after mixing. The conservation
of mass, conservation of salt, and conservation of potential enthalpy (heat), mean that these
scalar properties remain the same before and after the mixing, thus allowing us to compute the
properties of the homogenized column

M =M1 +M2 and M Θ =M1Θ1 +M2Θ2 and M S =M1 S1 +M2 S2. (26.193)

(a) Compute the gravitational potential energy of the initial seawater column, taking the
bottom of the column as the zero reference level.

(b) Compute the gravitational potential energy of the fluid column after homogenization.
Verify that the gravitational potential energy of the homogenized column is greater than
the initial column. For this question, assume the final thickness of the column equals to
the sum of the initial thicknesses. This assumption is not exact but is very accurate for
our purposes. For an exact calculation see equation (72.112) in our study of sea level in
Section 72.7.7.

(c) If the same amount of energy used to increase in gravitational potential energy was instead
used to increase kinetic energy of the homogenized fluid, what is the expression for the
change in squared velocity? Write your expression in terms of the thicknesses, hn, and
densities, ρn.
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(d) If the change in gravitational potential energy were converted to potential enthalpy of the
homogenized fluid, what is the expression for the increase in Conservative Temperature,
Θ? Again, write your expression in terms of the thicknesses, hn, and densities, ρn.

(e) Compute the change in speed and change in Conservative Temperature for the previous parts
of this exercise using the following values for a region of seawater: cp = 3992.1 J kg−1 K−1,
ρ1 = 1020 kg m−3, ∆ρ = 1 kg m−3, h1 = 1 m, and h2 = 1 m.

exercise 26.2: A modified frictional stress tensor
Following the methods from Section 26.3.3, assume viscous friction in the momentum equation
takes the form

ρF = ∂n(ρ ν ∂nv), (26.194)

with ν > 0 a scalar kinematic viscosity (generally non-constant). This friction operator cor-
ressponds to the frictional stress tensor

τnm = ρ ν ∂nvm. (26.195)

(a) Show that when integrated over the full domain

ˆ
F · v ρ dV < 0, (26.196)

where boundary terms are ignored. Hence, the global integrated kinetic energy is dissipated
(reduced) through the impacts of viscosity in the interior of the domain. Note that for this
exercise, it is sufficient to assume Cartesian tensors so that

ρF · v = ρFm vm = ∂n(ρ ν ∂nvm) vm. (26.197)

(b) What property does the assumed τnm in equation (26.195) not satisfy, thus making it
unsuitable as a frictional stress tensor? Discuss according to what we studied in Section
25.4.

exercise 26.3: Integrated frictional dissipation for an incompressible fluid
Consider an incompressible fluid (∇ · v = 0 along with ρ is constant). Assume the fluid is
contained in a region, R, whose boundary, ∂R, is static. Also assume the velocity satisfies the
no-slip condition on ∂R, as relevant for a viscous fluid. Show that the frictional dissipation of
kinetic energy (Section 26.3.3) has a global integral

ˆ
R

v · F ρdV = −ρ ν
ˆ
R

|ω|2 dV, (26.198)

where ω = ∇×v is the vorticity. Hint: derive equation (18.156) from exercise 18.1, and specialize
that equation to the case of an incompressible fluid.

exercise 26.4: Thermodynamic manipulations for ideal gases
This question develops some manipulations with the potential temperature.

(a) Beginning with the expression (23.92) for potential temperature of an ideal gas, show that

dθ =
θ

T

[
dT − νs

cp
dp

]
. (26.199)

(b) Given the result (26.199), show that an ideal gas satisfies the following relation

T dS =
cp T

θ
dθ. (26.200)
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Whereas the relation (23.44) holds for a general fluid only at the reference pressure, this
exercise shows that it holds for an ideal gas at all pressures. As a result, a moving fluid of
ideal gas satisfies the material time relation

T
DS

Dt
=
cp T

θ

Dθ

Dt
⇒ cp T

θ

Dθ

Dt
= Q̇. (26.201)

exercise 26.5: Thermodynamic manipulations for a liquid
Consider seawater with specific entropy given by (see Section 1.7.2 of Vallis (2017))

S(S, T, p) = S0 + cp0 ln(T/To) [1 + β∗S (S − So)]− αo p
[
βT + βT γ

∗ p

2
+ β∗T (T − To)

]
, (26.202)

and corresponding specific heat capacity at constant pressure

cp(S, T, p) = cp0 [1 + β∗S (S − So)]− αo p β∗T T. (26.203)

In these equations, T is the in situ temperature, S is the salinity, and p is the in situ pressure.
All other terms on the right hand side to these expressions are empirical constants. Verify that
the specific entropy differential for a fluid element with constant composition is given by

θ dS = cp(S, θ, pR) dθ, (26.204)

where θ is the potential temperature and pR is the corresponding reference pressure. Consequently,
we can write for a moving fluid element

Q̇ =
cp T

θ

Dθ

Dt
, (26.205)

where we evaluate the non-constant heat capacity at cp(S, θ, pR). We see that certain liquids
have an expression for heating that is analogous to that for an ideal gas, with the ideal gas case
discussed in Exercise 26.4. Hint: Make use of the identity (23.36).

exercise 26.6: Bernoulli theorem and two sheets of paper (exercise 1.22 of
Sutherland (2010))
Hold two sheets of paper from their top edge so they are two fingers-widths apart. Blow between
the two sheets. Do they separate or come together. Explain what happens in terms of the
physics discussed in this chapter. Hint: make use of the simplest form of Bernoulli’s theorm
from Section 26.9.

exercise 26.7: Dynamically inconsistent velocity
Consider the two dimensional non-divergent vector field

u = Γ (y2 x̂+ x2 ŷ), (26.206)

with Γ a constant of dimensions L−1T−1. In this exercise we will show that it cannot be a
physically realizable velocity field.

(a) Assuming u is a velocity field for fluid flow, then determine the pressure field giving rise to
this velocity. Assume a constant density, non-rotating reference frame, zero friction, and
no boundary effects. Do so by making use of the Bernoulli theorem in equation (26.118)
for horizontal (constant z) flow, and thus provide the expression for pressure, and express
that pressure along a streamline. Hint: compute the streamfunction corresponding to the
velocity, and choose a convenient streamline upon which to evaluate the pressure.

(b) Now make use of the momentum equation to find the pressure gradient. Attempt to
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integrate this equation to then find the pressure field. You should reach an inconsistency.
Given this inconsistency, what can you conclude about the physical realizability of the
given u as a velocity vector? Discuss. Hint: recall the discussion of exact differentials in
Section 2.8.

exercise 26.8: Crocco’s theorem
Prove that the spatial gradient of the Bernoulli potential for a single-component steady state
perfect fluid can be written

B = T ∇S + v × ωa. (26.207)

This result is known as Crocco’s Theorem (Crocco, 1937). We derive two conclusions from
this theorem. First, in a steady state, there is a nonzero vorticity non-parallel to the velocity
whenever B− T ∇S; i.e.,

v × ωa = B− T ∇S. (26.208)

Second, it means that the velocity for a single-component perfect fluid in steady state is aligned
parallel to isosurfaces of both the Bernoulli potential and the specific entropy

v · ∇B = T v · ∇S. (26.209)

We encounter another form of this theorem for the steady state shallow water equations in
Exercise 39.7.

Hint: to help formulate the proof, study the discussion in Section 26.9.3 where we showed
that the Bernoulli potential is constant along a steady flow streamline in a perfect fluid. Also
recall equation (26.115), which is valid for a steady state and applied here to a single-component
fluid.
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Chapter 27

APPROXIMATE HYDROSTATIC FLOW

For a moving fluid with scales of motion that maintain a small vertical to horizontal aspect
ratio, we show in this chapter that the vertical pressure gradient and gravitational acceleration
individually remain far larger than other accelerations acting on a fluid element. In this
case, the vertical momentum equation, even for the moving fluid, remains approximately in
hydrostatic balance column-by-column. We thus have a flow whereby each vertical column is in
hydrostatic balance, and yet there are horizontal pressure gradients that drive horizontal motion.
Correspondingly, there is also vertical motion. In this chapter, we study the many facets of this
approximately hydrostatic flow.

More generally, we observe that the ocean and atmosphere thermo-hydrodynamical equations
(26.186)-(26.190) explain a huge range of phenomena. Yet by encapsulating so many physical
scales of motion and associated dynamical processes, the equations are difficult to manage when
studying a focused dynamical regime. Therefore, it is common to approximate or filter the
equations to remove scales that are not of direct interest to the problem at hand, thus enabling a
more telescopic view of the dynamics. The hydrostatic primitive equations provide an important
example of this approach.

reader’s guide to this chapter
The column-by-column hydrostatic balance found in the approximate hydrostatic flow is

ubiquitous in large-scale fluid flows in the atmosphere and ocean. We thus make extensive
use in this book of the corresponding expressions for the pressure gradients holding for such
flows. Relatedly, the hydrostatic primitive equations have been very useful in the study of
ocean and atmosphere circulation since their introduction in the 1950s, and we make use of
them in various forms throughout the remainder of this book.
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27.1 The hydrostatic primitive equations
The hydrostatic primitive equations provide a set of approximate equations for use in studying
large-scale atmospheric and oceanic phenomena. Indeed, nearly all numerical models of the
large-scale atmospheric and oceanic circulation are based on the primitive equations. They make
use of the following three approximations.

27.1.1 Hydrostatic approximation
As discussed in Section 24.6, a static fluid in a gravity field maintains an exact hydrostatic
balance, whereby the pressure at a point equals to the weight per area of fluid above that point.
As shown in Section 27.2, the hydrostatic balance is very closely maintained column-by-column
for the large scales in a moving geophysical fluid. Hence, it is appropriate for many purposes to
take the hydrostatic approximation for the vertical momentum equation, with this approximation
central to the study of large-scale geophysical fluid dynamics.

The hydrostatic approximation results in a balance within the vertical momentum equation
(24.21) between the vertical pressure gradient and the effective gravitational force

∂p

∂r
= −ρ g, (27.1)

with this balance holding separately for each vertical column. Notably, there are no viscous or
turbulent terms appearing in the hydrostatic balance.

Vertical integration of this equation, while assuming g is constant, renders a diagnostic
expression for the hydrostatic pressure at a point as a function of the weight per horizontal area
above the point

p(r, λ, ϕ, t) = p(r0, λ, ϕ, t) + g

ˆ r0

r
ρ(r′, λ, ϕ, t) dr′. (27.2)

Note that we exposed the horizontal space dependence along with the time dependence for the
density and hence the hydrostatic pressure. That is, an approximate hydrostatic fluid flow has
horizontal pressure gradients as well as time dependence.

We emphasize that in making the hydrostatic approximation, we are not assuming that vertical
motion vanishes. In fact, there is vertical motion. But with the hydrostatic approximation,
the vertical motion is not prognosed by the vertical momentum equation. Instead, it must be
diagnosed via the constraints imposed on the motion. We have more comment on this point
in Section 27.2.7. Furthermore, there are no other terms appearing in the vertical momentum
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equation, so that we retain just the vertical pressure gradient and the gravity term. Friction or
boundary turbulent stresses do not appear in the hydrostatic balance, whereas they generally do
appear in the non-hydrostatic vertical momentum equation.

27.1.2 Shallow fluid approximation
The ocean and atmosphere each form a fluid shell that envelopes the outer portion of the
planet. The thickness of the these fluids is small relative to the earth’s radius. The shallow fluid
approximation1 builds this scale separation into the equations of motion by setting the radial
coordinate equal to the earth’s radius

r = Re + z ≈ Re. (27.3)

This approximation is made where r appears as a multiplier, but not as a derivative operator.
For example, the spherical coordinate gradient operator (24.23) takes the approximate form

∇ =
λ̂

r cosϕ

∂

∂λ
+
ϕ̂

r

∂

∂ϕ
+ r̂

∂

∂r
≈ λ̂

Re cosϕ

∂

∂λ
+
ϕ̂

Re

∂

∂ϕ
+ r̂

∂

∂r
. (27.4)

This approximation proves useful when computing the depth integrated fluid mechanical equations
for studies where we wish to remove the vertical degress of freedom. Examples include the depth
integrated mechanical energy in Section 27.1.6, the depth integrated momentum equation in
Section 28.4, the depth integrated angular momentum equation in Section 28.5, and the depth
integrated vorticity equations in Sections 44.3, 44.5, and 44.6.

27.1.3 Traditional approximation
The traditional approximation comprises three approximations that come as a package in order
to maintain physical consistency.

Coriolis acceleration

The traditional approximation sets to zero the Coriolis terms in the horizontal momentum
equations involving the vertical velocity. We are thus concerned only with the local vertical
component of the earth’s angular rotation vector (see discussion in Section 13.9.8)

Ω = Ω Ẑ = Ω(ϕ̂ cosϕ+ r̂ sinϕ)→ Ω sinϕ r̂ = f/2, (27.5)

where
f = (2Ω sinϕ) r̂ (27.6)

is the Coriolis parameter and Ẑ is the spherical earth unit vector pointing out of the north pole
(Figure 4.3).2

Metric terms

The traditional approximation also drops the metric terms, uw/r and vw/r, associated with the
vertical velocity as they appear in the horizontal momentum equations (24.19) and (24.20). These
terms are generally smaller than the other terms since w is much smaller than the horizontal
velocity for large-scale geophysical fluid flow.

1The shallow fluid approximation is distinct from the shallow water approximation treated in Part VI of this
book.

2We use the capital Ẑ to distinguish this north pole unit vector from the local ẑ = r̂ unit vector pointing
vertical relative to a tangent plane discussed in Section 24.5.
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Physical consistency

The shallow fluid approximation and both parts of the traditional approximation must be taken
together in order to maintain a consistent energy and angular momentum conservation principle
for the resulting equations. As shown in Exercise 27.1, taking one but not the other leads to a
physically inconsistent set of equations

27.1.4 Summary of the hydrostatic primitive equations
The above approximations lead to the primitive equations written in spherical coordinates

Du

Dt
− u v tanϕ

Re

− f v = − 1

ρRe cosϕ

∂p

∂λ
+ F λ (27.7)

Dv

Dt
+
u2 tanϕ

Re

+ f u = − 1

ρRe

∂p

∂ϕ
+ F ϕ (27.8)

∂p

∂z
= −g ρ, (27.9)

where the gradient operator is given by equation (27.4). We can write these equations in the
vector form

ρ
Du

Dt
+ (f + u tanϕ/Re) ẑ × ρu = −ρ∇Φ−∇p+ ρF , (27.10)

where
F = λ̂F λ + ϕ̂F ϕ (27.11)

is the horizontal friction acceleration, and the vertical component of equation (27.10) is the
hydrostatic balance. Furthermore, the material time derivative in this equation signifies the
relative acceleration

Du

Dt
= λ̂

Du

Dt
+ ϕ̂

Dv

Dt
. (27.12)

27.1.5 Flux-form mechanical energy budget
For fluid flow maintaining the approximate hydrostatic approximation, the kinetic energy is
dominated by the horizontal motions. Indeed, as we now show, the proper form of the kinetic
energy is precisely that contained just in the horizontal motions. We do so by taking the scalar
product of the horizontal velocity with the momentum equation (27.10) to render

ρ
DKhyd

Dt
= −ρu · ∇Φ− u · ∇p+ ρu · F , (27.13)

where we introduced the hydrostatic kinetic energy per mass

Khyd = u · u/2. (27.14)

Making use of the hydrostatic balance in the presence of a simple geopotential, Φ = g z (so that
u · ∇Φ = 0), leads to

ρ
DKhyd

Dt
= −(v · ∇p− w ∂zp) + ρu · F (27.15a)

= −∇ · (v p) + p∇ · v − w g ρ+ ρu · F , (27.15b)

which leads to the flux-form conservation equation for kinetic energy

∂t(ρK
hyd) +∇ · [v (ρKhyd + p)] = p∇ · v − ρ g w + ρu · F . (27.16)
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Furthermore, Φ = g z means that

ρDΦ/Dt = ∂t(ρΦ) +∇ · (ρvΦ) = ρ g w, (27.17)

in which case the flux-form equation for the mechanical energy per mass, Mhyd, is given by

∂t(ρM
hyd) +∇ · [ρv (Mhyd + p/ρ)] = p∇ · v + ρu · F , (27.18)

where
Mhyd = Khyd +Φ = u · u/2 + g z. (27.19)

Equation (27.18) compares to the non-hydrostatic mechanical energy equation (26.49). The key
difference is that the kinetic energy per mass is here just given by the horizontal flow (27.14).
Additionally, the friction vector for the hydrostatic flow is horizontal. Otherwise, the physical
interpretation of the mechanical energy budget accords with that for the non-hydrostatic flow
given in Section 26.4.

27.1.6 Depth integrated mechanical energy budget

We here extend the analysis from Section 27.1.5 to derive the depth integrated mechanical energy
budget for the hydrostatic primitive equations. The kinetic energy per area contained in the
horizontal flow as integrated over a column is given by

ˆ η

ηb

ρKhyd dz =
1

2

ˆ η

ηb

ρu · u dz. (27.20)

Leibniz’s rule leads to the time tendency

d

dt

ˆ η

ηb

ρKhyd dz = ∂tη [ρK
hyd]z=η +

ˆ η

ηb

∂t(ρK
hyd) dz. (27.21)

Making use of the kinetic energy equation (27.16) as well as Leibniz’s rule gives the budget

d

dt

ˆ η

ηb

ρKhyd dz = [ρKhyd + pa]z=η (∂tη−w+u · ∇η)z=η + [ρKhyd + pb]z=ηb (w−u · ∇ηb)z=ηb

−∇h ·
ˆ η

ηb

(ρuKhyd + u p) dz +

ˆ η

ηb

(p∇ · v − ρ g w + ρu · F ) dz. (27.22)

Note that when bringing ∇h outside the vertical integral, besides making use of Leibniz’s rule, we
also assumed ∇h is itself independent of z, which is trivially the case with Cartesian coordinates.
However, for spherical coordinates the assumption requires the shallow fluid approximation so
that the r−1 appearing in the gradient operator is replaced by R−1

e as per equation (27.4). It is
here that we see that the depth integrated equations are most usefully posed when working with
the hydrostatic primitive equations.

The bottom kinematic boundary condition (19.56) and surface boundary condition (19.94)
then give the depth-integrated kinetic energy budget

d

dt

ˆ η

ηb

ρKhyd dz =

Qm [K
hyd + pa/ρ]z=η −∇h ·

ˆ η

ηb

(ρuKhyd + u p) dz +

ˆ η

ηb

(p∇ · v − ρ g w + ρu · F ) dz. (27.23)

The first term on the right hand side arises from the mass transport across the ocean surface,
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along with the applied surface pressure. The second term is the convergence of the depth
integrated flux of kinetic energy plus pressure. The final term is the depth integral of the
buoyancy conversion term plus frictional work. Similar manipulations starting from the flux-form
mechanical energy budget (27.18) lead to the depth integrated budget

d

dt

ˆ η

ηb

ρMhyd dz =

Qm [M
hyd + pa/ρ]z=η −∇h ·

ˆ η

ηb

(ρuMhyd + u p) dz +

ˆ η

ηb

(p∇ · v + ρu · F ) dz. (27.24)

27.1.7 Comments and further study

The primitive equations make use of the momentum equations, which contrasts to non-primitive
equation methods that develop evolution equations for the vorticity and divergence. Smagorinsky
(1963) was an early proponent of the hydrostatic primitive equations for use in studying the
large-scale ocean and atmospheric circulation. These equations form the basis for many general
circulation models of the atmosphere and ocean. However, it is notable that finer resolution
simulations, that admit strong vertical motions, must make use of the non-hydrostatic equations.
Non-hydrostatic simulations are particularly relevant when studying clouds in the atmosphere
and fine-scale mixing in the ocean, with both of these processes involving nontrivial vertical
accelerations that break the hydrostatic approximation. These models sometimes also time step
the momentum equations, and as such are referred to as non-hydrostatic primitive equation
models.

27.2 Elements of approximate hydrostatic pressure
For a static fluid with identically zero net acceleration, the vertical pressure gradient precisely
balances the weight of fluid to thus realize exact hydrostatic balance. We discussed this static
solution to the equations of motion in Sections 24.6 and 25.5. For a moving fluid with scales
of motion that maintain a small vertical to horizontal aspect ratio, the presentation in this
section reveals that the vertical pressure gradient and gravitational acceleration individually
remain far larger than other accelerations acting on a fluid element. In this case, the vertical
momentum equation, even for the moving fluid, remains approximately in hydrostatic balance
column-by-column. We thus have a fluid flow whereby each vertical fluid column is in hydrostatic
balance, and yet there are horizontal pressure gradients that drive motion. In this section we
study aspects of such approximately hydrostatic fluid flows.

For simplicity in this section we make use of Cartesian coordinates rather than the spherical
coordinates used in Section 27.1.

27.2.1 Expressions for the hydrostatic pressure

Making the hydrostatic approximation in the vertical momentum equation leads to the local
balance

∂p

∂z
= −ρ g. (27.25)

Vertically integrating upward from a point within the ocean to the ocean surface leads to the
hydrostatic pressure

p(x, y, z, t) = pa(x, y, t) + g

ˆ η

z
ρ(x, y, z′, t) dz′. (27.26)
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In this equation we wrote p(η) = pa for the pressure at the ocean free surface, z = η(x, y, t),
arising from the weight of the overlying atmosphere or sea ice; i.e., this is the applied pressure
acting on the top of the ocean fluid. A similar integration applies to the atmosphere

p(x, y, z, t) = g

ˆ ztop

z
ρ(x, y, z′, t) dz′, (27.27)

where z = ztop is the top of the atmosphere, sometimes approximated by ztop =∞. For both the
ocean and the atmosphere, we assume g remains a constant over the vertical extent of the fluid,
which is a sensible approximation even for the top of the atmosphere.

In both the ocean and atmosphere, the hydrostatic pressure at a vertical position, z, equals
to the weight per horizontal area of matter above that position, with equations (27.26) and
(27.27) providing explicit expressions in terms of in situ density and boundary contributions.
These expressions offer a huge simplification for how we determine pressure, with the remainder
of this section providing example implications.

27.2.2 Evolution of hydrostatic pressure

We expect that hydrostatic pressure evolves according to the convergence of mass onto the
column of fluid above that point. The ocean hydrostatic pressure also changes due to time
changes in the applied upper boundary pressure. Here we derive mathematical expressions that
support these expectations, with Figure 27.1 providing a schematic.
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Figure 27.1: Evolution of hydrostatic pressure for a vertical position in the atmosphere (left panel) and ocean
(right panel) according to equations (27.30) and (27.33a). Hydrostatic pressure at a vertical position, z, which
here is the bottom of the fluid column, arises from the convergence of mass onto the column over the region above
z. The ocean column also has a contribution from the time tendency of applied surface pressure plus the mass of
coming across the top boundary. For the atmosphere as assume the top boundary is at ztop = ∞ and so there is
no mass coming across that boundary.

Hydrostatic pressure in the atmosphere

A time derivative of the atmospheric hydrostatic pressure (27.27) renders

∂tp = g

ˆ ztop

z
∂tρ(x, y, z

′, t) dz′. (27.28)

Note the absence of a time derivative on ztop. We ensure this time derivative is not relevant by
setting ztop to a constant value well above anything of physical relevance; e.g., ztop ≈ ∞. Now
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insert the mass continuity equation (19.6) and make further use of Leibniz’s rule to write

∂tp = −g
ˆ ztop

z
∇ · (v ρ) dz′ (27.29a)

= g ρ(z)w(z)− g
ˆ ztop

z
∇h · (u ρ) dz′, (27.29b)

where we set w(ztop) ρ(ztop) = 0. The first term on the right hand side arises from the vertical mass
flux into the fluid column from below. The second term arises from the horizontal convergence
of mass as integrated over the column above the position, z. If the vertical position of the
bottom limit on the integral is independent of horizontal position, then we can pull the horizontal
divergence operator outside of the integral to render

∂tp = g ρ(z)w(z)− g∇h ·
ˆ ztop

z
u ρdz′. (27.30)

In Exercise 27.3 we derive an expression for the bottom pressure, p(x, y, z = ηb(x, y), t), where
we must use Leibnitz’s rule to pull the horizontal derivative outside of the integral.

Hydrostatic pressure in the ocean

The derivation for the ocean requires some more work since the ocean free surface is a permeable
space and time dependent function. A time derivative of the ocean pressure expression (27.26)
renders

∂tp = ∂tpa + g ρ(η) ∂tη + g

ˆ η

z
∂tρ(x, y, z

′, t) dz′, (27.31)

where we made use of Leibniz’s rule to take the time derivative of the upper limit at z = η(x, y, t),
and with the shorthand ρ(η) = ρ(x, y, z = η, t). Now insert the mass continuity equation (19.6)
and make further use of Leibniz’s rule to write

∂t(p− pa)− g ρ(η) ∂tη = g

ˆ η

z
∂tρ(x, y, z

′, t) dz′ (27.32a)

= −g
ˆ η

z
∇ · (v ρ) dz′ (27.32b)

= −g [ρ(η)w(η)− ρ(z)w(z)]− g
ˆ η

z
∇h · (u ρ) dz′ (27.32c)

= g ρ(z)w(z) + g [(−w + u · ∇η) ρ]z=η − g∇h ·
ˆ η

z
u ρdz′ (27.32d)

= g ρ(z)w(z) + g (Qm − ρ(η) ∂tη)− g∇h ·
ˆ η

z
u ρdz′, (27.32e)

where the last step made use of the kinematic boundary condition (19.94) for the ocean free
surface, with Qm the mass flux entering the ocean across the free surface. Rearrangement, and
cancellation of the ρ(η) ∂tη term appearing on both sides, leads to

∂tp = ∂tpa + g ρ(z)w(z) + g Qm − g∇h ·
ˆ η

z
u ρ dz′. (27.33a)

The first term on the right hand side arises from time fluctuations of the applied pressure at
z = η. The second and third terms measure the vertical convergence of mass onto the column of
fluid sitting above the vertical position, with ρ(z)w(z) the mass flux entering the column from
below and Qm the mass flux entering from across the free surface. The final term arises from the
vertically integrated horizontal mass transport converging onto the column above the position of

page 722 of 2158 geophysical fluid mechanics



27.2. ELEMENTS OF APPROXIMATE HYDROSTATIC PRESSURE

interest.

27.2.3 Heuristic scaling
We here present a scale analysis to justify the hydrostatic approximation. This analysis serves
to introduce a common method used in fluid mechanics to identify those processes that may be
dominant for a particular flow regime. In particular, the flow regime of interest here occurs with
a small vertical to horizontal aspect ratio

αaspect ≡
H

L
≪ 1, (27.34)

with H a typical length scale for vertical motion and L the horizontal length scale. This regime
is fundamental to the large-scale circulation of the ocean and atmosphere. As the hydrostatic
approximation is concered with the force balances in a fluid column, it is sufficient to ignore
rotation when performing a scale analysis.

Consider the vertical momentum equation (24.43c) from the tangent plane and traditional
approximations (Section 24.5), along with the associated scales for the various terms

Dw

Dt
= −1

ρ

∂p

∂z
− g (27.35a)

W

T
+
U W

L
+
W W

H
= −1

ρ

∂p

∂z
− g. (27.35b)

In the second equation we introduced the following scales for the terms appearing on the left
hand side of the first equation.

• L is the horizontal scale of the motion.

• H is the vertical scale of the motion.

• W is the vertical velocity scale.

• U is the horizontal velocity scale. For this analysis we do not distinguish between the
zonal and meridional velocity scales, writing U for both. This assumption is not always
valid, such as when scaling for jet stream or equatorial flows, both of which have larger
zonal speeds than meridional.

• T is the time scale of the motion. We assume that the time scale is determined by horizontal
advection3 so that T ∼ L/U .

To get a sense for the numbers, consider large-scale atmospheric flows with W = 10−2 m s−1,
L = 105 m, H = 103 m, U = 10 m s−1. These numbers lead to T = L/U = 104 s and to the
values for the vertical momentum equation

10−6 m s−2 ∼ −1

ρ

∂p

∂z
− g. (27.36)

With g ∼ 10 m s−2, the only term that can balance the gravitational acceleration is the
vertical pressure gradient. A similar analysis holds for large-scale ocean flows where we set
W = 10−3 m s−1, L = 103 m, H = 101 m, U = 10−1 m s−1. These numbers lead to
T = L/U = 104 s and to

10−7 m s−2 ∼ −1

ρ

∂p

∂z
− g. (27.37)

3This assumption for time scale is not always appropriate, such as for studies of waves where we may instead
consider time scales according to a wave speed and wave length.
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In either case, large scale motion maintains an approximate hydrostatic balance whereby
∂p/∂z = −ρ g.

We offer a more formal scale analysis in Section 29.2, making use of the oceanic Boussinesq
equations derived in Chapter 29. For the remainder of this section we explore certain properties
of a fluid flow maintaining an approximate hydrostatic balance.

27.2.4 Removal of a dynamically irrelevant background state
The previous analysis pointed to the dominance of the hydrostatic balance in the vertical
momentum equation for large scale motions. However, is that analysis sufficient to understand
what causes motion? To help answer that question, consider a density field that is decomposed
into a constant, ρo, plus a deviation

ρ(x, t) = ρo + ρ′(x, t), (27.38)

with a corresponding decomposition of the pressure field

p(x, t) = p0(z) + p′(x, t) with
dp0
dz

= −ρo g. (27.39)

That is, the pressure is decomposed into a background static pressure field that is just a function
of z, plus a deviation from the background pressure. In this case, the non-rotating vertical
momentum equation takes the form

ρ
Dw

Dt
= −∂p

′

∂z
−
[
dp0
dz

+ ρo g

]
= −∂p

′

∂z
. (27.40)

We thus see that the exact hydrostatically balanced background pressure, p0(z), has no dynamical
implications. Correspondingly, to garner a more relevant scaling for the hydrostatic balance it is
appropriate to ask whether the dynamically active pressure, p′, is approximately hydrostatic.

For flows with small aspect ratios, the vertical momentum equation remains approximately
hydrostatic even when removing the dynamically inactive background pressure field. So our
intuition about hydrostatic dominance holds unchanged even for the dynamical pressure. The
formal justification of this approximation is nicely framed within the Boussinesq equations
of Chapter 29 since the pressure force in these equations exposes just the dynamically active
pressure. We thus postpone further discussion of hydrostatic scaling until Section 29.2.

27.2.5 Ocean dynamic topography
There are occasions in oceanography where it is useful to study the thickness of a layer bounded
by isobars, here defined the thickness of fluid extending from the ocean free surface to a chosen
pressure level in the ocean interior (see Figure 27.2)

D(p) = η − z(p). (27.41)

Assuming a hydrostatic balance for each fluid column allows us to relate this expression to the
vertical integral between two pressure surfaces of the specific volume, ρ−1

D(p) =

ˆ η

z(p)
dz = g−1

ˆ p

pa

dp′

ρ
, (27.42)

where the second step used the hydrostatic balance and absorbed a minus sign by swapping
integral limits. We refer to the thickness D(p) as the dynamic topography with respect to a
reference pressure, p. Note that D(p) is sometimes also called the steric sea level.
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z = ⌘b(x, y)

Figure 27.2: The ocean dynamic topography, D(p) = η − z(p), is the thickness of a layer from the sea surface at
z = η(x, y, t) to the vertical position of a constant pressure surface, z = z(x, y, p, t).

Evolution of the dynamic topography arises from changes in the pressure applied to the free
surface as well as changes in the specific volume

g
∂D(p)

∂t
= − 1

ρ(η)

∂pa
∂t

+

ˆ p

pa

∂ρ−1

∂t
dp. (27.43)

Importantly, the time derivative here acts on the specific volume when computed on surfaces
of constant pressure. If the depth, z(p), of the constant pressure surface is static, then the
evolution of layer thickness, D(p), is identical to the sea surface, η. In general, there is no such
static pressure level, thus making the time tendencies differ, though certain situations warrant
this approximation.

27.2.6 Surfaces of atmospheric geopotential height and pressure
In Section 23.4.10 we computed the geopotential height within an exact hydrostatic and ideal
gas atmosphere. We here apply those results to the case of approximate hydrostatic and ideal
gas columns, making use of equation (23.82) for the difference in geopotential height between
two constant pressure surfaces (isobars)

Z2 − Z1 = −(Ratm ⟨T ⟩/g) ln(p2/p1). (27.44)

In this equation, ⟨T ⟩ is the mean temperature within the column as computed according equation
(23.80), and Ratm is the specific gas constant for air given by equation (23.51). The geopotential
thickness is positive when the isobars have p2 < p1. This situation holds when level-2 sits at
a higher altitude in the atmosphere than level-1, whereby the hydrostatic pressure decreases
moving upward. Furthermore, the geopotential thickness is directly proportional to the column
mean temperature so that a warmer column is thicker. This result is expected since for a given
mass of air, a warmer column is less dense and so isobars are higher over warmer hydrostatic
air columns than cooler columns. Correspondingly, when moving horizontally along a constant
geopotential surface, we encounter higher pressure when moving into a region of warmer air.
This situation is entirely analogous to that in Figure 27.4 when studying the horizontal pressure
difference between two hydrostatic and equal mass columns of seawater.

27.2.7 Concerning vertical motion
Unbalanced vertical accelerations still exist in an approximate hydrostatic flow. Yet these
vertical accelerations are not seen in the prognostic equations, since the vertical momentum
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Z2 � Z1 = �(Ratm hT i/g) ln(p2/p1)

Figure 27.3: Thickness of the layer of an ideal gas atmosphere located between two constant pressure surfaces
as given by equation (27.44): Z2 − Z1 = −(Ratm ⟨T ⟩/g) ln(p2/p1). Evidently, when the flow is approximately
hydrostatic, then p2 < p1 so that the thickness of the layer is positive. Also notice that the layer thickness
increases when the column averaged temperature, ⟨T ⟩, increases. Correspondingly, when moving horizontally
along a constant geopotential surface (fixed z), we encounter higher pressure when moving into a region of warmer
air and lower pressure when moving into a region of colder air.

equation reduces to a local hydrostatic balance. Hence, rather than compute vertical motion
prognostically, vertical motion in an approximate hydrostatic flow must be diagnosed through
constraints on the motion.

For example, an important constraint on the large-scale ocean circulation arises from vorticity
and potential vorticity conservation, which are topics considered in Part VII of this book. Mass
continuity discussed in Section 29.1.4 provides another constraint. In particular, horizontal
velocity divergence in a non-divergent flow is balanced by vertical velocity convergence as per
equation (29.17). The vertical pressure forces required to produce the vertical motion are those
precisely needed to maintain volume continuity. In a hydrostatic flow, we do not directly compute
these forces for the purpose of prognosing vertical accelerations. Rather, the vertical acceleration
is inferred through kinematic constraints. The associated forces can be diagnosed given the
velocity and the accelerations.

27.2.8 Further study

Section 2.7.4 in Vallis (2017) provides examples of scales over which the hydrostatic relation
remains a useful approximation in geophysical fluid flows. Further discussions of dynamic
topography are given in Appendix B.4 of Griffies et al. (2014) as well as in Tomczak and Godfrey
(1994). This 8-minute video from Prof. Hogg offers an introduction to hydrostatic pressure.

27.3 Horizontal pressure gradients
In contrast to an exact hydrostatic fluid, where there is no motion, there are generally horizontal
pressure gradients in an approximate hydrostatic fluid flow, and these horizontal gradients drive
horizontal motion. Such horizontal pressure gradients can arise from horizontal differences in
the mass density. We refer to such pressure gradients as internal pressure gradients since they
arise from density gradients internal to the fluid, which are sometimes referred to as baroclinic
pressure gradients. Horizontal pressure gradients can also arise from horizontal gradients in
the total mass of a fluid column, with such pressure gradients referred to as external pressure
gradients, which are sometimes referred to as barotropic pressure gradients.

In developing an understanding of the horizontal pressure accelerations in an approximate
hydrostatic flow, it is useful to examine the variety of expressions for the pressure gradient,

page 726 of 2158 geophysical fluid mechanics

https://www.youtube.com/watch?v=oFKd5rd8bgA&list=PLKpemOPvYEfX3bXEjTXoEnuGIHQ1jaAnP&index=13


27.3. HORIZONTAL PRESSURE GRADIENTS

which is the purpose of this section. We make use of these expressions studying case studies in
Section 27.4.

27.3.1 Top down horizontal pressure gradient

In this section we examine the horizontal pressure gradient in an approximate hydrostatic flow,
and do so by integrating from the top down. This approach complements that in Section 27.3.2,
which starts from the bottom and integrates up.

External and internal contributions to the horizontal pressure gradient

Recall equation (27.26), which expresses the hydrostatic pressure at a point within the ocean

p(x, y, z, t) = pa(x, y, t) + g

ˆ η

z
ρ(x, y, z′, t) dz′. (27.45)

In this equation, pa = p[x, y, z = η(x, y, t), t] is the pressure applied to the ocean free surface at
z = η(x, y, t) from any mass above the ocean, such as the atmosphere or cryosphere. In many
idealized cases we assume the media above the ocean is massless, in which case pa = 0. Now
introduce the globally referenced Archimedean buoyancy (see Chapter 30) as defined by

b = −g (ρ− ρo)/ρo, (27.46)

in which case the hydrostatic pressure is

p = −g ρo z + g ρo [η + pa/(g ρo)]− ρo
ˆ η

z
bdz′. (27.47)

The first term is a background pressure that increases moving downward. However, this
background pressure has no horizontal dependence and so it does not contribute to the horizontal
pressure gradient. In contrast, the second and third terms have horizontal gradients and are thus
sometimes referred to as the dynamical pressure. The second term arises from the free surface
height plus the applied surface pressure. This term is uniformly felt throughtout the fluid column
since it has no vertical dependence. The free surface term is the product of the large number,
g ρo, times a small free surface undulation, η. The third term arises from buoyancy within the
fluid computed relative to the constant background density, ρo, and this term is a function of
vertical position. Furthermore, it is the vertical integral over a generally large depth range of
the buoyancy. In this manner, the second and third terms can be of comparable magnitude.

The horizontal gradient of the hydrostatic pressure (27.47) is given by

∇hp = ∇hpa + g ρ(η)∇hη︸ ︷︷ ︸
external contribution

− ρo

ˆ η

z
∇hbdz′︸ ︷︷ ︸

internal contribution

= ∇hpa + g ρ(η)∇hη︸ ︷︷ ︸
external contribution

+ g

ˆ η

z
∇hρ dz′.︸ ︷︷ ︸

internal contribution

(27.48)

The internal contribution to the pressure gradient arises from horizontal gradients in Archimedean
buoyancy that are integrated vertically over the region above the point of interest. The external
contribution acts throughout the vertical fluid column since it is only a function of horizontal
position and time. Every point within the fluid column instantly feels this term whenever there
is a gradient in the applied surface pressure, the surface height, or the surface buoyancy, with
ρo[g − b(η)] = g ρ(η).
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Mathematical comments regarding the external contribution

Observe that the external contributions to the horizontal pressure gradient in equation (27.48)
are all functions of horizontal position and time, so there is no z dependence to hold fixed when
computing ∇h on these terms. Even so, we sometimes retain the ∇h notation to align with that
required to denote a horizontal gradient operator acting on three dimensional fields, such as
buoyancy, b(x, y, z, t), and density, ρ(x, y, z, t)).

To exemplify this comment, observe that the external contribution can be written as the
horizontal pressure gradient evaluated at the ocean surface4

(∇hp)z=η = ∇hpa + g ρ(η)∇hη. (27.49)

Hence, the pressure gradient in equation (27.48) can be written in the succinct form

∇hp = (∇hp)z=η − ρo
ˆ η

z
∇hbdz′ = (∇hp)z=η + g

ˆ η

z
∇hρ dz′. (27.50)

Observe that the component of the horizontal pressure gradient in a direction tangent to the
free surface arises just from the ∇hpa term.

Mathematically, equation (27.49) decomposes the horizontal pressure gradient into the
horizontal gradient of pressure along the curved free surface (the ∇hpa term), plus a term that
accounts for curvature of the free surface (the g ρ(η)∇hη term). As seen in Section 65.2, this
decompostion of the horizontal pressure gradient, made throughout the fluid column, is a key
step needed to formulate the equations of motion using generalized vertical coordinates.

27.3.2 Bottom up horizontal pressure gradient
It is sometimes useful to work with the bottom pressure and bottom topography, rather than the
free surface height. For this purpose we invert the formulation from Section 27.3.1 by introducing
the bottom pressure

pb = pa + g

ˆ η

ηb

ρdz, (27.51)

in which case

p = pa + g

ˆ η

z
ρdz (27.52a)

= pa + g

ˆ η

ηb

ρdz − g
ˆ z

ηb

ρdz (27.52b)

= pb − g
ˆ z

ηb

(ρ− ρo + ρo) dz (27.52c)

= pb − g ρo (z − ηb) + ρo

ˆ z

ηb

bdz′, (27.52d)

so that the corresponding expression for the horizontal hydrostatic pressure gradient is

∇hp = ∇hpb + g ρ(ηb)∇hηb︸ ︷︷ ︸
external contribution

+ ρo

ˆ z

ηb

∇hbdz′︸ ︷︷ ︸
internal contribution

= ∇hpb + g ρ(ηb)∇hηb︸ ︷︷ ︸
external contribution

− g

ˆ z

ηb

∇hρdz′.︸ ︷︷ ︸
internal contribution

(27.53)

4Namely, all terms in equation (27.49) are a function just of the horizontal position computed along the
z = η(x, y, t) ocean surface, so that we could write ∇ rather than ∇h. Yet on the left hand side it is important to
write ∇h, since we are evaluating the horizontal pressure gradient at the surface.
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The horizontal pressure gradient at the bottom

Just as for the pressure gradient expression (27.48), observe that equation (27.53) decomposes the
horizontal pressure gradient into an external and internal contribution. The internal contribution
arises from gradients in the buoyancy as integrated below the depth of interest. The external
contributions arise from gradients in the bottom pressure, which measures the mass per area of
fluid within the column, plus gradients in the bottom topography as weighted by the bottom
buoyancy (27.59). The external contribution can be written as the horizontal pressure gradient
evaluated at the ocean bottom

(∇hp)z=ηb = ∇hpb + g ρ(ηb)∇hηb, (27.54)

which accords with equation (27.49) for the horizontal pressure gradient evaluated at the ocean
surface. Evidently, the horizontal pressure gradient at the ocean bottom equals to the gradient
of the bottom pressure, plus a term that accounts for the bottom slope. Furthermore, the
component of the horizontal pressure gradient in a direction tangent to the ocean bottom arises
just from the ∇hpb term. Finally, we make use of expression (27.54) to produce a more succinct
form of the horizontal pressure gradient (27.53)

∇hp = (∇hp)z=ηb + ρo

ˆ z

ηb

∇hbdz′ = (∇hp)z=ηb − g
ˆ z

ηb

∇hρdz′. (27.55)

Further decomposing the bottom pressure contribution

The bottom pressure contribution to equations (27.53) and (27.55) is generally dominated by
gradients in the bottom topography. These gradients are static and so it can be useful to isolate
the bottom topography by taking the horizontal gradient of equation (27.51) to find

∇hpb = ∇pa + g ρ(η)∇η − g ρ(ηb)∇ηb + g

ˆ η

ηb

∇hρdz (27.56a)

=

[
∇pa + g ρ(η)∇η − b(ηb)∇ηb + g

ˆ η

ηb

∇hρ dz
]
− g ρo∇ηb, (27.56b)

in which case we write the bottom pressure gradient as

∇hpb = ∇hp′b − g ρo∇hηb, (27.57)

so that the horizontal pressure gradient takes the form

∇hp = ∇hp′b − ρo b(ηb)∇hηb︸ ︷︷ ︸
external contribution

+ ρo

ˆ z

ηb

∇hbdz′,︸ ︷︷ ︸
internal contribution

(27.58)

where we introduced the bottom buoyancy via

ρo [g − b(ηb)]∇ηb = g ρ(ηb)∇ηb. (27.59)

27.4 Balancing internal and external pressure gradients
In this section we work through a set of case studies by considering a given density configuration
that sets up an internal pressure gradient, and then seek a sea level configuration that establishes
an external pressure gradient to balance the internal pressure gradient, thus leading to a net zero
horizontal pressure gradient. We do not seek reasons for why the internal and external pressure
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gradients balance, which require more than the hydrostatics used in this chapter. Rather, we
consider the balanced state as a useful means to further an understanding of hydrostatic pressure.
We are also motivated by noting that many ocean flows maintain a partial balance between
internal and external pressure gradients along certain surfaces, which motivates the notion of a
level of no motion, thus making the balanced state a useful starting point for examining the
more complete dynamics of a particular flow.

As the starting point for these considerations, recall the expressions for the horizontal pressure
gradient along the ocean surface (equation (27.49)) and ocean bottom (equation (27.54)). Here
we list these equalities again, along with two more expressions that follow from evaluating
equation (27.50) at the ocean bottom and equation (27.55) at the ocean surface

(∇hp)z=η = ∇hpa + g ρ(η)∇hη = (∇hp)z=ηb − g
ˆ η

ηb

∇hρdz (27.60a)

(∇hp)z=ηb = ∇hpb + g ρ(ηb)∇hηb = (∇hp)z=η + g

ˆ η

ηb

∇hρdz. (27.60b)

27.4.1 Horizontal hydrostatic pressure gradient in a mass conserving fluid

As a warm-up to the continuous cases to follow, we work through an example emblematic of
how one determines the sign for horizontal pressure gradients in an approximate hydrostatic
balance. The example is posed for equal mass columns of mass conserving fluid in a bounded
fluid layer, such as the ocean, but these considerations hold for the atmosphere where the upper
boundary is the top of the atmosphere (i.e., effectively unbounded). We assume the flat bottom
of the layer has a constant pressure so that the horizontal pressure gradient vanishes along the
bottom, thus offering a particular example of the level of no motion.

Two columns with equal mass yet different densities

Consider two adjacent columns of seawater with equal mass but with distinct density; assume
the density in each column is constant throughout the respective columns; and assume the
atmospheric pressure is equal above the two water columns. Figure 27.4 offers a schematic,
where we make the additional assumption that the two columns sit on a flat bottom. We can
imagine setting up this configuration by starting with uniform density water, then warming the
water in column B more than column A while maintaining constant mass in the two columns.
This process sets up a horizontal density gradient with an associated horizontal gradient in the
hydrostatic pressure. Furthermore, the less dense water in column B occupies more volume so
that its free surface sits higher

ρB < ρA =⇒ ηB > ηA. (27.61)

What is the sign of the horizontal hydrostatic pressure gradient? As we show in the following,
column B (the low density column) has larger hydrostatic pressure than column A (the high
density column) for every point in the column, except at the bottom where the two bottom
pressures are identical since the two columns have equal mass. The bottom thus represents a
level of no motion.

Computing pressure starting from the equal bottom pressures

Since the two columns have equal mass and equal cross-sectional area, the hydrostatic pressures
(weight per unit area) at the bottom of the two columns are equal and given by

pbot = g ρA (ηA − ηb) = g ρB (ηB − ηb), (27.62)
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where z = ηb(x, y) is the vertical position at the bottom, z = ηA(x, y, t) is the top of column A,
and z = ηB(x, y, t) is the top of column B. Since the bottom pressures are identical, there is no
horizontal pressure gradient at the bottom so that all pressure gradients exist above the bottom.

The hydrostatic pressure at an arbitrary position within column A is given by

pA(z) = g ρA (ηA − z) = pbot − g ρA (−ηb + z), (27.63)

where we only expose here the z dependence to reduce clutter. The second equality arose by
substituting the bottom pressure from equation (27.62) to eliminate the surface height ηA. Doing
so is useful since we know that ηA ̸= ηB, and yet the bottom pressure is the same for the two
columns. The same approach for pressure in column B yields

pB(z) = g ρB (ηB − z) = pbot − g ρB (−ηb + z). (27.64)

We can now take the difference between the two hydrostatic pressures to find

pB(z)− pA(z) = g (−ηb + z) (ρA − ρB) > 0. (27.65)

Since ρA > ρB and z ≥ ηb we see that at any point above the bottom, the hydrostatic pressure
in column B (the lighter column) is greater than that in column A (the denser column). This
horizontal difference in the hydrostatic pressure renders a force pointing from column B to
column A. Vertically integrating this pressure difference over the thickness of column A leads to
the net force per horizontal length

Fpressure B to A =

ˆ ηA

ηb

[pB(z)− pA(z)] dz = (g/2) (ρA − ρB) (ηA − ηb)2 > 0. (27.66)

Inferring pressure gradients starting from the top

Another way to understand why the pressure force points from column B to column A is to
note that at the top of both columns the pressures are the same (and equal to the uniform
atmospheric pressure). However, since column B sits higher than column A, as we move down
from z = ηB the pressure increases in column B immediately, whereas the pressure in column
A remains at the atmospheric pressure until entering the water column at z = ηA < ηB. So it
is clear that the pressure in column B is greater than A starting from the surface and moving
down. Since the two bottom pressures are equal, then we infer the pressure isolines as drawn in
Figure 27.4.

27.4.2 Inverse barometer sea level
A zero horizontal pressure gradient at the ocean surface, in the presence of an applied surface
pressure, is known as an inverse barometer sea level, whereby from equation (27.60a) we have

(∇hp)z=η = ∇hpa + g ρ(η)∇hη = 0, (27.67)

which leads to
∇h · [g ρ(η)∇hη] = −∇2

h pa. (27.68)

Assuming ρ(η) is roughly constant, then the inverse barometer sea level is depressed under
an atmospheric high pressure (where ∇2

h pa < 0) and it rises under an atmospheric low (where
∇2

h pa > 0), with Figure 27.5 providing a schematic. We again encounter the inverse barometer
when studying shallow water theory in Section 35.2.2.
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z

z = ηb

z = ηA

z = ηB

ρA > ρB

pA ≤ pB

Figure 27.4: Two seawater columns on a flat bottom with equal mass but different densities with ρA > ρB. We
assume the atmosphere above the columns has the same pressure over both columns, thus offering zero horizontal
pressure force. Furthermore, the horizontal cross-sectional area of the two columns are the same so that the less
dense water in column B has more volume and thus a greater thickness: ηB > ηA. Since the column masses are
the same, the hydrostatic pressures (weight per horizontal area) at the bottom of the two columns are equal:
pA(z = ηb) = pB(z = ηb) = pbot. In oceanographic parlance, the bottom offers a “level of no motion” from which
to reference the pressure field. At any position z above the bottom, equation (27.65) shows that the hydrostatic
pressure in column B is greater than A: pB(z) − pA(z) = g (−ηb + z) (ρA − ρB) > 0. The horizontal gradient
in hydrostatic pressure thus points from column B towards column A. The red lines show lines of constant
pressure (isobars), which are horizontal next to the bottom but which slope upward to the right moving towards
the surface. This configuration provides salient points about hydrostatic pressure relevant for the slightly more
complex reduced gravity example in Figure 35.5. Also, it is useful to compare this schematic to Figure 31.4, which
discusses the depth dependence of the horizontal gradient in hydrostatic pressure as per ∂(∇hp)/∂z = −g∇hρ.
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Figure 27.5: Illustrating the inverse barometer response of sea level under an atmospheric high pressure where
∇2pa < 0. The inverse barometer sea level is depressed according to equation (27.68).

27.4.3 Balanced pressure gradients above a level of no motion

Consider the case in which there is zero horizontal pressure gradient along a constant geopotential
surface

z = ηnm. (27.69)

We might find this configuration to be a relevant approximation of the sluggish flows in the
deep ocean where flow can be much weaker than the upper ocean. Along this level there is zero
horizontal geostrophic flow.5 What is required from the hydrostatic pressure field to realize this
level of no motion? Based on the expressions (27.50) and (27.55), the pressure field must satisfy

0 = (∇hp)z=ηnm = (∇hp)z=η + g

ˆ η

ηnm

∇hρdz = (∇hp)z=ηb − g
ˆ ηnm

ηb

∇hρ dz. (27.70)

5As studied in Chapter 31, geostrophic flow arises from a balance between the Coriolis acceleration and the
horizontal pressure gradient acceleration. Hence, if there is a depth along which there is zero horizontal pressure
gradient, then there is a corresponding zero horizontal geostrophic flow.
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Each of these equations expresses a compensation or balance between external and internal
contributions to the pressure gradient so that

(∇hp)z=η = −g
ˆ η

ηnm

∇hρ dz (27.71a)

(∇hp)z=ηb = g

ˆ ηnm

ηb

∇hρdz. (27.71b)

In Figure 27.6 we illustrate the compensation (27.71a) that results if an external pressure
gradient from a sloping sea level exactly balances the internal pressure gradient from horizontal
density gradients so that

ρ(η)∇hη = −
ˆ η

ηnm

∇hρ dz. (27.72)

This equation allows us to estimate the scale for the free surface slope by writing

ρo |∇hη| ∼ H |∇hρ| = (H ρo/g) |S N2|, (27.73)

where S is the slope of the density surfaces relative to the horizontal, H = η − ηnm is the depth
of the fluid, and N2 is the squared buoyancy frequency. Assuming |S| ≈ 10−3, H ≈ 3× 103 m,
and N2 ≈ 10−6 s−2 leads to the free surface slope

|∇hη| ≈ 10−7. (27.74)

Evidently, the free surface slope is much smaller (roughly 10−3 times smaller) than that of the
interior density surfaces. We see this relative slopes again when studying the reduced gravity
model in Section 35.3.
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Figure 27.6: Illustrating the balance of internal and external horizontal pressure gradients that is needed to
realize a level of zero horizontal pressure gradient at z = ηnm (i.e., a level of no motion), and thus a level with zero
geostrophic flow. The balance shown here is taken from equation (27.71a) with a zero applied pressure gradient,
∇pa = 0. Hence, compensation is between an external pressure gradient from the sea level that exactly balances
the internal pressure gradient from horizontal density gradients. The relative slope of the free surface is exagerated
here, with actual slopes scaling as in equation (27.74), which are generally much smaller (roughly 10−3 smaller)
than the slope of density surfaces.

27.4.4 Balanced pressure gradients above a sloping side boundary
We now extend the example from Section 27.4.3 to study the case of compensated internal and
external pressure gradients in the presence of a sloping coastal side boundary. Just like over a
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flat bottom, realizing this compensation requires a sea level gradient to produce the external
pressure gradient to balance the internal pressure gradient caused by the density field. As we
find here, typical coastal density gradients, with lighter waters near the coast, leads to sea level
rise near the coast and with this rise referred to as steric setup. The analysis is motivated by
the studies of Helland-Hansen (1934), Csanady (1979) and Bingham and Hughes (2012). Note
that to pursue an analytical calculation requires a number of common approximations. These
approximations are often not realized in realistic flows. However, they lead to expressions whose
relevance can be readily tested. Furthermore, they offer a useful starting point for more detailed
analyses.

Idealized coastal density and topography

To enable an analytical calculation, consider a static density given by

ρ(y, z) = ρo + ρ′(y, z) with |ρ′| ≪ ρo, (27.75)

and a bottom topography that is a monotonic function of the off-shore distance,

z = ηb(y) with ∂yηb < 0. (27.76)

An example coastal density configuration is depicted in Figure 27.7, whereby the topography
deepens off-shore, ∂yηb < 0, and with lighter water next to the coast as might occur from
freshening and warming in the shallow coastal waters. Along-shore gradients (in the x̂-direction)
are typically far weaker than across shore gradients (in the ŷ-direction). This observation then
motivates assuming all fields to have zero ∂x.

Depth of no motion intersecting a bottom of no motion

Assume a depth of no-motion at z = ηnm that intersects the sloping coastal bottom at z = ηb(ynm)
as in Figure 27.7. Furthermore, assume there is no horizontal pressure gradient all along the
bottom, from y = ynm to the coastline at y = 0, so that the bottom becomes a sloped surface of
no geostrophic motion. Although there are many cases where geostrophic currents are nonzero
next to sloping bottoms, it is useful to consider the no motion case as a baseline. Doing so
facilitates diagnostic calculations reflective of the approach used for the open ocean away from
coasts and thus forms a baseline dynamical balance. Equation (27.60b) then says that at each
position along the bottom, from y = ynm to y = 0, the horizontal pressure at the sea surface
balances the depth integrated horizontal density gradient

(∂yp)z=η = −g
ˆ η

ηb

∂yρdz. (27.77)

Integrating to find the steric setup along a coast

To derive an approximation for the sea level at the coast relative to the interior, assume the
surface density is a constant (ρ(η) ≈ ρo), and the atmospheric pressure is constant (∇pa = 0),
which, with equation (27.60a), then renders

∂yη = − 1

ρo

ˆ η

ηb

∂yρ dz. (27.78)

This equation says that if density increases away from the coast, then sea level rises toward the
coast, which, as already noted, we refer to as a steric setup of coastal sea level.
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Figure 27.7: Density field in a region next to a coastal shelf and slope, illustrating the typical case with lighter
water next to the coast, such as from freshening and warming in the shallow coastal waters. Along-shore density
gradients (in the x̂-direction) are typically far weaker than across-shore gradients (in the ŷ-direction), and they
are here ignored. If there are no geostrophic currents at the bottom, so that (∇hp)z=ηb = 0 (indicated by the short
horizontal dotted lines next to the bottom), then there is an exact compensation of external and internal pressure
gradients as given in Section 27.4.3 and as illustrated by Figure 27.6. This pressure compensation is arrived at
by sea level rising next to the coast. The arrows along the bottom and the vertical line at y = ynm refer to the
integration sense for the steric calculations of η(y = 0) (equation (27.83)) and η(y = ynm) (equation (27.82)).
Although many continental slope regions have nonzero flow at the bottom, the calculation of coastal steric setup
assuming (∇hp)z=ηb = 0 offers a useful starting point for interpreting coastal sea level patterns.

With one further approximation, equation (27.78) can be integrated to provide an explicit
expression for the steric sea level at the coast, relative to sea level away from the coast. For that
purpose, set the upper limit on the right hand side integral to 0, thus yielding

∂yη = − 1

ρo

ˆ 0

ηb

∂yρ dz. (27.79)

Now integrate this equation from the coast at y = 0 to the off-shore position at y = ynm, so that

η(0)− η(ynm) =
1

ρo

ˆ ynm

0

[ˆ 0

ηb(y)
∂yρ(y, z) dz

]
dy. (27.80)

Pulling the ∂y derivative across the vertical integral, and using Leibniz’s rule (Section 20.2.4),
leads to

η(0)− η(ynm) =
1

ρo

ˆ ynm

0

[
∂

∂y

ˆ 0

ηb(y)
ρ(y, z) dz + ρ(y, z = ηb) ∂yηb

]
dy. (27.81)

Since ηb(y = 0) = 0 (sea level vanishes at the shoreline), the first integral on the right hand side
is given by

1

ρo

ˆ ynm

0

[
∂

∂y

ˆ 0

ηb(y)
ρ(y, z) dz

]
dy =

1

ρo

ˆ 0

ηb(ynm)
ρ(ynm, z) dz, (27.82)

which is an integral that extends from the bottom at η(y = ynm) up to z = 0, as depicted in
Figure 27.7.

The second integral in equation (27.81) is given by

1

ρo

ˆ ynm

0
ρ[y, z = ηb(y)] ∂yηb dy = − 1

ρo

ˆ ηb(ynm)

0
ρb dηb, (27.83)
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where we set
dηb = −(∂yηb) dy, (27.84)

which follows since ηb is a monotonic function of y, and with the minus sign accounting for
∂yηb < 0 as assumed for Figure 27.7. The left hand integral in equation (27.83) is a y-integral of
the bottom density times the topographic slope, integrated from the coastal position at y = 0 to
the off-shore position at y = ynm. The right hand side is the bottom density, ρb = ρ[y, z = ηb(y)],
integrated along the bottom from ηb(0) = 0 to ηb(y = ynm), as depicted by the arrows along the
bottom in Figure 27.7.6

Bringing terms together allows us to write equation (27.81) as

η(0)− η(ynm) = −
1

ρo

ˆ 0

ηb(ynm)
ρb dηb +

1

ρo

ˆ 0

ηb(ynm)
ρ(ynm, z) dz. (27.85)

As noted earlier, if the density is lighter near to the coast then η(0)− η(ynm) > 0. The various
assumptions needed to derive equation (27.85) render this expression an approximation for more
realistic sea levels near coasts. Even so, it offers a relatively simple expression that only requires
density information, and as such it is a useful starting point for interpreting sea level patterns
next to coasts and on continental shelves. In particular, the direct contributions to sea level
from winds are missing from this calculation, so that deviations from steric setup typically signal
contributions from winds.

27.5 Homogeneous fluid in a rotating tank
As an application of the ideas developed in this chapter and in earlier chapters, we develop
the equations for a homogeneous fluid in a rotating tank such as occurs in laboratory studies
of rotating fluids. One point of departure from planetary applications concerns the choice of
vertical coordinate. Recall we introduced geopotential surfaces in Section 13.10.4, on which
the effective gravitational force (sum of central gravity plus planetary centrifugal) is constant.
Correspondingly, we introduced geopotential coordinates in Section 13.11.3 to simplify the
equations for planetary fluid dynamics. In contrast, for the rotating tank we do not make use of
geopotential coordinates. Instead, we expose the centrifugal acceleration (due to rotation of the
tank), which allows for a clear display of the parabolic shape for the free surface when the fluid
is in rigid-body motion.

27.5.1 What about the planet’s rotation?

Do we need to worry about the planet’s rotation? To answer this question, consider a typical
record player with an angular speed of 45 revolutions per minute

Ωrecord = 0.75 s−1. (27.86)

This angular speed is roughly 104 times faster than the earth’s angular speed of 7.29× 10−5 s−1

(equation (13.1)). For a tank rotating at a rate on the same order as a record player, we are
justified ignoring the rotating earth in comparison to the rotating tank. That is, we can safely
ignore planetary Coriolis and planetary centrifugal accelerations, allowing us to instead focus on
the non-inertial accelerations arising just from the tank rotating on a laboratory turntable.

6Note that Csanady (1979) and Bingham and Hughes (2012) refer to the integral (27.83) as a line integral
computed along the bottom. However, it is not the sort of line integral considered in Section 2.4. The reason is
that the integrand, ρb, is weighted by the bottom increment, dηb = −(∂yηb) dy, rather than the arc-length along
the bottom, ds = dy

√
1 + (∂yηb)2.
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27.5.2 Formulating the equations of motion

In an inertial reference frame, a fluid element feels the gravitational force, pressure force, and
friction, thus leading to the Cartesian coordinate equations of motion

DuI

Dt
= −1

ρ

∂p

∂x
+ F x (27.87)

DvI
Dt

= −1

ρ

∂p

∂y
+ F y (27.88)

DwI

Dt
= −1

ρ

∂p

∂z
− g + F z, (27.89)

where vI is the inertial velocity, ρ is the constant density, and we orient the coordinates so that
the z-axis extends vertically upward from the center of the tank and parallel to the gravity
acceleration. Correspondingly, the rotation vector for the tank is

Ω = Ω ẑ = (f/2) ẑ. (27.90)

To derive the rotating frame equations, return to some of the kinematics from Chapter 13,
in which we write the position of a fluid particle as

X(t) = X x̂+ Y ŷ + Z ẑ. (27.91)

We assume that the Cartesian unit vectors are fixed in the rotating frame and thus move as a
rigid-body with the rotating tank. The inertial velocity is thus given by

dX

dt
=

[
dX

dt

]
x̂+

[
dY

dt

]
ŷ +

[
dZ

dt

]
ẑ +Ω×X. (27.92)

Correspondingly, the acceleration is given by

d2X

dt2
=

[
d2X

dt2

]
x̂+

[
d2Y

dt2

]
ŷ +

[
d2Z

dt2

]
ẑ + 2Ω× v +Ω× (Ω×X), (27.93)

where we defined the rotating frame Cartesian velocity as

v =

[
dX

dt

]
x̂+

[
dY

dt

]
ŷ +

[
dZ

dt

]
ẑ. (27.94)

Setting the inertial acceleration equal to the inertial force per mass leads to the equations of
motion in the rotating frame

Du

Dt
− 2Ω v = −1

ρ

∂p

∂x
+Ω2 x+ F x (27.95)

Dv

Dt
+ 2Ωu = −1

ρ

∂p

∂y
+Ω2 y + F y (27.96)

Dw

Dt
= −1

ρ

∂p

∂z
− g + F z, (27.97)

which take on the vector form

Dv

Dt
+ f ẑ × v = −∇

[
p/ρ+ g z − Ω2 (x2 + y2)/2

]
+ F . (27.98)

As expected, we encounter both a Coriolis and centrifugal acceleration due to the rotation of
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the tank.

27.5.3 Rigid-body rotation and parabolic free surface shape

Consider a fluid at rest in a non-rotating tank, and then start the tank rotating. As in our
discussion of Couette flow in Section 25.8.2, viscous effects transfer motion from the outside
tank wall (where a no-slip boundary condition makes the fluid move with the wall) into the
interior of the fluid. Given sufficient time and a constant rotation rate, the fluid reaches a steady
state in rigid-body motion. Recall that rigid-body motion means that the velocity vanishes in
the rotating reference frame.

As an application of the above equations of motion, we here determine the shape of the
upper free surface for this steady rigid-body motion, offering two related derivations. Note that
when the fluid reaches rigid-body motion, all strains vanish within the fluid so that frictional
stresses vanish (see Section 25.8). Hence, the steady force balance is fully inviscid although
the steady state required viscosity to reach it. The ability to ignore friction in the steady state
greatly simplifies the analysis.

Component equations of motion

The velocity and acceleration in the rotating frame are zero when the fluid is in rigid-body
rotation. The vertical momentum equation (27.97) thus reduces to the approximate hydrostatic
balance

∂p

∂z
= −ρ g. (27.99)

In general we do not have hydrostatic balance for motion in a tank that deviates from rigid-body.
However, when that motion is close to a rigid-body rotation, then the fluid is in an approximate
hydrostatic balance. As seen in Section 27.2, this situation corresponds to the large-scale ocean
and atmosphere.

Hydrostatic balance with a constant density means that the pressure is a linear function of
depth

p(x, y, z) = ρ g (η − z), (27.100)

where z = η(x, y) is the vertical position of the free surface. The horizontal momentum equations
(27.95)-(27.96) reduce to a balance between the pressure gradient and centrifugal accelerations

∂p

∂x
= ρ xΩ2 and

∂p

∂y
= ρ yΩ2. (27.101)

Pressure thus increases when moving radially away from the center. Substituting in the pressure
as given by the hydrostatic relation (27.100) leads to relations satisfied by the rigid-body free
surface

g
∂η

∂x
= xΩ2 and g

∂η

∂y
= yΩ2. (27.102)

Integration leads to the quadratic expression for the free surface

η = η(0) +
Ω2 (x2 + y2)

2 g
, (27.103)

where η(0) is the free surface at the center of the tank where x = y = 0. The rigid-body rotating
fluid thus has a quadratic free surface with the height of the surface increasing away from the
center, as depicted in Figure 27.8. Notice how the fluid density dropped out from the problem,
so that this parabolic shape holds for any homogeneous fluid in rigid-body motion.
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Figure 27.8: Rotating tank of homogeneous fluid that has reached a steady state with a parabolic free surface.

Vector force balance

A more telescopic means to determine the free surface shape is to set the forces to zero on the
right hand side of the vector equation of motion (27.98) so that

p/ρ+ g z − Ω2 (x2 + y2)/2 = p0/ρ, (27.104)

where p0 is a constant pressure to be specified below. Furthermore, we set friction to zero since
the fluid is in rigid-body motion. Everywhere along the free surface, with z = η, the pressure
equals to that applied to the free surface by the overlying media, p = pa (e.g., atmospheric
pressure). Hence, setting z = η in equation (27.104) and solving for η yields

η =
p0 − pa
ρ g

+
Ω2 (x2 + y2)

2 g
. (27.105)

For simplicity, assume the applied pressure is spatially constant. Hence, setting p0 according to
the free surface at x = y = 0 brings the free surface to the parabolic form in equation (27.103)

p0 − pa
ρ g

= η(0) =⇒ η = η(0) +
Ω2 (x2 + y2)

2 g
. (27.106)

27.5.4 Further study

We study the angular momentum for the shallow water version of this system in Section 36.8.
See section 6.6.4 of Marshall and Plumb (2008) for more discussion of laboratory rotating tank
experiments.

27.6 Exercises

exercise 27.1: Primitive equations and axial angular momentum
The axial angular momentum of a fluid element satisfying the primitive equations is given by

Lz = (ρ δV )R⊥ (u+R⊥Ω) ≡ (ρ δV ) lz (27.107)

where
R⊥ = Re cosϕ (27.108)
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is the distance from the polar rotation axis to a point on the sphere with radius Re, and

lz = R⊥ (u+R⊥Ω) (27.109)

is the angular momentum per unit mass. For this exercise, we develop some results for the axial
angular momentum in the primitive equations. For this purpose, it can be useful to recall the
discussion of axial angular momentum in Section 24.7, in which we did not assume primitive
equations.

(a) Consider a constant mass fluid element in the absence of friction. Show that the primitive
equation zonal momentum equation (27.7) implies that the material evolution of axial
angular momentum per mass is given by

Dlz

Dt
= −1

ρ

∂p

∂λ
. (27.110)

(b) Assume the zonal pressure gradient vanishes. Move the fluid element vertically while
maintaining a fixed latitude. What happens to the zonal momentum of this primitive
equation fluid element? Hint: be sure to remain within the “world” of the primitive
equations.

(c) Give a very brief symmetry argument for why the axial angular momentum is materially
conserved when ∂p/∂λ = 0. Hint: recall the discussion of Noether’s Theorem in Section
14.1.1.

(d) Consider the material evolution of primitive equation axial angular momentum per mass
in the case where the zonal momentum equation retains the unapproximated form of the
Coriolis acceleration. Discuss the resulting material evolution equation. Does this equation
make sense based on the symmetry argument given in the previous part of this exercise?

exercise 27.2: Mass balance for a hydrostatic ocean column
Equation (19.103) provides a kinematic expression for the column mass budget. Show that for a
hydrostatic fluid flow, the mass balance for a fluid column (equation (19.115)) takes the form

∂t(pb − pa) = −g∇ ·Uρ + g Qm, (27.111)

where

Uρ =

ˆ η

ηb

u ρdz (27.112)

is the depth integrated horizontal mass transport,

pb = pa + g

ˆ η

ηb

ρ dz (27.113)

is the hydrostatic pressure at the ocean bottom, and pa(x, y, t) is the pressure applied to the
ocean surface from the overlying atmosphere or sea ice.

exercise 27.3: Evolution of atmospheric bottom hydrostatic pressure
In deriving equation (27.30) we assumed the lower limit on the integral to be a horizontal
constant. However, when integrating over the full atmospheric column, the lower limit varies
horizontally given that the earth boundary is not flat. Return to equation (27.29b) and derive
the evolution equation for the bottom pressure

∂tpbot = −g∇h ·Uρ, (27.114)
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where
pbot(x, y, t) = p[x, y, z = ηb(x, y), t] (27.115)

is the atmospheric pressure at the solid earth at z = ηb(x, y),

Uρ =

ˆ ztop

ηb

u ρdz′ (27.116)

is the depth integrated horizontal mass transport, and ztop is the vertical position of the
atmospheric top that is assumed to be independent of horizontal position.
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Chapter 28

PRESSURE FORM STRESS

As introduced in our discussion of Cauchy’s stress principle in Section 25.2, pressure form stress is
the horizontal stress arising from pressure that acts on a sloped surface or interface. As a contact
force per area, Newton’s third law describes how form stress renders a transfer of pressure forces
across interfaces, with pressure form stress affecting a vertical transfer of horizontal pressure
forces. Hence, it provides an inviscid/reversible mechanism for the vertical transfer of horizontal
momentum, thus complementing the vertical transfer associated with viscosity in the presence
of tangential shear stresses (Section 25.8.2).

In this chapter we study pressure form stresses on a variety of interfaces encountered in
geophysical fluids. We then develop two case studies to expose the role of pressure form stress in
the force balances affecting motion of an ocean fluid column. The first case study is concerned
with the evolution of vertically integrated horizontal linear momentum per mass. The second
case study focuses on the axial angular momentum budget as a framework to study the dominant
force balances in ocean channel flow and ocean gyre flow.

chapter guide

In this chapter we build from the study of stresses in Chapter 25, with an understanding
of pressure form stress greatly enhancing our understanding of horizontal forces acting in
geophysical fluids. The focus on horizontal forces in this chapter complements our studies
in Chapter 30, whereby the net vertical acceleration from pressure and gravitational forces
is repackaged into the buoyancy force.
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28.4.5 Depth integrated momentum equation . . . . . . . . . . . . . . . 757
28.4.6 Zonally integrated zonal momentum balance . . . . . . . . . . . . 758
28.4.7 Balances when ∇ ·Uρ = 0 . . . . . . . . . . . . . . . . . . . . . . 759

28.5 Axial angular momentum budget for an ocean domain . . . . . . . . . . . 760
28.5.1 Anticipating the budget . . . . . . . . . . . . . . . . . . . . . . . 760
28.5.2 Axial angular momentum . . . . . . . . . . . . . . . . . . . . . . 761
28.5.3 Depth integrated budget . . . . . . . . . . . . . . . . . . . . . . . 761
28.5.4 Atmospheric and topographic form stresses . . . . . . . . . . . . 762
28.5.5 Turbulent stresses at the surface and bottom . . . . . . . . . . . 762
28.5.6 Summary budget for column integrated axial angular momentum 763
28.5.7 Steady domain integrated balance . . . . . . . . . . . . . . . . . 763
28.5.8 Form stress versus dual form stress . . . . . . . . . . . . . . . . . 764
28.5.9 Steady zonal and depth integrated budget . . . . . . . . . . . . . 765
28.5.10 Southern Ocean balances . . . . . . . . . . . . . . . . . . . . . . 765
28.5.11 Topographic form stress and ocean gyres . . . . . . . . . . . . . . 765
28.5.12 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766

28.1 Pressure form stresses at an interface
As depicted in Figure 28.1, there are three surfaces or interfaces across which we commonly
study form stresses in geophysical fluids.

• atmosphere-ocean form stress: A form stress occurs at the air-sea interface. From
the perspective of the ocean, the nonzero atmospheric pressure applied to the sea surface
(the sea level pressure) provides a pressure acting on the sloped upper ocean free surface,
thus rendering an atmospheric form stress acting on the ocean. Through Newton’s third
law (see Section 11.5.2), this form stress is met by the equal in magnitude but oppositely
directed ocean form stress acting on the atmosphere.

• interior fluid interfacial form stress: A form stress occurs on an internal interface
within the fluid, and we study such interfacial form stresses in Section 28.3. Although the
interface is arbitrary, it is dynamically very interesting to study form stresses acting on
buoyancy isosurfaces. The reason is that buoyancy interfaces are directly connected to the
geostrophic motion studied in Chapter 31. In particular, in Section 31.7 we study form
stresses associated with buoyancy interfaces found in geostrophic flows.

• fluid-topography form stress: A form stress exists at a solid/fluid boundary, at which
the ocean or atmosphere impart a pressure force on the solid earth. Through Newton’s
third law, the pressure force imparted by the fluid on the solid earth is met equally in
magnitude but oppositely in direction by a force provided by the solid earth onto the fluid.
The horizontal projection of this force per area acting from the earth on the fluid is the
topographic form stress and it is considered in Section 28.2.

28.1.1 Concerning the sign of a form stress
As a vector, pressure form stress has a direction and a magnitude, with three examples depicted
in Figure 28.1. Even so, keeping track of the direction can be confusing if it is unclear who is
the giver of the form stress and who is the receiver. To help in understanding the sign, imagine
pushing against a heavy rock or boulder: you exert a force on the rock in one direction whereas,
through Newton’s third law, the rock exerts an equal and opposite force on you. Clarity is
realized by specifying the origin of the force in order to determine its sign. For example, as
illustrated in Figure 28.2, is one concerned with the force applied by the ocean bottom pressure
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atmosphere

ocean

Figure 28.1: Illustrating the three interfaces of concern in geophysical fluid mechancs for the discussion of form
stresses. Continuity of pressure at the interface, through Newtons’ third law, means that the form stress on one
side of the interface is equal and opposite to that acting on the other side. Left panel: a curved atmosphere-ocean
interface leads to an atmospheric form stress acting on the ocean, F form

atm to ocn, and its equal and opposite oceanic
form stress acting on the atmosphere, F form

ocn to atm = −F form
atm to ocn. Middle panel: a curved interior ocean interface

(e.g., a buoyancy surface) leads to an interfacial form stress acting on the lower layer, F form
k→k+1, and its equal and

opposite interfacial form stress acting on the upper layer, F form
k+1→k = −F form

k→k+1. Right panel: a curved fluid-solid
earth interface leads to a fluid form stress acting on the solid earth, F form

fluid to earth, and its equal and opposite
oceanic form stress acting on the fluid, F form

earth to fluid = −F form
fluid to earth. The magnitude of the form stresses is a

function of the pressure acting at the interface as well as the slope of the interface (steeper slopes lead to larger
magnitude).

onto the earth (liquid ocean is giver and solid earth is receiver), or instead with the force from
the earth applied onto the ocean fluid (earth is giver and ocean is receiver)? These forces have
equal magnitude but opposite direction. Knowing the direction requires knowing the force giver
and/or the force receiver.
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Figure 28.2: Contact forces, such as pressure, satisfy Newton’s third law. Hence, the contact force at a point
imparted by region A onto region B, FA onto B, is equal and opposite to the force imparted by region B onto
region A so that FA onto B = −FB onto A. In the case where A=fluid (ocean or atmosphere) and B=solid earth, we
generally to refer to the horizontal portion of F earth onto fluid, per horizontal area, as the topographic form stress.

28.1.2 Mathematical expression for form stress

To expose the mathematics of form stress, consider a surface, S, such as that shown in Figure
28.3. To kinematically decompose the pressure force, assume the surface has no vertical section,
with this assumption commonly satisfied by surfaces of interest for geophysical flows.

Assuming the surface has no vertical sections allows us to write the vertical position of a
point on the surface as1

z = η(x, y, t). (28.1)

1See the geometry discussion in Chapter 5 for more on the maths of such surfaces. Also see the discussion of
generalized vertical coordinates in Chapters 63 and 64.
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Figure 28.3: The pressure force acting on an arbitrary surface is given by F press = −p n̂dS, where dS is the
surface area element. We here depict the pressure acting on the top side of a surface, F press

top . Through Newton’s
third law, the pressure force vector acting on the top side of the interface is equal and opposite to the pressure
force acting on the bottom side: F press

top = −F press
b . The horizontal component of this force vector arises from

the slope; i.e., the geometric form of the surface. We thus refer to the horizontal pressure force per area as
the form stress, F form

top = −F form
b . The area element on the surface, dS, has a horizontal projection given by

dA = dxdy = cosϑdS, with the angle assumed to be within the range −π/2 < ϑ < π/2 so that the surface is
nowhere vertical.

The outward normal pointing away from the top side of the surface is given by

n̂top =
∇(z − η)
|∇(z − η)| =

ẑ −∇η√
1 + |∇η|2

. (28.2)

Multiplying the pressure times the horizontal area element on the surface, dS, leads to the net
pressure force acting at a point on the top side of the surface

F press = −p n̂top dS = −p (ẑ −∇η) dA = −p (−∂xη x̂− ∂yη ŷ + ẑ) dA. (28.3)

In this equation we used the identity2

dS = |∇(z − η)|dA =
√
1 + |∇η|2 dA, (28.4)

with
dA = dx dy (28.5)

the horizontal projection of the surface area element (see Figure 28.3). We identify the form
stress acting on the top side of this interface as

pressure form stress acting on top side of interface ≡ p∇η. (28.6)

The name follows since the stress is determined by the “form” of the surface as measured by its
slope, ∇η. We can thus write the pressure force acting on the top side of the surface as the sum
of a vertical pressure force plus a horizontal pressure form stress

F press
top = ẑ [ẑ · F press

top ] + F form
top = p (−ẑ +∇η) dA pressure force on top of interface. (28.7)

Newton’s third law, as manifested by Cauchy’s Stress principle (Section 25.2) says that there is
a local mechanical equilibrium of pressure contact forces within a fluid. Additionally, as seen in
our discussion of stress on an interface in Section 25.10, this local equilibrium holds for pressure
forces acting on interfaces separating two fluids, such as the atmosphere and ocean, as well as
a fluid and the solid earth. Thus, the contact pressure force acting on the bottom side of the
interface is equal in magnitude but oppositely directed to the contact force acting on the top

2The identity (28.4) follows from trigonometry summarized in Figure 28.3. See further details in the kinematic
boundary conditions of Section 19.6 and the analogous dia-surface transport in Section 64.3.
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side (see Section 25.8.2)

F press
bot = ẑ [ẑ ·F press

bot ]+F form
bot = p (+ẑ−∇η) dA pressure force on bottom of interface. (28.8)

28.1.3 Comments
We here offer three comments in regards to pressure form stress.

• not a mysterious notion: The form stress, particularly interfacial form stress, can
appear mysterious in some presentations. Part of the reason is that it sometimes appears
seemingly without prior motivation as part of mathematical manipulations of the momen-
tum equation. We illustrate these manipulations in Sections 28.2, 28.3, and 28.5, yet aim
to offer sufficient physical motivation to help guide the maths. Another reason for the
mystery is that the signs ascribed to form stress are often not clearly specified, with such
ambiguities motivating the somewhat pedantic discussion in Section 28.1.1.

• unbalanced form stresses and motion: Consider a container filled with water at
rest. The horizontal pressure forces acting on the container sides are pressure form stresses
between the water and the container. As discussed in Section 25.5, without motion
we know that the form stresses balance over the whole of the fluid-container boundary,
whereas horizontal motion occurs if the form stresses are out of balance. Quite generally,
when concerned with fluid motion, we are interested in processes that lead to unbalanced
form stresses. For example, when studying bottom topographic form stresses in the
ocean, the bulk of the form stress acts to support the ocean water within the ocean
basin. The dynamically active portion of the topographic form stress, associated with
the fluid motion, is a small residual of the total form stress. Careful analysis is required
to diagnose dynamically relevant patterns, with Molemaker et al. (2015) and Gula et al.
(2015) presenting one method, and we explore their method as part of Exercise 40.14.

• dual form stress often confused with form stress: It is notable that much of
the literature refers to −η∇p as a form stress. However, as emphasized in Section 28.4.4,
−η∇p is not a form stress but is a dual form stress. Even though both have dimensions of
a pressure, the dual form stress is not a pressure force in the sense that it does not act to
accelerate a fluid element.

The confusion between form stress and dual form stress perhaps originates from the
common application of zonal averages. In this case we may wish to study the dynamics
of the zonally averaged flow, particularly domains that are zonally periodic, in which we
have the identity ˛

p ∂xη dx = −
ˆ
η ∂xp dx. (28.9)

Hence, the zonally integrated form stress (left hand side) equals to the zonally integrated
dual form stress (right hand side). However, care must be exercised in applying this identity
in non-zonally periodic domains (we further pursue this point in Section 28.4). Even
more fundamentally, p∇η ≠ −η∇p. Consequently, it is generally necessary to distinguish
the pressure form stress, which is a horizontal force per area that acts to accelerate fluid
elements through Newton’s law of motion, from the dual form stress, which does not
appear in the equation of motion.

28.2 Form stresses on solid-fluid boundaries
In this section we focus on form stress arising from the shape of the solid earth interface with the
atmosphere and ocean; i.e., the fluid-topographic form stress. As we are normally interested in the
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form stress applied to the fluid, we focus on the topographic form stress. We also encounter the
form stress associated with undulations in the ocean free surface and the atmospheric pressure
at that interface, with the atmospheric form stress the stress imparted to the ocean from the
atmosphere.

28.2.1 Zonally symmetric ridge

In Figure 28.4 we depict an idealized ridge with an example oceanic pressure field to illustrate the
nature of topographic form stress acting on the ocean. Rather than assuming exact hydrostatic
equilibrium as in Figure 25.5, with zero horizontal pressure gradients, we here consider pressure
to be higher to the west of the ridge than to the east. Since the ridge is assumed to be symmetric
in the zonal direction, we conclude that the topographic form stress, which acts just at the
fluid-solid interface, is higher on the west side of the ridge than on the east. In turn, the net
topographic form stress acting on the fluid is to the west, whereas the net oceanic form stress
acting on the solid earth is to the east. We encounter this situation in Section 28.5.10 when
studying the force balances for steady circulation in a zonally periodic channel.

plow
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x = − L/2 x = L/2

Figure 28.4: Depicting contact forces acting at a fluid-solid interface. The topographic form stress acts on
the fluid and the equal in magnitude but oppositely directed fluid form stress acts on the solid earth. In this
illustration the topography is assumed to be a ridge in the shape of an equilateral triangle. We also assume there
is higher pressure to the west of the ridge than to the east as per the zonal balance discussed in Figure 28.8 for
a Southern Ocean ridge. Hence, the topographic form stress has a larger magnitude on the western side of the
ridge than on the eastern side. When integrated over the full ridge, there will be a net westward topographic
form stress acting on the fluid and a net eastward fluid form stress acting on the solid earth. If the ridge was
free to move, it would move to the east. The thin gray column extends from the solid earth bottom to the ocean
free surface. As this column sits on the western side of the ridge, topographic form stress provides a westward
acceleration at the column bottom. The net acceleration of the column is determined by integrating the contact
forces around the column boundary and body forces throughout the column interior. We study the axial angular
momentum budget for a fluid column in Section 28.5, with form stresses appearing in that budget.
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28.2.2 Form stress transfer between the fluid and its boundaries
We now illustrate how topographic form stress appears mathematically in the study of momentum
balances acting on a fluid. For definiteness, consider a column of ocean fluid extending from
the bottom at z = ηb(x, y) to the free surface at z = η(x, y, t), and focus on the zonal force
balance such as depicted in Figure 28.4. In computing the acceleration acting on this column
at a particular horizontal position, we need to determine the depth integrated zonal pressure
gradient

depth integrated zonal pressure gradient = −
ˆ η

ηb

∂p

∂x
dz. (28.10)

We expose the contact force version of the pressure force by making use of Leibniz’s Rule (Section
19.7) to write

−
ˆ η

ηb

∂p

∂x
dz = − ∂

∂x

ˆ η

ηb

p dz︸ ︷︷ ︸
zonal deriv depth integrated pressure

+
∂η

∂x
pa︸ ︷︷ ︸

atmospheric form stress

− ∂ηb
∂x

pb,︸ ︷︷ ︸
topographic form stress

(28.11)

where pa is the pressure applied to the ocean at its surface, z = η, and pb is the pressure at the
ocean bottom, z = ηb. The decomposition identifies the following three pressure contributions to
the pressure force acting on the fluid column.

• zonal derivative of the column integrated pressure: The first term in equation
(28.11) arises from the zonal derivative of pressure across the vertical sides of the column

zonal derivative of layer integrated pressure = − ∂

∂x

ˆ η

ηb

p dz. (28.12)

This term leads to a net eastward acceleration if the depth integrated pressure is higher to
the west than the east.

• atmospheric form stress at the free surface: In the presence of a sloping free
surface interface, equation (28.11) reveals that ∂η/∂x ̸= 0, the atmospheric pressure, pa,
imparts an atmospheric form stress onto the ocean

zonal atmospheric form stress acting on ocean =
∂η

∂x
pa. (28.13)

For example, if the free surface slopes up to the east, ∂η/∂x > 0, then the atmosphere
provides a positive (eastward) zonal form stress onto the ocean. In turn, through Newton’s
third law, the ocean provides a westward zonal form stress to the atmosphere.

• topographic form stress on ocean: Equation (28.11) also reveals that the bottom
pressure, pb, present at z = ηb imparts a form stress to the solid earth

zonal oceanic form stress acting on solid earth =
∂ηb
∂x

pb. (28.14)

In turn, through Newton’s third law, the topographic form stress acting on the ocean is
equal in magnitude but oppositely directed

zonal topographic form stress acting on ocean = −∂ηb
∂x

pb. (28.15)

For example, if the bottom rises to the east, so that ∂ηb/∂x > 0, then the oceanic form
stress acting on the solid earth is eastward whereas the topographic form stress acting
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on the ocean is westward. As a check, we verify that the signs of these form stresses are
consistent with those in Figure 28.4.

28.2.3 Decomposing topographic form stress
We follow the approach used in Section 27.3.2 to decompose here the contributions to the bottom
pressure. Assuming the fluid maintains an approximate hydrostatic balance, and focusing on
the oceanic case, allows us to decompose the bottom pressure according to

pb = pa + g

ˆ η

ηb

ρdz (28.16a)

= g ρo [η + pa/(g ρo)]︸ ︷︷ ︸
external

−g ρo ηb︸ ︷︷ ︸
topog

+ g

ˆ η

ηb

(ρ− ρo) dz︸ ︷︷ ︸
internal

(28.16b)

≡ pext + ptopog + pint. (28.16c)

We refer to the contribution from applied surface pressure plus surface height undulations as
external, whereas those arising from density deviations relative to a constant reference density
are termed internal. There is a further contribution from bottom topography itself.

Multiplying the decomposed pressure (28.16c) by the slope of the bottom topography renders
an expression for the various contributions to topographic form stress

−pb∇ηb = −pext∇ηb − ptopog∇ηb − pint∇ηb. (28.17)

The topographic term is static whereas the other two terms are time dependent. External
contributions arise from undulations in the free surface as well as the applied pressure. This
contribution fluctuates due to motions occuring on the relatively rapid time scales associated
with external gravity waves or atmospheric pressure fluctuations such as through synoptic
weather patterns. Internal contributions arise from the relatively slow internal movements of
density surfaces, such as from internal gravity waves or even slower motions due to advection and
diffusion. The study from McCabe et al. (2006) pursues this decomposition of the topographic
form stress as part of their analysis of flow around a headland.

28.3 Interfacial form stress
In this section we focus on the form stress acting at an interface within the fluid itself, which is
known as the interfacial form stress. As part of this discussion we expose some of the common
manipulations found when considering finite volume integrated momentum budgets, whereby we
decompose the horizontal pressure gradient acceleration acting on an infinitesimal column of
fluid within the layer, as depicted in Figure 28.5. These manipulations are analogous to those
considered in Section 28.2 for the topographic and atmospheric form stresses.

28.3.1 Interfacial form stresses transferred between layers
When studying the momentum of a column of fluid within a chosen layer, we need to compute
the depth integrated zonal pressure gradient over a layer at a particular horizontal point

layer integrated zonal pressure gradient = −
ˆ ηk−1/2

ηk+1/2

∂p

∂x
dz, (28.18)

where z = ηk−1/2(x, y, t) is the vertical position for the interface at the top of the fluid layer
and z = ηk+1/2(x, y, t) is the vertical position for the bottom interface. If the layer integrated

page 750 of 2158 geophysical fluid mechanics



28.3. INTERFACIAL FORM STRESS

z
layer k-1

layer k+1

layer k F press
L

<latexit sha1_base64="X0a29SLXoShKzKeupU/SpeFb+jw=">AAACLXicbZDLSgMxGIUz9VbrbdSlm2AR3FhmpKDuioK4cFHBXqBTSyZN29AkMyQZcRjmKXwQ1271GVwI4lZ8C9N2FvZyIHD4/kv4jx8yqrTjfFq5peWV1bX8emFjc2t7x97dq6sgkpjUcMAC2fSRIowKUtNUM9IMJUHcZ6ThD69G9cYjkYoG4l7HIWlz1Be0RzHSBnXsk8TzObxOHxKP+8FT4mkqYmhWKJWmnSl4a4BddErOWHDeuJkpgkzVjv3rdQMccSI0ZkipluuEup0gqSlmJC14kSIhwkPUJy1jBeJEtZPxWSk8MqQLe4E0T2g4pv8nEsSVirlvOjnSAzVbG8GFNZ8vwq1I987bCRVhpInAk/97EYM6gKPoYJdKgjWLjUFYUnMCxAMkEdYm4ILJxp1NYt7UT0tuuXRxVy5WLrOU8uAAHIJj4IIzUAE3oApqAINn8ArewLv1Yn1YX9b3pDVnZTP7YErWzx/hVanu</latexit>

F press
R

<latexit sha1_base64="tgGUJXivHk2AuU+w/YM4thRYbzU=">AAACLXicbZDLSgMxGIUz9VbrbdSlm2AR3FhmpKDuioK4rGIv0Kklk6ZtaJIZkow4DPMUPohrt/oMLgRxK76FaTsLezkQOHz/JfzHDxlV2nE+rdzS8srqWn69sLG5tb1j7+7VVRBJTGo4YIFs+kgRRgWpaaoZaYaSIO4z0vCHV6N645FIRQNxr+OQtDnqC9qjGGmDOvZJ4vkcXqcPicf94CnxNBUxNCuUStPOFLwzwC46JWcsOG/czBRBpmrH/vW6AY44ERozpFTLdULdTpDUFDOSFrxIkRDhIeqTlrECcaLayfisFB4Z0oW9QJonNBzT/xMJ4krF3DedHOmBmq2N4MKazxfhVqR75+2EijDSRODJ/72IQR3AUXSwSyXBmsXGICypOQHiAZIIaxNwwWTjziYxb+qnJbdcurgtFyuXWUp5cAAOwTFwwRmogBtQBTWAwTN4BW/g3XqxPqwv63vSmrOymX0wJevnD+sDqfQ=</latexit>

<latexit sha1_base64="k6RouY9dAsffdoUg9Mov6X5zVsc=">AAACHnicbVDLSsNAFJ3UV62vqktBgkWoUGtSRN0IRTcuK9gHNKFMptN26EwSZm7EGrrzQ1y71W9wJ271E/wLJ20X2vbAhcM593LvPV7ImQLL+jZSC4tLyyvp1cza+sbmVnZ7p6aCSBJaJQEPZMPDinLm0yow4LQRSoqFx2nd618nfv2eSsUC/w4GIXUF7vqswwgGLbWy+4+XDgXcih2BoSdF3B8e2yelYf6hMCjAUSubs4rWCOYssSckhyaotLI/TjsgkaA+EI6VatpWCG6MJTDC6TDjRIqGmPRxlzY19bGgyo1HfwzNQ620zU4gdflgjtS/EzEWSg2EpzuTa9W0l4hzPU/Mk5sRdC7cmPlhBNQn4/2diJsQmElWZptJSoAPNMFEMv2CSXpYYgI60YzOxp5OYpbUSkX7rGjdnubKV5OU0mgPHaA8stE5KqMbVEFVRNATekGv6M14Nt6ND+Nz3JoyJjO76B+Mr1+sraHH</latexit>

z = ⌘k�1/2(x, y, t)

<latexit sha1_base64="fCtoViRnnFIWhuaPCEumCtKXjVE=">AAACHnicbVDLSsNAFJ3UV62vqktBgkWoWGpSRN0IRTcuK9gHNKFMptN26EwSZm7EGrrzQ1y71W9wJ271E/wLJ20X2vbAhcM593LvPV7ImQLL+jZSC4tLyyvp1cza+sbmVnZ7p6aCSBJaJQEPZMPDinLm0yow4LQRSoqFx2nd618nfv2eSsUC/w4GIXUF7vqswwgGLbWy+4+XDgXcih2BoSdF3B8e2yelYf6hMCjAUSubs4rWCOYssSckhyaotLI/TjsgkaA+EI6VatpWCG6MJTDC6TDjRIqGmPRxlzY19bGgyo1HfwzNQ620zU4gdflgjtS/EzEWSg2EpzuTa9W0l4hzPU/Mk5sRdC7cmPlhBNQn4/2diJsQmElWZptJSoAPNMFEMv2CSXpYYgI60YzOxp5OYpbUSkX7rGjdnubKV5OU0mgPHaA8stE5KqMbVEFVRNATekGv6M14Nt6ND+Nz3JoyJjO76B+Mr1+pYaHF</latexit>

z = ⌘k+1/2(x, y, t)

<latexit sha1_base64="cPk5BwqE10D/L4WThem3CDdap1s=">AAACLHicbVDLSgMxFM3UV62vUZdugkVwoXWmiLosCuKygn1Ap5ZMmrahSWZIMuIwzE/4Ia7d6je4EXEr+Bem7Sy07YELJ+fcm8s9fsio0o7zYeUWFpeWV/KrhbX1jc0te3unroJIYlLDAQtk00eKMCpITVPNSDOUBHGfkYY/vBr5jQciFQ3EnY5D0uaoL2iPYqSN1LGPEs/n8DrtJB73g8cEDtNj96Sc3mdvT1MRQ/OlUmnasYtOyRkDzhI3I0WQodqxf7xugCNOhMYMKdVynVC3EyQ1xYykBS9SJER4iPqkZahAnKh2Mr4qhQdG6cJeIE0JDcfq34kEcaVi7ptOjvRATXsjca7n83lyK9K9i3ZCRRhpIvBkfy9iUAdwlBzsUkmwZrEhCEtqToB4gCTC2uRbMNm400nMknq55J6VnNvTYuUySykP9sA+OAQuOAcVcAOqoAYweAIv4BW8Wc/Wu/VpfU1ac1Y2swv+wfr+BYm6qJs=</latexit>

F press

k�1/2

<latexit sha1_base64="2ZApWQ9OmIU2BE2e/bj01NS3bNE=">AAACLHicbVDLSgMxFM3UV62vUZdugkUQlDpTRF0WBXFZwT6gU0smTdvQJDMkGXEY5if8ENdu9RvciLgV/AvTdhba9sCFk3PuzeUeP2RUacf5sHILi0vLK/nVwtr6xuaWvb1TV0EkManhgAWy6SNFGBWkpqlmpBlKgrjPSMMfXo38xgORigbiTschaXPUF7RHMdJG6tjHiedzeJ12Eo/7wWMCh+mRe1JO77O3p6mIoflSqTTt2EWn5IwBZ4mbkSLIUO3YP143wBEnQmOGlGq5TqjbCZKaYkbSghcpEiI8RH3SMlQgTlQ7GV+VwgOjdGEvkKaEhmP170SCuFIx900nR3qgpr2RONfz+Ty5FeneRTuhIow0EXiyvxcxqAM4Sg52qSRYs9gQhCU1J0A8QBJhbfItmGzc6SRmSb1ccs9Kzu1psXKZpZQHe2AfHAIXnIMKuAFVUAMYPIEX8ArerGfr3fq0viatOSub2QX/YH3/AoZSqJk=</latexit>

F press

k+1/2

Figure 28.5: A schematic of the contact pressure force per area acting on the boundaries of a vertical column
region within a fluid layer. The horizontal cross-sectional area of the column is depth independent. The interface
at the lower boundary is at the vertical position z = ηk+1/2(x, y, t), and the upper interface is at z = ηk−1/2(x, y, t).
In accordance with Newton’s third law, pressures are continuous across each of the ηk±1/2 layer interfaces so that
the pressure forces are equal in magnitude yet oppositely directed on the opposite sides to the interfaces. The
boundaries of the dark gray columnar region feel a contact pressure force acting inward, as per the compressive
nature of pressure. The left side of the column experiences a pressure, pL; the right side experiences, pR; the
upper interface has a pressure, pk−1/2, acting between the layer k − 1 and layer k, and the lower interface has a
pressure, pk+1/2, acting between the layer k + 1 and layer k. The interfacial form stress (IFS) is the name given to
the horizontal pressure stress acting on the upper and lower layer interfaces. Through Newton’s third law, the
IFS imparted to layer k at the z = ηk−1/2 interface is equal and opposite to the IFS imparted to layer k − 1 at this
same interface. The same holds for the IFS at the k + 1/2 interface. It is common to define the layers according to
buoyancy (see Section 31.7) given its direct connection to pressure and dynamics. Even so, the ideas of pressure
contact forces are generic and thus hold for arbitrarily defined layers. This figure is adapted from Figure A1 in
Loose et al. (2023).

pressure gradient is downgradient to the east, then pressure accelerates the column to the east,
and conversely when the layer integrated pressure gradient is downgradient to the west.

Although the depth integrated pressure gradient expression (28.18) is straightforward to
understand, we also find it useful to consider the complementary perspective by studying the
contact force version of the pressure acceleration. Proceeding as in Section 28.2 for topographic
and atmospheric form stresses, we make use of Leibniz’s Rule for a fluid layer

−
ˆ ηk−1/2

ηk+1/2

∂p

∂x
dz = − ∂

∂x

ˆ ηk−1/2

ηk+1/2

p dz︸ ︷︷ ︸
zonal deriv layer integrated pressure

+
∂ηk−1/2

∂x
pk−1/2︸ ︷︷ ︸

IFS at k-1/2 interface

−
∂ηk+1/2

∂x
pk+1/2,︸ ︷︷ ︸

IFS at k+1/2 interface

(28.19)

where we introduced the pressures acting at a point on the interfaces

pk−1/2 = p(x, y, z = ηk−1/2, t) and pk+1/2 = p(x, y, z = ηk+1/2, t). (28.20)

The decomposition identifies the following three pressure contributions, analogous to the decom-
position in Section 28.2 for the topographic and atmospheric form stresses.

• zonal derivative of the column integrated pressure: The first term arises from
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the zonal derivative of pressure across the vertical sides of the column within the layer

zonal derivative of layer integrated pressure = − ∂

∂x

ˆ ηk−1/2

ηk+1/2

p dz. (28.21)

• interfacial form stress at upper interface: The pressure at the z = ηk−1/2 interface
is given by pk−1/2. In the presence of a sloping interface, ∂ηk−1/2/∂x ̸= 0, this pressure
imparts the following interfacial form stress (IFS) to layer-k:

IFS on layer-k from the ηk−1/2 interface =
∂ηk−1/2

∂x
pk−1/2. (28.22)

For example, if the upper layer interface slopes up to the east, ∂ηk−1/2/∂x > 0, then
the interfacial form stress provides a positive (eastward) zonal force to layer-k. In turn,
through Newton’s third law, the layer above, labelled k− 1, feels an interfacial form stress
directed to the west.

• interfacial form stress at lower interface: The pressure, pk+1/2, present at the
z = ηk+1/2 interface imparts an interfacial form stress to layer-k given by

IFS on layer-k from ηk+1/2 interface = −
∂ηk+1/2

∂x
pk+1/2. (28.23)

For example, if the layer slopes down to the east, ∂ηk+1/2/∂x < 0, then the interfacial form
stress accelerates layer-k to the east. In turn, through Newton’s third law, the interfacial
form stress acts to accelerate the layer below, labelled k + 1, to the west.

Now apply the above to a column of ocean fluid, and extend the integration to include the
full ocean column from the free upper surface to the rigid solid earth bottom. Evidently, all
the intermediate interfacial form stresses vanish in the depth integral, with this cancellation a
result of Newton’s third law. Hence, accumulation of the interfacial form stresses throughout
the ocean column leaves only the interfacial form stress at the top (z = η) and at the bottom
(z = ηb). The corresponding boundary form stresses arise from mechanical interactions with
the atmosphere (z = η) and solid earth (z = ηb), as discussed in Section 28.2. This result was
already encountered in a more general context of contact forces in Section 25.2. It will also be
found in our analysis of the depth integrated axial angular momentum budget in Section 28.5.

28.3.2 Zonally integrated interfacial form stress

Besides studying the force acting on a column at a particular horizontal position, it is interesting
to study the net zonal force acting on the layer. For pressure, we thus need to consider the zonal
integral of the layer integrated zonal pressure gradient

−
ˆ [ˆ ηk−1/2

ηk+1/2

∂p

∂x
dz

]
dx =

ˆ [
− ∂

∂x

ˆ ηk−1/2

ηk+1/2

p dz +
∂ηk−1/2

∂x
pk−1/2 −

∂ηk+1/2

∂x
pk+1/2

]
dx.

(28.24)
If the domain is zonally periodic or is bounded by sloping shorelines (see Figure 28.6 discussed
in Section 28.4.6), then the first term vanishes so that the zonally integrated pressure acting on
the layer arises just from the interfacial form stresses

−
ˆ [ˆ ηk−1/2

ηk+1/2

∂p

∂x
dz

]
dx =

ˆ [
∂ηk−1/2

∂x
pk−1/2 −

∂ηk+1/2

∂x
pk+1/2

]
dx. (28.25)
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This zonal integral is only affected by zonal anomalies for the layer vertical positions and
pressures

−
ˆ [ˆ ηk−1/2

ηk+1/2

∂p

∂x
dz

]
dx =

ˆ [∂η′
k−1/2

∂x
p′
k−1/2 −

∂η′
k+1/2

∂x
p′
k+1/2

]
dx (28.26a)

=

ˆ [
−η′

k−1/2

∂p′
k−1/2

∂x
+ η′

k+1/2

∂p′
k+1/2

∂x

]
dx, (28.26b)

where primes denote deviations from the zonal mean. In Section 28.5.9 we offer details to prove
that it is only the zonal anomalies that contribute to the zontal integral in a zonally periodic
channel, or for domains with sloping shorelines. Furthermore, note that for the second equality
we introduced the alternative expressions for the form stresses afforded by zonal periodicity
or zonal sloped shorelines. We offer cautionary remarks on this replacement in Section 28.5.8
regarding this second equality.

28.3.3 Comments
Interfacial form stress acts on any arbitrary surface drawn in a fluid. Interfaces defined by
buoyancy surfaces make the connection between the general concepts presented here to geostrophic
mechanics, and they do so given the connection between buoyancy slopes and thermal wind
(Section 31.4.3). Most studies of interfacial form stress are thus concerned with isopycnal
interfacial form stress, with a discussion given in Section 31.7.

28.4 Depth integrated momentum for the primitive equations
In this section we develop the evolution equation for the depth integrated horizontal momentum
per volume in a column of ocean fluid

Uρ =

ˆ η

ηb

ρudz, (28.27)

extending from the ocean bottom at z = ηb(x, y) to the ocean surface at z = η(x, y, t). As we
will see, the evolution equation clearly exposes how form stresses acting at the ocean surface
and ocean bottom contribute to the column force balance. A study of the depth integrated
momentum equation is commonly considered when the ocean fluid maintains an approximate
hydrostatic balance (see Sections 27.2 and 29.2), and the shallow fluid approximation (Section
27.1.2). These two approximations constitute the hydrostatitc primitive equations (Section 27.1),
which we assume holds in this section.

An important technical feature of the primitive equations is that the horizontal gradient
operator, ∇h, is depth independent, which is a property we use to develop the budget equations
in this section. In particular, we need this assumption for equation (28.30c) below. We also
made use of this property of ∇h in Section 27.1.6 to derive the depth integrated kinetic energy
budget for the primitive equations.

28.4.1 Flux-form horizontal momentum equation
Our starting point is the flux-form horizontal momentum equation (25.64) as specialized to a
simple geopotential, Φ = g z,

∂(ρu)

∂t
+∇ · [ρv ⊗ u] + f ẑ × (ρu) = −∇hp+ ρF . (28.28)
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In this equation, ρF is the horizontal friction vector, and the outer product provides components
to the kinetic stress (Section 25.6)

ρ [v ⊗ u]mi = ρ vm ui = −Tkinetic
mi , (28.29)

with m = 1, 2, 3 (for the full velocity vector, v) extending over the full range whereas i = 1, 2
(for the horizontal velocity vector, u) extending just over the horizontal range.

28.4.2 Leibniz’s rule for the inertial and Coriolis accelerations

Leibniz’s rule (Section 20.2.4) renders the following expressions for the depth integrated inertial
acceleration and Coriolis acceleration

ˆ η

ηb

∂(ρu)

∂t
dz = ∂tU

ρ − [ρu ∂tη]z=η (28.30a)

ˆ η

ηb

∂(w ρu)

∂z
dz = [w ρu]z=η − [w ρu]z=ηb (28.30b)

ˆ η

ηb

∇h · [ρu⊗ u] dz = ∇h ·
[ˆ η

ηb

ρu⊗ udz

]
− [u · ∇η (ρu)]z=η + [u · ∇ηb (ρu)]z=ηb (28.30c)

ˆ η

ηb

f ẑ × (ρu) dz = f ẑ ×Uρ. (28.30d)

Use of the surface and bottom kinematic boundary conditions from Section 19.6

∂tη + u · ∇η = w + ρ−1Qm for z = η (28.31a)

u · ∇ηb = w for z = ηb (28.31b)

leads to the depth integrated inertial and Coriolis accelerations

ˆ η

ηb

[∂t(ρu) +∇ · [v ⊗ (ρu)] + f ẑ × ρu] dz

= (∂t + f ẑ×)Uρ − u(η)Qm −∇h ·
ˆ η

ηb

Tkinetic
hor dz, (28.32)

where we introduced the horizontal kinetic stress tensor

Tkinetic
hor = −ρu⊗ u. (28.33)

28.4.3 External and internal decomposition of the kinetic stress

For some applications it can be useful to introduce the density weighted depth averaged horizontal
velocity

u =

´ η
ηb
ρu dz´ η

ηb
ρdz

=
Uρ

(pb − pa)/g
, (28.34)

where pb is the hydrostatic pressure at the ocean bottom, and pa is the pressure applied to the
ocean surface. The depth averaged velocity is referred to as the external velocity, whereas the
deviation from the depth average

u′ = u− u, (28.35)
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is referred to it as the internal velocity.3 It follows by definition that the internal velocity has a
zero density weighted vertical integral

ˆ η

ηb

ρu′ dz =

ˆ η

ηb

ρ (u− u) dz = 0. (28.36)

Consequently, by making use of u = u+ u′ we find the depth integrated kinetic stress

ˆ η

ηb

Tkinetic
hor dz = −g−1 (pb − pa) [u⊗ u+ u′ ⊗ u′]. (28.37)

Note that absence of cross-terms (i.e., no internal-external correlation terms) appearing in the
depth integrated stress (28.37). In this manner we have separated the contributions from kinetic
stresses due to depth averaged horizontal velocities from those arising from depth-dependent
horizontal velocities.

28.4.4 Decomposing the depth integrated horizontal pressure gradient

We here consider the depth integrated pressure and the corresponding depth integrated horizontal
pressure gradient

P =

ˆ η

ηb

p dz and

ˆ η

ηb

∇hp dz. (28.38)

Assuming each fluid column maintains an approximate hydrostatic balance allows us to decompose
these integrals into elemental constituents. Doing so offers insights into the way pressure
accelerates the fluid.

Depth integrated pressure and its connection to the potential energy

Write the depth integrated pressure as

P =

ˆ η

ηb

p dz =

ˆ η

ηb

[d(p z)− z dp] = pa η − pb ηb +P, (28.39)

where we used the hydrostatic balance for a vertical fluid column to write4 dp = −g ρdz, and
we introduced the potential energy per horizontal area of a fluid column

P =

ˆ η

ηb

g ρ z dz. (28.40)

Evidently, equation (28.39) decomposes the depth integrated pressure into a contribution from
the applied surface pressure acting at the free surface, the bottom pressure acting at the ocean
bottom (recall that ηb < 0), and the potential energy per horizontal area of a fluid column.

3It is also common in the oceanography literature to refer to u′ as the baroclinic velocity and u as the barotropic
velocity. We avoid that nomenclature since we prefer to use baroclinic and barotropic in reference to vorticity
mechanics in Section 40.4.

4More generally, the differential of pressure is given by dp = ∇p · dx when probing three-dimensional spatial
increments, dx. However, the integral in equation (28.39) is vertical, in which case dp = (∂p/∂z) dz. For the
approximate hydrostatic fluid we thus have the transformation dp = −g ρ dz.
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Depth integrated horizontal pressure gradient

For the depth integrated horizontal pressure gradient, we start by using Leibniz’s rule to render

∇hP = ∇h
ˆ η

ηb

p dz = pa∇hη − pb∇hηb +
ˆ η

ηb

∇hpdz. (28.41)

Making use of the decomposition (28.39) leads to

−
ˆ η

ηb

∇hp dz = −∇hP + pa∇hη − pb∇hηb (28.42a)

= −∇h [pa η − pb ηb +P] + pa∇hη − pb∇hηb (28.42b)

= −∇hP− η∇hpa + ηb∇hpb. (28.42c)

These are very important results and so worth writing in a single identity

−
ˆ η

ηb

∇hp dz = −∇hP + pa∇hη − pb∇hηb = −∇hP− η∇hpa + ηb∇hpb. (28.43)

Equation (28.42a) exposes contributions from minus the horizontal gradient of the depth
integrated pressure plus surface and bottom form stresses

minus gradient of
´ η
ηb
p dz + boundary form stresses = −∇hP + pa∇hη − pb∇hηb. (28.44)

As a complement, equation (28.42c) exposes contributions from the gradient of the potential
energy plus those from the dual form stresses,

minus gradient of
´ η
ηb
g ρ z dz + boundary dual form stresses = −∇hP− η∇hpa + ηb∇hpb. (28.45)

It is notable that the literature commonly confuses form stresses with dual form stresses,
along with contributions from depth integrated pressure and the potential energy. The role of
these pressures is further studied for the axial angular momentum budget in Section 28.5, and
furthermore within the column vorticity balance in Section 40.9.

Pressure balances for motionless flow that is exactly hydrostatic

As discussed in Section 24.6, the horizontal pressure gradient everywhere vanishes for a fluid
in exact hydrostatic balance, ∇hp = 0. Correspondingly, the free surface and surface applied
pressure are spatially constant in order to maintain zero pressure gradients throughout the fluid.
For the depth integral pressure gradient, the decompositions (28.42a) and (28.42c) lead to the
exact hydrostatic fluid identities maintained at each vertical fluid column

∇hP = −pb∇hηb (28.46a)

∇hP = ηb∇hpb. (28.46b)

The first identity says that the horizontal gradient of the depth integrated hydrostatic pressure
exactly balances the topographic form stress. The second identity says that the horizontal
gradient of the potential energy per area balances the dual topographic form stress.

Since the curl of the left hand side vanishes for both of equation (28.46a) and (28.46a), we
find that the bottom pressure must be aligned with the bottom topography in order to maintain
zero flow

ẑ · (∇ηb ×∇pb) = 0. (28.47)

In the language of vorticity, we say that there is no bottom pressure torque when the flow is
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exactly hydrostatic (see Section 40.8.3). Conversely, nonzero flow is signaled by a misalignment
of the contours of constant bottom pressure and bottom topography. We can also arrive at
the identity (28.47) by taking the horizontal derivative of the bottom pressure. Since the fluid
is static we have a spatially constant free surface and applied pressure, and a density that is
horizontally uniform. Consequently,

∇hpb = g∇h
ˆ η

ηb

ρdz = −g ρ(z = ηb)∇hηb, (28.48)

thus revealing that bottom pressure contours are indeed parallel to bottom topography contours
when the fluid is in exact hydrostatic balance.

28.4.5 Depth integrated momentum equation

Bringing the pieces together leads to the depth integrated horizontal momentum equation for an
approximate hydrostatic fluid

(∂t + f ẑ×)Uρ = u(η)Qm + pa∇hη − pb∇hηb −∇hP +∇h ·
[ˆ η

ηb

Tkinetic
hor dz

]
+

ˆ η

ηb

ρF dz. (28.49)

In this equation we exposed minus the gradient of the depth integrated pressure along with the
boundary form stresses, as per equation (28.42a). We could just as well have chosen to expose
minus the gradient of the potential energy along with the boundary dual form stresses, as per
equation (28.42c), in which case

(∂t + f ẑ×)Uρ = u(η)Qm − η∇hpa + ηb∇hpb −∇hP+∇h ·
[ˆ η

ηb

Tkinetic
hor dz

]
+

ˆ η

ηb

ρF dz. (28.50)

For many applications we focus on the vertical divergence of horizontal frictional stress plus a
term arising from horizontal strains, in which case

ˆ η

ηb

ρF dz =

ˆ η

ηb

(ρF horz + ∂zτ ) dz =D + τ η − τ ηb ≡D +∆τ , (28.51)

where τ η is the horizontal stress vector at the surface (e.g., wind stress on the ocean surface),
τ ηb is the horizontal stress vector at the bottom (e.g., turbulent drag at the fluid-solid earth
boundary), and

D =

ˆ η

ηb

ρF horz dz (28.52)

is the depth integrated friction arising from horizontal stresses within the fluid interior (e.g.,
viscous stresses as in Section 25.8). In this case the horizontal momentum equation (28.50) takes
on the equivalent forms

(∂t + f ẑ×)Uρ = u(η)Qm + pa∇hη − pb∇hηb −∇hP +A+D +∆τ (28.53a)

(∂t + f ẑ×)Uρ = u(η)Qm − η∇hpa + ηb∇hpb −∇hP+A+D +∆τ , (28.53b)

where we introduced the shorthand for the nonlinear kinetic stress term

A ≡ ∇h ·
[ˆ η

ηb

Tkinetic
hor dz

]
= −∇h ·

[ˆ η

ηb

ρu⊗ u dz

]
. (28.54)
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28.4.6 Zonally integrated zonal momentum balance

Zonal integration and zonal averaging offer a common means to summarize elements of the
flow, particularly in the atmosphere where zonal motions are much stronger than meridional
due to the earth’s rotation and the differential solar heating of the planet. Additionally, zonal
averaging is of particular interest in the Southern Ocean, where the Drake Passage latitudes offer
a zonally unbounded domain for ocean circulation. Even for zonally bounded ocean domains
where gyre circulations occur, it is of interest to zonally integrate across the domain to study
balances leading to meridional motion across the chosen latitude. We are thus motivated to
integrate zonally across the full extent of the domain, with the resulting boundary contributions
dependent on the geometry and topology of the domain.

Three canonical domains

We illustrate three canonical domains in Figure 28.6. For the zonally periodic domain, the zonal
integral of any zonal derivative vanishes so that, for example,

˛
∂xP dx = 0, (28.55)

where we write
¸
dx for integration over a zonally periodic domain. Additionally, zonal derivatives

vanish for a zonally bounded domain with sloping shorelines

ˆ
∂xP dx = ∆P = 0. (28.56)

The reason this integral vanishes is that any depth integrated quantity, such as P , vanishes at
the shoreline edge merely since the layer thickness vanishes at the shoreline edge. The same
result holds for any other depth integrated quantity, including depth integrated axial angular
momentum, mass transport, and potential energy.

It is only for the zonally bounded domain with vertical sidewalls (third panel in Figure 28.6)
that we are unable to drop the zonal integral of the zonal pressure gradient. We observe that
vertical sidewalls are common for numerical models and many theories of the ocean circulation.
However, vertical sidewalls are the exception in Nature. For this reason, in the following we focus
on the more geophysically relevant periodic configuration and the sloping shoreline configuration.

Zonally unbounded + periodic Zonally bounded with shorelines Zonally bounded with vertical walls

z
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Figure 28.6: Three canonical zonal topologies/geometries considered in the study of fluid flow, particularly
ocean flows. The light portion of each panel represents the fluid whereas the darker portion is the solid earth
bottom topography. Left panel: zonally unbounded and periodic channel. Here, the topography, surface boundary
forcing, and flow are zonally periodic. Middle panel: zonally bounded region where the zonal bounds occur along
sloping shorelines at which the fluid thickness vanishes. The horizontal position of the vanishing thickness is time
dependent since the fluid can move up and down the shoreline. Right panel: zonally bounded region where the
fluid encounters a vertical sidewall so that the horizontal position of the fluid boundary is fixed, and so there is no
horizontal position where the fluid thickness vanishes. Fixed vertical sidewall boundaries are commonly found
in numerical model simulations and tacitly assumed in many theoretical treatments. Even so, vertical sidewall
boundaries are uncommon in Nature.
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Zonally integrated meridional mass transport

A zonal integral, either over a periodic domain or a domain with vanishing layer thickness along
the shoreline, renders an expression for the meridional transport across the zonal-depth section

f

ˆ
V ρ dx =

ˆ
[pa ∂xη − pb ∂xηb − ∂tUρ − u(η)Qm + (A+D +∆τ ) · x̂] dx, (28.57)

where we set
´
∂xP dx =

´
∂xP dx = 0. Note that the Coriolis parameter was pulled outside the

zonal integral since it is constant along a constant latitude line. As discussed in Section 28.5,
this equation, or its analog for the axial angular momentum, provides a useful framework for
studies of momentum balances in both the Southern Ocean and in ocean gyres. For the special
case of a steady state in the absence of surface mass fluxes, so that ∂tU

ρ = 0 and Qm = 0, and
for a domain closed in the north and south, so that mass conservation renders

´
V ρ dx = 0, then

the balance (28.57) simplifies to

ˆ
[pa ∂xη − pb ∂xηb + (A+D +∆τ ) · x̂] dx = 0. (28.58)

For those cases where nonlinear terms and interior friction are small, we find a balance between
pressure form stresses at the boundaries plus boundary turbulent stresses. We defer to Section
28.5 any further remarks on this case.

28.4.7 Balances when ∇ ·U ρ = 0

There are many occasions in which the depth integrated flow is close to non-divergent, ∇·Uρ = 0.
Such occurs particularly at the large scale and for cases where we neglect the mass transport
accross the ocean surface, Qm = 0. Following the kinematics from Section 21.4, we introduce a
transport streamfunction so that

Uρ = ẑ ×∇Ψ, (28.59)

with Ψ having dimensions of mass per time. Use of the transport streamfunction brings the
Coriolis contribution to the form

f ẑ ×Uρ = f ẑ × (ẑ ×∇Ψ) = −f ∇Ψ, (28.60)

so that the momentum equations (28.53a) (28.53b) become

∂tU
ρ = f ∇hΨ+ pa∇hη − pb∇hηb −∇hP +A+D +∆τ . (28.61a)

∂tU
ρ = f ∇hΨ− η∇hpa + ηb∇hpb −∇hP+A+D +∆τ (28.61b)

To reach a steady flow requires the following balances

−f ∇hΨ = pa∇hη − pb∇hηb −∇hP +A+D +∆τ . (28.62a)

−f ∇hΨ = −η∇hpa + ηb∇hpb −∇hP+A+D +∆τ (28.62b)

For some analysis it can be useful to project equation (28.62a) into the horizontal direction
tangent to the bottom topography, denoted by the unit vector t̂. Doing so eliminates the pb∇hηb
term to have the steady along-topography flow balance

−f t̂ · ∇hΨ = t̂ · (pa∇hη −∇hP +A+D +∆τ ). (28.63)
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28.5 Axial angular momentum budget for an ocean domain
We here develop the column integrated budget for axial angular momentum in an ocean region,
such as shown in Figure 28.7. We then further specialize the budget by zonally integrating.
The analysis shares features with the depth integrated linear momentum balance developed in
Section 28.4. As in that discussion, we here assume the primitive equations (Section 27.1) so
that the horizontal gradient operator is independent of depth (as for Sections 27.1.6 and 28.4,
we need this assumption for equation (28.68b) below).

There is a close relation between the zonal momentum and axial angular momentum, with
details provided in our study of geophysical particle dynamics in Sections 14.5 and 14.6. We
choose to here study axial angular momentum since it has a slightly simpler budget (equation
(28.64) discussed below) than the corresponding budget equation (28.53a) for zonal linear
momentum. The simpler budget follows since axial angular momentum is directly connected to
the axial symmetry of the rotating spherical planet (Sections 14.5 and 24.7).

To add a bit more generality to the analysis, we make use of spherical coordinates, though
doing so offers only a modest degree of extra details beyond Cartesian coordinates. Although
here focused on the ocean, many of the concepts and methods are directly relevant to a study of
atmospheric axial angular momentum as introduced in Section 24.7 and discussed in Section
10.3 of Holton and Hakim (2013).
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Figure 28.7: Schematic of the axial angular momentum for a fluid column, here depicted moving in an ocean
with a topographic bump. In Section 28.5 we develop the budget for the depth and zonal integrated axial angular
momentum in the ocean, where we see that the axial angular momentum is affected by a variety of boundary
processes as well as interior transports and pressures.

28.5.1 Anticipating the budget
Before diving into the mathematical formulation, let us use some of the understanding gleaned
from earlier sections of this chapter to anticipate the basic results. Doing so offers a framework
to guide the maths, and to double check that the maths indeed renders a physically sensible
budget.

For this purpose, consider a column of fluid such as shown in Figure 28.7. The forces
acting on that column arise from contact forces (pressure stress, kinetic stress, and frictional
stress) acting on the boundary (sides, top, and bottom), and body forces acting throughout the
column (from effective gravity and Coriolis). There are further avenues for momentum to be
transported across the ocean surface as part of the mass transported by rain, evaporation, and
rivers. Each of these forces contribute a torque to the fluid column computed relative to the
earth’s rotational axis, thus modifying the axial angular momentum of the fluid column. In
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the following development, we mathematically express the variety of forces and corresponding
torques, thus building up the axial angular mometum budget.

28.5.2 Axial angular momentum

The axial angular momentum budget for a fluid element follows that developed in Section 24.7,
here written with the addition of zonal friction

ρ
Dlz

Dt
= −∂p

∂λ
+ r⊥ ρF

λ, (28.64)

where
lz = r⊥ (u+ r⊥Ω) (28.65)

is the axial angular momentum per unit mass, and

r⊥ = r cosϕ (28.66)

is the distance to the polar rotation axis (the moment arm). For the primitive equations we set
the radial position, r, to the earth radius, Re, in the following.5 Use of the Eulerian form of
mass conservation (equation (19.6)) leads to the Eulerian flux-form budget

∂(ρ lz)

∂t
+∇ · (ρv lz) = −∂p

∂λ
+ r⊥ ρF

λ, (28.67)

with lzρ dz the angular momentum per unit horizontal area. We use this form for the budget to
develop the depth integrated axial angular momentum budget.

28.5.3 Depth integrated budget

Vertically integrating equation (28.67) over a column of ocean fluid renders a budget for the
column-integrated axial angular momentum. As in Section 28.4.2, we here make use of Leibniz’s
Rule to reach the following identities that expose boundary contributions

ˆ η

ηb

∂(ρ lz)

∂t
dz =

∂

∂t

[ˆ η

ηb

ρ lz dz

]
−
[
ρ lz

∂η

∂t

]
z=η

(28.68a)

ˆ η

ηb

∇h · (ρu lz)dz = ∇h ·
[ˆ η

ηb

ρu lz dz

]
− [ρ lz u · ∇η]z=η + [ρ lz u · ∇ηb]z=ηb (28.68b)

ˆ η

ηb

∂(ρw lz)

∂z
dz = [w ρ lz]z=η − [w ρ lz]z=ηb . (28.68c)

Equation (28.68c) made use of the primitive equations whereby the horizontal divergence operator
is depth independent. The surface kinematic boundary condition (19.94) and bottom kinematic
boundary condition (19.56) allow us to reach a reasonably tidy expression

∂

∂t

[ˆ η

ηb

lzρdz

]
= [lzQm]z=η −∇h ·

[ˆ η

ηb

lzu ρdz

]
+

ˆ η

ηb

[
−∂p
∂λ

+ r⊥ ρF
λ

]
dz. (28.69)

The budget (28.69) says that the depth integrated axial angular momentum per horizontal area in
a horizontally fixed fluid column has a time tendency (left hand side) arising from the convergence
of horizontal advection of axial angular momentum plus torques due to surface boundary mass
fluxes, depth integrated zonal pressure gradients, and depth integrated irreversible stresses. This

5See also Exercise 27.1.
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mathematical expression of the budget meets our expectations based on our understanding of
the physical principles discussed in Section 28.5.1.

28.5.4 Atmospheric and topographic form stresses
We can further unpack the contribution from pressure in the budget (28.69) by making use of
Leibniz’s rule to write

−
ˆ η

ηb

∂p

∂λ
dz = −∂P

∂λ
+ pa

∂η

∂λ
− pb

∂ηb
∂λ

, (28.70a)

where P is the depth-integrated pressure given by equation (28.38). We studied this decomposi-
tion of the pressure force in Section 28.2 and encountered it in Section 28.4.4. Again, we see
that the depth integrated zonal pressure gradient has been decomposed into three terms: (i)
zonal pressure differences integrated across the depth of the column, (ii) form stress imparted to
the ocean from the atmospheric pressure, (iii) form stress imparted by the solid earth bottom
topography onto the ocean.

28.5.5 Turbulent stresses at the surface and bottom
For turbulent stresses, we focus on the vertical transfer of zonal momentum arising from the
vertical shear of horizontal stresses

ρF λ =
∂τλ

∂z
, (28.71)

where τλ is the zonal component to the stress vector.6 When integrated vertically over an ocean
column,

´ η
ηb
ρF λ dz, this friction arises from stresses acting in the ocean surface and bottom

boundary/Ekman layers (Chapter 33), where the stress arises from turbulent motions that
transfer momentum vertically through these layers.

For the friction contribution, we make use of the primitive equations so that the axial
moment-arm is approximated by its value at the ocean surface

r⊥ = r cosϕ = (z +R) cosϕ ≈ R cosϕ = R⊥, (28.72)

as per the shallow fluid approximation built into the hydrostatic primitive equations discussed
in Section 27.1. This assumption allows us to write the frictional contribution to the angular
momentum budget (28.69) in the form

ˆ η

ηb

r⊥ ρF
λ dz ≈ R⊥

ˆ η

ηb

ρF λ dz = R⊥ (τλa − τλb ). (28.73)

The final expression introduced τλa , which is the zonal component to the stress acting on the
ocean surface imparted through interactions between the ocean and the overlying atmosphere
and/or ice. The signs are such that τλa > 0 transfers an eastward momentum to the ocean
such as via a westerly wind stress. Likewise, the stress τλb is the zonal stress at the ocean
bottom imparted through interactions between the ocean and the solid-earth. The signs are such
that τλb > 0 reflects the transfer of eastward momentum from the ocean to the solid-earth, or
conversely the transfer of westward momentum from the earth to the ocean. The net contribution
from vertical friction is thus given by the moment arm, R⊥, multiplied by the difference in
boundary stresses.

6As seen in equation (28.52), there are other turbulent terms associated with interior Reynolds stresses arising
from horizontal shears. We omit these terms for the present analysis since they are generally smaller than stresses
arising from vertical strains, and smaller than the turbulent stresses associated with surface and bottom boundary
processes.
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28.5.6 Summary budget for column integrated axial angular momentum
Bringing all the pieces together leads to the depth integrated axial angular momentum budget

∂

∂t

[ˆ η

ηb

lzρdz

]
= −∇h ·

[ˆ η

ηb

lzu ρdz

]
− ∂P
∂λ

+[lzQm]z=η+pa
∂η

∂λ
−pb

∂ηb
∂λ

+R⊥ (τλa −τλb ). (28.74)

Other than assuming a specific form of the frictional stress given by equation (28.71), this result
is the exact budget for the axial angular momentum in a column of ocean fluid satisfying the
primitive equations.

Removing zonal means

We further isolate the processes contributing to the budget (28.74) by introducing the zonal
mean operator

A ≡ 1

L(ϕ)

ˆ
Adλ, (28.75)

where
L(ϕ) = (Re cosϕ)∆λ = R⊥∆λ (28.76)

is the zonal length of the domain as a function of latitude, ϕ, and ∆λ is the zonal extent of
the domain in radians. For a domain that circles the planet, then ∆λ = 2π. Other domains
are possible, such as those in Figure 28.6. The corresponding zonal anomalies to the depth
integrated pressure, sea surface height, and bottom topography are thus given by

P ′ = P − P and η′ = η − η and η′b = ηb − ηb, (28.77)

in which case equation (28.74) takes the form

∂

∂t

[ˆ η

ηb

lzρdz

]
= −∇h ·

[ˆ η

ηb

lzu ρdz

]
− ∂P

′

∂λ
+[lzQm]z=η+pa

∂η′

∂λ
−pb

∂η′b
∂λ

+R⊥ (τλa −τλb ). (28.78)

Steady state balance

Steady state balances are of particular interest when studying the large-scale low frequency
circulation. A steady state holds for the angular momentum budget (28.78) so long as the
following balance is maintained

∇h ·
[ˆ η

ηb

lzu ρdz

]
= −∂P

′

∂λ
+ [lzQm]z=η + pa

∂η′

∂λ
− pb

∂η′b
∂λ

+R⊥ (τλa − τλb ). (28.79)

Consequently, a steady state is realized if the horizontal divergence of depth integrated axial
angular momentum advection (left hand side) is balanced by torques created by the variety
of physical processes on the right hand side. We further examine these physical processes by
studying the zonally integrated budget.

28.5.7 Steady domain integrated balance
Consider the area integral of the steady state balance (28.79) over the full ocean domain that is
either periodic and/or has sloping side boundaries. In this case the divergence of the angular
momentum transport integrates to zero, so that we are left with the balance

ˆ ϕn

ϕs

(ˆ λe(ϕ)

λw(ϕ)

[
[lzQm]z=η + p′a

∂η′

∂λ
− p′b

∂η′b
∂λ

+R⊥ (τλa − τλb )
]
dλ

)
R2

e cosϕ dϕ = 0. (28.80)
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In computing the area integral, we chose to first integrate over the longitudinal domain, λw(ϕ) ≤
λ ≤ λe(ϕ), which is a function of latitude, and then to integrate over the full latitudinal domain,
ϕs ≤ ϕ ≤ ϕn. In most applications the surface mass term, [lzQm]z=η, is smaller than the other
terms, in which case the balance is between the boundary form stresses and the boundary
turbulent stresses.

In the angular momentum balance (28.80), we introduced the zonal anomalies for the applied
surface pressure and the bottom pressure

p′a(λ, ϕ) = pa(λ, ϕ)− pa(ϕ) and p′b(λ, ϕ) = pb(λ, ϕ)− pb(ϕ). (28.81)

We can introduce these anomalous fields since their zonal averages do not contribute to the
budgets in either the periodic or sloping shoreline domains. To verify this property, note that

ˆ
pa
∂η′

∂λ
dλ =

ˆ
∂(pa η

′)

∂λ
dλ = 0. (28.82)

For a periodic domain this term vanishes by inspection. For a zonally bounded domain with a
sloping shoreline, it also vanishes since η′ = 0 at the edge of the shoreline. Likewise, the bottom
pressure term satisfies ˆ

pb
∂η′b
∂λ

dλ =

ˆ
∂(pb η

′
b)

∂λ
dλ = 0, (28.83)

which follows either by periodicity or since η′b = 0 along the edge of a sloping shoreline. In
conclusion, we see that it is only the zonal anomalies of the atmospheric and bottom pressures,
and free surface and bottom topography, that impact the zonal mean zonal momenum balance
(28.85) for the periodic and sloping shoreline domains.

28.5.8 Form stress versus dual form stress

We can further exploit symmetry of the periodic domain and sloping shoreline domain by writing
the form stresses in equation (28.85) in an alternative manner that makes use of the dual form
stress ˆ [

p′a
∂η′

∂λ
− p′b

∂η′b
∂λ

]
dλ =

ˆ [
−∂p

′
a

∂λ
η′ +

∂p′b
∂λ

η′b

]
dλ. (28.84)

Diagnostics of zonally integrated form stress can be more convenient using one form or the other,
depending on dataset or numerical model framework. We have a choice since the zonal integral
is the same, and that freedom is afforded since the spatial integral removes local information
that appears as a total zonal derivative. However, we offer two caveats in this regard.

• The identity (28.84) does not hold for the bounded domain with vertical sidewalls (third
panel of Figure 28.6). If working in such a domain and if one chooses to study patterns
based on the right hand side dual form stress, then its zonal integral will not agree with
that of the form stress on the left hand side. Correspondingly, physical interpretations
based on the dual form stress are questionable.

• Although the zonal integrals in equation (28.84) agree for the periodic domain and sloping
shoreline domain, there is no local identity between terms on the left hand side and right
hand side. So if one wishes to make a statement about patterns of local form stresses
acting on the depth integrated axial angular momentum, then it is necessary to return to
the form stress appearing on the left hand side of equation (28.84).
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28.5.9 Steady zonal and depth integrated budget
Now consider just a zonal integral of the steady angular momentum budget (28.79), again over
a domain that is either periodic or has sloping shorelines (Figure 28.6). In both of these cases,
we are left with the zonal and depth integrated steady angular momentum budget

1

R cosϕ

ˆ
∂

∂ϕ

[ˆ η

ηb

lz v ρdz

]
dλ =

ˆ [
[lzQm]z=η + p′a

∂η′

∂λ
− p′b

∂η′b
∂λ

+R⊥ (τλa − τλb )
]
dλ. (28.85)

The meridional divergence of the advective transport of angular momentum is balanced, in the
steady state, by the boundary terms on the right hand side.

28.5.10 Southern Ocean balances
Under certain cases the primary balance in equation (28.85) is between the form stress and
boundary turbulent stress, whereby

˛ [
p′a
∂η′

∂λ
+R⊥ τ

λ
a

]
dλ ≈

˛ [
p′b
∂η′b
∂λ

+R⊥ τ
λ
b

]
dλ. (28.86)

For much of the large-scale Southern Ocean circulation, the primary balance is even simpler: it
is a balance between surface wind stress and topographic form stress

˛
τλa dλ ≈

˛
p′b

1

R⊥

∂η′b
∂λ

dλ = −
˛
η′b

1

R⊥

∂p′b
∂λ

dλ, (28.87)

with this balance exemplified in Figure 28.8. We now state in words what this balance means in
the presence of a net eastward wind stress,

¸
τλa dλ > 0. The equivalent expressions on the right

hand side allow complementary perspectives.

• For the first equality in equation (28.87) we see that a balance is realized if on the upwind
side of a topographic bump there is an anomalously high bottom pressure, with the opposite
on the downwind side. Correspondingly, there is a net westward topographic form stress
imparted by the solid earth onto the ocean that balances the eastward surface wind stress
imparted by the atmosphere onto the ocean.

• The second equality in equation (28.87) reveals that for η′b > 0 (topographic ridge), a
steady angular momentum balance is maintained so long as the bottom pressure decreases
across the ridge from west to east, just as depicted in Figure 28.8.

28.5.11 Topographic form stress and ocean gyres
Hughes (2000) and Hughes and de Cueves (2001) are notable for having emphasized the
importance of bottom topographic form stress, and the associated bottom pressure torque
appearing in the vorticity equation (detailed in see Section 40.9). The key role for topographic
form stress is well appreciated for channel flows since the work of Munk and Palmén (1951)
who studied the Southern Ocean steady force balances (see also Webb and de Cueves (2007)
for studies of the transient case). However, Hughes (2000) and Hughes and de Cueves (2001)
showed that it is central even for steady ocean gyre circulations when allowing for sloping sides
rather than vertical sides. Hence, sloping sides for the gyre domain allow for a steady momentum
balance to occur between bottom form stress and wind stress, and a steady vorticity balance to
occur between bottom pressure torque and wind stress curl. As a result, topographic form stress
and bottom pressure torques allow for a mostly inviscid balance in ocean gyres much like for the
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Figure 28.8: Depicting the balance between zonal wind stress and topographic form stress for a southern
hemisphere zonally periodic ocean channel. For an eastward wind stress, the flow reaches a steady state if the
upwind side of a topographic bump sees an anomalously high bottom pressure whereas on the downwind side it
is anomalously low. The form stress imparted by the ocean onto the solid earth is eastward since the bottom
pressure is higher in the west and lower in the east. Conversely, Newton’s third law tells us that the topographic
form stress imparted by the solid earth onto the ocean is westward. In this manner, the eastward force imparted
by the atmosphere onto the ocean through wind stress is balanced by a westward topographic form stress imparted
by the solid earth onto the ocean. Furthermore, the eastward bottom pressure gradient leads to a northward
depth integrated geostrophic transport above the southern hemisphere ridge. Signs are swapped when flow moves
over a depression, in which a westward bottom pressure gradient leads to southward geostrophic transport over
the depression. We revisit these dynamical processes for the shallow water fluid in Figure 36.8.

zonally re-entrant Southern Ocean. We return to these points in Section 39.7, in particular in
Section 39.7.6, when studying gyre circulations in a shallow water fluid.

28.5.12 Further study
Elements of this section are based on Hughes (2000) and Hughes and de Cueves (2001), as well
as the analogous discussion of the global atmospheric axial angular momentum budget developed
in Section 10.3 of Holton and Hakim (2013). Straub (1993) provides an analogous analysis with
a focus on the Southern Ocean. The physical processes establishing the balances noted for the
Southern Ocean remain under investigation, with further resources to the literature including
Section 21.7 of Vallis (2017), and the reviews by Rintoul et al. (2001), Rintoul and Naveira
Garabato (2013), and Rintoul (2018). We further revisit this balance in Section 36.7 for the
shallow water system.
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Chapter 29

THE BOUSSINESQ OCEAN

In some areas of fluid mechanics the speed of fluid particles can approach the speed of sound.
In that case, the Mach number, which is the ratio of the fluid particle speed to the speed of
sound waves, reaches unity or larger.1 In such flows it is important to consider the influence of
compressibility since the large flow speeds can lead to nontrivial local density changes through
the convergence of advective mass fluxes.

Many of the geophysical flows studied in this book, particularly ocean flows, have Mach
numbers well below unity. Hence, their local density changes are generally much smaller than the
mean density.2 Yet even with a small Mach number, pressure can play a nontrivial role in affecting
density changes for those cases where motions extend over vertical distances comparable to the
scale height. For the atmosphere, the scale height (Section 23.4.10) is roughly 10 km, whereas
the ocean’s scale height is generally deeper than the ocean. For this reason, compressibility
effects are generally important for atmospheric motions, whereas they can be neglected for many
purposes in ocean fluid mechanics.

Because compressibility effects are relatively weak in the ocean, the ocean velocity field is well
approximated as non-divergent, thus allowing for the volume conserving kinematics from Chapter
21. Even with this approximation, it is crucial to note that the ocean is not an incompressible
fluid since density is not uniform, and so we need something more than incompressible fluid
mechanics.3 It is for this purpose that we here develop the Boussinesq ocean equations, which sit
somewhere between the fully compressible fluids (i.e., non-Boussinesq fluids) and incompressible
flows.

In brief, the Boussinesq ocean velocity is non-divergent, thus representing an incompressible
flow, and yet the Boussinesq ocean fluid admits density variations, as for a compressible fluid.
That is, the study of a Boussinesq ocean concerns the incompressible flow of a compressible
fluid, thus exemplifying the important distinction between a fluid property versus a flow property.
Since the flow is non-divergent, the pressure in the Boussinesq ocean is not the thermodynamic
pressure found in the compressible non-Boussinesq fluid studied in Part IV of this book. Rather,
Boussinesq pressure serves a purely mechanical role by acting as the Lagrange multipler to
constrain the Boussinesq flow to be non-divergent.4

1When a jet airplane or rocket moves at a speed greater than Mach one, such super-sonic motion generates a
spectacularly loud and powerful sonic boom. In Section 51.5.2 we provide a more precise measure of the Mach
number in terms of fluctuations of the density. For purposes of the present chapter, density fluctuations are very
small and thus correspond to a tiny Mach number.

2In Section 51.5.2 in our study of acoustics, we see precisely how a density fluctuation is related to the Mach
number.

3The fluid mechanics of constant density fluids is sometimes referred to as hydrodynamics. Certain idealized
models of geophysical fluid mechanics follow the approaches of hydrodynamics; e.g., the single layer of constant
density shallow water fluid studied in Part VI of this book. However, density variations are crucial for many
atmosphere and ocean flows.

4We see this role for pressure as a Lagrange multiplier when studying Hamilton’s principle for a Boussinesq
ocean in Section 48.2. See also Section 59A of Serrin (1959) for more on pressure in a non-divergent flow.
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reader’s guide to this chapter
We here derive the Boussinesq ocean equations and explore their physical properties,

including energetics. The Boussinesq ocean has broader application than just to the ocean, with
many characteristics also holding for atmospheric flow satisfying the anelastic approximation
(see Section 2.5 of Vallis (2017)). Furthermore, the Boussinesq ocean provides the starting
point for many of the geophysical fluid models found later in this book. This is a relatively long
chapter due to the broad use of the Boussinesq ocean in this book, which in turn motivates
us to explore many of its facets.
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29.1 The Boussinesq ocean approximation

For the ocean, density deviates no more than a few percent relative to the volume mean density.
Although small, ocean density deviations act over large distances and are crucial for driving
large-scale circulations. Such thermohaline circulations derive their driving force from variations
in temperature and salinity that affect density and, in turn, modify the pressure. A key reason
that small density changes can be so pivotal is that the density variations are multiplied by the
relatively large gravitational acceleration when computing pressure. The oceanic Boussinesq
approximation provides a systematic means to ignore small density deviations where it is
safe to do so dynamically, while retaining density variations where they are critical such as
when multiplied by gravity. In brief, the oceanic Boussinesq approximation makes use of (a
slightly modified) compressibile thermodynamics plus an incompressible kinematics. The use
of compressible thermodynamics allows for thermohaline processes to modify density and thus
pressure, while the incompressible kinematics removes sound waves and renders the volume of a
fluid element materially invariant.

29.1.1 Isolating the dynamically active pressure field

Pressure in a vertically stratified fluid can be decomposed into a static background hydrostatic
pressure plus a deviation from the background pressure. We made use of this decomposition in
Section 27.2.4 when developing the scaling for the hydrostatic approximation. The decomposition
holds even when the fluid is non-hydrostatic. We consider the background pressure to be a
function just of depth and as such it is determined by a static and horizontally homogeneous
background density field. We are motivated to introduce this decomposition given that the
background hydrostatic pressure field (again, it is just a function of depth) is dynamically
inactive (as shown below). This decomposition is exact and motivated by the desire to isolate
the dynamically active part of the equations of motion.

To achieve the pressure decomposition, start by decomposing density according to

ρ(x, t) = ρo(z) + ρ′(x, t) (29.1)
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where the deviation density is much smaller than the reference density

ρ′ ≪ ρo. (29.2)

The following formulation for the momentum equation holds for the general case of ρo(z).
However, we note in Section 29.1.2 that setting ρo(z) = ρo is motivated for studies of potential
vorticity in the Boussinesq ocean. Indeed, a space and time constant reference density is generally
synonymous with the oceanic Boussinesq approximation.5

The corresponding decomposition of pressure is given by the sum of a static and depth
dependent background pressure, po(z), and a deviation pressure, p′(x, t),

p(x, t) = po(z) + p′(x, t). (29.3)

The background pressure is assumed to be in hydrostatic balance with the reference density

dpo
dz

= −ρo g, (29.4)

with po and ρo both static. We offer the following points to clarify the decomposition of pressure
in equation (29.3).

• Assuming the background pressure, po(z), to be hydrostatic does not imply that the full
pressure, p(x, t), is also hydrostatic. Rather, the decomposition merely serves to remove
that portion of the pressure field that plays no role in establishing motion (we see this
property below). So this decomposition holds whether the full pressure is approximately
hydrostatic or fully non-hydrostatic.

• Furthermore, if p(x, t) is in an approximate hydrostatic balance (Section 27.2), the de-
composition (29.3) does not remove all of the hydrostatic pressure from p(x, t). Rather,
p′(x, t) is generally nonzero whether p(x, t) is in an approximate hydrostatic balance or
fully non-hydrostatic.

With the above density and pressure decompositions, the momentum equation

ρ

[
Dv

Dt
+ 2Ω× v

]
= −∇p− ẑ g ρ (29.5)

takes the equivalent form

(ρo + ρ′)

[
Dv

Dt
+ 2Ω× v

]
= −∇p′ − g ρ′ ẑ −

[
dpo
dz

+ ρo g

]
ẑ (29.6a)

= −∇p′ − g ρ′ ẑ, (29.6b)

where we used the hydrostatic balance (29.4) for the second equality. We thus see that the
background hydrostatic pressure, po(z), leads to no motion since it drops out from the momentum
equation. The gradient pressure force is thus determined solely by the gradient of p′.

29.1.2 Boussinesq momentum equation
To develop the Boussinesq momentum equation, divide the momentum equation (29.6b) by the
density, ρ = ρo + ρ′, and write the pressure and gravity terms as

∇p′ + g ρ′ ẑ

ρo + ρ′
=
∇p′ + g ρ′ ẑ

ρo + ρ′

[
ρo − ρ′
ρo − ρ′

]
=
∇p′ + g ρ′ ẑ

ρ2o − (ρ′)2
(ρo − ρ′) ≈

∇p′ + g ρ′ ẑ

ρo
, (29.7)

5Exercise 29.3 offers a modest means to generalize this assumption.
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where the final approximation results from dropping all terms that are second order in deviation
quantities. This approximation then leads to the Boussinesq momentum equation

Dv

Dt
+ 2Ω× v = − 1

ρo
∇p′ + b ẑ, (29.8)

where we introduced the globally referenced Archimedean buoyancy (Chapter 30) as defined
relative to the constant background density

b = −g ρ
′

ρo
= −g (ρ− ρo)

ρo
. (29.9)

Hence, the globally referenced Archimedean buoyancy is positive when the in situ density is
less than the reference density so that ρ′ = ρ− ρo < 0. That is, b > 0 when the fluid element is
lighter (more buoyant) than the background reference density. Buoyancy is the product of the
gravitational acceleration, which is a relatively large term, and the small number ρ′/ρo. Their
product is generally not small so that it generally cannot be neglected from the momentum
equation. This is a key point in producing a Boussinesq ocean equation set that contains
dynamical processes arising from horizontal buoyancy gradients.

In the special case of a space and time constant reference density, ρo(z) = ρo, it is convenient
to introduce the shorthand for the deviation pressure normalized by the reference density

φ =
p′

ρo
=
p− po(z)

ρo
. (29.10)

In this case the Boussinesq momentum equation takes the form

Dv

Dt
+ 2Ω× v = −∇φ+ b ẑ. (29.11)

29.1.3 A vorticity motivation to set ρo constant

We now anticipate a later discussion of vorticity and potential vorticity to motivate setting
ρo(z) to a constant. This paragraph is not critical for the remainder of this chapter, but worth
returning to after studying baroclinicity for the Boussinesq fluid in Section 40.7.2. For that
purpose, we note that the form of the pressure gradient acceleration found in equation (29.11)
is particularly useful given that the curl of the right hand side eliminates pressure from the
vorticity equation (Section 40.7.1). In contrast, for the more general form with ρo(z) in equation
(29.8), the Boussinesq baroclinicity vector (equation (40.152)) has a contribution from both
pressure and buoyancy (we derive equation (29.12) in Exercise 40.7)

B = ∇
[
b− p′

ρ2o

dρo
dz

]
× ẑ. (29.12)

The additional pressure contribution complicates the development of potential vorticity whereby
we wish to have B · ∇b = 0 (see Section 41.5.1). We are thus movitated to use a space and time
constant reference density so that dρo/dz = 0. Following this motivation, we generally assume ρo
is a constant in this book. Even so, in Exercise 29.3 we discuss a middle ground by defining a
slightly more general buoyancy field while retaining a constant ρo.
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29.1.4 Mass continuity

When decomposing density according to equation (29.1), the mass continuity equation (Section
19.2)

Dρ

Dt
= −ρ∇ · v, (29.13)

takes the form
Dρ′

Dt
= −(ρo + ρ′) (∇h · u+ ∂zw). (29.14)

For many geophysical flows, the material time derivative on the left hand side is much smaller
than either of the two terms appearing on the right hand side. To help formalize this observation
it is useful to introduce a time scale for the various terms in this equation∣∣∣∣1ρ Dρ′

Dt

∣∣∣∣ ∼ 1

Tρ
|∂xu| ∼ T−1

u |∂yv| ∼ T−1
v |∂zw| ∼ T−1

w . (29.15)

Quite often we find flows in which the time scales associated with the spatial deformations of
the flow, in the direction of the flow, are much smaller than time scales for the material changes
in density, whereby

T−1
u , T−1

v , T−1
w ≫ T−1

ρ . (29.16)

In this case the only way for the mass balance equation (29.14) to hold is for the three terms
contributing to the divergence to balance one another

∂xu+ ∂yv + ∂zw ≈ 0. (29.17)

Taking this balance to the limit motivates setting the velocity field for the Boussinesq ocean to
be non-divergent

∇ · v = 0. (29.18)

Note that for density stratified flows we generally find the horizontal divergence of the horizontal
velocity balancing the vertical convergence of the vertical velocity. For a Boussinesq ocean this
balance is exact

∇h · u = −∂zw. (29.19)

29.1.5 Dependence on reference density

How does the solution compare when considering two distinct reference densities, say ρo ̸= ρ1?
To answer this question, write the inviscid Boussinesq velocity equation in the form

(∂t + v0 · ∇)v0 + 2Ω× v0 = −∇φ0 + b0 ẑ (29.20a)

(∂t + v1 · ∇)v1 + 2Ω× v1 = −∇φ1 + b1 ẑ. (29.20b)

Consider an initial condition in which

ρo v0 = ρ1 v1, (29.21)

and with pressure and buoyancy initialized so that

ρo (−∇φ0 + b0 ẑ) = ρ1 (−∇φ1 + b1 ẑ) = −∇p− g ρ ẑ. (29.22)

Hence, the difference between equations (29.20a) and (29.20b) takes the form

∂t(ρo v0 − ρ1 v1) = −(ρo v0 · ∇)v0 + (ρ1 v1 · ∇)v1 (29.23a)
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= −[(ρ1 − ρo)/ρo] (v1 · ∇)v1. (29.23b)

The difference in reference densities allows for the nonlinear self-advection to evolve the difference
ρo v0−ρ1 v1. This property of the oceanic Boussinesq equations must be kept in mind if comparing
numerical solutions using distinct reference densities. Namely, a Boussinesq ocean is dependent
on the reference density through the nonlinear advection term.

29.1.6 Version I of the Boussinesq ocean equations

The first form of the oceanic Boussinesq equations emphasizes the role of buoyancy computed
relative to a reference state of constant density, ρ = ρo. This form facilitates a focus on that
portion of the pressure field giving rise to internal or baroclinic pressure gradients; i.e., those
pressure gradients that generate motion independent of free surface undulations. The oceanic
Boussinesq equations thus take the form

Dv

Dt
+ 2Ω× v = −∇φ+ b ẑ + F velocity equation (29.24a)

∇ · v = 0 continuity equation (29.24b)

Db

Dt
= ḃ buoyancy equation (29.24c)

b = −g ρ
′

ρo
= −g (ρ− ρo)

ρo
buoyancy defined (29.24d)

φ =
p′

ρo
=
p− po(z)

ρo
dynamic pressure defined (29.24e)

ρ = ρo (1− αΘ+ β S) linear equation of state (29.24f)

dpo
dz

= −ρo g background hydrostatic pressure. (29.24g)

We offer the following comments on these equations.

• material evolution of buoyancy: The term ḃ on the right hand side of the buoyancy
equation (29.24c) is a placeholder for any process leading to a material change in buoyancy.
We discuss some explicit examples of ḃ ̸= 0 in Section 29.7.1.

• equation of state: The equation of state, (29.24f), is written as a linear function of
salinity and Conservative Temperature, with the thermal expansion coefficient, α, and
haline contraction coefficient, β, assumed constant.6 This form for the equation of state
eliminates processes such as cabbeling and thermobaricity, which are discussed in Section
72.3. These processes are important for certain features of the ocean, thus prompting the
more general equation set written in Section 29.1.7. However, the linear equation of state
is sufficient for many of our studies in this book, as is the further simplified form with zero
haline contraction, β = 0.

• approximated hydrostatic balance: Most numerical models of the large-scale ocean
circulation are in approximate hydrostatic balance. Assuming this balance holds in the
velocity equation (29.24a) leads to the split into a horizontal velocity equation plus a

6It is unfortunate that β is used for two prominent but very distinct properties of geophysical fluids. First, it
is the meridional derivative of the Coriolis parameter: β = ∂yf . Second, it is the haline contraction coefficient:
β = ρ−1∂ρ/∂S. These distinct uses will be clearly defined so to avoid confusion.
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vertical hydrostatic balance

Du

Dt
+ 2Ω× v = −∇hφ+ F h horizontal velocity equation (29.25a)

∂φ

∂z
= b approximate hydrostatic balance, (29.25b)

where ∇h is the horizontal gradient operator and F h is the horizontal frictional acceleration.
As emphasized in Section 27.1 when deriving the hydrostatic primitive equations, that
approximate hydrostatic approximation leads to a vertical velocity equation with no friction
nor Coriolis contribution. Rather, when making the hydrostatic approximation we just
retain a balance between the vertical pressure gradient and gravity/buoyancy.

29.1.7 Version II of the Boussinesq ocean equations

The non-hydrostatic Boussinesq equations (29.24a)-(29.24g) are suited for many purposes in this
book. However, the following form is better suited to studying or simulating realistic Boussinesq
ocean flows, with such flows involving separate prognostic equations for salinity and Conservative
Temperature rather than a single prognostic equation for buoyancy. We are thus movitated to
consider the Boussinesq ocean equations in the form

Dv

Dt
+ 2Ω× v = −(1/ρo) (∇p+ ρ∇Φ) + F velocity equation (29.26a)

∇ · v = 0 continuity equation (29.26b)

DS

Dt
= Ṡ salinity equation (29.26c)

DΘ

Dt
= Θ̇ Conservative Temperature equation (29.26d)

ρ = ρ(S,Θ,Φ) equation of state. (29.26e)

We make the following comments concerning these equations.

• geopotential: The geopotential is here considered to be a function of space and time,
as relevant when studying the role of astronomical tidal forcing or changes to the mass
distribution of the planet (see Chapter 34)

Φ = Φ(x, t). (29.27)

• equation of state: The equation of state is a function of salinity, Conservative Tempera-
ture, and geopotential, thus allowing for processes such as cabelling and thermobaricity (see
Section 72.3). Furthermore, the pressure dependence in the equation of state is computed
as per a homogeneous and resting hydrostatic fluid

ρ(S,Θ,Φ) = ρ(S,Θ, p = −ρo Φ). (29.28)

In Section 29.8 we provide an energetic argument for why it is appropriate to take this
functional form rather than the more general form discussed in Section 30.3, in which
density is a function of the full in situ pressure: ρ = ρ(S,Θ, p).

• hydrostatic approximation: As for version I of the Boussinesq ocean equations, we here
list the equations when making the hydrostatic approximation in the vertical momentum
equation, in which case the velocity equation (29.26a) splits into a horizontal velocity
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equation and hydrostatic balance

Du

Dt
+ 2Ω× v = −(1/ρo) (∇hp+ ρ∇hΦ) + F h horizontal velocity equation (29.29a)

∂p

∂z
= −g ρ hydrostatic balance. (29.29b)

29.1.8 Boussinesq inertial mass is not the gravitational mass

The inertial mass is the mass multiplying acceleration on the right hand side Newton’s law of
motion, F = ma, and it is correspondingly used to measure kinetic energy. The gravitational
mass is the mass used to compute the gravitational force, and so it is the mass used when
computing weight, buoyancy, and gravitational potential energy. The principle of equivalence,
originating from the work of Galileo and forming a key element to Einstein’s relativity theory,
states that the gravitational mass and the inertial mass are the same. The principle of equivalance
is embedded into the use of Newtonian mechanics, so much so that we routinely assume that
inertial mass and gravitational mass are identical.

A Boussinesq ocean fluid element materially conserves its volume since the velocity is non-
divergent (recall the kinematics of non-divergent flows studied in Chapter 21). In turn, the
inertial mass of a Boussinesq fluid element is measured by multiplying its volume by the constant
reference density, ρo. In contrast, whenever there is a gravitational acceleration multiplying
density, the Boussinesq fluid element retains the full in situ density to measure the weight of the
fluid element. Use of in situ density for the gravitational mass ensures an accurate representation
of the gravitational force, hydrostatic pressure (Section 29.2.7), buoyancy (Chapter 30) and the
gravitational potential energy (Sections 29.6 and 29.8). Evidently, the Boussinesq ocean does
not respect the principle of equivalance since it distinguishes between the inertial mass and the
gravitational mass.

The following offers a summary of various properties of a Boussinesq fluid element related to
its distinct inertial mass and gravitational mass:

inertial mass density = ρo (29.30a)

inertial mass = ρo δV (29.30b)

linear momentum = v ρo δV (29.30c)

kinetic energy = ρo δV v · v/2 (29.30d)

tracer mass = C ρo δV (29.30e)

enthalpy content = cp Θ ρo δV (29.30f)

gravitational mass density = ρ (29.30g)

gravitational mass = ρ δV (29.30h)

gravitational force (weight) = −ρ δV ∇Φ (29.30i)

gravitational force (weight) with simple geopotential = −g ρ δV ẑ (29.30j)

gravitational potential energy = Φ ρ δV (29.30k)

gravitational potential energy with simple geopotential = g z ρ δV. (29.30l)

29.1.9 Summary points

We close this section by summarizing a number of conceptual points characterizing the Boussinesq
ocean. It is useful to return to this list to help avoid common conceptual confusions.
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Divergent and non-divergent velocity components

The velocity that results from the Boussinesq momentum equation (i.e., the prognostic Boussinesq
velocity) is non-divergent. This is the velocity used for transport as per the material time
derivative operator. Additionally, there is a divergent velocity field, vd, that balances the
material evolution of density

1

ρ′
Dρ′

Dt
= −∇ · vd ̸= 0. (29.31)

The divergent velocity is not used for any of the Boussinesq dynamical equations. Nonetheless,
vd ̸= 0, as its divergence balances the material evolution of density according to equation (29.31).
Consequently, there are acoustic waves (Chapter 51) supported by vd in a Boussinesq ocean.

Concerning density evolution and thermohaline circulation

The use of a non-divergent velocity for the Boussinesq ocean equations does not mean that the
material time evolution of ρ vanishes. Instead, the scaling in Section 29.1.4 focuses just on the
mass continuity equation. We must additionally acknowledge that as temperature and salinity
evolve, so too does in situ density as determined through the equation of state. Indeed, equation
(29.31) provides one expression for this evolution. Changes to density translate into changes in
pressure, which in turn drive the large-scale thermohaline circulation.

The thermodynamic equation for Conservative Temperature or potential temperature is
needed to determine density. There are various forms for the relation between temperature
and density that depend on thermodynamic assumptions. We discuss the flavors for density in
Section 30.3. For purposes of realistic ocean modeling, an accurate expression for density is
critical, whereas for idealized modeling it is common to assume density equals to a constant
times the temperature.

Buoyancy

We note the rather trivial point that there is identically zero buoyancy (Chapter 30), b =
−g (ρ− ρo)/ρo, in a fully homogeneous fluid where density is constant, ρ = ρo, everywhere. Hence,
for an exactly incompressible fluid, where density is a fixed and uniform constant, there are no
buoyancy forces. Such fluids serve many purposes, as exemplified by studies of a single layer of
shallow water fluid in Part VI of this book. However, buoyancy forces are of primary importance
for many other purposes in geophysical fluid mechanics. The Boussinesq ocean accounts for
buoyancy forces, and the changes arising from processes such as heating and freshening, while
making use of the more convenient kinematics of a non-divergent flow. We have far more to say
concerning buoyancy in Chapter 30.

Distinguishing the Boussinesq ocean from the traditional Boussinesq approximation

The Boussinesq ocean equations are more general than the traditional Boussinesq approximation
considered in other areas of fluid mechanics (e.g., Chandrasekhar , 1961). In particular, the
traditional Boussinesq approximation assumes a linear equation of state. However, as we saw
in Section 29.1.7, the Boussinesq ocean generally has a nonlinear equation of state, which is
essential for realistic ocean circulation studies.

Connection to anelastic atmosphere

The atmosphere is far more compressible than the ocean, so that density variations cannot
be neglected and the divergent nature of the velocity is important. However, there are some
cases in which an atmospheric analog to the oceanic Boussinesq approximation can be useful.
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The analog is known as the anelastic approximation and it is mathematically isomorphic to the
oceanic Boussinesq approximation, in which case ∇ · (ρv) = 0 is assumed. Section 2.5 of Vallis
(2017) offers more details for the atmospheric anelastic approximation.

29.1.10 Further study
Section 2.4 of Vallis (2017) offers more details to show that density variations are small within
the ocean. Further discussion of the oceanic Boussinesq approximation also can be found in
Section 9.3 of Griffies and Adcroft (2008). This video from SciencePrimer provides a concise
summary of ocean circulation arising from differences in density created by both thermal and
haline (salinity) processes.

29.2 Scaling for the hydrostatic approximation
In Section 27.2 we considered a rudimentary scale analysis justifying the hydrostatic approxima-
tion for large-scale ocean and atmospheric flow. However, in that discussion we noted the need
to remove a dynamically inactive hydrostatic pressure before addressing the question of whether
the dynamically active pressure field is indeed approximately hydrostatic. That decomposition
of pressure was performed in Section 29.1.1 as part of deriving the Boussinesq ocean equations.
Hence, it is convenient to now return to the question of hydrostatic scaling within the context of
the perfect non-rotating Boussinesq ocean equations.

29.2.1 Stratified non-rotating Boussinesq ocean equations
The stratified perfect Boussinesq equations in a non-rotating reference frame are

Du

Dt
= −∇hφ and

Dw

Dt
= −∂φ

∂z
+ b and ∇ · v = 0 and

Db

Dt
= 0. (29.32)

To help isolate the dynamically important portion of pressure, we proceed much like in Section
29.1.1 whereby buoyancy is written

b = b′(x, y, z, t) + b̃(z). (29.33)

The static buoyancy, b̃(z), encompasses a background stratification that is in hydrostatic balance
with its corresponding portion of the pressure field

dφ̃

dz
= b̃(z). (29.34)

The Boussinesq equations thus take the form

Du

Dt
= −∇hφ′ and

Dw

Dt
= −∂φ

′

∂z
+ b′ and ∇ · v = 0 and

Db′

Dt
= −wN2, (29.35)

where

N2 =
db̃

dz
(29.36)

is the squared buoyancy frequency from the background vertical stratification.7 The decomposi-
tion into a background stratification helps to isolate the dynamical portion of the horizontal
pressure gradient by removing a static depth dependent background. It also allows us to consider

7We discuss buoyancy frequency in Section 30.6. For present purposes, we merely note that it provides a
measure of the vertical stratification of density, with N2 > 0 signally a gravitationally stable density stratification.
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the dynamically interesting, but simpler, case in which the background stratification dominates
those perturbations around it.

29.2.2 Non-dimensionalization
Now introduce the dimensional scales (in uppercase) and corresponding non-dimensional quanti-
ties (with hats)

(x, y) = L (x̂, ŷ) z = H ẑ u = U û w =W ŵ (29.37)

t = T t̂ φ′ = Φ φ̂′ b′ = B b̂′ N2 = N
2
N̂2, (29.38)

which yields the equations of motion

U

T

∂û

∂t̂
+
U2

L
û
∂û

∂x̂
+
U2

L
v̂
∂û

∂ŷ
+
UW

H
ŵ
∂û

∂ẑ
= −Φ

L

∂φ̂′

∂x̂
(29.39a)

U

T

∂v̂

∂t̂
+
U2

L
û
∂v̂

∂x̂
+
U2

L
v̂
∂v̂

∂ŷ
+
UW

H
ŵ
∂v̂

∂ẑ
= −Φ

L

∂φ̂′

∂ŷ
(29.39b)

W

T

∂ŵ

∂t̂
+
UW

L
û
∂ŵ

∂x̂
+
UW

L
v̂
∂ŵ

∂ŷ
+
WW

H
ŵ
∂ŵ

∂ẑ
= −Φ

H

∂φ̂′

∂ẑ
+B b̂′ (29.39c)

B

T

∂b̂′

∂t̂
+
UB

L
û
∂b̂′

∂x̂
+
UB

L
v̂
∂b̂′

∂ŷ
+
WB

H
ŵ
∂b̂′

∂ẑ
= −W N

2
ŵ N̂2 (29.39d)

U

L

∂û

∂x̂
+
U

L

∂v̂

∂ŷ
+
W

H

∂ŵ

∂ẑ
= 0. (29.39e)

29.2.3 Specifying the scales
We impose the following choices for scales based on the flow regimes of interest.

• time scale: Asssume that the time scale is determined by the horizontal velocity and the
horizontal length scale

T = L/U. (29.40)

• vertical velocity: It is common to assume the vertical velocity scales according to the
continuity equation

∇h · u+
∂w

∂z
= 0 =⇒W = U

H

L
≡ Uαaspect, (29.41)

where the final equality introduced the vertical to horizontal aspect ratio, αaspect. However,
vertical density stratification acts to suppress vertical motion so that we introduce a
non-dimensional number, ϵ

w =W ŵ = ϵ

[
HU

L

]
ŵ. (29.42)

In Section 29.2.5 we motivate choosing ϵ as the squared Froude number.

• pressure: Scale the pressure according to the non-rotating balance of the material time
change in horizontal velocity and the horizontal pressure gradient

U

T
+
UU

L
=

Φ

L
=⇒ Φ = U2. (29.43)

We made use of this dynamical pressure scaling in Section 25.9.2 when non-dimensionalizing
the Navier-Stokes equation in a non-rotating reference frame. For flows in a rotating
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reference frame that are in near geostrophic balance, we find that pressure instead scales
with the Coriolis acceleration (Sections 33.3.2 and 43.7.4).

• buoyancy: We choose to scale buoyancy according to the hydrostatic balance

B =
Φ

H
=
U2

H
, (29.44)

which is motivated by the importance of hydrostatic pressure in geophysical flows.

29.2.4 Non-dimensional Boussinesq equations of motion
With these choices, the equations of motion (29.39a)-(29.39e) take on form

Dû

Dt̂
= −∇̂φ̂′ (29.45)

ϵ α2
aspect

Dŵ

Dt̂
= −∂φ̂

′

∂ẑ
+ b̂′ (29.46)[

U2

N
2
H2

]
D̂b̂′

Dt̂
+ ϵ N̂2 ŵ = 0 (29.47)

∇̂ · û+ ϵ
∂ŵ

∂ẑ
= 0 (29.48)

where we introduced the non-dimensional material time derivative

D

Dt̂
=

∂

∂t̂
+ û · ∇̂z + ϵ ŵ

∂

∂ẑ
. (29.49)

29.2.5 The role of the Froude number
At this point we make a choice for the parameter, ϵ, noting that there are many choices that
one could consider. For our interests it is suitable to set ϵ equal to the squared Froude number

ϵ = Fr2 =
U2

N
2
H2

. (29.50)

The Froude number measures the relative strength of vertical shears (i.e., vertical derivatives) of
the horizontal velocity, U/H, versus the buoyancy stratification, N . Alternatively, it measures
the ratio of the horizontal speed for a fluid particle, U , to an internal gravity wave speed, N H
(we study internal gravity waves in Chapter 57). Large Froude numbers indicate large fluid
particle speeds relative to wave speeds, with Fr > 1 a common indicator of hydraulic instability
(see Section 55.5.4 for a shallow water example). In contrast, a relatively strong stratification
(N2 large) corresponds to a small Froude number and to flow that is stabilized by vertical
stratification. Note that the squared Froude number is the inverse of the Richardson number

Ri = Fr−2 =
N

2
H2

U2
. (29.51)

It is a matter of taste whether one works with Fr or Ri.
The choice (29.50) leads to the vertical velocity scale

W = Fr2
[
HU

L

]
. (29.52)

For Fr < 1, which is the case for stably stratified fluids, this result means that stratification
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reduces the scale for the vertical velocity. The corresponding non-dimensional Boussinesq
equations take the form

Dû

Dt̂
= −∇̂zφ̂′ (29.53)

Fr2 α2
aspect

Dŵ

Dt̂
= −∂φ̂

′

∂ẑ
+ b̂′ (29.54)

D̂b̂′

Dt̂
+ N̂2 ŵ = 0 (29.55)

∇̂ · û+ Fr2
∂ŵ

∂ẑ
= 0. (29.56)

The condition for hydrostatic balance in a stratified fluid thus takes the form

Fr2 α2
aspect ≪ 1. (29.57)

This result supports our initial suspicion that stratification suppresses vertical motion, thus
reducing the vertical acceleration terms that break hydrostatic balance. That is, hydrostatic
balance is more readily achieved for a stratified flow than for an unstratified flow. Note also
that the horizontal divergence of the horizontal flow is reduced by the presence of stratification,
which thus leads to a nearly horizontally non-divergent flow∣∣∣∇̂ · û∣∣∣ = ∣∣∣∣Fr2 ∂ŵ∂ẑ

∣∣∣∣≪ ∣∣∣∣∂ŵ∂ẑ
∣∣∣∣ . (29.58)

Finally, this scaling reveals how the hydrostatic approximation becomes less accurate when
Fr2 α2

aspect ∼ 1, which occurs when stratification is weak and/or the aspect ratio order unity.

29.2.6 Horizontal hydrostatic pressure gradient

In Section 29.2.6 we studied the horizontal pressure gradient between two columns of constant
density for a hydrostatic fluid. In that example, the two columns were assumed to have equal
mass, so the fluid is non-Boussinesq. Here, we reconsider that example for a Boussinesq ocean
where volume is conserved rather than mass.

The expression for the hydrostatic pressure at a point within the fluid takes on the same
form as that for a non-Boussinesq fluid (Section 27.2.1)

ph(x, y, z, t) = pa(x, y, t) + g

ˆ η

z
ρ(x, y, z′, t) dz′, (29.59)

and the horizontal pressure gradient is thus given by

∇hph = ∇hpa + g ρ(η)∇hη + g

ˆ η

z
∇hρ dz′. (29.60)

For many studies with Boussinesq ocean, we are interested in the horizontal pressure gradients
in the presence of a rigid lid ocean surface whereby η = 0. In this case we compute the internal
pressure gradient

∇hph = g

ˆ 0

z
∇hρdz′ rigid lid ocean. (29.61)

Hence, the internal horizontal pressure gradient at a vertical position z equals to the horizontal
density gradient vertically integrated above that point. For example, if density increases poleward,
then so too does the internal hydrostatic pressure.
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29.2.7 Evolution of hydrostatic pressure
In Section 27.2.2 we developed the Eulerian evolution equation for hydrostatic pressure in a mass
conserving non-Boussinesq fluid. Here we discuss the evolution in a Boussinesq ocean of the
hydrostatic pressure at a point. To do so we take the Eulerian time tendency of the hydrostatic
pressure (29.59), in which case

∂tp = ∂tpa + g ρ(η) ∂tη +

ˆ η

z
∂tρ(x, y, z

′, t) dz′. (29.62)

This equation holds for both the Boussinesq and non-Boussinesq ocean. However, it is only
for the mass conserving non-Boussinesq ocean that we can use mass continuity (19.6) to set
∂tρ = −∇ · (v ρ). Use of Leibniz’s rule then reveals that the hydrostatic pressure evolves due
to the convergence of mass onto the fluid column above that point (see Section 27.2.2 for the
derivation). This result is expected since the hydrostatic pressure at a point is the weight per
area of fluid above that point.

For a Boussinesq ocean, the volume conserving kinematics means that we cannot replace ∂tρ
with −∇ · (v ρ). Correspondingly, the weight of a fluid column can change merely through in
situ density changes, so that the weight can change even if the matter content remains fixed;
e.g., through heating. We expose details by noting that energetic consistency from Section 29.8
meana that the in situ density in a Boussinesq ocean has the functional dependence, ρ(S,Θ,Φ),
with Φ the geopotential. Hence, the Eulerian time derivative of density is given by

∂tρ = (∂ρ/∂S) ∂tS + (∂ρ/∂Θ) ∂tΘ+ (∂ρ/∂Φ) ∂tΦ. (29.63)

With a simple geopotential, Φ = g z, we have ∂tΦ = 0 since the Eulerian time derivative is
computed at fixed (x, y, z). This result leads to the time changes in the hydrostatic pressure for
a Boussinesq ocean

∂tp = ∂tpa + g ρ(η) ∂tη +

ˆ η

z
[(∂ρ/∂S) ∂tS + (∂ρ/∂Θ) ∂tΘ] dz′. (29.64)

This equation reveals the direct dependence of the hydrostatic pressure on changes in S and
Θ. Hence, heating and freshening, which alter the in situ density, directly alter the hydrostatic
pressure in a Boussinesq ocean by altering the fluid’s weight per area. This result contrasts to
the mass conserving non-Boussinesq fluid, whose weight per area changes only through changes
to its mass per area.

29.3 How pressure enforces non-divergent flow
We return now to the case of a non-hydrostatic fluid and consider the Boussinesq momentum
equation (29.26a) written in the tangent plane form

ρo (∂t + v · ∇)v + f z × ρo v = −∇p− ρ g ẑ + ρo F . (29.65)

The non-divergence constraint on the velocity, ∇ · v = 0, must be maintained at each point in
the fluid and at each time instance. How is that constraint maintained? As we show in this
section, pressure provides the force that maintains non-divergence. Furthermore, pressure is
determined through solving an elliptic boundary value problem. As we discussed in Section
6.5, elliptic partial differential equations transfer information instantaneously. Physically, this
situation corresponds to the transition from a compressible non-Boussinesq fluid, in which
pressure signals propagate via acoustic waves (Chapter 51), to the incompressible flow of a
Boussinesq ocean, in which pressure adjusts instantaneously just as if the acoustic waves traveled
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at infinite speed. The Boussinesq ocean sits between the compressible fluid and incompressible
flow. That is, the Boussinesq prognostic velocity is non-divergent, and so it does not support
acoustic waves, whereas the full velocity is divergent (Section 29.1.9), and this divergent portion
supports acoustic waves, although such waves are never felt by the Boussinesq dynamical fields.

29.3.1 Poisson equation for pressure

To derive the pressure equation, we find it convenient to expose Cartesian tensor labels on the
momentum equation (29.65)

∂tvm + vn∂nvm + f ϵmnp δ3n vp = −∂mp/ρo − δ3m g ρ/ρo + Fm. (29.66)

The time derivative is eliminated by taking the divergence through contracting with the operator
∂m,

∂m∂tvm = ∂t∂mvm = 0, (29.67)

thus leading to
−∇2p/ρo = ∂m(vn∂nvm + f ϵm3p vp + δ3m g ρ/ρo − Fm), (29.68)

where the Laplacian operator is
∇2 = ∂m∂m. (29.69)

Equation (29.68) can be written as the Poisson equation

−∇2p = ρo∇ ·D, (29.70)

with the vector D given by the accelerations sans that from pressure

Dm = vn∂nvm + f ϵm3p vp + δ3m g ρ/ρo − Fm (29.71a)

D = (v · ∇)v + f ẑ × v + g (ρ/ρo) ẑ − F . (29.71b)

As when studying Green’s functions in Chapter 9 (see also Section 29.3.3), it is useful to maintain
the minus sign on the left hand side of equation (29.70) so that a positive divergence (∇ ·D > 0)
represents a positive source for p. Equivalently, for a wavelike pressure perturbation we have

−∇2p ∝ p, (29.72)

so that a positive source, −∇2p = ρo∇ ·D > 0, leads to a local positive pressure anomaly, and
conversely for a negative source.

29.3.2 Boundary conditions

To derive the boundary conditions for the Poisson equation (29.70), we find it useful to write
the velocity equation as

∂tv = −∇p/ρo −D. (29.73)

We consider a variety of boundaries in the following.

Static material surface

For a static material boundary we can make use of the no normal flow kinematic boundary
condition (Section 19.6.1), in which case

n̂ · ∂tv = ∂t (n̂ · v) = 0 =⇒ (∇p+ ρoD) · n̂ = 0 for static material boundaries. (29.74)
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This boundary condition takes the form

n̂ · ∇p = −ρoD · n̂ for static material boundaries. (29.75)

Hence, maintenance of the no normal flow condition along a static material boundary requires a
corresponding Neumann boundary condition for pressure.

Consider the case of n̂ = −ẑ along a flat solid boundary at z = ηb. In this case

−ρoD · n̂ = g ρ− ẑ · F , (29.76)

so that along the boundary we have

−ρoD · n̂ = ρo ẑ · [(v · ∇)v + g (ρ/ρo) ẑ − F ] = g ρ− ẑ · F , (29.77)

where
ẑ · [(v · ∇)v] = (v · ∇)w = 0, (29.78)

since w = 0 on the flat solid boundary at z = ηb. We are thus led to the pressure boundary
condition (29.75)

−∂zp = ρ g − ẑ · F at z = ηb. (29.79)

Rigid lid ocean surface

For many purposes it is sufficient to assume the upper ocean surface is rigid and flat (z = η = 0),
in which case we follow the approach taken for the flat bottom boundary condition (29.79) to
find the boundary condition

∂zp = −ρ g + ρo ẑ · F at z = 0. (29.80)

Free upper ocean surface

The ocean free surface is generally dynamic and permeable, so that the velocity does not satisfy a
no normal flow condition along this surface (see Section 19.6). To develop the pressure boundary
condition at the free surface, we invoke a dynamical principle rather than a kinematic principle.
Namely, we invoke continuity of pressure across an interface, which follows from Newton’s third
law (recall our discussion of stress along an interface in Section 25.10). Hence, the pressure
condition at the ocean free surface is the Dirichlet boundary condition

p = papplied at z = η(x, y, t), (29.81)

where papplied is the pressure applied to the ocean surface from the overlying atmosphere or
cryosphere.

29.3.3 Green’s function expression for pressure
Consider the pressure equation for the special case of a rigid lid upper ocean boundary

−∇2p = ρo∇ ·D x ∈ R (29.82a)

n̂ · ∇p = −ρo n̂ ·D x ∈ ∂R. (29.82b)

If we know the vector D, then the pressure boundary value problem is linear, thus enabling use
of Green’s function methods from Chapter 9 to determine an expression for pressure. In fact,
the pressure is only determined up to a constant. Likewise, the discussion in Section 9.4 for the
Poisson equation with Neumann boundary conditions shows that there is no Green’s function
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for this boundary value problem. However, we can instead make use of the modified Green’s
function, G̃, that satisfies equations (9.97a)-(9.97b)

−∇2G̃(x|y) = δ(x− y)− 1/V x ∈ R (29.83a)

n̂ · ∇xG̃(x|y) = 0 x ∈ ∂R, (29.83b)

where V =
´
R
dV is the domain volume. Making use of the solution (9.100) leads to the pressure

p(x)− ⟨p⟩ = ρo

ˆ
R

(∇ ·D) G̃(x|y) dVy − ρo
˛
∂R

(n̂ ·D) G̃(x|y) dSy, (29.84)

where the y subscripts indicate that the integrals are over y, and ⟨p⟩ is the volume averaged
pressure. The volume averaged pressure remains undetermined unless provided with further
information. Since the volume average has a zero gradient, it plays no role in the pressure
gradient.

As discussed in Section 9.4.5, we can extract the free space Green’s function from the modified
Green’s function according to equation (9.106)

G̃(x|y) = G(x|y) + H̃(x|y), (29.85)

where H̃ satisfies the boundary value problem

−∇2
xH̃(x|y) = −1/V for x,y ∈ R (29.86a)

−n̂ · ∇xH̃(x|y) = n̂ · ∇xG(x|y) for x ∈ ∂R, (29.86b)

and the free space Green’s function is given by equation (9.5c)

−∇2
xG(x|y) = δ(x− y) =⇒ G(x|y) = (4π |x− y|)−1. (29.87)

Making use of the decomposition (29.85) and the expression (9.115) leads to the corresponding
decomposition of the pressure

p(x)− ⟨p⟩ = ρo

ˆ
R

(∇ ·D)G(x|y) dVy

+ ρo

ˆ
R

(∇ ·D) H̃(x|y) dVy + ρo

˛
∂R

(n̂ ·D) G̃(x|y) dSy︸ ︷︷ ︸
pharmonic

(29.88)

where the under-braced term is harmonic, ∇2pharmonic = 0.

29.3.4 Characterizing the pressure sources

The right hand side of the Poisson equation (29.70) contains four sources for the pressure field.
Linearity of the Poisson equation allows us to separately study the pressure resulting from these
sources, with the net pressure the sum. We here summarize their basic features, borrowing
from the treatment given in Section 38.4 for the kinematically simpler non-divergent barotropic
model. As we find, three of the pressure sources contribute to non-hydrostatic pressures and
one to hydrostatic pressure. Note that these pressure sources are associated with the pressure
perturbations rather than causing the perturbations. Such is part of the nuance of pressure in a
non-divergent flow.
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Divergence of self-advection

The first source is given by the divergence of self-advection, which can be written

∇ ·Dself-advect = ∂n(vm ∂mvn) = (∂nvm) (∂mvn) + vm (∂n∂mvn) = (∂nvm) (∂mvn), (29.89)

where we set
vm ∂n∂mvn = vm ∂m∂nvn = 0 (29.90)

since ∂nvn = 0 follows from the non-divergent nature of the flow. Furthermore, introducing the
strain rate tensor (S from equation (18.90a)) and rotation tensor (R equation (18.90b)), renders

2Smn Smn = (∂mvn) (∂mvn) + (∂mvn) (∂nvm) (29.91)

2Rmn Rmn = (∂mvn) (∂mvn)− (∂mvn) (∂nvm), (29.92)

so that
∇ ·Dself-advect = (∂nvm) (∂mvn) = Smn Smn︸ ︷︷ ︸

splat

−Rmn Rmn︸ ︷︷ ︸
spin

. (29.93)

The vorticity or spin source provides a negative source to−∇2p. In contrast, the contribution from
strain, sometimes referred to as splat, provides a positive source.8 As detailed for horizontally non-
divergent barotropic flow in Section 38.4, we understand why there is a negative pressure source
from vortical (spinning) motion since, to retain a non-divergent flow, pressure must counteract
the centrifugal acceleration arising from curved fluid motion. Likewise, a positive pressure source
associated with straining motion is needed to counteract the convergent accelerations induced
by strains.

Divergence of the Coriolis acceleration

The divergence of the Coriolis acceleration introduces a pressure source given by

−∇ · ∇pcoriolis = ∇ ·Dcoriolis = ∇ · (f ẑ × v) = β u− f ζ, (29.94)

where ζ = ∂xv − ∂yu is the vertical component to the relative vorticity, and β = ∂yf is the
planetary vorticity gradient. To help understand the f ζ term, consider two-dimensional flow
with a cyclonic relative vorticity so that f ζ > 0. Cyclonic flow feels an associated centrifugal
acceleration directed “outward”. To maintain a non-divergent two-dimensional flow requires an
oppositely directed “inward” pressure gradient force. Hence, such rotating flow induces a low
pressure source as a means to counteract the centrifugal acceleration

−∇ · ∇pcoriolis < 0. (29.95)

See section 38.4.6 for more discussion of this source as found in the non-divergent barotropic
fluid.

Divergence of the gravitational force per volume

The divergence of the gravitational force per volume is given by

−∇ · ∇pgravity = ρo∇ ·Dgravity = ∇ · (g ρ ẑ) = g ∂zρ, (29.96)

8The whimsically named splat source is so-named since it is large when a fluid element is squashed in a manner
increasing fluid strains, akin to how strains appear when a fluid impacts or “splats” against a solid obstacle.
Imagine a water balloon thrown against a wall.
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with this pressure source absent in the depth-independent barotropic fluid of Section 38.4. The
associated pressure gradient is that arising from the local hydrostatic component of the pressure
field in which

∇ · (−∇pgravity + g ρ ẑ) = 0. (29.97)

In regions where density decreases upward, ∂zρ < 0, a compressible fluid element that conserves
its mass will expand when moving upward into less dense fluid. For a non-divergent flow that
conserves the volume of fluid elements, there must be a counteracting force from pressure to halt
the expansion of a fluid element. This counteracting force arises from the hydrostatic component
to the pressure field that acts inward to squeeze the fluid element, with this pressure force
originating from the negative pressure source, −∇2pgravity = g ∂zρ < 0.

Divergence of the friction vector

The third source arises from the divergence of friction,

−∇ · ∇pfriction = ρo∇ ·Dfriction = −ρo∇ · F . (29.98)

With interior fluid friction arising from a nonzero strain rate (Section 25.8), we expect this
pressure source to be most important in regions of large strains. Indeed, for an incompressible
flow feeling only molecular viscosity, the friction operator is given by (see Section 25.8.7)

F = ν∇2v, (29.99)

where ν > 0 is a constant molecular viscosity. In this case ∇ · F = 0, so that viscous friction
does not contribute a pressure source. More general cases are considered in applications where
the molecular viscosity is replaced by a flow dependent eddy viscosity so that ∇ ·F ̸= 0. For the
case of a converging frictional acceleration, ∇ · F < 0, friction then leads to a positive pressure
source to counteract the friction to thus maintain a non-divergent flow.

29.3.5 Comments and further study
The gravitational source contributes a local hydrostatic component to the pressure field, whereas
the other three sources contribute non-hydrostatic pressure sources. In many applications,
such as general circulation modeling of the ocean and atmosphere, the fluid is assumed to be
approximately hydrostatic (Chapter 27). In this case vertical motion is diagnosed rather than
prognosed, and the non-hydrostatic component of pressure is never needed to evolve the fluid
motion. Even so, vertical derivatives in the non-hydrostatic pressure provide the vertical force
needed for vertical accelerations. We have more to say on vertical motion in Section 30.11.

Markowski and Richardson (2010) provide lucid discussions of pressure forces acting in
geophysical fluids. In particular their Section 2.5 inspired much of the current section.

29.4 Helmholtz decomposing the velocity equation
In this section we introduce some mathematical properties of the velocity equation for a
Boussinesq ocean in a simply connected ocean domain, R, with boundary, ∂R. For this purpose,
we again assume a tangent plane and so write the velocity equation (29.65) in the form

∂tv = −∇p/ρo −D, (29.100)

where D, as given by equation (29.71b), contains the various accelerations sans the pressure
gradient

D = (v · ∇)v + f ẑ × v + g (ρ/ρo) ẑ − F . (29.101)

page 786 of 2158 geophysical fluid mechanics



29.4. HELMHOLTZ DECOMPOSING THE VELOCITY EQUATION

29.4.1 Helmholtz decomposition
The Helmholtz decomposition from Section 9.8 says that on a simply connected domain, an
arbitrary vector, such as the acceleration D, can be decomposed as

D =Drot +Ddiv (29.102)

where the two vectors on the right hand side satisfy

∇ ·Drot = 0 and ∇×Drot ̸= 0 Drot is divergent-free (29.103a)

∇×Ddiv = 0 and ∇ ·Ddiv ̸= 0 Ddiv is curl-free. (29.103b)

We make use of the Helmholtz decomposition for a Boussinesq ocean by noting that the
non-divergent velocity only has a rotational contribution

v = vrot, (29.104)

whereas the pressure gradient only has a divergent component

∇p = (∇p)div. (29.105)

In contrast, the acceleration, D, generally has a rotational, a divergent, and a harmonic
component as written in equation (29.102).

29.4.2 The pressure equation
Making use of the Helmholtz decomposition (29.102) brings the velocity equation (29.100) into
the form

∂tv = −∇p/ρo −Drot −Ddiv. (29.106)

The accelerations, ∂tv, and D
rot, are each divergent-free. In contrast, the accelerations, −∇p/ρo

and Ddiv, each have nonzero divergence. Self-consistency is maintained if the sum, ∇p/ρo +Ddiv,
has zero divergence so that

∇ · (∇p/ρo +Ddiv) = 0 =⇒ −∇2p = ρo∇ ·Ddiv = ρo∇ ·D. (29.107)

This is the Poisson equation for the pressure field already derived in Section 29.3.1. We go one
further step by observing that ∇p/ρo +Ddiv is both curl-free and divergent-free, which we write
as

∇p/ρo +Ddiv =H with ∇ ·H = ∇×H = 0. (29.108)

29.4.3 The vorticity equation
As for the pressure equation in Section 29.4.2, we note that the accelerations ∇p/ρo, and
Ddiv, are each curl-free. In contrast, the accelerations, ∂tv and Drot, each have nonzero curl.
Self-consistency thus requires ∂tv +Drot to be curl-free

∇× (∂tv +Drot) = 0 =⇒ ∂t(∇× v) = −∇×Drot, (29.109)

which is the relative vorticity equation that we further study in Chapter 40. Going one step
further we note that the vector ∂tv+D

rot is both curl-free and divergent-free, which we write as

∂tv +Drot = I with ∇ · I = ∇× I = 0. (29.110)
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29.4.4 The velocity equation
The above considerations have led us to the pressure gradient equation (29.108) and the velocity
tendency equation (29.110)

∇p/ρo +Ddiv =H (29.111)

∂tv +Drot = I, (29.112)

where both H and I are divergent-free and curl-free. Adding these two equations leads to

∂tv = −∇p/ρo −Drot −Ddiv +H + I, (29.113)

with this form of the velocity equation equivalent to the original Helmholtz decomposed equation
(29.106) if we set

H + I = 0. (29.114)

29.4.5 Comments
This section was inspired by Marshall and Pillar (2011), who applied a Helmholtz decomposition
to study the variety of accelerations appearing in the Boussinesq velocity equation. A particularly
revealing result of this decomposition, when setting H = I = 0, is the ability to make a 1-to-1
connection between terms in the Helmholtz decomposed velocity equation with terms in the
relative vorticity equation. This correspondence can support dynamical understanding.

29.5 Tracer budgets in Eulerian regions
We are commonly interested in the tracer budget for a fluid region, and we examined a variety
of regions in Section 20.2 for a compressible fluid. Here, we expose issues that arise for tracer
budgets in a Boussinesq ocean, whereby the flow is non-divergent. We specialize to the study
of an Eulerian region, R, and emphasize how the non-divergent flow constrains the advective
tracer transport and affects changes to the volume integrated tracer content.

29.5.1 Formulating the budget equation
Consider a tracer concentration, C, and compute its net content over an Eulerian region, R

ρo

ˆ
R

C dV = ρo V ⟨C⟩, (29.115)

where C satisfies the tracer equation

∂t(ρoC) +∇ · (ρoC v + J) = 0, (29.116)

and

⟨C⟩ =
´
R
C dV´
R
dV

=
1

V

ˆ
R

C dV (29.117)

is the volume averaged tracer concentration within the Eulerian region with fixed volume,
V =

´
R
dV . Following from the discussion of tracer budgets in Section 20.2, we have

ρo
d(V ⟨C⟩)

dt
= ρo V

d⟨C⟩
dt

(29.118a)

= ρo
d

dt

ˆ
R

C dV (29.118b)

page 788 of 2158 geophysical fluid mechanics



29.5. TRACER BUDGETS IN EULERIAN REGIONS

=

ˆ
R

∂(ρoC)

∂t
dV (29.118c)

= −
ˆ
R

∇ · (ρoC v + J) dV (29.118d)

= −
˛
∂R

(ρoC v + J) · n̂dS, (29.118e)

where we used the divergence theorem on the final equality with ∂R the boundary of R and
the outward normal n̂. Changes in the total tracer contained within the region arise from
the convergence of boundary fluxes due to the non-advective flux, J , plus convergence of the
advective tracer flux, ρoC v. Since the region volume is constant in time, changes in the total
tracer content directly affect the volume averaged tracer concentration, ⟨C⟩.

At any point along the boundary, the tracer content is modified if there is a non-advective
flux, J , directed across the boundary. There is no a priori constraint on J , with local properties
determining its sign and magnitude. In contrast, contributions from the boundary advective flux
are constrained due to the non-divergent nature of the Boussinesq velocity, which we discuss
next.

29.5.2 Interpreting advective tracer contributions
As seen by equation (29.118e), any advective flux, ρo vC, that is directed into the region adds
tracer to the region, whereas a flux directed outward reduces the region’s tracer content. However,
because the velocity is non-divergent, the tracer contained within the region is unaffected if we
modify the advective tracer flux along the boundary by adding a number that is constant over
the region R. We see this property for any closed Eulerian region by writing9

0 =

ˆ
R

∇ · v dV =

˛
∂R
v · ndS. (29.119)

Hence, the velocity is, at each time instance, constrained so that the non-divergent flow cannot
lead to the accumulation of fluid within any closed and static region. Correspondingly, the
amount of fluid entering R exactly and instantaneously balances the amount of fluid leaving R.
We can thus add any spatial constant, k, to the advective flux without affecting the net tracer
content change

˛
∂R

(C + k)v · n̂dS =

˛
∂R
C v · n̂dS + k

˛
∂R
v · n̂dS =

˛
∂R
C v · n̂dS. (29.120)

Boundary advection occuring with C = k has no affect on the net tracer within a region since
an equal amount of fluid enters as leaves.

To help interpret the role of advective fluxes on integrated tracer content, we find it useful
to set the arbitrary spatial constant to k = −⟨C⟩. In this manner, the advective contribution to
the tracer budget takes the form

V

[
d⟨C⟩
dt

]
advective

= −
˛
∂R
C v · n̂dS = −

˛
∂R

(C − ⟨C⟩)v · n̂dS. (29.121)

Hence, advective transport through the region boundary changes the region integrated C, and
thus the volume mean ⟨C⟩, only if the boundary transport occurs with C values that differ from
the region average, ⟨C⟩.

9We considered property (29.119) in Exercise 21.5.
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29.5.3 A rectangular region example
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Figure 29.1: A rectangular ocean region for considering the tracer budget in a Boussinesq ocean. We assume
the only open boundaries of the region are along the southern boundary and top boundary, with the remaining
boundaries closed. Note that the top boundary can generally be within the ocean interior, and so does not need to
be the top of the ocean. The non-divergent nature of the flow means that any fluid entering through the southern
boundary must leave through the top boundary, and conversely. This constraint on the flow impacts on how the
advective tracer transport affects changes to the volume integrated tracer within the region.

Consider the rectangular region of Figure 29.1 that is closed along its bottom, northern,
eastern, and western boundaries, yet that is open along its top boundary and southern boundary.
Specify flow along the southern boundary to be northward and let it bring fluid into the region
with Csouth > ⟨C⟩, thus acting to increase ⟨C⟩. Due to the non-divergent nature of the velocity,
the northward transport of fluid through the southern boundary is exactly balanced by a
vertically upward transport of fluid out of the top boundary. What does that vertical transport
of fluid imply about changes to ⟨C⟩? The answer depends on the tracer concentration on the
top boundary.

• If Ctop > ⟨C⟩, then the relatively high values of tracer that leave through the top boundary
act to decrease the net C within the region, thus counteracting the contribution of
Csouth > ⟨C⟩ that enters through the southern boundary. For the special case of equal C
transports through the two boundaries, then there is no accumulation of C within the
region so that ⟨C⟩ remains unchanged.

• If Ctop = ⟨C⟩, then ⟨C⟩ increases due to the transport of C through the southern boundary,
with no net transport across the top boundary.

• If Ctop < ⟨C⟩, then the vertical transport of Ctop < ⟨C⟩ increases ⟨C⟩ acting just like the
Csouth > ⟨C⟩ fluid that enters through the southern boundary. That is, we can increase ⟨C⟩
in the region by bringing fluid into the domain with C greater than ⟨C⟩, or by exporting
fluid with C less than ⟨C⟩.

29.5.4 Comments
Constraints introduced by the non-divergent nature of the Boussinesq ocean render subtleties
to the physical interpretation of how tracer fluxes affect the budget of tracer within a region.
These constraints are absent from the compressible fluid, whose flow is generally divergent. The
discussion in this section was motivated by Appendix B of Gregory (2000), who studied heat
(enthalpy) budgets within a numerical Boussinesq ocean circulation model.
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29.6 Mechanical energy analysis: Part I

The volume of a fluid element in a non-divergent flow remains materially invariant even as
pressure acts on the element. Hence, pressure cannot perform mechanical work on the fluid.
Consequently, a non-divergent flow supports no pressure work conversion between internal energy
and kinetic energy, which contrasts to the case in a non-Boussinesq fluid (see Section 26.4). In
this section we formulate a mechanical energy budget for the Boussinesq ocean, and find that
this budget is closed for a perfect fluid so long as the geopotential is time-independent and there
are no boundary effects. Many of the steps are directly analogous to those in a non-Boussinesq
fluid detailed in Chapter 26, though with some important distinctions that are emphasized in
this section as well as Section 29.8.

29.6.1 Governing equations

We develop the mechanical energy budget for an unforced non-hydrostatic Boussinesq ocean
with density a function only of salinity and Conservative Temperature,

ρ = ρ(S,Θ). (29.122)

The more general pressure-dependent equation of state is considered in Section 29.8. Furthermore,
we work with the velocity, density, and continuity equations in the form

ρo

[
Dv

Dt
+ 2Ω× v

]
= −∇p− ρ∇Φ (29.123a)

Dρ

Dt
=
∂ρ

∂S

DS

Dt
+
∂ρ

∂Θ

DΘ

Dt
= ρ̇ (29.123b)

∇ · v = 0. (29.123c)

Note that the geopotential, Φ, is generally a function of space and time, Φ = Φ(x, t), with thiisi
dependence appropriate when studying astronomical tides or mass inhomogeneities creating
spatial variations in the gravity field (see Chapter 34).

29.6.2 Kinetic energy

To obtain a kinetic energy equation, start by taking the dot product of the velocity, v, and
the momentum equation (29.123a) and note that the Coriolis acceleration drops out since it is
orthogonal to the velocity

v · (2Ω × v) = 0. (29.124)

The material time derivative takes the form

vi

[
∂vi
∂t

+ vj∂jvi

]
=
∂K

∂t
+ v · ∇K =

DK

Dt
, (29.125)

where we introduced the kinetic energy per mass

K = v · v/2. (29.126)

The equation for the Boussinesq kinetic energy per volume thus takes the form

ρo
DK

Dt
= −v · ∇p− ρv · ∇Φ. (29.127)
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Alternatively, we can write this equation in the flux-form

∂(ρo K)

∂t
+∇ · [v (ρo K + p)] = −ρv · ∇Φ, (29.128)

where we used ∇ · v = 0 to write v · ∇p = ∇ · (v p). Note that in Exercise 29.4 we show that the
kinetic energy evolution derived here for the non-hydrostatic fluid holds also for the hydrostatic
fluid, yet with the kinetic energy in the hydrostatic fluid determined solely by the horizontal
velocity.

The term −ρv · ∇Φ in the kinetic energy equation (29.128) is a source/sink that arises
from fluid motion crossing surfaces of constant geopotential. Moving a fluid element down
the geopotential gradient (v · ∇Φ < 0) increases the kinetic energy, and conversely when the
fluid moves up the geopotential gradient. We sometimes refer to this process as buoyancy
work, particularly when considered in the context of a vertically stratified fluid. We can further
exemplify this term by taking the simplified form of the geopotential, Φ = g z, in which
v · ∇Φ = g w.

29.6.3 Gravitational potential and mechanical energies

We here develop the gravitational energy budget and then add to the kinetic energy to derive
the mechanical energy budget.

Gravitational potential energy

A fluid element has a gravitational potential energy per mass given by the geopotential, Φ, which
has a material time derivative

DΦ

Dt
= ∂tΦ+ v · ∇Φ. (29.129)

The time-dependent geopotential provides an external source of potential energy to the system.
Additionally, motion moving up the gradient of the geopotential (v · ∇Φ > 0) increases the
potential energy per mass, and conversely for motion down the geopotential gradient.

Mechanical energy budget

Adding the gravitational potential energy equation (29.129) to the kinetic energy equation
(29.127) renders the material evolution

ρo
DK

Dt
+ ρ

DΦ

Dt
= −∇ · (v p) + ρ ∂tΦ. (29.130)

Note how the buoyancy work source, ρv · ∇Φ, dropped out from this budget. Consequently,
this term provides a reversible transfer of mechanical energy between gravitational potential
energy per volume and the kinetic energy per volume. We saw the same transfer in Section 26.4
when studying the mechanical energy budget for a compressible non-Boussinesq fluid.

Equation (29.130) has nearly the same form as that for the non-Boussinesq fluid given by
equation (26.49). However, for the Boussinesq ocean it does not lead to a flux-form conservation
law for mechanical energy, even for the perfect fluid. Operationally, the derivations diverge at
this point since for the non-Boussinesq fluid we make use of the mass continuity equation (19.6)
to write the material evolution of density. In contrast, material density evolution in a Boussinesq
ocean is determined by material changes in temperature, salinity, and pressure.

To develop a closed Boussinesq mechanical energy budget, add ΦDρ/Dt = Φ ρ̇ to both sides
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of equation (29.130) to render the material evolution for the mechanical energy per volume

D

Dt
[ρo K + ρΦ] = −∇ · (v p) + ρ ∂tΦ+ ρ̇Φ, (29.131)

which has the flux-form expression

∂t (ρo M) +∇ · [v (ρo M + p)] = ρ ∂tΦ+ ρ̇Φ, (29.132)

where we defined the Boussinesq mechanical energy per volume as

ρo M = ρo K + ρΦ. (29.133)

Note the ρo determining the kinetic energy per volume, whereas ρ determines the gravitational
potential energy. These distinct density factors result from the distinction made in the Boussinesq
ocean between inertial mass and gravitational mass. We discussed this point in the opening to
this chapter.

29.6.4 Finite volume mechanical energy bugdet

Recall that a scalar tracer concentration, C, satisfies a flux-form equation of the form (29.116)

∂t(ρoC) +∇ · (ρoC v + J) = 0, (29.134)

where J is a subgrid tracer flux. Comparing to the mechanical energy equation (29.132), we see
that mechanical energy has a non-zero source on the right hand side that cannot be written as
the divergence of a flux. Additionally, the tracer vector, J , corresponds in the energy equation to
the pressure flux, pv. With these correspondences between the tracer equation and mechanical
energy equation, we can make direct use of the Leibniz-Reynolds transport theorem in the form
of equation (20.49) to render the finite volume mechanical energy budget

d

dt

[ˆ
R

ρo M dV

]
= −

˛
∂R
ρo M (v− v(b)) · n̂dS −

˛
∂R
pv · n̂dS +

ˆ
R

[ρ ∂tΦ+ ρ̇Φ] dV, (29.135)

where R is the finite volume region, ∂R is its boundary, v(b) is the velocity of a point on the
boundary, and n̂ is the outward normal on the boundary. The first term on the right hand side
arises from the advective transport of mechanical energy across the moving region boundary,
taking into account the difference between the fluid velocity and boundary velocity. The second
term arises from the work done by pressure on the boundary, and the final term arises from time
dependence to the geopotential plus material changes in density. It is notable that the flow is
non-divergent at each point, so that pressure cannot do work in the interior of the region. Even
so, pressure can do work on the boundary of the region where v · n̂ ̸= 0. Observe that the budget
(29.135) for a Boussinesq fluid corresponds to the budget (26.55) for a non-Boussinesq fluid.

A material region is characterized by (v−v(b)) · n̂ = 0 on the boundaries, in which case there
is no transport of mechanical energy across the boundary. We are thus left with the mechanical
energy budget (29.135)

d

dt

[ˆ
R

ρo M dV

]
= −

˛
∂R
pv · n̂dS +

ˆ
R

(ρ ∂tΦ+ ρ̇Φ) dV. (29.136)

Recall we are assuming ρ = ρ(S,Θ) in this section, so that

ρ̇ = (∂ρ/∂S) Ṡ + (∂ρ/∂Θ) Θ̇. (29.137)

CHAPTER 29. THE BOUSSINESQ OCEAN page 793 of 2158



29.7. BOUSSINESQ ENERGETICS WITH MOLECULAR DISSIPATION

Hence, for a time-independent geopotential (∂tΦ = 0) and in the absence of processes that
contribute to a material evolution of S and Θ (i.e., Ṡ = 0 and Θ̇ = 0), then the finite volume
Boussinesq mechanical energy for a material fluid region is affected only by pressure work on
the boundaries.10

29.7 Boussinesq energetics with molecular dissipation

The ocean is a forced-dissipative system, with mechanical and buoyant forcing predominantly at
the surface and bottom boundaries and mechanical dissipation via molecular viscosity. In this
section we extend the discussion from Section 29.6 to here develop the mechanical energy budget
in a Boussinesq ocean affected by forcing and dissipation. Much of this discussion represents a
specialization of the more general presentation of energetics in Chapter 26, here focusing on the
ocean interior and considering the addition of buouyancy sources.

In particular, we examine energetics for the Boussinesq ocean equations written in their form
with Archimedean buoyancy

Dv/Dt+ 2Ω× v = −∇φ+ ẑ b+∇ · τ/ρo (29.138a)

Db/Dt = −∇ · F b +Qb (29.138b)

∇ · v = 0. (29.138c)

The term ∇ · τ/ρo is the divergence of a friction stress tensor, −∇ · F b is the convergence of
a buoyancy flux vector, and Qb is a buoyancy source either at the boundaries or the interior.
The new element in this discussion, relative to Chapter 26, concerns the role of the buoyancy
flux. One operational point to note is that for all subgrid scale and boundary conditions in a
Boussinesq ocean, appearances of the in situ density present in a non-Boussinesq fluids are here
converted to the Boussinesq reference density, ρo.

29.7.1 Forms for the buoyancy flux

Buoyancy flux for large-scale flows

For large-scale flows a particularly common form for the buoyancy flux is taken as

F b = −κ ∂zb ẑ + v∗b. (29.139)

The first term is a downgradient vertical diffusive flux with the vertical eddy diffusivity, κ > 0, a
function of the flow state so that

κ = κ(x, t). (29.140)

The second term is an advective flux, where the advective velocity, v∗ = (u∗, w∗), is assumed to
be non-divergent

∇ · v∗ = ∇h · u∗ + ∂zw
∗ = 0. (29.141)

The velocity, v∗, is commonly termed the eddy-induced velocity, with a particular choice for its
parameterization discussed in Exercise 29.9 and further examined in Section 71.1.

10We find that Ṡ and Θ̇ are nonzero in the presence of boundary processes (e.g., heat fluxes, fresh water fluxes)
and in the presence of mixing (e.g., as parameterized by diffusion). We study diffusion in Chapter 69 and then in
Chapter 73 we provide a detailed look at the suite of processes contributing to nonzero Ṡ and Θ̇.
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Boundary conditions

The normal component of the buouyancy flux vanishes at boundaries

n̂ · F b = 0, (29.142)

so that boundary buoyancy fluxes are assumed to sit within the source term, Qb, via

Qb = Qsurf at z = η(x, y, t) (29.143a)

Qb = Qbot at z = ηb(x, y) (29.143b)

v∗ · n̂ = 0 all boundaries, (29.143c)

where Qsurf is the surface buoyancy flux, Qbot is the bottom buoyancy flux (e.g., geothermal
heating), and n̂ is the outward normal at the boundaries. Both Qsurf and Qbot are positive when
directed upward. In Section 72.6 we detail the plethora of processes leading to boundary fluxes
of buoyancy.

Molecular buoyancy flux assumed in this section

In the remainder of this section, we are most interested in the energetic role of molecular
diffusion of buoyancy rather than turbulent mixing. In this case the buoyancy flux takes on the
downgradient diffusive form

F b = −κ∇b. (29.144)

29.7.2 Mechanical forcing and dissipation

Following our discussion of frictional stresses in Section 25.8, we here write the frictional
acceleration, F , in the Boussinesq ocean as the divergence of the frictional stress tensor, τ,

ρo F = ∇ · τ. (29.145)

Friction in large scale flows

For many large scale flows, the dominant contribution to frictional stresses arises from the vertical
divergence of horizontal subgrid stresses, in which case the horizontal frictional acceleration
vector takes the form

ρo F
h = ∂zτ = ρo

∂

∂z

[
νeddy ∂u

∂z

]
, (29.146)

where
τ = ρo ν

eddy ∂zu (29.147)

is the horizontal turbulent stress vector whose vertical derivative contributes to the vertical
transfer of horizontal momentum. Whereas the molecular viscosity, ν, is a function of the fluid
composition (Section 25.8), the eddy viscosity, νeddy, is a function of the flow so that

νeddy = νeddy(x, t) ≥ 0. (29.148)

The eddy viscosity is typically many orders of magnitude larger than the molecular viscosity in
regions of strong turbulent mixing.
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Boundary stresses

Boundary stresses are written as

n̂ · τ = τ surf at z = η(x, y, t) (29.149a)

(−n̂) · τ = τ bott at z = ηb(x, y). (29.149b)

The surface boundary stress vector, τ surf, arises from the transfer of momentum between the
ocean and atmosphere (or the ocean and ice). In numerical modeling practice, this stress is
computed by a boundary layer parameterization that ingests the momentum from the atmosphere
or ice and computes a stress that is transferred to the ocean through these boundary conditions.
As per Newton’s third law (the action/reaction law; see Section 25.10), the stress imparted to
the ocean is equal and opposite the stress imparted to the atmosphere at its lower boundary.

The bottom stress vector, τ bott, is often parameterized via a quadratic bottom drag

τ bott = −CD ρo v |v|, (29.150)

where CD > 0 is a dimensionless drag coefficient that is sometimes assumed to be a function of
the bottom topographic roughness. This bottom stress acts to drag the ocean bottom velocity
towards a state of rest. It is equal and opposite to the frictional stress transferred to the solid
earth from the ocean. Note that this bottom drag acts similarly to the linear Rayleigh drag
in equation (25.72). However, the bottom drag in equation (29.150) is nonlinear, whereas the
Rayleigh drag is linear

FRayleigh = −γ v. (29.151)

Molecular Laplacian friction assumed in this section

In the following, we are most interested in the energetic role of molecular viscosity rather than
turbulent viscosity. In this case the frictional acceleration takes on the form

F = ν∇2v. (29.152)

Additionally, we ignore all boundary contributions in order to focus on the contributions from
molecular viscosity.

29.7.3 Governing equations with molecular friction and diffusion
Assuming frictional acceleration given by molecular viscosity (29.152), and a buoyancy flux
given by downgradient molecular diffusion (29.144), leads to the simplified form of the governing
equations (29.138a)-(29.138c)

Dv/Dt+ 2Ω× v = −∇φ+ ẑ b+ ν∇2v (29.153a)

Db/Dt = κ∇2b+Qb (29.153b)

∇ · v = 0. (29.153c)

These are the equations to which we now examine energetics.

29.7.4 Kinetic energy evolution
To obtain a kinetic energy evolution equation, start by taking the dot product of the velocity, v,
with the momentum equation (29.153a). Since the Coriolis term drops out

v · (2Ω× v) = 0, (29.154)

page 796 of 2158 geophysical fluid mechanics



29.7. BOUSSINESQ ENERGETICS WITH MOLECULAR DISSIPATION

the material time derivative takes the form (assuming Cartesian tensors for simplicity)

vi [∂tvi + vj∂jvi] = ∂tK + v · ∇K = DK/Dt, (29.155)

where we introduced the kinetic energy per mass

K = v · v/2. (29.156)

Hence, the kinetic energy equation takes the form

DK/Dt = −∇ · (v φ) + w b+ ν v · ∇2v, (29.157)

where we used ∇ · v = 0 to write v · ∇φ = ∇ · (v φ). Equation (29.157) says that the kinetic
energy per mass of a Boussinesq fluid element is modified due to the advection of pressure,
vertical motion in a buoyancy stratified fluid, and the projection of the velocity onto the frictional
acceleration.

29.7.5 Frictional dissipation

Use of Cartesian coordinates allows us to write the Laplacian acting on a vector as (see Section
25.8.9)

∇2v = −∇× ω, (29.158)

which then brings the Laplacian friction to the form

−v · ∇2v = v · ∇ × ω (29.159a)

= vm ϵmnp ∂nωp (29.159b)

= ∂n(ϵmnp vm ωp)− ϵmnp ωp ∂nvm (29.159c)

= −∂n(ϵnmp vm ωp) + ϵnmp (∂nvm)ωp (29.159d)

= −∂n(v × ω)n + ωp ωp (29.159e)

= −∇ · (v × ω) + ω · ω. (29.159f)

The kinetic energy equation (29.157) can thus be written

DK/Dt = −∇ · (v φ) + w b− ν v · (∇ × ω) (29.160a)

= −∇ · [v φ+ ν (v × ω)] + w b− ν ω · ω. (29.160b)

The physical dimensions for all terms in these equations are L2 T−3: squared length per cubed
time, which is the dimensions of energy per mass per time.

29.7.6 Domain integrated kinetic energy

Consider a region of fluid with no boundary contributions. Performing a volume average over
that region leads to

d

dt
⟨K⟩ = ⟨w b⟩ − ϵ, (29.161)

where the angle-brackets denote volume averaging

⟨A⟩ =
´
AdV´
dV

. (29.162)
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To reach equation (29.161), we dropped all boundary terms, including the term n̂ · (v ×ω), and
introduced

ϵ =
ν
´
ω · ω dV´
dV

= ν ⟨ω · ω⟩ ≥ 0, (29.163)

which is the volume averaged kinetic energy dissipation rate arising from viscous effects (dimen-
sions of L2 T−3). We thus see that there is more kinetic energy dissipation for a Boussinesq flow
with larger domain averaged ω ·ω, and zero dissipation for flow with zero mean square vorticity.

Equation (29.161) says that the domain averaged kinetic energy per mass is reduced by
viscous dissipation acting within the fluid domain. Furthermore, the averaged kinetic energy is
increased in regions where buoyancy and vertical motion are positively correlated, ⟨w b⟩ > 0, in
which case light water preferentially moves vertically up and heavy water down. Conversely,
the averaged kinetic energy is decreased when buoyancy and vertical motion are negatively
correlated (light water preferentially moves down and heavy water up).

29.7.7 Potential energy evolution

Assuming the simple form of the geopotential

Φ = g z (29.164)

leads to
DΦ/Dt = g w = v · ∇Φ = ∇ · (vΦ), (29.165)

where the second equality follows from the definition of the material derivative, and since
∂Φ/∂t = 0. Multiplying the buoyancy equation (29.138b) by Φ, and the Φ equation (29.165) by
b, then adding, leads to

D(Φ b)/Dt = g bw +Φ(Qb + κ∇2b) (29.166a)

= g bw +ΦQb +∇ · (κΦ∇b)− κ∇Φ · ∇b (29.166b)

= g bw +ΦQb +∇ · (Φκ∇b)− g κ ∂zb, (29.166c)

so that
DP b/Dt = −bw − g−1ΦQb −∇ · (g−1Φκ∇b) + κ ∂zb. (29.167)

The product
P b = −g−1Φ b = z g δρ/ρo (29.168)

is the gravitational potential energy per mass associated with the deviation of density from the
Boussinesq reference density, ρo. Equation (29.167) says that the gravitational potential energy
per mass of a fluid element changes depending on the vertical motion of buoyancy (the −bw
term); from diabatic sources (the ΦQb term); from a total divergence associated with buoyancy
diffusion; and from the vertical diffusive flux of buoyancy. The diabatic source and diffusion are
both irreversible terms, whereas the vertical motion term is reversible.

Writing the material evolution (29.167) in its flux-form leads to the Eulerian balance equation
for the potential energy per mass

∂tP
b +∇ · [v P b + g−1Φκ∇b] = −bw − g−1ΦQb + κ ∂zb. (29.169)

Integrating over a region of constant volume and with zero boundary fluxes (other than fluxes
associated with Qb), leads to

d

dt
⟨P b⟩ = −⟨bw⟩ − g−1⟨ΦQb⟩+ κ

〈
∂b

∂z

〉
. (29.170)
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The domain averaged potential energy per mass evolves according to the correlation between
vertical motion and buoyancy; the correlation between heating and depth; and the domain
averaged vertical diffusive flux of buoyancy. We now comment on the right hand side terms.

Downgradient diffusion in the vertical

In a stably stratified ocean, buoyancy is larger in the upper ocean than deeper ocean, in which
case

∂b/∂z > 0 stably stratified. (29.171)

A downgradient vertical diffusive flux acts to homogenize in the vertical. Consequently, when
acting on a stably stratified fluid, diffusion moves buoyancy down from the upper ocean (where
buoyancy is large) into the interior ocean (where buoyancy is less). Conversely, it moves low
buoyancy upward. Consequently, diffusion makes the upper ocean less buoyant (heavier) and
the deeper ocean more buoyant (lighter). We thus see that diffusion raises the ocean center of
mass and as such it increases the domain averaged gravitational potential energy via equation
(29.170).

As a further comment, recall that diffusion in a compressible fluid does not move mass
(Section 20.1), but it generally does move volume. Conversely, for a Boussinesq ocean (which
has a non-divergent flow, ∇ · v = 0), diffusion does not move volume but it generally does move
mass. So since the flow is non-divergent, vertical diffusion can raise the center of mass through
buoyancy diffusion even while it does not create any volume transport.

Diabatic heating

The diabatic heating term in equation (29.170), −g−1⟨ΦQb⟩, increases potential energy if there
is a positive correlation between vertical position, −g−1Φ = −z, and heating

−g−1⟨ΦQb⟩ = −⟨z Qb⟩ > 0. (29.172)

That is, domain averaged potential energy increases if heating, Qb > 0, preferentially occurs in
regions deeper than cooling. This situation is not typical in the ocean, where heating is generally
shallower than cooling. Geothermal heating at the ocean bottom is perhaps the only example
where heating is deeper than cooling.

Vertical motion

The vertical motion term appearing in equation (29.170),

bw = −g w δρ/ρo (29.173)

has a positive sign in the kinetic energy equation (29.157), wherea is has a negative sign in the
potential energy equation (29.167). To help understand this term, consider the specific case of a
negatively buoyant fluid element

b = −g δρ/ρo < 0. (29.174)

If this fluid element moves vertically upward, w > 0, the fluid acquires positive gravitational
potential energy since relatively heavy water is moving upwards. This increase in potential
energy is reflected in the term −w b > 0 appearing in the potential energy equation (29.167).
This increase in gravitational potential energy is associated with a decrease in kinetic energy
through the w b < 0 term appearing in equation (29.157). The conversion between potential and
kinetic energy associated with the w b term is a key process arising from vertical motion.
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29.7.8 Mechanical energy

Adding the equation for kinetic energy per mass (29.157) to the potential energy equation
(29.167) leads to the material evolution for the mechanical energy per mass

D(K + P b)

Dt
= −∇ · [v φ+ ν v × ω + g−1 κΦ∇b]− ν ω · ω − g−1ΦQb + κ ∂zb. (29.175)

Notice how the term w b cancelled as it provides for a reversible transfer of mechanical energy
between gravitational potential and kinetic. This reversible transfer has no effect on the
mechanical energy. As emphasized by Gent (1993), frictional dissipation appears only in the
equation for kinetic energy per mass (29.157), whereas buoyancy diffusion and sources only
appear in the potential energy equation (29.167). When forming the mechanical energy equation,
these terms appear together.

Writing the budget (29.175) in flux-form leads to

∂(K + P b)

∂t
= −∇· [v (K+P b+φ)+ν v×ω+g−1 κΦ∇b]−ν ω ·ω−g−1ΦQb+κ ∂zb. (29.176)

The sum K+P b +φ appearing on the right hand side is the Bernoulli function for a Boussinesq
fluid (see Section 26.7 for the non-Boussinesq form of the Bernoulli function). Integrating the
local mechanical energy budget (29.176) over a region with constant volume, and dropping
surface terms, leads to the domain averaged mechanical energy budget

d

dt
⟨K + P b⟩ = −ϵ− ⟨z Qb⟩+ κ

〈
∂b

∂z

〉
. (29.177)

29.7.9 Conditions for steady state mechanical energy

A steady state mechanical energy balance for the full ocean domain is realized when there is a
balance between changes in domain averaged kinetic energy and changes in domain averaged
potential energy

d⟨K⟩
dt

= −d⟨P b⟩
dt

. (29.178)

Setting the domain integrated mechanical energy time tendency to zero in equation (29.177)
leads to the balance

ϵ = −⟨z Qb⟩+ κ

〈
∂b

∂z

〉
. (29.179)

Recall from equation (29.163) that frictional dissipation is sign-definite

ϵ ≥ 0. (29.180)

Consequently, a steady state mechanical energy for the ocean domain requires the right hand
side of equation (29.179) to be positive. Such occurs when heating is preferentially below cooling
(equation (29.172)), and when the diffusive flux moves buoyancy downward. We already discussed
the diffusive flux in relation to equation (29.171) above. For the heat source term Q, we observe
that locating a cooling source above the warming source will engender an overturning circulation,
thus providing a kinetic energy source to balance the sink from viscous dissipation.

29.7.10 Further reading

Elements of this material originate from Paparella and Young (2002), and with Chapter 21 of
Vallis (2017) offering a pedagogical discussion.
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29.8 Mechanical energy analysis: Part II
In this section we build on the analysis from Section 29.6, here allowing density to be a function
of salinity, Conservative Temperature, and pressure so that

Dρ

Dt
=
∂ρ

∂S

DS

Dt
+
∂ρ

∂Θ

DΘ

Dt
+
∂ρ

∂p

Dp

Dt
. (29.181)

Density thus materially evolves even in the absence of mixing or diabatic processes since Dp/Dt
is nonzero whenever flow crosses isobars. Hence, the flux-form mechanical energy equation
(29.132) now takes on the form

∂t (ρo K + ρΦ) +∇ · [v (ρo K + ρΦ+ p)] = ρ ∂tΦ+ Φ

[
∂ρ

∂S
Ṡ +

∂ρ

∂Θ
Θ̇ +

∂ρ

∂p
ṗ

]
. (29.182)

The right hand side terms provide sources that contribute to the evolution of mechanical energy.
In the absence of mixing, diabatic processes, and with a time independent geopotential, the
sources reduce to a term arising from motion across pressure surfaces. Such motion can occur
for either reversible or irreversible processes. This pressure source term is rather awkward since
it means the mechanical energy budget is not closed even when the flow is reversible (i.e., perfect
fluid) and with time independent astronomical forces. We now follow the approach of Young
(2010) to recover a closed Boussinesq mechanical energy budget by making use of a modified
form of the gravitational potential energy.

29.8.1 Boussinesq dynamic enthalpy
In this section we introduce a new thermodynamic function that, in effect, provides us with an
integrating factor to render a closed Boussinesq mechanical energy budget. This function is
referred to as the Boussinesq dynamic enthalpy. Before considering that function we do a brief
warm-up to refamiliarize ourself with the necessary thermodynamic formalism from Chapter 22.

Material time changes to a pressure integral of density

Consider a thermodynamic potential, Π̃(S,Θ, p | pr), defined according to the pressure integral
of the in situ density

Π̃(S,Θ, p | pr) ≡
ˆ p

pr

ρ(S,Θ, p′) dp′ =⇒
[
∂Π̃

∂p

]
S,Θ

= ρ(S,Θ, p), (29.183)

where pr is an arbitrary constant reference pressure. The notation Π̃(S,Θ, p | pr) emphasizes
that pr is a specified parameter whereas S,Θ, p are coordinates in thermodynamic configuration
space (see Section 22.1.4). The integration in equation (29.183) is taken over pressure in a ther-
modynamic configuration space rather than an integral over a region in x-space.11 Accordingly,
the infinitesimal increment of Π̃ is given by

δΠ̃ = δS

[
∂Π̃

∂S

]
Θ,p

+ δΘ

[
∂Π̃

∂Θ

]
S,p

+ δp

[
∂Π̃

∂p

]
S,Θ

(29.184a)

= δS

[
∂Π̃

∂S

]
Θ,p

+ δΘ

[
∂Π̃

∂Θ

]
S,p

+ ρ(S,Θ, p) δp. (29.184b)

11This is an example where the discussion in Section 26.6.3 is key, whereby we must distinguish between fields
in a thermodynamic configuration space versus fields in geographical space and time.
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If the increment is computed following a moving fluid element then we are led to the material
time derivative

DΠ̃

Dt
=

DS

Dt

[
∂Π̃

∂S

]
Θ,p

+
DΘ

Dt

[
∂Π̃

∂Θ

]
S,p

+ ρ(S,Θ, p)
Dp

Dt
. (29.185)

Material time changes to a geopotential integral of density

Using the same formalism as above, now consider a thermodynamic potential that is a function
of salinity, Conservative Temperature, and geopotential

Π(S,Θ,Φ|Φr) ≡
ˆ Φ

Φr

ρ(S,Θ,Φ′) dΦ′ =⇒
[
∂Π

∂Φ

]
S,Θ

= ρ(S,Θ,Φ), (29.186)

where Φr is an arbitrary constant reference geopotential. We offer the following three comments
concerning Π.

• For density that is independent of the geopotential, then ΠdV = (Φ− Φr) ρ dV , which is
the gravitational potential energy relative to a reference state. We thus interpret Π(S,Θ,Φ)
as a generalized gravitational potential energy per volume.

• One might consider Π to be the difference in hydrostatic pressure between Φ and Φr

as per equation (24.56). However, the integral in equation (24.56) occurs in x-space
between two geopotentials and holding the (x, y) coordinates fixed during the integration,
so that this integration generally crosses surfaces of constant S and Θ. In contrast,
integration in equation (29.186) is taken from Φr to Φ within thermodynamic configuration
space so that S and Θ are fixed while performing the geopotential integral. In this
manner, the geopotential, rather than pressure, provides a coordinate within a Boussinesq
thermodynamic configuration space along with S and Θ.

• Young (2010) provides motivation for calling Π the Boussinesq dynamic enthalpy.

Following the same formalism used to derive DΠ̃/Dt in equation (29.185), we here compute
the material time derivative of the Boussinesq dynamic enthalpy

DΠ

Dt
=

DS

Dt

[
∂Π

∂S

]
Θ,Φ

+
DΘ

Dt

[
∂Π

∂Θ

]
S,Φ

+ ρ(S,Θ,Φ)
DΦ

Dt
. (29.187)

We now create a mechanical energy budget in the form

D

Dt
[ρo K +Π] = −[v · ∇p+ ρv · ∇Φ] + Ṡ

[
∂Π

∂S

]
Θ,Φ

+ Θ̇

[
∂Π

∂Θ

]
S,Φ

+ ρ
DΦ

Dt
(29.188a)

= −[v · ∇p+ ρv · ∇Φ] + Ṡ

[
∂Π

∂S

]
Θ,Φ

+ Θ̇

[
∂Π

∂Θ

]
S,Φ

+ ρ (∂tΦ+ v · ∇Φ)

(29.188b)

= −v · ∇p+ ρ ∂tΦ+ Ṡ

[
∂Π

∂S

]
Θ,Φ

+ Θ̇

[
∂Π

∂Θ

]
S,Φ

, (29.188c)

whose flux-form expression is given by

∂t (ρo K +Π) +∇ · [v · (ρo K +Π+ p)] = ρ ∂tΦ+ Ṡ

[
∂Π

∂S

]
Θ,Φ

+ Θ̇

[
∂Π

∂Θ

]
S,Φ

. (29.189)

We thus see that in the absence of irreversible effects, and with a time independent geopotential,
we have succeeded in deriving a closed (i.e., flux-form) mechanical energy budget for a Boussinesq
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ocean, with

ρo M = ρo K +Π
ρ=ρ(S,Θ)−−−−−−→ ρo K + ρ (Φ− Φr) (29.190)

the appropriate Boussinesq expression for the mechanical energy per volume.

29.8.2 Regionally integrated Boussinesq dynamic enthalpy

Following the treatment for a compressible non-Boussinesq fluid in Section 26.2.4, we here
study evolution of the gravitational potential energy integrated over a finite region, R, that
is open to material mass transport. Rather than working with the geopotential as done for
the non-Boussinesq fluid, we here follow the discussion in Section 29.8.1 by making use of the
Boussinesq dynamic enthalpy, thus ensuring a closed mechanical energy budget.

Budget with the equation of state: ρ = ρ(S,Θ,Φ)

For this purpose we make use the Leibniz-Reynolds transport theorem in the form of equation
(20.37) to find

d

dt

ˆ
R

ΠdV =

ˆ
R

∂tΠdV +

˛
∂R

Πv(b) · n̂dS =

ˆ
R

DΠ

Dt
dV +

˛
∂R

Π(v(b) − v) · n̂dS, (29.191)

where v(b) is the velocity of a point on the boundary of the domain, ∂R. We expose contributions
from irreversible processes leading to material time changes to S and Θ by making use of the
identity (29.187)

d

dt

ˆ
R

ΠdV =

ˆ
R

[
DS

Dt

[
∂Π

∂S

]
Θ,Φ

+
DΘ

Dt

[
∂Π

∂Θ

]
S,Φ

+ ρ
DΦ

Dt

]
dV +

˛
∂R

Π(v(b)−v)·n̂dS. (29.192)

A constant can be added to the dynamic enthalpy without altering the energetics, which is seen
by noting that volume conservation means that (equation (21.65))

d

dt

ˆ
dV = −

ˆ
∂R

(v − v(b)) · n̂dS. (29.193)

If the region is a vertical column of fluid with fixed horizontal cross-section, extending from
the ocean surface to the ocean bottom, then there is horizontal transport across the vertical
boundaries, plus vertical transport of mass across the ocean free surface. For the free surface we
make use of the surface kinematic boundary condition (19.88c) to write

ˆ
z=η

(Π/ρ) ρ (v(η) − v) · n̂dS =

ˆ
z=η

(Π/ρ)Qm dA. (29.194)

In this equation, Qm is the mass per time per horizontal area of matter crossing the ocean free
surface at z = η where Qm > 0 for matter entering the ocean domain, and dS is the area element
on the free surface with dA its horizontal projection.

Budget with the equation of state: ρ = ρ(S,Θ)

For the special case of an equation of state independent of pressure, ρ = ρ(S,Θ) (Section 29.6),
we have Π = ρ (Φ− Φr) so that equation (29.192) reduces to

d

dt

ˆ
R

ρ (Φ−Φr) dV =

ˆ
R

[
(Φ− Φr)

Dρ

Dt
+ ρ

DΦ

Dt

]
dV +

˛
∂R

[ρ (Φ−Φr) (v
(b)−v)] ·n̂dS. (29.195)
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Note that the reference geopotential, Φr, drops out since the Boussinesq form of the Leibniz-
Reynolds transport theorem (i.e., equation (29.191) with ρ replacing Π) leads to the identity

d

dt

ˆ
R

ρdV =

ˆ
R

Dρ

Dt
dV +

˛
∂R
ρ (v(b) − v) · n̂dS. (29.196)

This equation means that the gravitational mass for a region of Boussinesq ocean (left hand
side) changes through boundary terms, as for a non-Boussinesq fluid, plus processes that lead to
material time changes in S and Θ

ρ = ρ(S,Θ) =⇒ Dρ

Dt
=
∂ρ

∂S

DS

Dt
+
∂ρ

∂Θ

DΘ

Dt
. (29.197)

We understand the presence of the Ṡ and Θ̇ terms by noting that irreversible processes, such
as mixing, do not alter volume in a Boussinesq ocean. Hence, if irreversible processes change
density of a fluid element, then there must be a corresponding change in the gravitational mass
of the element.

29.8.3 Density derivatives
When computing the derivatives of density, it is important to note whether the derivative is
computed holding (Θ, S) fixed or holding (x, y) fixed. As seen here, this distinction can be
confused for the Boussinesq ocean, especially when the geopotential takes the simple form
Φ = g z.

Vertical derivative of in situ density for a non-Boussinesq fluid

To motivate the discussion, recall the in situ density for a non-Boussinesq fluid is a function of
the salinity, S, Conservative Temperature, Θ, and in situ pressure, p,

ρ = ρ(S,Θ, p), (29.198)

so that its spatial gradient is

∇ρ =

[
∂ρ

∂S

]
Θ,p

∇S +

[
∂ρ

∂Θ

]
S,p

∇Θ+

[
∂ρ

∂p

]
S,Θ

∇p =
[
∂ρ

∂S

]
Θ,p

∇S +

[
∂ρ

∂Θ

]
S,p

∇Θ+
1

c2s
∇p. (29.199)

In the final step we introduced the inverse squared sound speed

1

c2s
=

[
∂ρ

∂p

]
S,Θ

, (29.200)

which is the partial derivative of density holding S and Θ fixed. Equation (29.199) says that the
spatial gradient of density on the left hand side is determined by the sum of three terms that arise
from spatial gradients of (S,Θ, p), each multiplied by their respective functional derivative of
the equation of state for density. The vertical component of this equation arises when measuring
vertical stratification, in which case[

∂ρ

∂z

]
x,y

=

[
∂ρ

∂S

]
Θ,p

[
∂S

∂z

]
x,y

+

[
∂ρ

∂Θ

]
S,p

[
∂Θ

∂z

]
x,y

+
1

c2s

[
∂p

∂z

]
x,y

, (29.201)

with ∂p/∂z = −ρ g for a hydrostatic fluid. Note that we exposed the (x, y) labels on the left
hand side partial derivative. As seen next, these extra labels are especially important for the
case of the Boussinesq ocean.
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Vertical derivative of in situ density for a Boussinesq ocean

As seen earlier in this section, the in situ density for an energetically consistent Boussinesq ocean
has the functional dependence

ρ = ρ(S,Θ,Φ). (29.202)

That is, the geopotential, Φ, replaces pressure in the functional dependence, with the equation
of state evaluated with a pressure peos = −ρo Φ. Hence, the spatial gradient of in situ density for
a Boussinesq ocean is

∇ρ =

[
∂ρ

∂S

]
Θ,Φ

∇S +

[
∂ρ

∂Θ

]
S,Φ

∇Θ+

[
∂ρ

∂Φ

]
S,Θ

∇Φ, (29.203)

so that the vertical stratification is measured by[
∂ρ

∂z

]
x,y

=

[
∂ρ

∂S

]
Θ,Φ

[
∂S

∂z

]
x,y

+

[
∂ρ

∂Θ

]
S,Φ

[
∂Θ

∂z

]
x,y

+

[
∂ρ

∂Φ

]
S,Θ

[
∂Φ

∂z

]
x,y

. (29.204a)

This relation is analogous to the non-Boussinesq expression (29.201). In particular, the inverse
squared sound speed for a Boussinesq ocean is given by[

∂ρ

∂Φ

]
S,Θ

= − ρo
c2s
. (29.205)

Although the prognostic flow is non-divergent for the Boussinesq ocean, the full velocity field is
divergent (Section 29.1.9), thus supporting acoustic waves.

Now consider the special (and common) case of a simple geopotential, Φ = g z, whereby the
Boussinesq sound speed is given by [

∂ρ

∂z

]
S,Θ

= −ρo g
c2s
, (29.206)

and the vertical stratification derivative is given by[
∂ρ

∂z

]
x,y

=

[
∂ρ

∂S

]
Θ,z

[
∂S

∂z

]
x,y

+

[
∂ρ

∂Θ

]
S,z

[
∂Θ

∂z

]
x,y

+

[
∂ρ

∂z

]
S,Θ

. (29.207)

We here see why attachment of subscripts to the partial derivatives is essential to avoid confusion,
since [

∂ρ

∂z

]
x,y

̸=
[
∂ρ

∂z

]
S,Θ

. (29.208)

The left hand side vertical derivative is computed holding the horizontal position fixed, as
appropriate for computing the vertical stratification, whereas the right hand side vertical
derivative is computed with (S,Θ) fixed, as appropriate for computing the sound speed. These
two derivatives are conceptually distinct, with equation (29.207) exposing the mathematical
distinction.

Horizontal derivative of in situ density for a Boussinesq ocean

The horizontal portion of the gradient (29.203), computed along surfaces of constant geopotential,
is given by

∇Φρ =

[
∂ρ

∂S

]
Θ,Φ

∇ΦS +

[
∂ρ

∂Θ

]
S,Φ

∇ΦΘ. (29.209)
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Hence, when the geopotential takes the simple form, Φ = g z, then we have

∇hρ =

[
∂ρ

∂S

]
Θ,Φ

∇hS +

[
∂ρ

∂Θ

]
S,Φ

∇hΘ. (29.210)

In either case, we see that the horizontal density gradient in a Boussinesq ocean is determined
by the horizontal gradients of the Conservative Temperature and salinity.

29.8.4 Comments

Decoupling mechanical energy from internal energy

There are further nuances required to unravel energetics of the Boussinesq ocean, with details
provided by Young (2010). When encountering these details for the first time one may wonder
why bother since the non-Boussinesq energetics discussed in Sections 26.4 and 26.7 are, by
comparison, very straightforward. However, the difficulty with non-Boussinesq energetics arises
from the internal energy. Namely, since many geophysical flows, particularly those in the ocean,
have speeds that are tiny compared to molecular speeds (see Section 16.3), the mechanical energy
associated with geophysical flow is tiny relative to the internal energy arising from molecular
motions. So when studying the total energy budget for a non-Boussinesq fluid, that energy
is dominated by the internal energy. As detailed in Young (2010), the oceanic Boussinesq
approximation allows us to focus on the Boussinesq mechanical energy arising just from the fluid
flow, and it does so by decoupling mechanical energy from internal energy.

General form of the geopotential

The treatments in Young (2010) and Section 2.4.3 of Vallis (2017) focus on the simple form of
the geopotential, Φ = g z, in which case it appears that density in an energetically consistent
Boussinesq ocean can at most have the space and time dependence

ρ = ρ[S(x, t),Θ(x, t), p = −ρo g z]. (29.211)

However, the formalism developed by Young (2010) allows for a general geopotential, including
those that arise from astronomical tidal forcing and from mass redistributions such as near ice
shelves. In these cases we retain a consistent Boussinesq energetics with density of the more
general form

ρ = ρ[S(x, t),Θ(x, t), p = −ρo Φ(x, t)]. (29.212)

Distinct manifestations of irreversible processes

It is notable that the irreversible terms from Ṡ and Θ̇ that appear in the mechanical energy
equations (29.132), (29.188c) and (29.189) are absent from the non-Boussinesq budget in equation
(26.49). Instead, for the non-Boussinesq fluid, the irreversible mixing processes manifest through
their effects on flow convergence via the mass continuity equation

−∇ · v =
1

ρ

Dρ

Dt
. (29.213)

Since the Boussinesq ocean has a zero flow divergence, the role of mixing on the potential energy
budget appears elsewhere within the mechanical energy budget.
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29.9 Available potential energy

The gravitational potential energy per mass of a fluid element, as measured relative to the z = 0
geopotential, is given by g ρ z (when assuming a simple geopotential). But how much of that
potential energy can be transferred to generate kinetic energy? Not all of it since a state of
zero potential energy means all of the fluid sits at z = 0, which is not generally possible. In
Section 29.6 we noted that −g−1 bΦ is the potential energy per mass relative to the constant
density background state. Pursuing this idea one more step, consider a background buoyancy,
bref(z), that has a non-zero depth dependence but with no horizontal dependence. Without any
horizontal buoyancy gradients there are zero horizontal internal pressure gradients so that an
initially static fluid will remain static.12 Such fluids are said to have zero baroclinicity, with a
proper treatment of baroclinicity in the context of vorticity given in Section 40.7. As seen in
this vorticity discussion, a Boussinesq fluid with zero baroclinicity does not generate vorticity
since its pressure gradients are perpendicular to buoyancy gradients, which are vertical for a
reference state with b = bref(z) (see Section 29.1.2 for the Boussinesq baroclinicity vector). These
concepts from vorticity motivate us to compute the potential energy relative to a depth-dependent
background buoyancy profile.

Lorenz (1955) suggested that a particularly relevant background buoyancy state is the one
obtained by a reversible rearrangement or sorting of the original buoyancy to a state that has
zero baroclinicity. A reversible rearrangement means there is no mixing when moving between
the original state and the background state. The difference in gravitational potential energy
between these two states is termed the available potential energy (APE), with the APE measuring
the potential energy accessible for generating reversible motion.13 Figure 29.2 illustrates the
basic concept. In the remainder of this section we provide details to support a quantitative
understanding of available potential energy. We restrict attention to the perfect Boussinesq
ocean with a linear equation of state, and ignore the role of mixing and the rather difficult
nuances related with the nonlinear equation of state. We also assume a simple connected domain.

z

Reversible rearrangementState of nonzero baroclinicity State of zero baroclinicity

Figure 29.2: Isolines of constant buoyancy to illustrate the concept of available potential energy (APE) in a
stably stratified Boussinesq ocean. The initial state (left panel) with non-zero baroclinicity is reversibly rearranged
to have zero baroclinicity (right panel). The difference in gravitational potential energy between these two states
defines the APE in the initial state. As shown in Section 29.9.3, the APE is a non-negative measure of the amount
of gravitational potential energy that can, in principle, be reversibly converted to kinetic energy. Due to volume
conservation and the absence of irreversible processes, the depth of a buoyancy surface in the background state
shown in the right panel equals to the area average depth of the same buoyancy surface in the left panel (see
Section 29.9.2).

12External pressure gradients, such as from sea level gradients or applied pressure gradients, are also assumed
zero.

13Strictly, this is the potential energy available for producing motion if the fluid is allowed to relax to a
state with zero baroclinicity. Yet as seen in Chapter 31, rotating stratified fluids generally reach a steady state
(geostrophic balance) with nonzero baroclinicity (thermal wind). Even so, we ignore this concern by here following
the standard treatment of available potential energy.
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29.9.1 Analytic continuation of buoyancy surfaces

We use the term outcrop to refer to the vanishing of a buoyancy surface at the upper boundary,
and incrop when it vanishes at the lower boundary. Figure 29.3 illustrates such surfaces. When
considering a fluid in a domain with geometric boundaries, and when describing properties of
the fluid according to thermodynamic coordinates such as buoyancy, we must decide how to
describe these surfaces in regions where they do not exist; i.e., where they are outcropped or
incropped. We follow the Lorenz convention described in Lorenz (1955), Andrews (1983), Section
4 of Young (2012), and Appendix A of Ringler et al. (2017).

This goal might appear to be pointless; i.e, if the surface does not exist in a region, then why
do we need to specify any of its properties. However, the “analytic continuation” of buoyancy
surfaces is very useful when developing their kinematics, with particular use for available potential
energy in Section 29.9.3. Such concerns have further applications for studies of water mass
transformation arising from boundary buoyancy fluxes (e.g., Nurser et al. (1999) as well as
Chapter 73). Additionally, the buoyancy frequency along these surfaces is formally infinite since
the extended buoyancy surfaces are squeezed into a zero thickness layer. Evidently, analytic
continuation of buouyancy layers creates an infinite potential vorticity, which corresponds to the
potential vorticity delta sheets as discussed by Bretherton (1966) and Schneider et al. (2003).
In the following we limit our attention to domains with flat bottoms and vertical side-walls to
minimize the niceties that arise with more general domains.

Buoyancy-area mean height of a buoyancy surface

Let z = η(x, y,B, t) be the vertical position (“height” for brief) of a surface with buoyancy B.
We make use of the area mean height when formulating available potential energy. One way to
define the area mean is to integrate η(x, y,B, t) over the area of the buoyancy surface and then
divide by the area of the buoyancy surface

η(B, t)
buoyancy

=

´
B
η(x, y,B, t) dS´

B
dS

, (29.214)

where
´
B
dS is the area integral over the B buoyancy surface. Yet there are two problems with

this area calculation. First, the area of a buoyancy surface is rather complicated to compute in
practice, given that it can undulate, incrop, and outcrop. Second, the buoyancy surface area is
time dependent thus making the area mean also time dependent.

Domain-area mean height of a buoyancy surface

An alternative method to compute the area mean height is to integrate over the area of the fluid
domain

η(B) =

´
η(x, y,B, t) dA´

dA
, (29.215)

where

A =

ˆ
dA =

ˆ
fluid domain

dx dy (29.216)

is the time-independent horizontal area of the fluid domain. Time-independence of the area is a
plus. In choosing the full domain area, we must specify the height of a buoyancy surface in those
horizontal regions where the surface does not exist; i.e., where the surface outcrops or incrops.
By doing so, we prove in Section 29.9.2 that the area mean height is time-independent for all
buoyancy surfaces. This is another advantage of this approach. Finally, this area mean height
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satisfies the monotonicity property

η(B1) > η(B2) if B1 > B2. (29.217)

We make use of both the time-independence of the mean height and the monotonicity property
when formulating the available potential energy in Section 29.9.3.

z

b = B
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Figure 29.3: Geometry of buoyancy surfaces in a flat bottom box of perfect Boussinesq ocean with height
H and horizontal area

´
dA = A. Three representative buoyancy surfaces are shown: one that spans the full

domain with b = B, one that incrops at the bottom with b = Bincrop, and one that outcrops at the surface
with b = Boutcrop. The vertical height of a buoyancy surface is z = η(x, y,B, t); its area average (which is
time independent; see Section 29.9.2) is η(B) = A−1

´
η(x, y,B, t) dA; and its corresponding anomalous height

is η′(x, y,B, t) = η(x, y,B, t) − η(B). As a complement, a particular point on the z = η(B) height surface has
buoyancy b = B(x, y, η(B), t), which then leads to an anomalous buoyancy b′(x, y, η(B), t) = B(x, y, η(B), t)− B,

where B(x, y, η(B), t) = B (see equation (29.221)). To allow the formalism to be transparent across all buoyancy
surfaces, we set η(x, y,Boutcrop, t) = H in regions where the surface has outcropped, and η(x, y,Bincrop, t) = 0
where the surface has incropped (denoted by the red lines). As a complement, we set ∂z/∂b = 1/N2 = 0 for
regions where the surface has either incropped or outcropped, thus formally imposing an infinitely stratified
extension of the incropped and outcropped surfaces across the top and bottom domain boundaries. Through
this analytic continuation of the buoyancy surfaces, we are ensured that the area mean height of all buoyancy
surfaces forms a monotonic sequence from 0 to H, with η(B1) > η(B2) if B1 > B2. When focused on a
single buoyancy surface, we can reduce notational clutter by writing, for example, η rather than η(B), as well as
b′(η) = B(η)− B, and η′ = η − η.

Analytic continuation of surface height at outcrops and incrops

So how do we specify the height in outcrop regions? Let us motivate a specification by considering
a buoyancy surface that sits near the top of the domain; i.e., its buoyancy is near the domain
maximum, bmax. Assume this surface is not horizontal, with the surface b = Boutcrop in Figure
29.3 an example. Furthermore, let it cover less horizontal area than the full domain area. If we
horizontally integrate just over regions where the surface does not outcrop, but still normalize
by the total horizontal area of the domain, then the area mean height will be less than certain
other buoyancy surfaces whose buoyancy is less and yet whose horizontal area is more. As a
result we will not satisfy the monotonicity property (29.217). A way to recover monotonicity is
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to analytically continue the buoyancy surface along the upper boundary so that its height in
the outcropped region is set to η(xoutcrop, youtcrop,Boutcrop, t) = H. Doing so then ensures that the
domain-area mean height for buoyancy surfaces will approach H as their buoyancy approaches
the maximum buoyancy. We provide an analogous continuation of the surface within the bottom
boundary so that

η(x, y,B, t) =

 H if (x, y) ∈ outcrop region
0 if (x, y) ∈ incrop region
η(x, y,B, t) otherwise.

(29.218)

These two continuations of the buoyancy surfaces ensures that the domain-area mean height
of all buoyancy surfaces forms a monotonic sequence and that the sequency extends from
0 ≤ η(B) ≤ H.

Analytic continuation of buoyancy stratification at outcrops and incrops

What does the analytic continuation (29.218) imply for buoyancy? As described, we allow all
outcropped buoyancy surfaces to continue along the surface at η = H. All outcropped surfaces
are thus squeezed into the infinitesimal upper fluid layer with buoyancy in that layer bounded
above by the domain maximum buoyancy, bmax. Likewise, for the bottom of the domain we
squeeze all incropped buoyancy surfaces into an infinitesimal layer bounded below by bmin, the
minimum buoyancy in the domain. Consequently, the upper and lower boundaries are formally
capped by infinitely stratified shells in which the inverse squared buoyancy frequency vanishes.

29.9.2 The dual relation between height and buoyancy
In deriving an expression for the APE in Section 29.9.3, we will find it useful to have relations
between the unsorted and sorted buoyancy fields. We will also make use of the dual relation
between the height of a constant buoyancy surface and the buoyancy of a constant height surface.
For this purpose we examine certain kinematic properties of buoyancy surfaces in a stably
stratified box of a perfect Boussinesq ocean as in Figure 29.3.

Volume beneath a buoyancy surface using height coordinates

Making use of notation from Figure 29.3, the volume of fluid contained beneath an arbitrary
buoyancy surface is

V (B) =

ˆ
dA

ˆ η(x,y,B,t)

0
dz =

ˆ
η(x, y,B, t) dA = Aη(B), (29.219)

The following properties result from volume conservation in a perfect non-divergent flow in the
absence of boundary fluxes (see Chapter 21).

• The volume of fluid beneath an arbitrary buoyancy surface is time-independent, as is the
area mean height of this surface. This property allowed us to drop the time argument
from V (B) and η(B) in equation (29.219).

• The area mean height of a buoyancy surface is identical to the height of the surface when
it is reversibly rearranged to be horizontal.

To verify these properties, recall that buoyancy surfaces are material in a perfect fluid so that
no fluid crosses them even as they fluctuate. It follows that the volume of fluid beneath an
arbitrary buoyancy surface is time-independent. Since the horizontal area of the domain is
time-independent, equation (29.219) also means that the area averaged height of the buoyancy
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surface is time-independent. Furthermore, any motion of a buoyancy surface in a perfect fluid is
reversible, including motion that flattens the surface. Since its area mean height remains fixed,
the area mean equals to the height of the surface when it is flat.

Area mean buoyancy on a constant depth surface

As a further realization of the dual relation between height and buoyancy, note that the area
average buoyancy, b = B(x, y, z, t) along a constant height surface is also constant in time

B(z) = A−1

ˆ
B(x, y, z, t) dA = time independent. (29.220)

This property follows since both buoyancy and volume are material constants following a fluid
parcel in a perfect Boussinesq ocean. Hence, a fluid parcel carries both its buoyancy and volume
unchanged so that the volume integrated buoyancy within any fluid region remains constant.
Correspondingly, the area integrated buoyancy along any fixed height surface remains constant.
It also follows that the area mean buoyancy at z = η(B) is B

B[η(B)] = A−1

ˆ
B(x, y, z = η(B), t) dA = B. (29.221)

Volume beneath a buoyancy surface using buoyancy coordinates

Let us return to the volume beneath a buoyancy surface, only now use buoyancy coordinates to
write

V (B) =

ˆ
dA

ˆ η(x,y,B,t)

0
dz =

ˆ
dA

ˆ B

b(x,y,0,t)

∂z

∂b
db =

ˆ
dA

ˆ B

b(x,y,0,t)

db

N2
(29.222)

where b(x, y, 0, t) is the buoyancy at the bottom of the domain and

N2 =
∂b

∂z
(29.223)

is the squared buoyancy frequency. As noted in Section 29.9.1 and illustrated in Figure 29.3, we
analytically continue the buoyancy surfaces into the surface and bottom boundaries so that

N−2(x, y,B) =

 = 0 if B > b(x, y,H) (surface outcrop region)
= 0 if B < b(x, y, 0) (bottom incrop region)
= N−2(x, y,B) if b(x, y, 0) ≤ B ≤ b(x, y,H).

(29.224)

In this manner we can replace the lower limit in equation (29.222) with a constant buoyancy
well below any buoyancy found in the domain, which we write as bmin, so that

V (B) =

ˆ
dA

ˆ B

bmin

db

N2
=

ˆ B

bmin

db

ˆ
dA

N2
. (29.225)

Being able to commute the area and buoyancy integrals proves useful in the following.

29.9.3 Exact expression for APE

In this subsection we develop an expression for the APE of the perfect stably stratified Boussinesq
ocean in a box. To start, consider the volume integrated gravitational potential energy per mass
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of the fluid in Figure 29.3, relative to a constant density background state with ρ = ρo

P = −
ˆ

dA

ˆ H

0
b z dz = −1

2

ˆ
dA

ˆ H

0
bd(z2). (29.226)

Integration by parts leads to the equivalent expression

P = −1

2

ˆ
dA

ˆ H

0
d(b z2) +

1

2

ˆ
dA

ˆ b(x,y,H)

b(x,y,0)
η2(x, y, b) db (29.227)

= −AH
2

2
b(H) +

1

2

ˆ
dA

ˆ b(x,y,H)

b(x,y,0)
η2(x, y, b) db, (29.228)

where b(H) is the area averaged buoyancy at the top of the fluid domain, z = H. As discussed
in Section 29.9.1, integration over the finite domain using a buoyancy coordinate leads us to
set b(H) = bmax, the domain maximum buoyancy. Likewise, the second expression in equation
(29.228) has its buoyancy integral range extended to bmin and bmax. By doing so we can swap the
area and buoyancy integrals to render

P =
A

2

[
−H2 bmax +

ˆ bmax

bmin

η2(b) db

]
, (29.229)

where η2(b) is the area mean of the squared height of a buoyancy surface. The same calculation
for the reference buoyancy, bref(z), leads to

Pref =
A

2

[
−H2 bmax +

ˆ bmax

bmin

η(b)
2
db

]
, (29.230)

where we noted that the height of a reference buoyancy surface equals to the area mean of the
corresponding buoyancy surface

η(bref) = η(b = bref), (29.231)

and the reference buoyancy at the surface boundary equals to the maximum buoyancy, bref(H) =
bmax.

Subtracting the gravitational potential energy of the reference/background state from the
potential energy of the full state renders an expression for the available potential energy

PAPE = P−Pref =
A

2

[ˆ bmax

bmin

[η2(b)− η(b)2] db
]
=

ˆ bmax

bmin

(η′)2 db ≥ 0, (29.232)

where (see Figure 29.3)
η(x, y, b, t) = η(b) + η′(x, y, b, t). (29.233)

The positive definite nature of the APE arises since either a positive or negative buoyancy
surface undulation gives rise to motion.

Equation (29.232) is an exact expression for the APE of a perfect Boussinesq ocean in a flat
bottom and simply connected domain. We encounter the same expression when studying the
APE in a shallow water fluid in Section 36.5.6. It is the natural expression when working in
buoyancy coordinates, whereby the APE is determined by height variations of constant buoyancy
surfaces.

page 812 of 2158 geophysical fluid mechanics



29.9. AVAILABLE POTENTIAL ENERGY

29.9.4 Approximate expression for APE

When working with geopotential coordinates it is useful to obtain an approximate expression for
the APE in terms of buoyancy variations on constant height surfaces. That is the subject of this
subsection.

Approximate version of APE in terms of buoyancy fluctuations

To develop an approximate expression for the APE we write the height of a buoyancy surface,
η(B), in the form (see caption to Figure 29.3 if confused by signs)

η(B) ≈ η(B) +

[
∂z

∂b

]
z=η

[B −B(η)] = η − b′

N2
≈ η − b′

N2
ref

, (29.234)

where the final step set N2(x, y, η) ≈ N2
ref(η), which is valid to the same order as the approxima-

tion. We are thus led to the approximate expression

η′ = η − η ≈ − b′

N2
ref

(29.235)

so that the APE is given approximately by

PAPE ≈ A
[ˆ H

0

(b′)2

2N2
ref

dz

]
. (29.236)

This approximate expression is commonly used in practical calculations of APE, particularly
when making use of field measurements (e.g., Bishop et al. (2020)).

Practical issues related to the sorted buoyancy profile

Figure 29.4 illustrates how to obtain the sorted buoyancy profile from a discretized version of
a stably stratified fluid. The buoyancy of each cell is compared to that of all other cells and
vertically stacked according to the relative buoyancy. The vertical position of the sorted grid
cell is determined by accumulating the volume per horizontal area of the cell, starting from the
bottom and moving up.

It is notable that cells with identical buoyancy lead to regions of zero vertical stratification
in the sorted buoyancy profile. Such zero stratification regions commonly arise when sorting
stratified fluid layers, where the buoyancy is constant within the layers. One is thus led to
perform a vertical smoothing of the sorted profile to remove such unstratified regions, particularly
if using the profile to define a background buoyancy frequency as required for the approximate
APE calculation given by equation (29.236).

Budget for approximatae APE

To develop a budget for the approximate form of APE, start by considering the budget for
buoyancy decomposed as

b(x, y, z, t) = bref(z) + b′(x, y, z, t), (29.237)

so that the perfect fluid buoyancy equation takes on the form

Db

Dt
= 0 =⇒ Db′

Dt
= −wN2

ref. (29.238)
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Discretize Sort
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H

Figure 29.4: Illustrating how to sort buoyancy to determine the background or reference profile for computing
APE. The first panel on the left shows a sample buoyancy field with black lines representing buoyancy isolines.
The second panel shows a discretized version of the field, with b0 a unit of buoyancy and each cell’s buoyancy an
integer multiple of b0. For simplicity we assume the horizontal area of the domain is depth independent and that
each of the discrete grid cells has the same volume and horizontal area. The third panel shows the result of sorting
the discrete buoyancy field, with the most buoyant fluid above the less buoyant fluid. During the sort, the cell’s
volume remains constant (Boussinesq ocean) and the accumulated volume per horizontal area determines the
vertical position of the sorted cell. The final panel shows the sorted profile bref(z). Note that regions of zero lateral
buoyancy gradient in the unsorted buoyancy field lead to vertically unstratified regions in the sorted buoyancy.

Multiplying by b′ leads to
D[(b′)2/2]

Dt
= −w b′N2

ref, (29.239)

and then dividing by N2
ref renders

∂PAPE

∂t
+ v · ∇PAPE = −w b′

[
1− b′

2

∂(1/N2
ref)

∂z

]
, (29.240)

where we defined the approximate APE per unit volume

PAPE = (1/2) [b′/Nref]
2. (29.241)

In the case of a depth-independent reference buoyancy frequency, we see that the APE per
unit volume materially evolves with a source −w b′, which is analogous to the potential energy
evolution where the source is −w b. Now adding equation (29.240) to the kinetic energy equation
(29.128) with Φ = g z leads to

∂(K + PAPE)

∂t
+ v · ∇(K + PAPE + p/ρo) = −w

[
g − bref −

(b′)2

2

∂(1/N2
ref)

∂z

]
. (29.242)

Note that a global area average on any surface eliminates the w (g − bref) term since

w = A−1

ˆ
w dA = 0, (29.243)

which follows from ∇ · v = 0 (see Exercise 21.6). Further simplifications arise with depth-
independent Nref, with the corresponding space and time spectra studied by Bühler et al.
(2014).

29.9.5 Comments

Elements of this section follow from Section 3.11.1 of Vallis (2017). Available potential energy
remains a compelling notion for many aspects of geophysical fluid studies. Unfortunately, for
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the ocean proves difficult to extend the formalism beyond the perfect fluid Boussinesq system
considered here. Particular difficulties arise from the nonlinear equation of state for seawater
and the nontrivial ocean geometry with distinct basins and enclosed seas. Further difficulties
arise when considering the non-simply connected nature of the ocean domain.

29.10 Exercises
exercise 29.1: Symmetry under a time-dependent translation
In this exercise we consider the Euler equation in free space (no boundaries) where we focus
only on the acceleration and the pressure gradient force. That is, we ignore any body forces
from gravity and planetary rotation so that the Euler equation takes on the form

ρo
Dv

Dt
= −∇p, (29.244)

where we assume a Boussinesq ocean so that ∇ · v = 0.

Consider a shift in the reference frame used to describe the flow so that a coordinate position
shifts according to

x→ x+ c(t), (29.245)

where the vector c is time dependent but has the same value for all points in space.

(a) Is the shift (29.245) a Galilean transformation? Hint: recall the discussion of Galilean
transformation in Section 17.5.

(b) What happens to pressure in the new reference frame? Hint: consider the elliptic problem
for pressure as discussed in Section 29.3.1.

(c) Write the equation of motion (29.244) in this new reference frame.

exercise 29.2: Steady parallel sheared flow on a tangent plane
Consider the non-divergent parallel sheared flow

v = x̂u(y), (29.246)

so that the flow is steady, zonal, and has a meridional dependence. Assume the flow is on a
tangent plane as discussed in Section 24.5.

(a) Show that this flow is an exact solution to the β-plane inviscid Boussinesq velocity equation.

(b) Express the corresponding pressure gradient in terms of u and other terms.

(c) Show that for an f -plane the stationary velocity can have an arbitrary orientation. Hint:
it is sufficient to show that v = ŷ v(x) is a stationary solution on the f -plane but not on
the β-plane.

exercise 29.3: A generalized Boussinesq approximation
In this exercise we derive a mild generalization to the Boussinesq approximation. This gener-
alization facilitates a more accurate decomposition of pressure by introducing a new reference
density, ρ(z), that is a static function of depth. The new decomposition also leads to a slightly
modified buoyancy field.
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The derivation starts with the usual decomposition of density using ρo as a space and time
constant

ρ(x, t) = ρo + ρ′(x, t), (29.247)

thus leading to the Boussinesq momentum equation

Dv

Dt
+ 2Ω× v = −ρ−1

o (∇p+ ẑ g ρ). (29.248)

But rather than take the traditional decomposition of the pressure and gravitational terms, we
now write

∇p+ ẑ g ρ = ∇[p− p(z) + p(z)] + ẑ g [ρ− ρ(z) + ρ(z)] (29.249a)

= ∇[p− p(z)] + ẑ g [ρ− ρ(z)]. (29.249b)

This step introduced the density, ρ(z), and the corresponding hydrostatically balanced pressure

dp(z)

dz
= −g ρ(z). (29.250)

(a) Show that the pressure is decomposed as

p(x, t) = [p(x, t)− p(z)] + p(z) = ρo φ̃+ p(z). (29.251)

What is φ̃?

(b) Introduce a buoyancy

b̃ = −g (ρ− ρ)
ρo

, (29.252)

defined relative to the depth-dependent background density, ρ(z), rather than the globally
constant density ρo. Show that the momentum equation is given by

Dv

Dt
+ 2Ω× v = −∇φ̃+ ẑ b̃. (29.253)

(c) Show that the baroclinicity vector appearing in the Boussinesq vorticity equation takes
the form

B̃ = ∇b̃× ẑ, (29.254)

which is mathematically the same as with the traditional Boussinesq approximation from
Section 29.1.2. We have thus succeeded in generalizing the pressure decomposition and
buoyancy field, yet without corrupting the familiar Boussinesq vorticity dynamics.

exercise 29.4: Kinetic energy for a perfect hydrostatic Boussinesq fluid
Consider a perfect hydrostatic Boussinesq ocean. Show that the kinetic energy per mass contained
in the horizontal velocity,

Khorz =
u · u
2

, (29.255)

satisfies the exact same equation as v · v/2 does for a non-hydrostatic fluid, as given by equation
(29.127). Assume the simple form for the geopotential, Φ = g z.

exercise 29.5: Energetics for a perfect Boussinesq ocean
In Section 29.6 we developed the energetic balances for a perfect Boussinesq ocean in a closed
domain (domain where all boundary fluxes vanish). We here rederive the same energetics but
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using the momentum, buoyancy, and continuity equations in the form that exposes buoyancy

Dv

Dt
+ 2Ω× v = −∇φ+ ẑ b (29.256a)

Db

Dt
= 0 (29.256b)

∇ · v = 0 (29.256c)

b = b(S,Θ). (29.256d)

Assume the simple form for the geopotential, Φ = g z, and assume a closed and static domain
(i.e., an Eulerian domain with no boundary contributions). To help physically interpret terms,
remember to isolate the total divergence terms and the remainder. Hint: this exercise is a
simplification of the material presented in Section 29.7.

(a) Derive the material time evolution equation for the kinetic energy.

(b) Derive the material time evolution equation for P b = −g−1Φ b = −b z, with Φ = g z.
Interpret P b and the processes that affect its material time evolution.

(c) Derive the mechanical energy equation written in its flux-form, where we define the
mechanical energy per volume as ρo (K + P b). Note the presence of ρo multiplying both
K and P b. We thus derive an expression for ρo D(K + P b)/Dt, and show that it is not
affected by w b. Discuss.

(d) Integrate the equation for the mechanical energy per mass to derive a global domain budget
for mechanical energy. Discuss.

exercise 29.6: Kinetic energy and the hydrostatic Boussinesq equations
In this exercise we develop some properties of the kinetic energy for the hydrostatic Boussinesq
equations listed in Section 29.1.6. We here assume the horizontal frictional acceleration is
determined by vertical viscous friction in equation (29.146), and the stress boundary conditions
are given by equations (29.149a) and (29.150).

(a) Derive the flux-form expression for the kinetic energy budget.

(b) Why does the kinetic energy only have contributions from the horizontal velocity compo-
nents?

(c) Discuss the role of vertical viscosity in transporting kinetic energy in the vertical.

(d) Discuss the role of vertical viscosity in dissipating kinetic energy.

(e) Discuss how wind stress and bottom drag impact the globally integrated kinetic energy.
Assume bottom drag in the form of equation (29.150).

exercise 29.7: Potential energy and the hydrostatic Boussinesq equations
In this exercise we develop some properties of the gravitational potential energy for the hydrostatic
Boussinesq equations stated in Section 29.1.6.

(a) Derive the flux-form budget for gravitational potential energy written as P b = −g−1Φ b
with Φ = g z. Interpret P b.

(b) Discuss the role of the subgrid scale eddy-induced advection in this budget as given by
equation (29.139). In particular, discuss its impact on the center of mass of the fluid.
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(c) Discuss the role of vertical diffusion in this budget as given by equation (29.139). In
particular, discuss its impact on the center of mass of the fluid.

(d) Integrate the gravitational potential energy budget over the global ocean. Discuss how
the surface boundary buoyancy flux, Qb, impacts on the global potential energy budget
through impacts on the center of mass of the fluid. Ignore any bottom geothermal heating.

exercise 29.8: Squared buoyancy and the ocean model equations
In this exercise we develop some properties of the squared buoyancy for the hydrostatic Boussinesq
equations stated in Section 29.1.6 using the subgrid scale buoyancy flux in equation (29.139).

(a) Write the flux-form budget describing the evolution of b2, the squared buoyancy. Write
the budget using the residual mean velocity defined by the sum

v† = v + v∗. (29.257)

Hint: start from the buoyancy equation written in the form

Db/Dt = −∇ · F b, (29.258)

with F b discussed in Section 29.7.1.

(b) Discuss the impacts from vertical diffusion on the b2 budget.

exercise 29.9: Parameterized eddy velocity and the ocean model equations
In this exercise we develop some implications of assuming a specific form for the parameterized
eddy velocity for the hydrostatic Boussinesq equations stated in Section 29.1.6. Namely, we
consider the specific form for the parameterized eddy-induced velocity proposed by Gent et al.
(1995)

u∗ = −∂z(B S) (29.259a)

w∗ = ∇h · (B S) (29.259b)

S = −∇hb
N2

(29.259c)

v∗ · n̂ = 0 at all ocean boundaries. (29.259d)

In this expression, B > 0 is an eddy diffusivity. To ensure v∗ · n̂ = 0 at all domain boundaries
requires that B = 0 along these boundaries. The horizontal vector S = (S(x), S(y), 0) measures
the slope of the buoyancy surfaces relative to the horizontal. We assume the ocean is stably
stratified in the vertical, so that ∂b/∂z = N2 > 0.

(a) Determine the vector streamfunction Ψ∗ such that

v∗ = ∇ × Ψ∗. (29.260)

Choose the gauge with ẑ ·Ψ∗ = 0.

(b) Show that ˆ η

−H
u∗ dz = 0. (29.261)

That is, the parameterized horizontal flow has a zero depth integral.
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(c) At any chosen meridional position y, the meridional buoyancy transport from advection
(resolved plus parameterized) is computed by

B(y)(y, t) =

ˆ x2

x1

dx

ˆ η

−H
b (v + v∗) dz. (29.262)

The zonal and vertical integrals are over the full zonal and vertical extent of the ocean
domain. Show that the effects from v∗ are to reduce the meridional gradients of buoyancy.
That is, if buoyancy decreases poleward, then v∗ will flux buoyancy poleward to reduce
the gradient.

(d) How does the introduction of v∗ to the buoyancy equation (29.24c) affect the global
integrated gravitational potential energy? Discuss.

(e) How does the introduction of v∗ to the buoyancy equation (29.24c) affect the global
integrated available potential energy? Discuss.

CHAPTER 29. THE BOUSSINESQ OCEAN page 819 of 2158



29.10. EXERCISES

page 820 of 2158 geophysical fluid mechanics



Chapter 30

BUOYANT ACCELERATION OF FLUIDS

A large portion of the vertical pressure force acting on a geophysical fluid element is balanced
by the gravitational force, with a precise balance holding for an exact hydrostatic fluid. If
there are unbalanced density-induced pressure forces, then a fluid element experiences a buoyant
acceleration that acts in the vertical. That is, buoyancy is the unbalanced vertical acceleration
from pressure that acts on a fluid element placed within a fluid with density inhomogeneities in
the presence of a gravity field. Correspondingly, buoyancy vanishes in a fluid with a homogeneous
density, even though each fluid element still feels a gravitational force.1 Buoyancy is a conceptually
useful means to organize vertical forces from gravity in a fluid with varying density. Namely,
if the vertical pressure forces acting on a fluid element are balanced by gravity, then the fluid
element is neutrally buoyant; i.e., it floats. If these forces are unbalanced, then the fluid element
has a nonzero vertical buoyant acceleration.

Our study of buoyancy starts by examining a test fluid element, with a test fluid element
probing properties of the fluid environment without altering the environment.2 We refer to the
buoyancy of a test fluid element as the Archimedean buoyancy, with Archimedean buoyancy
providing a generalization of the familiar buoyancy acting to keep extended bodies, like a ship,
floating in a fluid.3 Examining the buoyancy of test fluid elements leads to the notions of
gravitational stability, neutral directions, and neutral trajectories.

References to buoyancy in the literature typically refer to the Archimedean buoyancy. Even
so, Archimedean buoyancy is an incomplete rendering of the forces associated with density
inhomogeneities and that act on a fluid element of any finite size. A more complete description
recognizes that a fluid element affects its surrounding fluid environment. This recognition leads
to the concept of effective buoyancy, with effective buoyancy accounting for the static forces
that create vertical accelerations of a fluid element. More precisely, effective buoyancy is the
vertical acceleration acting on a fluid element that remains when setting all velocity dependent
accelerations to zero (hence the term “static forces”). The effective buoyancy has a contribution
from Archimedean buoyancy, plus the vertical derivative of a pressure perturbation that depends
only on the density field. This extra pressure perturbation force is the back-reaction on a fluid
element due to the surrounding fluid environment.

1Even though buoyancy vanishes in a constant density fluid, there can still be vertical accelerations due to
nonzero flow convergences or divergences. For example, we encounter such accelerations when studying shallow
water flow in Chapter 35 (in particular see Section 35.2.8). Vertical acceleration of fluid elements also occurs in a
constant density fluid in the presence of surface gravity waves or capillary waves, as studied in Chapter 52.

2As defined in Section 17.2.5, a test fluid element is directly analogous to a point test mass particle that
probes a gravitational field and a point test electrical charge that probes an electromagnetic field. Neither the
test fluid element, test mass particle, nor test charge alter the force fields that they probe.

3The Archimedean buoyancy of a test fluid element makes use of perhaps the most ancient of physical concepts
in fluid mechanics. Archimedes was a mathematician, inventor, engineer, physicist, and astronomer who lived in
Syracuse, Sicily from roughly 287 B.C.E to 212 B.C.E.
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chapter guide

This chapter builds from the study of pressure in Chapters 24, 25, and 28. We also make
use of the equations for a Boussinesq fluid derived in Chapter 29, in particular the Poisson
equation satisfied by pressure in a non-divergent flow. An understanding of this chapter
supports an understanding of how pressure and gravity work within a fluid with density
inhomogeneities, thus creating vertical accelerations of fluid elements.
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30.11.3 Boundary value problems for the accelerations . . . . . . . . . . . 853
30.11.4 Relative scales for effective and Archimedean buoyancies . . . . . 854
30.11.5 Thought experiments for effective buoyancy . . . . . . . . . . . . 855
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30.1 Loose threads

• Provide some examples of beff fields in Section 30.11 as taken from Tarshish et al. (2018).

• Solution needed for Exercise 30.5.

30.2 Archimedes’ Principle for a fluid region

The Archimedean buoyancy acting on a massive body immersed in a static fluid is the vertical
acceleration due to the gravitational acceleration of the body relative to the gravitational
acceleration of the fluid displaced by the body. A body’s Archimedean buoyancy is proportional
to its density relative to the density of the displaced fluid. Hence, there is no Archimedean
buoyancy without gravity nor is there an Archimedean buoyant acceleration without density
differences. As shown in this section, these statements of Archimedes’ Principle are a direct
consequence of hydrostatics.

Archimedean buoyancy has wide applications for the study of bodies immersed within fluids;
e.g. mechanics of marine organisms, ships, submarines, hot air balloons. Our interests concern
the buoyancy of the fluid within itself, with this buoyancy fundamentally related to the density
field. To extend the notions of Archimedean buoyancy to a fluid, we make use of a test fluid
element originally defined in Section 17.2.5. A test fluid element is an imaginary probe that
does not alter the fluid environment into which it is placed. It serves to map the Archimedean
buoyancy of the fluid environment without modifying the fluid environment.

R

z

Figure 30.1: An arbitrary region of fluid, R, within a density stratified fluid experiences a gravitational force
acting down and a buoyant force acting up. The dark gray features represent the solid earth topography; i.e.,
mountains.
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30.2.1 Hydrostatic pressure force

Consider an arbitrary finite region, R, contained within an exactly hydrostatic fluid such as
shown in Figure 30.1. Rather than an immersed body, such as a ship or balloon, we are interested
in an arbitrary region of the fluid itself, such as an infinitesimal fluid element or a finite fluid
volume. The mass of the fluid region is given by the integral of the fluid density over the region

Mfluid =

ˆ
R

ρdV. (30.1)

We seek an understanding of the forces acting on this region.

As discussed in Chapters 25 and 28, any surface, even an imaginary surface, within a fluid
experiences a contact stress due to interactions between the fluid and the surface. For a fluid at
rest in a gravitational field, the only contact stress arises from pressure. There are no tangential
stresses from friction since there is, by assumption, no fluid motion. Pressure is a compressive
normal stress, acting in the direction determined by minus the outward normal along the surface.
Integrating the pressure over the closed boundary, ∂R, leads to the pressure force acting on the
region

Fpressure = −
˛
∂R
p n̂dS, (30.2)

where p is the pressure, n̂ is the outward normal on the boundary, and dS is the area element.

Since the region, R, is part of the fluid itself, then we can use Gauss’s divergence theorem
in the form of equation (2.84) to render the equivalent expression for Fpressure in terms of the
volume integral of the pressure gradient

Fpressure = −
ˆ
R

∇p dV. (30.3)

Furthermore, since the fluid is at rest, it maintains an exact hydrostatic balance so that its
pressure only has a dependence on the vertical position within the fluid, p = p(z). The hydrostatic
pressure equals to the weight per horizontal area of fluid sitting above any point in the fluid so
that its vertical derivative given by

dp

dz
= −ρ g. (30.4)

Hence, the force acting on the region is

Fpressure = −
ˆ
R

∇pdV = −
ˆ
R

ẑ (dp/dz) dV = ẑ g

ˆ
R

ρ dV = ẑ gMfluid, (30.5)

where we assumed a constant gravitational acceleration over R. The hydrostatic pressure acting
on the region imparts a vertical upward force equal to the weight of the fluid within the region.
This result is a mathematical expression of Archimedes’ Principle as applied to a fluid region.

Note that the net horizontal force acting over the region vanishes. The reason is that there
are no horizontal pressure gradients within the fluid since, by assumption, the fluid is at rest and
thus experiences no horizontal acceleration. So although the region R experiences horizontal
compressive pressure forces acting along its boundary, ∂R, these forces balance when integrated
over the body, thus leaving a zero net horizontal acceleration. We studied such static force
balances in Section 25.5.
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30.2.2 Archimedean buoyancy force
Imagine replacing the fluid in the region R with another material whose density, ρbody, generally
differs from that of the displaced fluid, so that its mass is given by

Mbody =

ˆ
R

ρbody dV. (30.6)

If the material has a density less than the displaced fluid, ρbody < ρfluid, then we say that R has
a net positive buoyancy force relative to the displaced fluid, in which case R experiences an
upward acceleration. The converse holds if R is filled with matter that is more dense than the
displaced fluid, in which case R sinks downward.

Mathematically we write this buoyancy force as

Fbuoy = ẑ g

ˆ
R

(ρfluid − ρbody) dV = ẑ g (Mfluid −Mbody). (30.7)

In this manner, we define the Archimedean buoyancy as a relative force. The vertical buoyancy
force is negative if the weight of the body is larger than that of the fluid it displaces, and
conversely if the body has less weight. If the densities are equal, then the body is neutrally
buoyant and thus experiences no net vertical force; i.e., it floats.

As we observed earlier, a nonzero buoyancy force that leads to vertical acceleration arises
from an imbalance between the gravitational body force acting over the region, R, with the
pressure contact force acting on the region boundary, ∂R. Furthermore, if R is a region of fluid
itself, then the buoyancy forces arise from non-hydrostatic pressure forces since any vertical
acceleration breaks the hydrostatic balance. We further examine these non-hydrostatic pressure
forces in Section 30.11.

30.3 Mass density and its flavors
The density of a fluid element is central to determining its buoyancy. The thermal equation of
state, or equation of state to be more brief (Section 23.4.1), provides an expression for the mass
density as a function of pressure, temperature, and material tracer concentration (salinity in the
ocean and humidity in the atmosphere). In this section we discuss the equation of state as well
as the related flavors of mass density used to study stratified fluids.

30.3.1 Equation of state for the atmosphere and ocean
The atmosphere and ocean are commonly approximated as two-component fluids (air and water
vapor for the atmosphere; freshwater and salt for ocean). We thus write the in situ density as a
function

ρ = ρ(S, T, p). (30.8)

This equation of state is a function of the in situ temperature, T , the in situ pressure, p, and
the in situ salinity (ocean) or humidity (atmosphere), S.4 The term in situ refers to a property
measured locally at a point in the fluid. Such in situ properties contrast to potential properties,
which are based on referencing to a chosen pressure (e.g., potential temperature described in
Section 23.3).

Liquids such as seawater have rather complex equations of states obtained from empirical fits
to measurements. Part of the complexity arises from the multi-component nature of seawater

4For our purposes when discussing the ocean, we set S = 1000C with C the salt concentration, with this
specification referred to as the absolute salinity by IOC et al. (2010). C generally has values around 0.035 so that
S has values around 35.
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(salt plus freshwater) as well as the nontrivial inter-molecular forces commonly found in liquids.
In contrast, the dry atmosphere can, for many purposes, be well approximated as an ideal gas,
which has a rather simple equation of state (see Section 23.4.1). Furthermore, even a moist
atmosphere has an equation of state that can be massaged to look like that of an ideal gas (e.g.,
see Section 18.1 of Vallis (2017)). Hence, much of our discussion in this section is biased toward
the ocean, where niceties of the equation of state are most important.

30.3.2 Modified temperature variables

As discussed in Section 23.3, the in situ temperature of a fluid element changes even if there
is no heating applied to the element nor any changes to its material composition. Pressure
changes provide a mechanical means for in situ temperature to change even in the presence
of physical processes that are adiabatic and constant composition (e.g., laminar flow). Is it
possible to remove such pressure effects and still have a field that describes the “temperature”
of a fluid element? That is, can we define a temperature-like field that is only modified by
irreversible processes such as heating and mixing? This question is answered by defining potential
temperature, θ, as well as potential enthalpy or Conservative Temperature, Θ. Details are provided
for potential temperature in Section 23.3 and Conservative Temperature in Section 26.11. For
now it is sufficient to note that the mass density can be written as a function salinity, potential
temperature, and pressure

ρ = ρ(S, θ, p), (30.9)

or as a function of salinity, Conservative Temperature, and pressure

ρ = ρ(S,Θ, p). (30.10)

For most purposes throughout this book, it is not important to distinguish between potential
temperature and Conservative Temperature.5 We choose to write Θ in most cases since
Conservative Temperature offers the most general and self-consistent theoretical foundations for
ocean thermodynamics, as per McDougall (2003) and IOC et al. (2010).

One comment on mathematical notation is key here. Namely, the functions ρ(S, T, p),
ρ(S, θ, p), and ρ(S,Θ, p) have distinct arguments and yet they all measure the same density. A
more mathematically honest nomenclature distinguishes the functions by writing, say,

ρ = F(S, T, p) = G(S, θ, p) = H(S,Θ, p). (30.11)

However, we choose brevity in notation by allowing the functional dependence to signal the
distinction. This overloaded notation is standard in the oceanography literature, with care
needed to ensure clarity in understanding.6

30.3.3 Differential and material time changes

Recall from Section 30.2.2 that to compute the buoyancy acting on a fluid element, we compare
the in situ density of the fluid element to that of its local surrounding fluid environment. To
support that comparison, we must consider how in situ density in the fluid differs between two
infinitesimally close points in the fluid. That is, we must compute the differential of in situ
density.7 Given the functional dependence for the equation of state written in terms of S,Θ, p

5One case where the distinction is important concerns an ideal gas atmosphere as discussed in Section 30.6.2.
6We made note of this point when introducing scalar fields in Section 1.5.1.
7Recall we introduced differentials in Section 2.8. For the mathematically inclined reader, we say that equation

(30.12) provides the exterior derivative of density.
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(equation (30.9)), the differential of in situ density is given by

dρ =

[
∂ρ

∂S

]
dS +

[
∂ρ

∂Θ

]
dΘ +

[
∂ρ

∂p

]
dp ≡ ρ β dS − ρα dΘ + c−2

s dp. (30.12)

The second equality introduced the following thermodynamic properties of the fluid8

β =
1

ρ

[
∂ρ

∂S

]
Θ,p

haline contraction coefficient (30.13)

α = −1

ρ

[
∂ρ

∂Θ

]
S,p

thermal expansion coefficient (30.14)

c2s =

[
∂p

∂ρ

]
S,Θ

squared sound speed. (30.15)

The haline contraction coefficient, β, is considered for the ocean, where haline refers to salinity.9

The density differential (30.12) leads to the expression for the material change in the in situ
density moving along a fluid particle trajectory

1

ρ

Dρ

Dt
= β

DS

Dt
− α DΘ

Dt
+

1

ρ c2s

Dp

Dt
. (30.16)

In the absence of mixing, the Conservative Temperature and salinity are materially constant.10

In this case, the material time evolution of the in situ density is affected only through adiabatic
processes that lead to material time changes to the pressure

Dρ

Dt
=

1

c2s

Dp

Dt
⇐= adiabatic and isohaline changes. (30.17)

30.3.4 Potential density

As discussed in Section 30.3.2, the reversible motion of a perfect fluid element generally occurs
with materially constant Conservative Temperature and materially constant tracer concentration.
We thus find it convenient to combine the evolution of salinity and Conservative Temperature
into the evolution of a single variable. Potential density is one such combination, which is defined
as the density a fluid element would have if reversibly moved to a chosen reference pressure

ϱ = ϱ(S,Θ|pref) ≡ ρ(S,Θ, p = pref). (30.18)

Hence, potential density is found by evaluating the equation of state for in situ density with the
local value for S and Θ, yet with the pressure set to the fixed reference pressure, p = pref. Potential
density is thus parametrically a function of the reference pressure. As for the Conservative
Temperature, the reference pressure is often taken at sea level. However, as noted in a few
paragraphs below, that choice is neither necessary nor universal.

8A property of the fluid is not a function of the fluid flow but instead is a function of the fluid state.
9Note that in many chapters of this book, β = ∂f/∂y is the meridional derivative of the Coriolis parameter.

We keep the two usages for β distinct so to avoid confusion.
10This statement has nuances that are discussed in Section 26.11 and in more detail in IOC et al. (2010). They

can be ignored for present purposes.
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Material evolution of potential density

With the definition (30.18), the material evolution of potential density is given by

1

ϱ

Dϱ

Dt
= β(S,Θ, p = pref)

DS

Dt
− α(S,Θ, p = pref)

DΘ

Dt
, (30.19)

where

β(S,Θ, p = pref) =
1

ϱ(S,Θ, p = pref)

[
∂ρ(S,Θ, pref)

∂S

]
Θ

haline contraction at p = pref

(30.20)

α(S,Θ, p = pref) = −
1

ϱ(S,Θ, p = pref)

[
∂ρ(S,Θ, pref)

∂Θ

]
S

thermal expansion at p = pref

(30.21)

are the haline contraction and thermal expansion coefficients evaluated at the reference pressure,
p = pref. Since pressure is fixed at the reference value, there is no pressure derivative on the right
hand side of equation (30.19). Conservative Temperature and salinity are materially constant
for reversible processes; i.e., adiabatic motion that also maintains constant matter content (e.g.,
isohaline) for fluid elements. By construction, potential density is also materially constant for
reversible processes since both terms on the right hand side of equation (30.19) vanish. This
behavior is in contrast to in situ density, whose evolution is affected by pressure changes as
revealed by equations (30.16) and (30.17).

Reference pressures for ϱ and Θ

The reference pressure for the potential density is commonly assumed to be the same as for
the Conservative Temperature (and potential temperature). This assumption is particularly
the norm for the atmosphere, where the reference pressure is generally taken at the sea level.
Likewise for the ocean, the potential temperature and Conservative Temperature are generally
computed using a standard sea level reference pressure. However, there are many occasions in
the ocean to consider potential density with larger reference pressures, such as when considering
physical processes (e.g., mixing) within the ocean interior. Doing so is motivated by the rather
strong nonlinear effects associated with the seawater equation of state. In this case, pressure
effects prompt one to choose a reference pressure closer to the in situ pressure near to the region
of analysis. Even though it is common to choose a potential density reference pressure distinct
from the surface pressure, the Conservative Temperature reference pressure generally remains at
the surface. There is no fundamental problem with the use of distinct reference pressures for ϱ
and Θ. In particular, all of the above properties of potential density remain unchanged.

30.3.5 Linear equation of state for the ocean
For certain purposes, it is useful to approximate the equation of state used to study ocean fluid
mechanics. One common idealization is to compute density as a linear function of Conservative
Temperature and salinity

ρ = ρo [1− α (Θ−Θ0) + β (S − S0)], (30.22)

where α, β, ρo, Θ0, and S0 are constants. An even further simplification is to set salinity to
a space-time constant, so that density is just a linear function of Conservative Temperature.
Alternatively, we may choose β = 0, in which case salinity is a passive tracer that has no impact
on density.
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30.3.6 Comments on density in a hydrostatic ocean
In an approximate hydrostatic fluid (Section 27.2), we only have access to the hydrostatic pressure.
As such, density can only be computed as a function of hydrostatic pressure. Furthermore,
density is generally a function of pressure whereas hydrostatic pressure is directly determined by
the vertical integral of density. This self-referential situation is resolved for the Boussinesq ocean
in which energetic consistency requires the seawater equation of state to use the geopotential
defined pressure, peos = −ρo Φ, as the argument for density (Section 29.8), which takes on the
static form, peos = −ρo g z, for a simple geopotential. For the non-Boussinesq hydrostatic ocean,
we can make use of pressure as the vertical coordinate, thus allowing for density to be evaluated
at a pressure prescribed by the value of the vertical coordinate.

30.3.7 Further study
Chapter 1 of Vallis (2017) provides a pedagogical discussion of the equation of state for an ideal
gas atmosphere and for seawater, as well as a discussion of the various flavors of density. See
also Section 18.1 of Vallis (2017) for the equation of state for an ideal gas with water vapor.
The seawater equation of state is detailed by IOC et al. (2010), with an overview provided by
McDougall et al. (2013).

30.4 Archimedean buoyancy of a test fluid element
We now return to the notions of Archimedean buoyancy (in brief, the “buoyancy”) of a test fluid
element. Again, buoyancy is the gravitational acceleration that acts on a massive body due to
the difference between the density of the body and the density of the local surrounding fluid
environment. For this section, we consider the massive body to be a test fluid element whose
presence does not alter the density field.

30.4.1 Locally referenced Archimedean buoyancy
Consider a local definition of fluid buoyancy according to

bloc = −g (ρtest − ρenv)/ρenv = g (1− ρtest/ρenv), (30.23)

where ρenv is the local density of the fluid environment, and ρtest is the density of the test fluid
element within that environment. If the fluid element has a density greater than the environment,
then it has a negative locally referenced buoyancy, and vice versa.

In probing the buoyancy of the fluid environment, we imagine moving the test fluid element
from one point to another. In that movement, the test fluid element might retain all of its
original properties, or those properties might be modified during the movement. That is, in
determining the buoyancy we determine ρtest by specifying its point of origin and how it is moved
(e.g., with or without mixing?). Conventional approaches are specified later in this section. A
key notion is that buoyancy as defined by equation (30.23) is a function of the path that the
test fluid element takes to reach the environment point. This subjectivity lends ambiguity to
the definition of local Archimedean buoyancy. We remove this ambiguity by asking specific
questions. One central question we ask is if the test fluid element moves an infinitesimal distance
while mixing its temperature and salinity with the environment, then what direction maintains
a neutrally buoyant state for the test fluid element? This question forms the basis for defining
neutral directions, which are studied in Section 30.5.

Working with locally referenced Archimedean buoyancy requires a redefinition of a reference
state when moving from point to point within a fluid. The continuum of reference states
allows for a local accounting of the gravitational stability and neutral directions. However, the
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re-referencing cannot be seamlessly incorporated into the equations of motion since at each point
one needs to redefine the reference state. As an alternative means to garner local information
about forces associated with density gradients, we examine the nature of the pressure force in
our discussion of effective buoyancy in Section 30.11.

30.4.2 Globally referenced Archimedean buoyancy
The definition (30.23) accepts that buoyancy is a relative field. Hence, at each fluid point we
redefine the environment to compare the density of the test fluid element. However, there are
cases in which it is sufficient to define a globally constant environment with a constant reference
density, ρref . In this case we consider the global buoyancy as

bglb = g (1− ρ/ρref), (30.24)

where we compute ρ according to the local environmental density. This definition is particularly
useful for idealized cases where the in situ density is not a function of pressure. In this case
buoyancy is a function only of Conservative Temperature and salinity so that we can make use
of potential density to measure buoyancy (as explained below).

Although the numerical value of bglb is a function of the reference density, what is more
relevant is the buoyancy of one fluid element relative to another

∆bglb = −g (∆ρ/ρref). (30.25)

The sign of this relative buoyancy does not depend on the reference density, with the sign all
that we need to conclude whether one fluid element is more buoyant than another. Furthermore,
with a globally constant environmental density, the buoyancy becomes a local function of space.
That is, we no longer compare the fluid element density to a changing local density. Instead, we
compute the local density and compare it to the reference density. We can thus determine bglb
at a point through information available just at that point. That is, bglb is a space-time local
field. Correspondingly, we can map bglb and determine the relative buoyancy of fluid elements
anywhere in the fluid.

30.5 Buoyancy stratification and neutral directions
What are the Archimedean buoyant forces that act on a fluid element? We answer this question
by using a test fluid element to probe the local fluid environment without disturbing the
environment. We do not consider time changes in this section. Rather, we here examine a
snapshot of the fluid environment and use test fluid elements to probe the buoyant properties of
that environment. In Section 30.8 we extend the notions of the present section to include time
changes.

In probing the buoyant properties of a fluid, we are led to introduce neutral directions,
which are directions that a test fluid element can move without any buoyancy force acting on
that element. The concept of a neutral direction was pioneered by McDougall (1987a,b) with
applications to the ocean. The thought experiments that build an understanding of neutral
directions are applicable to any continuously stratified fluid, thus serving to teach fundamental
aspects of buoyancy in both the ocean and atmosphere.

30.5.1 General considerations
As a fluid element moves through its surrounding fluid environment, it is exposed to a suite
of physical processes that can modify its thermal, material, and mechanical properties; i.e.,
its Θ, S, and p. Modification of its pressure occurs through contact stresses with other fluid
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elements (Chapters 25 and 28). Modification of its thermal and material properties occurs
through the mixing-induced exchange of heat and matter such as via diffusion (Chapter 69).
The exchange of thermal and material properties occurs in the presence of irreversible processes
whereas mechanical exchanges occur either reversibly (pressure exchange) or irreversibly (viscous
exchange; Section 25.3).

The in situ density of a fluid element generally changes when it moves through the fluid
environment, with the density change determined by how the element interacts with the
surrounding fluid. We conceive of two complementary interactions for the purpose of examining
the local Archimedean buoyancy of the test fluid element.

• unmixed test fluid element: Displace the test fluid element without changing Θ and
S yet allowing p to equilibrate with the local environment. We imagine this adiabatic
and isohaline (i.e., isentropic) displacement to occur by surrounding the test element with
a thermally and materially impermeable elastic sack. In this case there is no mixing
of the test element with the environment. Furthermore, assume the test fluid element
mechanically equilibrates its pressure with the surrounding fluid, so that the surrounding
fluid does reversible pressure-work (Section 22.2) on the test fluid element. The test fluid
element’s in situ density changes through the changing pressure of the local environment.

• mixed test fluid element: The complement thought experimence considers the displace-
ment of a test fluid element with its Θ, S, and p equilibrating with the local environment.
Such equilibration requires a complete mixing of the test fluid element’s Θ and S with the
local environment, as well as the mechanical equilibration of its pressure. Notably, the
mixed test fluid element represents a proxy for the local enviromental properties, since its
properties are identical to the local environment.
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Figure 30.2: Depicting the notion of a neutral direction within a stably stratified fluid. The left panel shows
surfaces of constant γ, which represents a surface of constant buoyancy. For example, with a density field that is
a function just of Θ, then γ surfaces are parallel to surfaces of constant Θ (see comment at end of Section 30.5.3).
Reversible displacements of test fluid elements along a constant γ surface incur no local buoyancy acceleration; i.e.,
the test fluid element floats along neutral directions. At each point along a γ surface, a neutral direction is defined
by directions within the local tangent to the surface. Note that for a fluid with a nonzero neutral helicity (Section
30.7), it is not possible to define such neutral surfaces globally. So this figure holds only for a vanishing neutral
helicity. Even so, we can define a neutral direction locally, as per the right panel, which shows a zoomed view of a
small region on a γ surface. Infinitesimal neutral displacements, δxγ , are displacements that satisfy δxγ · γ̂ = 0,
with this constraint leading to the neutrality condition (30.33). The dianeutral unit vector, γ̂, is the direction
orthogonal to the local neutral direction, with γ̂ given by equation (30.30). Again, the neutrality condition holds
locally at each point in the fluid, so neutral directions are defined even for a fluid with a nonzero neutral helicity.

If we displace the unmixed test fluid element to a region where its in situ density differs from
the local environment, then the fluid element feels a local Archimedean buoyant acceleration.
However, as we show in this section, there are directions that the test fluid element can move
that leave its local Archimedean buoyancy zero; i.e., where the test fluid element retains the same
in situ density as the local environment and so remains neutrally buoyant. These directions are
referred to as neutral directions. In effect, the test fluid element floats along a neutral direction
and illustrate this notion in Figure 30.2.
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A complementary means to conceive of neutral directions is found by considering the mixed
test fluid element that is displaced and equilibrates its Θ and S (through mixing), and p (through
mechanical interactions) with the local environment. An arbitrary displacement leads to a
change in the fluid element’s in situ density due to changes in Θ, S, and p. However, if the mixed
test element is displaced along the neutral direction, the mixing-induced changes from Θ and S
exactly balance (as per the neutrality condition (30.33) derived below). In this manner, the only
change to the in situ density arises from changes to the pressure felt by the test fluid element,
with these changes identical to those felt by the unmixed test fluid element when moving along a
neutral direction. We conclude that the buoyant acceleration vanishes along a neutral direction
for both an umixed test fluid element as well as for a test fluid element that is mixed with the
local environment.

30.5.2 Comparing in situ densities

ρ[S(x), θ(x), p(x)]

compare

density of local environment density of unmixed fluid element

adiabatic + isohaline displacementlocally mixed displacement
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ω[S(x+ εxω),!(x+ εxω), p(x+ εxω)] = ω[S(x),!(x), p(x+ εxω)] =→ neutral direction

Figure 30.3: Schematic of the two complementary thought experiments discussed in Section 30.5.2 used to
determine neutral directions. The right path concerns a test fluid element that is thermally and materially closed
but is mechanically open. Hence, as this test fluid element is displaced from its original location, x, to a new
position, x+ δx, it equilibrates to the local pressure but retains the Θ and S of the origin. If the in situ density of
the test fluid element is displaced along a direction where it maintains the same density as the local environment,
then the locally defined Archimedean buoyancy vanishes and this displacement is aligned along a neutral direction.
In this case, the displacement satisfies δxγ · γ̂ = 0, as per the neutrality condition (30.33). The complement
perspective is shown by the left path as defined by a test fluid element that locally mixes with its environment.
If the mixing-induced changes in Θ precisely compensate the mixing-induced changes in S, according to the
neutrality condition (30.33), then the in situ density change for this test fluid element arise only from changes in
pressure. But that change is just like for the ummixed test element on the right path. In this manner, both the
mixed and unmixed test fluid elements at x+ δx define the same neutral direction.

To make the above ideas mathematically precise, refer to Figure 30.3 as we consider an
infinitesimal displacement, δx, of a test fluid element and examine how its in situ density changes.
First consider the fluid element that equilibrates Θ, S, and p with the local environment along
its displacement, so that its in situ density at the new location equals to that of the local
environment, ρ(x+ δx). To leading order, the difference in density between the original position
and at the displaced position is computed according to the difference

δρ = ρ(x+ δx)− ρ(x) (30.26a)

= ρ[S(x+ δx),Θ(x+ δx), p(x+ δx)]− ρ[S(x),Θ(x), p(x)] (30.26b)

≈ δx ·
[
∂ρ

∂Θ
∇Θ+

∂ρ

∂S
∇S +

∂ρ

∂p
∇p
]

(30.26c)

= ρ δx ·
[
−α∇Θ+ β∇S +

1

ρ c2s
∇p
]
. (30.26d)
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For the unmixed test fluid element there is no exchange (no mixing) of Θ and S with its
surrounding fluid environment. Hence, changes to density of the test fluid element arise just
from pressure changes

(δρ)(no mix) = ρ(x+ δx)(no mix) − ρ(x) (30.27a)

= ρ[S(x),Θ(x), p(x+ δx)]− ρ[S(x),Θ(x), p(x)] (30.27b)

≈ ρ δx ·
[

1

ρ c2s
∇p
]
. (30.27c)

Comparing the densities of the two displaced test fluid elements renders

ρ(x+ δx)− ρ(x+ δx)(no mix) = δρ− (δρ)(no mix) (30.28a)

= [ρ(x+ δx)− ρ(x)]− [ρ(x+ δx)(no mix) − ρ(x)] (30.28b)

= ρ[S(x+ δx),Θ(x+ δx), p(x+ δx)]− ρ[S(x),Θ(x), p(x+ δx)] (30.28c)

≈ ρ δx · [−α∇Θ+ β∇S] . (30.28d)

We discuss this result in the following.

30.5.3 Neutral directions and the neutrality condition

Following the thought experiments illustrated in Figure 30.3, we find that if the density of the
displaced and unmixed test fluid element is the same as the local environment, then the particular
displacement defines a neutral direction. From equation (30.28d) we define a displacement along
a neutral direction as a displacement that satisfies

δxγ · [−α∇Θ+ β∇S] = δxγ · γ̂ | − α∇Θ+ β∇S| = 0, (30.29)

where we introduced the dianeutral direction given by the unit vector

γ̂ =
−α∇Θ+ β∇S
| − α∇Θ+ β∇S| , (30.30)

which points in the direction of increasing density.11 Infinitesimal displacements, δxγ , that are
orthogonal to the dianeutral direction, γ̂, occur along a neutral direction

δxγ · γ̂ = 0 =⇒ displacement along a neutral direction. (30.31)

These displacements of the unmixed test fluid element lead to no difference in the in situ density
of the local environment and the fluid element. Hence, neutral displacements retain a vanishing
local Archimedean buoyancy for the unmixed test fluid element. In contrast, displacements in
the dianeutral direction alter the local buoyancy.

Let us write the neutral displacement in the form

δxγ = t̂γ δs, (30.32)

where δs is the arc-length along the displacement and t̂γ is the unit vector pointing along the
neutral displacement. We can thus write equation (30.29) as

α t̂γ · ∇Θ = β t̂γ · ∇S, (30.33)

11Equation (4) in McDougall et al. (2014) makes use of the opposite sign convention so that their dianeutral
direction points towards decreasing density. We instead follow the water mass transformation convention as in
equation (73.38), so that γ̂ points in the direction of increasing density.
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which we refer to as the neutrality condition. The neutrality condition means that the α and
β weighted gradients of Θ and S are exactly balanced when aligned along a neutral direction.
So when considering neutral directions from the perspective of the mixed test fluid element,
the mixing-induced changes in Θ precisely compensate mixing-induced changes in S as per the
neutrality condition (30.33). As a result, the in situ density of the mixed test fluid element
changes only via changes to the pressure (since Θ and S changes are compensated), which is
precisely how the unmixed test fluid element changes its in situ density.

As a corollary, for those cases in which ∇S = 0, so that S is a spatial constant, then neutral
directions are aligned parallel to surfaces of constant Θ. In such fluids, Θ measures buoyancy so
that fluid motion along surfaces of constant Θ feel no buoyant acceleration. We mentioned this
case in Figure 30.2.

30.5.4 Comments and further study
Neutral directions were introduced to oceanography by McDougall (1987a,b), and they are the
basis for how oceanographers think about buoyancy stratification. Our discussion of neutral
directions was inspired by the concise presentation in Section 2.7.2 of Olbers et al. (2012). Our
study of vertical gravitational stability follows Section 3.6 of Gill (1982) as well as Section 2.10
of Vallis (2017). In an actual fluid, the movement of any fluid, even a tiny fluid element, modifies
the surrounding fluid so that a perfect test fluid element is a fiction. We return to this point in
Section 30.11 when studying effective buoyancy.

It is notable that we did not present a dynamical argument for why physical processes favor
neutral displacements. Rather, we appealed to intuition that suggests physical processes are
more “free” to act in directions that feel no buoyant forces. More thorough arguments require
dynamical principles, such as the equations of motion and associated energetic constraints. Even
so, there is presently no dynamical argument for why the ocean prefers neutral displacements over
arbitrary non-neutral displacements. However, empirical measurements of ocean mixing support
the relevance of neutral directions for orienting tracer mixing within the ocean interior. More
discussion of these points is given by McDougall et al. (2014), with mathematical implications
presented in Chapter 71.

30.6 Buoyancy frequency and gravitational stability
In Section 30.5 we considered a general spatial displacement, δx, of a test fluid element, and
determined conditions for this displacement to keep the locally defined Archimedean buoyancy at
zero. In this section we ask a slightly different question, focusing on a vertical displacement of the
test fluid element without mixing (Figure 30.4), where the difference between the environmental
density and the unmixed test element’s density is

ρ(z + δz)− ρ(z + δz)(no mix) = ρ δz (−α∂zΘ+ β ∂zS). (30.34)

We seek an understanding of whether the vertical fluid column is gravitationally stable to
such displacements. Since we assume there is no motion of the fluid, the stability calculation
determines whether the column is statically stable or statically unstable.12

Consider an upward displacement in equation (30.34) so that δz > 0. If the surrounding fluid
environment has a lower density than the adiabatic and isohaline displaced test fluid element,
ρ(z + δz) < ρ(z + δz)(no mix), then the test element feels a buoyant force returning it to the

12We study fluid instabilities in Part XI of this book, with most attention given to instabilities associated with
fluid flows. The static instability considered in this section occurs in the absence of fluid flow. Here, the instability
arises simply because the density profile has heavier fluid above lighter fluid, with gravity acting to overturn this
fluid column to produce a stable vertical stratification.
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Figure 30.4: Schematic of the calculation used to examine whether a fluid column is gravitationally stable under
vertical displacement of a test fluid element, here realized by specializing the general displacement in Figure 30.3.
An unmixed test fluid element (i.e., adiabatic and isohaline displacement) is displaced from its original location
at a position x to a position x+ δx, with δx = ẑ δz and δz > 0 in this figure. We compare the density of the
displaced unmixed test fluid element with the local environment to determine whether the density stratification of
the fluid environment is gravitationally stable (N2 > 0), unstable (N2 < 0), or neutrally stable (N2 = 0). Note
that displacements with N2 > 0 are associated with internal gravity waves studied in Chapter 57.

original vertical position. The restorative buoyant force per volume is written

g [ρ(z + δz)− ρ(z + δz)(no mix)] = g ρ δz (−α∂zΘ+ β ∂zS) ≡ −N2 ρ δz, (30.35)

where we defined the squared buoyancy frequency

N2 = g (α∂zΘ− β ∂zS). (30.36)

Gravitationally stable vertical motion results from a background density profile with N2 > 0. In
this case, the vertical displacement of an unmixed test fluid element moves the element into a
region where buoyancy acts to return it to the original vertical position. This buoyant restoring
force leads to buoyancy oscillations that can propagate in space-time in patterns referred to as
internal gravity waves, which we study in Chapter 57.

A gravitationally unstable profile, in which the fluid has higher density over lower, is signalled
by N2 < 0. In this case the displacement of an unmixed test fluid element results in an
exponential growth associated with gravitational instability. That is, when the fluid column
is vertically stratified with N2 < 0, a tiny vertical displacement of a test element leads to an
even larger displacement, thus causing the perturbation to grow. The resulting gravitational
instability causes the fluid to overturn so that it returns the fluid column to a gravitational
stable state.

30.6.1 Locally referenced potential density

Equation (30.36) defines the squared buoyancy frequency in terms of the vertical temperature
and salinity gradients. This expression is identical to the vertical gradient of the potential
density (30.18), when the reference pressure for density is taken local to the point where the
buoyancy frequency is computed. That is, the vertical gradient of the locally referenced potential

CHAPTER 30. BUOYANT ACCELERATION OF FLUIDS page 835 of 2158



30.6. BUOYANCY FREQUENCY AND GRAVITATIONAL STABILITY

density provides a measure of the vertical stratification

N2 = −g
[
1

ϱ

∂ϱ

∂z

]
pref=p

= g

[
α
∂Θ

∂z
− β ∂S

∂z

]
. (30.37)

At a point in the fluid, the locally referenced potential density equals to the in situ density.
However, when probing nearby points by displacing test fluid elements, and thus taking spatial
variations into account, the two densities have distinct gradients. Namely, the gradient of the in
situ density is affected by pressure gradients, whereas spatial gradients of the locally referenced
potential density do not feel pressure effects.

30.6.2 Gravitational stability of an ideal gas atmosphere

We introduced the adiabatic lapse rate in Section 23.2 as a measure of how temperature varies
as a function of pressure or depth. For an ideal gas atmosphere (Section 23.4), the temperature
decreases when moving into a region of less pressure, and increases in regions of greater pressure.
The squared buoyancy frequency for an ideal gas can be written (Exercise 30.2)

N2 =
g

θ

∂θ

∂z
. (30.38)

The potential temperature for an ideal gas is given by equation (23.92)

θ = T

[
pref
p

]φ
(30.39)

where
φ = RM/cp (30.40)

is the dimensionless ratio of the gas constant to the heat capacity, both of which are constants
for a simple ideal gas. Consequently, the squared buoyancy frequency takes the form

g−1N2 =
∂ ln θ

∂z
=
∂ lnT

∂z
− φ ∂ ln p

∂z
. (30.41)

Evidently, an in situ temperature that increases with height stabilizes the atmosphere, and a
pressure that decreases with height also stabilizes. The more common situation is for an in situ
temperature that decreases with height (e.g., it is typically colder on a mountain top than at
sea level), with pressure also decreasing with height. Depending on the rate of their decrease,
the atmosphere can be gravitationally stable (if temperature decreases gradually relative to
pressure) or unstable.

For a hydrostatic fluid with a constant gravitational acceleration, the vertical derivative of
pressure is given by (Section 27.2)

∂p

∂z
= −ρ g, (30.42)

so that pressure at a point in the fluid equals to the weight per area above that point (Section
24.6). Using this result leads to the squared buoyancy frequency for a hydrostatic ideal gas
atmosphere

g−1N2 =
∂ lnT

∂z
+
φg ρ

p
=

1

T

[
∂T

∂z
+
g

cp

]
, (30.43)

where we used the ideal gas relation p = ρ TRM for the final step. Equation (30.43) shows that
the squared buoyancy frequency is positive (atmosphere is gravitationally stable) if the decrease
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Tneutral

Figure 30.5: Three linear vertical profiles of in situ temperature in a dry ideal gas atmosphere. The neutrally
stable profile has Tneutral = T0 + z Γd, where Γd = −g/cp ≈ −9.8 K/(1000 m). A vertically unstable profile (heavy
over light) has Tunstable = T0 + z Γunstable where Γunstable < Γd = −g/cp. In contrast, the gravitationally stable
atmosphere has Tstable = T0 + z Γstable where Γstable > Γd = −g/cp.

with height of the in situ temperature is more gradual than the adiabatic lapse rate

N2 = 0⇐⇒ ∂zT = Γd, (30.44)

where for a dry ideal gas atmosphere (i.e., an atmosphere with no moisture and thus no phase
changes),13 we find (see equation(23.74))

Γd = −g/cp ≈ −9.8 K/(1000 m). (30.45)

Conversely, if the in situ temperature decreases upon ascent more quickly than the dry adiabatic
lapse rate, then the vertical column is gravitationally unstable. In effect, the column becomes
top heavy and subject to overturning. We summarize this gravitational stability criteria as
follows:

gravitationally stable N2 > 0⇐⇒− ∂zT < g/cp (30.46)

gravitationally neutral N2 = 0⇐⇒− ∂zT = g/cp (30.47)

gravitationally unstable N2 < 0⇐⇒− ∂zT > g/cp, (30.48)

with Figure 30.5 providing an illustration for three linear profiles of the in situ temperature.

30.6.3 Constant buoyancy frequency in idealized studies

In many idealized studies, pressure effects are ignored in the density, so that the squared buoyancy
frequency is computed as the vertical derivative

N2 = −g
ρ

∂ρ

∂z
(30.49)

We thus see that if the density has the exponential structure

ρ(z) = ρo e
−z/H , (30.50)

13A moist atmosphere has a lapse rate that has a smaller magnitude.
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then the squared buoyancy frequency is

N2 = g/H. (30.51)

For a Boussinesq ocean (Chapter 29), one typically computes the squared buoyancy frequency as

N2
Bous = −

g

ρo

∂ρ

∂z
(30.52)

so that the constant buoyancy frequency (30.51) arises from the linear density profile

ρ = ρo (1− z/H). (30.53)

Evidently, the Boussinesq density profile (30.53) is an approximation to the non-Boussinesq
profile (30.50) in the case of very large H. When studying thermodynamics we derived the
atmospheric scale height in equation (23.85), in whichH ≈ 10 km, which is within the troposphere.
In contrast, the ocean scale depth is about an order of magnitude larger given the nearly
incompressible nature of the ocean fluid, so that the scale depth for the ocean is well beneath the
ocean bottom. This is yet another reason that the Boussinesq ocean is a useful approximation
for many purposes of ocean mechanics.

30.7 Neutral helicity14

In our study of neutral directions in Section 30.5 we introduced the notion of a neutral dis-
placement. We here consider a remarkable property of neutral displacements and the dianeutral
direction, with this property first identified by McDougall and Jackett (1988).

30.7.1 Mathematical preliminaries
Consider a continuous and nonzero vector field, N(x), and write its normalized version as

n̂ =N/|N |. (30.54)

Let this vector field define a smooth two-dimensional surface, S, so that wherever N is evaluated
on S then it is perpendicular to S (see Figure 30.6 for an example). In general there is a continuum
of such surfaces, yet we are here only interested in one of them. To be specific, assuming n̂ · ẑ
is single-signed, let S be defined by the accumulation of points xS = x x̂ + y ŷ + ψ(x, y) ẑ,
where ψ(x, y) provides the vertical position of the surface as a continuous function of horizontal
position.15 In this case, N = ẑ − x̂ ∂xψ − ŷ ∂yψ when evaluated on S, so that N = x̂ when the
surface is flat. In the following, we say that these sorts of surfaces are well-defined since they are
both smooth and everywhere have an outward normal vector.

Consider an arbitrary closed region, Ω, that lives on the surface, Ω ∈ S. Let t̂ be a unit
tangent vector to the boundary of Ω and that is oriented counterclockwise around the boundary,
∂Ω, as defined relative to N (see Figure 30.6). Since N · t̂ = 0 by construction, we can integrate
this identity around ∂Ω to have

‰
∂Ω
N · t̂ds = 0 =⇒

ˆ
Ω
(∇ × N) · n̂dS = 0, (30.55)

where Stokes’ theorem renders the second identity. Since the region, Ω, is arbitrary, the area

14This section greatly benefited from input by Geoffrey Stanley.
15We considered such surfaces in Section 19.6.2 when studying kinematic boundary conditions for flow

encountering a material surface.
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integral in equation (30.55) vanishes only if the integrand is identically zero for each point on S.
We thus conclude:

well-defined surface S =⇒ H ≡N · (∇×N) = 0. (30.56)

The contrapositive also holds so that16

H ̸= 0 =⇒ ill-defined surface S. (30.57)

t̂n̂

Ω ∂Ω

S

Figure 30.6: A smooth and orientable two-dimensional surface, S, which we refer to as a “well-defined surface”.
At each point on S we can unambiguously define an outward normal, +n̂, and an inward normal, −n̂. Furthermore,
we can consider an arbitrary simply connected closed region, Ω, with boundary ∂Ω. The boundary is oriented
by a unit tangent vector, t̂, that is perpendicular to the unit normal, n̂ · t̂ = 0, and is oriented counterclockwise
around ∂Ω according to n̂.

30.7.2 Neutral helicity is the reason neutral surfaces are ill-defined

Now apply the above general results to the question of whether we can define a surface with its
outward normal parallel to the dianeutral direction, γ̂,

N = −α∇Θ+ β∇S = γ̂| − α∇Θ+ β∇S|. (30.58)

If such a surface exists, we refer to it as a surface neutral surface, since at each point on the
surface its local normal direction is γ̂. From the discussion in Section 30.7.1 we know that
neutral surfaces are well defined only if the neutral helicity vanishes, where the neutral helicity is

Hγ =N · (∇×N) = (−α∇Θ+ β∇S) · [∇ × (−α∇Θ+ β∇S)], (30.59)

which can be written

Hγ = (−α∇Θ+ β∇S) · [∇ × (−α∇Θ+ β∇S)] (30.60a)

= −α∇Θ · (∇ × β∇S)− β∇S · (∇ × α∇Θ) (30.60b)

= −α∇Θ · (∇β × ∇S)− β∇S · (∇α × ∇Θ). (30.60c)

16A contrapositive is a proposition or theorem formed by contradicting both the subject and predicate or both
the hypothesis and conclusion of a given proposition or theorem. More succintly, the proposition “if A then B”
has the contrapositive “if not-B then not-A”. Likewise, the proposition has the converse “if B then A”, and it has
the inverse “if not-A then not-B”.
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Further expanding the spatial gradients of α and β

∇α = (∂α/∂Θ)∇Θ+ (∂α/∂S)∇S + (∂α/∂p)∇p (30.61a)

∇β = (∂β/∂Θ)∇Θ+ (∂β/∂S)∇S + (∂β/∂p)∇p, (30.61b)

then leads to

−α∇Θ · (∇β × ∇S) = −α∇Θ · (∂pβ∇p×∇S) = −α∂pβ∇p · (∇S ×∇Θ) (30.62a)

−β∇S · (∇α × ∇Θ) = −β∇S · (∂pα∇p×∇Θ) = β ∂pα∇p · (∇S ×∇Θ) (30.62b)

which brings neutral helicity to the form

Hγ = ∇p · (∇S × ∇Θ) (β ∂pα− α∂pβ). (30.63)

Introducing the thermobaricity parameter17

T = β ∂p(α/β) = β−1 (β ∂pα− α∂pβ) (30.64)

renders the tidy result
Hγ = βT∇p · (∇S × ∇Θ). (30.65)

A nonzero neutral helicity (30.65) is fundamentally related to a nonzero thermobaricity parameter
T. It is also associated with the non-zero volume for a parallelopiped in (Θ, S, p) space18

∇p · (∇S × ∇Θ) = ∇Θ · (∇p × ∇S) = ∇S · (∇Θ × ∇p), (30.66)

with this volume a function of the (S,Θ, p) arrangement.
Returning to the question of whether a neutral surface is well-defined, we see that with

Hγ ̸= 0 then neutral surfaces are ill-defined. What does this result mean in practice? Consider a
stably stratified ocean where γ̂ · ẑ ≠ 0 everywhere. Even for this ocean we are unable to find any
finite smooth surface, Sγ , whose outward normal equals to γ̂ everywhere on that surface. That
is, we cannot find a single function, ψ(x, y), where N = ẑ − x̂ ∂xψ − ŷ ∂yψ everywhere on Sγ .

30.7.3 Comments and further study
Figure 30.6 provides an example smooth surface; i.e., a canonical well-defined surface. What does
an ill-defined surface look like? McDougall and Jackett (1988) answered by noting that neutral
paths possess a helical structure, with each closed loop in (S,Θ) space displaced vertically in
pressure. Besides being rather novel mathematically, this helical structure provides a source for
irreversible (dianeutral) transformation of seawater. Klocker and McDougall (2010a,b) estimated
the effects of this transformation on large-scale ocean overturning circulation. They found the
effects from neutral helicity to be comparable to those from mixing, especially in the Southern
Ocean.

Bennett (2019) discussed the geometry of neutral paths and made a connection to a theorem
of Carathéodory developed in the context of thermodynamics. Additionally, Stanley (2019)
showed that S and Θ (or ρ and p) on a neutral surface are functionally related but in a way that
varies geographically. Stanley’s topological analysis determined how different single-valued S-Θ
relations in different geographic regions mesh together to form a globally continuous S-Θ relation.
Stanley et al. (2021) then provided a corresponding method for determining approximate neutral
surfaces. Such approximate neutral surfaces are globally well-defined, and with a local normal
direction that is closely aligned with the dianeutral direction, γ̂.

17We further discuss the thermobaricity parameter in Section 72.3.
18See Section 1.8 for how three vectors define a volume in the space of the vectors.
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30.8 Neutral trajectories
We here extend the notion of neutral directions and neutral displacements considered in Section
30.5 to here allow for time dependence. We thus consider neutral trajectories, which are
infinitesimal paths in a transient fluid where a test fluid element moves without feeling any net
local buoyant force.

30.8.1 Specifying the neutral trajectory
We define a neutral trajectory according to the following algorithm, which generalizes the neutral
direction algorithm from Section 30.5.3.

Consider two equal mass test fluid elements at points, x and x+ δx. Exchange these
elements over a time increment, δt, without mixing (i.e., adiabatic and isohaline).
If the exchange leaves the local in situ density and pressure unchanged at the two
points, then the exchange occurs along a neutral trajectory. The resulting infinitesimal
displacement, δxγ , defines the neutral trajectory.19 The rate of change along the
neutral trajectory, vγ = δxγ/δt, defines the neutral velocity, vγ . As defined, neutral
trajectories only have infinitesimal extents.

Stated differently, we examine infinitesimal displacements of a test fluid element, δx, that occur
without any mixing of S or Θ, and with the displacement realized over an infinitesimal time
increment, δt > 0. If the displacement occurs along a neutral trajectory, written as δxγ , then at
the new position the in situ density of the environment, ρ(x+ δxγ , t+ dt), is equal to that of
the element, ρ[S(x, t),Θ(x, t), p(x+ dxγ , t+ δt)]. We are thus led to the following condition
that serves to implicitly define a neutral displacement

ρ[S(x, t),Θ(x, t), p(x+ δxγ , t+ δt)]︸ ︷︷ ︸
in situ density of displaced element at incremented time

= ρ[S(x+ δxγ , t+ δt),Θ(x+ δxγ , t+ δt), p(x+ δxγ , t+ δt)].︸ ︷︷ ︸
in situ density of environmental at displaced location and incremented time

(30.67)

This condition for a neutral displacement says that the in situ density of the environment at
(x+ δxγ , t+ δt) (right hand side) equals to the in situ density of a test fluid element that is
transported to (x+ δxγ , t+ δt), while holding S and Θ at the original (x, t) values (left hand
side).

30.8.2 Velocity of the neutral trajectory
The neutral trajectory condition (30.67) can be expressed as a differential relation by taking a
leading order Taylor expansion of its left hand side

ρ[S(x, t),Θ(x, t), p(x+ δxγ , t+ δt)] = ρ(x, t) +
∂ρ

∂p

[
δxγ · ∇p+ ∂p

∂t
δt

]
, (30.68)

as well as its right hand side

ρ[S(x+ δxγ , t+ δt),Θ(x+ δxγ , t+ δt), p(x+ δxγ , t+ δt)] = ρ(x, t)

+
∂ρ

∂p

[
δxγ · ∇p+ ∂p

∂t
δt

]
+
∂ρ

∂S

[
δxγ · ∇S +

∂S

∂t
δt

]
+
∂ρ

∂Θ

[
δxγ · ∇Θ+

∂Θ

∂t
δt

]
, (30.69)

19We use the same notation, δxγ , as used for neutral displacements in Section 30.5. The two displacements are
equal when ignoring time dependence.
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and then inserting into the density condition (30.67) to render

δxγ · (−α∇Θ+ β∇S) + (−α∂tΘ+ β ∂tS) δt = 0. (30.70)

Dividing by the time increment leads to the equivalent condition

vγ · (−α∇Θ+ β∇S) + (−α∂tΘ+ β ∂tS) = −α
DγΘ

Dt
+ β

DγS

Dt
= 0, (30.71)

where

vγ =
δxγ

δt
(30.72)

defines the three-dimensional velocity vector along a neutral trajectory, and we introduced the
corresponding time derivative following a neutral trajectory

Dγ

Dt
=

∂

∂t
+ vγ · ∇. (30.73)

Notably, the neutral trajectory constraint (30.71) can be written as a relation between the
pressure and density time derivatives along the neutral trajectory

∂ρ

∂p

Dγp

Dt
=

Dγρ

Dt
. (30.74)

We choose to focus on the form (30.71) in the following, since it exposes the tracesr S and Θ.

Equation (30.71) provides a time-dependent generalization of the neutrality condition (30.33)
derived for a static ocean. This generalization says that for a neutral space-time trajectory,
environmental changes in Θ encountered along the neutral trajectory are exactly compensated
by environmental changes in S. Equation (30.71) also provides an explicit expression for the
dianeutral component of the neutral velocity

vγ · γ̂ =
α∂tΘ− β ∂tS
| − α∇Θ+ β∇S| , (30.75)

where we introduced the dianeutral unit vector from equation (30.58)

γ̂ =
−α∇Θ+ β∇S
| − α∇Θ+ β∇S| =

N

|N | . (30.76)

30.8.3 Geometric expressions

Making use of the identity
v ·N = v · (−α∇Θ+ β∇S), (30.77)

along with equation (30.71) renders

N · (v − vγ) = −α DΘ

Dt
+ β

DS

Dt
, (30.78)

and further dividing by |N | = | − α∇Θ+ β∇S| gives

(v − vγ) · γ̂ =
−α Θ̇ + β Ṡ

| − α∇Θ+ β∇S| , (30.79)

which compares to equation (30.75) for vγ · γ̂. The left hand side of equation (30.79) is familiar
from our study of kinematics of surfaces in Section 19.6.2. Here, we do not have a globally
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defined surface (due to helicity from Section 30.7). Yet we can consider an infinitesimal area
element, δS, that is oriented perpendicular to the dianeutral unit vector, γ̂ δS. The volume per
time of fluid crossing that tiny area element is given by

volume per time of fluid crossing δS = (v − vγ) · γ̂ δS =
(−α Θ̇ + β Ṡ) δS

| − α∇Θ+ β∇S| . (30.80)

The right hand side is nonzero for cases where S and Θ experience material changes, and
when those material changes are not compensated so that α Θ̇ ̸= β Ṡ. In such cases, equation
(30.80) says that a fluid particle velocity, v, and a neutral trajectory velocity, vγ , have distinct
projections onto the dianeutral direction, γ̂.

As illustrated in Figure 30.7, there are two general ways for the right hand side of equation
(30.80) to vanish. First, in the absence of any irreversible processes, so that Θ̇ = 0 and
Ṡ = 0, then both Θ and S are materially invariant fluid properties and δS is a material area
element. The second way is to have compensated irreversible processes so that α Θ̇ = β Ṡ. This
compensation is reminscent of the compensation in equation (30.71) that is used to define the
neutral velocity, vγ , via the motion of Θ and S surfaces as per equation (30.75). However, the
condition α Θ̇ = β Ṡ concerns the irreversible processes acting on Θ and S, whereas equation
(30.71) concerns a reversible thought experiment used to define neutral trajectories.

Neutral diffusion studied in Section 71.4 is a physical process where the α Θ̇ = β Ṡ com-
pensation occurs, so long as the fluid has a linear equation of state (i.e., thermal expansion, α,
and haline contraction, β, are constants). Yet compensation is broken when neutral diffusion
occurs in the presence of a realistic (nonlinear) seawater equation of state, which introduces the
processes of cabbeling and thermobaricity as discussed in Section 72.3.

30.8.4 Summarizing the neutral relations
We here summarize the various relations for a neutral direction (time snapshot of the fluid) and
a neutral trajectory (motion through a transient fluid) by offering the geometrical perspective
depicted in Figure 30.7.
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Figure 30.7: Depicting neutral directions and neutral trajectories. Left panel: for a time snapshot, as summarized
by equation (30.81), then vγ · γ̂ = vγ ·N/|N | = 0, thus defining the neutral trajectory as perpendicular to the
dianeutral direction, with N = −α Θ̇ + β Ṡ. Middle panel: time dependent fluid with (v − vγ) ·N = −α Θ̇ + β Ṡ
as per equation (30.82d). Right panel: time dependent fluid yet with either Θ̇ = Ṡ = 0, as when there are no
irreversible mixing processes, or if those processes are compensated so that α Θ̇ = β Ṡ = 0, both of which render
(vγ − v) ·N = 0.

Neutral direction

A neutral direction equals to a neutral trajectory in the special case of a static fluid, in which case
Eulerian time derivatives vanish. In this case the constraint (30.70) reduces to the orthogonality
condition

δxγ · γ̂ = δtvγ · γ̂ = 0. (30.81)
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Hence, for a static fluid, the neutral displacement, δxγ = δtvγ , and the corresponding neutral
velocity, vγ , are everywhere orthogonal to the dianeutral vector, γ̂. This condition is illustrated
in the left panel of Figure 30.7.

Neutral trajectory

The conditions given in Sections 30.8.2 and 30.8.3 can be written in the following equivalent
manners

Dγρ

Dt
− ∂ρ

∂p

Dγp

Dt
= 0 (30.82a)

−α DγΘ

Dt
+ β

DγS

Dt
= 0 (30.82b)

−α∂tΘ+ β ∂tS + vγ · (−α∇Θ+ β∇S) = 0 (30.82c)

(v − vγ) ·N = −α Θ̇ + β Ṡ, (30.82d)

with equation (30.82d) depicted by the right two panels of Figure 30.7. These equations reflect
the need for a neutral trajectory, whose velocity is vγ , to weave its path within the time
dependent fluid environment. The special case with either Θ̇ = Ṡ = 0 (no irreversible processes)
or α Θ̇ = β Ṡ (compensated irreversible processes) means that the neutral trajectory satisfies
(v − vγ) ·N = 0, as depicted in the right panel of Figure 30.7.

30.8.5 Comments
By introducing time dependence we have enabled a step towards understanding how buoyancy
works within an evolving fluid, thus moving beyond the time snapshot built into the neutral
direction from Sections 30.5 and 30.7. Even so, the presentation in this section is limited in that
it only considers infinitesimal excursions along a neutral trajectory. Indeed, this limitation is
fundamental to the methods of neutral directions and neutral trajectories since they are designed
to probe local buoyant forces; that is, the buoyancy of a test fluid element relative to its local
environment. Moving beyond the infinitesimal trajectory leads to the concept of a test fluid
element that remains coherent over a finite path while maintaining local mechanical equilibrium
(i.e., pressure is equilibrated with the environment) and yet with fixed Θ and S. The finite
trajectories for such fluid elements start along a neutral trajectory, but deviate upon moving
further. McDougall (1987c) developed the mechanics of such fluid elements, with his study
motivated by ocean coherent vortex structures such as reviewed by McWilliams (1985).

30.9 Pressure forces and vertical motion
As introduced in Section 27.2 and further detailed in Section 29.2, an approximate hydrostatic
fluid is one in which the vertical pressure gradient locally balances the gravitational acceleration,
with the horizontal gradient of hydrostatic pressure contributing to horizontal accelerations.
Although vertical motion can occur in the approximately hydrostatic fluid, that motion is
diagnosed rather than prognosed since the vertical momentum equation is reduced to local
hydrostatic balance. For example, a diagnostic evaluation of the vertical velocity in a Boussinesq
ocean is performed through vertically integrating the continuity equation, ∂zw = −∇h · u, along
with the specification of w at one point within the vertical column.

As we see in equation (30.92c) derived below, the vertical derivative of the non-hydrostatic
pressure is the only inviscid force contributing to a vertical acceleration. So even if the fluid
satisfies the assumptions of approximate hydrostatic balance, it is the non-hydrostatic pressure
force that enables vertical accelerations. That is, for the approximately hydrostatic fluid, the
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local hydrostatic balance holds, ∂p/∂z = −ρ g, and yet there can still be a nonzero vertical
acceleration, Dw/Dt ≠ 0. This situation is directly analogous to the Boussinesq ocean as derived
in Section 29.1. For the Boussinesq ocean, we have a non-divergent flow field, ∇ · v = 0, and yet
the fluid itself is compressible so that density has space and time variations, Dρ/Dt ̸= 0.

We are concerned in this section with how pressure and gravity contribute to motion, and
offer two methods to organize their accelerations starting from the momentum equation with
the geopotential, Φ = g z,

ρDv/Dt+ 2Ω× ρv = −∇p− g ρ ẑ + ρF . (30.83)

Analysis involving both methods serve complementary roles in understanding the nature of
vertical accelerations.

30.9.1 Dynamically active and dynamically inactive pressures

We here follow the formulation of the Boussinesq ocean equations from Section 29.1.1 to organize
the pressure and gravity accelerations. For that purpose, introduce a constant reference density,
ρo, along with a corresponding hydrostatically balanced reference pressure

p(x, t) = p′(x, t) + p0(z) with dp0/dz = −ρo g. (30.84)

By decomposing pressure as p = p0+p
′, we expose the dynamically active portion of the pressure

field, p′, by removing the dynamically inactive pressure, p0, from the momentum equation. Note
that the dynamical pressure, p′, generally has both hydrostatic and non-hydrostatic contributions.

The decomposition (30.84) brings the pressure and gravity contributions on the right hand
side of equation (30.83) into the form

∇p+ ρ g ẑ = ∇p′ − ρo b ẑ. (30.85)

In this equation we introduced the globally referenced Archimedean buoyancy computed relative
to the globally constant reference density, ρo,

b = −g (ρ− ρo)/ρo = −g ρ′/ρo, (30.86)

where
ρ′ = ρ− ρo (30.87)

is the density deviation relative to the reference density.

30.9.2 Hydrostatic and non-hydrostatic pressures

The second decomposition of the pressure and gravity forces in equation (30.83) is based on
splitting into a local hydrostatic pressure, ph, and a non-hydrostatic pressure, pnh,

p = ph + pnh with ∂ph/∂z = −ρ g. (30.88)

This decomposition is particularly useful when concerned with deviations from a local hydrostatic
balance, which is central to the current analysis. However, it does not remove the global
hydrostatic background pressure (i.e., the dynamically inactive pressure, p0(z)), which can be
seen by the identity

∂ph/∂z = dp0(z)/dz − ρ′ g = dp0(z)/dz + ρo b. (30.89)
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With the pressure decomposition (30.88), the pressure and gravity contributions to the equation
of motion take on the form

∇p+ ρ g ẑ = ∇(ph + pnh) + ρ g ẑ (30.90a)

= ∇h(ph + pnh) + (∂zpnh + ∂zph + ρ g) ẑ (30.90b)

= ∇hp+ ẑ ∂zpnh (30.90c)

= ∇pnh +∇hph. (30.90d)

Be mindful that the non-hydrostatic pressure is operated on by the full gradient operator, ∇,
whereas the hydrostatic pressure has just the horizontal gradient, ∇h.

30.9.3 Momentum equation for the Boussinesq ocean
To further study how pressure and gravity lead to vertical motion, we find it convenient to
assume a Boussinesq ocean so that the momentum equation (30.83) takes the form of equation
(29.65)

ρo Dv/Dt+ 2Ω× ρo v = −∇p− ρ g ẑ + ρo F (30.91a)

= −∇p′ + ρo b ẑ + ρo F (30.91b)

= −∇pnh −∇hph + ρo F . (30.91c)

Focusing on the vertical velocity equation exposes processes leading to vertical accelerations of a
fluid element (i.e., the vertical Lagrangian acceleration, Dw/Dt)

ρo Dw/Dt+ ẑ · (2Ω× ρo v) = −∂zp− ρ g + ρo F · ẑ (30.92a)

= −∂zp′ + ρo b+ ρo F · ẑ (30.92b)

= −∂zpnh + ρo F · ẑ, (30.92c)

In addition to the Coriolis acceleration on the left hand side, equation (30.92b) reveals that the
vertical Lagrangian acceleration has contributions from the globally referenced Archimedean
buoyancy, b, along with vertical gradients in the dynamical pressure, p′. From equation (30.92c)
we see that the vertical Lagrangian acceleration has an inviscid contribution that arises solely
from vertical derivatives in the non-hydrostatic pressure, pnh. Note that when making either the
tangent plane approximation (Section 24.5) or the Traditional approximation (Section 27.1.3),
the Coriolis acceleration is absent from the vertical momentum equation since the rotating
reference frame has an angular velocity oriented according to the local vertical, Ω = Ω ẑ.

30.10 Test fluid elements in a homogeneous fluid
In this section we study the motion of a test fluid elements with nonzero Archimedean buoyancy
and in the absence of mixing.20 We assume a tangent plane so that the Coriolis acceleration
does not appear in the vertical momentum equation. Also, to avoid questions about local versus
global buoyancy, and the associated questions about neutral directions, we assume the fluid
environment has a constant and uniform density, ρ. A net buoyant force acts on the test fluid
element arise if the fluid element has a density distinct from the environmental density.

In pursuing this analysis it is important to appreciate the nature of the corresponding
thought experiments. Namely, we place a test fluid element somewhere in a prescribed fluid
environment and examine how the environment forces affect its motion. Importantly, we assume
the environment is unaffected by the test fluid element, so that the contact forces remain fixed

20As noted in Section 17.2.4, in the absence of mixing, a fluid element is the same as a fluid parcel.
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and prescribed. That is, the pressure and frictional forces are unaffected by the test fluid element.
This assumption is mechanically inconsistent since all fluid regions, no matter how small, affect
the surroundings. Even so, results from the analysis are borne out for situations where we can
safely ignore the environmental perturbations of real fluid elements. The analysis offers a useful
warm-up to the study of effective buoyancy in Section 30.11.

30.10.1 Equations of motion
The equation of motion for a fluid element is given by

ρDv/Dt+ 2Ω ẑ × ρv = −∇p− g ρ ẑ + ρF , (30.93)

whereas the equation of motion for a test fluid element is

ρtfe v̇tfe + 2Ω ẑ × ρtfe vtfe = −∇p− g ρtfe ẑ + ρtfe F , (30.94)

where ρtfe is the density of the test fluid element, vtfe is its velocity, and v̇tfe is its acceleration.21

As per our assumption stated earlier, both the pressure gradient and friction vector are the same
for the fluid element and the test fluid element.

30.10.2 Exact hydrostatic environment
Consider a test fluid element in a fluid that is in exact hydrostatic equilibrium, so that there is
no fluid motion. The test fluid element can only move vertically, with the vertical component of
equation (30.94) yielding

ρtfe ẇtfe = −dp/dz − g ρtfe. (30.95)

The assumed exact hydrostatic background pressure gradient satisfies dp/dz = −ρ g, so that the
test fluid element accelerates vertically according to

ρtfe ẇtfe = b ρ, (30.96)

where we introduced the Archimedean buoyancy for the test fluid element, computed relative to
the environmental fluid,

b = −g (ρtfe − ρ)/ρ. (30.97)

Evidently, the test fluid element accelerates upward if it is lighter than the environment (b > 0),
downward if heavier (b < 0), and remains stationary if neutrally buoyant (b = 0). This result
accords with the study of Archimedean buoyancy from Section 30.2.

30.10.3 An accelerating yet non-rotating environment
In Section 11.3 we studied particle mechanics as viewed from an accelerated reference frame that
is not rotating, such as for motion viewed in an accelerating train moving along a straight track.
Here we place a tank of fluid (e.g., a tank of water) on a train car that experiences acceleration,
Atank, such as depicted in Figure 30.8. Following equation (11.48), the equation of motion for
the fluid in the tank is

ρDv/Dt = −∇p− ρ (g ẑ +Atank) + ρF . (30.98)

We refer to −Atank as the non-inertial acceleration that arises from the tank acceleration,
and with −ρAtank the non-inertial force per volume acting on the fluid.22 As a result of the

21We write the acceleration as v̇tfe rather than Dvtfe/Dt since we are concerned with the motion of just a
single test fluid element rather than a field of fluid elements.

22The minus sign accords with being pushed backward into a seat when a vehicle accelerates forward.
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non-inertial force, fluid piles up on the back side of the tank and is depleted from the front.
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Figure 30.8: Left panel: A tank of homogeneous water on a train accelerating along a horizontal straight track,
thus resulting in a pile up of the water at the back of the tank and depletion in the front. The water reaches a
static equilibrium (v = 0) when the pressure gradient acceleration balances both the gravitational acceleration and
the train acceleration, −(∇p)equilib = ρ g (ẑ +Atank/g). Right panel: Vector diagram for a positively buoyant test
fluid element, with contributions from vertical buoyant acceleration and horizontal pressure gradient acceleration.
The net acceleration on the test element acts at an angle to the vertical that is determined by the gravitational
and train acceleration, making a slope, tan ε = |Atank|/g, with the vertical. Notably, the positively buoyant test
fluid element is accelerated vertically upward and horizontally in the same direction as the train’s acceleration,
whereas a negatively buoyant test fluid element is accelerated vertically downward and horizontally in the opposite
direction as the acceleration. This thought experiment is readily verified by a helium balloon tied to the floor of
an accelerating car, or a pendulum tied to the ceiling of the car.

The difference in fluid depth within the tank leads to a horizontal pressure gradient, with
higher pressure at the back of the tank and lower in the front. There is no fluid motion (relative to
the tank) if there is a balance between the horizontal pressure gradient and the tank acceleration,
as well as a balance between the vertical pressure gradient and gravity,

−(∇p)equilib = ρ g (ẑ +Atank/g). (30.99)

We can consider this result as exact hydrostatic balance but with a modified gravitational
acceleration.23

Motion of the test fluid element satisfies the equation

ρtfe v̇tfe = −∇p− ρtfe (g ẑ +Atank) + ρtfe F . (30.100)

Now consider the test fluid element that feels the equilibrated pressure gradient according to
equation (30.99), in which case

ρtfe v̇tfe = (ρ− ρtfe) (g ẑ +Atank) = b ρ (ẑ +Atank/g) = −(b/g) (∇p)equilib. (30.101)

Note that there is no frictional acceleration when there is no fluid motion, thus allowing us to
set F = 0. Evidently, the test fluid element accelerates along a line that is perpendicular to
surfaces of constant pressure, thus making an angle with the vertical given by

tan ε = |Atank|/g. (30.102)

Acceleration of a positively buoyant test fluid element is sloped in the same direction as the
accelerating train, with this result readily verified by attaching a helium balloon to the floor of a
train or car. Acceleration of the negatively buoyant test fluid element is sloped in the opposite
direction as the accelerating train. This result accords with the discussion in Section 11.3.3, in
which a pendulum at rest in the accelerated train slopes opposite to the acceleration.

23The Principle of Equivalence from general relativity says we cannot distinguish between the acceleration of a
reference frame and the acceleration from gravity. The result (30.99) supports this equivalence.
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30.10.4 Rotating tank
In Section 27.5 we studied the motion of a homogeneous fluid in a rotating tank, whose equation
of motion in the rotating reference frame is given by equation (27.98)

ρ
Dv

Dt
+ 2Ω ẑ × ρv = −∇

[
p+ g z ρ− Ω2 ρ (x2 + y2)/2

]
+ ρF . (30.103)

The analogous equation for the test fluid element, again written in the rotating reference frame,
is given by

ρtfe v̇tfe + 2Ω ẑ × ρtfe vtfe = −∇
[
p+ g z ρtfe − Ω2 ρtfe (x2 + y2)/2

]
+ ρtfe F , (30.104)

where we evaluate the position, x = x̂x+ ŷ y + ẑ z, according to the position of the test fluid
element. At mechanical equilibrium, the fluid rotates as a rigid-body (v = 0) with a parabolic
free surface where the free surface is higher at the outer rim of the tank and lowest at the center.
Furthermore, as the motion is rigid-body, the viscous friction vanishes. We thus find that the
pressure gradient in the rigid-body rotating equilibrium satisfies

−(∇p)equilb = ρ∇[g z − Ω2 (x2 + y2)/2] = g ρ [ẑ − Ω2 (x x̂+ y ŷ)/g] ≡ −ρ grotate, (30.105)

where the final equality defined the gravitational vector, grotate, arising from the sum of the
geopotential (central earth gravity plus planetary centrifugal) plus the centrifugal acceleration
from the rotating tank. When placed in this mechanically equilibrated fluid environment, the
test fluid element equation of motion (30.104) becomes

ρtfe v̇tfe + 2Ω ẑ × ρtfe vtfe = b ρ [ẑ − Ω2 (x̂x+ ŷ y)/g] = −(ρ− ρtfe) grotate. (30.106)

Evidently, a positively buoyant test fluid element accelerates upward and toward the center of
the tank. Furthermore, as it moves horizontally toward the tank center, the test fluid element
picks up a Coriolis acceleration that deflects it to the right for counter-clockwise rotating tanks.

For the test fluid element, the ratio of the magnitudes of its Coriolis acceleration to the
centrifugal acceleration is

Coriolis

centrifugal
=

2 ρtfe

ρ

g

b

|utfe|
Ω
√
x2 + y2

=
2 ρtfe

ρ− ρtfe

|utfe|
Ω
√
x2 + y2

. (30.107)

Heavy test fluid elements, with small buoyancy, move toward the outer edge of the tank due to
dominance of the centrifugal acceleration, whereas lighter test fluid elements concentrate toward
the center. We can further reduce the influence of the Coriolis acceleration by changing the
geometry to that of a long test tube to thus reduce |utfe|, with this geometry used for centrifuges.

Is there is a dynamically consistent motion in which the test fluid element has exactly zero
horizontal material acceleration, u̇tfe = 0? For this motion to occur requires a balance between
the Coriolis and centrifugal accelerations

2Ω ρtfe (ẑ × utfe) = −(b ρΩ2/g) (x̂x+ ŷ y) =⇒ utfe = [b ρ/(2 g ρtfe)] (Ω× x). (30.108)

However, this velocity field does not, in fact, have a zero acceleration since

u̇tfe = [b ρ/(2 g ρtfe)] (Ω× utfe) ̸= 0. (30.109)

We conclude that there is no self-consistent free motion with u̇tfe = 0, much like the case of the
test fluid element moving in the accelerating train studied in Section 30.10.3.
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30.11 Effective buoyancy and vertical accelerations
In this section, we extend the discussion of Archimedean buoyancy by focusing on the vertical
forces acting on a real fluid element, or more generally a finite sized fluid region, rather than on
a test fluid element. To do so requires us to study, in some detail, the various forces appearing
in the momentum equation. As a means to conceptually organize these forces, we introduce
static forces, which are those forces not associated with fluid motion, plus motional forces, which
are forces not associated with density inhomogeneities. Motional forces are specific to details of
the velocity field, whereas static forces are deduced just from knowledge of the density field.

Effective buoyancy arises from the static forces acting on a fluid element. Although the
effective buoyancy is in part comprised of Archimedean buoyancy, there are distinctions that
arise through interactions between the fluid element and its surrounding environment. These
interactions depend on the shape of the fluid region. As shown in this section (see in particular
Figure 30.9), we find that fluid regions of different geometric shape can have different effective
buoyancy even while they have the same Archimedean buoyancy.

To facilitate the analysis in this section, we consider a Boussinesq ocean, with the analysis
also directly relevant to an anelastic atmosphere as considered by Jeevanjee and Romps (2015b).
As explored in Section 29.3, pressure in a Boussinesq ocean constrains the velocity field to
remain non-divergent. Furthermore, Boussinesq ocean pressure satisfies an elliptic boundary
value problem (Poisson equation from Section 6.5). This boundary value problem is linear for
the pressure field. Linearity is exploited for conceptual purposes by decomposing the pressure
sources into physically distinct processes and studying the associated pressure field. The task
for this section is to derive the Poisson equations according to the various pressure sources, and
then to discuss the physics of their associated vertical accelerations.

30.11.1 Poisson equations for p′ = p′buoy + p′flow

The two decompositions of pressure described in Sections 30.9.1 and 30.9.2, as reflected in the
Boussinesq velocity equations from Section 30.9.3, render two sets of corresponding Poisson
equations for pressure. We here focus on the decomposition (30.91b), where the pressure and
gravity accelerations appear in terms of the Archimedean buoyancy plus perturbation pressure.
We defer until Section 30.11.3 an examination of the alternative decomposition into the local
hydrostatic and non-hydrostatic pressures given by equation (30.91c).

Boundary value problem for the perturbation pressure, p′

We start by considering the Boussinesq momentum equation (30.91b)

ρo (∂t + v · ∇)v + 2Ω× ρo v = −∇p′ + ρo b ẑ + ρo F . (30.110)

As detailed in Section 29.3.1, the time tendency is eliminated by computing the divergence of
this equation to render the Poisson equation for the perturbation pressure

−∇2p′ = ρo∇ ·G′ = ρo∇ · [(v · ∇)v + 2Ω× v − b ẑ − F ], (30.111)

where we introduced the vector,

G′ = (v · ∇)v + 2Ω× v − b ẑ − F , (30.112)

whose divergence renders a source for the pressure field. We find it convenient to carry around a
minus sign on the Laplacian operator since a positive source, ρo∇ ·G′ > 0, leads to a locally
positive pressure signal (see Section 29.3.1 for more details on this point).
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We require boundary conditions to fully specify the pressure, and for simplicity we assume
material boundaries. In this case, the analysis considered in Section 29.3.2 renders the Neumann
boundary condition

n̂ · ∇p′ = −ρo n̂ ·G′, (30.113)

where n̂ is the outward normal along the boundary. We further simplify the analysis by assuming
flat and rigid top and bottom boundaries along with horizontal boundaries that are either doubly
periodic or infinite. Hence, along the top boundary, where n̂ = ẑ, pressure satisfies the Neumann
boundary condition

∂zp
′ = −ρo ẑ ·G′ = ρo (b+ F · ẑ) top boundary. (30.114)

To reach this result we noted that

ẑ · [(v · ∇)v] = (v · ∇) (ẑ · v) = 0, (30.115)

since ẑ · v = w = 0 along a rigid and material flat surface. The analogous result holds along the
bottom boundary where n̂ = −ẑ so that

∂zp
′ = ρo ẑ ·G′ = −ρo (b+ F · ẑ) bottom boundary. (30.116)

Buoyancy induced pressure and flow induced pressure

The Laplacian operator is linear, with linearity affording the freedom to decompose the source in
the Poisson equation (30.111), ρo∇ ·G′, into physically distinct processes and then studyinig the
pressures resulting from these processes.24 For this purpose we choose the following decomposition

−∇2p′ ≡ −∇2(p′buoy + p′flow) (30.117a)

−∇2p′buoy = −ρo ∂zb (30.117b)

−∇2p′flow = ρo∇ · [(v · ∇)v + 2Ω× v − F ]. (30.117c)

The source term for the buoyancy pressure, p′buoy, only involves the vertical derivative of the
Archimedean buoyancy. Hence, there is no direct contribution from fluid motion on p′buoy, with
fluid motion only affecting p′buoy indirectly through effects on ∂zb. The converse holds for the
pressure perturbation, p′flow, which is sourced by fluid motion that gives rise to accelerations
from self-advection, Coriolis, and friction. Hence, there is no direct impact from Archimedean
buoyancy on p′flow. The Neumann boundary conditions for these two pressures follows from the
boundary conditions (30.114) and (30.116). For example, along the top boundary we have

∂zp
′
buoy = ρo b and ∂zp

′
flow = ρo ẑ · F top boundary conditions, (30.118)

with the same conditions holding along the bottom yet with a minus sign on the right hand side.

30.11.2 Accelerations from effective buoyancy and fluid motion

Having established the Poisson equations for the variety of pressures in Section 30.11.1, we now
examine contributions to the vertical Lagrangian acceleration as given by equations (30.92b)
and (30.92c). Emulating the decomposition used for pressure, we here decompose the vertical
acceleration into conceptually distinct contributions from buoyancy and from fluid flow.

24We exploited this superposition property when studying Green’s functions in Chapter 9.

CHAPTER 30. BUOYANT ACCELERATION OF FLUIDS page 851 of 2158



30.11. EFFECTIVE BUOYANCY AND VERTICAL ACCELERATIONS

Vertical acceleration from effective buoyancy

Effective buoyancy is the first contribution to vertical Lagrangian acceleration, which is the
vertical acceleration arising solely from the instantaneous mass/density field. Operationally,
we deduce the effective buoyancy by instantaneously setting velocity to zero everywhere in the
expression for the vertical acceleration

beff ≡
Dw

Dt

∣∣∣∣
v=0

. (30.119)

Two conclusions follow directly from the operational definition of beff . First, as viscous friction
only arises when there is relative fluid motions that lead to strains (Section 25.8.6), viscous
friction does not contribute to the effective buoyancy. Next, we observe that any direct role for
pressure in beff arises solely from the buoyancy pressure, p′buoy. We make this conclusion since
the Poisson equation (30.120) for the buoyancy pressure has a source that only depends on the
instantaneous Archimedean buoyancy field, whereas it ignores all contributions from fluid flow.
This dependence is precisely that defined for beff .

From the definition (30.119) we make use of equations (30.92b) and (30.92c) to unpack the
variety of contributions to effective buoyancy

ρo beff = ρo b− ∂zp
′∣∣
v=0

= − ∂zpnh|v=0 . (30.120)

The first equality identifies the difference between the effective buoyancy and the Archimedean
buoyancy

ρo (beff − b) = −∂zp′buoy, (30.121)

in which we set
∂zp

′∣∣
v=0

= ∂zpbuoy (30.122)

as per the discussion below equation (30.119). So equation (30.121) states that in the presence
of a vertical gradient in the buoyancy pressure, then the Archimedean buoyancy is an incomplete
description of the vertical acceleration associated with the density field.

Equation (30.120) also reveals that the effective buoyancy is associated with that portion of
the vertical gradient in the non-hydrostatic pressure that remains when v = 0

ρo beff = − ∂zpnh|v=0 . (30.123)

This equation provides a generalization of the local hydrostatic balance, ρo b = ∂z(ph − p0)
(equation (30.89)), so that we have the correspondence

ρo b = ∂z(ph − p0)︸ ︷︷ ︸
hydrostatic

←→ ρo beff = − ∂zpnh|v=0 .︸ ︷︷ ︸
non-hydrostatic

(30.124)

Vertical acceleration from fluid flow

If one introduces an Archimedean buoyancy anomaly in a static fluid, then the initial vertical
acceleration acting on the anomaly is given by its effective buoyancy, with this result following
from the definition of effective buoyancy in equation (30.119). However, as the anomaly evolves,
fluid motion is generated, at which point effective buoyancy is an incomplete measure of vertical
acceleration. So in the presence of fluid motion we must also consider another term referred to
as the flow induced or motional vertical acceleration. Operationally, we deduce the motional
vertical acceleration by setting the density to a constant within the expression for the vertical
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acceleration

Aflow ≡
Dw

Dt

∣∣∣∣
ρ=ρo

. (30.125)

As for the effective buoyancy in equation (30.119), the right hand side of equation (30.125)
is evaluated using the full flow field at an instant, but with the accelerations evaluated with
constant density at that instance. Since the Archimedean buoyancy vanishes when density has
the uniform value, we know that

ρoAflow = − ∂zp′
∣∣
ρ=ρo

+ ρo F · ẑ = − ∂zpnh|ρ=ρo + ρo F · ẑ. (30.126)

Consequently, when the density field is uniform, ρ = ρo, then the vertical gradient of p′ and pnh
are identical

∂zp
′∣∣
ρ=ρo

= ∂zpnh|ρ=ρo . (30.127)

Furthermore, we identify the vertical gradient in ∂zp
′|ρ=ρo with the vertical gradient in the flow

induced pressure, p′flow, that satisfies the Poisson equation (30.117c). We thus have the identities

∂zp
′∣∣
ρ=ρo

= ∂zp
′
flow = ∂zpnh|ρ=ρo . (30.128)

30.11.3 Boundary value problems for the accelerations
Following from the discussion in Section 30.11.2, we here derive the boundary value problems
for the effective buoyancy and the flow induced acceleration.

Poisson equations for beff and Aflow

From equation (30.121) for the effective buoyancy and from the Poisson equation (30.117b) for
the buoyancy pressure, we arrive at the Poisson equation for the effective buoyancy

ρo beff = ρo b− ∂zp′buoy and −∇2p′buoy = −ρo ∂zb =⇒ −∇2beff = −∇2
h b. (30.129)

Hence, the source for the effective buoyancy is the horizontal Laplacian of the Archimedean
buoyancy. Correspondingly, the source for the difference, beff − b, is the vertical curvature of the
Archimedean buoyancy

−∇2(beff − b) = ∂zzb. (30.130)

We similarly derive the Poisson equation for the motional acceleration by making use of its
operational definition (30.126) as well as the Poisson equation (30.117c) for the flow pressure

ρoAflow = −∂zp′flow + ρo F · ẑ and −∇2p′flow = ρo∇ · [(v · ∇)v + 2Ω× v − F ]

=⇒ −∇2Aflow = −∂z∇ · [(v · ∇)v + 2Ω× v − F ]−∇2(F · ẑ). (30.131)

Boundary conditions

To completely specify the decomposition of vertical acceleration requires boundary conditions
for the effective buoyancy, beff , and the motional acceleration, Aflow. Following our discussion of
the Poisson equations in Section 30.11.1, we here only consider rigid and flat material upper
and lower boundaries with no boundaries for the horizontal domain (either periodic or infinite
horizontal domain). At the upper and lower boundaries we have Dw/Dt = 0, and this boundary
condition holds whether v = 0 or ρ = ρo, so that

beff = 0 and Aflow = 0 on rigid and flat boundaries. (30.132)
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We are thus ensured that the net vertical acceleration is indeed the sum

Dw

Dt
= Aflow + beff . (30.133)

Poisson equation for the local non-hydrostatic pressure

We can also arrive at the above results by considering the momentum equation (30.91c) written
using the decomposition of pressure into is local non-hydrostatic and local hydrostatic components

ρo (∂t + v · ∇)v + 2Ω× ρo v = −∇pnh −∇hph + ρo F . (30.134)

A divergence of this equation leads to the Poisson equation for the non-hydrostatic pressure

−∇2pnh = ∇2
h ph + ρo∇ · [(v · ∇)v + 2Ω× v − F ]. (30.135)

Taking a vertical derivative and use of the hydrostatic relation leads to the Poisson equation for
the vertical derivative of the non-hydrostatic pressure

−∇2(∂zpnh) = −g∇2
h ρ+ ρo ∂z∇ · [(v · ∇)v + 2Ω× v − F ]. (30.136)

Setting v = 0 in equation (30.135) renders the Poisson equation

−(∇2pnh)v=0 = ∇2
h ph. (30.137)

This equation says that the static portion of the non-hydrostatic pressure is sourced by the
horizontal Laplacian of the hydrostatic pressure. Equivalently, the convergence of (∇pnh)v=0 is
balanced by the divergence of the horizontal hydrostatic pressure gradient, ∇hph. Furthermore,
setting v = 0 in equation (30.136) yields the Poisson equation for the effective buoyancy

−ρo∇2beff = g∇2
h ρ⇐⇒ ∇2beff = ∇2

h b, (30.138)

which accords with equation (30.129).

30.11.4 Relative scales for effective and Archimedean buoyancies

One way to emphasize the distinction between the effective buoyancy equation (30.138) and
that for the Archimedean buoyancy is to compare their two elliptic equations

−ρo∇2b = g∇2ρ and − ρo∇2beff = g∇2
h ρ, (30.139)

with the first equality following trivially by definition of Archimedean buoyancy, b = −(g/ρo) (ρ−
ρo). The different Laplacian operators acting on the source terms for beff and b are crucial.
Namely, the difference means that these two buoyancy fields have different scales.

As an example of the distinct scaling for beff and b, consider a cylindrically shaped Archimedean
buoyancy anomaly (Figure 30.9) of scale B and with diameter D and height H. Given this
information we seek a corresponding scale for the effective buoyancy, Beff. Using the relation
(30.138), and the cylindrical-polar coordinate version of the Laplacian operator (equation
(4.197b)), we have

∇2beff =
1

r

∂

∂r

[
r
∂beff
∂r

]
+

1

r2
∂2beff
∂ϑ2

+
∂2beff
∂z2

and ∇2
h b =

1

r

∂

∂r

[
r
∂b

∂r

]
+

1

r2
∂2b

∂ϑ2
, (30.140)

where r is the radial distance from the cylinder axis, z the vertical coordinate along the cylinder
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axis, and ϑ the polar coordinate. We thus find the scalings

∇2beff ∼ Beff (D
−2 +H−2) and ∇2

h b ∼ BD−2, (30.141)

so that for a given Archimedean buoyancy anomaly scale, B, we find an associated effective
buoyancy scale

Beff =
B

1 +D2/H2
. (30.142)

Evidently, the effective buoyancy scale is smaller than the Archimedean buoyancy scale. The
effective buoyancy scale is smaller due to the pressure contribution that slows down any
buoyant fluid element, with this pressure induced environmental back-reaction missing from the
Archimedean buoyancy. Also observe that the effective buoyancy decreases when the ratio D/H
increases. As a result, wide and flat “pancake” shaped buoyancy anomalies rise slower (with
B > 0) than narrow “rocket shaped” anomalies. This result follows since a flat pancake anomaly
must push aside more surrounding fluid as it moves vertically, whereas the narrow rocket shaped
anomaly is more streamlined and thus more readily rises or falls.

D

H

z

r̂

Figure 30.9: An Archimedean buoyancy anomaly of scale B here configured in the shape of a cylinder with
diameter D and height H. Also shown are the vertical, z, and radial, r, axes for cyclindrical-polar coordinates from
Section 4.22. In equation (30.142) we find the effective buoyancy for this anomaly scales as Beff = B/(1+D2/H2),
so that the effective buoyancy has a smaller magnitude than the Archimedean buoyancy. Also note that the
magnitude of the effective buoyancy decreases as the diameter increases. This behavior reflects the need for a
wide and flat buoyancy anomaly to push aside more surrounding fluid as it moves vertically, whereas a narrow
and tall anomaly is more streamlined and so has less resistance to vertical motion.

As a buoyant fluid element moves vertically, it must displace the surrounding environmental
fluid. The pressure contribution to the effective buoyancy accounts for the back-reaction of the
environmental fluid on the buoyant fluid element. Since the Archimedean buoyancy ignores
the back-reaction, it generally over estimates the magnitude of the vertical acceleration. By
accounting for the pressure forces acting on the element from the surrounding fluid, the effective
buoyancy offers a more accurate measure of the static vertical forces arising from density
inhomogeneities.

30.11.5 Thought experiments for effective buoyancy

We here present some thought experiments for the purpose of developing an understanding
of effective buoyancy. The thought experiments are somewhat trivial physically and yet they
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require us to confront basic assumptions, which is generally a useful exercise.

Horizontally unstratified density

Consider a horizontally unstratified density, ρ = ρ(z), on a horizontally periodic domain with the
fluid in hydrostatic equilibrium. By construction, the Archimedean buoyancy, b = −g (ρ− ρo)/ρo,
exactly balances the vertical pressure gradient, d(p− p0)/dz = b ρo. In the absence of horizontal
density gradients, the effective buoyancy is everywhere a harmonic function since ∇2beff = 0.
With vanishing Dirichlet boundary conditions at the rigid bottom and top of the domain,
z = 0, H, then beff = 0 everywhere, signaling the absence of any vertical acceleration.

It is notable that this result holds for an arbitrary vertical profile of density, even if the
density is gravitationally unstable (Section 30.5). The assumed horizontal symmetry is the key
point. This assumption precludes any vertical motion since no fluid element at a single horizontal
position can be vertically displaced without breaking the assumption of horizontal symmetry.
The only way to maintain volume conservation (∇ · v = 0) with vertical motion is for some fluid
to move up while other fluid moves down, and for that to happen requires breaking horizontal
symmetry. Once a tiny seed of horizontal asymmetry is presented to the fluid, effective buoyancy
is sourced by ∇2

h ρ ̸= 0, which in turn allows the gravitational instability to grow.

Vertically unstratified density

Now consider a vertically unstratified density field, ρ = ρ(x, y), so that the Archimedean
buoyancy has no depth dependence. This vertically “neutrally buoyant” case commonly means
that a fluid element can move vertically without feeling any buoyancy forces. Indeed, such is the
case when referring to Archimedean buoyancy. What about effective buoyancy?

If density is a linear function of horizontal position then the effective buoyancy is a harmonic
function so that beff = 0. If density is a nonlinear function of the horizontal then the effective
buoyancy is nonzero. Yet is there vertical motion? Again we must confront the boundary
conditions to answer this question. Here, the rigid top and bottom boundaries preclude
movement of fluid across these boundaries by imparting a boundary pressure acting throughout
the fluid to counteract the effective buoyancy. As a result, the fluid remains static. If instead we
allow for a free surface, then the effective buoyancy would cause vertical motion that then leads
to horizontal convergences, thus leading to further motion. Alternatively, if we allow for depth
dependence of the density, then fluid can move laterally as well as vertically.

Localized source of Archimedean buoyancy

Although useful to garner some understanding of effective buoyancy, the previous examples are
not realistic. More realistic applications are concerned with Archimedean buoyancy sources
localized in both the horizontal and vertical directions. In this case the nonzero buoyancy source,
∇2
zρ ̸= 0, along with the boundary conditions lead to a nontrivial structure for the effective

buoyancy as found by solving the Poisson equation. Studies listed in Section 30.11.6 offer
examples, both analytical and numerical, to further an understanding of how effective buoyancy
offers a more complete description of vertical acceleration than Archimedean buoyancy.

30.11.6 Comments and further study
Studies from Davies-Jones (2003b), Doswell and Markowski (2004), Jeevanjee and Romps
(2015a,b) and Tarshish et al. (2018), point to the use of the effective buoyancy and the limitations
of Archimedean buoyancy when studying buoyancy dominated motion, such as the early stages
of a buoyant thermal in the atmosphere. Much of the material in this section was gleaned from
these papers, particularly from Jeevanjee and Romps (2015a,b). Chapter 2 of Markowski and
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Richardson (2010) provides a pedagogical foundation for understanding pressure forces leading
to vertical motion.

The structure of beff is distinct from the Archimedean buoyancy, b, with Jeevanjee and Romps
(2015a) and Tarshish et al. (2018) providing examples where b and beff can even have opposite
signs. Furthermore, Tarshish et al. (2018) made use of an analogy between the Poisson equation
for beff and the Poisson equation for certain magnetostatics problems. The analogy allows for
analytical expressions of beff for spherical and elliptical Archimedean buoyancy sources.

30.12 Exercises
exercise 30.1: Examples of buoyancy period
Using approximate but realistic values for the observed stratification, determine the buoyancy
period (Tb = 2π/N) for

• mid-latitude troposphere

• stratosphere

• ocean thermocline

• ocean abyss.

Express the period in units of minutes, and provide references for where you obtained the
observed stratification. Hint: for both the atmosphere and ocean, it is sufficient to assume
stratification is dominated by potential temperature (or Conservative Temperature).

exercise 30.2: Buoyancy frequency for an ideal gas
Derive equation (30.38) for the squared buoyancy frequency of an ideal gas. Hint: first derive
the expression for the potential density and then take its vertical derivative as per equation
(30.37).

exercise 30.3: Vertical integral of N2

The expression for squared buoyancy frequency

N2 = −g
[
∂ ln ϱ

∂z

]
pref=p

(30.143)

makes is tempting to consider its vertical integral according to

−g−1

ηˆ

−H

N2 dz
?
= [ln ϱ]η − [ln ϱ]−H . (30.144)

Discuss what is wrong with this equation. Under what conditions is it correct?

exercise 30.4: Water level of a boat with and without a stone
Consider a boat of mass Mb floating in constant density water, ρw, contained in a tank with
vertical sidewalls and cross-sectional area A. Place a stone of mass Ms and density ρs > ρw in
the boat and measure the water level on the tank wall, h1. Then throw the stone into the water.
What is the new water level, h2, as a function of h1 and the other properties listed above? Does
the water level rise or fall along the sides of the tank as a result of throwing the stone over the
side? Hint: Watch this Physics Girl video.
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exercise 30.5: Iceberg flipping instability
This exercise has yet to be worked through.

(a) Consider an iceberg with constant density ρberg that is floating in ocean water with constant
density ρocn. Let the iceberg have a square solid shape with vertical thickness H and
horizontal length L≫ H. What fraction of the iceberg sits above the ocean surface?

(b) Consider an iceberg with non-uniform density, ρberg(z), where 0 ≤ z ≤ H measures the
position along the vertical axis of the iceberg. A non-uniform density might occur for cases
where rocks are frozen into the ice. Depending on the density profile, the iceberg can be
unstable to horizontal forces that cause the iceberg to flip over, particularly if L decreases
to be on the order of H. Develop the stability criteria for this “flipping instability” using
Archimedes’ principle and the mechanics of angular momentum and torques.
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Chapter 31

GEOSTROPHY AND THERMAL WIND

Large-scale and low frequency flows in the atmosphere and ocean are stongly affected by planetary
rotation. The inviscid balance for such flows is termed geostrophy, in which the planetary Coriolis
acceleration balances the pressure gradient acceleration in the horizontal, while the vertical
balance is hydrostatic. In this chapter, we introduce salient features of geostrophically balanced
flow and the associated thermal wind balance. These two diagnostic relations involve no time
derivatives, and so cannot be used to predict the fluid flow evolution. However, they provide a
very powerful framework for interpreting large-scale and low frequency flow in the atmosphere
and ocean.

After studying the basic elements of rotating flow, we study the distinctive nature of isopycnal
form stresses associated with geostrophically balanced eddy motions. Such form stresses are a
key feature of the earth’s planetary energy balance, whereby positive buoyancy in the tropics is,
in part, transported meridionally through the action of geostrophic eddies.

reader’s guide to this chapter
This chapter assumes an understanding of the primitive equations from Chapter 27 and

the Coriolis acceleration from Chapters 13 and 14. The material in this chapter is fundamental
to understanding the mechanics of large-scale flow in the atmosphere and ocean, so that we
make great use of this chapter in the remainder of the book. We are not explicitly concerned
with sphericity in this chapter, thus enabling the use of Cartesian vector calculus.
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31.1 Loose threads
• Max Nikurashin’s work on topographic form stress in the Southern Ocean, and the lack of
a direct connection to interfacial form stress. Unsure if this material is better here or in
Chapter 28.

31.2 Primitive equations
Throughout this chapter we make use of the inviscid hydrostatic primitive equations derived in
Section 27.1

[∂t + (v · ∇)]u+ f ẑ × u = −ρ−1∇hp (31.1a)

∂p/∂z = −g ρ (31.1b)

Dρ/Dt = −ρ∇ · v, (31.1c)

where the velocity vector is written using Cartesian coordinates

v = u+ ẑw = x̂u+ ŷ v + ẑw, (31.2)

and the horizontal gradient operator is

∇h = x̂ ∂x + ŷ ∂y. (31.3)

For some of the scale analysis in this chapter we assume a Boussinesq ocean (Section 29.1),
in which case the mass continuity equation (31.1c) becomes the non-divergent condition on the
velocity

∇ · v = 0. (31.4)

Furthermore, ρ in the Boussinesq horizontal momentum equation (31.1a) is converted to a
constant reference density, ρo, and yet it retains its full form when appearing in the hydrostatic
equation since it is there multiplied by the gravitational acceleration.

31.3 The Rossby number
Large-scale geophysical fluid flows are strongly influenced by the earth’s rotation. Indeed, the
earth can be considered a rapidly rotating planet for much of the observed large-scale motion
of the ocean and atmosphere. There are two points to emphasize in this regard. First, much
of the ocean and atmosphere motion is close to rigid-body rotation, in which weather patterns
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and ocean circulation are best viewed in the terrestrial reference frame on the rotating earth (a
non-inertial reference frame) rather than from an inertial reference frame fixed in space. Second,
length scales directly experienced by humans are generally far too small to take a direct notice
of the planetary rotation. This point is quantified by considering the Rossby number, which
includes a horizontal length scale, a velocity scale, and angular rotation speed.

31.3.1 Scaling for the Rossby number
The Rossby number measures the ratio of the horizontal material acceleration (acceleration of a
fluid particle) to the Coriolis acceleration. The material acceleration has two contributions: one
from local time tendencies and one from advection. We expose typical characteristic scales for
the horizontal acceleration of a fluid particle by writing

∂u

∂t
+ (v · ∇)u ∼ U

T
+
U2

L
+
WU

H
, (31.5)

where U,W are typical horizontal and vertical velocity scales, L,H are typical horizontal and
vertical length scales, and T is a typical time scale (recall a similar scale analysis for the
hydrostatic balance in Section 27.2). Likewise, the Coriolis acceleration scales as

f ẑ × u ∼ fo U, (31.6)

where fo is the scale for the Coriolis parameter. From the continuity equation for non-divergent
flow (∇ · v = 0) we see that the vertical and horizontal velocity scales are related by1

W/H ∼ U/L =⇒W ∼ U (H/L). (31.7)

We are interested in flows where the ratio of the vertical to horizontal length scales, referred to
as the aspect ratio, is small

αaspect = H/L≪ 1, (31.8)

as per the hydrostatic approximation discussed in Section 27.2. Consequently, the vertical
velocity scale is much less than the horizontal

W ≪ U. (31.9)

31.3.2 Ratio of material acceleration to Coriolis acceleration
Taking the ratio of the advection scale to the Coriolis scale leads to our first expression for the
Rossby number

Ro =
U2/L

fo U
=

U

fo L
. (31.10)

For fixed scales U and L, the latitudinal variation of the Coriolis parameter makes the Rossby
number smaller in magnitude near the poles than in the tropics.

31.3.3 Ratio of local time tendency to Coriolis acceleration
A complementary way to understand the Rossby number is to consider it as the ratio of the
horizontal velocity’s local time tendency to the Coriolis acceleration

Ro =
U/T

Ufo
=

1/T

fo
. (31.11)

1For divergent flows we can replace W with the scale for motion across hydrostatic pressure surfaces.
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Hence, the Rossby number is small for motions that have a frequency, T−1, that is small
compared to the inertial frequency, fo. In both expressions (31.10) and (31.11) for the Rossby
number, we associate Ro < 1 with flow regimes where the earth’s rotation plays a crucial role
in the dynamics. With small Rossby number, both the local time derivative and the advective
acceleration are smaller than the Coriolis acceleration.

31.3.4 Rossby number for a kitchen sink
Consider flow in a kitchen sink (left panel of Figure 31.1). Here, the length scale is L = 1 m
(sink size) and the velocity scale is U = 0.01− 0.1 m s−1, thus giving a typical time scale for
sink motion of L/U ≈ 10 s− 100 s. Hence, at 30◦ latitude, where f = 2Ω sinϕ = Ω, the Rossby
number for fluid motion in a sink is

Rosink ≈ 102 − 103. (31.12)

The effects from planetary rotation are tiny on these length scales, so that the Coriolis force
is negligible for kitchen sink fluid dynamics. Correspondingly, it is extremely difficult to
experimentally determine a correlation between the hemisphere (northern or southern) to the
rotational direction of water leaving a sink drain.

L = 1 m

U = 0.1 m /s

L = 105 m

U = 0.1 m /s

Figure 31.1: Estimating the Rossby number for flow in a kitchen sink (left panel) and rings spawned from the
Gulf Stream (right panel). The kitchen sink has velocity scales on the order of U ∼ 0.01− 0.1 m s−1 whereas Gulf
Stream rings have velocity scales on the order U ∼ 0.1− 1.0 m s−1. Their length scales are much more distinct,
with the scale for a sink L ∼ 1 m whereas for the Gulf Stream rings L ∼ 105 m. Taking the Coriolis parameter at
30◦ leads to Rosink ∼ 102 − 103 and Roring ∼ 10−2 − 10−1. The planetary Coriolis acceleration is central to Gulf
Stream ring dynamics whereas it is utterly negligible for the kitchen sink.

31.3.5 Rossby number for a Gulf Stream ring
For a Gulf Stream ring (right panel of Figure 31.1), the typical length scale is L = 105 m and
velocity scale is U = 0.1− 1.0 m s−1, thus leading to a time scale L/U ≈ 105 − 106 s. At 30◦

latitude the Rossby number is
Roring ≈ 10−2 − 10−1. (31.13)

Flow features of such large length scales can feel the planetary rotation so that the Coriolis
acceleration is central to dynamics of Gulf Stream rings, as reflected in the small magnitude of
the associated Rossby number.

31.4 Geostrophic balance
Under the influence of horizontal pressure forces, a fluid accelerates down the pressure gradient
(movement from high pressure to low pressure). In the presence of rotation, a nonzero horizontal
velocity couples to the earth’s rotation via the Coriolis parameter, f , thus giving rise to a nonzero
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horizontally oriented Coriolis acceleration −f ẑ×u. The Coriolis acceleration acts perpendicular
to the fluid motion

u · (ẑ × u) = 0, (31.14)

and as such it affects the fluid motion but does not alter kinetic energy; i.e., it does zero work
on the fluid.2 In the northern hemisphere where f > 0, the Coriolis acceleration acts to the
right of the fluid motion. It follows that if the Coriolis and pressure gradient accelerations are
balanced, then fluid flow is counter-clockwise around low pressure centers and clockwise around
high pressure centers. In the southern hemisphere, where f < 0, the Coriolis acceleration acts in
the opposite direction so that geostrophically balanced flow is oppositely oriented in the southern
hemisphere relative to the north.

When the pressure acceleration balances the Coriolis acceleration, fluid motion is said to
be in geostrophic balance. Geostrophically balanced flows in the atmosphere and ocean follow
isobars (lines of constant pressure). Recall from Chapter 13 that point particles also experience
a Coriolis acceleration when viewed in a rotating reference frame. However, geostrophic balance
is not afforded to particles since particles do not experience a pressure force that can balance the
Coriolis force. Hence, the geostrophic balance is a distinctly fluid mechanical phenomena. Even
so, in Figure 31.2 we offer a particle model to help understand the orientation of geostrophic flow,
in which for this model the pressure force acting on a fluid parcel is replaced by the gravitational
force acting on the point particle.

<latexit sha1_base64="VUkQdstv7Z9ifkFWaXaZ5kHwMYY=">AAACGHicbZDLSgMxGIUz9VbrbdSN4CZYBFdlRoq6LLpxWcFeoDMMmTRtQ5PMkGTEYRgfxLVbfQZ34tadj+BbmLaz0LYHAodz/p/wf2HMqNKO822VVlbX1jfKm5Wt7Z3dPXv/oK2iRGLSwhGLZDdEijAqSEtTzUg3lgTxkJFOOL6Z9J0HIhWNxL1OY+JzNBR0QDHSJgrso8wLOUzyIPN4GD1mnqYihcM8D+yqU3OmgovGLUwVFGoG9o/Xj3DCidCYIaV6rhNrP0NSU8xIXvESRWKEx2hIesYKxInys+kFOTw1SR8OImme0HCa/t3IEFcq5aGZ5EiP1Hw3CZd2IV8W9xI9uPIzKuJEE4Fn/w8SBnUEJ5Rgn0qCNUuNQVhScwLEIyQR1oZlxbBx50ksmvZ5zb2o1e/q1cZ1QakMjsEJOAMuuAQNcAuaoAUweAIv4BW8Wc/Wu/Vhfc5GS1axcwj+yfr6BQZ9oJY=</latexit>ug

pressure acceleration

Coriolis acceleration

counterclockwise rotation
f > 0

Figure 31.2: Geostrophy is a diagnostic relation where the pressure gradient acceleration balances the Coriolis
acceleration so that the net acceleration acting on a fluid element is zero. Here we depict a particle on a rotating
and frictionless hill (analogous to a high pressure center) as a conceptual model to help understand geostrophic
balance. As the particle moves downhill it picks up a rightward component to its trajectory as a result of the
Coriolis acceleration that couples to motion. Equilibrium arises when the downhill gravitational acceleration
balances the oppositely directed Coriolis acceleration.

31.4.1 Geostrophic relation in geopotential coordinates

When the Rossby number is small and friction is negligible, the leading order dynamical balance
in the horizontal momentum equation (31.1a) is between the Coriolis acceleration and horizontal
pressure gradient acceleration

f ẑ × ug = −ρ−1∇hp, (31.15)

with this equation known as geostrophic balance. The geostrophic balance equation leads to the
expression for the geostrophic velocity3

ug =
ẑ ×∇p
fρ

=⇒ ug = −
1

fρ

∂p

∂y
and vg =

1

fρ

∂p

∂x
. (31.16)

2These characteristics of the Coriolis acceleration are directly analogous to the Lorentz force in electrodynamics
(Jackson, 1975).

3We can write either ∇ or ∇h in equation (31.16). The reason is that the ẑ× operator selects only the
horizontal portion of the gradient.
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Note that the equator is special since the Coriolis parameter, f = 2Ω sinϕ, vanishes, thus
precluding the relevance of geostrophy near the equator.

Equation (31.16) for the geostrophic velocity can be written as

ρ f ug = ẑ ×∇hp, (31.17)

which suggests we interpret pressure as a streamfunction for ρ f ug. For the particular case of a
Boussinesq ocean on an f -plane, in which we set ρ to the reference density ρo and f is a constant,
then we can write

ug = ẑ ×∇h[p/(ρo f)]. (31.18)

In this case p/(ρo f) is referred to as the geostrophic streamfunction for the f -plane Boussinesq
geostrophic flow.

31.4.2 Cyclonic and anti-cyclonic flow orientation

Low High

f > 0

HighLow

f < 0

Cyclonic flow (same sense as f) anti-Cyclonic flow (opposite sense as f)

y

x

Figure 31.3: Geostrophic motion around low and high pressure centers in the northern hemisphere and southern
hemisphere (f = 2Ω sinϕ > 0 in the north and f < 0 in the south). Upper panel: the counter-clockwise motion
around the low pressure center in the northern hemisphere is in the same sense as the planetary rotation, and is
thus termed cyclonic. Cyclonic motion around a low pressure in the southern hemisphere occurs in a clockwise
direction, again corresponding to the direction of planetary rotation as viewed from the south. Geostrophic
motion around a high pressure center is counter to the planetary rotation in both hemispheres, and is thus termed
anti-cyclonic.

If oriented in the same sense as the earth’s rotation (i.e., same sign of the Coriolis parameter),
then rotational motion is said to be in a cyclonic sense. Oppositely oriented motion is anti-cyclonic.
For example, geostrophic motion around a low pressure center in the northern hemisphere is
counter-clockwise (Figure 31.3). Using the right hand rule, this motion represents a positively
oriented rotation. Hence, with f > 0 in the north, counter-clockwise motion is cyclonic. In the
southern hemisphere, geostrophic motion around a low pressure center is clockwise, which is a
negatively oriented rotational motion (again, recall the right hand rule). In the south where
f < 0, clockwise motion around a low pressure center represents cyclonic motion (Figure 31.3).

31.4.3 Gradients in the density and hydrostatic pressure

Horizontal momentum is affected by horizontal pressure gradient forces. Furthermore, the
hydrostatic balance says that the vertical derivative of the horizontal pressure gradient is
determined by horizontal density gradients

∂(∇hp)
∂z

= −g∇hρ. (31.19)
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Hence, in the presence of horizontal density gradients, the horizontal pressure gradient forces are
depth dependent. Correspondingly, the horizontal velocity field experiences a depth dependent
pressure force.

x

z
∂p/∂x = 0

∂p/∂x > 0

∂p/∂x < 0

∂ρ/∂x < 0

ρ

p

∂ρ/∂z < 0

∂p/∂z < 0

∂p/∂z < 0

∂p/∂z < 0

Figure 31.4: Horizontal density gradients support a vertical dependence to the horizontal gradient of the
hydrostatic pressure via ∂(∇hp)/∂z = −g∇hρ. This figure depicts a vertically stable stratification of density
(∂ρ/∂z < 0), along with pressure that decreases upward as per the hydrostatic balance (∂p/∂z = −ρ g < 0).
Density is assumed to have a constant zonal gradient with ∂ρ/∂x < 0, which leads to an increase in the zonal
pressure gradient with height, ∂(∂p/∂x)/∂z > 0. Depending on the thickness of the fluid column, the horizontal
pressure gradient can change sign when moving up in the column, as shown here. Compare this figure to Figure
27.4, which discusses how to compute horizontal pressure gradients in a hydrostatic fluid.

We illustrate this depth dependence in Figure 31.4 with a depth independent horizontal
density gradient, ∂ρ/∂x = constant < 0. This density gradient leads to a depth dependent
horizontal gradient in the hydrostatic pressure. This figure also illustrates how the sign of the
horizontal pressure gradient can change when moving in the vertical, depending on the value of
the gradient at depth. It also illustrates how horizontal density gradients that are mis-aligned
with pressure gradients lead to a nonzero baroclinicity vector

B =
∇ρ × ∇p

ρ2
. (31.20)

As shown in Section 40.4, a nonzero baroclinicity (i.e., a mis-alignment of the density and
pressure surfaces) imparts a “torque” on fluid elements that acts as a source for vorticity.

Depth dependence to the horizontal pressure gradient leads to a vertical shear in the horizontal
geostrophic velocity

∂(ρ f ug)

∂z
= ẑ ×∇(∂p/∂z) = −g ẑ ×∇ρ. (31.21)

This connection between horizontal density gradients and vertical shears in the geostrophic
velocity is known as the thermal wind balance, which we return to in Section 31.6.

31.4.4 Geostrophic relation in pressure coordinates

The hydrostatic balance
∂p/∂z = −ρ g (31.22)

can be used to eliminate density from the geostrophic balance (31.15) to render

f ẑ × ug =
g∇hp
∂p/∂z

. (31.23)
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The right hand side is minus the lateral gradient of the geopotential, Φ = g z, as computed along
surfaces of constant pressure4

f ẑ × ug = −∇pΦ =⇒ f ug = ẑ ×∇pΦ. (31.24)

This is a useful expression of geostrophy for the compressible atmosphere.

31.4.5 Further study
Visualizations from rotating tank experiments offer a useful complement to the mathematical
expressions presented here. For example, start around the 10 minute mark in this video from
Prof. Fultz.

31.5 Planetary geostrophic mechanics
We here introduce the planetary geostrophic (PG) equations, which have found great use in
describing elements of the large-scale laminar ocean circulation. We state the equations and
discuss their physical implications, deferring a systematic derivation for later. In particular, the
shallow water planetary geostrophic equations are derived in Section 43.4 and the continuously
stratified planetary geostrophic equations are derived in Section 44.1.

31.5.1 Planetary geostrophic equations
The governing equations for planetary geostrophy are based on the hydrostatic Boussinesq equa-
tions stated in Section 29.1.7, with the assumption of a steady, linear, and frictional/geostrophic
balance for the horizontal momentum

ρo f (ẑ × u) = −∇p− ρ g ẑ + ∂τ/∂z (31.25a)

∇h · u+ ∂w/∂z = 0 (31.25b)

Db/Dt = ḃ. (31.25c)

The stress vector, τ , acts just in the horizontal directions so that the vertical component of the
momentum equation (31.25a) is the hydrostatic balance

∂p/∂z = −ρ g. (31.26)

We now list some of the key physical attributes captured by these equations.

Velocity is determined by buoyancy

The only time derivative appearing in the planetary geostrophic equations appears in the
buoyancy equation (31.25c). All other equations are diagnostic. As the buoyancy evolves, the
hydrostatic pressure changes and so too does the geostrophic velocity. Hence, the velocity is
determined by the buoyancy field.

Planetary geostrophy admits no turbulence

The momentum equation is linear since planetary geostrophy drops the nonlinear advection
of momentum. Turbulence relies on the nonlinear momentum advection. Hence, there is no

4See Section 63.12.2 for details of computing derivatives using generalized vertical coordinates. In particular,
the formalism in that section reveals that (∂p/∂x)y,z/(∂p/∂z)x,y = −(∂z/∂x)y,p = −g−1 (∂Φ/∂x)x,p, and likewise
for the meridional derivative.
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turbulent flow described by the planetary geostrophic equations. Instead, planetary geostrophy
is used to describe laminar ocean circulation at the large-scales.

Vertical transfer of horizontal momentum and subgrid scale parameterizations

We introduced a horizontal stress vector (dimensions of force per area) into the momentum
equation

τ = (τx, τy, 0). (31.27)

This stress is associated with vertical transfer of horizontal momentum in the ocean interior
through vertical viscosity, as well as vertical transport of momentum from the atmosphere to
the ocean. The stress is enhanced by waves and turbulent features. However, such transient
processes are not represented by planetary geostrophy. Hence, they must be parameterized,
which generally leads to an enhanced vertical viscosity relative to that from molecular viscosity.

In general, all models, either analytical or numerical, that are focused on planetary scale
circulations do not resolve the scales over which molecular viscosity dominates the frictional
dissipation. Consequently, it is necessary to provide subgrid-scale (SGS) parameterizations for
the variety of physical processes that are unresolved by the model. We have more to say about
the parameterization of vertical transfer of horizontal momentum in Section 71.3.5.

31.5.2 Planetary geostrophic vorticity equation
The vertical component of relative vorticity is

ζ = ∂v/∂x− ∂u/∂y. (31.28)

We study the many facets of vorticity in Part VII of this book. Here, we form the relative
vorticity budget for the planetary geostrophic system by taking the curl of the momentum
equation. Doing so provides insights into the mechanics of planetary geostrophic flow, which we
deduce by considering various limits of the vorticity equation.

Curl of the PG momentum equation

Taking the curl of the momentum equation (31.25a), and rearranging terms, leads to the planetary
geostrophic vorticity equation

−ρo f
∂u

∂z
+ ẑ ρo∇ · (f u) = −g∇× (ẑ ρ) +

∂(∇× τ )
∂z

. (31.29)

Note that ∇ · (f u) = ∇h · (f u) since u is the horizontal velocity vector. Introducing the
Archimedean buoyancy (Section 29.1.2)

b = −g (ρ− ρo)/ρo (31.30)

leads to

−f ∂u
∂z

+ ẑ∇h · (f u) = ∇× (ẑ b) +
1

ρo

∂(∇× τ )
∂z

, (31.31)

whose horizontal and vertical components are the following

ρo f ∂zu = ẑ ×∇b (31.32a)

ρo∇ · (f u) = ∂z[ẑ · (∇× τ )]. (31.32b)

In this section as well as Section 31.6 we study these equations when making a variety of
simplifying assumptions.
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Relative vorticity is absent from the PG vorticity equation

It is notable that there is no appearance of the relative vorticity, ζ = ∂xv− ∂yu, in the planetary
geostrophic vorticity equation (31.25a). The reason is that we dropped the material time
derivative of velocity when forming the planetary geostrophic momentum equation (31.25a). By
doing so, we eliminate ζ from the vorticity equation. Planetary geostrophy is valid for those
cases where

|ζ| ≪ |f |, (31.33)

which means the absolute vorticity (sum of planetary vorticity plus relative vorticity) is dominated
by the planetary vorticity. We encounter more complete versions of the vorticity equation in
Chapter 40 where we do not make the planetary geostrophic assumption.

Rather than taking the curl of the planetary geostrophic momentum equation, we could
have also derived the vorticity equation (31.31) by taking planetary geostrophic scaling in the
full vorticity equation. We choose here the path through the planetary geostrophic momentum
equation since we have yet to discuss the full vorticity equation (Chapter 40).

31.5.3 Taylor-Proudman and vertical stiffening
Examination of the momentum equation (31.25a) reveals that inviscid planetary geostrophic
flow on an f -plane is horizontally non-divergent

∇h · u = 0 f -plane geostrophy. (31.34)

Use of the continuity equation (31.25b) means there is no vertical stretching of a vertical material
line element (Section 18.8.3)

∂w/∂z = 0. (31.35)

As shown in Chapter 40, a vortex tube exhibits the same kinematics as a material line element
described in Section 18.6. Hence, ∂w/∂z = 0 means there is no vertical stretching of a vortex
tube in the inviscid planetary geostrophic fluid. This result has important implications that we
now describe.

Flat bottom boundary and columnar motion

If there is a solid flat bottom to the domain, then the vertical velocity vanishes at that surface.
With ∂zw = 0 in the interior as well, then w vanishes throughout the domain. Hence, the fluid
has zero vertical velocity, and motion occurs on horizontal planes perpendicular to the rotation
axis; i.e., the flow is two-dimensional. We furthermore assume zero horizontal buoyancy gradients
(i.e., homogeneous fluid), so that the horizontal portion of the vorticity equation (31.32a) implies
that the horizontal velocity has zero vertical shear

∂u/∂z = 0 f -plane and homogeneous density. (31.36)

This result is known as the Taylor-Proudman effect, with Figure 31.5 providing an illustration.5

Relevance to the ocean and atmosphere

In the ocean and atmosphere, the assumptions leading to the Taylor-Proudman effect are rarely
satisfied due to the presence of stratification (i.e., vertical density variations), and a sloping
solid earth bottom. Nonetheless, there is a tendency for vertical velocities to be quite small due
to the effects of rotation; even smaller than the non-divergent flow scaling W/H ∼ U/L would

5The time-dependent establishment of the Taylor-Proudman effect is mediated by inertial waves, with a
discussion provided in Section 53.5.
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Figure 31.5: The Taylor-Proudman effect, summarized by equation (31.36), says that steady horizontal flow is
depth-independent when it occurs in a homogeneous and rapidly rotating fluid (i.e., geostrophically balanced
flow) over a flat bottom (where w = 0). Hence, when the geostrophic flow encounters an obstacle anywhere in the
column, such as the red ring shown here at the bottom, then flow throughout the full depth coherently moves
around the obstacle. The result is a vertically stiffened motion known as a Taylor column.

indicate (see Section 31.3.1). Additionally, for unstratified or linearly stratified fluids, there
is a tendency for geostrophic turbulence to cascade energy into the gravest vertical mode; i.e.,
the largest vertical scale. This largest vertical scale mode is termed the barotropic mode, and
motion of this mode is predominantly horizontal and depth independent. Smaller vertical scales
of variation are captured by an infinite hierarchy of baroclinic modes. The process of moving
energy to the barotropic mode is referred to as barotropization.

31.5.4 Meridional motion in response to vortex stretching and stress curls
The vertical component to the vorticity balance is given by equation (31.32b), which can be
written

β v = −f ∇h · u+ (1/ρo) ∂z[ẑ · (∇× τ )], (31.37)

where
β = ∂yf (31.38)

is the meridional derivative of the planetary vorticity.6 The continuity equation (31.25b) can be
used to yield the following expression of the vorticity balance

β v = f ∂zw + (1/ρo) ∂z[ẑ · (∇× τ )]. (31.39)

The left hand side is the meridional advection of planetary vorticity, with β > 0 over the globe.
The first term on the right hand side arises from vortex stretching by planetary vorticity; i.e.,
planetary induction or the β-effect discussed in Section 40.6.2. The second term is the vertical
divergence of the curl of the frictional stress.

Reading the vorticity equation (31.39) from right to left indicates that any process leading
to a vorticity source via vortex stretching or vertically dependent frictional stress curls must be
balanced by meridional motion. That is, the fluid responds to vortex stretching and vertically
dependent stress curls by moving meridionally through the planetary vorticity field. In the
frictional planetary geostrophic theory, meridional movement is the only means for fluid to
respond to vorticity input since the fluid’s vorticity is set by planetary vorticity (recall that for
this theory, the relative vorticity is far smaller in magnitude than planetary vorticity). Reading
equation (31.39) from left to right reveals that any meridional motion must be balanced by
vortex stretching/squashing plus stress curls. For example, in the absence of the frictional stress

6As studied in Part VII of this book, planetary rotation provides a vorticity, ωplanetary = f , to fluids. Hence,
the Coriolis parameter, f , is commonly referred to as the planetary vorticity.
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term, poleward flow is balanced by stretching of a fluid column (∂w/∂z > 0), whereas equatorial
flow is balanced by squashing a column (∂w/∂z < 0). In Section 44.3, we provide a detailed
study of the depth integrated vorticity equation (31.39), where we see how the depth integrated
meridional flow is affected by stretching imparted by boundary torques. To get an initial taste
for that study, we consider the Sverdrup balance in Section 31.5.5.

31.5.5 The Sverdrup balance
Depth integrating the vorticity balance (31.39) over the full depth of an ocean column leads to

β V = f [w(η)− w(ηb)] + ẑ · ∇ × [τ (η)− τ (ηb)]/ρo, (31.40)

where

V =

ˆ η

ηb

v dz (31.41)

is the depth integrated meridional velocity. For the large-scale we generally assume the surface
vertical velocity is relatively small, with w(η) = 0 when making the rigid lid approximation.
Further assuming a flat bottom allows us to drop the vertical velocity at the ocean bottom,
w(ηb) = 0. Additionally, the surface turbulent stress from winds is often far larger than the
bottom turbulent stress. These assumptions then lead to the Sverdrup balance, which is a balance
between the depth integrated meridional motion and the curl of the surface turbulent stress

ρo β VSverdrup = ẑ · ∇ × τ (η) Sverdrup balance. (31.42)

Evidently, for Sverdrup balanced flow, vertically integrated meridional transport (left hand side)
balances the wind stress curl (right hand side). In particular, a positive wind stress curl leads to
northward vertically integrated flow.

As further discussed in Section 40.9.4, the most unrealistic aspect of the Sverdrup balance
(31.42) concerns the assumption of vanishing w(ηb), since w(ηb) is generally non-negligible in
regions with sloping bottom boundaries and sizable bottom flows. Even so, the Sverdrup balance
(31.42) is a useful place to start when studying the connection between wind stress curls and
vertically integrated meridional transport. We also discuss a variant of the Sverdrup balance,
known as the geostrophic Sverdrup balance, in Section 44.4.

31.5.6 Further study
Much of the material in this section and Section 31.6.2 forms the basis for laminar theories of
the large-scale ocean circulation. We further pursue these theories in Chapter 44 by taking a
rather deep dive into the study of planetary geostrophic vorticity budgets. Further discussion of
phenomenology is given in Chapter 7 of Marshall and Plumb (2008). Greenspan (1969), Pedlosky
(1996), Samelson (2011), and chapters 19-22 of Vallis (2017) present ocean circulation theory
making use of fundamental concepts from geophysical fluid dynamics. A compelling discussion
of the cascade of energy from the baroclinic modes to barotropic mode is offered by Smith and
Vallis (2001). Gill (1982) provides a discussion of the depth of no motion problem arising in
dynamic oceanography.

Rotating tank laboratory experiments offer a powerful means to explore the variety of rotating
fluid mechanics relevant to the atmosphere and oceans. The following resources exemplify the
Taylor-Proudman effect (31.36) and the associated vertical stiffening of rotating fluids.

• One means to test Taylor-Proudman is to insert a dye into a rapidly rotating tank of
unstratified water. After a few rotation periods the dye forms vertical sheets known as
Taylor curtains whose center is along the rotation axis. The fluid is said to have a vertical
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stiffness due to the effects of rotation. Vertical stiffening in turn means that flow over a
small obstacle is deflected throughout the column rather than just near the bump. This
situation is depicted in Figure 31.5 and more vividly illustrated in this video from the
UCLA SpinLab.

• Near the 20 minute mark of this video, also from UCLA, we see how vortices in a rotating
fluid maintain their coherency much more than in a non-rotating fluid.

• Another laboratory test shown in this video from Prof. Fultz shows that a buoyant object
(a ping pong ball) placed into a rotating tank rises much slower than in a non-rotating tank.
The reason for the slower rise is that the ball must push up against the vertically stiffened
fluid column when rotating, thus slowing its rise relative to when in a non-rotating fluid.
Later in the same video, near the 16 minute mark, we see Taylor curtains in rotating fluids.

31.6 Thermal wind balance
Focusing now on the horizontal portion of the inviscid vorticity equation, as given by equation
(31.32a), leads to the thermal wind balance (remember that ∇b = −(g/ρo)∇ρ)

f ∂u/∂z = −∇× (ẑ b) = ẑ ×∇b = −(g/ρo) ẑ ×∇ρ, (31.43)

which takes on the component form

f ∂zu = −∂yb = (g/ρo) ∂yρ and f ∂zv = ∂xb = −(g/ρo) ∂xρ. (31.44)

As seen already in Section 31.4.3, these relations can also be derived directly by taking the
vertical derivative of the horizontal momentum equation (31.25a) and then using the horizontal
gradient of the hydrostatic balance (31.26). In either case, the thermal wind balance (31.43)
says that the horizontal geostrophic velocity possesses a vertical shear where the buoyancy field
has a horizontal gradient. Buoyancy with a horizontal gradient is termed baroclinic since it leads
to a nonzero baroclinicity vector that provides a source for vorticity (discussed in Section 40.7.2).
Correspondingly, it is only the baroclinic (depth dependent) piece of geostrophic velocity that
is related to horizontal buoyancy gradients. The depth-independent flow is not constrained by
horizontal buoyancy gradients.

The thermal wind shear (31.43) is rotated by π/2 relative to the direction of ∇b. For the
northern hemisphere (f > 0), the rotation is counter-clockwise so that, for example, with
buoyancy increasing southward towards the equator, then the thermal wind increases upwards
to the east. That is, the zonal geostrophic flow picks up a more eastward component moving
upward. We illustrate this orientation in Figure 31.6, and consider further facets of this flow in
Section 31.6.2.

31.6.1 Relevant portion of density needed for thermal wind

The cross product ẑ×∇b = −(g/ρo) ẑ×∇ρ means that the thermal wind shear (31.43) depends
only on the horizontal gradient of buoyancy or density. As seen in Section 31.6.4 for the
atmosphere, Section 31.6.5 for the Boussinesq ocean, and Section 31.6.6 for the non-Boussinesq
ocean, this property of the thermal wind shear means that we should focus on horizontal gradients
of T computed on constant p surfaces (for the atmosphere), or on horizontal gradients of S and
Θ (on constant z surfaces for the Boussinesq ocean and constant p surfaces for non-Boussinesq
ocean). Consequently, when assessing the ability of a particular density field to drive thermal
wind flow, we examine the T , S, and/or Θ fields rather than the in situ density field. Equivalently
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ωyb < 0

Figure 31.6: Orientation of the thermal wind shear for the northern hemisphere (f > 0). We depict a buoyancy
that decreases to the north, so that ∇b = ŷ ∂yb = −ŷ|∂yb|. The corresponding geostrophic flow becomes more
eastward moving vertically upward, as per the thermal wind relation f ∂zu = ẑ ×∇b = x̂ |∂yb|. More generally,
for a northern hemisphere geostrophic flow, the thermal wind shear is oriented with fluid of greater buoyancy
to the right when facing in the direction of the shear, and fluid of lesser buoyancy to the left. For the southern
hemisphere, the orientation is opposite given f < 0, so that a southern hemisphere geostrophic flow has a thermal
wind shear oriented with fluid of greater buoyancy to the left. Evidently, in both hemispheres if there is more
buoyant fluid towards the equator then that yields a corresponding geostrophic flow that becomes more eastward
moving vertically upward.

for the ocean, we examine the potential density (Section 30.3.4), with reference pressure taken
at the local pressure.

These points are worth emphasizing since surfaces of constant T , S, and Θ in a compressible
fluid generally have larger horizontal variability than constant in situ density surfaces. As such,
one reaches misleading conclusions about the thermal wind flow if focusing on the in situ density
field, whose quasi-horizontal surfaces might otherwise lead one to incorrectly conclude that the
thermal wind shears are smaller than they actually are. We provide the necessary mathematical
details to support these points in Sections 31.6.4, 31.6.5 and 31.6.6.

31.6.2 Atmospheric jet stream and the Antarctic Circumpolar Current

Due to the increased solar radiation reaching the equator relative to the poles, the zonal averaged
temperature generally reduces when moving poleward. This poleward reduction in temperature
corresponds to a poleward reduction in buoyancy. Also, for a stably stratified fluid, buoyancy
increases upward. Figure 31.7 illustrates this situation.

A zonal average around a zonally symmetric solid earth boundary eliminates zonal derivatives
and so renders the zonally averaged thermal wind relation

f
∂u

∂z
=
g

ρo

∂ρ

∂y
= −∂b

∂y
> 0, (31.45)

where ( ) is the zonal mean operator. In the northern hemisphere, ∂yb < 0 (zonal mean buoyancy
decreases towards the north), so that the zonal averaged thermal wind shear is positive, ∂zu > 0.
For example, a westerly zonal wind (blowing to the east) strengthens with height (easterly
thermal wind shear). In the Southern Hemisphere, f < 0, one finds a poleward decreasing
buoyancy, ∂yb > 0. This buoyancy gradient corresponds to a eastward thermal wind shear, just
like for the northern hemispere. Note that poleward movement, where |f | increases, leads to a
smaller thermal wind shear given the same buoyancy gradient.

31.6.3 Diagnosing geostrophic velocity from buoyancy

Vertical integration of the thermal wind relation (31.43) between two constant depth surfaces
leads to

u(z) = u(zref)− f−1∇× ẑ
ˆ z

zref

bdz. (31.46)

page 872 of 2158 geophysical fluid mechanics



31.6. THERMAL WIND BALANCE

ρ

p
−∇p

−∇p

u > 0

f > 0
u < 0X

y

z

∂ρ
∂y

> 0

Figure 31.7: Schematic of the density (as per the discussion in Section 31.6.1) and hydrostatic pressure fields
and the associated thermal wind balanced flow in the northern hemisphere (f > 0) with north to the right and
east out of the page. We show surfaces of constant density (solid lines) and constant pressure (isobars; dashed
lines). Density increases poleward (∂ρ/∂y > 0) so that, according to the discussion surrounding Figure 31.4, the
meridional pressure gradient decreases when moving upward, ∂(∂p/∂y)/∂z = −g ∂yρ < 0. We illustrate isobars
with an equatorward directed downgradient pressure force at lower elevations (−∂p/∂y < 0) and poleward directed
pressure force at higher elevations (−∂p/∂y > 0). The zonal geostrophic wind is in geostrophic balance with these
pressure gradients, with a westward zonal flow at lower elevations (easterly winds) and eastward flow at higher
elevations (westerly winds). This flow configuration creates an eastward vertical shear of the zonal geostrophic
winds, ∂u/∂z > 0.

Hence, knowledge of the buoyancy field (e.g., through hydrographic measurements of temperature
and salinity in the ocean), along with knowledge of the geostrophic velocity at a single depth,
u(zref), allows for determination of the full geostrophic velocity in terms of density. Unfortu-
nately, specification of the unknown reference velocity is unavailable just from hydrographic
measurements. This is the origin of the depth of no motion problem in oceanography.

31.6.4 Thermal wind balance for the atmosphere

The large-scale atmosphere is compressible and approximately in hydrostatic balance. The
expression for geostrophic balance (31.24) in pressure coordinates is a suitable starting point
to derive thermal wind for the atmosphere. For this purpose, we take the pressure derivative,
∂/∂p, of (31.24) to render

f
∂u

∂p
= ẑ ×∇p

[
∂Φ

∂p

]
, (31.47)

with Φ = g z the geopotential. The hydrostatic relation ∂p/∂z = −ρ g takes the form

∂p

∂Φ
= −ρ⇒ ∂Φ

∂p
= −1/ρ (31.48)

in which case

f
∂u

∂p
= −ẑ ×∇p(1/ρ). (31.49)
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Ideal gas atmosphere

The specific volume takes the following form for an ideal gas atmosphere (see Section 23.4.1)

ρ−1 = RM T/p. (31.50)

Since the horizontal derivative in the thermal wind relation (31.49) is along pressure surfaces,
we have

f
∂u

∂p
= −R

M

p
[ẑ ×∇pT ] . (31.51)

This expression gives rise to the name “thermal wind”, with vertical shears of the horizontal
velocity generated by horizontal temperature gradients along isobars.

As for the ocean in equation (31.46), we vertically integrate the thermal wind expression
(31.51), here between two pressure levels

u(pA)− u(pB) = f−1RM ẑ ×∇p
[ˆ pB

pA

T dp

p

]
, (31.52)

where pA < pB, so that pA is at a higher altitude than pB. We define the thermal wind shear as
the difference between the wind aloft (higher altitude and lower pressure) from that at a lower
altitude (greater pressure)

uT = u(pA)− u(pB) with pA < pB (31.53)

so that

uT =
RM

f
ẑ ×∇pT ln p

, (31.54)

where we introduced the log-pressure weighted temperature between the two pressure surfaces

T
ln p

=

ˆ pB

pA

T dp

p
. (31.55)

The relation (31.54) means that on the f -plane, RM/f times the log-pressure weighted tempera-
ture serves as a streamfunction for the thermal wind shear. Reconsider the previous example
where the polar regions are colder than tropics, so that in the northern hemisphere on pressure
surfaces, ∂T

ln p
/∂y < 0. Hence, the zonal westerly winds increase in magnitude with height. We

depict this situation in Figure 31.8. Furthermore, the thermal wind shear points to the east.
For a more general flow in the northern hemisphere, cold (less buoyant) air sits on the left side
of the thermal wind shear and warm (buoyant) air on the right. The opposite orientation holds
for the southern hemisphere since the Coriolis parameter is negative, f < 0.

Barotropic flow

Return to the thermal wind equation (31.49)

f
∂u

∂p
= −ẑ ×∇p(1/ρ) =

ẑ ×∇pρ
ρ2

. (31.56)

For the special case of density a function just of the pressure, ρ = ρ(p), then ∇pρ = 0. This
situation defines a barotropic flow, which is characterized here by a horizontal geostrophic
velocity with zero vertical variations. Note that we are here only concerned with the geostrophic
flow. A density related to pressure through ρ = ρ(p) can still support vertical variations of the
ageostrophic flow.

We further discuss barotropic flow in Section 40.2 as part of our study of vorticity. As detailed
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Figure 31.8: Thermal wind shear in the northern hemisphere (f > 0) middle latitude atmosphere, whereby
cold/dense/less buoyant air sits to the north and warm/light/more buoyant air to the south. The zonal geostrophic
winds increase to the east when rising in elevation, ∂u/∂z > 0. We say that the zonal winds have an eastward
thermal wind shear. In general, a geostrophic wind in the northern hemisphere atmosphere has cold/dense/less
buoyant air to the left when facing downwind, whereas the opposite orientation holds for the southern hemisphere
where f < 0.

in that discussion, the general definition of a barotropic flow is one whereby the baroclinicity
vector vanishes, B = ∇p×∇(1/ρ) = 0. The functional relation ρ = ρ(p) (equivalently p = p(ρ))
is a sufficient condition for vanishing baroclinicity. As seen in Section 40.4, for a barotropic flow
there is no generation of vorticity through the torques created when density isosurfaces deviate
from pressure isosurfaces (isobars).

31.6.5 Thermal wind balance for a Boussinesq ocean

We here expose details for how to work with thermal wind in the ocean, accounting for the
presence of both salinity and temperature in the equation of state, with this discussion following
from that in Section 31.6.1. To start, consider the most general form of thermal wind according
to equation (31.21)

f
∂(ρu)

∂z
= −g ẑ ×∇ρ. (31.57)

Treatment of the in situ density depends on whether we consider a Boussinesq ocean (Chapter
29), as done for most of this section, versus a non-Boussinesq ocean. We here consider the
Boussinesq ocean and then the non-Boussinesq ocean in Section 31.6.6.

For a Boussinesq ocean, the in situ density on the left hand side of equation (31.57) is set to
the constant reference density, ρo, in which case the thermal wind relation is given by

f ρo ∂zu = −g ẑ ×∇ρ. (31.58)

Following from the discussion of Boussinesq energetics in Section 29.8.4, we know that the in
situ density in a Boussinesq ocean takes the functional form of equation (29.212)

ρ = ρ[S(x, t),Θ(x, t), p = −ρo Φ(x, t)]. (31.59)

For geostrophic flows we are generally only concerned with the simple geopotential, Φ(x, t) = g z,
which defines the local vertical direction, ẑ. Hence, ẑ ×∇ρ picks out the horizontal derivatives
of the in situ density along surfaces of constant geopotential

g ẑ ×∇ρ = g ẑ ×∇hρ. (31.60)
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We can thus express the horizontal in situ density gradient as

∇hρ =

[
∂ρ

∂S

]
Θ,Φ

∇hS +

[
∂ρ

∂Θ

]
S,Φ

∇hΘ = ρo (β∇hS − α∇hΘ), (31.61)

where we introduced the Boussinesq form of the haline contraction and thermal expansion
coefficients

β =
1

ρo

[
∂ρ

∂S

]
Θ,Φ

and α = − 1

ρo

[
∂ρ

∂Θ

]
S,Φ

. (31.62)

These results lead to the oceanic Boussinesq form of the thermal wind relation

f ∂zu = −g ẑ × (β∇hS − α∇hΘ), (31.63)

which decomposes the thermal wind shear into a contribution from horizontal gradients in S and
from Θ. In some treatments, the right hand side contribution is referred to as the horizontal
gradient of the locally referenced potential density (see Section 30.6.1). Correspondingly, one
generally finds that vertical sections of the potential density (referenced to a pressure near to
that where computing thermal wind) provide a useful means to determine the magnitude and
direction of the thermal wind shears; more useful than sections of in situ density.

To help understand the geometry of the thermal wind equation (31.63), consider an ocean
with a constant salinity and positive thermal expansion coefficient, so that

f ∂zu = g α ẑ ×∇hΘ if ∇S = 0. (31.64)

Hence, in the northern hemisphere (f > 0) the thermal wind shear is oriented with relatively
warm water to the right of the shear, just like that shown for the atmosphere in Figure 31.8
and more generally as discussed in Figure 31.6. More generally, with a non-constant salinity the
thermal wind shear is oriented with more buoyant waters to the right (in northern hemisphere),
as per the vector, β∇hS − α∇hΘ, appearing on the right hand side of the thermal wind equation
(31.63). This vector is proportional to the horizontal components of the dianeutral unit vector
introduced in Section 30.5.3 and given by

γ̂ =
−α∇Θ+ β∇S
| − α∇Θ+ β∇S| so that γ̂horz =

−α∇hΘ+ β∇hS
| − α∇Θ+ β∇S| . (31.65)

Evidently, the vertical shear of the horizontal geostrophic velocity is perpendicular to the
horizontal projection of the dianeutral unit vector, with this orientation shown in Figure 31.9.
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Figure 31.9: The thermal wind shear, f ∂zu, given by equation (31.63) is oriented perpendicular to the horizontal
projection of the dianeutral unit vector given in equation (31.65). For example, with γ̂ pointing towards less
buoyant waters, the northern hemisphere thermal wind shear is oriented with more buoyant waters to the right
when facing in the direction of the shear. For example, in an ocean with constant salinity, so that γ̂ is normal to
a constant Θ surface and pointing towards colder waters, then the thermal wind shear is oriented with warm
water to the right of the shear. This orientation accords with that shown for the atmosphere in Figure 31.8 and
more generally as per Figure 31.6.
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31.6.6 Thermal wind for a non-Boussinesq hydrostatic ocean
We here expose details for how to work with thermal wind in a non-Boussinesq ocean, with
this discussion following from that in Section 31.6.1. The formulation follows quite closely to a
Boussinesq ocean, only now we start from the expression (31.49) for a compressible hydrostatic
fluid using pressure as a vertical coordinate

ρ2 f
∂u

∂p
= ẑ ×∇pρ. (31.66)

For a non-Boussinesq ocean, we make use of the pressure dependence of the density so that

ρ = ρ[S(x, t),Θ(x, t), p(x, t)]. (31.67)

The gradient operator in equation (31.66) is computed along surfaces of constant pressure so
that

∇pρ =

[
∂ρ

∂S

]
Θ,p

∇pS +

[
∂ρ

∂Θ

]
S,p

∇pΘ = ρ (β∇pS − α∇pΘ), (31.68)

where we introduced the non-Boussinesq form of the haline contraction and thermal expansion
coefficients

β =
1

ρ

[
∂ρ

∂S

]
Θ,p

and α = −1

ρ

[
∂ρ

∂Θ

]
S,p

. (31.69)

In this manner we can write the thermal wind relation (31.66) as

ρ f
∂u

∂p
= ẑ × (β∇pS − α∇pΘ). (31.70)

This expression is directly analogous to the Boussinesq form given by equation (31.63). Indeed,
we can go one step further by using the chain rule and the hydrostatic relation to write

∂u

∂p
=
∂u

∂z

∂z

∂p
= −(ρ g)−1 ∂u

∂z
, (31.71)

in which case the non-Boussinesq thermal wind takes on the form

f
∂u

∂z
= −g ẑ × (β∇pS − α∇pΘ). (31.72)

Now, the key distinction from the Boussinesq form (31.63) is the appearance of a constant
pressure derivative, ∇p, for the non-Boussinesq case, in contrast to the constant geopotential
derivative, ∇h, appearing in the Boussinesq case. Additionally, the non-Boussinesq case uses the
slightly distinct form of α and β given by equation (31.69) rather than the Boussinesq form in
equation (31.62).

31.7 Isopycnal form stress from geostrophic eddies
As introduced in Section 28.1, form stress is the horizontal stress arising from pressure acting on
a sloped surface. The mathematical expression for the form stress acting on the top side of a
surface is given by equation (28.6)

Σform = p∇η, (31.73)

with the opposite sign for the form stress on the bottom side of the surface. Here, z = η(x, y, t)
is the depth of the surface (see Figure 28.3 or Figure 31.10). The net horizontal force from form
stress is the area integral over the surface.
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In this section we examine the zonal mean zonal form stress acting on an isopycnal surface
(Section 31.7.1) and on an isopycnal layer (Section 31.7.2), each for an adiabatic, Boussinesq,
hydrostatic fluid in geostrophic balance and within a zonally periodic channel of length L. We
furthermore assume the fluid density is a linear function of Θ to remove compressibility effects
and focus on the dynamics rather than also consider the thermodynamics. As we show, the zonal
mean zonal form stress arising from geostrophically balanced fluctuations provide an eastward
acceleration to the fluid. At the same time, these geostrophic eddies transport buoyancy and
thickness/volume meridionally.

Although the channel geometry is rather simple, it has applications to the middle latitude
atmospheric circulation as well as for ocean circulation, particularly in the Southern Ocean where
there is circumpolar channel-like flow within the Antarctic Circumpolar Current. Furthermore,
the discussion exposes key elements of eddy-mean flow interactions, sharing points with the
leading order generalized Lagrangian mean of Section 70.2 and the quasi-Stokes transport
discussed in Section 71.3. Elements from this section rely on material discussed later in the book
(we point to the relevant sections), so that it is best suited for those having some understanding
of that material.

z = η

̂z
ŷ

x̂

Σform
x

z = ηη′�

Figure 31.10: Schematic of the zonal form stress, Σform
x , acting on a surface whose zonal mean vertical position

is z = η(y, t) and whose vertical position relative to the zonal mean is z = η(y, t) + η′(x, y, t).

31.7.1 Zonal mean zonal form stress on an isopycnal surface

We are here interested in the form stress acting on an isopycnal surface. Before specializing to
an isopycnal, we decompose the form stress according to the zonal mean depth and its deviation
from zonal mean (see Figure 31.10). Thereafter, specialization to an isopycnal surface in an
adiabatic fluid connects the zonal mean form stress to the meridional eddy flux of buoyancy.

Zonal form stress on an arbitrary surface in a channel

The zonal mean vertical position of a surface is written

η(y, t) =
1

L

ˆ L

0
η(x, y, t) dx (31.74)

and its corresponding zonal fluctuation is

η′ = η − η. (31.75)

The zonal component of the form stress acting on this surface is thus given by

p ∂xη = p(x, η + η′) ∂x(η + η′) (31.76a)

= p(x, η + η′) ∂xη
′ (31.76b)

≈ [p(x, η) + ∂zp(x, η) η
′] ∂xη

′ (31.76c)

= p(x, η) ∂xη
′ +O(η′)2. (31.76d)
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Hence, to second order in fluctuations, η′, the zonal form stress acting on the surface equals to
p(x, η) ∂xη

′, where it is important to note that pressure is evaluated at the zonal mean depth,
z = η.

To within the same accuracy, the zonal integral of the zonal form stress is given by

ˆ L

0
Σform
x dx ≈

ˆ L

0
p(η) (∂η′/∂x) dx = −

ˆ L

0
η′ [∂p(η)/∂x] dx. (31.77)

The final equality follows from zonal periodicity, which allows us to introduce the dual form stress
inside the integral.7 Now assume the zonal pressure gradient at η is balanced by a meridional
geostrophic velocity at the same vertical position

∂p(η)/∂x = fρo v(η). (31.78)

We can now decompose v(η) into a mean and fluctuation,

v(η) = v(η) + v′(η), (31.79)

so that ˆ L

0
Σform
x dx = −ρo f

ˆ L

0
η′ v′ dx, (31.80)

where we noted that the Coriolis parameter is independent of zonal position and so can be pulled
outside of the zonal integral. Hence, there is a nonzero zonal mean zonal form stress when there
is a nonzero zonal correlation between fluctuations in the meridional velocity and the depth of
the surface

Σ
form

x = −ρo f v′ η′. (31.81)

Zonal mean zonal form stress acting on an isopycnal surface

To further unpack the correlation appearing in equation (31.81), specialize to the case of an
isopycnal surface in an adiabatic fluid. As shown in our discussion of generalized Lagrangian
mean averaging in Sections 70.2.6 and 70.4.7, vertical fluctuations in the position of the isopycnal
surfaces, relative to the zonal mean η, are related to zonal fluctuations in the density

η′ ≈ − ρ′

∂ρ/∂z
= − b′

N2
, (31.82)

where we introduced the squared buoyancy frequency of the zonal mean state as well as the
fluctuating buoyancy

N2 = − g
ρo

∂ρ

∂z
and b′ = −g ρ

′

ρo
. (31.83)

The zonally averaged zonal form stress thus takes the form

Σ
form

x =
ρo f

N2
v′ b′. (31.84)

Again, the assumptions rendering the result (31.84) are (i) zonal periodicity, (ii) adiabatic and
Boussinesq fluid, (iii) geostrophically balanced flow. Under these assumptions, the zonal mean
zonal form stress acting on an isopycnal surface is proportional to the zonal correlation between
fluctuations in the meridional velocity and the buoyancy. It is a general property of unstable

7We discussed the relation between form stress and dual form stress in Section 28.4.4. The dual form stress
here appears because the channel is zonally periodic. Hence, a zonal integral of the form stress equals (with a
minus sign) to the zonal integral of the dual form stress.
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quasi-geostrophic eddies in the atmosphere and ocean to transport positive buoyancy (e.g., warm
air/water) poleward and negative buoyancy (e.g., cold air/water) equatorward, thus ameliorating
the equator-to-pole buoyancy difference setup by solar radiation that preferentially warms the
tropics. More generally, as shown in Section 62.9, unstable quasi-geostrophic disturbances, such
as those associated with baroclinic instability, transport buoyancy down the horizontal buoyancy
gradient. Evidently, with buoyancy decreasing poleward, such disturbances transport buoyancy
poleward. In turn, this property of geostrophic eddies leads to a positive zonal mean zonal form
stress

Σ
form

x > 0. (31.85)

Hence, in addition to transporting buoyancy poleward, geostrophic eddies provide a positive
zonal mean force through zonal integrated form stress that accelerates the fluid in the eastward
direction. These two properties of geostrophic eddies (poleward flux of positive buoyancy
anomalies along with an eastward acceleration from form stress) are fundamental to the middle
latitude atmospheric circulation as well as for ocean circulation, particularly within the channel-
like Antarctic Circumpolar Current.

31.7.2 Zonal mean zonal form stress acting on an isopycnal layer

We here offer another lens to understand the zonal mean zonal form stress by examining the
form stress acting on a constant density layer of adiabatic Boussinesq fluid such as shown in
Figure 31.11. This layered/isopycnal analysis anticipates some of the development considered
for the stacked shallow water model in Chapters 35 and 36 as well as for isopycnal models in
Section 66.2.

The net form stress acting on the upper and lower layer interfaces in Figure 31.11 is given by

Σlayer form = p1∇η1 − p2∇η2 (31.86a)

= p(η + h/2)∇(η + h/2)− p(η − h/2)∇(η − h/2) (31.86b)

≈ [p(η)− ρ g h/2]∇(η + h/2)− [p(η) + ρ g h/2]∇(η − h/2) (31.86c)

= p∇h− ρ g h∇η (31.86d)

= ∇(p h)− h∇(p+ ρ g η) (31.86e)

= ∇(p h)− ρo h∇M. (31.86f)

In this relation we set z = η for the vertical position at the center of the layer, introduced the
Montgomery potential from Section 66.2.1

Mρo = p+ ρ g η, (31.87)

and noted that ρ is a uniform constant layer density so that it commutes with the horizontal
gradient operator computed along ρ surfaces. We also made use of the hydrostatic balance to
approximate the interface pressures as

p(η + h/2) ≈ p(η) + ∂p

∂z

h

2
= p(η)− ρ g h/2 (31.88a)

p(η − h/2) ≈ p(η)− ∂p

∂z

h

2
= p(η) + ρ g h/2. (31.88b)

The zonal mean of the zonal layer form stress is thus given by the correlation between the
layer thickness fluctuations and fluctuations in the zonal derivative of the Montgomery potential

Σ
layer form

x = −ρo h′ ∂M ′/∂x, (31.89)
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where we set ∂M/∂x = 0 due to zonal periodicity. As seen in Section 66.2.1, the Montgomery
potential is the geostrophic streamfunction in isopycnal coordinates, so that the fluctuating
meridional geostrophic velocity is given by

f v′ = ∂xM
′. (31.90)

Consequently, the zonal mean zonal form stress acting on the layer equals to the correlation
between the thickness fluctuations and fluctuations in the meridional geostrophic velocity

Σ
layer form

x = −ρo f v′ h′. (31.91)

Hence, as the geostrophic eddies provide a net eastward acceleration to the layer (equation
(31.85)), they also move volume meridionally within isopycnal layers, moving positive thickness
fluctuations equatorward.

z = η1(x, y, t)

z = η2(x, y, t)

h = η1 − η2 ρ
̂z

ŷ

x̂

Σform
x

Σform
x

Figure 31.11: Schematic of a constant density layer of an adiabatic, hydrostatic, Boussinesq fluid with thickness
h(x, y, t) = η1(x, y, t)− η2(x, y, t) = (η + h/2)− (η − h/2), and uniform density ρ = constant. East points to the
right and north is oriented into the page. The zonal form stress, Σform

x , acting on the upper and lower interfaces
at a horizontal position (x, y) are shown by the thick horizontal vectors. The zonal form stress is the horizontal
component of the pressure force per area acting on the layer interfaces, with the sign of the form stress determined
by the slope of the layer interface. For a zonally periodic fluid layer, the net zonal pressure force acting on the
layer arises from the zonal form stress integrated over the layer interfaces.

To further understand the physics of the form stress in equation (31.91), parameterize the
velocity-thickness eddy correlation, v′ h′, by downgradient diffusion of thickness

v′ h′ = −κ ∂yh, (31.92)

where κ > 0 is a nonzero kinematic diffusivity (dimensions of squared length per time). This
parameterization is suggested by the work of Gent and McWilliams (1990) as discussed in
Section 71.3.6. As noted there, thickness diffusion as a parameterization reflects the general
tendency of geostrophic eddies to reduce horizontal gradients in layer thickness as they reduce
the available potential energy of the flow. In this case the zonal mean zonal form stress is

Σ
layer form

x = ρo f κ ∂yh. (31.93)

So in the northern hemisphere in regions where the zonal mean layer thickness increases to the
north, ∂yh > 0, there is a corresponding eastward zonal mean zonal form stress arising from
parameterized geostrophic eddies acting on layer thickness. This situation corresponds to the
case in Section 31.7.1, where we saw that geostrophic eddies preferentially transport positive
buoyancy anomalies poleward and negative buoyancy anomalies equatorward. In the present
analysis, meridional changes to the layer thickness correspond to a nonzero thermal wind shear.
If layer thickness increases poleward, as for the case of weaker vertical stratification in the high
latitudes, then the zonal velocity has a positive vertical shear, thus contributing an eastward
zonal mean form stress.
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31.7.3 Comments and further study

A key feature of geostrophic eddies exposed by this discussion concerns the connection between
zonal form stress (providing an eastward force on the zonally periodic channel flow) and
meridional eddy transport of buoyancy (positive buoyancy anomalies are transported poleward)
and thickness (positive thickness anomalies are transported equatorward). The periodic channel
domain is highly idealized. Nonetheless, the basic ideas form the roots for much of how we
think about geostrophic eddies in the middle latitude atmosphere and the Southern Ocean.
Further generalizations lead to the generalized Lagrangian mean, whose kinematic rudiments
are discussed in Section 70.2, as well as the thickness weighted average, discussed in Chapter 67.

The fundamental role of form stress in geostrophic turbulent flows is pedagogically treated
by Vallis (2017). See, in particular, his Chapter 21 for a thorough and insightful discussion of
circulation in the Southern Ocean. We also return to form stress within the shallow water fluid
in Section 36.4. That discussion complements the presentation given here, with a focus on a
layer of shallow water fluid. We also touch on the notions of form stress when discussing the
Gent and McWilliams (1990) mesoscale eddy parameterization in Section 71.3.

31.8 Exercises
exercise 31.1: Small Rossby number at human scales
Consider motion of a car at a speed U ∼ 105 m hour−1 and a length scale of L ∼ 10 m.
Furthermore, assume the car is moving at 30◦N latitude so that fhuman = 2Ωhuman sinϕ = Ωhuman.

(a) What is the rotation rate of the planet and corresponding rotation period, Thuman =
2π/Ωhuman, required to render a unit Rossby number (Ro = 1) for the given “human” sized
scales? Give resulting rotation rate in units of inverse seconds and period in seconds.

(b) If the earth rotated at the angular speed Ωhuman, what would be the rigid-body speed for
a point at rest on the earth’s surface at the equator? Give result in units of meter per
second.

(c) How does the rigid-body speed compare to the speed of sound at standard atmospheric
conditions? What about the root-mean-square speed for air molecules? Hint: read Section
16.3.4.

(d) Discuss an astronomical object that has a very large rotational speed. Hint: 1993 Nobel
Prize in physics.

exercise 31.2: The beta spiral
Consider a steady state Boussinesq planetary geostrophic fluid in the absence of mixing. Write
the geostrophic velocity as

u = |u| cos∆ v = |u| sin∆, (31.94)

where ∆ is the angle measured counter-clockwise from east. Use thermal wind and the steady
state perfect fluid buoyancy equation to determine an expression for ∂∆/∂z. Show that for
f > 0 (northern hemisphere) and ∂b/∂z = N2 > 0 (gravitationally stable fluid column; see
Section 30.5), then ∂∆/∂z has opposite sign from the vertical velocity, w. This spiralling of the
geostrophic velocity is known as the beta spiral in oceanography.
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exercise 31.3: Alternative form of thermal wind
Consider a fluid with density a function of pressure and potential temperature

ρ = ρ(θ, p). (31.95)

A physical realization of this equation of state is a lake. Show that the thermal wind shear for a
hydrostatic and compressible fluid with this equation of state can be written in the form

∂u

∂z
=

[
N2

f ρ g

]
(ẑ × ∇θp), (31.96)

where

N2 = −g
ρ

∂ρ

∂θ

∂θ

∂z
= g αθ

∂θ

∂z
> 0 (31.97)

is the squared buoyancy frequency, assumed positive so that the fluid is gravitationally stable
in the vertical (see Section 30.6). The term αθ is the thermal expansion coefficient written in
terms of potential temperature (Section 30.3.4),

αθ = −(1/ρ) ∂ρ/∂θ > 0. (31.98)

Finally, the horizontal gradient projected onto constant θ surfaces is given by (see Section
63.12.2)

∇θ = x̂
[
∂

∂x

]
y,θ

+ ŷ

[
∂

∂y

]
x,θ

(31.99a)

= ∇h −
[ ∇hθ
∂θ/∂z

]
∂

∂z
. (31.99b)

Hint: This exercise requires careful use of the chain rule and the hydrostatic relation, along
with the equations given in the problem statement. Furthermore, assume the fluid is fully
compressible.

Hint: Some may wish to “warm-up” by showing that the result holds for the simpler equation
of state ρ = ρ(θ). Some of the steps used for the simpler case are relevant for the case with
ρ = ρ(θ, p).
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Chapter 32

TANGENT PLANE FLOW BALANCES

We here consider a variety of inviscid tangent plane (horizontal) flow regimes characterized by
a balance between a subset of terms appearing in the horizontal momentum equation. This
discussion allows us to directly compare the geostrophically balanced flow of Chapter 31 to a
variety of other balanced flows such as gradient wind, inertial motion, and cyclostrophic balance.
We provide a categorization of the flow following natural coordinates or intrinsic coordinates,
which offer a concise means to compare the relative magnitudes of the Coriolis, pressure, and
centrifugal accelerations acting on a fluid element moving horizontally.1

reader’s guide to this chapter
We make use of the hydrostatic primitive equations from Section 27.1, along with the

Boussinesq aporoximation from Section 29.1. We also assume an understanding of the
geostrophic balance from Chapter 31, and use of some geometric notions discussed in Chapter
5, though most of the salient math points are revisited here so that Chapter 5 is an option
rather than a requirement. Throughout this chapter we assume a tangent plane geometry
and associated equations from Section 24.5, thus allowing for Cartesian coordinates. Also, we
ignore all vertical motion. Some of this material is used in subsequent chapters, in particular
Chapter 33 on Ekman dynamics as well as Chapters 43 and 45 on quasi-geostrophy.

32.1 Loose ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
32.2 Horizontal flow described by natural coordinates . . . . . . . . . . . . . . 886

32.2.1 Natural coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 886
32.2.2 Material acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 887
32.2.3 Centripetal and centrifugal accelerations . . . . . . . . . . . . . . 888
32.2.4 Coriolis and pressure gradient . . . . . . . . . . . . . . . . . . . . 888
32.2.5 Horizontal momentum equation and local Rossby number . . . . 889
32.2.6 Decomposition of the acceleration . . . . . . . . . . . . . . . . . . 890
32.2.7 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891

32.3 Exact geostrophic balance . . . . . . . . . . . . . . . . . . . . . . . . . . 891
32.3.1 Steady f -plane flow . . . . . . . . . . . . . . . . . . . . . . . . . . 892
32.3.2 Steady β-plane flow . . . . . . . . . . . . . . . . . . . . . . . . . 893
32.3.3 What about geostrophic balance with curved motion? . . . . . . 893

32.4 Inertial motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
32.4.1 Anti-cyclonic circular motion on f -plane . . . . . . . . . . . . . . 894
32.4.2 Period for inertial motion . . . . . . . . . . . . . . . . . . . . . . 894
32.4.3 Observing inertial motion . . . . . . . . . . . . . . . . . . . . . . 895

1It is important to recall from Section 13.10.4 that motion on a geopotential incorporates the acceleration from
both the central gravitational field and the planetary centrifugal acceleration. This property holds for the tangent
plane approximation assumed in this chapter, whereby a geopotential is assumed to be horizontal. Consequently,
planetary centrifugal acceleration is absorbed by the geopotential and so it does not appear here.
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32.4.4 Inertial motion is Lagrangian . . . . . . . . . . . . . . . . . . . . 895
32.4.5 “Inertial” motion does not refer to an inertial reference frame . . 895
32.4.6 Inertial motion on a sphere . . . . . . . . . . . . . . . . . . . . . 896

32.5 Cyclostrophic balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
32.6 Gradient wind balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897

32.6.1 Constraints on gradient wind flow . . . . . . . . . . . . . . . . . . 899
32.6.2 The variety of gradient wind flows . . . . . . . . . . . . . . . . . 899
32.6.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

32.1 Loose ends
• How to determine whether the velocity field is divergent or non-divergent for the cy-
clostrophic and gradient wind motions?

• Exercises needed for this chapter.

32.2 Horizontal flow described by natural coordinates
In this section we decompose the horizontal Boussinesq momentum equation into motion parallel
to and motion perpendicular to the instantaneous trajectory of a fluid element moving along a
constant geopoential surface. That is, we characterize the velocity and acceleration according
to the local flow direction. Furthermore, we are only concerned with motion on a constant
geopotetial using the tangent plane approximation; i.e., horizontal motion.2 The natural
coordinates arising from this description exposes the centripetal/centrifugal acceleration that
arises from curvature in the trajectory as measured by the radius of curvature. This non-inertial
acceleration is distinct from the centrifugal acceleration that arises from planetary rotation, with
planetary centrifugal acceleration already contained within the effective gravitational acceleration
that acts in the local vertical direction (see Section 13.8.1). We also decompose the accelerations
from pressure, friction, and Coriolis into their natural coordinate components.

32.2.1 Natural coordinates

Natural coordinates for horizontal motion are defined by a locally orthogonal set of unit vectors
(see Figure 32.1)

ẑ = û× n̂ = vertical direction (32.1a)

û = n̂× ẑ = tangent to horizontal velocity (32.1b)

n̂ = ẑ × û = normal direction to the left of motion. (32.1c)

The unit vector, û, is tangent to the velocity vector (which is horizontal), so that

u = |u| û =
Ds

Dt
û, (32.2)

where s is the arc-length measured along the trajectory as introduced in Section 2.4. The
unit vector, n̂, is perpendicular to the velocity and points to the left of the trajectory facing
downstream.

2The two-dimensional motion considered here can be generalized to three-dimensional motion through use of
the Frénet equations from differential geometry. An introduction to this approach for fluid motion is provided by
Section 20 of Serrin (1959) and Section 15.3.4 of Dahlen and Tromp (1998).
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û

Figure 32.1: Illustrating the decomposition of horizontal motion of a fluid element into natural coordinate
directions. These directions are defined by a unit tangent vector, û, pointing in the direction of the fluid element
motion, and a unit normal vector, n̂, pointing to the left of the motion facing downstream.

32.2.2 Material acceleration

When writing the velocity according to equation (32.2), we decompose the acceleration into the
change in speed and change in direction

Du

Dt
=

D|u|
Dt

û+ |u| Dû
Dt

. (32.3)

Following our discussion of rigid-body rotational motion in Section 11.2 (see Figure 11.2), the
magnitude of the direction change can be written in terms of the infinitesimal angle swept out
by the motion as the fluid element moves along a trajectory

|δû| = |δϑ|. (32.4)

The infinitesimal angle swept out by the trajectory is related to the radius of curvature, R
(Figure 32.2), and the arc-length increment, δs, traversed by the trajectory

δϑ =
δs

R
. (32.5)

Finally, the infinitesimal change in tangent, δû, is directed normal to the motion, which we see
by noting

û · û = 1 =⇒ δû · û = 0. (32.6)

That is, δû is orthogonal to û, so that it points either parallel or anti-parallel to n̂. We detailed
this property of rotating unit vectors in Section 2.1.4 (see Figure 2.2). Our convention is that n̂
points to the left of û, so that if the trajectory turns to the left, then δû points parallel to n̂,
whereas if the trajectory turns to the right then δû points anti-parallel to n̂. That is, δû always
points towards the center of the circle used to compute the radius of curvature as in Figure 32.2.

Bringing these results together leads to the expression for the infinitesimal unit vector change

δû = n̂
δs

R
. (32.7)

Our sign convention takes R > 0 for a fluid element turning in the direction of n̂ (to the left
facing downstream) and R < 0 when turning opposite to n̂ (to the right facing downstream).
Hence, the material time change is

Dû

Dt
=

Dû

Ds

Ds

Dt
=
n̂

R

Ds

Dt
=
n̂

R
|u|, (32.8)
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n̂(t+ ωt)

Figure 32.2: The left panel illustrates the radius of curvature associated with turning motion of a fluid element.
The radius of curvature equals to the radius of a tangent circle (the curvature circle) that approximates, to second
order accuracy, the trajectory at a particular point. The radius is smaller in magnitude when the trajectory is
highly curved, and |R| = ∞ when the trajectory is straight. The radius is positive when the trajectory turns
into the normal direction as depicted here (to the left; concave as defined by n̂) and negative when turning in
the opposite direction (to the right; convex as defined by n̂). See Section 5.2 for more details on curvature, with
Figure 5.4 offering more details for how to determine the radius of curvature. The right panel shows the time
evolution of the unit vectors, û and n̂, along a trajectory, with these unit vectors oriented along (û) and to the
left (n̂) of the motion. For simplicity, we depict motion on a circle, so that the radius of curvature, R, remains
constant and is equal to the circle’s radius. In general, the radius also changes along the trajectory.

where the speed is given by the time change of the arc-length along the trajectory

|u| = Ds

Dt
. (32.9)

Combining these results renders the acceleration

Du

Dt
=

D|u|
Dt

û+
|u|2
R
n̂ =

D2s

Dt2
û+

|u|2
R
n̂. (32.10)

The acceleration has thus been decomposed into the change in speed of the fluid element along
the direction of the motion, plus the centripetal acceleration due to curvature of the trajectory.
In Section 32.2.3 we justify referring to n̂ |u|2/R as the centripetal acceleration.

32.2.3 Centripetal and centrifugal accelerations

The centripetal acceleration points towards the concave side of a turning trajectory: “centripetal”
means “towards the center.” Its opposing partner, the centrifugal (“away from center”) accelera-
tion points to the convex side (see Figure 32.3). So how do we interpret n̂ |u|2/R? For motion
turning to the left, towards n̂, the radius of curvature is positive, R > 0, so that n̂ |u|2/R points
to the concave side of the trajectory (left side). For a trajectory turning to the right then R < 0,
which again means that n̂ |u|2/R points to the concave side (now on the right). We conclude
that the acceleration n̂ |u|2/R indeed represents a centripetal acceleration and −n̂ |u|2/R is the
centrifugal acceleration.

32.2.4 Coriolis and pressure gradient

The Coriolis acceleration takes the following form in natural coordinates

−f ẑ × u = −(ẑ × û) f |u| = −n̂ f |u|, (32.11)
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n̂

Figure 32.3: Centripetal acceleration of a turning fluid element, n̂ |u|2/R, points to the concave side of the
curve (towards the center) whereas the centrifugal acceleration, −n̂ |u|2/R, points to the convex side (away from
the center). The centripetal and centrifugal accelerations are paired action/reaction accelerations. The normal
unit vector, n̂, always points to the left of the motion, whereas the radius of curvature, R, is positive or negative
depending on the direction of the turning motion. For a left turning trajectory (in direction of n̂), the concave
side is on the left and has positive radius of curvature, R > 0, whereas for the right turning trajectory (opposite
direction of n̂) the concave side is to the right with R < 0. To help remember the signs, note that centrifugal
means “away from the center” whereas centripetal means “towards the center”. It is the centrifugal acceleration
that pulls one away from the center of a merry-go-round whereas one’s arms and hands provide the balancing
centripetal acceleration.

so that the Coriolis acceleration always points to the right of the flow direction for f > 0. In
contrast, the pressure gradient has two components

∇p = û (û · ∇p) + n̂ (n̂ · ∇p) = û ∂p
∂s

+ n̂
∂p

∂n
, (32.12)

one pointing along the flow direction and one normal to the direction.

32.2.5 Horizontal momentum equation and local Rossby number

Bringing the above results together leads to the horizontal momentum equation as decomposed
into natural coordinates

D|u|
Dt

= − 1

ρo

∂p

∂s
+ F · û motion in û direction (32.13a)

|u|2
R

+ f |u| = − 1

ρo

∂p

∂n
+ F · n̂ motion in n̂ direction (perpendicular to û), (32.13b)

where F is the frictional acceleration and ρo is the reference density for the Boussinesq ocean.
These equations decompose the accelerations into those acting parallel to and normal to the
trajectory. It is notable that the equation for the normal component is purely diagnostic; there
is no time derivative in equation (32.13b). Instead, it is a balance containing accelerations from
centripetal, Coriolis, normal pressure gradient, and normal component of friction. In the next
few sections we consider certain limiting cases as revealed by the equations of motion (32.13a)
and (32.13b). Friction remains zero in this chapter but is nonzero for the discussion of Ekman
mechanics in Chapter 33.

Steady frictionless flow

The frictionless balanced motions considered in this chapter all occur with a fixed velocity
magnitude for the fluid element, so that the along-trajectory component of the momentum
equation (32.13a) for frictionless motion reduces to

D|u|
Dt

= − 1

ρo

∂p

∂s
= 0. (32.14)
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Hence, there is no pressure gradient along the direction of the fluid element motion. Correspond-
ingly, the frictionless fluid motion preserves its kinetic energy

1

2

D(u · u)
Dt

= |u| D|u|
Dt

= 0. (32.15)

Local Rossby number

As discussed in Section 31.3, the Rossby number is the ratio of the acceleration from velocity
advection to the Coriolis acceleration. In the normal component to the momentum equation
(32.13b), we have the advection term manifest as the local centrifugal term. Following Chapter 1
of van Heijst (2010) we define the local Rossby number as the ratio of the centrifugal acceleration
to the Coriolis acceleration

Rolocal =
|u|2/R
f/|u| =

|u|
Rf

, (32.16)

where, again, R is the radius of curvature for the motion. In this chapter we consider flow
regimes as determined by values of the local Rossby number.

32.2.6 Decomposition of the acceleration

The horizontal equations of motion (32.13a) and (32.13b) offer a relatively simple and insightful
description of the motion. We here provide a connection with the traditional Eulerian form of
the equations of motion.

Advective form of the acceleration

The standard form of the material time derivative for horizontal motion is given by

∂u

∂t
+ (u · ∇)u =

D|u|
Dt

û+
|u|2
R
n̂, (32.17)

so that

û ·
[
∂u

∂t
+ (u · ∇)u

]
=

D|u|
Dt

= − 1

ρo

∂p

∂s
+ F · û (32.18a)

n̂ ·
[
∂u

∂t
+ (u · ∇)u

]
=
|u|2
R

= −f |u| − 1

ρo

∂p

∂n
+ F · n̂. (32.18b)

Depending on the information provided by a field measurement or numerical simulation, one
might more readily diagnose the kinematic expressions on the left side of these equations or the
force balances on the right side.

Expressions for the radius of curvature

The radius of curvature is an emergent property of the flow. From equation (32.18b), we find
two means to diagnose the radius of curvature, given either the flow field itself or the forces
contributing to the flow

R−1 =
n̂ · [∂u/∂t+ (u · ∇)u]

|u|2︸ ︷︷ ︸
kinematic method

=
−f |u| − ρ−1

o ∂p/∂n+ F · n̂
|u|2 .︸ ︷︷ ︸

dynamic method

(32.19)

page 890 of 2158 geophysical fluid mechanics



32.3. EXACT GEOSTROPHIC BALANCE

A particularly elegant form for the kinematic expression arises for steady flow, in which case

|u|2R−1 = n̂ · [(u · ∇)u]. (32.20)

This expression reveals how the normal projection of the self-advection operator is identical, for
steady flows, to the magnitude of the centrifugal acceleration arising from the curved trajectory.
If we furthermore assume the steady flow also occurs with constant speed, then

D|u|/Dt = (u · ∇)|u| = 0, (32.21)

in which case the inverse radius of curvature is given by

R−1 = n̂ · [(û · ∇) û]. (32.22)

Vector invariant form of the acceleration

We can transform the self-advection term using the vector identity (see Section 2.3.4)

(u · ∇)u = ∇K − u× ζ ẑ, (32.23)

where K = u · u/2 is the kinetic energy per mass in the horizontal flow, and ζ = ∂xv − ∂yu is
the vertical component to the relative vorticity (see Chapter 37). The acceleration, u× ζ ẑ, is
known as the Magnus acceleration and was discussed in Section 24.4. Projecting into the û and
n̂ directions leads to

û · ∂u
∂t

= −∂(p/ρo +K)

∂s
+ F · û (32.24a)

n̂ · ∂u
∂t

= −(f + ζ) |u| − ∂(p/ρo +K)

∂n
+ F · n̂. (32.24b)

The local acceleration along the direction of the flow is affected by both pressure and the
dynamical pressure afforded by the kinetic energy per mass. The Magnus acceleration appears
only in the normal component equation, which is expected since it acts just as the Coriolis
acceleration to deflect the trajectory in a perpendicular direction. Following the example in
Figure 24.1, consider a positive relative vorticity, ζ > 0. For this case, the Magnus acceleration
points to the right of the flow; i.e., opposite to the normal direction, which points to the left as
per our convention in Figure 32.1.

32.2.7 Further study

Chapter 8 in Zdunkowski and Bott (2003) and Section 3.2 of Holton and Hakim (2013) detail
the use of natural coordinates for geophysical flows, with a similar decomposition provided in
Section 7.10 of Gill (1982) and Section 2.9 of Vallis (2017). Natural coordinates are also used
in describing flows in non-rotating reference frames as in Section 20 of Serrin (1959) and as
illustrated in this video.

32.3 Exact geostrophic balance

Frictionless flow parallel to pressure contours experiences no pressure gradient (∂p/∂s = 0), so
that the speed of a fluid element remains constant. Furthermore, if this motion occurs with an
infinite radius of curvature (straight line motion parallel to pressure contours), then the force
balance is between the normal pressure gradient and Coriolis. In this case the local Rossby
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number (32.16) vanishes

Rolocal =
|u|
Rf

= 0 if |R| =∞. (32.25)

More precisely, exact geostrophic balance occurs under the following conditions.

• Fluid moves on a straight line so that the radius of curvature is infinite, |R| = ∞, thus
making the centripetal acceleration and local Rossby number both vanish;

• Fluid moves along lines of constant pressure so that ∂p/∂s = 0;

• Friction is zero.

In this case the equations of motion (32.13a) and (32.13b) take the form

D|u|
Dt

= 0 (32.26a)

f |u| = − 1

ρo

∂p

∂n
. (32.26b)

Equation (32.26a) says that the speed of a fluid element is constant, so that the horizontal
kinetic energy likewise is constant. Equation (32.26b) says that the pressure gradient normal to
the motion balances the Coriolis acceleration. We refer to this flow, depicted in Figure 32.4, as
exact geostrophic balance since it is an exact solution under the above assumptions.

Writing the horizontal advection of speed in the form

u · ∇|u| = |u| û · ∇|u| = |u| ∂|u|
∂s

, (32.27)

allows us to write the material constancy of the flow speed as

∂|u|
∂t

+ |u| ∂|u|
∂s

= 0. (32.28)

Hence, a steady flow speed, with ∂|u|/∂t = 0, only holds for the exact geostrophic balance if the
flow speed is fixed along each trajectory path

∂|u|
∂s

= 0 =⇒ ∂|u|
∂t

= 0. (32.29)

What is required for this condition to hold? We examine two cases, again restricted to a tangent
plane.

32.3.1 Steady f -plane flow

Geostrophic motion on an f -plane is horizontally non-divergent (Section 31.4)

∇ · u = ∇ · (û |u|) = 0. (32.30)

Flow in a straight line, with each trajectory parallel to one another, has the trajectory direction
independent of space. Hence, the non-divergent condition means that

0 = ∇ · (û |u|) = (û · ∇) |u| = ∂|u|
∂s

, (32.31)

which proves that exact geostrophic flow on an f -plane is steady.
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p − δp

p

p + δp

−
1
ρ0

∂p
∂n

f |u |

north

f > 0
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Figure 32.4: Exact geostrophic balance on a tangent plane occurs when the flow is horizontal, frictionless,
straight, and follows contours of constant pressure. For this case the pressure gradient exactly balances the
Coriolis acceleration so that the motion is perpendicular to both of these accelerations. We here depict motion
assuming f > 0 as for the northern hemisphere. If flow is on an f -plane then the exact geostrophic balance is
steady for any arbitrary flow direction. On a β-plane, steady exact geostrophic balance holds only for zonal flow.

32.3.2 Steady β-plane flow

The geostrophic velocity in the presence of a meridional gradient of the Coriolis parameter,
f = f(y), satisfies (Section 31.4)

∇ · (f u) = 0. (32.32)

Making use of ∇ · û = 0 for straight line trajectories leads to

∇ · (f u) = ∂(f |u|)
∂s

= 0. (32.33)

We conclude that ∂|u|/∂s = 0 holds only for trajectories that are parallel to latitude lines, in
which case ∂f/∂s = ∂f/∂x = 0. Therefore, exact geostrophic motion on the β-plane is steady
only for trajectories that follow constant latitude lines; i.e., zonal trajectories as depicted in
Figure 32.4.

32.3.3 What about geostrophic balance with curved motion?

The geostrophically balanced flows discussed in Chapter 31 generally have curvature, such as for
the geostrophic motion around a pressure center as shown in Figure 31.3. But as emphasized by
the natural coordinate decomposition as per equations (32.13a) and (32.13b), curved motion
has an associated centrifugal acceleration. So when speaking of geostrophic balance for flow that
has a nonzero curvature, then the local Rossby number (32.16) is not precisely zero. Rather, its
magnitude is small but nonzero

|Rolocal| ≪ 1 approximate geostrophic flow. (32.34)

In this limit it is accurate to ignore the centrifugal acceleration, which is commonly the case for
large-scale flows. Even so, it is an approximation, with the centrifugal acceleration identically
zero only for straight line motion on a plane.

32.4 Inertial motion
Inertial motion occurs under the following conditions:

• vanishing pressure gradient

• vanishing friction,
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so that the equations of motion (32.13a) and (32.13b) take the form

D|u|
Dt

= 0 (32.35a)

|u|2
R

+ f |u| = 0. (32.35b)

Equation (32.35a) says that inertial motion occurs with constant speed, whereas equation (32.35b)
says that the motion maintains the balance between Coriolis and centrifugal accelerations

f |u| = −|u|
2

R
. (32.36)

Hence, local Rossby number has a unit magnitude

|Rolocal| =
|u|
|R| |f | = 1. (32.37)

32.4.1 Anti-cyclonic circular motion on f -plane

To further understand inertial motion, rearrange equation (32.36) so that

f = −|u|
R
, (32.38)

in which case the radius for the inertial circle is

R = −|u|/f. (32.39)

Equation (32.38) can be satisfied in the northern hemisphere (f > 0) only for motion turning to
the right (in which R < 0). The opposite orientation occurs in the southern hemisphere, where
inertial motion turns to the left so that the radius of curvature is positive, R = −|u|/f > 0
(see Figure 32.2 for the sign convention on the radius of curvature). Hence, inertial motion is
oriented anti-cyclonically (orientated opposite to the earth’s rotation). If the Coriolis parameter
is constant, then the motion is circular, as depicted in Figure 32.5.

To emphasize the balance, return to equation (32.36) and recall that the Coriolis acceleration
in the northern hemisphere points to the right when facing downstream, as per equation (32.11).
Hence, the balance (32.36) is between the Coriolis acceleration pointing to the right and the
centrifugal acceleration pointing to the left. That is, the Coriolis acceleration provides the
centripetal acceleration to balance the centrifugal acceleration.

32.4.2 Period for inertial motion

Equation (32.39) says that the speed of a fluid element is given by the radius of curvature times
the magnitude of the Coriolis parameter

|u| = |Rf |. (32.40)

The time for a fluid element to traverse an inertial circle is given by the circumference of the
circle, 2π|R|, divided by the constant speed, thus yielding the inertial period

Tinertial =
2π|R|
|u| =

2π

|f | . (32.41)
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Figure 32.5: Inertial motion of a fluid on a plane occurs when the flow is horizontal, frictionless, and the
centrifugal acceleration balances the Coriolis in the presence of zero pressure gradient. We here depict motion
assuming f > 0 as for the northern hemisphere, revealing that inertial motion is an anti-cyclonic circular motion
with radius |R| = |u|/|f |. When turning to the right as in the northern hemisphere, the radius of curvature for
the inertial circle is negative (see Figure 32.2 for sign convention), so that R = −|u|/f < 0.

We encountered this inertial period in Section 14.4 when considering inertial oscillations for a
point particle.

32.4.3 Observing inertial motion
Inertial motion is rarely observed in the atmosphere since fluid motion nearly always occurs in
the presence of a pressure gradient. In contrast, surface ocean flow is commonly generated by
wind stresses that setup motion even in the absence of ocean pressure gradients. The moving
fluid then engenders a Coriolis acceleration, in which case there can be a balance between
centrifugal and Coriolis for the moving ocean fluid. As a result, the observed surface ocean
currents have nontrivial power within the inertial frequency band, rivaling energy contained in
frequencies associated with astronomical tides (e.g., see Figure 3.3 of Holton and Hakim (2013)).

How large is an inertial circle? Consider a surface ocean current speed of |u| ∼ 0.1 m s−1,
which is not atypical of current speeds outside of strong boundary currents or mesoscale eddies,
and assume the Coriolis parameter f = 10−4 s−1. In this case the inertial radius is

Rinertial ≈ 103 m. (32.42)

Observations of inertial motion, such as that reproduced in Figure 8.3 of Gill (1982), confirm
that the radii are indeed on the order of a few kilometers.

32.4.4 Inertial motion is Lagrangian
The analysis in this section concerns a fluid element moving without feeling the impacts from
pressure forces. The fluid thus exhibits the same force balance as the point particle discussed in
Section 14.4. So although we can measure inertial motion at a fixed point in space, the present
considerations are Lagrangian in nature, focusing on motion of fluid elements. Furthermore, the
inertial period refers to the time it takes for a fluid element to move around the inertial circle
at its constant speed. It does not refer to the period of a wave, for example, and yet there are
inertial waves (Chapter 53) with this period as well as inertia-gravity waves that have periods
close to the inertial period (Section 55.8),

32.4.5 “Inertial” motion does not refer to an inertial reference frame
We make use of the term “inertial” when referring to inertial motion since both the Coriolis and
centrifugal accelerations are nonzero only in the presence of motion; i.e., they require the inertia
obtained by a moving massive body. Hence, as noted in Section 14.4.5, “inertial motion” in this
context does not refer to the motion viewed in an inertial reference frame.
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equator

Earth spin

inertial oscillations

Figure 32.6: Depicting inertial motion on a sphere. As the fluid element moves poleward, f increases so that the
radius of curvature decreases. Correspondingly, the fluid motion does not close, but instead the path drifts to the
west. This westward drift holds for both hemispheres, where the sense of the motion is anti-cyclonic. The only
closed and circular inertial motions are those that encircle the pole. Fluid elements that cross the equator exhibit
a figure-eight pattern that also drifts to the west. This figure is taken after Figure 4-14 of von Arx (1962).

32.4.6 Inertial motion on a sphere

In the analysis thus far, we have assumed an f -plane so that inertial motion is circular. Without
solving the spherical equations for inertial motion we can anticipate what happens when such
motion occurs on a sphere. As a fluid element moves to higher latitudes the magnitude of the
Coriolis parameter increases, thus decreasing the radius of curvature. The opposite happens
when moving equatorward. This effect of planetary sphericity leads to an egg-shaped pattern
that does not close but instead drifts to the west. Now consider inertial motion that spans the
equator. As the fluid crosses the equator, where f = 0, the radius of curvature is infinite so that
the motion is straight. When moving away from the equator the Coriolis parameter increases in
magnitude, which causes a fluid element to turn and close its path, again with a drift to the
west. Motion north of the equator turns to the right whereas motion to the south turns left, so
that inertial motion that spans the equator forms a figure-eight path. We illustrate this motion
in Figure 32.6.

32.5 Cyclostrophic balance
Cyclostrophic balance occurs under the following conditions:

• fluid elements move along lines of constant pressure so that ∂p/∂s = 0;

• vanishing Coriolis acceleration;

• vanishing friction.

The resulting equations of motion (32.13a) and (32.13b) take the form

D|u|
Dt

= 0 (32.43a)

|u|2
R

= − 1

ρo

∂p

∂n
. (32.43b)
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Figure 32.7: Cyclostrophic motion of a fluid element on a tangent plane occurs when the flow is horizontal,
non-rotating, frictionless, with constant speed, and where the centrifugal acceleration balances the pressure
gradient normal to the flow direction. We here depict motion for clockwise and counter-clockwise cyclostrophic
flow, both around a low pressure center. Left panel: clockwise motion with radius of curvature, R < 0, and the
pressure gradient pointing in the direction of the normal, ∂p/∂n > 0. Right panel: counter-clockwise motion with
radius of curvature, R > 0, and the pressure gradient pointing opposite to the direction of the normal, ∂p/∂n < 0.
Cyclostrophic balance does not occur for flow around a high pressure center. The reason is that if both the
pressure and centrifugal accelerations point away from the center, then they are unable to balance one another.

With a vanishing Coriolis acceleration we see that cyclostrophic balance corresponds to local
Rossby number that has an infinite magnitude

|Rolocal| =∞ if f = 0. (32.44)

Approxiate cyclostrophic balance holds when |Rolocal| ≫ 1, but less than infinite.

Again, equation (32.43a) says that the speed is constant following a material fluid element.
Equation (32.43b) says that cyclostrophic flow occurs when the centrifugal acceleration balances
the pressure gradient, with the squared speed given by

|u|2 = −R
ρo

∂p

∂n
. (32.45)

This equation can be satisfied for either clockwise or counter-clockwise motion around a low
pressure center, as shown in Figure 32.7. For clockwise flow, the radius of curvature is negative,
R < 0, whereas ∂p/∂n > 0. The signs are swapped for counter-clockwise flow. Cyclostrophic
balance cannot be maintained around a high pressure center. The reason is that if both the
pressure and centrifugal accelerations point away from the circle’s center, then they are unable
to balance one another.

Cyclostrophic balance is relevant for scales on the order of a tornado, with a radius on the
order of 300 m where tangential speeds are on the order of 30 m s−1 (see Section 3.2.4 of Holton
and Hakim (2013)). For this flow scale, the Rossby number is on the order of 1000 at middle
latitudes, thus justifying neglect of the Coriolis acceleration. Although tornadoes in cyclostrophic
balance can rotate either clockwise or counter-clockwise, they are more often observed rotating
cyclonically given that they are generally embedded within cyclonic storm systems. In contrast,
smaller motions such as dust devils and water spouts are quite often seen rotating in either
direction.

32.6 Gradient wind balance

Gradient wind balance occurs under the following conditions:

• fluid elements move along lines of constant pressure so that ∂p/∂s = 0;

• vanishing friction.
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Figure 32.8: The variety of gradient wind balances available in the northern hemisphere (f > 0). Gradient
wind balance occurs when the flow is horizontal, frictionless, with constant speed, and where the centrifugal,
pressure, and Coriolis accelerations balance under a variety of magnitudes. To reduce clutter, we use the following
shorthand for the accelerations: P = −ρ−1

o ∂p/∂n, Co = f |u|, and Ce = |u|2/R. Upper left panel: motion around
a regular high pressure center, whereby the centrifugal acceleration helps the pressure acceleration to balance the
Coriolis acceleration. The pressure acceleration is larger in magnitude than the centrifugal. This flow is termed
“regular” as it directly corresponds to geostrophic flow around a high pressure center. Lower left panel: motion
around an anomalous high pressure center, whereby the centrifugal acceleration helps the pressure acceleration to
balance the Coriolis acceleration, with the pressure acceleration smaller in magnitude than the centrifugal. This
flow is termed “anomalous” as the pressure acceleration is subdominant to the centrifugal, in contrast to the case
of geostrophic flow. Upper right panel: motion around a regular low pressure center, whereby the Coriolis and
centrifugal accelerations balance the pressure acceleration. Lower right panel: motion around an anomalous low
pressure center, whereby the Coriolis and pressure accelerations balance the centrifugal acceleration. Note the
opposite flow orientation between the regular and anomalous lows, whereas the regular and anomalous highs have
the same flow orientation.

The resulting equations of motion (32.13a) and (32.13b) take the form

D|u|
Dt

= 0 (32.46a)

|u|2
R

+ f |u| = − 1

ρo

∂p

∂n
, (32.46b)

Again, equation (32.46a) says that the speed is constant following a material fluid element.
Equation (32.46b) says that gradient wind balanced flow occurs when the centrifugal and Coriolis
accelerations balance the pressure gradient acting normal to the motion.

The local Rossby number is order unity for the gradient wind balance

|Rolocal| =
|u|
|R| |f | ∼ 1, (32.47)

meaning that both centrifugal and Coriolis accelerations are important as they balance the
pressure gradient. Recall that the inertial motion from Section 32.4 has |Rolocal| = 1, which arises
when the pressure gradient vanishes so that the Coriolis and centrifugal terms have equal but
opposite magnitudes. The nonzero pressure gradient makes gradient wind flow fundamentally
distinct from inertial motion.
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32.6.1 Constraints on gradient wind flow
The quadratic formula leads to the following expression for the speed of gradient wind flow

|u| = R

2

[
f ±

√
f2 − 4

R

1

ρo

∂p

∂n

]
. (32.48)

The speed is a real number if the pressure gradient, Coriolis parameter, and radius of curvature
satisfy

f2 >
4

R

1

ρo

∂p

∂n
=⇒ 1

ρo

∣∣∣∣∂p∂n
∣∣∣∣ ≤ |R| f24

. (32.49)

This relation has direct implications for the structure of the pressure field depending on the sign
of the radius of curvature. In particular, as seen in the following, this constraint implies that
the pressure gradient at the center of a high pressure region must go to zero as the radius of
curvature vanishes, which renders the pressure field relatively flat near the center of highs. In
contrast, there is no analogous limit for the magnitude of the pressure gradient approaching a
low pressure center. This asymmetry between high and low pressures manifests in atmospheric
flow with low pressure centers (cyclonic lows) having stronger magnitude than high pressure
centers (anti-cyclonic highs).

32.6.2 The variety of gradient wind flows
We now identify the following force balances available with a gradient wind balance, with
illustrations provided in Figure 32.8.

Regular high pressure center (right turn with high pressure on right)

A regular high pressure occurs with R < 0 and ∂p/∂n ≤ 0. This case occurs with the centrifugal
and pressure accelerations pointing away from the center, and these balance the Coriolis
acceleration pointing to the high pressure center (upper left panel of Figure 32.8).

The inequality (32.49) provides a bound to the size of the pressure gradient since

1

ρo

∂p

∂n
≤ Rf2

4
with R ≤ 0 and

∂p

∂n
≤ 0 =⇒ 1

ρo

∣∣∣∣∂p∂n
∣∣∣∣
max

=
|R| f2

4
. (32.50)

That is, the pressure gradient for a regular high cannot be larger than this bound in order for there
to be a gradient wind solution. Since R→ 0 as the center is approached, the normal pressure
gradient, ∂p/∂n, in turn must vanish towards the center. Holton and Hakim (2013) identifies
two subcases for this balance depending on the relative size of the pressure and centrifugal
accelerations, with the anomalous high the case where the pressure gradient acceleration is
weaker than the centrifugal (lower left panel of Figure 32.8).

Regular low (left turn with low pressure on left)

This flow occurs with R ≥ 0 and ∂p/∂n ≤ 0, so that the inequality (32.49) is always satisfied

1

ρo

∂p

∂n
≤ Rf2

4
with R ≥ 0 and

∂p

∂n
≤ 0 =⇒ arbitrary size to

∣∣∣∣∂p∂n
∣∣∣∣ . (32.51)

Hence, there is no constraint imposed by gradient wind balance on the size of the pressure
gradient magnitude, |∂p/∂n|. So the low pressure center can be arbitrarily strong and still
maintain a gradient wind balance. Furthermore, the Coriolis and centrifugal accelerations point
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away from the low pressure center, and these two accelerations balance the pressure acceleration
that points toward the center (upper right panel of Figure 32.8).

Anomalous low (right turn with low pressure on right)

This flow occurs with R < 0 and ∂p/∂n ≥ 0. This case occurs with the Coriolis and pressure
accelerations pointing toward the low pressure center, and these two accelerations balance the
centrifugal acceleration pointing away from the center (lower right panel of Figure 32.8). As with
the regular low, the inequality (32.49) provides no bound to the magnitude of the low pressure.
Note the opposite orientation for the flow around an anomalous low relative to the regular low.

Left turn with high pressure on left

In this case R > 0 and ∂p/∂n > 0. There is no solution for the northern hemisphere since all
accelerations point to the right of the motion thus disallowing any balance.

32.6.3 Comments
As noted in Section 3.2 of Holton and Hakim (2013), the difference between gradient wind
speeds and geostrophic wind speeds is no more than 10% to 20% in middle latitude synoptic
atmosphere flow. In the tropics, where geostrophy becomes less relevant, it is important to apply
the gradient wind relation to capture the balanced flow states. Furthermore, van Heijst (2010)
and Chapter 18 of Cushman-Roisin and Beckers (2011) make use of a gradient wind analysis for
the study of ocean vortices. The deviations from geostrophy become important when considering
relatively small ocean vortices and/or tropical vortices.
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Chapter 33

EKMAN MECHANICS

A boundary layer is a region of the fluid flow that is directly affected by boundaries. For
geophysical applications we have in mind the solid-earth boundary that interacts with both the
ocean and atmosphere; the ocean-atmosphere boundary; the ocean-cryosphere boundary; and
the atmosphere-cryosphere boundary. The fluid flow in geophysical boundary layers is generally
very turbulent, thus causing rapid mixing and the transfer of properties within the boundary
layer, along with the transport of properties between the boundary layer and the less turbulent
fluid interior. Boundary layer physics is a well developed discipline for geophysical as well as
engineering applications. Our treatment is relatively superficial by comparison to the focused
treatments given by books such as Tennekes and Lumley (1972), Stull (1988), and Thorpe
(2005).

Here, we are particularly focused on the rudiments of Ekman mechanics, which is concerned
with flow affected by accelerations from horizontal pressure gradients, vertical friction, and
Coriolis, with particular attention given to regions near boundaries where friction is especially
large and Ekman boundary layers form. The leading role for Coriolis acceleration causes Ekman
boundary layers to exhibit behaviors quite distinct from their non-rotating cousins mentioned
in Section 25.10.7. In particular, Ekman boundary layer flows are horizontally divergent, thus
leading to the vertical exchange of mass, tracers, momentum, and vorticity between the boundary
layer and the fluid region outside of the boundary layer (i.e., the fluid interior). In so doing,
the Ekman layer flow imparts a stretching and squeezing of interior fluid columns that strongly
couples the boundary layer to vorticity and circulation of the fluid interior. This role for Ekman
layers is especially crucial for the ocean general circulation.

reader’s guide to this chapter
To introduce the subject we exhibit the role of friction in producing a down pressure

gradient component to the flow, making use of natural coordinates from Chapter 32 for this
purpose. The remainder of the chapter focuses on the mechanics of Ekman boundary layers,
with this study greatly extending our understanding of strongly rotating flows from Chapter
31. Indeed, the addition of friction to an otherwise geostrophically balanced flow provides a
surprising level of richness that motivates the variety of perspectives presented in this chapter.

Ekman boundary layers are a key element in the study of ocean circulation, particularly
the wind-driven circulation. We here borrow liberally from the material in Section 9.2 of Gill
(1982), Section 6.2 of Apel (1987), Section 7.4 of Marshall and Plumb (2008), Chapter 8 of
Cushman-Roisin and Beckers (2011), Section 5.7 of Vallis (2017), and materials from Thorpe
(1988) and Thorpe (2005). A presentation consistent with engineering boundary layers can be
found in Section 5.3 of Tennekes and Lumley (1972).
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33.1 The dynamical balances
Throughout this chapter we make use of a steady, linear, Boussinesq, hydrostatic primitive
equations that maintain a balance between the horizontal accelerations from Coriolis, pressure,
and friction

f ẑ × u = − 1

ρo
∇hp+ F . (33.1)

This balance is most relevant over large horizontal length scales as per the planetary geostrophic
equations of Section 31.5.

The frictional acceleration, F , of interest in this chapter arises from the vertical exchange of
horizontal momentum between fluid layers. Turbulence induced viscous exchange is especially
large in boundary regions such as the ocean surface, the atmospheric planetary boundary layer
(i.e., atmosphere/land boundary), and the ocean bottom boundary layer. In such turbulent
boundary layer regions we make use of the eddy viscosity, which is much larger than molecular
values

νeddy ≫ ν. (33.2)

We have more to say regarding the mathematical form of the friction operator in Section 33.3.1.

For conceptual and mathematical convenience, we find it useful to separate the horizontal
velocity into two components. The first is the geostrophic velocity defined by a balance between
the pressure gradient and Coriolis accelerations

f ẑ × ug = −
1

ρo
∇hp =⇒ ug =

1

fρo
ẑ ×∇hp. (33.3)

In some treatments, ug is referred to as the pressure driven velocity. The second is an ageostrophic
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or Ekman component defined by a balance between the frictional and Coriolis accelerations

f ẑ × ue = F =⇒ ue = −f−1 ẑ × F , (33.4)

so that ue is the frictional driven velocity.
This velocity decomposition has the appearance of superposing linearly independent flows,

one geostrophic (pressure driven) and one ageostrophic (friction driven). However, the flows are
coupled and thus not linearly independent. Namely, ageostrophic motions alter the pressure
field which in turn affects the geostrophic flow. So the presence of friction and the associ-
ated ageostrophic flows lead to geostrophic flows differing from the inviscid case. Conversely,
geostrophic flows affect the level of friction. Hence, the above decomposition does not reflect
a physical decoupling of geostrophic and ageostrophic flows. Rather, it is only meant to help
conceptually understand and describe the flow and the various force balances.

33.2 Horizontal balances in natural coordinates
Motion in Ekman boundary layers is both horizontal and vertical. Here, we introduce the role
of friction in rotating flows by just focusing on the horizontal motion on a tangent plane. In
particular, we study balances occuring in horizontal flows that maintain a frictional geostrophic
balance. As per the definition (33.3), geostrophic motion occurs along lines of constant pressure,
with frictionally induced deviations crossing isobars and providing a down pressure gradient
component to the fluid trajectory. Motivated by the discussion in Chapter 32, we make use of
natural coordinates for the kinematics.

33.2.1 Natural coordinates according to isobars
We represent the horizontal flow according to natural coordinates defined along an arbitrary
geopotential surface. Instead of defining the natural coordinates according to the flow direction,
as done in Section 32.2 for the frictionless case, we here decompose the motion according to
pressure contours (isobars). The unit vector, ŝ, is defined tangent to isobars in the horizontal
plane and directed along the direction of geostrophic flow. We define the direction, n̂, to be
perpendicular to isobars and oriented down the horizontal pressure gradient

n̂ = − ∇hp|∇hp|
. (33.5)

As illustrated in Figure 33.1, in the northern hemisphere n̂ points to the left of the geostrophic
velocity, whereas it is to the right in the southern hemisphere. We thus have the northern
hemisphere triplet of unit vectors

northern hemisphere triplet of directions

ẑ = ŝ× n̂ = vertical direction (33.6a)

n̂ = ẑ × ŝ = down pressure gradient direction (33.6b)

ŝ = n̂× ẑ = tangent to isobar in direction of geostrophic flow. (33.6c)

In the southern hemisphere, since n̂ points to the right of ŝ, the triplet of directions becomes

southern hemisphere triplet of directions

ẑ = n̂× ŝ = vertical direction (33.7a)

n̂ = ŝ× ẑ = down pressure gradient direction (33.7b)

ŝ = ẑ × n̂ = tangent to isobar in direction of geostrophic flow. (33.7c)
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n̂

Figure 33.1: Natural coordinates defined along an arbitrary geopotential surface according to isobars in the
horizontal plane, here depicted for the northern hemisphere. The normal direction, n̂ = −∇hp/|∇hp|, is oriented
down the horizontal pressure gradient so that it points to the left of the geostrophic velocity (facing downstream)
in the northern hemisphere and to the right in the southern hemisphere. The tangent direction, ŝ, points along
the isobar in the direction of the geostrophic velocity.

33.2.2 Geostrophic and Ekman balances
As found when studying the geostrophic balance in Section 32.3, the geostrophic velocity flows
along isobars and so only has a component in the ŝ direction

ŝ · ug = −
1

fρo

∂p

∂n
and n̂ · ug = 0 (33.8)

In contrast, the Ekman velocity has a component both along and across isobars. For the northern
and southern hemispheres we have

ŝ · ue = |f |−1 n̂ · F and n̂ · ue = −|f |−1 ŝ · F . (33.9)

As expected, the Ekman velocity vanishes when the frictional acceleration vanishes, in which
case the flow reduces to the geostrophic flow that moves along isobars so that ŝ = û. However,
when there is a nonzero friction aligned along isobars, that drives an Ekman velocity across
isobars. Conversely, friction aligned across isobars drives Ekman velocities along isobars.

We arrive at a complementary perspective on the origin of cross-isobar flow through the
following considerations. Without friction, the Coriolis and pressure gradient accelerations
balance when the flow is geostrophic. In the presence of friction, the velocity is slowed so that the
Coriolis acceleration weakens. If the pressure gradient acceleration is retained, as occurs if it is
determined by large scale balances outside of the Ekman layer, then the Coriolis acceleration no
longer balances the pressure gradient. Consequently, flow is diverted from isobars and develops
a component down the pressure gradient.

33.2.3 Rayleigh drag
The relative simplicity of Rayleigh drag facilitates analytical expressions for the Ekman velocity
using natural coordinates, written in terms of the geostrophic velocity (equation (33.8)). In
doing so we are afforded an explicit illustration of how friction provides a cross-isobar component
to the flow in the direction down the pressure gradient. Before developing the Ekman flows we
here summarize elements of Rayleigh drag.

In Section 26.3.3 we studied how Rayleigh drag affects the kinetic energy budget. As a
reminder, consider a frictional acceleration in the form of a Rayleigh drag acting on the velocity
field

F = −Ufric u

δ
= −γ u, (33.10)

page 904 of 2158 geophysical fluid mechanics



33.2. HORIZONTAL BALANCES IN NATURAL COORDINATES

where δ is a vertical scale and Ufric is a friction velocity scale with dimensions L/T . The ratio

γ =
Ufric

δ
(33.11)

has dimensions T−1 and is an inverse spin-down time. That is, if only Rayleigh drag affected
changes to the horizontal momentum, ∂tu = −γ u, then the flow would exponentially come to a
halt with an e-folding time, γ−1. The drag is relatively large over rough surfaces, thus leading
to a small e-folding time. In particular, drag on the lower atmospheric winds is larger over
land than over the ocean. The reason is that trees, cities, and mountains dissipate more of the
atmosphere’s mechanical energy than interactions with the relatively smooth ocean surface.

Rayleigh drag dissipates all flow features regardless of their spatial structure. That is,
Rayleigh drag does not prefer any particular length scales in the fluid flow. This lack of scale
selectivity contrasts to the Laplacian friction discussed in Section 33.3.1, with Laplacian friction
dissipating small spatial scales more strongly than large scales. Correspondingly, Rayleigh drag
does not generally provide the means to produce a boundary layer.1 Hence, when studying
physics within the Ekman boundary layer in Section 33.3 we make use of Laplacian friction.
But for now, Rayleigh drag provides a means to analytically illustrate the role of friction in
producing spiral flows with non-zero horizontal divergence.

33.2.4 Cross isobar flow driven by Rayleigh drag

f > 0low

ue

ug

u
high

ueug

u

x

y
north
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Figure 33.2: Illustrating frictional geostrophic flow in the northern hemisphere (f > 0). Left panel: geostrophic
flow, ug, around a low pressure center is counter-clockwise and aligned with pressure isobars. Friction aligned
along the isobars drives Ekman flow, ue, that has a component down the pressure gradient (normal to the
geostrophic flow) as well as a component that is directed opposite the geostrophic flow. Consequently, the total
velocity, ug + ue, spirals into the low pressure center. Right panel: the opposite oriented flow occurs around high
pressure centers, where fluid spirals away from the high due to the cross-isobar flow driven by friction. By the
definition given by equation (33.6b), the normal direction, n̂, is directed down the pressure gradient, whereas ŝ is
tangent to the isobar and directed along the geostrophic flow direction.

Making use of the Rayleigh drag (33.10) brings the northern hemisphere expressions (33.9)
for the Ekman velocity into the form

ŝ · ue = f−1 n̂ · F = −(γ/f) n̂ · u = −(γ/f) n̂ · ue (33.12a)

n̂ · ue = −f−1 ŝ · F = (γ/f) ŝ · u = (γ/f) ŝ · (ue + ug). (33.12b)

Similar considerations for the southern hemisphere lead to the general result for both hemispheres

ŝ · ue = −(γ/|f |) n̂ · ue (33.13a)

1In Section 33.3.3 we provide further discussion of what is needed mathematically and physically to produce a
boundary layer.
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n̂ · ue = (γ/|f |) ŝ · (ue + ug). (33.13b)

Rearrangement of these equations allows us to express the Ekman velocity in terms of the
geostrophic velocity (equation (33.8)), with results for both hemispheres given by

n̂ · ue = ŝ · ug

[
γ |f |

f2 + γ2

]
(33.14a)

ŝ · ue = −ŝ · ug

[
γ2

γ2 + f2

]
, (33.14b)

where equation (33.8) expresses the geostrophic velocity in terms of the normal pressure gradient.
Equation (33.14a) says that the normal component to the Ekman velocity is directed down the
pressure gradient. Equation (33.14b) says that the component of the Ekman velocity along the
pressure isobar is directed opposite to the geostrophic velocity. We provide an example of an
Ekman velocity in Figure 33.2 for the northern hemisphere.

Bringing all pieces together leads to the components for the total velocity, u = ug + ue, and
its squared magnitude

ŝ · ug = −
1

fρo

∂p

∂n
geostrophic velocity (aligned along isobars) (33.15a)

ŝ · u = ŝ · ug

[
f2

f2 + γ2

]
isobaric velocity component (33.15b)

n̂ · u = (γ/|f |) ŝ · u normal velocity component (33.15c)

(ŝ · u)2 + (n̂ · u)2 = (ŝ · ug)
2

1 + (γ/f)2
horizontal kinetic energy per mass. (33.15d)

The cross-isobar flow (equation (33.15c)) is directly driven by the Rayleigh drag, and it is
directed down the normal pressure gradient so long as the flow has a positive projection onto
the tangent direction

ŝ · u > 0 =⇒ n̂ · u > 0. (33.16)

When flow is moving counter-clockwise around a low pressure in the northern hemisphere, where
n̂ points towards the low pressure center, then Rayleigh drag causes the fluid to spiral into
the low pressure center. Conversely, when flow is moving clockwise around a high pressure,
with n̂ pointing away from the high pressure center, then Rayleigh drag causes the fluid to
spiral away from the high pressure center. We depict these cases in Figure 33.2. Furthermore,
equation (33.15d) shows that when γ ̸= 0 the magnitude of the total flow is reduced relative to
the geostrophic flow, thus reflecting the dissipation of kinetic energy arising from Rayleigh drag.2

33.2.5 Horizontal spiral plus vertical rising/sinking

Thus far, we have focused on the horizontal spiral motion as shown in Figure 33.2. Through
continuity we infer a corresponding vertical motion induced by the convergence of mass into the
low pressure center and the divergence of mass away from the high pressure center. Figure 33.3
illustrates the vertical motion in a bottom Ekman boundary layer of either the atmosphere or
ocean whereby mass rises above a low pressure center in response to the horizontal convergence
of mass in the Ekman layer. Conversely, mass diverges from the high pressure Ekman layer,
with this divergence inducing a sinking motion over the high pressure to replace the diverging
mass. In subsequent sections of this chapter we develop the formalism needed to compute the
mass transport into and out of the Ekman boundary layer.

2See Section 26.3.3 for more on frictional dissipation of kinetic energy.
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Figure 33.3: Illustrating the three-dimensional flow associated with Ekman layers in the northern hemisphere
(f > 0) next to a bottom boundary. Left panel: flow spiralling into a low pressure center creates convergence
of mass into the Ekman layer. Mass continuity means that flow must vertically leave the Ekman layer to thus
enter the interior fluid above. Right panel: flow spiralling away from a high pressure center creates divergence of
mass away from the Ekman layer. Mass continuity means that flow must vertically sink into the Ekman layer
from above. The Ekman layer thickness is denoted by δEkman (Section 33.3). An analogous picture holds for the
surface Ekman layer in the ocean, yet with the Ekman layer at the top of the column rather than the bottom.

33.2.6 Further study

Our discussion of Ekman velocity arising from Rayleigh drag follows a similar treatment in
Section 7.4 of Marshall and Plumb (2008).

33.3 Ekman number and Ekman layer thickness

Friction that is most prominent near surface and bottom boundaries arises from vertical shears
in the horizontal velocity, with shears leading to flow instabilities and the development of
turbulence and associated turbulent friction. There is no deductive theory for turbulent friction
so we must rely on empirical expressions. These expressions are typically based on a Laplacian
viscous operator, partly motivated by the form arising from kinetic theory of gases briefly
mentioned in Chapter 16. Most notably, this operator supports the development of a boundary
layer through maintenance of both the no-slip (homogeneous Dirichlet) and stress (Neumann)
boundary conditions.

33.3.1 Laplacian vertical friction

We introduced the Laplacian friction operator in Section 25.8.6 when studying stress in fluids.
The Laplacian friction operator considered here is given in terms of the vertical shear of the
horizontal stress vector

F viscous =
1

ρo

∂τ

∂z
=

∂

∂z

[
νeddy ∂u

∂z

]
, (33.17)

with νeddy > 0 a turbulent kinematic viscosity with dimensions L2 T−1. This form of the friction
operator emulates the Laplacian operator representing molecular viscous friction (equation
(25.88)). It is also the form most commonly used in theoretical and numerical models that focus
on boundary layers where rotation is important.

Expanding the derivative in equation (33.17) reveals that the Laplacian friction is nonzero
where there is curvature in the vertical profile of the horizontal velocity, and where there is
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vertical dependence to the viscosity and velocity

F viscous =
∂νeddy

∂z

∂u

∂z
+ νeddy ∂

2u

∂z2
. (33.18)

The turbulent viscosity generally has a vertical dependence, with larger values in the boundary
layer where turbulence is most energetic. This form of the friction preferentially acts on velocity
exhibiting nontrivial vertical structure, thus acting to smooth any vertical dependence. In
Section 68.4 we discuss further mathematical properties of Laplacian friction.

33.3.2 Non-dimensionalization
We non-dimensionalize the equations to isolate non-dimensional numbers affecting the flow
regime. In particular, we identify the Ekman number as a measure of the importance of friction
relative to rotation, with friction important where the Ekman number is order unity or larger,
and unimportant where the Ekman number is much smaller than unity.3

We make use of the following scales and associated non-dimensional quantities

(x, y) = L (x̂, ŷ) z = H ẑ (u, v) = U (û, v̂) f = fo f̂ p = P p̂ (33.19)

where the hat terms are non-dimensional,4 and we introduced typical scales for horizontal length
(L), vertical length (H), velocity (U), Coriolis parameter (fo), and pressure (P ). For the pressure
scale we assume it follows geostrophic scaling so that it can be writen5

P = fo ρo U L. (33.20)

Inserting the relations (33.19) into equation (33.1) leads to the non-dimensional frictional
geostrophic equation

f̂ × û = −∇̂p̂+ F

fo U
. (33.21)

33.3.3 Defining the Ekman number and layer thickness
The Ekman number is a non-dimensional measure of the relative importance of the frictional
acceleration due to vertical shears versus the Coriolis acceleration

Ek =
frictional acceleration from vertical shears

Coriolis acceleration
. (33.22)

The Ekman number increases when there is more boundary layer turbulence, in which case the
eddy viscosity, νeddy, is large relative to its small values in the interior region outside of the
boundary layer. Additionally, the Ekman number increases when moving towards the equator,
where the Coriolis parameter reduces.6

For the viscous stress form of Laplacian vertical frictional acceleration (equation (33.17))

F viscous =
νeddy U

H2

∂2û

∂ẑ2
, (33.23)

3For flows unaffected by rotation, the Reynolds number is the key non-dimensional number (Section 25.9)
determining where viscous friction is important.

4In Section 32.2.1 we defined û as the unit vector pointing along the trajectory of a fluid element. In contrast,
we here let û be the non-dimensional horizontal velocity. The duplication of notation is unfortunate.

5Recall that in Section 29.2.3 we considered pressure in a non-rotating system to scale according to the
dynamical pressure scale, U2, where U is a horizontal flow speed scale. In the presence of planetary rotation, the
large-scale pressure field scales according to the geostrophic balance as per equation (33.20).

6When getting very close to the equator, our assumption of a frictional geostrophic balance breaks down so
that other terms in the momentum equation, such as advection, become important.
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the Ekman number is given by

Ek =
νeddy

foH2
, (33.24)

and the horizontal velocity equation (33.21) takes on the form

f̂ × û = −∇̂p̂+ Ek
∂2û

∂ẑ2
. (33.25)

If we take the vertical scale, H, equal to the length scale over which interior flow processes occur,
then the Ekman number will be very small, even if the eddy viscosity is relatively large. In this
case we conclude that friction is negligible, as indeed it is for many purposes where the boundary
layer is not of concern.

However, the Ekman number multiplies the highest derivative in equation (33.25). So setting
the Ekman number to zero represents a singular limit, whose mathematial meaning is that we
change the order of the differential equation when setting Ek = 0. Reducing the order of the
differential equation means we can only satisfy a reduced number of boundary conditions relative
to the Ek > 0 case. In particular, with Ek = 0 we can no longer satisfy the no-slip condition at
the solid-fluid boundary. In contrast, with any non-zero value of Ek > 0, no matter how small
but nonzero, viscosity drags the flow to zero within a boundary layer where friction is leading
order. We expect a boundary layer to form within a boundary layer thickness, H = δEkman, in
which the Ekman number is order unity so where friction is of leading order importance

H = δEkman =⇒ Ek =
νeddy

fo (δEkman)2
= 1. (33.26)

Turning this equation around we see that the vertical scale, δEkman, defines the viscous Ekman
boundary layer thickness as a function of the eddy viscosity and Coriolis parameter

Ek = 1 =⇒ δEkman = δviscous =
√
νeddy/fo. (33.27)

33.3.4 Estimates for the vertical eddy viscosity

The eddy viscosity is not readily available from direct measurements or first principles. However,
measuring the boundary layer thickness provides a means to infer a bulk viscosity for the
boundary layer

νeddy = fo (δ
Ekman)2. (33.28)

In the atmosphere, the boundary layer thickness is order 1000 m, so that at mid-latitudes, with
fo = 10−4 s−1, we expect

νeddy
atmos ∼ 102 m2 s−1. (33.29)

In the ocean, the upper ocean boundary layer depth, outside of the deep convection regions, is
roughly 50 m, in which case

νeddy
ocean ∼ 0.25 m2 s−1. (33.30)

33.4 Ocean surface Ekman layer

It is possible to establish integrated mass transport properties of the Ekman layer even without
specifying details of the friction (i.e., the viscosity) or the stratification. The key ingredient is
the boundary stress. This stress is commonly estimated for the surface ocean given information
about the wind speed and atmospheric stratification. Hence, Ekman theory has found much
application to studies of the wind-driven ocean circulation, with the integrated properties the
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most consequential results from Ekman theory. We here focus on the ocean surface Ekman layer
and then consider bottom Ekman boundaries for the atmosphere and ocean in Section 33.5.

Before starting, we emphasize that the stress is the key ingredient in computing properties
of the Ekman layer. And yet, determining the stress is a nontrivial exercise in boundary layer
physics, which is outside our scope. Additionally, the turbulent boundary stress exchanged
between the fluid and its boundary (either another fluid, ice, or the solid earth) arises within
Ekman boundary layers, where flow spirals relative to the geostrophic flow in the fluid interior
(outside the Ekman boundary layer). So the boundary stress is generally rotated some amount
relative to the interior geostrophic flow. We consider an analytic example of this rotation when
studying the bottom Ekman layer in Section 33.5. For now, we simply recognize that the story
is relatively simple when assuming the stress is given, but the stress itself can be rather difficult
to accurately determine.

33.4.1 Horizontal mass transport within the Ekman layer

τ(η)

ocean interior 

bottom Ekman layer

surface Ekman layer
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z = ⌘b(x, y)

Figure 33.4: Ekman layer at the ocean surface, defined for vertical position ηe(x, y, t) ≤ z ≤ η(x, y, t), with ηe
specifying the Ekman layer bottom and η the free surface vertical position. Boundary stress from winds and/or
sea ice imparts horizontal momentum to the upper ocean that is transmitted throughout the Ekman layer via
the vertical divergence of turbulent horizontal shear stresses. As studied in Section 33.6, there is also a bottom
Ekman layer created by stresses active next to the ocean bottom.

We are concerned with the mass budget for the ocean surface Ekman layer sitting between
the Ekman layer bottom and the ocean free surface

ηe(x, y, t) ≤ z ≤ η(x, y, t), (33.31)

as depicted in Figure 33.4. Knowledge of the mass budget has implications for how mechanical
energy imparted to the boundary layer drives circulation well within the interior of the ocean.
This transport and associated circulation are how Ekman mechanics, limited to the boundary
layer, affect large-scale ocean circulation throughout the fluid column.

Integrating the horizontal Ekman balance (33.4) over the vertical scale of the Ekman layer
leads to

Me =

ˆ η

ηe

ρo ue dz =⇒ f ẑ ×Me =

ˆ η

ηe

ρo F dz, (33.32)

with Me the vertically integrated ageostrophic horizontal mass transport within the Ekman
boundary layer. Assuming friction to be in the form of a vertical stress divergence as in equation
(33.17) leads to the horizontal Ekman mass transport

Me = −f−1 ẑ × [τ (η)− τ (ηe)]. (33.33)
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Stress at the bottom of the Ekman layer, τ (ηe), matches to the stress in the ocean interior. The
stress in the fluid interior is generally much smaller than stress in the turbulent upper ocean
surface, τ (η), so that we can neglect τ (ηe) when computing the mass transport. We are thus led
to the expression for the surface stress induced ageostrophic horizontal mass transport within
the upper ocean Ekman layer

Me = −f−1 ẑ × τ (η) = f−1 [x̂ τy(η)− ŷ τx(η)]. (33.34)

The surface stress induced mass transport given by equation (33.34) is very useful in practice.
Notably, we do not need to know the thickness of the Ekman layer. Rather, the mass transport
is determined solely by the surface boundary stress.7 Furthermore, the horizontal mass transport
within the Ekman layer is directed at right angles to the surface stress, as depicted in Figure
33.5, with mass transport to the right of the surface stress in the northern hemisphere and to
the left in the southern hemisphere.

x

y

zu
f > 0
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Figure 33.5: Horizontal transport integrated over the thickness of the surface ocean Ekman layer in the region
ηe(x, y, t) ≤ z ≤ η(x, y, t). The net mass transport is directed perpendicular to the boundary stress, oriented to
the right in the northern hemisphere and to the left in the southern hemisphere. Here, the boundary stress, τ ,
is shown directed to the north so that in the northern hemisphere (f > 0), the vertically integrated horizontal
Ekman transport, Me, is to the east. This perpendicular mass transport is the result of the vertically spiralling
Ekman flow. The Ekman mass transport resulting from boundary stress is independent of the assumptions made
about ocean friction within the ocean boundary layer, and it is independent of the stratification assumed for the
Ekman layer.

33.4.2 Example Ekman mass transports

Consider an example with an eastward zonal boundary stress, τ (η) = |τ | x̂ (i.e., westerly winds).
In this case, the Ekman transport in the upper ocean is meridional

Me = −(|τ |/f) ŷ, (33.35)

which points equatorward in both hemispheres. Conversely, in the equatorial region where winds
are predominantly from the east (easterly winds) so that τ (η) = −|τ | x̂, then the horizontal
Ekman mass transport causes waters to move poleward away from (diverge from) the equator.
Mass continuity is then satisfied by upwelling waters along the equator within the Ekman layer.
We sketch the elements of this flow in Figure 33.6. Exercise 33.1 considers an analogous situation
for a channel in the southern hemisphere, thus illustrating a basic feature of the wind-driven
overturning circulation in the Southern Ocean.

7As noted at the start of this section, determining the stress, τ (η), transferred to the ocean requires information
about the boundary layer processes in both the ocean and the adjoining media (either the atmosphere or cryosphere).
Nevertheless, by expressing the mass transport, Me, in terms of the boundary stress provides a clear delineation
of the causes for boundary layer transport. It has thus offered an important foundation for theories of wind-driven
ocean circulation.
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⌧ = �|⌧ | x̂

Figure 33.6: Easterly winds along the equator drive poleward horizontal mass transport within the upper ocean
Ekman layer, as per equation (33.35). Furthermore, as discussed in Section 33.4.3, a steady state Ekman layer
mass budget is typically realized by the upwelling of interior waters into the Ekman layer.

A second example concerns the case of a wind stress with a component aligned with a
coastline as depicted in Figure 33.7. When the horizontal Ekman mass transport is directed
away from the coast, a steady mass balance in the Ekman layer is associated with the upwelling
of waters from beneath the Ekman layer. Conversely when the horizontal mass transport is
directed toward the coast, steady mass balance is realized by coastal downwelling. This process
is very important for coastal physical and biological oceanography.
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Figure 33.7: Wind stresses with a component that is parallel to coastlines lead to horizontal mass transport
away from or towards the coast. Mass continuity then leads to coastal upwelling or downwelling of waters into or
out of the Ekman layer. Here we depict the various scenarios for the northern hemisphere (top row) and southern
hemisphere (bottom row), with the gray regions representing land, the black vectors the wind stresses, and the
red arrows the horizontal wind induced mass transports in the Ekman layer. This figure is adapted from Figure
4-24 of von Arx (1962).

33.4.3 Mass budget for the Ekman layer
As seen in Figure 33.3, the horizontal transport of fluid within the Ekman layer induces a vertical
transport into or out of the Ekman layer. To obtain a mathematical expression for the vertical
transport, integrate the continuity equation ∇·v = 0 over the vertical extent of the Ekman layer

∂

∂x

[ˆ η

ηe

udz

]
+

∂

∂y

[ˆ η

ηe

v dz

]
+ [w(η)− u(η) · ∇η]− [w(ηe)− u(ηe) · ∇ηe] = 0. (33.36)

For a Boussinesq ocean, the kinematic boundary condition at the ocean free surface is given by
equation (21.5)

w +Qm/ρo = ∂tη + u · ∇η at z = η(x, y, t). (33.37)
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Similarly, at the bottom of the Ekman layer we measure the volume transport through this layer
by computing the dia-surface transport, w(η̇e), according to equation (64.38)

w(η̇e) = w − (∂tz + u · ∇z) at z = ηe(x, y, t). (33.38)

The sign convention is such that w(η̇e) > 0 means that volume enters (entrains into) the surface
Ekman layer through its base, whereas w(η̇e) < 0 means that volume leaves (detrains from) the
surface Ekman layer base.

Using the kinematic boundary conditions (33.37) and (33.38) in the vertically integrated
volume budget (33.36), and rearranging, leads to the Ekman layer mass budget

ρow
(η̇e) +Qm = ρo ∂he/∂t+∇ ·M . (33.39)

In this equation we wrote
he = η − ηe (33.40)

for the thickness of the Ekman layer and

M = ρo

ˆ η

ηe

u dz (33.41)

for the Ekman layer integrated horizontal mass transport. As a check on the above manipulations,
let the Ekman layer go to the ocean bottom (so that w(η̇e) = 0 and ηe = ηb), in which case the
mass budget equation (33.39) correctly reduces to the kinematic free surface equation for the
full ocean column as given by equation (21.81)

ρo ∂tη = Qm − ρo∇ ·U , (33.42)

with U =
´ η
ηb
u dz the vertically integrated horizontal velocity.

z = η

z = ηe

Qm

surface Ekman layer

ρ0 w( ·ηe)

M M

z

Figure 33.8: Mass budget over the surface Ekman layer of the ocean, with contributions from the surface mass
flux, Qm, flux through the bottom of the layer, w(η̇e), and vertically integrated horizontal flux, M , within the
layer. If there are any imbalances then the layer thickness will have a nonzero time tendency, ∂the ̸= 0. Our
sign convention is such as w(η̇e) > 0 corresponds to water entering (entraining into) the Ekman layer (vertically
upward motion) through the Ekman layer base at z = ηe, and likewise Qm > 0 correspondes to water entering the
Ekman layer through the free surface at z = η. Entrainment through the base of the Ekman layer is referred to as
Ekman suction or Ekman upwelling. The opposite case is referred to as Ekman pumping or Ekman downwelling
when water leaves the Ekman layer and enters the ocean interior.

The horizontal mass transport given by equation (33.41) has a contribution from both the
Ekman transport and remaining processes, such as geostrophic flow and ageostrophic flows not
associated with Ekman. We write this mass transport in the form

M =Me +Mother. (33.43)
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The horizontal Ekman transport is determined by the boundary stress according to equation
(33.34), with its divergence given by

∇ ·Me = ẑ · [∇× (τ/f)]. (33.44)

This result brings the Ekman layer mass budget (33.39) into the form

ρow
(η̇e) +Qm = ρo ∂the +∇ ·Mother + ẑ · [∇× (τ/f)]. (33.45)

The left hand side measures the mass transport crossing the bottom of the Ekman layer,
ρow

(η̇e), plus the transport crossing the free surface, Qm. This transport balances a time change
in the Ekman layer thickness (first right hand side term), plus the horizontal divergence of mass
within the layer (associed with non-Ekman and Ekman). A steady state Ekman layer thickness,
∂he/∂t = 0, is realized if the horizontal divergence of mass within the Ekman layer is exactly
balanced by mass entering the Ekman layer through the top and/or bottom of the layer. We
illustrate this budget in Figure 33.8. For example, in the equatorial case of Figure 33.6, the
diverging horizontal Ekman layer flow induced by easterly winds (poleward Ekman transport
on both sides of the equator) is balanced by water upwelling into the Ekman layer through the
base, w(η̇e) > 0, along with a generally smaller effects from surface mass fluxes through Qm and
possible other contributions through ∇ ·Mother.

33.4.4 Ekman layer coupled to the geostrophic interior
The effects from boundary stress curl in equation (33.45) warrant particular attention whereby

ρow
(η̇e)
Ekman ≡ ∇ ·Me = ẑ · [∇× (τ/f)]. (33.46)

The stress curl, as well as changes in f on the sphere, drive vertical motion through the base
of the Ekman layer. The flow crossing the Ekman layer boundary acts to stretch or compress
vertical fluid columns in the adjoining fluid interior. Interior fluid columns in a rotating fluid are
stiffened through the effects of Taylor-Proudman (Section 31.5.3). From our understanding of
vorticity (studied in Chapter 40), particularly the notions of vortex stretching, we see that the
Ekman induced stretching/compression of interior fluid columns leads to a change in vorticity of
the fluid interior, and can then lead to meridional motion due to the beta effect (see discussion
of Sverdrup balance in Section 31.5.4).

Consider an example with ∇ ·Me = ẑ · [∇× (τ/f)] > 0, so that winds induce a divergence
within the Ekman layer. In a steady state, the interior flow accommodates this Ekman layer
mass divergence by upwelling water through the Ekman layer base, w(η̇e) > 0. This process of
entraining interior water into the Ekman layer is known as Ekman suction or Ekman upwelling.
For the opposite case with ẑ · [∇× (τ/f)] < 0, water leaves (detrains) from the Ekman layer
and moves into the interior region sitting below the boundary layer. Water detraining from
the Ekman layer is known as Ekman pumping or Ekman downwelling. As water diverges it
produces a local low pressure so that the induced flow in the geostrophic interior is cyclonic
around a region of Ekman divergence/upwelling. Conversely, the induced interior geostrophic
flow is anti-cyclonic around a region of Ekman convergence/downwelling. Figure 33.9 provides
an illustration for the variety of cases found in the northern and southern hemispheres.

In the language of vorticity, developed in Part VII of this book, Ekman upwelling with
w(η̇e) > 0 leads to vortex stretching of interior fluid columns, whereas Ekman downwelling with
w(η̇e) < 0 squashes the interior fluid columns. Vertical stiffening through Taylor-Proudman within
the geostrophic interior, coupled to Ekman induced vortex stretching/squashing, makes what
happens within the Ekman boundary layer of primary importance to the interior geostrophic
flow. This boundary-interior coupling forms a key mechanism for how mechanical forcing from
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Figure 33.9: Plan view depicting the steady state horizontal and vertical transport in the surface ocean
Ekman layer (ignoring the possible transport across the ocean surface from Qm). The left column shows
horizontal wind-induced convergence in the Ekman layer that induces vertical pumping/downwelling, where
∇ ·Me = ẑ · [∇× (τ/f)] < 0. The right column shows the horizontal divergence within the Ekman layer that is
balanced by suction/upwelling, where ∇ ·Me = ẑ · [∇× (τ/f)] > 0. The top row is for the northern hemisphere,
with f > 0, and the bottom row is for the southern hemisphere. The red arrows depict the sense for the induced
geostrophic circulation in the interior just below the Ekman layer. Note that the horizontal Ekman transport is to
the right of the red circulating flow in the northern hemisphere and to the left in the southern. Ekman pumping
is associated with anti-cyclonic circulation (clockwise in the northern hemisphere and anti-clockwise in southern
hemisphere). In contrast, Ekman suction is associated with cyclonic circulation. The circulation is supported by
pressure gradients, with high pressure in regions of Ekman convergence, ∇ ·Me < 0, due to the accumulation of
mass towards the center, thus giving rise to anti-cyclonic geostrophic flow in the interior. The opposite holds for
regions of Ekman divergence, ∇ ·Me > 0, where water leaves the region thus leaving a low pressure center and
inducing a cyclonic interior geostrophic flow.

surface boundary stress creates the wind driven ocean circulation. It is notable that the coupling
between boundary layer and interior flow is absent from non-rotating boundary layer flows. In
Figure 33.10 we offer a highly idealized schematic of the circulation implied by Ekman dynamics
in a homogeneous fluid on an f -plane, thus illustrating the coupling of the upper surface Ekman
layer to the geostrophic interior and then to the bottom Ekman layer. We also discuss the
geostrophic Sverdrup balance in Section 44.4, which builds on the ideas in this section.

33.4.5 Further study

The following videos offer visuals to help develop further intuition for Ekman boundary flows.

• This 4-minute video from Science Primer provides an overview of how Ekman transport
affects ocean circulation features near the coast and in open ocean gyres.

• This video from MIT Earth, Atmospheric, and Planetary Sciences illustrates the spiral
flow found within an Ekman layer as realized in a rotating tank experiment.
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z

f > 0

Figure 33.10: Schematic ocean Ekman gyre circulation in a rectangular box in the northern hemisphere on an
f -plane as forced by an anti-cyclonic wind stress curl. The wind stress curl causes fluid to pile up in the center of
the gyre and develop an anti-cyclonic flow. The horizontal convergence of mass towards the center of the gyre
leads to downwelling into the gyre interior below the Ekman layer (as per the upper left panel of Figure 33.9).
This downwelling water enters the geostrophic interior and further into the bottom Ekman layer. As discussed in
Section 33.5, the downwelling water in the bottom Ekman layer causes a horizontal divergence of mass. Assuming
the domain has fixed vertical side walls, continuity requires an upwelling along the outer portion of the gyre. If
the wind stress is symmetric about the center of the domain, then so is the flow. However, as studied in Section
39.7, the axial symmetry is broken on the β-plane, in which flow is stronger on the western side of the gyre even if
the wind remains symmetric about the domain center. This figure is adapted from Figure 6-15 of von Arx (1962).

• This video from the UCLA SpinLab, near the 18 minute mark, shows how Ekman transport
helps to explain the garbage patches found near the center of the ocean’s sub-tropical
gyres.

• This video from the University of Chicago, starting near the 23 minute mark, provides
examples of Ekman layers in a rotating tank. The other portions of this video exhibit
many other novel aspects of rotating fluids and is highly recommended.

33.5 Bottom Ekman layer
In this section we study the mechanics of a bottom Ekman boundary layer. For the mass
transport, we merely translate the results from the upper ocean Ekman layer considered in
Section 33.4, whereby the mass transports are specified by the bottom boundary stress. We go
further in this analysis by also providing an analytic expression for the velocity profile within
the Ekman layer, with the velocity profile allowing us to diagnose the bottom boundary stress
according to the Neumann boundary condition placed on the horizontal velocity (equation
(33.59) below).

33.5.1 Horizontal mass transport within the Ekman layer
Turning the derivation from Section 33.4.1 upside-down leads to a bottom horizontal Ekman
mass transport

Me =

ˆ ηe

ηb

ρo ue dz = −f−1 ẑ × [τ (ηe)− τ (ηb)] ≈ f−1 ẑ × τ (ηb). (33.47)

Note the sign swap relative to the upper Ekman layer transport in equation (33.34). Hence, the
Ekman transport is directed to the left of the bottom stress in the northern hemisphere and to
the right in the southern hemisphere. Care must be exercised when determining the stress, with
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examples given below, including an analytic example given in Section 33.5.3. In general, the
stress is not aligned with the interior geostrophic flow, but is instead rotated by some amount.

Atmosphere-ocean Ekman layers

Consider the case where the bottom Ekman layer is the bottom of the atmosphere sitting over
the ocean. The stress imparted to the bottom of the atmosphere is equal in magnitude yet
oppositely directed to the stress acting on the upper ocean.8 Hence, the frictional stress induced
mass transport (33.34) for the upper ocean Ekman layer is equal and opposite to the frictional
stress induced mass transport in the atmosphere Ekman layer

M ocn
e = −M atm

e =⇒M ocn
e +M atm

e = 0. (33.48)

Since the density of the atmosphere and ocean are quite different, the equal Ekman mass
transports correspond to very different volume transports.

Ocean-solid earth or atmosphere-solid earth Ekman layer

Consider the bottom Ekman layer next to the solid earth. Just like the atmosphere-ocean case,
the stress imparted by the fluid on the earth is equal and opposite to the stress by the earth
on the fluid. It is not generally simple to determine this stress, though we provide an example
in Section 33.5.3 based on assuming information about the vertical viscosity profile within the
boundary layer. From that example, we see that the stress is not directly aligned with the
interior geostrophic flow just above the boundary layer. Instead, the stress is π/4 rotated to the
left of the interior flow. The rotation is due to the spiralling structure of the boundary layer
flow that gives rise to the stress.

33.5.2 Mass budget for the bottom Ekman layer
Following the derivation of the Ekman layer mass budget in Section 33.4.3, and assuming no
mass enters through the solid earth, we are led to the mass budget for the bottom Ekman
boundary layer9

ρow
(η̇e) = ρo ∂the −∇ ·M (33.49)

where z = ηe(x, y, t) is the vertical position for the top of the bottom Ekman layer, and

he = ηe − ηb (33.50)

is the Ekman layer thickness. For a steady state, the budget equation (33.49) says that the
horizontal convergence of mass into the bottom Ekman boundary layer leads to a detrainment
of mass from the Ekman layer into the interior fluid above (upwelling). Conversely, when fluid
horizontally diverges from the bottom Ekman layer there is a balance from an entrainment
(downwelling) of fluid from the interior into the Ekman layer. This orientation for the mass
transport is illustrated in Figure 33.3 as part of our earlier discussion.

33.5.3 An analytic bottom Ekman spiral velocity
When studying the bottom boundary layer for the atmosphere or the surface boundary layer for
the ocean, we are generally afforded an estimate of the frictional boundary stress, τ (η). In turn,

8Recall our discussion of stress in Chapter 25, whereby stress on one side of an interface matches that on the
other, which is a result following from Newton’s third law.

9Note the sign swap in the budget (33.49) in front of the horizontal transport term as compared to the surface
boundary layer mass budget (33.39).
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we can estimate the boundary stress induced mass transport and its divergence, and we can do
so without making assumptions about the density profile or viscous stresses within the boundary
layer. However, this estimate is less directly accessible for the ocean bottom Ekman layer, where
we need τ (ηb) to determine the mass transport. We here take an alternative approach that
produces an analytic profile for the velocity within the Ekman layer, so long as we know the
viscosity within the boundary layer. Knowing the velocity profile then affords an estimate of the
boundary stress. This approach requires a few assumptions that are not always met, in particular
it requires the viscosity. Even so, it provides physical insights that further our understanding of
Ekman mechanics thus motivating the analysis.

Physical configuration
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f ẑ → ug

Figure 33.11: A southward geostrophic flow in the northern hemisphere (f > 0) induced by an eastward pressure
gradient acceleration (low pressure to the east; ∂p/∂x < 0) that balances a westward Coriolis acceleration.

We assume flow above the boundary layer is geostrophic and supported by a prescribed
vertically independent pressure gradient

f ρo ug = ẑ ×∇p. (33.51)

A specific example is given by Figure 33.11, where a southward geostrophic flow in the northern
hemisphere has an eastward pressure gradient acceleration (low pressure to the east) balanced
by a westward Coriolis acceleration.

For flow within the bottom boundary layer, viscous stresses exchange horizontal momentum
vertically between the inviscid geostrophic interior and the bottom no-slip condition. This viscous
exchange slows the boundary layer velocity relative to the interior geostrophic velocity above
the boundary layer. Since the pressure gradient is assumed to be vertically independent and
prescribed, the slower velocity within the boundary layer means that the Coriolis acceleration
is unable to balance the pressure gradient acceleration. This imbalance between pressure
acceleration and Coriolis acceleration leads to a down pressure gradient component to the
boundary layer velocity. As a result, the velocity spirals downward toward the bottom.

The key assumptions required to produce an analytic Ekman spiral velocity are: (i) the
fluid within the Ekman layer has a constant density, ρo; (ii) the Coriolis parameter is a constant
as per the f -plane; (iii) the prescribed pressure gradient is vertically independent so that the
associated geostrophic velocity is vertically independent; (iv) the eddy viscosity is constant
within the boundary layer and zero in the interior region above the boundary layer; (v) the flow
is steady. The homogeneous density assumption is motivated by the rather small vertical scale
of the bottom Ekman layer (tens of meters) relative to the horizontal scales over which density
varies in the ocean bottom (tens to hundreds of kilometers). A constant viscosity is not always
realistic since the turbulent viscosity is generally inhomogeneous within boundary layers. Even
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so, by assuming sufficient time for statistics to become stationary we can expect to make good
use of the time averaged viscosity.

Velocity profile within the Ekman layer

Bringing the above assumptions into the frictional geostrophic equations (33.1) leads to

f ẑ × u = −(1/ρo)∇p+ νeddy ∂zzu frictional geostrophy (33.52a)

∂z(∇hp) = 0 z-independent horizontal pressure gradient (33.52b)

u(ηb) = 0 no-slip bottom boundary condition (33.52c)

u(∞) = ug matching to geostrophic interior. (33.52d)

Decomposing the velocity into its geostrophic and ageostrophic components

u = ug + ue, (33.53)

leads to

f ẑ × ue = νeddy ∂zzue (33.54a)

ue(ηb) = 0 (33.54b)

ue(∞) = 0. (33.54c)

To reach this result we noted that the geostrophic velocity is vertically independent within
the boundary layer where the density is constant, so that the geostrophic velocity does not
contribute to the viscous friction operator. These coupled second order differential equations are
equivalent to the two uncoupled fourth order differential equations

(f2 + ν2 ∂zzzz)ue = 0 (33.55a)

ue(ηb) = 0 (33.55b)

ue(∞) = 0. (33.55c)

A solution to these equations renders the Ekman boundary layer profile

u(z) = ug

[
1− e−∆z/he cos(∆z/he)

]
− vg e−∆z/he sin(∆z/he) (33.56a)

v(z) = vg

[
1− e−∆z/he cos(∆z/he)

]
+ ug e

−∆z/he sin(∆z/he) (33.56b)

h2e = 2 νeddy/|f | (33.56c)

∆z = z − ηb. (33.56d)

Properties of the Ekman spiral

The spiral velocity profile (33.56a)-(33.56b) vanishes at the bottom, z = ηb =⇒ ∆z = 0, reflecting
the no-slip bottom boundary condition. It also reduces to the interior geostrophic velocity
at ∆z = ∞. In moving downward through the boundary layer, the boundary layer current
deflects to the left of the interior geostrophic current (deflection is to the right in the southern
hemisphere). This deflection is consistent with the schematic in Figure 33.10. Making use of the
integral identities

ˆ ∞

ηb

e−∆z/he cos(∆z/he) d∆z = he/2 and

ˆ ∞

ηb

e−∆z/he sin(∆z/he) d∆z = −he/2 (33.57)
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leads to the frictionally induced mass transport within the Ekman layer

Me = ρo

ˆ ∞

ηb

ue dz (33.58a)

= (he ρo/2) [−x̂ (ug + vg) + ŷ (ug − vg)] (33.58b)

= f−1 ẑ × τ (ηb), (33.58c)

where we introduced the bottom stress according to equation (33.47). Furthermore, this stress
is given by the Neumann boundary condition placed on the horizontal velocity

τ (ηb) = ρo ν
eddy

[
∂ue

∂z

]
z=ηb

= (f he/2) [x̂ (ug − vg) + ŷ (ug + vg)]. (33.59)

Following from equation (33.49) we see that the bottom stress induced mass transport across
the top of the bottom Ekman boundary layer is

ρow
(η̇e)
Ekman = −∇ ·Me = −∇ · [f−1 ẑ × τ (ηb)] = (he/2) ζg, (33.60)

where we made use of the f -plane assumption to set ∇ · ug = 0 and introduced the relative
vorticity of the geostrophic flow

ζg = ∂xvg − ∂yug. (33.61)

Hence, the relative vorticity of the interior geostrophic flow equals to the divergence to the
horizontal mass transport within the bottom Ekman layer. We illustrate the Ekman mass
transport and bottom stress in Figure 33.12.
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f ẑ → ug

Figure 33.12: Mass transport and bottom stress in a homogeneous bottom Ekman layer on an f -plane in the
northern hemisphere. Note how the boundary layer stress is directed π/4 radians to the left of the prescribed
interior geostrophic velocity. Furthermore, the horizontal Ekman transport is itself π/2 radians to the left of the
stress, which is then 3π/4 to the left of the geostrophic velocity.

33.5.4 Comments
The Ekman spiral is a striking solution to the linear frictional geostrophic equations in a
homogeneous fluid next to a flat no slip boundary. Section 5.7 of Vallis (2017) provides further
discussion of the Ekman spiral solution discussed here. The spiral profile has been measured
in the atmosphere and can be produced in the laboratory. However, it has proven difficult to
measure in the ocean (see Gnanadesikan and Weller (1995) for an example). Even so, the effects
from Ekman transport are robust features of the theory developed in this chapter, with those
results independent of details for the vertical viscosity.
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33.6 Arrested bottom Ekman flows
When studying the vertical velocity profile within the bottom boundary layer in Section 33.5, we
assumed the density to be uniform within the boundary layer. A uniform density is commonly
assumed for Ekman layers. However, MacCready and Rhines (1991, 1993), and Garrett et al.
(1993) questioned that assumption in their study of bottom boundary layers in the presence of a
nonzero vertical density stratification next to sloping topography. They point out the remarkable
possibility of a vanishing frictional stress within the sloping bottom boundary layer. That is,
rather than nonzero friction leading to a zero flow next to the bottom, flow is arrested by a
compensation of pressure gradient accelerations. The vanishing frictional stress motivates the
term slippery Ekman layers, whereas the equivalent term arrested Ekman layer refers to the
zero boundary layer flow. We here briefly describe the arrested Ekman layer by studying Figure
33.13.

33.6.1 Description of the adjustment
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Southward interior geostrophic flow
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Figure 33.13: In both panels we depict a prescribed barotropic pressure acceleration that acts eastward and
has a corresponding southward geostrophic flow and westward Coriolis acceleration. The solid black lines depict
surfaces of constant buoyancy, also known as isopycnals (see Chapter 30). Top panel: As the flow enters the
bottom boundary layer it slows so that its Coriolis acceleration no longer balances the barotropic pressure, thus
sending water cross slope in the down pressure gradient direction. Bottom panel: The cross-slope movement
of density creates a baroclinic pressure acceleration that counteracts the barotropic pressure acceleration. The
steady state is realized when the two pressure accelerations balance, in which case flow within the boundary layer
halts. In this halted state there are no frictional stresses since the flow halts due to pressure effects rather than
friction. Note that isopycnals are shown intersecting the solid boundary in a perpendicular direction, which is
implied by the no-flux bottom boundary condition (in the absence of geothermal heating) as discussed in Section
20.4.2. Geostrophic flow in the opposite direction leads to downwelling along the bottom rather than upwelling.
This figure is adapted from Figure 5 of W̊ahlin et al. (2012).
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In both panels of Figure 33.13 we depict a prescribed vertically independent (barotropic)
pressure acceleration that acts eastward and has a corresponding southward geostrophic flow
(f > 0) and westward Coriolis acceleration. This configuration is identical to that shown in
Figure 33.11 when studying the bottom Ekman spiral over a flat bottom. As the flow enters the
bottom boundary layer it slows so that its Coriolis acceleration no longer balances the barotropic
pressure gradient acceleration (we have seen this imbalance throughout this chapter). The
bottom Ekman layer flow sends water cross-slope in the direction down the barotropic pressure
gradient. In the configuration shown here, the cross-slope flow advects denser water upslope. In
so doing, a horizontal depth-dependent (baroclinic) pressure acceleration develops adjacent to
the bottom boundary layer, with the baroclinic pressure acceleration pointing opposite to the
barotropic pressure acceleration. A steady state is realized when the two pressure accelerations
balance, in which case flow within the boundary layer halts.

It is remarkable that the dynamical balance for the arrested bottom boundary layer flow
does not involve friction. Rather, arrest happens when the two pressure gradients balance and
the Coriolis acceleration vanishes. That is, referring to the frictional geostrophic equation (33.1),
each term separately vanishes in the arrested state.

33.6.2 Applications
MacCready and Rhines (1991, 1993) and Garrett et al. (1993) study the transient adjustment
leading to the arrested state. They derive the expression for the time scale for adjustment to
the arrest state

Tarrest =
|f |
N2 s2

, (33.62)

where s is the slope of the bottom topography and N2 is the squared buoyancy frequency of the
ambient water. The time is less in regions of strong stratification (N2 relatively large), large
topographic slopes (s2 large), and low latitudes (f small). Conversely, the infinite time for either
N2 = 0 or s2 = 0 indicates the need for both stratification and topographic slopes to render an
arrest. Finally, we note the absence of any dissipation parameters (e.g., viscosity) from the time
scale. Friction is needed to support the Ekman layer where flow crosses isobars, but the time to
reach the arrested state is independent of friction.

W̊ahlin et al. (2012) interpreted observations from the Amundsen Sea according to the
arrested Ekman boundary layer and found Tarrest to be just a few hours. Additionally, the
numerical model studies from Spence et al. (2017) and Webb et al. (2019) point to the ability of
barotropic shelf waves around Antarctica to provide an onshore directed barotropic pressure
acceleration. Through the arrested Ekman layer mechanism described here, they find that the
barotropic pressure is compensated through an upslope transport of relatively warm deep water
in regions of the Antarctic Peninsula. Extensions and refinements of these ideas support an
active area of ongoing research (e.g., Ruan et al., 2021; Peterson and Callies, 2022).

33.7 Exercises
exercise 33.1: Ekman mass transport in a southern channel
Consider a southern hemisphere zonally periodic channel (e.g., an idealized Southern Ocean)
with a zonal wind stress that has a meridional dependence such as shown in Figure 33.14.
Following the discussion in Sections 33.4.1 and 33.4.4, sketch the sense for the horizontal and
vertical Ekman mass transport arising from this wind stress. Show the transport for regions to
the north and to the south of the wind stress maximum. Ignore the β contribution by assuming
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the channel is not very wide and by noting that β is smaller in the high latitudes (as relevant to
the Southern Ocean).

x
y

τx = τx(y)f < 0

Figure 33.14: Zonal wind stress in a southern hemisphere zonally periodic channel with a maximum flanked by
lower winds. What is the sense for the associated horizontal and vertical Ekman mass transport following from
the discussion in Sections 33.4.1 and 33.4.4?

exercise 33.2: Relating Ekman, Rossby, and Reynolds numbers
Under certain scalings, we can connect the Ekman number to the Rossby and Reynolds numbers.
In detail, we have

Ro =
U

fo L
and Ek =

νeddy

foH2
and Re =

W H

νeddy
, (33.63)

where

H = vertical length scale (33.64a)

L = horizonal length scale (33.64b)

U = horizonal velocity scale (33.64c)

W = vertical velocity scale. (33.64d)

and we defined the Reynolds number (Section 25.9) in terms of the vertical viscosity, vertical
length scale, and vertical velocity scale. What is the ratio of the Rossby number to Reynolds if
the flow is non-divergent?

exercise 33.3: Ekman boundary layers and Rayleigh drag
Rayleigh drag described in Section 33.2.3 allowed us to study the effects of friction on fluid
trajectories. However, Rayleigh drag has no spatial derivatives, which contrasts to the Laplacian
friction from Section 33.3.1 and used elsewhere in this chapter. Comment on whether Rayleigh
drag can support the no-slip boundary condition and the corresponding development of a
boundary layer.
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Chapter 34

SPACE AND TIME DEPENDENT GRAVITY

We here formulate the dynamical equations for a geophysical fluid in the presence of a space
and time dependent gravitational acceleration. This formulation has application to the study of
astronomical tides in the ocean, thus motivating a discussion of the astronomical tidal forcing that
follows the treatment given in Chapter 3 of Pugh (1987) and Section 5.15 of Apel (1987), with
Chapter 2 of Brown (1999) and Section 17.4 of Stewart (2008) useful pedagogical supplements.
Besides tides, a topic of interest to climate science concerns the study of how ocean sea level
responds to changes in mass distributions associated with melting land ice. The nontrivial
impact that melting land glaciers has on the earth’s geoid and earth’s rotation (Farrell and
Clark , 1976; Mitrovica et al., 2001; Kopp et al., 2010) further motivates developing the dynamical
equations of a liquid ocean in the presence of a space-time dependent gravity.

reader’s guide to this chapter
This chapter assumes an understanding of the equations of motion derived in Chapter 24

as well as the gravitational and planetary centrifugal accelerations from Section 13.10. We
dispense with tensor notation in this chapter, with subscripts used here as descriptive labels
rather than tensor indices. No other chapter depends on the material in this chapter.
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34.1 Gravitational potential
In this section we summarize elements of the gravitational force, including the case with a
non-constant gravitational acceleration such as occurs from astronomical tidal forcing and
changes to the mass distribution of the planet.

925



34.2. MOMENTUM EQUATION

34.1.1 Simple geopotential
As detailed in Section 13.10, the effective gravitational field incorporates the effects from the
planetary centrifugal acceleration. The effective gravitational field is conservative, so that the
gravitational acceleration of a fluid element can be represented as the gradient of a scalar (see
Section 13.10.4),

g = −∇Φ, (34.1)

with Φ the geopotential. In most applications of this book, the local vertical direction is denoted
by

z = r −Re, (34.2)

with z = 0 the geopotential surface corresponding to a resting ocean and Re = 6.367× 106m the
average radius of the earth (Section 13.1). The geopotential in this case is given by

Φ = Φ0 = g z, (34.3)

with g ≈ 9.8m s−2 the typical value used for the gravitational acceleration at the earth’s surface.

34.1.2 General geopotential
Consider a generalized geopotential written in the form

Φ = Φ0(r) + Φ1(r, λ, ϕ, t), (34.4)

where Φ0(r) is the geopotential given by equation (34.3), and Φ1 incorporates perturbations
to the geopotential. For the study of ocean tides, the structure of Φ1 arises from astronomical
perturbations to the earth’s gravity field. The calculation of ocean tides arising from astronomical
forcing is formulated with a space-time dependent geopotential as in equation (34.4), with the
radial dependence of Φ1 neglected (e.g., Section 9.8 in Gill , 1982). Arbic et al. (2004) provide a
discussion of global tide modelling.

Nontrivial Φ1 variations also arise from perturbations in terrestrial masses, such as the
melting of land ice such as that occurring on Greenland or Antarctica due to climate warming.
These mass distribution changes lead to changes in the earth’s gravitational field, its rotational
moment of inertia, and the deformation of the crust (GRD as in Gregory et al. (2019)). Each of
these effects lead to modifications in the static equilibrium sea level. In contrast to ocean tides,
GRD perturbations associated with melting land ice are not periodic nor readily predictable.
Furthermore, as evidenced by Figure 1 in Mitrovica et al. (2001), the amplitude of static
equilibrium sea level changes can be far greater than typical open ocean tide fluctuations.

34.2 Momentum equation
As detailed in Section 24.2.3, the inviscid momentum equation for a rotating fluid in a gravitational
field is given by

ρ
Dv

Dt
+ 2Ω× ρv = −∇p− ρ∇Φ. (34.5)

In writing the momentum equation in the form (34.5), we have chosen to retain an orientation
afforded by the unperturbed geopotential, Φ0(r), which are surfaces of constant z. This approach
reflects that commonly used to study ocean tides. In the presence of a perturbed geopotential, Φ1,
the “horizontal” directions defined by surfaces of constant z are no longer parallel to geopotential
surfaces. We thus may interpret the sum ∇hp+ ρ∇hΦ as an orientation of the pressure gradient
along surfaces of constant geopotential, where the geopotential is determined by Φ = Φ0 +Φ1,
rather than just the unperturbed geopotential Φ0.
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34.3 Hydrostatic primitive equations
As detailed in Section 27.1, the hydrostatic primitive equations reduce the vertical momentum
equation to its static inviscid form, which is the hydrostatic balance

∂p

∂z
= −ρ ∂Φ

∂z
= −ρ (g + ∂zΦ1). (34.6)

The hydrostatic balance is modified from its traditional form for cases where the perturba-
tion geopotential Φ1 exhibits nontrivial depth dependence. Correspondingly, the horizontal
momentum equation (making the Traditional Approximation from Section 27.1) takes the form

ρ
Du

Dt
+ ẑ f × ρu = −(ρ∇hΦ1 +∇hp) (34.7)

where ∇h is the horizontal gradient taken on surfaces of constant z. In their oceanic Boussinesq
form (Chapter 29), the inviscid horizontal momentum equation becomes

Du

Dt
+ ẑ f × u = −(1/ρo) (ρo∇hΦ1 +∇hp) (34.8)

where ρo is the constant reference density for a Boussinesq fluid. The Boussinesq form makes the
addition of a perturbed geopotential quite straightforward, in which it is gradients in ρo Φ1 + p
that take the place of gradients in pressure p.

34.4 Depth independent perturbed geopotential
A particularly simple form of Φ1 occurs when it is depth independent,

Φ1 = Φ1(λ, ϕ, t), (34.9)

in which case the hydrostatic balance (34.6) returns to its traditional form ∂zp = −ρ g. This
form is motivated by the scale analysis in Section 34.5.3 where we find that the radial component
of the earth’s gravitational field greatly exceeds that from the moon or other celestial bodies, so
that it is the lateral variation in the gravitational acceleration that drive tidal motions. In this
case it is convenient to write the geopotential as

Φ1 = −g h, (34.10)

with h = h(λ, ϕ, t) the perturbed geopotential height field. The full geopotential is thus written

Φ = g (z − h), (34.11)

with this form revealing that the zero of the geopotential is now set by z = h rather than z = 0.
In the study of ocean tides, h is referred to as the equilibrium tide. In geodesy, h is referred to
as the static equilibrium sea level.

Since the perturbed geopotential is depth independent, it only affects the depth integrated
horizontal momentum, and it does so through the term

−
ˆ η

ηb

∇hΦ1 dz = g

ˆ η

ηb

∇hhdz = g (−ηb + η)∇hh. (34.12)

Hence, modifications to the geopotential as embodied by the perturbed geopotential height field,
h = h(λ, ϕ, t), are isolated to their impacts on the horizontal pressure gradients acting on the
depth integrated horizontal momentum.
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34.5 Forces contributing to ocean tides
We here describe the rudiments of forces that contribute to ocean tides as well as solid-earth
tides. For simplicity we focus just on the earth-moon system, though note that the sun also
plays an analogous role for observed tidal motion.

34.5.1 Tidal acceleration in a spherically symmetric gravity field
Before considering the earth-moon system, we introduce the notion of tidal acceleration, which
arises on a finite sized body placed within a non-uniform gravitational field. Figure 34.1 depicts
this situation where the finite sized body is a narrow rod whose axis points towards the center of
a spherically symmetric massive body. One end of the rod experiences a different gravitational
acceleration than the other since the gravitational field falls off as the inverse squared distance
from the center of the sphere. It is this differential gravitational acceleration that we refer to as
the tidal acceleration. As we will see, its key property is that the tidal acceleration falls off as
the inverse cube of the distance rather than the more familiar inverse square.

To develop a mathematical expression for the tidal acceleration, focus on the spherically
symmetric gravitational field in which the gravitational acceleration at a point is given by
(Section 13.10.2)

g = −GM
r2

r̂, (34.13)

where r is the distance from the sphere’s center, G is Newton’s gravitational constant, M is
the mass of the sphere, and r̂ is the radial unit vector. The minus sign indicates that the
gravitational acceleration points toward the center of the sphere. For the rod in Figure 34.1, the
difference between the gravitational acceleration acting at a point nearest to the sphere (point
B) and a point furthest from the sphere (point A) is given by

g(rB)− g(rA) = g(r0 − L/2)− g(r0 + L/2), (34.14)

where r0 is the distance from the sphere’s center to the center of the rod. Assuming the rod
is not long, we can expand this difference in a Taylor series about the rod center at r0, thus
leading to an expression for the tidal acceleration

g(rB)− g(rA) ≈ −L
∂g

∂r
= −2L GM

r30
r̂ = (2L/r0) g(r0). (34.15)

The key point to conclude from this example is that the tidal acceleration is proportional to
the inverse cube of the distance to the center of the sphere. We see this property again when
considering in Section 34.5.3 the gravitational acceleration generated from a remote body (e.g.,
the moon) acting on the surface of a sphere (e.g., the earth).

34.5.2 Heuristics of tidal acceleration on the surface of a sphere
We now consider the tidal acceleration acting on the surface of a smooth massive sphere due to
a spherically symmetric gravitational field generated by a neighboring massive body. Figure
34.2 depicts this system, which we consider an idealized earth-moon system where each body is
assumed homogeneous and spherical. Given that they gravitationally attract one another, it
is not astronomically possible for the two bodies to remain spatially fixed. Instead, they orbit
around their common center of mass while conserving their angular momentum.

A central question of tidal studies is why there are generally two ocean tides per day (semi-
diurnal tides) rather than just one (diurnal tides). We here offer two complementary arguments.
The first is based on extending the tidal acceleration discussion of Section 34.5.1, whereas the
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M

A

B

L

Figure 34.1: Tidal acceleration is the acceleration that acts on a finite sized object placed in a non-uniform
gravitational field. The finite object is here depicted as a narrow rod of length L placed in the gravity field
of a spherically symmetric body of mass M . That portion of the rod closer to the gravitating sphere (end B)
experiences a stronger gravitational acceleration than the end that is further away (end A). The gradient in the
gravitational acceleration constitutes the tidal acceleration acting on the rod.

second follows the more traditional account by considering a balance between gravitational and
centrifugal accelerations.

General ideas

Every point on the surface of the earth is attracted to the earth’s center by the earth’s gravitational
field. For a spherical earth, this attractive force is purely radial, so that it cannot lead to lateral
motion on the surface of the perfect sphere. We thus conclude that the radial gravitational field
is not the cause of tidal motion. Instead, tidal motion arises from a non-radial gravitational field.

The earth-moon gravitational field accelerates the earth and moon toward one another
along the axis connecting their centers. Additionally, the spatial dependence of the moon’s
gravitational field over the earth leads to lateral forces along the earth’s surface, thus providing
the ingredient for ocean tidal motion. To capture the essence of this force, we examine how the
moon’s gravitational field acts on a point on the earth relative to its action at the center of the
earth.

Sample tidal accelerations on the sphere

Again, we are tasked with computing the tidal acceleration from the moon’s gravitational field
for selected points on the earth, and we are computing these accelerations relative to the earth
center. As for the rod in Figure 34.1, the tidal acceleration at point B relative to the center of
the earth is given by

g(rB)− g(Rem) = (2Re/Rem) g(Rem). (34.16)

This acceleration points towards the moon. In contrast, the tidal acceleration at point A relative
to the center of the earth is given by

g(rA)− g(Rem) = −(2Re/Rem) g(Rem), (34.17)

which is of equal magnitude but points away from the moon.

The tidal accelerations at points A and B act radially away from the earth’s center. Hence,
as noted above, these radial forces do not directly lead to tidal motion at those points. However,
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Figure 34.2: Illustrating the tidal force on the surface of a sphere. The sphere is an ideal depiction of the
earth and the smaller massive object is the moon. The distance between the center of the earth and moon is
Rem, and the radius of the earth is Re. The left panel shows representative moon-generated gravitational field
lines. Two points along these field lines on the surface of the earth represent the two ends of an imaginary rod as
depicted in Figure 34.1. The tidal acceleration acting at point B, relative to the earth’s center, points toward the
moon (equation (34.16)). In contrast, the tidal acceleration at point A, relative to the earth’s center, points in
the opposite direction (equation (34.17)). Points on the earth surface between A and B have tidal accelerations
with a non-zero component directed along the surface of the earth. Symmetry of the configuration allows us to
conclude that a layer of water on the surface of the sphere will accumulate to produce two bulges as shown in the
right panel. It is the lateral component of the gravitational acceleration that causes the water to accumulate to
produce tidal bulges at points A and B. In contrast, the radial component to the moon’s gravitational field has
no contribution to the tides. Note that as shown in Section 34.5.3, the bulge shown in the right panel is greatly
exaggerated.

through symmetry of the configuration, points on the surface of the sphere between A and B
have a tidal acceleration from the moon’s gravitational field with a nonzero lateral component.
These lateral forces lead to the accumulation of water at points A and B. We can compute
the gravitational acceleration at intermediate points. However, the trigonometry is somewhat
complex and we prefer to compute the forces in Section 34.5.3 through use of the gravitational
potential. For the current discussion we appeal to symmetry to conclude that the lateral tidal
accelerations act to pile up water at both points A and B as depicted in the second panel of
Figure 34.2. This argument, though heuristic, provides the means to understand how a water
covered spherical planet has two bulges, rather than one, due to spatial gradients in the moon’s
gravitational field. We confirm this argument in Section 34.5.3 by explicitly computing the
gravitational potential for this idealized earth-moon system and then taking the gradient to
compute the gravitational acceleration (see Figure 34.4).

Including orbital motion

Thus far we have ignored the orbital motion of the earth-moon system around their common
center of mass. As we will see, there are no fundamental changes to the above arguments when
allowing for orbital motion.

In the absence of dissipation, as assumed here, the earth-moon distance remains constant due
to their angular momentum conserving orbital motion. From a force-balance perspective, the two
spherical bodies remain in a fixed orbit since the gravitational acceleration acting at their centers
is balanced by their respective centrifugal accelerations, where the centrifugal acceleration is
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computed relative to the center of mass of the two-body system. The gravitational acceleration
from the moon, acting at the center of the earth, is given by the free fall value g(Rem), which
has magnitude GMm/R

2
em and is directed along the axis connecting the earth and moon centers.

Furthermore, when a body exhibits orbital motion, each point on the body exhibits the same
orbital motion and has the same linear velocity. Consequently, each point on the earth possess
the same centrifugal acceleration

aorbital centrifugal = −g(Rem). (34.18)

This property of orbital motion is distinct from the spinning motion of a planet rotating about
its axis, whereby points further from the rotational axis have larger centrifugal acceleration (see
Section 13.10). To help understand orbital motion, move your hand in a circle while maintaining
the arm in a single direction so that the hand exhibits an orbital motion rather than a spinning
motion. Notice that all parts of the hand move with the same linear velocity and exhibit the
same orbital motion. Hence, each point on the hand has the same centrifugal acceleration.

We can now ask about the acceleration felt by a point on the surface of the earth. The
acceleration giving rise to tidal motions is the sum of the gravitational acceleration from the
moon plus the centrifugal acceleration due to orbital motion. However, this calculation is
identical to that considered previously, which led, for example, to the tidal accelerations for
points B and A as given by equations (34.16) and (34.17). We are thus led to the same result
as before.

34.5.3 Gravitational potential for an idealized earth-moon system

We now perform a more thorough calculation of the gravitational acceleration by computing the
gradient of the gravitational potential. First recall the discussion of Newton’s gravitational law
in Section 13.10.2, whereby the gravitational potential for a point at distance r from the center
of a spherical earth is given by

Φe(r) = −
GMe

r
, (34.19)

where Me is the mass of the earth. The corresponding radial gravitational acceleration is given
by

ge = −∇Φe = −
GMe r̂

r2
. (34.20)

The same considerations hold for the moon’s gravitational potential. Hence, referring to
Figure 34.3, the moon’s gravitational potential evaluated at a distance L from the moon’s center
is given by

Φm(L) = −
GMm

L
. (34.21)

Trigonometry leads to the law of cosines relation

L2 = (Rem − r cosψ)2 + (r sinψ)2 = R2
em + r2 − 2 r Rem cosψ, (34.22)

where again r is the distance to the earth’s center and ψ is the polar angle relative to the x̂ axis
pointing between the earth and moon centers (see Figure 34.3).
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Figure 34.3: Geometry of an idealized earth-moon system. The center of the earth is a distance Rem from the
center of the moon; the moon has a mass Mm; and the earth has a radius Re. An arbitrary test point is shown
a distance L from the center of the moon, r from the center of the earth, and with a polar angle ψ relative to
the x̂ axis, where the x̂ axis points from the earth center to the moon center. Relative to the earth’s center, the
test point has Cartesian coordinates (x, y) = r (cosψ, sinψ). See Section 4.22 for details on relating polar and
Cartesian coordinates.

Identifying the leading order contributions

Assuming the test point in Figure 34.3 is closer to the earth than to the moon, we can perform
a Taylor series expansion in the small parameter r/Rem to render

Φm(L) = −
GMm

L
= −GMm

Rem

[
1 +

r cosψ

Rem

+
r2

2R2
em

(3 cos2 ψ − 1) +O(r/Rem)
3

]
. (34.23)

We thus identify the leading three terms to the geopotential

Φ(0)
m = −GMm

Rem

(34.24)

Φ(1)
m = −GMm

R2
em

r cosψ (34.25)

Φ(2)
m = −GMm

2R3
em

r2 (3 cos2 ψ − 1). (34.26)

Assuming the distance between the earth and moon remains fixed, the zeroth order term Φ(0)
m

is a spatial constant and thus leads to no gravitational acceleration. We now examine the
gravitational accelerations from the other two terms.

Acceleration maintaining the orbiting earth-moon system

For the first order term, Φ(1)
m , we introduce the Cartesian coordinate as in Figure 34.3 to write

Φ(1)
m = −GMm x

R2
em

, (34.27)

where x = r cosψ is the distance along x̂. Hence, the gradient of Φ(1)
m leads to the gravitational

acceleration

g(1)m = −∇Φ(1)
m = x̂

GMm

R2
em

. (34.28)

This gravitational acceleration has a constant magnitude at every point in space and it everywhere
points in a direction parallel to the earth-moon axis. Furthermore, the magnitude of g(1)m equals
to that of the moon’s gravitational acceleration, gm, when evaluated at the earth’s center. As
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seen in Section 34.5.2, the acceleration g(1)m maintains the earth in orbit about the center of mass
for the earth-moon system; i.e., this is the free fall acceleration towards the moon. Notably, at
the earth’s surface, the magnitude of g(1)m is tiny relative to the gravitational acceleration from
the earth itself, with their ratios given by

Mm/R
2
em

Me/R2
e

≈ 3.4× 10−6, (34.29)

where we set

Me = 5.97× 1024 kg Mm = 7.35× 1022 kg = (1/81.2)Me (34.30a)

Re = 6.367× 106 m Rem = 3.84× 108 m = 60.3Re. (34.30b)

Figure 34.4: The tide producing gravitational acceleration g
(2)
m given by equation (34.34). The moon is assumed

to be positioned in the equatorial plane of the earth.

Tide producing geopotential

The main tide producing acceleration results from Φ(2)
m . Introducing the second Cartesian

coordinate, y = r sinψ, leads to

Φ(2)
m = −GMm

2R3
em

r2 (3 cos2 ψ − 1) = −GMm

2R3
em

(2x2 − y2). (34.31)

The corresponding perturbed geopotential height field (see equation (34.11)) is given by

h = −Φ(2)
m

g
=

R2
e

2R3
em

Mm

Me

r2 (3 cos2 ψ − 1). (34.32)

Placing the test point on the earth surface, r = Re, renders

h =
R4

e

2R3
em

Mm

Me

(3 cos2 ψ − 1) ≈ 2.8× 10−8Re (3 cos
2 ψ − 1). (34.33)

Plugging in numbers for the earth-moon system suggests that the maximum perturbation to the
geopotential height arising from the moon’s gravity field is roughly 36 cm. Correspondingly, the
bulge shown in Figure 34.2 is greatly exaggerated. Note that ocean tidal amplitudes can get
much larger (order meters) than this “equilibrium tide” amplitude due to resonances from ocean
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geometry, with the Bay of Fundy in Nova Scotia a particularly striking example.

Tide producing acceleration

The gravitational acceleration arising from the tidal potential is determined by the gradient of
the tidal geopotential

g(2)m = −∇Φ(2)
m =

GMm

R3
em

(2x x̂− y ŷ). (34.34)

We illustrate the vector field g(2)m in Figure 34.4. Note how the accelerations lead to two bulges
on opposite sides of the planet. We can write this acceleration using polar coordinates by
introducing the polar unit vectors r̂ and ψ̂ according to Section 4.22.2

r̂ = x̂ cosψ + ŷ sinψ (34.35a)

ψ̂ = −x̂ sinψ + ŷ cosψ (34.35b)

thus rendering

g(2)m =
GMmRe

R3
em

[
r̂ (3 cos2 ψ − 1)− (3/2) ψ̂ sin 2ψ

]
, (34.36)

where we evaluated the acceleration at the earth surface so that r = Re. Evaluating the
acceleration at ψ = 0, π verifies the heuristic calculation performed in Section 34.5.2 for points
on the earth surface nearest and furthest from the moon. We can further gauge the magnitude
of the tidal acceleration by introducing the acceleration due to the earth’s gravity field

g(2)m = ge
Mm

Me

R3
e

R3
em

[
r̂ (3 cos2 ψ − 1)− (3/2) ψ̂ sin 2ψ

]
, (34.37)

where ge = GMe/R
2
e is the acceleration at the earth’s surface from the earth’s gravity field.

The dimensional prefactor has magnitude ≈ 5.6× 10−8 ge, so that the tidal acceleration is tiny
relative to that from the earth’s gravity field. It is for this reason that the radial component of
the tidal acceleration is largely irrelevant since it is dominated by the far larger radial component
of the earth’s gravity field. However, the angular component of the tidal acceleration, although
small relative to the earth’s radial gravitational acceleration, is able to move water along the
surface of the planet as indicated by Figure 34.4, thus leading to tidal motion.

34.5.4 Concerning realistic tides

Our discussion of tides has been rather terse, aiming to identify key aspects of the tidal
accelerations but giving little attention to details that impact real ocean tides. Here are a few
points that must be considered for these purposes.

• As the earth spins under the tidal bulges, there are two high and two low tides per day.
Additional orbital motion of the moon adds roughly 50 minutes per day to the diurnal
(daily) tide and 25 minutes to the semi-diurnal (twice daily).

• The moon orbits the earth at a latitude of roughly 28.5◦N rather than within the equatorial
plane, so that the tidal bulges are offset from the equator. As the earth spins under the
bulges, one of the high tides is generally larger than the other due to the offset. This offset
in turn introduces a diurnal component to the tides in addition to the semi-diurnal.

• The sun contributes to tides in a manner similar to the moon. The sun is more massive
than the moon, yet it is further away, so that the ratio of the magnitudes for the tidal
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producing accelerations is given by

moon tidal acceleration

sun tidal acceleration
=
Mm/R

3
em

Ms/R3
es

≈ 2.2 (34.38)

where we set
Ms = 1.99× 1030 kg Res = 23460Re. (34.39)

Hence, the moon has an impact on tides that is somewhat more than double that of the
sun.

• The gravitational acceleration that leads to the tidal bulge moves around the mid-latitudes
at roughly 330 m s−1, which is faster than the ≈ 200 m s−1 wave speed for shallow water
gravity waves. Hence, the ocean tidal motion is never equilibrated to the equilibrium tides
defined by the tidal acceleration. In contrast, solid-earth waves are much faster and so the
solid-earth tidal motions are mostly equilibrated with the equilibrium tidal acceleration.
Solid-earth tides have an amplitude on the order of 10 cm with wavelengths spanning the
planet. Hence, an accurate treatment of ocean tides must take into account the solid-earth
tides.

• The movement of ocean mass modifies the earth’s gravity field and the domain within with
the ocean moves, and these effects are referred to as self attraction and loading (SAL). The
loading term arises from alterations in the mass felt by the solid earth that leads the crust
to expand or compress. Self-attraction arises from modifications to the gravity field due to
self-gravity of both the load-deformed solid earth and the ocean tide itself. Locally, SAL
can contribute to roughly 20% of the ocean tide amplitude, so that accurate tide modeling
must include SAL. Barton et al. (2022) provide an example of global ocean tide modeling
that includes a discussion of how to compute the SAL terms online during a simulation.

• Geometry of the ocean plays a leading role in determining tides at a particular location.
We have incomplete information about the geometry of ocean basins, such as the presence
of deep ridges, troughs, and seamounts. In lieu of such information we can garner useful
information based on the analysis of past tides, with that information used to fit sinusoidal
waves to the measured time series for use in projecting forward in time.

34.5.5 Comments
A key feature of the tidal producing forces is that it is the lateral (along-earth) component of
the moon’s tidal gravitational force that produces the earth’s tides. These lateral forces cause
water to accumulate at the point nearest to and furthest from the moon (points A and B in
Figure 34.2), thus producing the characteristic double-bulge pattern. Notably, many common
literature presentations make it appear that it is the radial (i.e., pointing to the earth’s center)
component of the moon’s gravitational force, and its gradient across the earth, that leads to the
earth’s tidal bulges. But as discussed in Section 34.5.2, radial gravitational forces cannot lead
to tidal motions; what is needed is a force that leads to lateral motion. These key notions are
nicely emphasized in this Space Time video.
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Shallow water flows
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Adiabatic shallow water models consist of constant density homogeneous fluid layers whose
interfaces are material; i.e., no matter is transferred between the immiscible layers. Thermody-
namic processes are absent from the system, thus allowing us to focus on the dynamics of fluid
layers. Pressure is hydrostatic, which means that motion occurs in columns whereby horizontal
velocity is independent of the vertical position within a layer, whereas the column can expand
and contract so that there is vertical motion within a layer. Horizontal momentum is transferred
between shallow water layers via pressure form stresses (Chapter 28) that act on sloping layer
interfaces. Furthermore, we make the approximations arising from the primitive equations in
Section 27.1, so that the Coriolis acceleration is based on just the local vertical component to
the planetary rotation. Our goal in this part of the book is to develop an understanding of the
shallow water model fundamentals and to study some basic dynamical features as realized in the
model. We have further use of the shallow water model in the study of vorticity in Part VII,
balanced flows in Part VIII, waves in Part X, and generalized vertical coordinates in Part XII.

The shallow water model provides a versatile theoretical toolbox for deducing how flow is
affected by rotation and (when multiple layers are used) stratification. Consequently, the shallow
water model is featured in many areas of geophysical fluid mechanics as well as in ocean and
atmosphere applications. Additionally, there is a direct analogy between shallow water flow
and compressible fluid flow, in which the in situ density of a compressible fluid corresponds to
the layer thickness of a shallow water fluid. In particular, the acoustic waves of compressible
flow (Chapter 51) are directly analogous to the gravity waves of shallow water flow (Section
55.5). However, shallow water flow is somewhat simpler than compressible three-dimensional
flow, since shallow water flow is horizontal within a layer. For these reasons, the shallow water
model has found great use both inside and outside of geophysical fluid mechanics.

The shallow water model is a vertically discrete realization of a continuously stratified fluid
described by the isopyncal coordinates of Chapter 66. However, the mathematical formalism of
generalized vertical coordinates developed in Part XII of this book, and needed to formulate
the fluid equations using isopycnal coordinates, is largely unnecessary when working with the
shallow water model. The reason for the simplification is that columnar motion within a shallow
water layer means that lateral gradients of properties need not be projected along the slope of
the layer. In contrast, this projection is needed for a continuously stratified fluid described by
generalized vertical coordinates (e.g., see Figure 63.4). So although there is beauty and power in
the methods of generalized vertical coordinates for studying continuously stratified flows, it is
liberating to avoid that formalism while still capturing much of the underlying physics associated
with stratification (albeit discretely stratified). This feature of the shallow water model greatly
adds to its allure and accessibility.



Chapter 35

FORMULATING SHALLOW WATER MODELS

In this chapter we formulate the mechanical equations for a suite of shallow water models. For
this purpose we develop the equations describing motion of a single shallow water layer; multiple
shallow water layers (stacked shallow water); and reduced gravity models (models with one layer
that is dynamically inactive). In mathematically formulating these models we also expose their
physical basis.

reader’s guide to this chapter
We make use of fluid kinematics and dynamics described in a variety of earlier chapters,

with the presentation inspired by Chapter 3 of Vallis (2017) as well as various sections in
Salmon (1998). We make use of the formulation for further study of the shallow water fluid
mechanics, including dynamical balances in Chapter 36, vorticity mechanics in Chapter 39,
and wave mechanics Chapter 55. This video offers a pedagogical introduction to shallow
water flows. We commonly make use of oceanographic language and refer to the fluid as
water. Even so, the shallow water model has many applications to the study of large-scale
atmospheric flows.

The fluid density is constant within a shallow water layer, so that mass conservation
is the same as volume conservation. Hence, the terms “mass conservation” and “volume
conservation” are commonly used interchangeably when working with shallow water models.
The horizontal velocity is vertically uniform within a shallow water layer, whereas the vertical
velocity and hydrostatic pressure are linear functions of vertical position within the layer.
When acting on a property that is vertically uniform within a layer, the gradient operator,
∇, results in a horizontal vector. To minimize notational clutter, we typically write ∇ for
brevity, rather than ∇k or ∇h (with k the layer index). The meaning of the resulting vector
equations are clear from the functional dependencies of the fields present in the equations.
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35.1 Loose threads
• Internal and external mode as per Raymond’s notes.

35.2 A single shallow water layer
Consider a homogeneous layer of fluid in a uniform effective gravitational field (gravity plus
planetary centrifugal as in Section 13.10.4), bounded from below by solid walls. If there are no
lateral force imbalances, then the fluid remains static. Now perturb the fluid so that it has a
nonuniform layer thickness, say with a bump in a particular region. Conservation of fluid mass
(which translates into volume conservation for a uniform density layer) means that thicker fluid
regions must be exactly compensated by thinner fluid regions. Furthermore, layer thickness
gradients create pressure differences (thicker fluid layer has larger hydrostatic pressure than
thinner layer), which in turn drives fluid motion. If the fluid has much larger lateral extent
than vertical, then the lateral motion occurs as an expanding and contracting column with no
vertical dependence to the horizontal pressure forces and thus the horizontal motion is vertically
independent.

The essence of a perfect fluid (i.e., no irreversible processes such as mixing) shallow water
flow concerns the motion of fluid columns accelerated by pressure gradients created by layer
thickness undulations, and the associated conservation of mass ensuring that the accumulation
of fluid in one region is balanced by the depletion of fluid in another. Pressure gradients act
to homogenize the layer thickness. However, planetary rotation and the corresponding Coriolis
acceleration allows for layer thickness to be non-constant even in a steady state.

35.2.1 Pressure gradient force within the fluid layer
Figure 35.1 shows a single shallow water layer with a generally non-flat bottom and an undulating
free surface height. We assume that each column of fluid within the layer is in hydrostatic
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Figure 35.1: A single layer of shallow water fluid with thickness h = η − ηb that extends from the bottom
at z = ηb to the free surface at z = η. The area averaged thickness is defined by H = h = A−1

´
hdxdy =

A−1
´
(η − ηb) dxdy = η − ηb, where A =

´
dxdy is the horizontal area of the layer. The deviation of the free

surface from η is given by η′ = η − η = η − (ηb +H) so that η(x, y, t) = ηb(x, y) + h(x, y, t) = ηb +H + η′(x, y, t).
Likewise, the deviation of the bottom from ηb is given by η′b = ηb − ηb, so that h = η − ηb = H + η′ − η′b. Volume
conservation for the layer is maintained in the absence of volume boundary fluxes, in which case η′ = 0. Note
that the position of the reference height, z = 0, is arbitrary. Atmospheric conventions typically set z = 0 so that
ηb = 0, η = H + η′, and η = H. Oceanic conventions typically choose η = 0 so that η = η′ and ηb = −H. We
are only concerned with fluctuations that leave the free surface monotonic; i.e., we do not consider overturns or
breaking waves. This assumption is implied by assuming that each column extending from ηb ≤ z ≤ η maintains
hydrostatic balance.

balance, so that the vertical momentum equation reduces to

∂p

∂z
= −ρ g. (35.1)

Recall from Section 27.2 that the hydrostatic balance is consistent with lateral length scales
much larger than vertical (small vertical to horizontal aspect ratio), which is satisfied by large-
scale geophysical fluid motion. Hence, a shallow water fluid is a relevant idealization if we are
considering horizontal flow scales that are very large relative to vertical flow scales.

Since the fluid density is assumed constant (i.e., the fluid is a homogeneous layer), we can
integrate the hydrostatic balance from the surface to an arbitrary vertical position within the
layer

p(x, y, z, t) = pa(x, y, t) + g ρ

ˆ η

z
dz = pa(x, y, t) + g ρ [η(x, y, t)− z], (35.2)

where pa(x, y, t) is the pressure applied to the layer free surface, say from the overlying atmosphere.
Furthermore, the horizontal pressure gradient thus takes the form

∇hp = ∇hpa + g ρ∇hη. (35.3)

This pressure gradient is vertically independent within the layer, as depicted in Figure 35.2.

For the left hand side of the pressure gradient in equation (35.3), it is useful to write ∇h
since the pressure within a layer is a function of z (equation (35.2)), whereas for the horizontal
momentum equation we only want the horizontal pressure gradient. For the right hand side, pa
and η are independent of z, so that there is no need to expose the z subscript on the gradient
operator. We thus drop the subscript when no ambiguity results, as per our convention noted at
the start of the chapter.
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x

z

High pressure Low pressure
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Figure 35.2: The horizontal pressure gradient within a shallow water layer is independent of the vertical position
within that layer. In this schematic we assume here are zero horizontal gradients in the applied surface pressure,
∇pa = 0, in which case the horizontal acceleration from pressure within a single shallow water fluid layer is
determined solely by the surface height, −∇hp = −g ρ∇hη. The acceleration is uniform throughout the layer and
points from regions of high free surface height to regions of low free surface height (e.g., sea level highs towards
sea level lows). Although bottom topography interacts with the flow and thus affects the shape of the free surface,
the topography does not appear explicitly in the horizontal pressure gradient (though the bottom shape does
affect bottom form stresses as per the discussion in Sections 28.1 and 36.4). Instead, we only need to know the
shape of the free surface (and the applied pressure pa) to know the horizontal pressure force throughout the layer.

The pressure gradient force is vertically independent within a layer

Although hydrostatic pressure within a shallow water layer is vertically dependent as per equation
(35.2), the horizontal pressure gradient, as given by equation (35.3), has no vertical dependence
within the layer. The acceleration from this hydrostatic pressure force points from highs in the
effective sea level to lows in the effective sea level (see Figure 35.2). The vertical independence of
the pressure gradient within a shallow water layer holds also for multiple shallow water layers as
discussed in Section 35.4, in which case the horizontal velocity has no vertical structure within
any layer.

Pressure gradient force only depends on layer interface gradients

It is notable that the horizontal pressure gradient is solely determined by properties at the upper
interface of the layer. That is, we only need to know the shape of the free surface, z = η, and the
applied pressure, pa, to know the horizontal pressure force acting throughout the layer. There is
no explicit dependence on the shape of the bottom topography. The result also holds for the
stacked shallow water model discussed in Section 35.4, whereby horizontal pressure gradients are
determined by gradients in the layer interfaces and with no appearance of the bottom topography.
This characteristic is specific to the use of a pressure gradient body force to describe the role of
pressure on the layer momentum. As a complement, we saw in Chapter 28 how to formulate
the pressure contact force. It is through the contact force perspective that we see, in Section
36.4, how bottom topography appears in the momentum balance of a shallow water layer. In
particular, this perspective exposes the topographic form stresses that mechanically exchange
momentum between the layer and the solid earth bottom.

35.2.2 Effective sea level and the inverse barometer sea level

When considering a nonzero atmospheric pressure, we sometimes find it useful to introduce an
effective free surface height or effective sea level

ηeff = η + pa/(ρ g), (35.4)
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with gradients in the effective sea level leading to horizontal motion. However, when considering
motions on time scales longer than a few days, the ocean free surface adjusts under atmospheric
loading towards an inverse barometer sea level. An inverse barometer sea level compensates the
atmospheric pressure so that there is no net horizontal pressure gradient, and so there is no
motion induced by the atmospheric pressure. Hence, all that matters for motion are deviations
from the inverse barometer sea level.1

We expose details to support the above comments by writing pressure within the shallow
water layer as

p(z) = pa + ρ g (η − z) (35.5a)

= pa + (pa − pa) + ρ g (η − z) (35.5b)

= pa + ρ g (η − ηib − z). (35.5c)

In these equations we introduced the area mean atmospheric pressure, pa, as well as the inverse
barometer sea level

ρ g ηib = pa − pa. (35.6)

The inverse barometer sea level is defined according to deviations of the atmospheric pressure
from its area mean. Hence, when the atmospheric pressure is higher than the area mean, pa > pa,
then the inverse barometer sea level is negative, ηib < 0, reflecting the downward depression of
the inverse barometer sea level. In contrast, ηib > 0 for anomalously low pressures, pa < pa.

Introducing the inverse barometer sea level brings the horizontal pressure gradient to the
form

∇hp = ∇pa + g ρ∇η = ρ g∇ηeff = ρ g∇(η − ηib). (35.7)

If sea level adjusts to the atmospheric pressure so that ∇η = ∇ηib, then there is no horizontal
pressure gradient in the shallow water layer, in which case there is no induced motion from the
atmospheric pressure. It follows that for dynamical purposes, we can seamlessly incorporate
atmospheric pressure into the formalism by working with deviations of sea level from the inverse
barometer sea level, η − ηib.

35.2.3 Further comments on pressure in a homogeneous layer

Vertical independence of the horizontal pressure gradient within the shallow water layer is a
direct result of the assumed hydrostatic nature of pressure within the layer. To emphasize this
point, we certainly can imagine a homogeneous fluid layer in which the horizontal velocity has a
vertical shear. For example, in Section 52.3 we study surface gravity waves in a homogeneous
fluid layer. Such waves have an amplitude that exponentially decays moving downward from
the ocean surface, and so the horizontal and vertical fluid motion associated with the waves
have a non-zero vertical shear. Such motion cannot be caused by a horizontal gradient in the
hydrostatic pressure since this gradient has no vertical dependence throughout the homogeneous
layer

∂z(∇hphydrostatic) = 0. (35.8)

Hence, in a homogeneous fluid layer, hydrostatic pressure gradients can only drive a horizontal
flow that is vertically independent within that layer. So if the vertically sheared horizontal flow
is found within a homogeneous fluid layer, and if pressure gradients cause this flow, then it can
only be through gradients in the non-hydrostatic pressure. As discussed in Section 52.2.4, surface

1The discussion in this section follows Appendix C to Griffies and Greatbatch (2012), where further details
are provided. In particular, they allow for continuously stratified density rather than the shallow water model
considered here. Even so, the key points about the inverse barometer gleaned from the shallow water discussion
also hold for the case of a continuously stratified fluid.
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gravity waves indeed involve non-hydrostatic pressure forces that drive the vertical dependence
to the wave amplitude.

Moving beyond the homogeneous layer assumption, we saw in Section 27.4.1 that a hor-
izontal gradient in the density leads to a vertically dependent hydrostatic pressure gradient
∂z(∇hphydrostatic) ̸= 0. This hydrostatic pressure force can impart vertical shears to the horizontal
flow. Thermal wind shear is the canonical example whereby vertical shears in the horizontal
velocity are present in geostrophically balanced fluids as driven by horizontal density gradients
(Section 31.4.3). We encounter the shallow water version of thermal wind in Section 36.2.2.

35.2.4 Momentum equation

If there is no friction anywhere in the fluid, including at the upper and lower boundaries, then
the horizontal momentum is effected only by the Coriolis and pressure forces. Following our
discussion of the Traditional Approximation in Section 27.1.3, we retain only the local vertical
component to the Coriolis acceleration, which is compatible with the hydrostatic approximation.
We are thus led to the horizontal velocity equation

Du

Dt
+ f ẑ × u = −∇(g η + pa/ρ), (35.9)

where
v = u+ w ẑ (35.10)

splits out the horizontal velocity vector, u, from the vertical velocity component, w.

The Coriolis parameter, f = f ẑ, is vertically independent, as is the horizontal pressure
force from gradients in the free surface and applied pressure. Consequently, if the horizontal
velocity for the initial flow state is vertically independent, it remains so for all time. The material
time derivative thus only has contributions from the local time derivative and from horizontal
advection

Du

Dt
=

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
u (35.11)

so that the shallow water velocity equation (35.9) takes on the form

(∂t + u ∂x + v ∂y)u+ f ẑ × u = −∇(g η + pa/ρ). (35.12)

35.2.5 Thickness equation

The mass of a shallow water layer is constant in the absence of sources, sinks, or boundary fluxes.
Hence, changes in mass at a particular region in the fluid must arise from mass fluxed across the
region boundaries, leaving one region and accumulating in another. For simplicity, we assume
that no mass crosses the fluid top (the free surface) or the bottom (the solid earth). We consider
the more general case of boundary mass transport in Section 35.6.

Consider an infinitesimally thin (in horizontal cross-section) vertical column of shallow water
fluid that is fixed in space and extending from ηb ≤ z ≤ η. Let the horizontal cross-sectional
area be written as dA and the thickness be h = η − ηb (see Figure 35.3). The total mass of fluid
in this column is given by

M =

ˆ
column

[ˆ η

ηb

ρ dz

]
dA = ρ

ˆ
column

(η − ηb) dA = ρ

ˆ
column

hdA. (35.13)

Time changes in the column mass thus arise from time changes in the layer thickness integrated
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Figure 35.3: Mass budget for a column of shallow water fluid with fixed cross-sectional area, dA, constant
density, ρ, and layer thickness, h(x, y, t). The column mass is affected only by horizontal transport (transport
within the layer) in the absence of boundary mass fluxes through the top, z = η, or bottom, z = ηb. Note that
since the density of the layer is constant, then mass equals to the constant density times the volume.

over the horizontal area of the column

dM

dt
= ρ

ˆ
column

∂h

∂t
dA, (35.14)

where
∂h

∂t
=
∂ (η − ηb)

∂t
=
∂η

∂t
, (35.15)

since the bottom topography at z = ηb(x, y) is static.

General derivation

The mass within a fluid column changes due to mass crossing the column boundaries. Aagain,
we assume here that no mass crosses the top or bottom interfaces. Hence, we only consider mass
moving horizontally across the vertical boundaries of the column

mass per time entering column = −ρ
˛

column

u · n̂dS, (35.16)

where n̂ is the outward normal at the column boundary, and dS is the area element along the
column boundary. The area integral computed over the column boundary involves a vertical
integral and a circumferential line integral

mass per time entering column = −ρ
˛

column

[ˆ
u · n̂dz

]
dl, (35.17)

where dl is the infinitesimal line element around the column circumference. Since n̂ · u is
vertically independent, we can perform the vertical integral to render

−ρ
˛

column

[ˆ
u · n̂dz

]
dl = −ρ

˛
column

hu · n̂dl = −ρ
ˆ

column

∇ · (hu) dA, (35.18)

where the second equality follows from the divergence theorem applied to the horizontal cross-
sectional area of the column. Equating this result to the mass time tendency (35.14), and noting
that the horizontal cross-sectional area is arbitrary, yields an equation for the layer thickness

∂th+∇ · (hu) = 0. (35.19)
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This result means that the thickness of fluid at a fixed location increases if there is a convergence
of thickness onto that location, and decreases if thickness diverges from the location.

We may also write the thickness equation (35.19) using the material time derivative

Dh

Dt
= −h∇ · u. (35.20)

Hence, thickness of a material fluid column increases in regions where the horizontal flow
converges and it decreases where the horizontal flow diverges. As for the horizontal velocity in
equation (35.11), the material time derivative arises from the local time tendency plus horizontal
advection

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
., (35.21)

Special case with a rectangular column

To further our understanding of the second step in equation (35.18), consider the special case of
a rectangular column, for which the mass per time of fluid entering the column is given by

mass per time entering column

= −ρ
ˆ

column

[(uh)east − (uh)west] dy − ρ
ˆ

column

[(v h)north − (v h)south] dx. (35.22)

Taking the limit as the horizontal cross-section of the column becomes infinitesimal leads to

mass per time entering column

= −ρ
ˆ

column

[
∂(uh)

∂x
+
∂(v h)

∂y

]
dx dy = −ρ

ˆ
column

∇ · (hu) dA, (35.23)

thus recovering the result (35.18).

35.2.6 Bottom kinematic boundary condition

Kinematic boundary conditions arise from geometric constraints placed on the fluid system.
We consider here the kinematic boundary condition at the bottom interface in the case where
there is no flow through this interface, and follow in Section 35.2.7 with the surface kinematic
boundary condition.2

The ocean bottom is located at a vertical position, z = ηb(x, y). This location can equivalently
be specified mathematically by the surface

s(x, y, z) = z − ηb(x, y) = 0. (35.24)

The outward normal (pointing from the fluid into the rock) at this surface is given by

n̂ = − ∇s|∇s| =
∇ηb − ẑ√

1 +∇ηb · ∇ηb
. (35.25)

If the bottom is impenetrable to fluid then the velocity field is constrained to satisfy the no-normal

2From the discussion of fluid kinematics in Part III, we use the term material surface for any continuous
surface or interface that is impenetrable to the flow of matter or thermal energy (mechanical energy can be
transferred via pressure forces). In Section 19.6 we derived the kinematic boundary conditions for a fluid at
interfaces. We here apply those ideas to the shallow water system, so that the presentation in Sections 35.2.6 and
35.2.7 offer a review of Section 19.6 as applied to a shallow water layer.
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flow boundary condition
v · n̂ = 0 at z = ηb. (35.26)

Making use of the bottom outward normal (35.25) leads to

w = u · ∇ηb at z = ηb. (35.27)

For a flat bottom, with ∇ηb = 0, the no-normal flow condition means that w(ηb) = 0. For the
case of nontrivial bottom topography, w(ηb) = 0 remains if flow occurs along lines of constant
topography; i.e., along isobaths, in which case u · ∇ηb = 0. But more generally, sloping bottoms
lead to a nonzero vertical velocity component. Dynamically, a nonzero bottom vertical velocity
arises from forces at the bottom that cause the horizontal velocity to cross isobaths, u · ∇ηb ̸= 0.

The kinematic result (35.27) is written in an Eulerian sense, with the velocity constrained to
satisfy this relation at each point along the bottom interface. It has a dual material interpretation
based on acknowledging that the bottom interface is a material surface. A fluid element on the
bottom at s = z − ηb = 0 will thus remain there; it does not cross the bottom interface. Rather,
it can at most move tangentially to the bottom.3 We can ensure the no-normal flow constraint
by setting

Ds

Dt
=

D(z − ηb)
Dt

= 0 at z = ηb. (35.28)

Rearrangement of this result leads to the Eulerian constraint (35.27). Equivalently, we can write
this boundary condition in the form

w =
Dηb
Dt

at z = ηb. (35.29)

Since ηb = ηb(x, y), this expression of the kinematic boundary condition is identical to equation
(35.27).

35.2.7 Surface kinematic boundary condition

We here assume the surface boundary is a material interface and thus derive the surface kinematic
boundary condition. In Section 35.6 we consider the slightly more general case of volume crossing
this surface. As a material surface, the surface kinematic boundary condition follows analogously
to the bottom. However, there is a fundamentally new feature in that the layer’s upper free
surface is a time dependent moving boundary. We studied such boundaries in Section 19.6.2
when detailing the kinematic boundary conditions for a material surface. We here review some
of that discussion.

The free surface is located at a vertical position z = η(x, y, t). Equivalently, the free surface
can be specified by a surface of constant s, where

s(x, y, z, t) = z − η(x, y, t) = 0. (35.30)

The outward normal to the free surface is thus given by

n̂ =
∇s
|∇s| =

ẑ −∇η√
1 +∇η · ∇η . (35.31)

We must account for motion of the surface when formulating the no-normal flow condition.

3Details of the tangential motion along a material boundary require dynamical information such as boundary
stresses (see Chapter 25). We are not concerned with such dynamical information here, rather our concern is
solely with kinematics.
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To do so, write the no-normal flow condition as

(v − v(s)) · n̂ = 0 at z = η(x, y, t), (35.32)

where v(s) is the velocity of a point on the ocean surface. The velocity of a point fixed on an
arbitrary surface with specified s satisfies

∂s

∂t
+ v(s) · ∇s = 0. (35.33)

As defined, v(s) advects a fluid element in a manner to always keep the element fixed on the
constant s surface. With n̂ = ∇s/|∇s|, we have

v(s) · n̂ = − ∂ts

|∇s| =
∂tη√

1 +∇η · ∇η . (35.34)

Hence, if the surface remains static, then v(s) · n̂ = 0. But more generally, the surface is moving,
and that movement is fundamental to the surface kinematic boundary condition.

Making use of the result (35.34) in the no-normal flow constraint (35.32) then leads to the
surface kinematic boundary condition

∂tη = w − u · ∇η at z = η. (35.35)

As for the bottom kinematic boundary condition written as (35.28), we can interpret the surface
kinematic condition (35.35) materially, in which case

Ds

Dt
=

D(z − η)
Dt

= 0 at z = η. (35.36)

That is, in the absence of flow across the surface boundary, that surface remains material. We
can write this boundary condition in the equivalent form

w =
Dη

Dt
= (∂t + u · ∇) η at z = η. (35.37)

35.2.8 Column stretching and the vertical velocity

Since the fluid has constant density, we know that the velocity has zero three-dimensional
divergence

∇ · u+ ∂zw = 0 =⇒ ∂zw = −∇ · u. (35.38)

This result also follows since material fluid elements in the constant density shallow water layer
maintain a constant volume (see Section 21.2). Furthermore, since the horizontal velocity has no
vertical dependence, we can vertically integrate the continuity equation (35.38) from the bottom
to an arbitrary vertical position within the layer to render

w(z) = w(ηb)− (z − ηb)∇ · u, (35.39)

so that the vertical velocity is a linear function of the vertical position within a shallow water
layer. Applying this equation at the upper surface, z = η(x, y, t), yields

w(η) = w(ηb)− (η − ηb)∇ · u. (35.40)
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Eliminating the horizontal convergence between equations (35.39) and (35.40) leads to

w(z)− w(ηb) =
[
z − ηb
η − ηb

]
[w(η)− w(ηb)]. (35.41)

Making use of the surface kinematic boundary condition (35.37) and bottom kinematic boundary
condition (35.29) renders the material form

1

z − ηb

[
D(z − ηb)

Dt

]
=

1

η − ηb

[
D(η − ηb)

Dt

]
. (35.42)

Finally, introducing the layer thickness h = η − ηb yields the material conservation law

D

Dt

[
z − ηb
h

]
= 0. (35.43)

Again, h = η − ηb is the layer thickness and z − ηb is the height of a fluid element from
the bottom interface (see Figure 35.1). Consequently, equation (35.43) means that the ratio
of the fluid element height above the bottom to the layer thickness remains constant as the
fluid element moves through the shallow water fluid. That is, a vertical column of shallow
water fluid stretches or squeezes coherently within a shallow water layer, so that the relative
vertical position remains fixed for a point within the column. Shallow water mechanics thus
comprises the mechanics of coherent vertical fluid columns moving within a fluid layer. This
constrained behavior results from the linear z dependence of the vertical velocity, which itself
is a result of the vertical independence of the horizontal velocity, and which follows from the
vertical independence of the horizontal gradient of hydrostatic pressure.

35.2.9 Tracer concentration equation

Suppose there is a material substance, a tracer, contained within a shallow water layer.4 We
expect the tracer concentration, ψ, to have a non-uniform vertical structure within the layer,
in addition to having horizontal structure: ψ = ψ(x, y, z, t). If the tracer is advected through
the layer without any diffusion, then the concentration satisfies the perfect fluid tracer equation
(i.e., the advection equation)

∂tψ + u · ∇hψ + w ∂zψ = 0. (35.44)

For a shallow water layer, where the horizontal velocity has no vertical dependence within a
layer, we find it sufficient to study the vertically averaged tracer concentration within the layer,

C(x, y, t) ≡ 1

h

ˆ η

ηb

ψ(x, y, z, t) dz. (35.45)

To develop the evolution equation for C, we vertically integrate the tracer equation (35.44) over
the layer and make use of Leibniz’s rule (Section 20.2.4)

ˆ η

ηb

∂ψ

∂t
dz = ∂t(hC)− ψ(η) ∂tη (35.46a)

ˆ η

ηb

u · ∇ψ dz = ∇ · (hC u)− ψ(η)u(η) · ∇η + ψ(ηb)u(ηb) · ∇ηb − hC∇ · u (35.46b)

ˆ η

ηb

w ∂zψ dz = w(η)ψ(η)− w(ηb)ψ(ηb)− hC ∂zw. (35.46c)

4We developed the theory of material tracers in Chapter 20.
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For these equations we made use of the z independence of u and ∂zw within the layer. Use of
the kinematic boundary conditions from Sections 35.2.6 and 35.2.7, and the three dimensional
continuity equation, ∇ · u + ∂zw = 0, renders the equation for the layer vertically averaged
tracer concentration

∂(hC)

∂t
+∇ · (hC u) = 0⇐⇒ ∂C

∂t
+ u · ∇C =

DC

Dt
= 0. (35.47)

As a self-consistency check, note that if the tracer concentration has a horizontally uniform value,
then the flux-form of the tracer equation (35.47) reduces to the thickness equation (35.19).

35.2.10 Summary comments
Key physical assumptions for the shallow water fluid

The shallow water fluid model is based on the following two assumptions.

• The fluid layer has a uniform density, which then means the fluid is incompressible.

• The pressure is hydrostatic.

Since the pressure gradient is vertically independent within the layer, an initial horizontal
velocity that is vertically independent will remain vertically independent. That is, the fluid
moves as columns within the layer, with the columns stretching and squashing depending on the
divergence or convergence of volume towards the column.

The term “shallow” refers to the small vertical to horizontal aspect ratio, H/L≪ 1, which
in turn is consistent with the hydrostatic approximation (Section 27.2). The term “water” refers
to the incompressible nature of the fluid, which is a more relevant approximation for the ocean
than for the atmosphere (see Section 29.1). Nonetheless, the shallow water model has direct
applications to many features of both the atmosphere and ocean circulation, and as such it is
widely used across the atmosphere and ocean sciences.

Shallow water fluid columns are not Taylor columns

The columnar motion of fluid within a shallow water layer is reminscent of the Taylor columns
discussed in Section 31.5.3. However, the columnar motion of fluid within a Taylor column holds
for homogeneous fluids undergoing rapid rotation. The horizontal fluid velocity within a Taylor
column is non-divergent so that there is no vertical motion of the fluid. These properties allow
one to interpret a Taylor column as a fluid mechanical realization of a column of rigid matter
much like a solid body.

In contrast, shallow water fluid columns do not rely on rotation, but instead arise from
the hydrostatic balance (small aspect ratio flow) maintained within each homogeneous layer.
Additionally, shallow water columns are not rigid. Rather, they stretch and squash in the
presence of nonzero divergence in the horizontal flow, thus leading to vertical motion of fluid
within the column. Finally, shallow water columns remain coherent even as they move over
topography, and yet, again, they can stretch and squash. In Section 53.5.4, we further discuss the
connections and distinctions between vertically coherent flow present in the small aspect ratio
shallow water layer versus that for the rapidly rotating flow leading to the Taylor-Proudman
effect.

35.3 Reduced gravity model for the upper ocean
The reduced gravity model describes an active layer of uniform density, ρ1, above a stagnant layer
of density, ρ2, and below a fluid of zero density, ρ0 = 0. It is often referred to as the 1.5 layer
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model. This theoretical model has been used, to some success, as an idealization of the upper
ocean circulation whereby an active layer (e.g., the region above the ocean pycnocline), sits
above an inactive layer (the abyss) of much smaller motion (here assumed to be zero motion).
In this way, we introduce the level of no motion, below which (baroclinic) currents vanish.
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Figure 35.4: Reduced gravity model of shallow water fluid. The lower layer with density ρ2 is dynamically
inactive and thus has a zero velocity. The upper layer is dynamically active with thickness, h = η1/2 − η3/2, and
density, ρ1. The dynamically active layer is bounded above by a zero density atmosphere, ρ0 = 0. The lower
inactive layer is assumed to be infinitely deep so that its continuity equation can be ignored; i.e., even though
there are zero currents within this layer, the layer thickness can still undulate. The reduced gravity between the
two layers is defined by gr

3/2 = g (ρ2 − ρ1)/ρref ≪ g, whereas the reduced gravity at the top interface is given by
gr
1/2 = g.

35.3.1 Momentum and thickness equations for the active layer

We develop the momentum equations for the reduced gravity model by making use of the
hydrostatic balance, in which pressure at a vertical position, z, in the upper layer is computed
as (see Figure 35.4)

p1(x, y, z, t) = p1/2(x, y, t) + g ρ1 [η1/2(x, y, t)− z], (35.48)

where we denote an interface value by a half-index, so that η1/2 and p1/2 are the interface height
and pressure at the upper layer interface.5 Since the fluid above the upper layer is assumed to
have zero density, we set

p1/2 = 0. (35.49)

The horizontal momentum equation for the upper (active) layer is given by

ρref

[
Du1

Dt
+ f ẑ × u1

]
= −g ρ1∇η1/2, (35.50)

where the z dependent term in the pressure (35.48) drops out when computing the horizontal
pressure gradient. Setting the reference density equal to the top layer density, ρref = ρ1, leads to
the more tidy equation

Du1

Dt
+ f ẑ × u1 = −g∇η1/2. (35.51)

5There is no general consensus on this notation, with some treatments, such as Vallis (2017) and Cushman-
Roisin and Beckers (2011) using an integer to label an interface quantity, whereas some numerical model papers
(e.g., Griffies et al. (2020)) use the half-index. We prefer the half-index since it removes any ambiguity concerning
the ordering of the interfaces relative to the layer.
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The equations for the upper layer are completed by volume conservation in the form of the
thickness equation

Dh1
Dt

= −h1∇ · u1. (35.52)

35.3.2 Relating undulations of the top and bottom layer interfaces
The pressure in the lower stagnant layer is given by the weight per horizontal area of fluid above
it, and it can be written

p2(x, y, z, t) = g ρ1 (η1/2 − η3/2) + g ρ2 (η3/2 − z) (35.53a)

= g ρ1 η1/2 + g (ρ2 − ρ1) η3/2 − g ρ2 z (35.53b)

= ρref (g
r

1/2 η1/2 + gr

3/2 η3/2)− g ρ2 z. (35.53c)

In this equation we introduced the reference density and reduced gravities

ρref = ρ1 and gr

1/2 = g and gr

3/2 = g (ρ2 − ρ1)/ρref ≪ g. (35.54)

Taking the reference density as the top layer density is common for Boussinesq shallow water
models, and will be assumed in our formulations with multiple layers in Section 35.4. We employ
the half-index notation for the reduced gravities since they are computed by differencing the
densities between two adjacent layers, and as such they are considered an interface property.
Additionally, the reduced gravities multiply a corresponding interface gradient, which also uses
the half-integer notation.

For the reduced gravity model we assume the lower layer is motionless. To maintain zero
motion in the lower layer requires the lower layer horizontal pressure gradient to vanish

ρ−1
ref ∇hp2 = gr

1/2∇η1/2 + gr

3/2∇η3/2 = 0. (35.55)

This constraint links the undulations of the top and bottom interfaces of the dynamically active
layer

∇η1/2 = −
gr

3/2

gr

1/2

∇η3/2 = −[(ρ2 − ρ1)/ρref ]∇η3/2 =⇒ η1/2 = −η3/2 [(ρ2 − ρ1)/ρref ] + constant.

(35.56)
The density ratio, (ρ2 − ρ1)/ρref , is positive but typically much smaller than unity. Hence, the
relation (35.56) means that undulations of the free surface, η1/2, are of opposite sign to and
of much smaller amplitude than the undulations in the lower interface, η3/2. This behavior is
typical for undulations of the pycnocline region of the ocean and the free surface as depicted in
Figure 35.5.

35.3.3 Momentum equation with reduced gravity
Relation (35.55) can be used to write the momentum equation (35.51) in the form

Du1

Dt
+ f ẑ × u1 = gr

3/2∇η3/2. (35.57)

It is common to make use of the momentum equation in the form (35.57), rather than the
original form (35.51). The reason is that historically, ocean hydrography measurements6 have
allowed for an estimate of the pycnocline slope, ∇η3/2, whereas it was not until precise satellite

6In oceanography, hydrography refers to measurements of temperature, salinity, and pressure; see Talley et al.
(2011).
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altimetry measurements starting in the 1990s that we could estimate the far smaller sea level
slope, ∇η1/2.
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Figure 35.5: A vertical slice through a reduced gravity, or 1.5 layer, ocean in hydrostatic balance. Shown here is
a plug of dynamically active light water, as may occur in a warm core eddy to the subtropical gyres, sitting on
top of heavy water of zero motion. The free surface corresponds to η1/2 in Figure 35.4, whereas the pycnocline
(heavy black line) corresponds to the lower interface η3/2 of Figure 35.4. The sea surface experiences an applied
pressure p = pa, assumed to be uniform for this idealized situation. Note how sea level is a maximum above the
pycnocline minimum, with this geometry reflected in equation (35.56). In the ocean, the slope of the pycnocline is
about 100-300 times larger than the slope of the sea level. That is, sea level may show undulations on the order of
a metre, whereas the pycnocline undulations are on the order of 100-300 m.

35.3.4 Reduced gravity and relative buoyancy

Equation (35.55)
g∇η1/2 = −gr

3/2∇η3/2, (35.58)

says that with gr

3/2 ≪ g, the free surface slopes are much smaller than interior slopes

|∇η1/2| ≪ |∇η3/2|. (35.59)

We thus infer that the interior interface has less resistance to vertical motion than the free
surface. To help understand this result, recall the study of Archimedean buoyancy in Section
30.4. We see that the reduced gravity, gr

3/2, is the Archimedean buoyancy of layer 1 relative to
layer 2, with normalization given by the reference density as per the Boussinesq approximation

buoyancy layer 1 relative to layer 2 = −g (ρ1 − ρ2)/ρref = gr

3/2. (35.60)

A small relative buoyancy between two density layers renders little resistence for motion of the
layer interface. Indeed, as the density difference vanishes, so too does the buoyant resistance to
motion of the layer interface. For the upper free surface, the buoyancy of layer 0 (a zero mass
atmosphere) relative to layer 1 equals to the full gravitational acceleration.

buoyancy layer 0 relative to layer 1 = −g (ρ0 − ρ1)/ρref = g, (35.61)

where we assumed that ρref = ρ1 and ρ0 = 0. Evidently, the relative buoyancy between the top
shallow water layer and the atmosphere is given by the full gravity acceleration, which indicates
the large buoyant resistence to vertical motion of the free surface.

It is for this reason that the interior interface is more flexible than the free surface, as
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depicted in Figure 35.5. Even for an atmosphere with mass, so that ρ0 > 0, the upper interface’s
reduced gravity is close to g since the atmosphere is roughly 1000 times less dense than seawater.
This result holds in general, whereby increasing the reduced gravity between density layers, and
thus increasing the vertical density stratification, increases the resistance to motion of the layer
interface and thus reduces the interface’s flexibility.

35.3.5 Further study
The material in this section is inspired by Section 3.2 of Vallis (2017). Tomczak and Godfrey
(1994) make use of the reduced gravity model for interpretating aspects of the observed ocean.
Additional use is made by Griffies et al. (2014) for interpreting large-scale sea level patterns.

35.4 Stacked shallow water equations
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N = 3

Figure 35.6: Three dynamically active layers of stacked shallow water fluid (N = 3). The notation corresponds
to that for the reduced gravity model of Figure 35.4, yet here with three dynamically active layers. In particular,
η1/2 is the free surface, η1/2 = η, whereas ηN+1/2 = ηb is the bottom interface. Hence, the total thickness of a
column is h1 + h2 + h3 = η1/2 − ηb. The “atmosphere” above the layers is assumed to apply a pressure, pa, to the
upper surface. The horizontal velocity is vertically independent within each layer, as is the horizontal pressure
gradient, so that both are discontinuous across a layer interface. In contrast, the pressure is a linear function of z
within a layer and is continuous across a layer interface. Finally, the vertical velocity is also a linear function of z
within a layer but it is discontinuous across a layer interface. The reduced gravity defined between each layer is
given by gr

k+1/2 = g (ρk+1 − ρk)/ρref . We take the reference density as ρref = ρ1, which results in a tidy set of layer
equations.

In studies of shallow water fluids, much of the formalism developed for a single layer can be
readily extended to an arbitrary number of layers. We here pursue this extension and thereby
expose the underlying kinematics and dynamics of stacked shallow water models. We assume
the layers are immiscible so that matter and thermal properties are not exchanged between the
layers. Consequently, the layers couple only through mechanical forces arising from pressure
form stress (Chapter 28). Furthermore, we continue to assume that the horizontal velocity has
no vertical dependence within each shallow water layer, which in turn means the horizontal
pressure gradient is vertically independent within each layer. The notation for our derivations is
depicted in Figure 35.6 in the case of three active layers.
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In Section 66.2 we develop the equations for a continuosly stratified Boussinesq fluid making
use of isopycnal vertical coordinates. Although the vertical stratification is continuous in that
case, we find that the isopycnal equations are isomorphic to the stacked shallow water equations.
Hence, besides being of intrinsic interest as a versatile theoretical model, the stacked shallow
water model offers a suitable step towards studies of a continuously stratified fluid using isopycnal
coordinates.

35.4.1 Formulation of a 2-layer model

We here display the equations for two layers, thus offering the seeds for an extension to N layers
in Section 35.4.2.

Thickness and tracer equations

Each shallow water layer satisfies its own independent thickness equation and tracer equation,
representing the conservation of volume and tracer content for each layer

∂h1
∂t

+∇ · (h1 u1) = 0 (35.62a)

∂h2
∂t

+∇ · (h2 u2) = 0 (35.62b)

∂(h1C1)

∂t
+∇ · (h1C1 u1) = 0 (35.62c)

∂(h2C2)

∂t
+∇ · (h2C2 u2) = 0. (35.62d)

We emphasize that there is no explicit coupling between these equations, as each layer separately
must satisfy volume conservation and tracer conservation. However, the velocities are coupled
through the pressure force, as we now discuss.

Pressure within a layer

To compute the pressure within a layer, we make use of the hydrostatic balance and integrate
down from the surface, which results in the pressure fields

p1 = ρ1 g (η1/2 − z) + pa (35.63)

p2 = ρ1 g (η1/2 − η3/2) + ρ2 g (η3/2 − z) + pa. (35.64)

As for the reduced gravity model in equation (35.53c), it is convenient to write pressure in
layer-two using the reduced gravity, which leads to

p2 − pa = ρ1 g (η1/2 − η3/2) + ρ2 g (η3/2 − z) (35.65a)

= g η1/2 ρ1 + g (ρ2 − ρ1) η3/2 − g ρ2 z (35.65b)

= ρref (g
r

1/2 η1/2 + gr

3/2 η3/2)− g ρ2 z (35.65c)

with the Boussinesq reference density and reduced gravities given by

ρref = ρ1 and gr

1/2 = g and gr

3/2 = g (ρ2 − ρ1)/ρref ≪ g. (35.66)

As for the reduced gravity model in equation (35.54), we set the reference density equal to the
top layer density. As per the discussion around equation (35.76), ρref = ρ1 results in a somewhat
tidier set of layer velocity equations.
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Boussinesq reference density and the reduced gravity

We are formulating the shallow water model according to Boussinesq ocean equations from
Chapter 29, whereby fluid elements conserve their volume rather than their mass. According
to our discussion of the Boussinesq momentum equation in Section 29.1.2, density is set to
a constant reference density when measuring the inertial mass of a fluid element, yet density
remains the in situ density when measuring weight of a fluid element. For the shallow water
model, we multiply the inertial acceleration and Coriolis acceleration with a reference density,

ρref = shallow water reference density, (35.67)

whereas pressure and potential energy maintain the density, ρk, of the shallow water layer.
We further make use of the Boussinesq ocean when computing the buoyancy frequency

(Section 30.6). Namely, with ϱ the potential density, the Boussinesq form of the squared
buoyancy frequency is

N2 = −g
[

1

ρref

∂ϱ

∂z

]
≈ − g

ρref

∆ρ

∆z
= −gr/∆z. (35.68)

It is for this reason that we take ρref for the denominator of the reduced gravity throughout all
of the shallow water layers, thus defining

gr

k−1/2 = g (ρk − ρk−1)/ρref and gr

1/2 = g. (35.69)

Horizontal velocity equations

The horizontal velocity equations for the two layers take the form

ρref

[
D1u1

Dt
+ f ẑ × u1

]
= −∇p1 (35.70a)

ρref

[
D2u2

Dt
+ f ẑ × u2

]
= −∇p2, (35.70b)

where we introduced the layer material time derivatives

Dk

Dt
=

∂

∂t
+ uk · ∇ for k = 1, 2. (35.71)

Making use of expressions (35.63) and (35.65c) for layer pressures leads to the horizontal
momentum equations

ρref

[
D1u1

Dt
+ f ẑ × u1

]
= −g ρ1∇[η1/2 + pa/(g ρ1)] (35.72a)

ρref

[
D2u2

Dt
+ f ẑ × u2

]
= −g ρ1∇[η1/2 + pa/(g ρ1)]− gr

3/2 ρref ∇η3/2. (35.72b)

It is convenient to express the interface heights in terms of layer thicknesses, h1 and h2,
since the layer thicknesses are the prognostic fields determined by time stepping the thickness
equations (35.62a) and (35.62b). We thus write

η1/2 = ηb + h1 + h2 and η3/2 = ηb + h2, (35.73)

so that

p1 − pa = ρ1 g (ηb + h1 + h2)− g ρ1 z (35.74a)
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p2 − pa = ρ1 g (ηb + h1 + h2) + ρref g
r

3/2 (ηb + h2)− g ρ2 z, (35.74b)

thus resulting in the horizontal momentum equations

ρref

[
D1u1

Dt
+ f ẑ × u1

]
= −ρ1 g∇[ηb + h1 + h2 + pa/(g ρ1)] (35.75a)

ρref

[
D2u2

Dt
+ f ẑ × u2

]
= −ρ1 g∇[ηb + h1 + h2 + pa/(g ρ1)]− ρref g

r

3/2∇(ηb + h2). (35.75b)

Notice how layer thickness from one layer appears in the other layer’s pressure gradient. In this
way, changes in the thickness of one layer have a direct impact on pressure forces and flow in
the adjacent layer. Also notice how the bottom topography appears in the bottom pressure
gradient, which arises due to our switch from layer interfaces to layer thicknesses.

As already noted, it is common for a stacked shallow water model to choose

ρref = ρ1. (35.76)

We here see why taking this choice is desirable, since doing so brings the layer velocity equations
(35.75a) and (35.75b) into the more tidy forms

D1u1

Dt
+ f ẑ × u1 = −g∇[ηb + h1 + h2 + pa/(g ρ1)] (35.77a)

D2u2

Dt
+ f ẑ × u2 = −g∇[ηb + h1 + h2 + pa/(g ρ1)]− gr

3/2∇(ηb + h2). (35.77b)

Vertical shear in horizontal velocities between layers

The difference in layer velocities, u1 − u2, represents the vertical shear in the layers. This
difference is affected by a pressure gradient arising just from bottom topography and the interior
layer thickness, h2

D1u1

Dt
− D2u2

Dt
+ f ẑ × (u1 − u2) = gr

3/2∇ (ηb + h2). (35.78)

That is, the vertical shear does not directly feel undulations of the free surface, η1/2, or the
applied pressure, pa. Rather, it feels these surface undulations only indirectly via nonlinear terms
appearing in the advection on the left hand side. We further discuss this result in Section 36.2.2
by introducing thermal wind and the Margules’ Relation.

35.4.2 N -layer model equations

The 2-layer equations from Section 35.4.1 can be generalized to N -layers. The thickness equation
and tracer equation represent volume and tracer conservation for each layer

∂hk

∂t
+∇ · (uk hk) = 0 (35.79a)

∂(hkCk)

∂t
+∇ · (uk hkCk) = 0, (35.79b)

where k = 1, N is the discrete layer index and there is no implied summation on this label.7

7To help distinguish the layer index, k, from a tensor index, k, we write the layer index using an upright
Roman font whereas a tensor index is slanted.
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Expressions for the pressure

Some work is needed to generalize the pressure gradient appearing in the velocity equation. For
that purpose, write the interface height as

ηk+1/2 = ηb +

N∑
j=k+1

hj with ηN+1/2 = ηb and η1/2 = η. (35.80)

For example, the layer interfaces with N = 3 layers are given by

η1/2 = ηb + h1 + h2 + h3 η3/2 = ηb + h2 + h3 η5/2 = ηb + h3 η7/2 = ηb. (35.81)

In turn, the hydrostatic pressure within layer-k is given by

pk = −g ρk z + pa + ρref

k−1∑
j=0

gr

j+1/2 ηj+1/2 = pk−1/2 + g ρk (ηk−1/2 − z), (35.82)

where the reduced gravities are defined according to equation (35.69)

gr

j−1/2 = g (ρj − ρj−1)/ρref > 0 with gr

1/2 = g. (35.83)

As an example, the layer pressures for N = 3 are given by

p1 = pa + g ρ1 (η1/2 − z) p2 = p3/2 + g ρ2 (η3/2 − z) p3 = p5/2 + g ρ3 (η5/2 − z). (35.84)

The half-integer pressures are evaluated on the corresponding interface, and the hydrostatic
balance yields the pressure difference

pk+1/2 − pk−1/2 = g ρk hk = g ρk (ηk−1/2 − ηk+1/2). (35.85)

Summary of the thickness weighted velocity equation

The velocity equation for an arbitrary layer-k is given by

ρref

[
Dkuk

Dt
+ f ẑ × uk

]
= −∇pk ⇐⇒ [∂t + (uk · ∇)]uk + f ẑ × uk = −ρ−1

ref ∇pk. (35.86)

Use of the layer thickness equation (35.79a) readily leads to the thickness-weighted momentum
equation

∂t(hk uk) +∇ · (hk uk ⊗ uk) + f ẑ × hk uk = −(hk/ρref)∇pk. (35.87)

We study the thickness-weighted momentum equation in Section 36.3, where we find it offers
a more suitable framework than the velocity equation for studying the pressure form stresses
acting at layer interfaces.

35.4.3 Dynamic pressure and the Montgomery potential
The term g ρk z appearing in the layer pressures (35.82) has a zero horizontal gradient. Hence,
it does not contribute to the horizontal pressure gradient acceleration acting on a layer. As a
result, it is a “do nothing” pressure that motivates us to introduce the shallow water dynamic
pressure (e.g., equation (3.44) of Vallis (2017))

pk + g ρk z = pa + ρref

k−1∑
j=0

gr

j+1/2 ηj+1/2 ≡ pa + pdynk =⇒ ∇pk = ∇pa +∇pdynk , (35.88)
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The term “dynamic” is motivated since pdynk gradients directly lead to accelerations. Notably, the
dynamic pressure is vertically independent within a layer, so that it has a jump moving across a
layer interface. Also note that pdynk is related to the shallow water Montgomery potential via

Mdyn
k = ρ−1

ref p
dyn
k =

k−1∑
j=0

gr

j+1/2 ηj+1/2 (35.89)

(e.g., Section 12.2 of Cushman-Roisin and Beckers (2011)), with the continuous Montgomery
potential defined by equation (66.4). When studying the mechanical energy budget in Section
36.6, we find that pdynk naturally appears since the energy budget is derived using the pressure
gradient body force. The difference of the dynamic pressure between two layers is given by

pdynk − pdyn
k+1 = −ρref g

r

k+1/2 ηk+1/2 ⇐⇒Mdyn
k −Mdyn

k+1 = −gr

k+1/2 ηk+1/2, (35.90)

which is an expression of the hydrostatic balance for shallow water layers.

We often find it useful to study pressure contributions to the momentum equation via the
duality between the pressure gradient body force and the pressure contact force as when studying
form stress in Chapter 28, and further applied to the shallow water in Section 36.4 and in
Chapter 67. For those purposes, we do not use pdynk since it is not the hydrostatic pressure
measured within a shallow water layer, so that pdynk cannot be directly used to convert the
pressure gradient body force to the pressure contact force. Instead, we must use the pressure, pk.

35.4.4 Properties of the vertical velocity

From Section 19.6.2 we know that

w =
Dη

Dt
(35.91)

provides an expression for the vertical velocity of a fluid parcel at a point on an impermeable
surface, z = η(x, y, t). We made use of this equation in Section (35.2.7) when studying the
surface kinematic boundary condition for a single shallow water layer. We make use of this
equation in this section to further an understanding of the vertical velocity in a shallow water
model. In particular, we find that the jump in horizontal velocity across the interface leads to a
jump in the vertical velocity.

Jump condition for the vertical velocity across a layer interface

Consider two shallow water layers labelled by k and k + 1 that are separated by an interface
at z = ηk+1/2(x, y, t). Define the vertical velocity at the z = ηk+1/2 interface according to the
material kinematic condition

w(k)(ηk+1/2) = w
(k)
k+1/2 = (∂t + uk · ∇) ηk+1/2. (35.92)

Evidently, w
(k)
k+1/2 is the vertical velocity for a fluid parcel on the top side of the z = ηk+1/2

interface. Similarly, define the vertical velocity for a fluid parcel on the lower side of the
z = ηk+1/2 interface according to

w
(k+1)
k+1/2 = (∂t + uk+1 · ∇) ηk+1/2. (35.93)

Taking the difference leads to the jump condition

w(k)(ηk+1/2)− w(k+1)(ηk+1/2) = (uk − uk+1) · ∇ηk+1/2 ̸= 0. (35.94)
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As advertised, the vertical velocity has a jump across the interface that arises from the jump
in the horizontal velocity. In Section 36.2.2 we derive the shallow water expression (36.9) for
thermal wind balance maintained by geostrophic flow, known as the Margules’ relation. In that
special case there is no jump in the vertical velocity since ẑ × (uk − uk+1) is parallel to ∇ηk+1/2,
so that (uk − uk+1) · ∇ηk+1/2 = 0. We thus conclude that the vertical velocity jump arises from
ageostrophic contributions to the horizontal flow.

It is tempting to introduce a sub-region that smoothly connects the horizontal velocity
between the layers, thus removing the jump condition for both u and w. Doing so enhances
the realism of the stacked layers, since a physical realization of fluid layers will have a finite
sized region that interpolates between the layer properties. However, adding this transition zone
moves us beyond the stacked shallow water model, and so requires analysis that falls outside
shallow water theory. Hence, we do not pursue that avenue. Instead, in this chapter we remain
withing the shallow water theory while acknowledging it has limitations, including jumps in the
horizontal velocity across layer interfaces.

Preservation of the relative vertical position within a column

Following the approach from Section 35.2.8, we compute the vertical velocity within a layer by
vertically integrating the non-divergence condition, ∇ · v = 0. For layer k we have

w(k)(z) = w
(k)
k+1/2 − (z − ηk+1/2)∇ · uk, (35.95)

where w(k)(z) is the vertical velocity at a vertical position, z, that is located within layer k so
that ηk+1/2 ≤ z ≤ ηk−1/2. Equation (35.95) generalizes the single-layer equation (35.39), thus
revealing that the vertical velocity within an arbitrary shallow water layer is a linear function
of the vertical position. Now evaluate equation (35.95) at the upper interface for the layer,
z = ηk−1/2, in which case

w
(k)
k−1/2 = w

(k)
k+1/2 − hk∇ · uk, (35.96)

where
hk = ηk−1/2 − ηk+1/2 (35.97)

is the layer thickness. Eliminating the horizontal convergence between equations (35.95) and
(35.96) renders

w
(k)
k−1/2 − w

(k)
k+1/2

hk

=
w(k)(z)− w(k)

k+1/2

z − ηk+1/2
. (35.98)

Making use of the kinematic boundary condition at the two interfaces allows us to write

w
(k)
k−1/2 =

D(k)ηk−1/2

Dt
= (∂t + uk · ∇) ηk−1/2 (35.99a)

w
(k)
k+1/2 =

D(k)ηk+1/2

Dt
= (∂t + uk · ∇) ηk+1/2, (35.99b)

which then brings equation (35.98) to the form

1

hk

D(k)hk

Dt
=

1

z − ηk+1/2

D(k)(z − ηk+1/2)

Dt
=⇒ D(k)

Dt

[
z − ηk+1/2

hk

]
= 0 (35.100)

Just like for a single layer of shallow water fluid, vertical columns within each layer are stretched
and squeezed in a manner that preserves the relative vertical position for a point within the
column.
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Averaged vertical velocity for a layer

Since the vertical velocity is a linear function of z within a layer, its layer averaged value is the
average of the vertical velocity at the upper and lower layer interfaces. It is a useful exercise of
the formalism to prove this result

wk =
1

hk

ˆ ηk−1/2

ηk+1/2

w(k)(z) dz (35.101a)

=
1

hk

ˆ ηk−1/2

ηk+1/2

[
w

(k)
k+1/2 − (z − ηk+1/2)∇ · uk

]
dz (35.101b)

= w
(k)
k+1/2 + ηk+1/2∇ · uk − 1/(2hk) (η

2
k−1/2 − η2k+1/2)∇ · uk (35.101c)

= w
(k)
k+1/2 − (hk/2)∇ · uk (35.101d)

= (w
(k)
k+1/2 + w

(k)
k−1/2)/2, (35.101e)

where the final step made use of the identity (35.96). Note that we can also write the layer
averaged vertical velocity as

wk = (w
(k)
k+1/2 + w

(k)
k−1/2)/2 =

D(k)ηk

Dt
, (35.102)

where
ηk = (ηk+1/2 + ηk−1/2)/2 (35.103)

is the average of the interface height for the layer.

35.4.5 Rigid lid shallow water models

Throughout this section we formulated the equations for an N-layer shallow water model where
η1/2 is the undulating free surface. For some applications of large-scale oceanography, it is useful
to remove the external gravity waves from the model, where these gravity waves are associated
with linear fluctuations of the upper free surface.8 To remove these gravity waves we can, by
fiat, set the upper ocean interface to a rigid constant, conventionally taken as η1/2 = 0. This
assumption is known as the rigid lid. There is good justification for this approximation given
that undulations of the free surface are far smaller than undulations of interior interfaces, as
seen for the reduced gravity model in Section 35.3.

If there is no applied pressure, pa = 0, then there is no horizontal pressure gradient in the
upper layer, much like an inverted reduced gravity model (see Exercise 35.5). A dynamically
more interesting case arises when there is an applied pressure, pa ̸= 0, so that motion is generated
in layer one, which in turn induces motion throughout all layers. Indeed, as seen when studying
the horizontally non-divergent barotropic model in Chapter 38, there must be a nonzero applied
surface pressure in order to constrain the free surface to be flat and fixed. This pressure is
referred to as the lid pressure

A rigid lid constrains the vertically integrated flow to be horizontally non-divergent. We see
this property by summing the thickness equation over all of the shallow water layers

∂tη1/2 +
N∑

k=1

∇ · (uk hk) = 0 where
N∑

k=1

∂thk = ∂t(η1/2 − ηb) = ∂tη1/2. (35.104)

8In Section 55.5 we study gravity waves in a single shallow water layer.

CHAPTER 35. FORMULATING SHALLOW WATER MODELS page 961 of 2158



35.5. VECTOR-INVARIANT VELOCITY EQUATION

For the rigid lid, ∂tη1/2 = 0, which then leads to the non-divergence condition

N∑
k=1

∇ · (uk hk) = ∇ ·
N∑

k=1

uk hk = ∇ ·U = 0 with U =

N∑
k=1

uk hk. (35.105)

Note that velocity in the upper layer remains horizontally divergent since the η3/2 interface is
not generally rigid. Even so, fixing η1/2 to be rigid serves to remove the relatively fast external
gravity waves from the stacked shallow water model. We return to the rigid lid assumption
when discussing the horizontal non-divergent barotropic model in Chapter 38 (see in particular
Section 38.4).

35.4.6 Comments on vanishing layers
Interior layer interfaces can intersect either the surface, referred to as outcropping, or the solid
bottom, referred to as incropping. In this manner, any particular layer may only exist over a
sub-region of the full horizontal domain. Treatment of such geometries is actually quite subtle
when numerically discretizing the equations of motion, since it requires methods to allow for
layers to vanish and appear as a function of time. The thickness weighted equations developed
in this section offer one means to handle these situations. They do so by ensuring that terms
properly vanish as h → 0 (see the end of Section 35.6.1 for more on this point). We also
considered some of the related conceptual subtleties in Section 29.9 when studying available
potential energy in a continuously stratified Boussinesq ocean. Griffies et al. (2020) present a
primer on finite volume numerical methods that support vanishing layers.

35.5 Vector-invariant velocity equation
Following the discussion in Section 24.4 for a continuously stratified fluid, we here derive the
vector-invariant form of the shallow water velocity equation. This formulation proves useful in
the kinetic energy budget of Section 36.6.3 and for vorticity in Section 39.1.

35.5.1 Basic manipulations
The following manipulations hold for each shallow water layer, so it is convenient to drop layer
indices to reduce clutter. Start by introducing vorticity for the full velocity field

ω = ∇× v (35.106a)

= x̂ (∂yw − ∂zv) + ŷ (∂zu− ∂xw) + ẑ (∂xv − ∂yu) (35.106b)

= x̂ ∂yw − ŷ ∂xw + ẑ (∂xv − ∂yu) (35.106c)

= −ẑ ×∇w + ẑ (∂xv − ∂yu), (35.106d)

where we set
∂zu = ∂zv = 0, (35.107)

which holds for the horizontal velocity within a shallow water layer. We also find it convenient
to introduce the vorticity associated with the horizontal velocity field

ω∗ = ∇× u = −x̂ ∂zv + ŷ ∂zu+ ẑ (∂xv − ∂yu) = ẑ (∂xv − ∂yu). (35.108)

The vertical component to vorticity is particularly important for geophysical flows, in which
case we write

ζ = ẑ · ω = ẑ · ω∗ = ∂xv − ∂yu. (35.109)
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The vector identity (see Section 2.3.4)

(u · ∇)u = (1/2)∇(u · u)− u× (∇× u) = (1/2)∇(u · u) + ω∗ × u (35.110)

brings the inviscid shallow water velocity equation (35.86)

∂u

∂t
+ (u · ∇)u+ f ẑ × u = −ρ−1

ref ∇p (35.111)

into its vector invariant form

∂u

∂t
+ (f + ζ) ẑ × u = −∇ (p/ρref + u · u/2) . (35.112)

Again, this equation holds separately for each layer, so that by reintroducing layer indices we
have

∂uk

∂t
+ (f + ζk) ẑ × uk = −∇(pk/ρref + uk · uk/2). (35.113)

35.5.2 Dynamical pressure and the Magnus acceleration

As in our discussion in Section 24.4 of the vector invariant velocity equation for continuously
stratified flows, the velocity equation (35.113) exposes two physical processes that lend insight
into the motion in the shallow water fluid.

Dynamical pressure from kinetic energy per mass

The kinetic energy per mass, u ·u/2, adds a dynamical pressure to the mechanical pressure asso-
ciated with the free surface undulations. Gradients in the kinetic energy thus drive accelerations
towards regions of smaller kinetic energy; i.e., down the kinetic energy gradient.9

Magnus acceleration

As discussed in Sections 24.4 and 32.2.6, the Magnus acceleration is a body acceleration defined
by the nonlinear term

Amagnus = −ω∗ × u = ζ (u× ẑ), (35.114)

appearing in the vector-invariant velocity equation (35.113). There is a non-zero Magnus
acceleration when a shallow water fluid column spins while it moves, with this acceleration acting
to deflect the spinning column perpendicular to its trajectory. As for the example in Figure 24.1,
consider a shallow water fluid column moving zonally, in which case the Magnus acceleration is

Amagnus = u ζ (x̂× ẑ) = −ŷ u ζ. (35.115)

With a positive relative vorticity, ζ > 0, the Magnus acceleration is directed to the right of the
motion, which is in the same direction as the Coriolis acceleration in the northern hemisphere.
For large-scale geophysical flows, the Magnus acceleration is sub-dominant to the Coriolis
acceleration. However, the Magnus acceleration is a crucial facet of large (order unity or larger)
Rossby number motions in which relative vorticity is sizable.

9The dynamical pressure afforded by the kinetic energy should not be confused with the shallow water dynamic
pressure introduced by equation (35.88). They are distinct.
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35.6 Non-conservative processes
Much of the focus on shallow water mechanics in this book concerns the inviscid and adiabatic
case in which shallow water layers are immiscible and there are no frictional or boundary stresses
within or between layers. Even so, we find occasion to consider the transfer of volume between
layers via irreversible dia-surface fluxes, as well as momentum transfer associated with viscous
friction and boundary stresses, and tracer transfer via diffusion. Such non-conservative exchanges
are central to many applications of shallow water models, thus prompting us to formulate the
stacked shallow water equations that include such processes. The discussion offers a vertically
discrete version of the continuous isopycnal model primitive equations detailed in Chapter 66.

35.6.1 Volume transfer across layer interfaces (dia-surface transport)
Consider the case of dia-surface transfer as occurs across the ocean surface through evaporation,
precipitation, and river runoff, or as occurs for interior layers in the presence of irreversible
mixing processes. Let w(η̇) measure the volume per time per horizontal area of fluid crossing
the surface interface of the shallow water layer, with w(η̇) having dimensions of length per time.

As shown in Figure 35.7, we choose a sign convention so that w
(η̇)
k−1/2 > 0 means volume leaves

shallow layer k through its upper interface, whereas w
(η̇)
k+1/2 > 0 means that volume enters the

layer through its lower interface.

Surface kinematic boundary condition for a single shallow water layer

The kinematic boundary condition (35.36) expresses the material nature of the free surface in
the absence of boundary volume flux. In the presence of a non-zero boundary flux, w(η̇) ≠ 0, we
follow the formulation of the kinematic boundary condition for the ocean free surface with a
mass flux (equation (19.94)), which renders the boundary condition

D(z − η)
Dt

= w(η̇) at z = η. (35.116)

In effect, this relation defines the surface boundary flux, and this boundary condition can be
written in the equivalent form

Dη

Dt
= w(η)− w(η̇). (35.117)
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k+1/2 � w(⌘̇)
k�1/2

Figure 35.7: Dia-surface transport across the upper interface, w
(η̇)

k−1/2, and lower interface, w
(η̇)

k+1/2, of shallow

water layer k. The sign convention is that w
(η̇)

k+1/2 > 0 for fluid entering layer k through its lower interface, and

w
(η̇)

k−1/2 > 0 for fluid leaving layer k through its upper interface. The evolution of layer thickness at a horizontal

position is given by equation (35.120), with a thickness time tendency due to the convergence of horizontal
thickness transport within a layer, and the net transport of fluid moving across the layer interfaces.
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Layer thickness equation for a single shallow water layer

Following through the derivation of the thickness equation in Section 35.2.5, we are trivially led
to the following generalization in the presence of volume moving through the upper interface

∂h

∂t
+∇ · (hu) = −w(η̇), (35.118)

or equivalently
Dh

Dt
= −h∇ · u− w(η̇). (35.119)

As volume leaves the layer through its upper interface, w(η̇) > 0, equation (35.118) says that the
layer thickness decreases, and conversely the layer thickness increases when volume is added via
w(η̇) < 0.

Thickness equation for a stacked shallow water model

It is straightforward to generalize the thickness equation (35.118) to the case of a stacked shallow
water model, in which

∂hk

∂t
+∇ · (hk uk) = −(w(η̇)

k−1/2 − w
(η̇)
k+1/2). (35.120)

In this way, a positive volume flux coming through the lower layer interface, w
(η̇)
k+1/2 > 0, leads to an

increase in hk, whereas a positive flux leaving through the upper interface, w
(η̇)
k−1/2 > 0, decreases

the layer thickness. The right hand side is written as the thickness weighted convergence of the
cross-layer transport. Finally, the flux-form equation (35.120) takes on its material evolution
form

Dkhk

Dt
= −hk∇ · uk − (w

(η̇)
k−1/2 − w

(η̇)
k+1/2). (35.121)

Evidently, the material evolution of layer thickness is affected by the convergence of the horizontal
flow as well as the transfer of volume across the layer interfaces.

Vanishing layers and transfer across the top and bottom of the stacked layers

A shallow water layer can vanish at any horizontal position, so that it need not be defined for all
horizontal positions in the domain. Such vanishing layers are elegantly handled by working with
the thickness weighted tracer and momentum budgets, as doing so avoids dividing by a zero
layer thickness when computing vertical transfer across layer interfaces. It also means that the
transfer of material and momentum across the top and bottom of a stacked shallow water model
occurs via the layer adjacent to these boundaries. That is, boundary fluxes are incorporated via
cross-layer fluxes entering or leaving the layer that sits at the surface layer or bottom.

35.6.2 Subgrid scale advective volume tranport within layers

In the presence of subgrid scale processes, there can be an additional advective transport of
volume within a layer beyond that arising from the resolved flow field, u. Such subgrid scale
transport from a velocity, usgs

k , is commonly found when studying the effects of turbulent eddies
on ocean and atmospheric flows, with the papers by Gent and McWilliams (1990) and Gent
et al. (1995) offering the canonical ocean example (see Section 71.3 for more on this topic). For
present purposes, we are not concerned with how to compute this subgrid flow. Rather, we are
concerned with how to account for this flow in a manner that conserves volume, tracer, and
momentum. For the thickness equation the extra transport simply represents a term added to
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the resolved flow, so that the thickness equation takes on the form

∂thk +∇ · [(hk (uk + u
sgs
k )] = −(w(η̇)

k−1/2 − w
(η̇)
k+1/2), (35.122)

where usgs
k is the subgrid scale flow. Volume for the layer is conserved in the presence of usgs

k so
long as usgs

k satisfies the same no-flow kinematic boundary conditions as u. Bringing the subgrid
scale contribution to the right hand side renders

∂thk +∇ · (hk uk) = −(w(η̇)
k−1/2 − w

(η̇)
k+1/2)−∇ · (hk u

sgs
k ). (35.123)

As shown in the following sections, the presence of both the dia-surface transport and the subgrid
scale along-layer transport lead to corresponding terms in the tracer and momentum equations,
with such terms required for conservation of tracer and momentum.

35.6.3 Tracer equation

Tracer content is transferred into or out of layer k in the presence of a nonzero volume flux,

w
(η̇)
k±1/2 ̸= 0. Likewise, tracer is transferred within a layer due to advection by uk + u

sgs
k . To

formulate the tracer budget admitting such transfer, we work with the thickness weighted tracer
equation so to work with an extensive quantity. Namely, the tracer content per horizontal area,
hkCk, which satisfies a relatively straightforward budget.

Tracer equation with cross-layer transport and subgrid advection

We ensure self-consistency between the tracer equation and thickness equation (35.120) by
writing the tracer budget, in the presence of cross-layer transfer and subgrid scale along-layer
advection, as

∂t(hkCk) +∇ · (hkCk u
eff
k ) = −[(w(η̇)C)k−1/2 − (w(η̇)C)k+1/2], (35.124)

where we introduced the shorthand for the effective flow

ueff
k = uk + u

sgs
k . (35.125)

The tracer fluxes on the right hand side, (w(η̇)C)k±1/2, are evaluated at the layer interfaces.

Evidently, a positive flux at the lower interface, (w(η̇)C)k+1/2 > 0, contributes to an increase in

the tracer content for layer k, whereas (w(η̇)C)k−1/2 > 0 signals tracer leaving through the upper
interface.

To estimate the tracer concentration at the layer interface, we make use of the upwind

advective flux. For the flux (w(η̇)C)k+1/2, the upwind method uses Ck+1 if w
(η̇)
k+1/2 > 0, whereas

the flux uses Ck if w
(η̇)
k+1/2 < 0

(w(η̇)C)k+1/2 = w
(η̇)
k+1/2

[
Ck+1 if w

(η̇)
k+1/2 > 0

Ck if w
(η̇)
k+1/2 < 0,

(35.126)

with the same approach used for other interfaces. This method ensures that integrated tracer
content is conserved for the full domain, since the tracer content that enters one layer leaves an
adjacent layer.
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Figure 35.8: Depicting the tracer budget within a shallow water layer according to the thickness weighted
tracer equation (35.124) and in the presence of dia-layer transport as in Figure 35.7. The cross-layer tracer fluxes,
(w(η̇) C)k±1/2, are computed according to an upwind method (35.126).

Consistency of the thickness weighted tracer equation and tracer concentration equation

As a consistency check, note that the thickness weighted tracer equation (35.124) reduces to the
thickness equation (35.122) upon setting the tracer concentration to a space-time constant. As
a second consistency check, use the product rule in equation (35.124) to have

Ck [∂thk +∇ · (hk u
eff
k )] + hk (∂tCk + u

eff
k · ∇Ck) = −[(w(η̇)C)k−1/2 − (w(η̇)C)k+1/2]. (35.127)

Use of the thickness equation (35.122) and rearrangement renders the advective form tracer
concentration equation

hk (∂t + u
eff
k · ∇)Ck = −

[
[(w(η̇)C)k−1/2 − Ckw

(η̇)
k−1/2]− [(w(η̇)C)k+1/2 − Ckw

(η̇)
k+1/2]

]
. (35.128)

The tracer concentration equation (35.128) is self-consistent since both sides vanish when Ck is
a space-time constant.

The particular case of w
(η̇)
k−1/2 > 0 and w

(η̇)
k+1/2 > 0, and use of upwind tracer fluxes (35.126),

leads to the tracer concentration equation

hk (∂t + u
eff
k · ∇)Ck = −w(η̇)

k+1/2 (Ck − Ck+1). (35.129)

Evidently, again with w
(η̇)
k+1/2 > 0, the tracer concentration in layer k increases if Ck+1 > Ck and

decreases if Ck+1 < Ck. This is the expected behavior, thus further supporting self-consistency
of both the thickness weighted tracer equation and the tracer concentration equation.

Including tracer diffusion

The addition of a cross-layer diffusive flux, with a kinematic diffusivity κcr > 0, and an along-layer
diffusive flux, with a kinematic diffusivity κal > 0, leads to the shallow water thickness-weighted
advection-diffusion equation
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∂t(hkCk) +∇ · [hk (Ck u
eff
k − κal∇Ck)]

= −[(w(η̇)C − κcr ∂zC)k−1/2 − (w(η̇)C − κcr ∂zC)k+1/2]. (35.130)

In this equation, (−κcr ∂zC)k±1/2 is the downgradient cross-layer diffusive tracer flux evaluated
at the k± 1/2 interface, and −κal∇Ck is the downgradient along-layer diffusive flux within layer
k. Both diffusivities, κcr and κal, can be functions of space and time. Finally, notice that the
diffusive fluxes arise from gradients in the tracer concentration, not gradients in the thickness
weighted tracer. Consequently, the presence of tracer diffusion does not affect self-consistency
with the thickness equation, since the diffusive fluxes all vanish when the tracer concentration is
a space-time constant.

Thickness weighted tracer equation or tracer concentration equation?

As suggested at the start of this section, the thickness weighted tracer equation offers a straightfor-
ward means to ensure that tracer content is conserved when including further physical processes,
such as cross-layer transport, along-layer subgrid scale advection, and tracer diffusion. The
reason is that this equation provides a budget for the tracer content per horizontal area within
the shallow water layer. In contrast, tracer concentration, as an intrinsic property, does not
satisfy a budget equation. We thus recommend using the thickness weighted tracer budget as
the foundation for self-consistently including new physical processes. The tracer concentration is
then simply diagnosed through division

Ck =
(hkCk)

hk

. (35.131)

Additionally, the thickness weighted tracer equation can be converted to the tracer concentration
equation through use of the product rule and the thickness equation.

35.6.4 Viscous frictional stresses acting within the layer
As discussed in Chapter 25, accelerations from friction appear in the momentum equation via the
divergence of the frictional stress tensor. For a shallow water fluid we may choose to include a
frictional stress proportional to lateral shears within each layer, much like the friction operators
discussed in Section 25.8. The thickness weighted velocity equation (35.87) is given for a layer
in the form

∂t(hk uk) +∇ · (hk uk ⊗ uk) + f ẑ × hk uk = −(hk/ρref)∇pk + hk Fk, (35.132)

where Fk is an acceleration arising from viscous friction. For a Laplacian operator arising from
within-layer strains, we make use of the generalized vertical coordinate discussion in Section
63.15.2 to write

hk Fk = ∇ · (hk νk∇uk), (35.133)

where νk > 0 is the along-layer kinematic viscosity (dimensions L2 T−1), which can generally
be a function of the flow. Notice how the thickness appears inside the divergence operator on
the right hand side of equation (35.133). It accords with the treatment of along-layer tracer
diffusion in equation (35.130). Like for the tracer, we note that the friction arises from shears in
the velocity, not shears in the thickness weighted velocity.10 Treatment of the Laplacian viscous

10Placement of thickness inside the divergence operator in equation (35.133) is consistent with the continuum
treatment of generalized vertical coordinates in Section 63.15.2. As noted by Gent (1993), this placement of
the thickness is often ignored in the shallow water literature. Instead, one often finds Fk = ∇ · (νk ∇uk), which
is appropriate only when the layer thickness is a constant, as for the two-dimensional non-divergent barotropic
model of Chapter 38. For the shallow water model, in which thickness is generally not constant, then use of a
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operator (35.133) is directly analogous to treatment of Laplacian tracer diffusion in Section
35.6.3. However, when the viscosity is a function of space, the direct analog holds only for the
Cartesian coordinates used here. More general coordinates (e.g., spherical) require a distinct
treatment to ensure symmetries are respected by the friction operator so to conserve angular
momentum as discussed in Section 25.4. The appendix to Griffies and Hallberg (2000) and Part
5 of Griffies (2004) offer details for both the Laplacian and biharmonic friction operators.

35.6.5 Parameterized interfacial stresses
We now consider parameterized stresses at the layer interfaces. One application concerns the
treatment of winds at the top of the shallow water column, and bottom friction at the interface
with the solid-earth bottom. For this purpose, consider the Boussinesq form (Section 29.7.2) of
the vertical stress divergence appearing in the momentum equation

F =
1

ρo

∂τ

∂z
, (35.134)

where τ is the horizontal stress vector acting on the layer interface. We discretize this stress
divergence for the shallow water layer as

Fk =
1

ρref

τ k−1/2 − τ k+1/2

hk

. (35.135)

In this expression, hk is the layer thickness, τ k−1/2 is the stress vector acting at the upper layer
interface and τ k+1/2 is the stress vector at the lower layer interface. Since a shallow water layer
is homogeneous, the interface stress is, in effect, applied uniformly throughout the layer as a
layer body stress.

Wind stress

Stress at the top interface of the top layer arises from winds, so that

τ ktop = τwind, (35.136)

where ktop is the index for the layer that sits at the top of the column at the particular horizontal
position. We have ktop = 1 for horizontal positions where that top layer exists. Yet it is possible
for this layer to vanish, such as when a lower layer outcrops, in which case ktop ̸= 1. Furthermore,
it is important to apply this boundary stress over a nontrivial layer thickness, which for thin
upper layers can mean the boundary stress is applied to more than one layer. Doing so ensures
that the boundary stress does not over-accelerate a layer that happens to be very thin.

Bottom drag

At the bottom interface of the lowest layer, k = kbot, bottom drag is commonly applied as a
means to include dissipation, in which case11

τ kbot = τbot = ρref CD |u|kbot ukbot , (35.137)

where CD is a dimensionless drag coefficient (typically with values on the order of 10−3), and
ukbot is the velocity in the layer adjacent to the bottom. Generally we expect kbot = K, yet it
will differ in regions of incropping layers along the botton.

friction operator in the form Fk = ∇ · (νk ∇uk) does not correspond to the divergence of a symmetric stress tensor
(Section 25.8), and as such it is physically inconsistent.

11Be aware that the bottom drag coefficient, CD, is distinct from tracer concentration, Ck.
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Viscous stress

Finally, we may wish to consider a viscous stress that acts between layers and takes on the form

τ k±1/2 = −ρref (µ∂zu)k±1/2, (35.138)

where µ > 0 is a vertical kinematic viscosity (dimensions L2 T−1) and (µ∂zu)k±1/2 is the viscous
stress evaluated at the k± 1/2 interface.

35.6.6 Transfer of horizontal momentum from inter-layer volume transfer

A transfer of volume across the layer interface gives rise to a transfer of horizontal momentum.
In a manner directly akin to the treatment of tracers in Section 35.6.3, we have the thickness
weighted velocity equation given by

∂t(hk uk) +∇ · (hk uk ⊗ uk) + f ẑ × hk uk = −(hk/ρref)∇pk +∇ · (hk νk∇uk)

− [(w(η̇) u− µ∂zu)k−1/2 − (w(η̇) u− µ∂zu)k+1/2] + δk,ktop τwind − δk,kbot τbot. (35.139)

In this equation, (w(η̇) u)k+1/2 is the transfer of horizontal momentum across the lower layer

interface, and (w(η̇) u)k−1/2 is the transfer across the upper layer interface. To estimate the
horizontal velocity at the interface, we can take an upwind approach just as for the tracers in
equation (35.126)

(w(η̇) u)k+1/2 = w
(η̇)
k+1/2

[
uk+1 if w

(η̇)
k+1/2 > 0

uk if w
(η̇)
k+1/2 < 0,

(35.140)

Gent (1993) notes that some realizations of the shallow water equations in the presence of
w(η̇) ̸= 0 fail to incorporate the transfer of horizontal momentum between the layers present in
equation (35.139). As such, these realizations are not self-consistent and thus do not correspond
to a discrete realization of a continuous isopycnal model.12

35.6.7 Inclusion of subgrid along-layer volume transport

In Section 35.6.2, we introduced a subgrid scale advective volume tranport within layers, and
then included that transport in the tracer equation in Section 35.6.3. To see how to do so for
the linear momentum equation, it is sufficient to focus on the case without friction or viscosity,
Unlike the thickness weighted tracer equation (35.124), here we do not have a straightforward
consistency check with the thickness equation (35.122) to determine a unique form for including
the effects from usgs

k into the momentum equation. We thus consider the following formulations.

Absence of usgs
k in the thickness weighted velocity equation

In this formulation we assume there is no appearance of usgs
k in the thickness weighted velocity

equation, so that

∂t(hk uk) +∇ · (hk uk ⊗ uk) + f ẑ × hk uk = −(hk/ρref)∇pk
− [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2]. (35.141)

12We formulate the continuous isopycnal model equations in Chapter 66.
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Use of the product rule gives

hk [∂tuk + (uk · ∇)uk] + uk [∂thk +∇ · (hk uk)] + f ẑ × hk uk = −(hk/ρref)∇pk
− [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2], (35.142)

with the thickness equation (35.123) then rendering

hk [∂tuk + (uk · ∇)uk] + f ẑ × hk uk = −(hk/ρref)∇pk
− [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2] + uk [∇ · (hk u

sgs
k ) + w

(η̇)
k−1/2 − w

(η̇)
k+1/2]. (35.143)

This formulation is unsatisfying since the velocity is advected by the velocity, uk, whereas tracer
is advected by ueff

k as seen in equations (35.124) and (35.128).

Absence of usgs
k in the velocity equation

As noted by Jansen et al. (2024), certain layered ocean models (such as MOM6 Adcroft et al.
(2019)), are formulated with no appearance of usgs

k in the velocity equation, so that

hk [∂tuk + (uk · ∇)uk] + f ẑ × hk uk = −(hk/ρref)∇pk − [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2]. (35.144)

Use of the product rule and thickness equation (35.123) leads to the thickness weighted velocity
equation

∂t(hk uk) +∇ · (hk uk ⊗ uk) + f ẑ × hk uk = −(hk/ρref)∇pk
− [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2]− uk [∇ · (hk u

sgs
k ) + w

(η̇)
k−1/2 − w

(η̇)
k+1/2]. (35.145)

This equation is unsatisfying for the same reason as the velocity equation (35.143). Namely,
both formulations have the advection of velocity determined by the velocity, uk, whereas tracer
is advected by ueff

k , as seen in equations (35.124) and (35.128).

Advection by ueff
k in the velocity equation and thickness weighted velocity equation

Next consider the case where advection occurs with ueff
k , just like for tracers as in equation

(35.124), so that the thickness weighted velocity equation is written in the form

∂t(hk uk) + ∂i[hu
eff
i u]k + f ẑ × hk uk = −(hk/ρref)∇pk − [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2], (35.146)

where we exposed the Cartesian tensor index, i, on the left hand side. The thickness equation
(35.122) leads to the identity

∂t(hk uk) + ∂i[hu
eff
i u]k = hk

[
∂tuk + (ueff

k · ∇)uk

]
+ uk [∂thk +∇ · (hk u

eff
k )] (35.147a)

= hk

[
∂tuk + (ueff

k · ∇)uk

]
− uk (w

(η̇)
k−1/2 − w

(η̇)
k+1/2), (35.147b)

which, when inserted to equation (35.146), gives the velocity equation

hk

[
∂tuk + (ueff

k · ∇)uk

]
+ f ẑ × hk uk = −(hk/ρref)∇pk
− [(w(η̇) u)k−1/2 − w(η̇)

k−1/2 uk] + [(w(η̇) u)k+1/2 − w(η̇)
k+1/2 uk]. (35.148)

This form for the velocity equation corresponds to the tracer concentration equation (35.128),
with both equations having advection determined by the effective velocity, ueff. Rearrangement
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renders the equivalent form

hk

[
∂tuk + (uk · ∇)uk

]
+ f ẑ × hk uk = −(hk/ρref)∇pk

− [(w(η̇) u)k−1/2 − (w(η̇) u)k+1/2] + [w
(η̇)
k−1/2 − w

(η̇)
k+1/2 − hk (u

sgs
k · ∇)]uk. (35.149)

35.6.8 Further study
Elements of the discrete stacked shallow water model formulation given in this section are
considered by Jansen et al. (2024) for the case of a continuous vertical coordinate.

35.7 Exercises
exercise 35.1: Relations for vertical velocity (exercise (3.2) of Vallis (2006))
Show that the vertical velocity within a shallow water system is given by

w =

[
z − ηb
h

]
Dh

Dt
+

Dηb
Dt

, (35.150)

where ηb is the position of the bottom topography (see Figure 35.1). Interpret the result, showing
that it gives sensible answers at the top and bottom of the fluid layer.

exercise 35.2: Stretching of a vertical column with layer volume exchange
Show that if there is transport across the surface interface of a single shallow water layer, as per
the thickness equation (35.118), then the column stretching equation (35.43) becomes

D

Dt

[
ln

(
z − ηb
h

)]
=
w(η̇)

h
. (35.151)

Evidently, in the presence of a surface boundary volume flux, a column of shallow water fluid no
longer stretches or squeezes uniformly. Instead, for w(η̇) < 0, a fluid parcel moves down within
the column as more fluid is added to the top of the layer, and conversely when volume leaves
the layer.

exercise 35.3: Deriving the shallow water tracer equation (35.47)
Show all steps needed to derive equations (35.46a)-(35.46c) and then show the steps leading to
the shallow water tracer equation (35.47). Hint: use the z independence of u and ∂zw within
the shallow water layer.

exercise 35.4: Shallow water equations with tides
In Chapter 34 we derive the equations for a primitive equation ocean in the presence of
astronomical forcing that leads to tides. Specialize the general results from that chapter to
derive the thickness and momentum equations for a single layer of shallow water fluid in the
presence of astronomical tidal forcing. As in Section 34.4, assume the perturbation geopotential
is vertically independent.

exercise 35.5: Inverted reduced gravity model
Derive the shallow water equations for a single moving layer of fluid of density ρ2 above a rigid
floor, with this moving layer below a stagnant fluid of density ρ1, with ρ1 < ρ2, and with the
upper stagnant layer assumed to have infinite thickness (as per the upper ocean reduced gravity
model in Figure 35.4). Assume ∇pa = 0. Discuss the constraint placed on the interface η1/2 to
maintain a stagnant upper layer. Show that as ρ1/ρ2 → 0 with ρref = ρ2, then the single layer

page 972 of 2158 geophysical fluid mechanics



35.7. EXERCISES

shallow water equations emerge. Make use of notation from the three-layer system shown in
Figure 35.6. This model might be used to study flow in the atmosphere well above the boundary
layer, or the abyssal ocean well below the pycnocline. Hint: invert the approach taken in Section
35.3 for the reduced gravity model of the upper ocean.
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Chapter 36

SHALLOW WATER DYNAMICS

In this chapter we further our dynamical understanding of the shallow water fluid model. The
study includes geostrophy, thermal wind (as expressed by Margules’ relation), momentum
budgets, form stress, kinetic energy, gravitational potential energy, available potential energy,
and mechanical energy. We also develop the following case studies to exemplify the fundamentals:
the steady force balance in a zonally reentrant channel, and the angular momentum dynamics of
a rotating tank of shallow water fluid. We offer many details to support those aiming to become
nimble with the equations describing the momentum and energy dynamics of a stacked shallow
water model.

reader’s guide to this chapter
This chapter builds from the formulations in Chapter 35 as well as the geostrophic

mechanics from Chapter 31 and the pressure form stress from Chapter 28. We make use of
the dynamical results in this chapter for many of the subsequent chapters. Notationally, we
follow the same convention for the gradient operator noted at the start of Chapter 35.
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36.5.3 Kinetic energy and buoyancy work . . . . . . . . . . . . . . . . . 996
36.5.4 Kinetic energy and pressure form stress . . . . . . . . . . . . . . 997
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36.1 Loose threads
• Some more interpretation of the N -layer mechanical energy equations and their connections
to the continuous case.

• More schematics

• Consider adding a diabatic term to the energy budgets in Sections 36.5 and 36.6.

36.2 Geostrophic balance and thermal wind
As described in Chapter 31, geostrophic balance arises from neglecting the material time
derivative in the inviscid horizontal momentum equation, which is a sensible assumption when
the Rossby number is small. The resulting balance between Coriolis and pressure accelerations
constitutes the geostrophic balance. We consider here the implications of geostrophy for one
and two-layer shallow water systems.

36.2.1 Geostrophy for a single layer
Ignoring the applied pressure (pa = 0) leads to the geostrophic balance for a single shallow water
layer

f ẑ × ug = −g∇η =⇒ f ug = g ẑ ×∇η, (36.1)

or in component form

ug = −
g

f

∂η

∂y
and vg =

g

f

∂η

∂x
. (36.2)

Consequently, the shallow water layer geostrophic current is balanced by the gradient of the free
surface (sea level). In the northern hemisphere, where f > 0, geostrophic shallow water currents
flow counter-clockwise around negative sea level anomalies (low pressure) and clockwise around
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positive sea level anomalies (high pressure). The opposite orientation holds in the southern
hemisphere, where f < 0. Figure 36.1 shows a schematic of geostrophic balance for a single
shallow water layer.

pressure force
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pressure force
<latexit sha1_base64="OzT5d0me5lYRVjAqMyy1AaKWeCU=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2VGBF0W3bisYB/QDiWT3mlDk8yQZMQyFPwVNy4Ucet3uPNvzLSz0NYDgcO599x7c8KEM20879sprayurW+UNytb2zu7e+7+QUvHqaLQpDGPVSckGjiT0DTMcOgkCogIObTD8U1ebz+A0iyW92aSQCDIULKIUWKs1HePeiKMHzPr0TpVgKPYzp323apX82bAy8QvSBUVaPTdr94gpqkAaSgnWnd9LzFBRpRhlMO00ks1JISOyRC6lkoiQAfZ7PwpPrXKIN9snzR4pv52ZERoPRGh7RTEjPRiLRf/q3VTE10FGZNJakDS+aIo5djEOM8CD5gCavjEEkIVs7diOiKKUGMTq9gQ/MUvL5PWec33av7dRbV+XcRRRsfoBJ0hH12iOrpFDdREFGXoGb2iN+fJeXHenY95a8kpPIfoD5zPHxKali8=</latexit><latexit sha1_base64="OzT5d0me5lYRVjAqMyy1AaKWeCU=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2VGBF0W3bisYB/QDiWT3mlDk8yQZMQyFPwVNy4Ucet3uPNvzLSz0NYDgcO599x7c8KEM20879sprayurW+UNytb2zu7e+7+QUvHqaLQpDGPVSckGjiT0DTMcOgkCogIObTD8U1ebz+A0iyW92aSQCDIULKIUWKs1HePeiKMHzPr0TpVgKPYzp323apX82bAy8QvSBUVaPTdr94gpqkAaSgnWnd9LzFBRpRhlMO00ks1JISOyRC6lkoiQAfZ7PwpPrXKIN9snzR4pv52ZERoPRGh7RTEjPRiLRf/q3VTE10FGZNJakDS+aIo5djEOM8CD5gCavjEEkIVs7diOiKKUGMTq9gQ/MUvL5PWec33av7dRbV+XcRRRsfoBJ0hH12iOrpFDdREFGXoGb2iN+fJeXHenY95a8kpPIfoD5zPHxKali8=</latexit><latexit sha1_base64="OzT5d0me5lYRVjAqMyy1AaKWeCU=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2VGBF0W3bisYB/QDiWT3mlDk8yQZMQyFPwVNy4Ucet3uPNvzLSz0NYDgcO599x7c8KEM20879sprayurW+UNytb2zu7e+7+QUvHqaLQpDGPVSckGjiT0DTMcOgkCogIObTD8U1ebz+A0iyW92aSQCDIULKIUWKs1HePeiKMHzPr0TpVgKPYzp323apX82bAy8QvSBUVaPTdr94gpqkAaSgnWnd9LzFBRpRhlMO00ks1JISOyRC6lkoiQAfZ7PwpPrXKIN9snzR4pv52ZERoPRGh7RTEjPRiLRf/q3VTE10FGZNJakDS+aIo5djEOM8CD5gCavjEEkIVs7diOiKKUGMTq9gQ/MUvL5PWec33av7dRbV+XcRRRsfoBJ0hH12iOrpFDdREFGXoGb2iN+fJeXHenY95a8kpPIfoD5zPHxKali8=</latexit><latexit sha1_base64="OzT5d0me5lYRVjAqMyy1AaKWeCU=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEV2VGBF0W3bisYB/QDiWT3mlDk8yQZMQyFPwVNy4Ucet3uPNvzLSz0NYDgcO599x7c8KEM20879sprayurW+UNytb2zu7e+7+QUvHqaLQpDGPVSckGjiT0DTMcOgkCogIObTD8U1ebz+A0iyW92aSQCDIULKIUWKs1HePeiKMHzPr0TpVgKPYzp323apX82bAy8QvSBUVaPTdr94gpqkAaSgnWnd9LzFBRpRhlMO00ks1JISOyRC6lkoiQAfZ7PwpPrXKIN9snzR4pv52ZERoPRGh7RTEjPRiLRf/q3VTE10FGZNJakDS+aIo5djEOM8CD5gCavjEEkIVs7diOiKKUGMTq9gQ/MUvL5PWec33av7dRbV+XcRRRsfoBJ0hH12iOrpFDdREFGXoGb2iN+fJeXHenY95a8kpPIfoD5zPHxKali8=</latexit>

Coriolis force
<latexit sha1_base64="McHYQ2l1rj+KCxEBqMvlYuE3oS0=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCqzIjgi6L3bisYB/QDiWTZtrQZDIkGbEMBX/FjQtF3Pod7vwbM+0stPVA4HDu49ycMOFMG8/7dlZW19Y3Nktb5e2d3b199+CwpWWqCG0SyaXqhFhTzmLaNMxw2kkUxSLktB2O63m9/UCVZjK+N5OEBgIPYxYxgo2V+u5xT4TyMatLxaS1Q5G0e6d9t+JVvRnQMvELUoECjb771RtIkgoaG8Kx1l3fS0yQYWUY4XRa7qWaJpiM8ZB2LY2xoDrIZudP0ZlVBrmzfbFBM/X3RIaF1hMR2k6BzUgv1nLxv1o3NdF1kLE4SQ2NydwoSjkyEuVZoAFTlBg+sQQTxeytiIywwsTYxMo2BH/xy8ukdVH1vap/d1mp3RRxlOAETuEcfLiCGtxCA5pAIINneIU358l5cd6dj3nrilPMHMEfOJ8/v2mV+g==</latexit><latexit sha1_base64="McHYQ2l1rj+KCxEBqMvlYuE3oS0=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCqzIjgi6L3bisYB/QDiWTZtrQZDIkGbEMBX/FjQtF3Pod7vwbM+0stPVA4HDu49ycMOFMG8/7dlZW19Y3Nktb5e2d3b199+CwpWWqCG0SyaXqhFhTzmLaNMxw2kkUxSLktB2O63m9/UCVZjK+N5OEBgIPYxYxgo2V+u5xT4TyMatLxaS1Q5G0e6d9t+JVvRnQMvELUoECjb771RtIkgoaG8Kx1l3fS0yQYWUY4XRa7qWaJpiM8ZB2LY2xoDrIZudP0ZlVBrmzfbFBM/X3RIaF1hMR2k6BzUgv1nLxv1o3NdF1kLE4SQ2NydwoSjkyEuVZoAFTlBg+sQQTxeytiIywwsTYxMo2BH/xy8ukdVH1vap/d1mp3RRxlOAETuEcfLiCGtxCA5pAIINneIU358l5cd6dj3nrilPMHMEfOJ8/v2mV+g==</latexit><latexit sha1_base64="McHYQ2l1rj+KCxEBqMvlYuE3oS0=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCqzIjgi6L3bisYB/QDiWTZtrQZDIkGbEMBX/FjQtF3Pod7vwbM+0stPVA4HDu49ycMOFMG8/7dlZW19Y3Nktb5e2d3b199+CwpWWqCG0SyaXqhFhTzmLaNMxw2kkUxSLktB2O63m9/UCVZjK+N5OEBgIPYxYxgo2V+u5xT4TyMatLxaS1Q5G0e6d9t+JVvRnQMvELUoECjb771RtIkgoaG8Kx1l3fS0yQYWUY4XRa7qWaJpiM8ZB2LY2xoDrIZudP0ZlVBrmzfbFBM/X3RIaF1hMR2k6BzUgv1nLxv1o3NdF1kLE4SQ2NydwoSjkyEuVZoAFTlBg+sQQTxeytiIywwsTYxMo2BH/xy8ukdVH1vap/d1mp3RRxlOAETuEcfLiCGtxCA5pAIINneIU358l5cd6dj3nrilPMHMEfOJ8/v2mV+g==</latexit><latexit sha1_base64="McHYQ2l1rj+KCxEBqMvlYuE3oS0=">AAAB/nicbVDLSgMxFL3js9bXqLhyEyyCqzIjgi6L3bisYB/QDiWTZtrQZDIkGbEMBX/FjQtF3Pod7vwbM+0stPVA4HDu49ycMOFMG8/7dlZW19Y3Nktb5e2d3b199+CwpWWqCG0SyaXqhFhTzmLaNMxw2kkUxSLktB2O63m9/UCVZjK+N5OEBgIPYxYxgo2V+u5xT4TyMatLxaS1Q5G0e6d9t+JVvRnQMvELUoECjb771RtIkgoaG8Kx1l3fS0yQYWUY4XRa7qWaJpiM8ZB2LY2xoDrIZudP0ZlVBrmzfbFBM/X3RIaF1hMR2k6BzUgv1nLxv1o3NdF1kLE4SQ2NydwoSjkyEuVZoAFTlBg+sQQTxeytiIywwsTYxMo2BH/xy8ukdVH1vap/d1mp3RRxlOAETuEcfLiCGtxCA5pAIINneIU358l5cd6dj3nrilPMHMEfOJ8/v2mV+g==</latexit>

fluid velocity into page
<latexit sha1_base64="RH9azteCFHbEOKFiz2FF3K90jmk=">AAACCHicbVBLSwMxGMzWV62vVY8eDBbBU9kVQY9FLx4r2Ae0S8lms21oHkuSLS5Lj178K148KOLVn+DNf2Pa7kFbBwLDzPclmQkTRrXxvG+ntLK6tr5R3qxsbe/s7rn7By0tU4VJE0smVSdEmjAqSNNQw0gnUQTxkJF2OLqZ+u0xUZpKcW+yhAQcDQSNKUbGSn33uMdD+ZDHLKURHBMmMTUZpMJImKABmfTdqlfzZoDLxC9IFRRo9N2vXiRxyokwmCGtu76XmCBHylDMyKTSSzVJEB7Zy7uWCsSJDvJZkAk8tUoEY6nsEQbO1N8bOeJaZzy0kxyZoV70puJ/Xjc18VWQU5Gkhgg8fyhOGbQxp63AiCqCDcssQVhR+1eIh0ghbGx3FVuCvxh5mbTOa75X8+8uqvXroo4yOAIn4Az44BLUwS1ogCbA4BE8g1fw5jw5L8678zEfLTnFziH4A+fzB1L1miU=</latexit><latexit sha1_base64="RH9azteCFHbEOKFiz2FF3K90jmk=">AAACCHicbVBLSwMxGMzWV62vVY8eDBbBU9kVQY9FLx4r2Ae0S8lms21oHkuSLS5Lj178K148KOLVn+DNf2Pa7kFbBwLDzPclmQkTRrXxvG+ntLK6tr5R3qxsbe/s7rn7By0tU4VJE0smVSdEmjAqSNNQw0gnUQTxkJF2OLqZ+u0xUZpKcW+yhAQcDQSNKUbGSn33uMdD+ZDHLKURHBMmMTUZpMJImKABmfTdqlfzZoDLxC9IFRRo9N2vXiRxyokwmCGtu76XmCBHylDMyKTSSzVJEB7Zy7uWCsSJDvJZkAk8tUoEY6nsEQbO1N8bOeJaZzy0kxyZoV70puJ/Xjc18VWQU5Gkhgg8fyhOGbQxp63AiCqCDcssQVhR+1eIh0ghbGx3FVuCvxh5mbTOa75X8+8uqvXroo4yOAIn4Az44BLUwS1ogCbA4BE8g1fw5jw5L8678zEfLTnFziH4A+fzB1L1miU=</latexit><latexit sha1_base64="RH9azteCFHbEOKFiz2FF3K90jmk=">AAACCHicbVBLSwMxGMzWV62vVY8eDBbBU9kVQY9FLx4r2Ae0S8lms21oHkuSLS5Lj178K148KOLVn+DNf2Pa7kFbBwLDzPclmQkTRrXxvG+ntLK6tr5R3qxsbe/s7rn7By0tU4VJE0smVSdEmjAqSNNQw0gnUQTxkJF2OLqZ+u0xUZpKcW+yhAQcDQSNKUbGSn33uMdD+ZDHLKURHBMmMTUZpMJImKABmfTdqlfzZoDLxC9IFRRo9N2vXiRxyokwmCGtu76XmCBHylDMyKTSSzVJEB7Zy7uWCsSJDvJZkAk8tUoEY6nsEQbO1N8bOeJaZzy0kxyZoV70puJ/Xjc18VWQU5Gkhgg8fyhOGbQxp63AiCqCDcssQVhR+1eIh0ghbGx3FVuCvxh5mbTOa75X8+8uqvXroo4yOAIn4Az44BLUwS1ogCbA4BE8g1fw5jw5L8678zEfLTnFziH4A+fzB1L1miU=</latexit><latexit sha1_base64="RH9azteCFHbEOKFiz2FF3K90jmk=">AAACCHicbVBLSwMxGMzWV62vVY8eDBbBU9kVQY9FLx4r2Ae0S8lms21oHkuSLS5Lj178K148KOLVn+DNf2Pa7kFbBwLDzPclmQkTRrXxvG+ntLK6tr5R3qxsbe/s7rn7By0tU4VJE0smVSdEmjAqSNNQw0gnUQTxkJF2OLqZ+u0xUZpKcW+yhAQcDQSNKUbGSn33uMdD+ZDHLKURHBMmMTUZpMJImKABmfTdqlfzZoDLxC9IFRRo9N2vXiRxyokwmCGtu76XmCBHylDMyKTSSzVJEB7Zy7uWCsSJDvJZkAk8tUoEY6nsEQbO1N8bOeJaZzy0kxyZoV70puJ/Xjc18VWQU5Gkhgg8fyhOGbQxp63AiCqCDcssQVhR+1eIh0ghbGx3FVuCvxh5mbTOa75X8+8uqvXroo4yOAIn4Az44BLUwS1ogCbA4BE8g1fw5jw5L8678zEfLTnFziH4A+fzB1L1miU=</latexit>

low pressure
<latexit sha1_base64="FpU/gPr3kEihuDXpz0Ga58h9GdQ=">AAAB/HicbVDLSgMxFL3js9bXaJdugkVwVWZE0GXRjcsK9gHtUDJppg1NJkOSUYeh/oobF4q49UPc+Tem7Sy09UDgcM493JsTJpxp43nfzsrq2vrGZmmrvL2zu7fvHhy2tEwVoU0iuVSdEGvKWUybhhlOO4miWISctsPx9dRv31OlmYzvTJbQQOBhzCJGsLFS3630RCgfcy4fkM1pnSo66btVr+bNgJaJX5AqFGj03a/eQJJU0NgQjrXu+l5ighwrwwink3Iv1TTBZIyHtGtpjAXVQT47foJOrDJAkVT2xQbN1N+JHAutMxHaSYHNSC96U/E/r5ua6DLIWZykhsZkvihKOTISTZtAA6YoMTyzBBPF7K2IjLDCxNi+yrYEf/HLy6R1VvO9mn97Xq1fFXWU4AiO4RR8uIA63EADmkAgg2d4hTfnyXlx3p2P+eiKU2Qq8AfO5w+YaJVe</latexit><latexit sha1_base64="FpU/gPr3kEihuDXpz0Ga58h9GdQ=">AAAB/HicbVDLSgMxFL3js9bXaJdugkVwVWZE0GXRjcsK9gHtUDJppg1NJkOSUYeh/oobF4q49UPc+Tem7Sy09UDgcM493JsTJpxp43nfzsrq2vrGZmmrvL2zu7fvHhy2tEwVoU0iuVSdEGvKWUybhhlOO4miWISctsPx9dRv31OlmYzvTJbQQOBhzCJGsLFS3630RCgfcy4fkM1pnSo66btVr+bNgJaJX5AqFGj03a/eQJJU0NgQjrXu+l5ighwrwwink3Iv1TTBZIyHtGtpjAXVQT47foJOrDJAkVT2xQbN1N+JHAutMxHaSYHNSC96U/E/r5ua6DLIWZykhsZkvihKOTISTZtAA6YoMTyzBBPF7K2IjLDCxNi+yrYEf/HLy6R1VvO9mn97Xq1fFXWU4AiO4RR8uIA63EADmkAgg2d4hTfnyXlx3p2P+eiKU2Qq8AfO5w+YaJVe</latexit><latexit sha1_base64="FpU/gPr3kEihuDXpz0Ga58h9GdQ=">AAAB/HicbVDLSgMxFL3js9bXaJdugkVwVWZE0GXRjcsK9gHtUDJppg1NJkOSUYeh/oobF4q49UPc+Tem7Sy09UDgcM493JsTJpxp43nfzsrq2vrGZmmrvL2zu7fvHhy2tEwVoU0iuVSdEGvKWUybhhlOO4miWISctsPx9dRv31OlmYzvTJbQQOBhzCJGsLFS3630RCgfcy4fkM1pnSo66btVr+bNgJaJX5AqFGj03a/eQJJU0NgQjrXu+l5ighwrwwink3Iv1TTBZIyHtGtpjAXVQT47foJOrDJAkVT2xQbN1N+JHAutMxHaSYHNSC96U/E/r5ua6DLIWZykhsZkvihKOTISTZtAA6YoMTyzBBPF7K2IjLDCxNi+yrYEf/HLy6R1VvO9mn97Xq1fFXWU4AiO4RR8uIA63EADmkAgg2d4hTfnyXlx3p2P+eiKU2Qq8AfO5w+YaJVe</latexit><latexit sha1_base64="FpU/gPr3kEihuDXpz0Ga58h9GdQ=">AAAB/HicbVDLSgMxFL3js9bXaJdugkVwVWZE0GXRjcsK9gHtUDJppg1NJkOSUYeh/oobF4q49UPc+Tem7Sy09UDgcM493JsTJpxp43nfzsrq2vrGZmmrvL2zu7fvHhy2tEwVoU0iuVSdEGvKWUybhhlOO4miWISctsPx9dRv31OlmYzvTJbQQOBhzCJGsLFS3630RCgfcy4fkM1pnSo66btVr+bNgJaJX5AqFGj03a/eQJJU0NgQjrXu+l5ighwrwwink3Iv1TTBZIyHtGtpjAXVQT47foJOrDJAkVT2xQbN1N+JHAutMxHaSYHNSC96U/E/r5ua6DLIWZykhsZkvihKOTISTZtAA6YoMTyzBBPF7K2IjLDCxNi+yrYEf/HLy6R1VvO9mn97Xq1fFXWU4AiO4RR8uIA63EADmkAgg2d4hTfnyXlx3p2P+eiKU2Qq8AfO5w+YaJVe</latexit>

high pressure
<latexit sha1_base64="LtvqBtf5rclXqrMT9ph+vFJX6mg=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjgi6LblxWsK3QDiWT3umEJpMhyYh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOPdybE6acaeN5305paXllda28XtnY3NrecXf3WlpmikKTSi7VXUg0cJZA0zDD4S5VQETIoR0OryZ++x6UZjK5NaMUAkEGCYsYJcZKPfegK0L5kMdsEGMb1DpTMO65Va/mTYEXiV+QKirQ6Llf3b6kmYDEUE607vheaoKcKMMoh3Glm2lICR2SAXQsTYgAHeTT68f42Cp9HEllX2LwVP2dyInQeiRCOymIifW8NxH/8zqZiS6CnCVpZiChs0VRxrGReFIF7jMF1PCRJYQqZm/FNCaKUGMLq9gS/PkvL5LWac33av7NWbV+WdRRRofoCJ0gH52jOrpGDdREFD2iZ/SK3pwn58V5dz5moyWnyOyjP3A+fwA6mZW2</latexit><latexit sha1_base64="LtvqBtf5rclXqrMT9ph+vFJX6mg=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjgi6LblxWsK3QDiWT3umEJpMhyYh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOPdybE6acaeN5305paXllda28XtnY3NrecXf3WlpmikKTSi7VXUg0cJZA0zDD4S5VQETIoR0OryZ++x6UZjK5NaMUAkEGCYsYJcZKPfegK0L5kMdsEGMb1DpTMO65Va/mTYEXiV+QKirQ6Llf3b6kmYDEUE607vheaoKcKMMoh3Glm2lICR2SAXQsTYgAHeTT68f42Cp9HEllX2LwVP2dyInQeiRCOymIifW8NxH/8zqZiS6CnCVpZiChs0VRxrGReFIF7jMF1PCRJYQqZm/FNCaKUGMLq9gS/PkvL5LWac33av7NWbV+WdRRRofoCJ0gH52jOrpGDdREFD2iZ/SK3pwn58V5dz5moyWnyOyjP3A+fwA6mZW2</latexit><latexit sha1_base64="LtvqBtf5rclXqrMT9ph+vFJX6mg=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjgi6LblxWsK3QDiWT3umEJpMhyYh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOPdybE6acaeN5305paXllda28XtnY3NrecXf3WlpmikKTSi7VXUg0cJZA0zDD4S5VQETIoR0OryZ++x6UZjK5NaMUAkEGCYsYJcZKPfegK0L5kMdsEGMb1DpTMO65Va/mTYEXiV+QKirQ6Llf3b6kmYDEUE607vheaoKcKMMoh3Glm2lICR2SAXQsTYgAHeTT68f42Cp9HEllX2LwVP2dyInQeiRCOymIifW8NxH/8zqZiS6CnCVpZiChs0VRxrGReFIF7jMF1PCRJYQqZm/FNCaKUGMLq9gS/PkvL5LWac33av7NWbV+WdRRRofoCJ0gH52jOrpGDdREFD2iZ/SK3pwn58V5dz5moyWnyOyjP3A+fwA6mZW2</latexit><latexit sha1_base64="LtvqBtf5rclXqrMT9ph+vFJX6mg=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCqzIjgi6LblxWsK3QDiWT3umEJpMhyYh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOPdybE6acaeN5305paXllda28XtnY3NrecXf3WlpmikKTSi7VXUg0cJZA0zDD4S5VQETIoR0OryZ++x6UZjK5NaMUAkEGCYsYJcZKPfegK0L5kMdsEGMb1DpTMO65Va/mTYEXiV+QKirQ6Llf3b6kmYDEUE607vheaoKcKMMoh3Glm2lICR2SAXQsTYgAHeTT68f42Cp9HEllX2LwVP2dyInQeiRCOymIifW8NxH/8zqZiS6CnCVpZiChs0VRxrGReFIF7jMF1PCRJYQqZm/FNCaKUGMLq9gS/PkvL5LWac33av7NWbV+WdRRRofoCJ0gH52jOrpGDdREFD2iZ/SK3pwn58V5dz5moyWnyOyjP3A+fwA6mZW2</latexit> high pressure
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Figure 36.1: Side view of geostrophic balance for a single shallow water layer, here shown with two high pressure
centers surrounding a low pressure center. A fluid particle path follows isolines of the free surface (constant
pressure surface), with the Coriolis force balancing the pressure gradient force. In the northern hemisphere, where
f > 0, geostrophic flow is counter-clockwise around a low pressure center and clockwise around a high pressure
center, so that the Coriolis force acts to the right of the flow and it is balanced by a pressure gradient acting
to the left. For the southern hemisphere, geostrophic flow is in the opposite direction since f < 0, so that the
pressure gradient acts to the right of the flow and Coriolis to the left.

36.2.2 Margules’ relation for two layers

Now consider two shallow water layers as in Figure 35.6. Recall the layer pressure equations
(35.63) and (35.64), which leads to the pressure difference

p1 − p2 = g η3/2 (ρ1 − ρ2) + g z (ρ2 − ρ1) = gr

3/2 ρref (z − η3/2), (36.3)

where the reduced gravity is given by equation (35.69)

gr

3/2 = g (ρ2 − ρ1)/ρref > 0, (36.4)

where ρref is the shallow water Boussinesq reference density (35.67). The density difference,
ρ2 − ρ1, is generally much smaller than either density, so that gr

3/2 ≪ g. For the Boussinesq
shallow water system, the momentum equations are given by

D(1)u1

Dt
+ f ẑ × u1 = −ρ−1

ref ∇p1 (36.5a)

D(2)u2

Dt
+ f ẑ × u2 = −ρ−1

ref ∇p2, (36.5b)

where we introduced the material time derivatives for each layer (we introduced this notation in
Section 35.4.4)

D(k)

Dt
=

∂

∂t
+ uk · ∇. (36.6)

Making use of the pressure difference (36.3) renders

D1u1

Dt
− D2u2

Dt
+ f ẑ ×∆u = −ρ−1

ref ∇(p1 − p2) = gr

3/2∇η3/2, (36.7)

where
∆u = u1 − u2 (36.8)

is the vertical difference of the layer horizontal velocities. We see that the difference in the
geostrophic velocities for the two layers is proportional to the slope of the interface between the
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two layers

f ẑ ×∆ug = gr

3/2∇η3/2 =⇒ ∆ug = +(gr

3/2/f) ∂yη3/2 and ∆vg = −(gr

3/2/f) ∂xη3/2. (36.9)

These equations are known as the Margules’ relation. It applies at any interface between two
shallow water fluid layers. It says that the vertical difference between the layer geostrophic
velocities is proportional to the interface slope. When the slope is large, the vertical difference in
the geostrophic velocity is large. Also, the velocity difference is large when the reduced gravity
is large; i.e., when the density difference is large. We illustrate this relation in Figure 36.2. The
Margules relation is a discrete (two-layer) version of the thermal wind relation discussed in
Section 31.6.

heavylight

z
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Figure 36.2: Illustrating Margules’ relation for the northern hemisphere (f > 0). Here we show the interface
between a two-layer shallow water model with a heavy layer to the right and a light layer to the left. The slope
of the interface is positive, ∂η3/2/∂y > 0, thus leading to an increase in the eastward zonal geostrophic velocity
moving upward, as depicted by the circles with a dot. This orientation corresponds to the northern hemisphere
atmospheric jet stream, whereby the interface between cold/heavy air to the north and warm/light air to the
south leads to a zonal thermal wind jet. This figure is directly comparable to the continuously stratified case
shown in Figure 31.7.

36.2.3 Geostrophic transport within layers

We are often interested in computing the net volume transport within a layer of fluid in order to
measure how much the fluid is moving across a particular region. For an N -layer shallow water
fluid this transport is written

U =

ˆ
udz =

N∑
k=1

uk hk, (36.10)

where uk is the layer horizontal velocity and hk the layer thickness. For many purposes it is
sufficient to compute the transport due to the geostrophic motion, in which case

uk = (ρref f)
−1 ẑ ×∇pk, (36.11)

so that the geostrophic transport is

Ug =

ˆ η

ηb

ug dz = (ρref f)
−1 ẑ ×

N∑
k=1

hk∇pk. (36.12)

For the pressure gradient we can make use of the expression (35.88)

∇pk = ∇pa +∇pdynk = ∇pa + ρref

k∑
j=1

gr

j−1/2∇ηj−1/2 = ∇pk−1 + ρref g
r

k−1/2∇ηk−1/2, (36.13)
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thus revealing the cascade of contributions from each of the layer interfaces.

As an exercise, let us write the geostrophic transport for N = 3 layers, in which the layer
pressure gradients are

∇p1 = ∇pa + ρref g∇η1/2 (36.14a)

∇p2 = ∇p1 + ρref g
r

3/2∇η3/2 (36.14b)

∇p3 = ∇p2 + ρref g
r

5/2∇η5/2. (36.14c)

We see here the utility of setting
ρref = ρ1, (36.15)

in which case the geostrophic transport within the three layers is

h1 u1g =
h1
f
ẑ ×∇(gr

1/2 η1/2) (36.16a)

h2 u2g =
h2
f
ẑ ×∇(gr

1/2 η1/2 + gr

3/2 η3/2) (36.16b)

h3 u3g =
h3
f
ẑ ×∇(gr

1/2 η1/2 + gr

3/2 η3/2 + gr

5/2 η5/2), (36.16c)

so that the vertically integrated geostrophic transport is

Ug = f−1 ẑ ×
[
h1∇(g η) + h2∇(g η + gr

3/2 η3/2) + h3∇(g η + gr

3/2 η3/2 + gr

5/2 η5/2)
]
. (36.17)

This expression for Ug displays the cascade of contributions from each of the layer interfaces and
their corresponding reduced gravities. Evidently, the geostrophic transport is directly related to
the slopes for the layer interfaces, with more transport associated with larger magnitudes in the
slopes as well as larger reduced gravities.

36.2.4 Flow within a geostrophic eddy
The ocean and atmosphere are highly turbulent fluids, with turbulent features extending from
the small scales (millimeters) to large scales (hundreds to thousands of kilometers). The larger
scale macro-turbulent features feel the earth’s rotation and thus maintain a force balance close
to geostrophic.1 We here outline some features of an ocean geostrophic eddy as idealized using
the reduced gravity model of Section 35.3. Figure 36.3 shows a vertical-zonal slice through the
upper portion of an ocean eddy in the middle latitude northern hemisphere (f > 0). The central
region consists of a geostrophic eddy, sometimes also referred to as an ocean mesoscale eddy.
The signature of the eddy is a depression in the free surface height and upward deformation of
the pycnocline. The lateral scale of the eddy is on the order of the internal deformation scale
(see Exercise 36.10).

The ocean eddy in Figure 36.3 is an anomalously dense cyclonic mesoscale eddy with the dense
water causing the pycnocline to deviate upward. If density is dominated by temperature, as it
typically is within the middle to lower latitude oceans, then the eddy is a cold core eddy, meaning
that the core of the eddy is cold. Under geostrophic balance, water circulates counter-clockwise
in the northern hemisphere within the upper portion of the cold core eddy, in the region where
the pressure gradient force is dominated by the free surface undulation. In this case we see say
the eddy is cyclonic. According to the reduced gravity model from Section 35.3 (see in particular

1As noted in Section 32.6, the gradient wind balance provides a more accurate approximation to flows in
ocean and atmospheric eddies by also including the centrifugal acceleration associated with the curved motion.
Even so, the geostrophic balance provides a sufficient approximation for many purposes and it will be used here,
along with thermal wind.
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Figure 36.3: Vertical-zonal slice through a northern hemisphere mid-latitude cold-core ocean eddy looking from
the south to the north (north is into the page). The ocean free surface is depressed down in the middle so that
geostrophic flow is cyclonic (counter-clockwise in north) within the upper portion of the eddy where ρ = ρupper.
The pycnocline (region of enhanced vertical density gradient) is deformed upward, and the baroclinic flow implied
by Margules’ relation (36.9) is indicated, making use of the reduced gravity gr = g (ρlower − ρupper)/ρref . Note that
∆vg = vupper − vlower, so that ∆vg > 0 means that the meridional flow increases in the +ŷ-direction when moving
from the lower to upper layer, and conversely when ∆vg < 0.

Figure 35.5), the ratio of the free surface undulation to the pynocline undulation scales like the
reduced gravity, so that a meter undulation of the free surface corresponds to roughly 100 m
undulation of the pynocline. The same ideas hold for a warm core eddy, such as that depicted
in Figure 36.4, with undulations complementing those in the cold core and thus supporting
anti-cyclonic thermal wind flow.

In presenting the idealized rendition of an ocean eddy in Figure 36.3, we are assuming a
reduced gravity model is sufficient and that the atmosphere has no significant horizontal pressure
gradients over the scale of the eddy. Under these assumptions, we make use of the Margules’
relation (36.9) to deduce the thermal wind flow in the upper layer relative to the layer below; i.e.,
the vertical shear in the geostrophic flow. For the left side of the eddy, where ∂ηinterior/∂x > 0,
the vertical shear in the meridional geostrophic velocity is southward, consistent with orientation
of the flow implied by the sea surface gradient. Conversely, on the right side of the eddy, where
∂ηinterior/∂x < 0, the vertical shear in the meridional flow is northward.
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Figure 36.4: Schematic of a warm core (light water) geostrophic ocean eddy as idealized by a reduced gravity
model. The geostrophic/thermal wind flow is anti-cyclonic within the eddy, which contrasts to the cyclonic flow
for a cold core eddy as depicted in Figure 36.3. The eddy is characterized by a slight expansion of the free surface
(high pressure) and a relatively larger depression of the pycnocline.

36.3 Thickness weighted momentum equation
Throughout our discussion of the shallow water model, we made use of the prognostic equation
for the velocity of a layer. Here, we study the momentum equation as determined by the vertically
integrated velocity within a shallow water layer. This formulation proves particularly useful
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when studying forces acting on the layer, such as those from pressure contact forces (including
form stresses) as well as kinetic stresses due to the fluid motion.2

For a shallow water model with just a single layer, the water column extends from the surface
to the bottom of the layer (see Figure 36.5)

ˆ η

ηb

u dz = uh, (36.18)

so that the column momentum equals to uh ρdxdy. The resulting momentum equation is
written in its flux form. In Section 36.7 we illustrate the momentum budget for a zonal channel.
We also show in Section 36.4.2 that the N -layer equations are isomorphic to the single layer,
thus allowing for concepts developed for a single layer to be readily extended to multiple layers.

z
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bot
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Figure 36.5: Momentum of a column of a single layer shallow water fluid is affected by contact forces at the
column boundaries (pressure and friction), as well as body forces acting throughout the column (Coriolis and
gravity).

36.3.1 Single layer equations

Recall the velocity and thickness equations written using the material time operator

Du

Dt
+ f ẑ × u = −g∇η and

Dh

Dt
= −h∇ · u. (36.19)

Combining these two equations allows us to write the thickness weighted material acceleration as

h
Du

Dt
= h

Du

Dt
+ u

[
Dh

Dt
+ h∇ · u

]
= ∂t(hu) +∇ · [hu⊗ u], (36.20)

so that the thickness weighted equation takes the vector form

∂t(hu) +∇ · [hu⊗ u] + f ẑ × (hu) = −g h∇η. (36.21)

The Cartesian tensor form of the outer product (also called the tensor product) is3

[u⊗ u]mn = um un for m,n = 1, 2, (36.22)

2This formulation is of particular use for studies of rotating hydraulics such as pursued in the book by Pratt
and Whitehead (2008).

3Equation (36.22) is the only place in this chapter where a subscript refers to a tensor label. Otherwise,
subscripts refer to a shallow water layer index as in Section 36.4.2.
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with −h ρu⊗ u the specialization to the shallow water system of the kinetic stress appearing in
the continuously stratified momentum equation (25.61). The component form of the thickness
weighted momentum equation (36.21) is

∂t(hu) + ∂x(hu
2) + ∂y(hu v)− v h f =− g h ∂xη (36.23a)

∂t(h v) + ∂x(hu v) + ∂y(h v
2) + uh f =− g h ∂yη. (36.23b)

Note that when the bottom is flat then ∇h = ∇η so that

∂t(hu) + ∂x(hu
2 + g h2/2) + ∂y(hu v)− v h f =0 (36.24a)

∂t(h v) + ∂x(hu v) + ∂y(h v
2 + g h2/2) + uh f =0. (36.24b)

36.3.2 Geostrophic and ageostrophic contributions
Bringing the Coriolis terms to the right hand side of equations (36.23a) and (36.23b) renders

∂t(hu) + ∂x(hu
2) + ∂y(hu v) = h (−g ∂xη + v f) (36.25a)

∂t(h v) + ∂x(hu v) + ∂y(h v
2) + uh f = h (−g ∂yη − u f). (36.25b)

In the absence of rotation, the right hand side has contributions only from the thickness weighted
pressure gradient. For the case of rotation it sometimes proves useful to decompose velocity into
its geostrophic and ageostrophic components

f u = f (ua + ug) = f ua − g ∂η/∂y (36.26a)

f v = f (va + vg) = f va + g ∂η/∂x, (36.26b)

in which case equations (36.25a) and (36.25b) become

∂t(hu) + ∂x(hu
2) + ∂y(hu v) = h f va (36.27a)

∂t(h v) + ∂x(hu v) + ∂y(h v
2) = −h f ua. (36.27b)

One should be careful not to take the f = 0 limit of these equations since one might spuriously
conclude there is no free surface contribution. Instead, equations (36.25a) and (36.25b) should
be the basis for the f = 0 limit.

36.3.3 Form stresses acting on a shallow water column
The kinetic stress contributes to momentum evolution in equations (36.23a) and (36.23b) via its
divergence. In contrast, the pressure stress contributes as a thickness weighted pressure gradient
body stress. In this subsection, and in all of Section 36.4, we formulate pressure as a contact
stress, in which case it also contributes to momentum evolution as a divergence. In so doing, we
provide a flux-form conservation law for momentum that supports analysis and interpretation.

Reintroducing atmospheric pressure to symmetrize the forces acting on the layer

To expose both the surface and bottom form stresses, we reintroduce the atmospheric pressure,
pa, and thus make use of the effective sea level (35.4)

ηeff = η + pa/(ρ g) = ηb + h+ pa/(ρ g), (36.28)

with the corresponding thickness weighted horizontal momentum equation

∂t(hu) +∇ · [hu⊗ u] + f ẑ × (hu) = −g h∇ηeff . (36.29)
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Exposing the contact pressure stresses

The free surface height equals η = ηb + h, in which case the momentum equation (36.29) is

∂t(hu) +∇ · [hu⊗ u] + f ẑ × (hu) = −(g/2)∇h2 − g h∇[ηb + pa/(ρ g)]. (36.30)

To help interpret this equation it is convenient to write the boundary terms on the right hand
side as

−g h∇[ηb + pa/(ρ g)] = −∇(h pa/ρ) + (pa/ρ)∇(η − ηb)− g h∇ηb (36.31a)

= −∇(h pa/ρ) + (pa/ρ)∇η − (g h+ pa/ρ)∇ηb (36.31b)

= −∇(h pa/ρ) + ρ−1 (pa∇η − pb∇ηb), (36.31c)

so that

−(g/2)∇h2 − g h∇[ηb + pa/(ρ g)] = −∇[(g/2)h2 + h pa/ρ] + ρ−1 (pa∇η − pb∇ηb). (36.32)

The first term on the right hand side is the gradient of the layer integrated hydrostatic pressure

P ≡
ˆ η

ηb

[pa + ρ g (η − z)] dz = h (ρ g h/2 + pa), (36.33)

and the second term exposes the form stresses acting at the surface and bottom of the layer.
With these expressions, the horizontal thickness weighted momentum equation (36.30) becomes

∂(hu)

∂t
+∇ · [hu⊗ u+ IP/ρ] + f ẑ × (hu) = (pa∇η − pb∇ηb)/ρ, (36.34)

where I is the unit tensor. Exposing the zonal and meridional components renders

∂t(hu) + ∂x(hu
2 + P/ρ) + ∂y(hu v)− v h f = (pa ∂xη − pb ∂xηb)/ρ (36.35a)

∂t(h v) + ∂x(hu v) + ∂y(h v
2 + P/ρ) + uh f = (pa ∂yη − pb ∂yηb)/ρ. (36.35b)

The horizontal pressure gradient appears as a continuous operator since we assumed an in-
finitesimal horizontal cross-sectional area for the fluid column. In contrast, the pressure form
stresses appear as a vertical finite difference across the layer interfaces, which results since we are
integrating over the thickness of a finite layer. Furthermore, note how the vertically integrated
pressure contributions appear in a flux-form, which contrasts to the body force version that
appears as thickness weighted pressure gradient.

Kinetic stresses and contact pressure stresses combined into a momentum flux

To anticipate the thickness weighted momentum equation for the stacked shallow water model
in Section 36.4, write the finite difference of the form stresses as

pa∇η − pb∇ηb = p1/2∇η1/2 − p3/2∇η3/2 ≡ δk(pk−1/2∇ηk−1/2). (36.36)

We here introduced the layer interface difference operator

δk(Ψk−1/2) = Ψk−1/2 −Ψk+1/2 = −(Ψk+1/2 −Ψk−1/2), (36.37)

with the backward difference motivated since k increases downward whereas ẑ points upward. In
the following, we choose to define the difference operator to only act on interface fields. Hence,
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any layer quantity, such as the layer thickness, commutes with the interface operator

δk(hAk−1/2) = h (Ak−1/2 −Ak+1/2). (36.38)

Also note that the thickness itself is the difference between the layer interfaces

h = η − ηb = δkηk−1/2, (36.39)

where η1/2 = η and η3/2 = ηb.

With the above notation, the component momentum equations (36.35a) and (36.35b) take
on the matrix-vector form

[
∂t(hu)− h f v
∂t(h v) + h f u

]
= −

[
∂x ∂y h−1 δk

]  D
(u)
1 D

(v)
1 0

D
(u)
2 D

(v)
2 0

D
(u)
3 D

(v)
3 0

 . (36.40)

The 3× 3 matrix is a second order tensor with the first and second columns consisting of the
layer thickness weighted momentum fluxes

ρD(u) = (ρ hu2 + P ) x̂+ ρ hu v ŷ − pk−1/2 ∂xηk−1/2 h ẑ (36.41a)

ρD(v) = ρ hu v x̂+ (ρ h v2 + P ) ŷ − pk−1/2 ∂yηk−1/2 h ẑ, (36.41b)

where we suppressed unnecessary layer indices. The horizontal flux components are given by
minus the thickness weighted kinetic stress, ρ hu ⊗ u, plus the vertically integrated contact
pressure acting on the vertical sides of the shallow water column. The vertical flux component
contains the pressure form stresses acting on the top and bottom interfaces, with these interfacial
form stresses leading to the vertical transfer of horizontal form stresses across the layer boundaries.
These fluxes allow us to write the thickness weighted zonal and meridional momentum equations
as

∂t(hu)− v h f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·D(u) (36.42a)

∂t(h v) + uh f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·D(v). (36.42b)

In this form of the momentum equation, contributions from contact stresses (kinetic stresses and
form stresses) appear as the convergence of these stresses. Note that the divergence operator is
built as combination of the continuous horizontal gradient operator along with a finite difference
vertical operator. The third column of the tensor (36.40) is identically zero and so it can be
readily dropped. However, we include it to connect with the Eliassen-Palm flux tensor as detailed
by Maddison and Marshall (2013). We return to equations (36.42a) and (36.42b) in Section
36.4.9 for the stacked shallow water model.

36.3.4 Comments on the two pressure force formulations
The momentum equations (36.42a) and (36.42b) are written as a flux-form conservation law,
with only the Coriolis force appearing as a body force. This formulation follows that for Cauchy’s
equation of motion as discussed in Section 24.2.3. We make use of these flux-form momentum
equations in Section 36.7 when discussing force balances in a zonally periodic channel, as well as
in Chapter 67 when formulating the thickness weighted averaged shallow water equations. Before
doing so, we focus in Section 36.4 by further unpacking the contact force version of pressure as
it appears in the shallow water model.

What has been gained by writing the momentum equation as the thickness weighted forms
(36.42a) and (36.42b) versus the non-flux form velocity equation (36.19)? Indeed, the thickness
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weighted formulation is arguably less elegant and takes more effort to derive. A key reason we
consider the thickness weighted equations is that they provide a venue to study how pressure
contact forces alter momentum of a shallow water fluid column through interactions with the
bottom, the surface, and adjacent vertical columns. We put this perspective to use in Section
36.7 when studying the force balances on a zonally reentrant channel. Additionally, in Section
36.4 we further pursue the contact force perspective by studying how pressure form stresses
appear within a stacked shallow water model.

36.4 Contact pressure forces in shallow water layers
For a finite region of fluid, if the boundary area integrated contact pressure stress is nonzero,
then pressure accelerates the region. In this section we study the physics and maths of contact
pressure forces as they appear in the stacked shallow water model. As revealed by this study,
the columnar motion of the shallow water fluid is fundamental to the analysis. Namely, the
contact pressure approach is realized by studying the thickness weighted velocity equations of
motion, which determine evolution of the momentum per horizontal area of a shallow water fluid
column. We introduced the thickness weighted approach in Section 36.3 for a single shallow
water layer, and it led to the flux-form momentum equations (36.42a) and (36.42b). The single
layer results are reproduced here for the stacked shallow water model, yet only after furthering
our understanding of how pressure forces act to move momentum through shallow water layers.

36.4.1 Pressure contact force and pressure body force
As discussed in Section 25.2.3, the connection between the body force and contact force expressions
of the pressure force arise through an application of Gauss’s divergence theorem to scalar fields
(see Section 2.7.2)

F press

R = −
ˆ
R

∇p dV = −
˛
∂R
p n̂dS. (36.43)

The first expression on the right hand side is a volume integral of the pressure gradient over
the fluid region, R. This expression provides the body force version of the pressure force. The
second expression is a surface area integral over the region boundary, ∂R, whose outward normal
is n̂. This second expression provides the contact force version of the pressure force. Neither
expression is more or less fundamental. Instead, they offer complementary insights into how
pressure acts to modify the momentum of a fluid, with general notions of this complementarity
the topic of Chapter 28. We here pursue the contact force perspective as a means to understand
the pressure form stress or interfacial form stress acting between layers of a shallow water fluid.
There is also a pressure form stress acting between a fluid layer and the solid earth (topographic
form stress), as well as between a fluid layer and the overlying atmosphere when the atmosphere
has a non-zero mass (atmosphere form stress).

36.4.2 N -layer equations
We start this section with the N -layer shallow water thickness and velocity equations derived in
Section 35.4.2

∂hk

∂t
+∇ · (hk uk) = 0 and [∂t + (uk · ∇)]uk + f ẑ × uk = −(1/ρref)∇pk, (36.44)

where k = 1, N is the layer index with no implied summation over this index, ρref is the Boussinesq
reference density (often chosen as ρref = ρ1), and equation (35.82) gives the horizontal pressure
gradient acceleration. Equations (36.44) are isomorphic to the single layer equations considered
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in Section 36.3.1. Hence, the thickness weighted velocity equation is a simple generalization of
the single layer equation (36.21)

∂(hk uk)

∂t
+∇ · [hk uk ⊗ uk] + f ẑ × (hk uk) = −(hk/ρref)∇pk, (36.45)

where, again, there is no implied summation over the layer index, k. We commonly refer to
the thickness weighted equation (36.45) as the momentum equation since ρdxdy hk uk is the
horizontal momentum of a shallow water fluid column,

36.4.3 Contact pressure force along vertical sides

z
layer k-1

layer k+1

layer k F press
L
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Figure 36.6: A schematic of the contact pressure force per area acting on the boundaries of a vertical column
region within a shallow water layer of density ρk. Since fluid moves as vertical columns in a shallow water layer, we
focus on the pressure forces acting on this column. The horizontal cross-sectional area of the column is vertically
independent. The interface at the lower boundary is at the vertical position z = ηk+1/2, and the upper interface is
at z = ηk−1/2. In accordance with Newton’s third law, pressures are continuous across each of the ηk±1/2 layer
interfaces so that the pressure forces are equal in magnitude yet oppositely directed on the opposite sides to
the interfaces. The layer thickness is the difference between the interface positions, hk = ηk−1/2 − ηk+1/2. The
boundaries of the columnar region feel a contact pressure force from the surrounding fluid that acts inward. The
left side of the column experiences a pressure pL; the right side experiences pR; the upper interface has a pressure
pk−1/2 acting between the layer k − 1 and layer k, and the lower interface has a pressure pk+1/2 acting between
the layer k + 1 and layer k. The net pressure force acting on the column is computed as the area integral of the
pressure acting around the full extent of the column boundaries. The horizontal components of the stress are
known as interfacial form stresses. This figure is identical to Figure 28.5 used to discuss the general notions of
pressure form stress.

We now build up our understanding of pressure form stresses acting in a stacked shallow
water fluid, with the essence of this discussion following that encountered for the single layer in
Section 36.3.3. Our interest concerns the pressure acting on the boundaries of a fluid column
within a shallow water layer, such as shown in Figure 36.6.

The pressure at a vertical position within the shallow water layer-k is given by

pk(z) = ρk g (ηk−1/2 − z) + pk−1/2. (36.46)
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Integrating this pressure over the layer thickness yields

Pk ≡
ˆ ηk−1/2

ηk+1/2

pk(z) dz (36.47a)

= g ρk

[
ηk−1/2 hk − (1/2) (η2

k−1/2 − η2k+1/2)
]
+ pk−1/2 hk (36.47b)

= hk (g ρk hk/2 + pk−1/2). (36.47c)

Since pressure is a linear function of z within a layer, the vertically averaged hydrostatic pressure
within a layer, Pk/hk, equals to the pressure at the upper interface, pk−1/2, plus one-half the
weight per area of the layer, g ρk hk/2.

The zonal pressure force acting on the column sides is the difference between the pressure
integrated across the left and right zonal faces of the column. Assuming the fluid column to
have an infinitesimal horizontal cross-sectional area dxdy, we find the zonal pressure force is
given by

dy

ˆ ηk−1/2

ηk+1/2

(pL − pR) dz = −dx dy
[
(g/2) ρk

∂h2k
∂x

+
∂(hk pk−1/2)

∂x

]
(36.48a)

= −dx dy ∂x
[
(g/2) ρk h

2
k + hk pk−1/2

]
(36.48b)

= −dx dy ∂xPk. (36.48c)

The analogous result holds for the meridional direction, thus rendering the net contact pressure
force acting on the vertical sides of the column

F press
sides = −dx dy∇Pk. (36.49)

Hence, the contact force on the vertical sides of the column is given by the gradient of the layer
vertically integrated pressure, with the vertical integral given by equation (36.47c). It is notable
that this semi-discrete exercise reveals no more information than already contained within the
integral theorem (36.43). Nonetheless, it is useful to see how the integral theorem manifests
within discrete shallow water layers.

36.4.4 Contact pressure force along the top and bottom interfaces

Now consider the contact pressure force acting on the top interface. This interface is generally
sloped, so that the contact force has a component in both the vertical and horizontal directions.
The vertical component to the pressure force maintains hydrostatic balance with the contact
pressure at the lower boundary interface. The horizontal component provides a horizontal
acceleration, with this acceleration (sign and magnitude) determined by the slope of the interface.
Following our discussion in Section 28.3, we term the horizontal pressure acting on the sloped
interface the interfacial form stress.

To mathematically characterize the pressure force on the top interface, z = ηk−1/2, requires
the outward normal

n̂k−1/2 =
∇ (z − ηk−1/2)

|∇ (z − ηk−1/2)|
=

ẑ −∇ηk−1/2√
1 + (∇ηk−1/2)2

. (36.50)

Temporarily assume the interface slope to have a zero projection in the ŷ direction. In this case,
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the outward normal is

n̂k−1/2 =
ẑ − x̂ ∂xηk−1/2√
1 + (∂xηk−1/2)2

(36.51a)

=
ẑ − x̂ tanφk−1/2√
1 + tan2 φk−1/2

(36.51b)

= (ẑ − x̂ tanφk−1/2) cosφk−1/2, (36.51c)

where we defined the interface slope as

∂ηk−1/2

∂x
= tanφk−1/2, (36.52)

with φk−1/2 the angle between the horizontal plane and the interface. Trigonometry leads to an
expression for the area of the top of the column4

dSk−1/2 =
dx dy

cosφk−1/2
, (36.53)

so that the product of the area and the outward normal is given by

n̂k−1/2 dSk−1/2 = dx dy (ẑ − x̂ ∂xηk−1/2). (36.54)

This result generalizes to an interface slope that projects into both horizontal directions

n̂k−1/2 dSk−1/2 = dx dy (ẑ −∇ηk−1/2), (36.55)

so that the contact pressure force acting on layer-k at its top interface is given by

F press
top = −dx dy (ẑ −∇ηk−1/2) pk−1/2. (36.56)

Analogous considerations lead to the contact pressure force acting on layer-k at the bottom of
the column

F press
bot = dx dy (ẑ −∇ηk+1/2) pk+1/2. (36.57)

36.4.5 Form stress
As noted earlier, form stress is the horizontal projection of the contact pressure acting on the
sloped top or bottom interface of the fluid column (Chapter 28). The corresponding forces acting
on layer-k is the horizontal area element multiplied by the form stress

F form stress
top face = dx dy (pk−1/2∇ηk−1/2) (36.58)

F form stress
bot face = −dx dy (pk+1/2∇ηk+1/2). (36.59)

These forces render a mechanically reversible vertical exchange of horizontal momentum. This
momentum exchange occurs without any exchange of matter. Rather, it an inviscid exchange
that occurs according to Newton’s third law (the action/reaction law).

For a specific case, consider a k− 1/2 interface that slopes upward in the x̂ direction (e.g.,
see Figure 36.6). Form stress acting at the interface provides a +x̂ directed acceleration on the
column. For the k + 1/2 interface, a negatively sloped interface also experiences a +x̂ directed

4Equation (36.53) was also found in Section 19.6.3 when developing the kinematic boundary condition for a
material interface.
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acceleration.

36.4.6 Net contact pressure force on a shallow water column

Summing the contact pressure forces (36.49), (36.56), and (36.57), and dividing by the horizontal
area, leads to the net pressure force per horizontal area acting on a column within layer-k

F press
net,k

dx dy
= −∇Pk − (ẑ −∇ηk−1/2) pk−1/2 + (ẑ −∇ηk+1/2) pk+1/2 (36.60a)

= ρk g hk ẑ −∇Pk + pk−1/2∇ηk−1/2 − pk+1/2∇ηk+1/2. (36.60b)

To reach this result we made use of the hydrostatic relation for the vertical pressure difference
across a layer

pk+1/2 − pk−1/2 = ρk g hk. (36.61)

The vertical component of the net contact pressure force balances the weight of the column
within the layer, which is expected since the shallow water fluid is in hydrostatic balance. The
horizontal contact pressure force arises from a horizontal gradient plus the form stress at the
surface and bottom interfaces. The gradient term is removed when integrating horizontally over
the full domain given that the thickness of the layer vanishes upon reaching the coastlines (e.g.,
see Figure 28.6). The resulting net force on the full domain arises just from the weight of the
fluid acting in the vertical, plus form stress at the surface and bottom. We discuss this point
more in Section 36.4.7.

36.4.7 Contact pressure force summed over all layers

Summing the contact pressure force (36.60b) over all layers reveals the contact forces on the
interior layer interfaces vanish, as per Newton’s third law (see Section 28.1), thus leaving just
the form stress at the surface and bottom and the contact pressure force acting on the vertical
sides. Dividing by the horizonal area of the column leads to the net pressure force per area

1

dx dy

N∑
k=1

F press
net,k = ẑ g

N∑
k=1

ρk hk + pa∇η1/2 − pb∇ηb −
N∑

k=1

∇Pk (36.62a)

= (pb − pa) ẑ + pa∇η1/2 − pb∇ηb −
N∑

k=1

∇Pk, (36.62b)

where we wrote the total weight per area within the column as the difference between the bottom
pressure and applied surface pressure

g

N∑
k=1

ρk hk = pb − pa. (36.63)

The horizontal components to the applied and bottom pressure terms in equation (36.62b) arise
from pressure form stresses applied to the interfaces at the top and bottom of the column. The
vertical component arises from the net weight per area of the fluid. The summation term is the
horizontal gradient of the vertically integrated contact pressure applied along the vertical sides
of the column.
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36.4.8 Horizontal pressure force with potential energy gradients
There is another means to express the horizontal pressure force. Here, we expose the gravitational
potential energy per horizontal area for a column of fluid within a shallow water layer

Pk = g ρk

ˆ ηk−1/2

ηk+1/2

z dz = (g ρk/2) (η
2
k−1/2 − η2k+1/2). (36.64)

Use of the layer gravitational potential energy brings the layer vertical integral of the hydrostatic
pressure from Section 36.4.3 into

ˆ ηk−1/2

ηk+1/2

pk(z) dz = g ρk h
2
k/2 + hk pk−1/2 = Pk − g ρk hk ηk+1/2 + hk pk−1/2. (36.65a)

Making use of this result in equation (36.60b), along with a few lines of algebra, yields the net
horizontal contact pressure force acting on a shallow water column

−∇Pk + δk(pk−1/2∇ηk−1/2) = −∇Pk − δk(ηk−1/2∇pk−1/2). (36.66)

To reach the identity (36.66) requires the hydrostatic relation, pk+1/2 − pk−1/2 = g ρk hk, and the
the layer thickness, hk = ηk−1/2 − ηk+1/2. A consistency check notes that the curl of both sides
to equation (36.66) are the same. The identity (36.66) suggests we define the form stress and its
dual

F form = p∇η and F dual form = −η∇p, (36.67)

with both F form and F dual form defined on layer interfaces. These two stresses have the same curl,
and thus impart the same pressure torque on a column of fluid (Chapter 39)

∇× (p∇η) = ∇× (−η∇p). (36.68)

However, these stresses are distinct and as such cannot be arbitrarily interchanged.5

36.4.9 Momentum equation with contact pressure forces
Comparing the body force version and the contact force version

Recall that the thickness weighted velocity equation (36.45), as written in terms of the pressure
gradient body force, is given by6

∂(hk uk)

∂t
+∇ · [hk uk ⊗ uk] + f ẑ × (hk uk) = −(hk/ρref)∇hpk, (36.69)

again with no implied summation over the layer label, k. Alternatively, we can make use of the
net contact pressure force (36.60b) so that

∂(hk uk)

∂t
+∇ · (hk uk ⊗ uk + IPk/ρref) + f ẑ × (hk uk) = δk(pk−1/2∇ηk−1/2)/ρref , (36.70)

5As noted in Section 28.1.3, much of the literature refers to −η∇p as the form stress rather than the dual form
stress. This usage presumably originates from the common application of zonal averages for studying atmospheric
motions, whereby η ∂xp

x
= −p ∂xη

x
. But this identity does not hold for arbitrary averaging operators, such as

the ensemble averages commonly used for turbulence studies. So it is generally necessary to distinguish the form
stress from the dual form stress.

6In equation (36.69) we wrote the gradient on the pressure as ∇h since we are only interested in the horizontal
gradient acting on pk(x, y, z). All other objects in equation (36.69) are just a function of horizontal position within
a layer, so that ∇ acting on them reduces to ∇h. Hence, the subscript on the gradient operator, ∇h, is exposed
only when it acts on a function of z, such as for pk(x, y, z). Since pk(x, y, z) is a linear function of z, its horizontal
gradient is vertically independent within the layer, as illustrated in Figure 35.1.
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where I is the identity tensor, Pk is the layer integrated pressure given by equation (36.47c), and
δk is the difference operator defined by equation (36.37). Choosing the contact pressure force as
in equation (36.66) to expose the potential energy brings the momentum equation (36.70) into
the alternative form

∂(hk uk)

∂t
+∇ · [hk uk ⊗ uk + IPk/ρref ] + f ẑ × (hk uk) = −δk(ηk−1/2∇pk−1/2)/ρref . (36.71)

Equations (36.69), (36.70), and (36.71) allow us to identify the body force and contact force
versions of the thickness weighted horizontal pressure acceleration

−hk∇hpk = −∇Pk + δk(pk−1/2∇ηk−1/2) = −∇Pk − δk(ηk−1/2∇pk−1/2). (36.72)

The balance of pressure torques acting on a shallow water column

A necessary (but not sufficient) check of the identity (36.72) can be found by verifying that the
curl agrees for each expression

−∇× δk(ηk−1/2∇pk−1/2) = ∇× δk(pk−1/2∇ηk−1/2) (36.73a)

= δk[∇× (pk−1/2∇ηk−1/2)] (36.73b)

= δk[∇pk−1/2 ×∇ηk−1/2] (36.73c)

= ∇pk−1/2 ×∇ηk−1/2 −∇(pk−1/2 + g ρk hk)×∇ηk+1/2 (36.73d)

= ∇pk−1/2 ×∇hk − g ρk∇hk ×∇ηk+1/2 (36.73e)

= ∇(pk−1/2 + g ρk ηk+1/2)×∇hk (36.73f)

= ∇(pk−1/2 − g ρk hk + g ρk ηk−1/2)×∇hk (36.73g)

= ∇h[pk−1/2 + g ρk (ηk−1/2 − z)]×∇hk (36.73h)

= ∇hpk ×∇hk (36.73i)

= −∇× (hk∇hpk), (36.73j)

which concurs with the curl of the left hand side of equation (36.72). To reach this result we
set hk = ηk−1/2 − ηk+1/2 and used equation (36.46) for the pressure within a shallow water layer:
pk(z) = ρk g (ηk−1/2 − z) + pk−1/2.

Anticipating our discussion of vorticity for the shallow water fluid in Section 39.1, we observe
that the identity derived above,

∇× δk(pk−1/2∇ηk−1/2) = −∇× (hk∇hpk), (36.74)

says that the difference between the interfacial pressure torques acting on the top and bottom of
a shallow water layer precisely balances minus the torque arising from the thickness weighted
horizontal pressure gradient acting within the layer. This rather remarkable fine tuning of the
interfacial and interior pressure torques is a direct consequence of assuming that the fluid motion
is restricted to extensible vertical columns within each shallow water layer. This balance is not
maintained within a three dimensional fluid, where fluid columns can generally tilt and bend
(Chapter 40).
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Layer summed momentum equation

Taking the vertical sum of the layer-k momentum equation (36.70) leads to the column integrated
horizontal momentum equation

∂U

∂t
+ f ẑ ×U +∇ ·

[
N∑

k=1

(hk uk ⊗ uk + IPk/ρref)

]
= [pa∇η1/2 − pb∇ηb]/ρref , (36.75)

where U is the vertically integrated horizontal velocity given by equation (36.10). The same
vertical sum for equation (36.71) leads to

∂U

∂t
+ f ẑ ×U +∇ ·

[
N∑

k=1

(hk uk ⊗ uk + IPk/ρ1)

]
= [−η1/2∇pa + ηb∇pb]/ρref . (36.76)

The right hand side of equation (36.75) exposes the pressure form stresses acting on the ocean
surface and bottom, whereas the right hand side of equation (36.76) exposes the dual form stress
acting on the ocean surface and bottom.

Decomposing into vertically averaged and vertical deviation velocities

For detailed analyses of the vertically integrated (layer summed) momentum and vorticity
budgets, it is of interest to introduce the vertical averaging operator along with the deviation
from the average,

Φ
z
=

∑N
k=1 hk Φk∑N

k=1 hk

and Φ′
k = Φk − Φ

z
, (36.77)

so that the vertically integrated kinetic stress in equation (36.75) is

N∑
k=1

hk uk ⊗ uk = D [uz ⊗ uz + u′ ⊗ u′z] where D =
∑N

k=1 hk. (36.78)

The velocity, u′
k, is the deviation of the layer-k velocity from the vertically average velocity,

and we refer to it as the internal velocity, whereas the vertically averaged velocity, uz, is the
external velocity.7 The identity (36.78) reveals that the vertically integrated kinetic stress can be
decomposed into a stress arising from internal-internal velocity interactions plus external-external
velocity interactions. By construction, there are no cross-terms (i.e., no internal-external terms)
appearing in this vertically integrated stress.

Momentum fluxes

Following the single layer discussion in Section 36.3.3, we write the momentum equation (36.70)
in the form

∂(hu)

∂t
− v h f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·D(u) (36.79a)

∂(h v)

∂t
+ uh f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·D(v), (36.79b)

7It is also common in the oceanography literature to refer to u′
k as the baroclinic velocity and uz as the

barotropic velocity.
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where we dropped the k label for brevity and introduced the layer momentum fluxes

D(u) = (hu2 + P/ρref) x̂+ hu v ŷ − (pk−1/2 ∂xηk−1/2/ρref)h ẑ (36.80a)

D(v) = hu v x̂+ (h v2 + P/ρref) ŷ − (pk−1/2 ∂yηk−1/2/ρref)h ẑ. (36.80b)

Likewise, we can write the momentum equation (36.71) in the component form

∂(hu)

∂t
− v h f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·E(u) (36.81a)

∂(h v)

∂t
+ uh f = −(x̂ ∂x + ŷ ∂y + ẑ h−1δk) ·E(v), (36.81b)

where the dual layer momentum fluxes are given by

E(u) = (hu2 +P/ρref) x̂+ hu v ŷ + (ηk−1/2 ∂xpk−1/2/ρref)h ẑ (36.82a)

E(v) = hu v x̂+ (h v2 +P/ρref) ŷ + (ηk−1/2 ∂ypk−1/2/ρref)h ẑ. (36.82b)

Besides swapping the vertically integrated pressure, P , for the potential energy, P, the dual
momentum fluxes, E(u) and E(v), make use of the dual form stress, ηk−1/2∇pk−1/2, rather than
the form stress, −pk−1/2∇ηk−1/2. Upon performing an eddy-mean flow decomposition as in
Section 67.6, the eddy correlation portion of the fluxes (36.82a) and (36.82b) lead to the shallow
water Eliassen-Palm fluxes, which are rows in the Eliassen-Palm flux tensor.

36.4.10 Further reading
Ward and Hogg (2011) and Barthel et al. (2017) offer pedagogical treatments of the stacked
shallow water equations in the context of idealized simulations that lend insight into the dynamical
balances. Maddison and Marshall (2013) study the Eliassen-Palm flux tensor for continuously
stratified quasi-geostrophy as well as the Boussinesq hydrostatic equations.

36.5 Energetics for a single layer
In this section we develop budgets for gravitational potential energy, kinetic energy, and
mechanical energy for a single shallow water layer sitting on top of a non-flat bottom. Since the
shallow water model has no internal energy, the total energy of the fluid is just that arising from
the mechanical energy of the macroscopic motion. As part of this discussion we also consider
the available potential energy (APE).

Motion within a shallow water layer occurs in vertical columns, so that we consider the energy
of the layer integrated motion. The gravitational potential energy of a shallow water column is
affected by vertical movement of the top and bottom of the column within the gravitational field.
The kinetic energy is affected by pressure work, with this work, as seen in Sections 36.3 and
36.4, expressed either as a gradient body force or a contact force. Furthermore, pressure work
leading to vertical motion manifests as buoyancy work. Our goal in this section is to study these
energetic transformations and their mathematical expressions. We then extend the energetic
analysis from the single layer to multiple layers in Section 36.6, though note that much of our
work for the single layer is sufficient for multiple layers.

Before diving into details, we note that shallow water energetics can be derived from a layer
integration of the continuously stratified Boussinesq energy equations from Section 29.6. That
approach offers a somewhat more telescopic presentation than given here. However, we choose
to present the derivations in a manner that supports skills in manipulating the shallow water
equations, and further exposes the physical concepts arising from the motion of shallow water
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fluid columns.

36.5.1 Gravitational potential energy

The gravitational potential energy per horizontal area of a shallow water fluid is given by8

Psw = g ρ

ˆ η

ηb

z dz =
g ρ

2
(η2 − η2b) = ρ g h η, (36.83)

where the final equality introduced the layer thickness, h, and average of the layer interface
heights

h = η − ηb and η = (η + ηb)/2. (36.84)

Notice how the gravitational potential energy vanishes when η2 = η2b . For the case η = ηb,
there is no fluid in the column and so we expect the potential energy to vanish. For the case
η = −ηb > 0, there is the same amount of fluid above z = 0 as below, in which case the potential
energy for the column vanishes since we are computing it relative to the z = 0 reference state.
Furthermore, in the flat bottom case, ηb = 0 so that h = η − ηb = η, in which case the potential
energy (36.83) reduces to Psw

flat = g ρ η2/2.

Material time derivative of gravitational potential energy

Taking the material time derivative of the gravitational potential energy in equation (36.83)
yields

DPsw

Dt
= g ρ

[
η
Dη

Dt
− ηb

Dηb
Dt

]
(36.85a)

= g ρ [η w(η)− ηbw(ηb)] (36.85b)

= g ρ h [w(ηb)− η∇ · u] (36.85c)

= g ρ h [w(η)− ηb∇ · u], (36.85d)

where we used equations for the vertical velocity component from Section 35.2.8, and for the
final equality we used equation (35.96) to write

w(η)− w(ηb) = −h∇ · u. (36.86)

Evidently, the potential energy changes according to how the thickness of the layer increases
through vertical motion along the top and bottom interfaces, and as weighted by the position of
these interfaces relative to z = 0. Finally, it is useful to write equation (36.85d) in its flux-form,
which is given by

∂tP
sw +∇ · (uPsw) = Psw∇ · u+ g ρ h [w(η)− ηb∇ · u]. (36.87)

The source term on the right hand side can be written as a buoyancy work term, which we show
next.

8We include the “sw” superscript to distinguish the shallow water energetic terms, which we consider in their
thickness weighted form so their dimensions are energy per area. In other areas of this book, we consider the
energy per mass, such as in Chapters 26 and 29.
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Exposing the role of buoyancy work

An alternative expression for the potential energy evolution is found by working with the final
expression for potential energy in equation (36.83), whose material time derivative is

DPsw

Dt
= g ρ η

Dh

Dt
+ g ρ h

Dη

Dt
= −Psw∇ · u+ ρ g hw, (36.88)

where we introduced the averaged vertical velocity for the layer according to equation (35.102)

w =
Dη

Dt
=

1

2

D(η + ηb)

Dt
. (36.89)

The flux-form version of the potential energy equation (36.88) thus takes on the form

∂tP
sw +∇ · (uPsw) = g ρ hw. (36.90)

This equation is the shallow water analog to the gravitational potential energy budget (26.5)
for a continuously stratified fluid. In particular, we see that the buoyancy work term, g ρ hw,
alters potential energy when there is vertical motion through the gravity field. As a check on
the manipulations, we verify that the potential energy budgets (36.87) and (36.90) are indeed
self-consistent by noting that

Psw∇ · u+ ρ g h [w(η)− ηb∇ · u] = ρ g h [(η − ηb)∇ · u+ w(η)] (36.91a)

= ρ g h [(h/2)∇ · u+ w(η)] (36.91b)

= ρ g h [−(1/2)Dh/Dt+ w(η)] (36.91c)

= ρ g hw. (36.91d)

36.5.2 Kinetic energy and work from pressure gradients

The kinetic energy per horizontal area is

Ksw =
1

2

ˆ η

ηb

ρu · udz =
1

2
ρ hu · u. (36.92)

Its material time derivative is given by

DKsw

Dt
= ρ hu · Du

Dt
+

1

2
ρu · u Dh

Dt
(36.93a)

= −hu · ∇p+ ρ hu · F +
Ksw

h

Dh

Dt
(36.93b)

= −hu · ∇p+ ρ hu · F −Ksw∇ · u, (36.93c)

where we made use of the velocity equation (35.9) along with the addition of a frictional
acceleration, F (see Section 35.6.5), and we used the thickness equation (35.20). Rearrangement
of equation (36.93c) leads to the flux-form budget for layer integrated kinetic energy

∂tK
sw +∇ · (uKsw) = −hu · ∇p+ ρ hu · F . (36.94)

The first term on the right hand side is the projection of the horizontal velocity onto the
horizontal pressure gradient acceleration, thus indicating that kinetic energy for the fluid column
increases if the velocity has a component that is directed down the horizontal pressure gradient.
This term arises from the work done by the horizontal pressure gradient force acting on the
moving fluid columns. The second right hand side term is the projection of the velocity onto the
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thickness weighted horizontal friction, which accounts for work done by friction and/or boundary
stresses on the moving fluid.

For a slight modification to the budget equation (36.94), write the layer pressure as

p = pa + ρ g (η − z) = ρ g (ηeff − z), (36.95)

where we introduced the effective free surface from equation (35.4)

ηeff = η + pa/(ρ g). (36.96)

The thickness weighted pressure work thus takes the form

−hu · ∇p = −h ρ gu · ∇ηeff , (36.97)

so that the kinetic energy equation (36.94) becomes

∂tK
sw +∇ · [u (Ksw + ρ g h ηeff)] = ρ g ηeff ∇ · (hu) + ρ hu · F . (36.98)

36.5.3 Kinetic energy and buoyancy work

Following the second formulation of gravitational potential energy in Section 36.5.1, we here
expose the buoyancy work that is contained in the term ρ g ηeff ∇ · (hu) appearing in equation
(36.98). For this purpose, make use of the thickness equation, ∂th = −∇ · (uh), to write

ρ g ηeff ∇ · (hu) = −ρ g ηeff ∂th = −ρ g ηeff ∂t(δkηk−1/2) = −δk(ρ g ηeff ∂tηk−1/2). (36.99)

For the final two equations we introduced the layer index, with k = 1 for the single layer and
with the layer interfaces η1/2 = η and η3/2 = ηb. Additionally, δk is the finite difference operator
(36.37) so that

h = η − ηb = η1/2 − η3/2 = δkηk−1/2. (36.100)

We inserted ρ g ηeff into the difference operator in equation (36.99) since this term is vertically
independent across the layer.

For the next step, we make use of equation (36.95) for the layer pressure, p = ρ g (ηeff − z),
in which case9

−δk(ρ g ηeff ∂tηk−1/2) = −δk[(p+ ρ g z) ∂tηk−1/2] (36.101a)

= −δk(pk−1/2 ∂tηk−1/2)− δk(ρ g ηk−1/2 ∂tηk−1/2). (36.101b)

This step is somewhat subtle since we replaced ρ g ηeff , which is vertically independent within a
layer, with the sum p+ ρ g z, where both p and ρ g z are functions of z. For equation (36.101b)
we replaced p and z with their interface values since the argument of the difference operator is
evaluated on the layer interfaces. Observe that ∂tηb = 0, and yet it is convenient to carry this
term through the manipulations to retain symmetry of the equations, and to anticipate the same
formulation for the stacked shallow water energetics in Section 36.6.

We now make use of the potential energy in Section 36.5.1 by writing

−δk(ρ g ηk−1/2 ∂tηk−1/2) = −(ρ g/2) ∂t(η2 − η2b ) = −∂tPsw = ∇ · (uPsw)− g ρ hw, (36.102)

where the final step used the potential energy equation (36.90). As advertised, this formulation
exposes the buoyancy work term, −g ρ hw, which then allows us to bring the kinetic energy

9Equations (36.101a) and (36.101b) are inspired by some unpublished notes from Christopher Wolfe.
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equation (36.98) to the form

∂tK
sw +∇ · [u (Ksw −Psw + ρ g h ηeff)] + δk(pk−1/2 ∂tηk−1/2) = −g ρ hw + ρ hu · F . (36.103)

We can simplify the advective flux by writing

−Psw + ρ g h ηeff = −ρ g h η + ρ g η + h pa = h (ρ g h/2 + pa) = P, (36.104)

where the final equality introduced the layer integrated pressure

P =

ˆ η

ηb

p(z) dz = ρ g

ˆ η

ηb

(ηeff − z) dz = h (ρ g h/2 + pa). (36.105)

The kinetic energy equation (36.103) thus takes the form

∂tK
sw +∇ · [u (Ksw + P )] + δk(pk−1/2 ∂tηk−1/2) = −g ρ hw + ρ hu · F . (36.106)

The term δk(pk−1/2 ∂tηk−1/2) on the left hand side is a vertical transfer that, as seen in Section
36.5.4, arises in part from pressure form stresses acting on the boundary of the fluid column.

36.5.4 Kinetic energy and pressure form stress

As a final form of the kinetic energy equation, we recombine the vertical transfer term and the
buoyancy work term in equation (36.106) to have

−g ρ hw − δk(pk−1/2 ∂tηk−1/2) = −g ρ hw − pa [w(η)− u · ∇η] + pb [w(ηb)− u · ∇ηb]. (36.107)

Introducing the bottom pressure and vertically integrated pressure

pb = pa + ρ g h and P = h (pa + ρ g h/2), (36.108)

leads to

−g ρ hw − δk(pk−1/2 ∂tηk−1/2) = (P/h) [w(ηb)− w(η)] + u · (pa∇η − pb∇ηb) (36.109a)

=
P

h

D(ηb − η)
Dt

+ u · (pa∇η − pb∇ηb) (36.109b)

= −P
h

Dh

Dt
+ u · (pa∇η − pb∇ηb) (36.109c)

= P ∇ · u+ u · (pa∇η − pb∇ηb), (36.109d)

so that the kinetic energy equation (36.106) can be written

∂tK
sw +∇ · (uKsw) = u · (−∇P + pa∇η − pb∇ηb) + ρ hu · F . (36.110)

We have thus exposed the work done by pressure form stresses acting on the vertical side of an
expanding or contracting shallow water column, plus those form stresses acting on the top and
bottom layer interfaces.

A somewhat more direct way to derive the kinetic energy equation (36.110) is to return to
the kinetic energy equation (36.94) and make use of the identity (36.72). This identity equates
the thickness weighted horizontal pressure gradient acting on a shallow water column, to the
pressure form stresses acting over the boundary of the column, and for a single shallow water
layer this identity is

−h∇p = −∇P + pa∇η − pb∇ηb. (36.111)
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Nonetheless, we chose the more tedious derivation as it provides a check on the correctness of
the transfer term and the buoyancy work term in the kinetic energy budget (36.106).

36.5.5 Mechanical energy budget
The mechanical energy per horizontal area for the shallow water layer is given by

Msw = Ksw +Psw = (ρ/2) [hu · u+ g (η2 − η2b)] = ρ h (u · u/2 + g η). (36.112)

To form a budget equation for the mechanical energy we simply add the budgets for the
gravitational potential energy and kinetic energy.

Summary of the potential and kinetic energy budgets

We here summarize the flux-form budgets for potential energy and kinetic energy (equations
(36.90), (36.94), (36.98), (36.106), and (36.110)):

∂tP
sw +∇ · (uPsw) = g ρ hw (36.113a)

∂tK
sw +∇ · (uKsw) = −hu · ∇p+ ρ hu · F . (36.113b)

∂tK
sw +∇ · [u (Ksw + ρ g h ηeff)] = ρ g ηeff ∇ · (hu) + ρ hu · F . (36.113c)

∂tK
sw +∇ · [u (Ksw + P )] + δk(pk−1/2 ∂tηk−1/2) = −g ρ hw + ρ hu · F (36.113d)

∂tK
sw +∇ · (uKsw) = u · (−∇P + pa∇η − pb∇ηb) + ρ hu · F . (36.113e)

Example forms of the mechanical energy budget

Adding equations (36.113a) and (36.113b) leads to the mechanical energy budget

∂tM
sw +∇ · (uMsw) = g ρ hw − hu · ∇p+ ρ hu · F , (36.114)

whereas the sum of equations (36.113a) and (36.113d) leads to

∂tM
sw +∇ · [u (Msw + P )] + δk(pk−1/2 ∂tηk−1/2) = ρ hu · F . (36.115)

As we discuss in Section 36.6, equations (36.114) and (36.115) hold also for the mechanical
energy in a N -layer shallow water model.

Specializing to the single layer

Making use of the identity (see equation (36.104))

Msw + P = ρ h (u · u/2 + g ηeff), (36.116)

brings the mechanical energy budget (36.115) to the form

∂tM
sw +∇ · [hu (ρu · u/2 + ρ g η + pa)] + δk(pk−1/2 ∂tηk−1/2) = ρ hu · F . (36.117)

Further note that ∂tηb = 0 so that

∇ · (hu pa) + δk(pk−1/2 ∂tηk−1/2) = ∇ · (hu pa) + pa ∂tη = hu · ∇pa, (36.118)

where ∂tη +∇ · (hu) = 0. We are thus led to single layer mechanical energy budget

∂tM
sw +∇ · [hu (u · u/2 + g η)] = −hu · ∇pa + ρ hu · F . (36.119)
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which proves of use when studying the mechanical energy of shallow water waves in Section
55.3.2.

Shallow water form of the Bernoulli theorem

It is notable that in the steady state of an unforced perfect shallow water fluid (so with pa = 0
and F = 0), equation (36.117) becomes

u · ∇(u · u+ g h) = 0, (36.120)

which is an expression of the Bernoulli theorem (Section 26.9) for steady shallow water flow.

Domain integrated mechanical energy

The budget equations (36.114) or (36.115) have already been layer integrated. So to study the
domain integrated energetics requires only an area integral. The budget equation (36.115) is
ideally suited for this purpose since all terms, except the non-conservative acceleration (e.g.,
friction), are written as a flux divergence and so they represent transfer processes. The domain
integral of the flux-form mechanical energy equation (36.115) is

ˆ
∂tM

sw dS = −
˛
∂S

(Msw + P )u · n̂dl +

ˆ
S

(−pa ∂tη + h ρu · F ) dS, (36.121)

where we set ∂tηb = 0. The boundary integral on the right hand side is computed as a line
integral around the edge of the layer. We consider three options for the layer geometry as
illustrated in Figure 28.6. First, the thickness vanishes at the edge of the domain as in the case
of shorelines, in which case the boundary integral vanishes since each term in the integral is
thickness weighted (and thickness vanishes at the shoreline edge). Second, we assume the layer
is bounded by vertical sidewalls, in which case u · n̂ = 0 at the sidewall boundaries. Third,
the domain has periodicity in one or both directions (e.g., a zonal channel), in which case the
boundary integral again vanishes in the periodic directions.

Evidently, for either of the three types of domain boundaries considered above, the boundary
integral in equation (36.121) vanishes, in which case the domain integrated mechanical energy
budget reduces to

ˆ
S

∂tM
sw dS =

ˆ
S

(−pa ∂tη + h ρu · F ) dS = −
ˆ
S

hu · (∇pa − ρF ) dS. (36.122)

To reach the second equality we wrote

−
ˆ
S

pa ∂tη dS =

ˆ
S

pa∇ · (hu) dS = −
ˆ
S

hu · ∇pa dS, (36.123)

where we set ˆ
∇ · (pa hu) dS = 0, (36.124)

which follows from the same reasoning used for the boundary integral in equation (36.121).
Evidently, there is a nonzero domain integrated atmospheric pressure work only if there is a
nonzero time tendency for the layer thickness. Furthermore, if pa is a spatial constant, volume
conservation for the full layer means that

ˆ
S

∂tη dS = −
ˆ
S

∇ · (hu) dS = 0, (36.125)
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in which case we find that equation (36.122) is indeed self-consistent.

If the domain is bounded by sloping sides, then the mechanical energy vanishes at the
horizontal boundaries, so that the time derivative acting on Msw commutes with the area integral
on the left hand side of equation (36.121). Alternatively, if the layer is bounded by fixed vertical
walls, or is periodic in one or both directions, then the horizontal domain boundaries are static,
again meaning that the time derivative commutes with the horizontal integral. In each case we
can write the domain integrated mechanical energy equation as

d

dt

ˆ
S

Msw dS = −
ˆ
S

hu · (∇pa − ρF ) dS. (36.126)

In the absence of work on the layer from atmospheric pressure, then the total mechanical energy
is affected only via non-conservative forces, such as those from viscous friction. It then follows
that for a perfect and unforced shallow water fluid, then the domain integrated mechanical
energy remains constant, in which case there is an exact exchange between the domain integrated
gravitational potential energy and kinetic energy.

36.5.6 Available potential energy

As discussed in Section 29.9, a huge portion of the gravitational potential energy is not realizable
as kinetic energy, merely because the minimum potential energy state is when the fluid is
at rest with some fluid parcels sitting above others. Available potential energy measures the
gravitational potential energy that can be converted to kinetic energy through a reversible
rearrangement of the fluid. We here display the available potential energy for a single shallow
water layer in a simply connected domain, thus specializing the more general discussion given in
Section 29.9 for a continuously stratified Boussinesq ocean.

Taking z = 0 as the reference level, the domain integrated gravitational potential energy for
a single shallow water layer is

ˆ
Psw dS = g ρ

ˆ
dS

ˆ η

ηb

z dz =
g ρ

2

ˆ
(η2 − η2b ) dS. (36.127)

We define a background or reference state potential energy as the potential energy contained in
the fluid at rest, so that the free surface interface has its uniform area average value. Write the
area average free surface height as

⟨η⟩ = 1

A

ˆ
η dS, (36.128)

where

A =

ˆ
dS (36.129)

is the horizontal area integral over the full domain of the fluid. Hence, the reference state
gravitational potential energy is realized when the surface height is flat at z = ⟨η⟩, so that

ˆ
Psw

ref dS =
g ρ

2

ˆ
(⟨η⟩2 − η2b ) dS. (36.130)

The available potential energy is defined by the difference

EAPE =

ˆ
(Psw −Psw

ref) dS =
g ρ

2

ˆ
(η2 − ⟨η⟩2) dS =

g ρ

2

ˆ
(η′)2 dS ≥ 0, (36.131)

where
η′ = η − ⟨η⟩ (36.132)
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is the anomalous free surface. Note how the bottom topography cancelled out from EAPE since
η2b appears in both Psw and Psw

ref . Also note that to reach the final equality in equation (36.131)
required the identity

ˆ
(η − ⟨η⟩)2 dS =

ˆ
(η2 − 2 ⟨η⟩ η + ⟨η⟩2) dS (36.133a)

=

ˆ
η2 dS +A ⟨η⟩2 − 2 ⟨η⟩

ˆ
η dS (36.133b)

=

ˆ
η2 dS − ⟨η⟩2A (36.133c)

=

ˆ
(η2 − ⟨η⟩2) dS. (36.133d)

Equation (36.131) shows that the available potential energy is non-negative for the shallow
water layer. That is, any slope to the shallow water layer represents a store of positive available
potential energy. We derive the available potential energy in Section 36.6.1 for the N -layer
shallow water model, showing that it too is non-negative.

36.6 Energetics for N layers

We here generalize the single layer mechanical energy analysis from Section 36.5 to N -layers,
making use of the N -layer equations from Section 35.4.

36.6.1 Potential energy and available potential energy

Here we develop the equation for potential energy in a form that naturally leads to the expression
for the available potential energy.

Potential energy for N -layers

To derive the gravitational potential energy per horizontal area in a stacked shallow water model,
first consider the case with N = 3 (Figure 35.6), in which the potential energy per horizontal
area is

Psw = g

ˆ η

ηb

z ρdz = g ρ3

ˆ η5/2

ηb

z dz + g ρ2

ˆ η3/2

η5/2

z dz + g ρ1

ˆ η

η3/2

z dz, (36.134)

which then leads to

2Psw = g ρ3 (η
2
5/2 − η2b ) + g ρ2 (η

2
3/2 − η25/2) + g ρ1 (η

2 − η23/2) (36.135a)

= g η25/2 (ρ3 − ρ2) + g η23/2 (ρ2 − ρ1) + g η21/2 ρ1 − g ρ3 η2b (36.135b)

= ρref (g
r

5/2 η
2
5/2 + gr

3/2 η
2
3/2 + gr

1/2 η
2
1/2)− g ρ3 η2b , (36.135c)

where gr

1/2 = g and η1/2 = η. Generalizing this expression to an arbitrary number of layers leads
to

Psw =
1

2

[
−g ρN η2b + ρref

N−1∑
k=0

gr

k+1/2 η
2
k+1/2

]
, (36.136)

with ηN+1/2 = ηb (see Figure 35.6). The first term is a constant and so does not contribute to
time changes of the potential energy, and so it is commonly ignored in the literature.

CHAPTER 36. SHALLOW WATER DYNAMICS page 1001 of 2158



36.6. ENERGETICS FOR N LAYERS

Available potential energy for N -layers

The time dependent terms in equation (36.136) are positive definite, so that potential energy
increases when the reduced gravity increases and/or the layer interfaces deviate in either direction
from their resting values. This behavior motivates us to introduce the available potential energy
by decomposing the layer interface heights into their area mean and deviations, just as for the
single layer in Section 36.5.6

η′
k±1/2 = ηk±1/2 − ⟨ηk±1/2⟩. (36.137)

Volume conservation for each layer implies that the area mean, ⟨ηk−1/2⟩, is a space and time
constant. Substituting ηk±1/2 = ⟨ηk±1/2⟩+ η′

k±1/2 into equation (36.136) leads to

Psw =
1

2

[
−g ρN η2b + ρref

N−1∑
k=0

gr

k+1/2 ⟨ηk+1/2⟩2
]

+
ρref

2

[
2
N−1∑
k=0

gr

k+1/2 ⟨ηk+1/2⟩ η′k+1/2 +
N−1∑
k=0

gr

k+1/2 (η
′
k+1/2)

2

]
. (36.138)

The first bracketed term is a constant in time, and it measures the potential energy of the system
when all interfaces sit at their area mean values, for which η′

k1/2 = 0. When performing an area

integral over the full domain, the term with ⟨ηk+1/2⟩ η′k+1/2 vanishes since the area integral of

η′
k+1/2 vanishes. We thus define the available potential energy for the N -layer shallow water fluid

EAPE =
ρref

2

ˆ N−1∑
k=0

gr

k+1/2 (η
′
k+1/2)

2 dS ≥ 0. (36.139)

This expression generalizes the single layer form given by equation (36.131). As expected, the
available potential energy increases whether a layer interface moves up or down, and it vanishes
when all interfaces heights equal to their area mean values.

Time evolution of the potential energy

To derive an evolution equation for the potential energy, we take the time derivative of equation
(36.136)

∂tP
sw = ρref

N−1∑
k=0

gr

k+1/2 ηk+1/2 ∂tηk+1/2 = ρref

N−1∑
k=0

gr

k+1/2 ηk+1/2

N∑
j=k+1

∂thj, (36.140)

where the second equality made use of equation (35.80) to relate the interface height and the
layer thickness. We can collapse the double sum through the following identities

N−1∑
k=0

gr

k+1/2 ηk+1/2

N∑
j=k+1

∂thj

= ∂thN

N−1∑
j=0

gr

j+1/2 ηj+1/2 + ∂thN−1

N−2∑
j=0

gr

j+1/2 ηj+1/2 + . . .+ ∂th1 g
r

1/2 η1/2. (36.141)
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The product of reduced gravity and interface height can be written in terms of the shallow water
dynamic pressure from equation (35.88)

pdynk = ρref

k−1∑
j=0

gr

j+1/2 ηj+1/2, (36.142)

in which case we have the potential energy budget

∂tP
sw =

N∑
k=1

pdynk ∂thk = −
N∑

k=1

pdynk ∇ · (uk hk), (36.143)

where the second equality made use of the layer thickness equation (35.79a). Rearrangement
brings this equation to its flux-form expression

∂tP
sw +∇ ·

N∑
k=1

pdynk hk uk =
N∑

k=1

hk uk · ∇pdynk . (36.144)

36.6.2 Potential energy and buoyancy work

Potential energy for N -layers

Following the method for the single layer in Section 36.5.1, we write the gravitational potential
energy for a column of shallow water fluid as

Psw = g

ˆ η

ηb

z ρdz = g
N∑

k=1

ρk hk ηk =
N∑

k=1

Psw
k , (36.145)

where, again,
hk = ηk−1/2 − ηk+1/2 and ηk = (ηk−1/2 + ηk+1/2)/2 (36.146)

makes use of the layer thickness, hk, and the average interface height, ηk. We can think of
equation (36.145) as building the potential energy using layer properties, whereas the alternative
expression (36.136) is built using interface properties.

Time evolution of the potential energy

Taking the time derivative of the potential energy (36.145) leads to

∂tP
sw
k = g ρk ∂t(hk ηk) (36.147a)

= g ρk(∂thk ηk + hk ∂tηk) (36.147b)

= g ρk [−ηk∇ · (uk hk) + hk (wk − uk · ∇ηk)] (36.147c)

= g ρk hkwk − g∇ · (ρk ηk hk uk) (36.147d)

= g ρk hkwk −∇ · (uk P
sw
k ), (36.147e)

so that the flux-form budget is given by

∂tP
sw
k +∇ · (uPsw

k ) = g ρk hkwk. (36.148)

This budget is identical to equation (36.90) that we discussed for a single layer, with the buoyancy
work term exposed on the right hand side.
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36.6.3 Kinetic energy

Kinetic energy and work from pressure gradients

Following our treatment in Section 36.5.2, consider the kinetic energy per horizontal area
contained in a shallow water layer

Ksw
k =

1

2

ˆ ηk−1/2

ηk+1/2

ρref uk · uk dz =
1

2
ρref hk uk · uk. (36.149)

Note that we set the density equal to the reference density as per the Boussinesq ocean, whereby
the inertial mass is determined by the reference density (Section 29.1).

To derive an evolution equation for kinetic energy, multiply the thickness equation (35.79a)
by uk ·uk, and take the dot product of the vector-invariant velocity equation (35.113) with hk uk,

(uk · uk) ∂thk = −(uk · uk)∇ · (hk uk) (36.150a)

hk uk · ∂tuk = −hk uk · ∇(pk/ρref + uk · uk/2) + hk uk · Fk, (36.150b)

where we included an acceleration, Fk, arising from friction or boundary stresses, as discussed in
Section 35.6.5. Making use of these expressions leads to the time derivative of the kinetic energy
per area, Ksw

k = ρref hk uk · uk/2, of a shallow water layer

(2/ρref) ∂tK
sw
k = ∂t(hk uk · uk) (36.151a)

= (uk · uk) ∂thk + 2hk uk · ∂tuk (36.151b)

= −(uk · uk)∇ · (hk uk)− 2hk uk · ∇(pk/ρref + uk · uk/2) + 2hk uk · Fk (36.151c)

= −2∇ · [uk K
sw
k /ρref ]− 2hk uk · ∇(pk/ρref) + 2hk uk · Fk, (36.151d)

which then leads to the equivalent forms for the layer integrated kinetic energy budget

∂tK
sw
k +∇ · (uk K

sw
k ) = −hk uk · [∇pk − ρref Fk], (36.152a)

∂tK
sw
k +∇ · [uk (K

sw
k + hk pk)] = pk∇ · (hk uk) + ρref hk uk · Fk. (36.152b)

Recall that the pressure gradient is given by equation (35.88)

∇pk = ∇pa +∇pdynk = ∇pa + ρref ∇Mdyn
k , (36.153)

which arises from gradients in the applied atmospheric pressure plus the dynamic pressure, and
where Mdyn

k = ρref p
dyn
k is the Montgomery potential from Section 35.4.3. The budget equation

(36.152b) corresponds to the single layer equation (36.98), where we identify the dynamic pressure
for shallow water model with just a single layer

pdyn
k=1 = ρ g ηeff = pa + ρ g η. (36.154)

Kinetic energy and buoyancy work

The single layer discussion in Section 36.5.3 fully anticipated the N -layer case, so that we can
immediately translate equation (36.106) to an arbitrary layer

∂tK
sw
k +∇ · [u (Ksw

k + Pk)] + δk(pk−1/2 ∂tηk−1/2) = −g ρk hkwk + ρk hk uk · Fk. (36.155)
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36.6.4 Comments and further study
The discussion of mechanical energy for the single shallow water layer in Section 36.5.5 directly
transfers to the N -layer case, thus making it unnecessary for us to develop the theory any
further.

Elements of the discussion in this section are motivated by the energetic analysis of Loose
et al. (2022), who detail the mechanical energy in a stacked shallow water model and decompose
the energy budget into mean and transient eddy contributions.

36.7 Momentum balance in a zonal channel
In this section we study the vertically integrated steady momentum budget for a single shallow
water layer of density ρ in a zonally re-entrant channel, such as depicted in Figure 36.7. Such
shallow water models have been used to garner insights into adiabatic aspects of Southern Ocean
circulation, and we keep this application in mind for the following (so that f < 0). We are
particularly interested in the force balances required to reach a steady flow in the presence of
a prescribed constant wind stress acceleration, τ/ρ. The channel has arbitrary topography,
including northern and southern bounds with sloping shelves and shorelines. Applying a zonal
surface stress inserts zonal momentum to the fluid through the ocean surface. For simplicity we
set the atmospheric pressure to zero, pa = 0, so that the bottom pressure is pb = ρ g h, and there
is no form stress acting on the layer’s upper surface.

A similar analysis was presented in Section 28.5 for the vertically integrated axial angular
momentum budget in a continuously stratified fluid. Following from that analysis, we ignore the
role of internal viscous friction. However, we consider bottom frictional stresses written as a
quadratic bottom drag

F drag = −Cd u |u|, (36.156)

where Cd > 0 is a dimensionless bottom drag coefficient.
The horizontal areal extent of the domain is a function of space and time since the shallow

water layer rises up and down the northern and southern shorelines as motion occurs. Even
so, since layer thickness vanishes at the shoreline edge, the horizontal boundary conditions for
the shallow water layer are easy to apply when working with the thickness weighted equations.
That is, all thickness weighted fields vanish at the shoreline edge merely since the thickness
vanishes at the edge. Indeed, working with thickness weighted fields allows us to handle any
degree of vanishing layer thicknesses, including if the topography in the center of the channel
becomes an island rather than a submerged seamount. We also made use of this property of
thickness weighted budgets in Section 28.5 where we also considered sloping sides rather than
the commonly considered, yet less realistic, vertical sides.

36.7.1 Volume transport for steady flow
Before considering the steady force balance, we establish a constraint based on volume conserva-
tion by considering the steady thickness equation

∇ · (hu) = 0. (36.157)

As discussed for non-divergent flow in Chapter 21, this non-divergence condition means that
there is zero net steady transport crossing any simply connected closed contour in the fluid. A
particularly interesting closed contour is one that is periodic and extends across the full zonal
extent of the channel (see Figure 36.7), in which case

˛
hu · n̂ds = 0, (36.158)
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Figure 36.7: A zonally periodic/re-entrant southern hemisphere channel with northern and southern shelves
and arbitrary seamount topography. Flow that leaves either the east or west boundary is assumed to re-enter
the other side, so that the topology is periodic zonally. Left panel: horizontal (plan) view, showing the contours
of the shelves and the topography, with flow leaving one of the zonal ends re-entering the other. The arbitrary
dark solid contour extends across the zonal extent of the channel and is periodic, with a unit vector, n̂, depicted
normal to a point along the contour. In a steady state, the net fluid transport crossing this contour vanishes:¸
hu · n̂ds = 0, meaning that there is no accumulation of fluid within any region of the channel. Right panel:

meridional-vertical view through an arbitrary longitude, along with a sample vertical column of water extending
from the bottom to the surface. The shoreline edges occur where the layer thickness vanishes on the northern
and southern shelves. So although the position of the shoreline edge is a function of space and time (since the
fluid moves up and down the shoreline slope), the vanishing layer thickness found at the edge renders a simple
treatment of boundary conditions for the thickness weighted equations.

where
¸
denotes a periodic line integral across the zonal extent of the channel, n̂ is a unit vector

normal to the contour, and ds is the arc-length line element along the contour. The constraint
(36.158) reflects the inability of the steady flow to build up or deplete the fluid on one region of
the channel at the expense of another. In particular, if the contour follows a constant latitude
line, then we see that for a steady state there is no net meridional transport across a latitude
circle ˛

hu · ŷ dx =

˛
h v dx = 0 steady flow. (36.159)

This result means that the thickness weighted Coriolis acceleration appearing in the zonal
momentum equation vanishes when integrated zonally

˛
f h v dx = f

˛
h v dx = 0 steady flow. (36.160)

We make use of this result in Section 36.7.3.

36.7.2 Steady meridional balances

Consider the thickness weighted meridional momentum equation (36.35b) in the presence of a
wind stress and bottom drag

∂t(h v) + ∂x(hu v) + ∂y(h v
2 + g h2/2) + uh f = −(pb/ρ) ∂yηb + τy/ρ− Cd v |u|. (36.161)

Integrating zonally over the channel removes the zonal transport term, ∂x(hu v), due to period-
icity

˛ [
∂t(h v) + ∂y(h v

2 + g h2/2) + uh f
]
dx =

˛
[−(pb/ρ) ∂yηb + τy/ρ− Cd v |u|] dx. (36.162)
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We can pull the time derivative outside of the zonal integral since the domain is zonally periodic,
in which case the time changes to the net meridional transport across a latitude circle are given
by

d

dt

˛
v hdx =

˛ [
−∂y(h v2 + g h2/2)− uh f − (pb/ρ) ∂yηb + τy/ρ− Cd v |u|

]
dx. (36.163)

Correspondingly, a steady state along a latitude circle is realized by the balance

˛ [
∂y(h v

2 + g h2/2) + uh f
]
dx =

˛
[−(pb/ρ) ∂yηb + τy/ρ− Cd v |u|] dx. (36.164)

The right hand side represents forcing by the topographic form stress, meridional wind stress,
and bottom drag. That forcing, integrated over a latitude circle, balances the left hand side,
which is the Coriolis acceleration arising from zonal motion, plus the meridional divergence of
meridional momentum advection plus layer integrated pressure.

We can eliminate the nonlinear term on the left hand side of the balance (36.164) by
integrating meridionally across the channel. Since h = 0 at the shoreline edges we know that
h v2 + g h2/2 vanishes at the boundaries, thus leaving

ˆ [˛
uh f dx

]
dy =

ˆ [˛
[−(pb/ρ) ∂yηb + τy/ρ− Cd v |u|] dx

]
dy. (36.165)

This is a balance between the integrated meridional Coriolis force on the left hand side with
pressure form stress, winds, and bottom drag on the right hand side.

36.7.3 Steady zonal balance

Now consider the thickness weighted zonal momentum equation (36.35a), here with bottom drag
and wind stress contributions

∂t(hu) + ∂x(hu
2 + g h2/2) + ∂y(hu v)− v h f = −(pb/ρ) ∂xηb + τx/ρ− Cd u |u|. (36.166)

Assuming a steady state and integrating along a latitude circle leads to

ρ

˛
∂y(hu v)dx =

˛
[−pb ∂xηb + τx − Cd ρ u |u|] dx, (36.167)

where we dropped the Coriolis acceleration as per volume conservation in equation (36.160). For
flows that are quasi-linear, the nonlinear term ∂y(hu v) will be subdominant to the wind stress
and topographic form stress, thus leading to the approximate balance along each latitude circle

˛
pb ∂xηb dx ≈

˛
[τx − Cd ρ u |u|] dx nonlinear term small. (36.168)

We realize an exact balance over the full channel domain by meridionally integrating the
latitude balance (36.167), in which the nonlinear term ∂y(hu v) drops out since h = 0 at the
northern and southern shoreline edges

ˆ [˛
τx dx

]
dy =

ˆ [˛
[pb ∂xηb + Cd ρ u |u|] dx

]
dy. (36.169)

Again, this is an exact steady state balance realized by integrating the zonal thickness weighted
momentum equation over the full domain channel. It is a balance between the zonal momentum
input from the winds (left hand side) to the full domain, and the integrated bottom form stress
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plus bottom frictional drag (right hand side).

36.7.4 The role of frictional bottom drag

Consider a flat bottom channel, in which case the area integrated balance (36.169) is between
winds and bottom drag

ˆ [˛
τx dx

]
dy =

ˆ [˛
Cd ρ u |u|dx

]
dy =⇒ ρ−1 ⟨τx⟩ = Cd ⟨u |u|⟩, (36.170)

where the angle brackets denote a channel area mean. Typical empirical values for the dimen-
sionless bottom drag coefficient are

Cd ≈ 2× 10−3. (36.171)

An area mean eastward zonal wind stress of ⟨τx⟩ = 0.1 N m−2 leads to a root-mean-square zonal
velocity of √

⟨u |u|⟩ ≈
√
⟨u2⟩ ≈ 0.2 m s−1, (36.172)

where the first approximation follows from assuming the zonal velocity dominates over the
meridional velocity. How realistic is this number for the Southern Ocean? Field measurements
from the Southern Ocean suggest that vertically and area averaged velocities are far smaller
than this value. Furthermore, if this value occurred in a channel 4000 m deep and 2000 km
wide (a rough idealization of the Antarctic Circumpolar Current), then this vertically averaged
velocity would yield a zonal volume transport of ≈ 1500× 106 m3 s−1, which is about ten times
larger than the measured transport through the Drake Passage.

Munk and Palmén (1951) identified the problematic aspect of assuming a bottom frictional
stress balance for the Southern Ocean. In brief, the field measurements do not support a
frictional balance, either from bottom drag or from internal turbulent viscous friction. By
inference, they proposed that topographic form stress is the dominant term that balances
wind stress in the Southern Ocean. They supported that inference through estimates based on
topographic features encountered by the Antarctic Circumpolar Current in its transit of the
Southern Ocean. Subsequent studies using theory, field measurements, and numerical models
support their conclusion. Indeed, in numerical models one finds that so long as there is only a
modest degree of bottom slope, the bottom topographic form stress dominates over bottom drag.
Given these considerations, we dispense with bottom drag for the remainder of this section.

36.7.5 Correlation between surface height and topographic slope

Given the minor role for bottom drag in establishing a steady channel flow in the Southern
Ocean, the balance (36.169) says that an eastward area integrated wind stress must be balanced
by a westward topographic form stress

ˆ [˛
τx dx

]
dy =

ˆ [˛
pb ∂xηbdx

]
dy. (36.173)

What is required to establish a westward topographic form stress? Quite simply, in the area
mean, there must be an anomalously large bottom pressure in regions where ∂xηb > 0 and an
anomalously small bottom pressure in regions where ∂xηb < 0. Bottom pressure in a shallow
water layer is determined by the column thickness. Hence, to establish the anomalous bottom
pressures requires an anomalously thick fluid column upstream of topographic bumps and thin
fluid column downstream. This situation is illustrated in Figure 36.8 described in Section 36.7.7.

To further reveal the correlation between surface height and bottom topography, write
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pb = ρ g h and use η = h+ ηb so that

pbot ∂xηb = ρ g (η − ηb) ∂xηb = ρ g η ∂xηb − (g ρ/2) ∂xη
2
b . (36.174)

The balance (36.173) thus becomes

⟨τx⟩ = ρ g⟨η ∂xηb⟩. (36.175)

Furthermore, due to zonal periodicity, it is only the zonal anomalies in η and ηb that contribute
so that

⟨τx⟩ = ρ g⟨η′ ∂xη′b⟩, (36.176)

where

η = η′ + L−1

˛
η dx and ηb = η′b + L−1

˛
ηb dx, (36.177)

with L =
¸
dx the zonal length of the channel. With ⟨τx⟩ > 0, we see that surface height

anomalies must be positively correlated with the bottom slope,
´
η′ ∂xη

′
b dx dy > 0. That is, the

surface height is high where topography slopes are positive and low where topography slopes are
negative.

As noted above, we must have a positive correlation between surface height anomalies and
topographic slope, as in equation (36.176). It follows that a nonzero zonal integrated topographic
form stress requires a nonzero phase shift between surface height anomalies and the bottom
topography anomalies. That is, if the surface height and bottom topography were perfectly
aligned along a latitude circle, then

¸
η′ ∂xη

′
b dx = 0, in which case there is a zero zonal integrated

topographic form stress along that latitude. The required phase shift between the free surface
and bottom topography has the free surface shifted ahead (i.e., to the west) of the topography.
We consider an explicit example in Section 36.7.7 to help in our understanding.

36.7.6 Connection to meridional geostrophic transport
Zonal periodicity allows us to swap the zonal derivative in the balance (36.176) so that

⟨τx⟩ = −ρ g⟨∂xη′ η′b⟩ (36.178)

For the large scale flows under consideration here, we can assume that g ∂xη
′ is associated with

an anomalous meridional geostrophic velocity

g ∂xη
′ = f v′g (36.179)

so that the balance (36.178) is
⟨τx⟩ = −ρ ⟨f v′g η′b⟩. (36.180)

Hence, the steady balance is realized with anomalous meridional geostrophic transport correlated
with topographic anomalies. Note that periodicity means that the steady meridional geostrophic
transport has a zero zonal integral

˛
v′g dx = (g/f)

˛
∂xη

′ dx = 0, (36.181)

which follows from the steady volume balance discussed in Section 36.7.1.

36.7.7 Sinusoidal example
To help further our understanding of the balance (36.176), and the phase shift required to
develop nonzero zonal integrated topographic form stress, consider a sinusoidal topography that
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is a function only of the zonal direction. Also assume that the free surface has a sinusoidal shape
(though we do not specify the dynamical mechanism for it to reach this shape). With these
assumptions the anomalous surface height and bottom topography can be written

η′ = ηo sin(κx+ φ) and η′b = D sin(κx) (36.182)

where ηo > 0 is a constant amplitude for the free surface undulations, D > 0 is the constant
amplitude for the bottom undulations, κ = 2π n/L is the wavenumber for the undulations, n > 0
is an integer, L is the size of the zonal channel, and φ is a phase shift between the topography
and the free surface. The corresponding meridional geostrophic flow is given by

f v′g = g ∂xη
′ = g κ ηo cos(κx+ φ). (36.183)

Plugging into the balance (36.176) leads to

sinφ =

[
L ⟨τx⟩

Dρg ηo π n

]
. (36.184)

For ⟨τx⟩ > 0 we see that the free surface undulations are, as expected, shifted to the west of the
bottom topography undulations. As an explicit example from an idealized channel configuration,
set

L = 107 m D = 103 m ηo = 1 m τx = 1 N m−2, (36.185)

in which case
sinφ ≈ (π n)−1. (36.186)

For n = 1, which corresponds to just one topographic bump, then we have a phase shift of
φ ≈ 18◦, and this case is depicted in Figure 36.8 for the southern hemisphere. If there are two
bumps, then the phase shift is reduced to φ ≈ 9◦ since each bump shares half the burden of
balancing the wind stress.

Summarizing the dependencies

We here highlight the various dependencies in the phase equation (36.184).

• The phase shift increases with both larger wind stress and larger zonal extent to the
domain. This dependency arises since with enhanced wind stress and an enhanced zonal
fetch (distance over which the winds blow), there is an increase in zonal momentum inserted
to the ocean that must be absorbed by the bottom. The larger phase shift increases this
topographic form stress, thus enabling the balance.

• Conversely, the phase shift decreases for larger topography D, and larger undulations in the
free surface, ηo, in which case the free surface becomes more aligned with the topographic
ridges. This result follows since the topographic form stress is larger for larger topography,
thus requiring less phase shift in the surface wave patterns to affect a bottom pressure
anomaly.

• Phase shifts decrease when there are more topographic bumps in the channel, with n the
parameter setting the number of bumps. For the Southern Ocean, Munk and Palmén
(1951) identified around four or five large-scale topographic features that provide the
dominant balance for the zonal wind stress.

• What if the parameters are such that the right hand side of equation (36.184) has a
magnitude larger than unity (e.g., huge winds, very long fetch, small topography, small
surface height amplitude)? This situation signals that topographic form stress is insufficient
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Figure 36.8: Zonal-vertical view of the wind stress and bottom pressure acting on a steady state layer of shallow
water fluid flowing over a sinusoidal bump (north is directed into the page and east is to the right). The eastward
surface stress acts in the +x̂ direction and it is balanced by a westward topographic form stress. To establish
this form stress when integrated over the zonal extent of the channel requires the sea surface undulations to
be phase shifted to the west of the bottom topography undulations, with the phase shift, φ, given by equation
(36.184). To better visualize the sea surface, the surface undulations are in units of cm whereas the bottom
topography undulations are in units of m. In general, for the topographic form stress to balance the wind stress,
the bottom pressure must be anomalously large where ∂ηb/∂x > 0 and small where ∂ηb/∂x < 0, thus leading to
the anomalously thick fluid column upstream of the bump and thin column downstream. This correlation also
leads to a corresponding meridional geostrophic flow as shown here by the green curve for the southern hemisphere
where f < 0, with vg > 0 (northward) when shown above the horizontal line and vg < 0 (southward) when below
the line. Compare this figure to the analogous schematic in Figure 28.8.

to balance the winds. In a numerical model, one can merely increase the topograhic
wavenumber, n, to increase the topographic form stress. Yet where topography is fixed,
such as in Nature, then bottom frictional stresses come into play to help reach a force
balance (see Section 36.7.4).

Distinguishing steady motion from zero motion

Why is the phase shift (36.184) independent of the fluid depth? One might suspect that to reach
a force balance would require more form stress if there is more fluid. Instead, the force balance,
as reflected in the phase shift, depends on the zonal anomalies of the surface height and bottom
topography. The depth of the fluid is absent.

The answer to this question is that we are seeking a force balance. When forces are balanced
there is no acceleration and thus, as per Newton’s second law, the fluid maintains a constant
velocity relative to the laboratory reference frame. If we instead wished to stop the fluid, then
we would need to decelerate all fluid elements to zero velocity. Determining the forces needed to
stop the fluid requires the total fluid mass and thus its depth (as well as the time over which the
fluid is to stop). If the fluid is in motion, then halting the motion requires a net force, and that
is a very different consideration than the case of zero net force. So in brief, a steady state refers
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to the absence of time dependence in the fluid from the perspective of an Eulerian (laboratory)
observer, with a steady state not necessarily a static state.

36.7.8 Comments and further study

Gyres and channels

The dominance of topographic form stress for the steady Southern Ocean balance contrasts to
many of the frictional theories for gyre circulations, such as the classic solutions discussed in
Section 39.7. In those theories, based on flat bottom and vertical side configurations, the curl of
the wind stress is balanced by torques created by friction.10 One is thus led to conclude that
zonally re-entrant channels exhibit a fundamentally distinct steady force balance from gyres.
However, as discussed in Section 28.5.11, Hughes and de Cueves (2001) showed how topographic
form stresses associated with sloping sides can lead to an inviscid balance for gyres. That is,
friction is far less important so long as the bottom can support topographic torques. In this
manner, gyres and channels share much in common so long as they both contain topography
and sloping sides.

The case with vertical stratification

The analysis of a single shallow water layer has direct relevance to flow in a stratified fluid. The
reason is that when integrating over the full depth of the fluid, internal interfacial form stresses
cancel pairwise.11 The resulting net balance for contact forces is concerned with just those
acting on the boundaries at the surface and the bottom. This property of contact forces was also
implicit in Section 28.5 where we developed the angular momentum budget for a continuously
stratified fluid. In that discussion we encountered the correlation between bottom pressure and
bottom topography slope for steady flow in a channel as realized by a balance between wind
stress and bottom form stress (see Figure 28.8). This correlation also holds for the single shallow
water layer.

Although the single layer provides a direct connection to the vertically integrated momentum
in a continuously stratified fluid, the direct connection between undulations in the sea surface
height and bottom pressure is more nuanced when allowing for stratification. We here outline
some of the considerations that arise with flow in a stratified channel with a topographic bump.
Our presentation is rather incomplete, with a more thorough analysis supported by numerical
simulations.

Following the analysis of Section 27.2, we decompose the horizontal gradient of bottom
pressure according to equation (27.48)

∇hpb = ∇hpa + g ρ(η)∇hη︸ ︷︷ ︸
external contribution

− ρ0

ˆ η

ηb

∇hbdz′︸ ︷︷ ︸
internal contribution

≡ ∇hpbext +∇hpbint, (36.187)

where b = −g (ρ− ρo)/ρo is the Archimedean buoyancy from Chapter 30. The external pressure
gradient is all that is available for a single shallow water layer, so that there is a direct correlation
between bottom topography and surface pressure in the steady channel flow where bottom form
stress balances wind stress. In contrast, for a continuously stratified fluid, or for a stacked
shallow water fluid, the internal contribution to the pressure gradient is nonzero since buoyancy
generally has a horizontal gradient.

As discussed in Section 16.4 of Olbers et al. (2012), watermasses in the Southern Ocean
generally align themselves with lighter water on the upstream side of topographic features (to

10We encounter such balances in Chapter 39 when studying vorticity.
11We discussed this property of interfacial form stresses in Sections 25.2, 28.3, and 36.4.
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the west), and heavy water on the downstream side. This configuration means that the internal
pressure is lower upstream of a topographic bump and higher downstream, thus leading to a
westward internal pressure gradient force. To realize a steady flow with a balance between
bottom pressure form stress and wind stress requires the external contribution to the bottom
pressure gradient to counteract the internal contribution. Hence, the free surface height must
have larger undulations in the presence of vertical stratification than without, with high values
upstream of the bump and low values downstream. We depict this configuration in Figure 36.9,
with the caption offering further details. Zhang et al. (2024) further detail the facets of the
dynamical balances, including transient adjustments towards the steady balances discussed here.
They offer a particularly clear distinction between the barotropic dynamics (as realized by a
single shallow water layer) and baroclinic dynamics. Furthermore, they emphasize the central
role of the barotropic dynamics for maintaining the momentum balance even for stratified fluid.

z

x

τx

ρ′ < 0
ρ′ > 0

η′ > 0 η′ < 0

p′b > 0 p′b > 0

Figure 36.9: A schematic of steady flow in a two-layer zonally periodic channel with a topographic bump and
with bottom pressure form stress balancing zonal wind stress. To realize this balance requires anomalously high
bottom pressure on the upstream side of the bump and anomalously low bottom pressure on the downstream side,
where anomalies are relative to the zonal mean. Such anomalous bottom pressure is just as for a single shallow
water layer. However, for a stratified fluid the bottom pressure is established by the sum of effects from the
external and internal pressure fields. The internal pressure field arises from density, here shown with anomalously
light water on the upstream side of the bump and heavy water downstream, such as occurs in the Southern Ocean.
This density field leads to a westward contribution to the bottom pressure gradient force; i.e., anomalously low
bottom pressure on the upstream side of the bump and high bottom pressure on the downstream. The external
pressure field arises from the free surface undulations (red line), with a high upstream of the bump and low
downstream. This free surface field leads to an eastward contribution to the bottom pressure gradient force; i.e.,
anomalously high bottom pressure on the upstream side of the bump and low bottom pressure on the downstream.
For the bottom pressure form stress to balance the wind stress, we must have the external pressure gradient
dominate the internal pressure gradient. Note that undulations of the free surface height are roughly 100-300
times smaller than those of the density field, with the relative undulations set according to the reduced gravity as
described in Section 35.3.

Meridional overturning circulation

The balances in this section are modified when allowing for the vertical transfer of volume
between the layers as required to admit a meridional-vertical overturning circulation. In this
case, there can be net meridional motion along a latitude circle to thus add the Coriolis force to
the steady force balance, including an Ekman transport (balance between Coriolis and surface
stress as in Section 33.1) for the layer feeling the zonal surface stress. Section 21.7 of Vallis
(2017) as well as Chapter 16 of Olbers et al. (2012) provide pedagogical discussions of flow in
the Antarctic Circumpolar Current, in which interfacial pressure form stress developed from
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baroclinic eddies provides a mechanism for vertically redistributing horizontal momentum. The
studies from Webb and de Cueves (2007) and Zhang et al. (2024) detail how the barotropic
dynamics, which act over days and weeks, continue to play the dominant role in balancing the
surface wind stress and topographic form stress, even in the case of a stratified ocean with eddy
form stresses, which have a time scale of years.

36.8 Angular momentum in a rotating tank
As our second case study for this chapter, we study angular momentum for a layer of shallow
water fluid in a rotating cylindrical tank. This system was first discussed in Section 27.5, where
we developed the horizontal equation of motion

Du

Dt
+ f ẑ × u = −∇

(
p/ρ+ ge z − Ω2 r2/2

)
, (36.188)

where r2 = x2 + y2 is the radial distance from the rotational axis,

Ω = f/2 (36.189)

is the constant angular rotation rate, and the vertical component to the right hand side is the
hydrostatic balance, ∂p/∂z = −ρ ge. Where convenient, we make use of the polar coordinates
(see Chapter 4.22) in the following, whereby

x = r cosϑ (36.190a)

y = r sinϑ, (36.190b)

with the polar angle ϑ measured counter-clockwise from the positive x-axis.

36.8.1 Angular momentum for a column of shallow water fluid
The angular momentum for a column of shallow water fluid, computed with respect to the
vertical rotational axis, is given by (see Sections 14.5 and 24.7)

Lz = δM [x× (u+Urigid)] · ẑ, (36.191)

where x = x x̂+ y ŷ = r r̂ is the position vector relative to the rotational axis, δM = ρ h δA is
the constant mass for the fluid column, and the rigid-body rotation velocity is

Urigid = (f/2) ẑ × x = rΩ ϑ̂, (36.192)

where ẑ × r̂ = ϑ̂ is the azimuthal unit vector pointing counter-clockwise around the origin.

We can further massage the expression for the angular momentum by writing

x× u = (x v − y u) ẑ = r2ϑ̇ ẑ, (36.193)

where ϑ̇ = Dϑ/Dt is the angular velocity. Likewise, we have

x×Urigid = r2Ω ẑ, (36.194)

so that the angular momentum can be written

Lz = δM [x× (u+Urigid)] · ẑ = δM r2 (ϑ̇+Ω). (36.195)
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36.8.2 Material time evolution of the angular momentum

The material time evolution for the angular momentum is given by

DLz

Dt
= δM [u× (u+Urigid)] · ẑ + δM

[
x×

(
Du

Dt
+

DUrigid

Dt

)]
· ẑ. (36.196)

Note that we set
D(δM)

Dt
= ρD(h δA)Dt = 0 (36.197)

since the shallow water fluid columns each have constant volume as they move with the horizontal
flow (Section 35.2.5). Using the rigid-body rotation velocity given by equation (36.192), and
with a constant rotation rate, yields

u×Urigid + x×
DUrigid

Dt
= u× (Ω× x) + x× (Ω× u) (36.198a)

= (x · u) f ẑ. (36.198b)

Making use of the material evolution of the horizontal velocity given by equation (36.188) renders

[
x× Du

Dt

]
· ẑ =

(
x×

[
−f ẑ × u−∇

(
p/ρ+ ge z − Ω2 r2/2

)])
· ẑ (36.199a)

= −f (x · u)− (x× g∇η) · ẑ. (36.199b)

The centrifugal term dropped out since

x×∇r2 = 2x× r r̂ = 2x× x = 0. (36.200)

The gravitational term dropped out since

(x×∇z) · ẑ = (x× ẑ) · ẑ = 0, (36.201)

as does the vertical component to the pressure gradient. We are thus left with

1

δM

DLz

Dt
= −g (x×∇η) · ẑ. (36.202)

Consequently, the axial angular momentum for a fluid column is modified by the torque from the
horizontal pressure gradient caused by undulations in the free surface height. Note how there is
no contribution from the Coriolis acceleration, so that the evolution of angular momentum is
the same whether viewed in the laboratory frame or rotating frame.

We can bring the expression (36.202) into a more transparent form by switching to polar
coordinates

x×∇η = r r̂ ×
[
r̂
∂η

∂r
+ ϑ̂

1

r

∂η

∂ϑ

]
=
∂η

∂ϑ
ẑ, (36.203)

so that
1

δM

DLz

Dt
= −g ∂η

∂ϑ
. (36.204)

This result is directly analogous to the angular momentum evolution for a fluid moving around
a sphere as derived in Section 24.7. Namely, in the presence of angular pressure gradients, the
fluid experiences a torque that in turn leads to a change in the angular momentum relative to
the vertical rotation axis.

CHAPTER 36. SHALLOW WATER DYNAMICS page 1015 of 2158



36.9. EXERCISES

36.8.3 Materially invariant angular momentum
The angular momentum for a fluid column is materially invariant (i.e., a constant on a material
fluid parcel) if

DLz

Dt
= 0⇐⇒ ∂η

∂ϑ
= 0. (36.205)

For a flat bottom, equation (27.106) says that the free surface takes on a radial parabolic shape
when the fluid is in rigid-body rotation. In this case, ∇η is in the radial direction, in which case
x×∇η = 0. Consequently, when the fluid is in rigid-body rotation, the angular momentum for
each fluid column remains materially constant.

36.8.4 Comments
The material evolution equation (36.202) also holds for a fluid on the f -plane tangent to a sphere.
The f -plane formulation is slightly simpler than the tank since the centrifugal term is absorbed
into the geopotential (see Section 13.10.4). However, the tank is arguably more pedagogical as it
is simpler to visualize and to conduct laboratory experiments. See Section 6.6.4 of Marshall and
Plumb (2008) for more discussion of rotating tank experiments. Also, we return to this physical
system in Section 59.3 when studying centrifugal instability of cyclostrophically balanced flow.

36.9 Exercises
exercise 36.1: potential temperature slopes in atmosphere and ocean
Use the two-layer thermal wind relations from Section 36.2.2, also known as Margules’ relation,
to estimate the slope of the potential temperature surfaces in the atmosphere and ocean. This
question is based on exercise 3.2 of Vallis (2006).

(a) Model the atmosphere as two immiscible shallow water layers of different density stacked
one above the other. Using reasonable values for any required physical parameters,
estimate the vertical displacement of the interfacial surface associated with a pole-to-
equator temperature difference of 40K. You may wish to consult Wallace and Hobbs (2006)
or Marshall and Plumb (2008) for physical scales.

(b) Estimate a vertical interfacial displacement in the ocean thermocline associated with a
temperature difference of 20K over a horizontal distance of 4000 km. The interface between
the two shallow water layers offers a crude representation of the main oceanic thermocline.
Ignore salinity effects so that temperature and density are directly proportional.

Double-check your results by examining some atmosphere and ocean latitude-height profiles for
potential temperature (e.g., Figure 5.8 of Marshall and Plumb (2008)).

exercise 36.2: Circular steady geostrophic flow
Consider a single layer of shallow water fluid in steady geostrophic balance on a f -plane so that

f ẑ × ug = −g∇η. (36.206)

Assume f > 0 and that the free surface has a circular Gaussian shape

η = η0 e
−r2/(2σ2) (36.207)

where r2 = x2+y2 is the squared radial position and σ is the standard deviation of the Gaussian.

page 1016 of 2158 geophysical fluid mechanics



36.9. EXERCISES

(a) Determine the horizontal geostrophic velocity components corresponding to this free surface
undulation. Write the solution in both Cartesian coordinates and polar coordinates. Is
the flow oriented cyclonic or anti-cyclonic?

(b) Determine the streamlines for the flow. Hint: recall the discussion in Section 17.7.2. What
is the geometric shape of a streamline?

exercise 36.3: Steady state momentum and geostrophy
Consider a single layer of shallow water fluid with zero boundary mass fluxes through the
surface. Assume the lateral boundaries are solid. All boundaries are thus material. The domain
integrated horizontal momentum (within the rotating reference frame) is defined by

P =

ˆ
ρudV =

ˆ
ρ hudS. (36.208)

Show that for tangent plane motion (Section 24.5)

dP

dt
= 0 (36.209)

can be realized either by (A) zero flow everywhere, (B) flow that is in geostrophic balance at
each point, or (C) flow that is in geostrophic balance as a global integral.

exercise 36.4: Thickness weighted momentum for two layers
Following the methods from Section 36.3, derive the thickness weighted momentum equation
for an inviscid two-layer stacked shallow water fluid. That is, derive the evolution equation for
h1 u1 + h2 u2, thus providing the two-layer version of equation (36.21).

exercise 36.5: Contact pressure force on a single layer
As a check on our calculation of the contact pressure force (36.60b), consider a single shallow
water layer under a massless atmosphere. Show that the contact pressure force per mass is given
by

F press
net

M
= g ẑ − g∇η. (36.210)

As expected, the horizontal component of this force equals to the pressure gradient body force
per mass detailed in Section 35.2.1. The vertical pressure force balances the weight of the fluid
as per the hydrostatic balance.

exercise 36.6: Topographic form stress for a ridge
As in Section 36.7, apply a constant eastward zonal wind to a zonally reentrant channel with a
single shallow water layer. Let the layer flow over a topographic ridge of height H above the
surrounding flat bottom, and let the ridge be a function just of zonal position, η′b(x). Furthermore,
assume the ridge has a constant slope on both the upstream (west) side, Sup, and downstream
(east) side, Sdn. An example is depicted in Figure 36.10. Following the force balance (36.176),
derive an expression for the free surface height zonally averaged over the upstream side of the
ridge, minus the free surface height zonally averaged over the downstream sides of the ridge,

∆η′ = (η′)up − (η′)dn, (36.211)

where

(η′)up =

´ x0
xup

η′ dx

Lup

and (η′)dn =

´ xdn
x0

η′ dx

Ldn

. (36.212)

Show that the expression for ∆η′ is independent of the two slopes. Instead, the only geometric
property that determines ∆η′ is the ridge height, H. Discuss this result.

CHAPTER 36. SHALLOW WATER DYNAMICS page 1017 of 2158



36.9. EXERCISES

x

z

H

τx > 0

Lup

<latexit sha1_base64="BQ+SWFlK0JreMy95bt+yqF2U4io=">AAACE3icbZC7TsMwGIWdcivlFujIYlEhMVUJqgRsFSwMDEWiF6mJIsd1Wqu2E9kOIor6GMys8AxsiJUH4BF4C9w2A7Q9kqVP5/y/bJ8wYVRpx/m2SmvrG5tb5e3Kzu7e/oF9eNRRcSoxaeOYxbIXIkUYFaStqWakl0iCeMhINxzfTPPuI5GKxuJBZwnxORoKGlGMtLECu3oX5B4P46fc01RkME0mk8CuOXVnJrgMbgE1UKgV2D/eIMYpJ0JjhpTqu06i/RxJTTEjk4qXKpIgPEZD0jcoECfKz2ePn8BT4wxgFEtzhIYz9+9GjrhSGQ/NJEd6pBazqbkyC/kqu5/q6NLPqUhSTQSe3x+lDOoYTguCAyoJ1iwzgLCk5gsQj5BEWJsaK6Ybd7GJZeic191G/eq+UWteFy2VwTE4AWfABRegCW5BC7QBBhl4Aa/gzXq23q0P63M+WrKKnSr4J+vrFwnVnnk=</latexit>

xup

<latexit sha1_base64="GWJItwJuIsY1mnDVyqqWIhKRfyQ=">AAACE3icbZDLSgMxGIUz9VbrbbRLN8EiuCozUlB3RTcuK9gLdIYhk2ba0CQzJBnpMPQxXLvVZ3Anbn0AH8G3MG1noW0PBD7O+X+SnDBhVGnH+bZKG5tb2zvl3cre/sHhkX180lFxKjFp45jFshciRRgVpK2pZqSXSIJ4yEg3HN/N8u4TkYrG4lFnCfE5GgoaUYy0sQK7Oglyj4fxJPc0FRlMk+k0sGtO3ZkLroJbQA0UagX2jzeIccqJ0Jghpfquk2g/R1JTzMi04qWKJAiP0ZD0DQrEifLz+eOn8Nw4AxjF0hyh4dz9u5EjrlTGQzPJkR6p5Wxmrs1Cvs7upzq69nMqklQTgRf3RymDOoazguCASoI1ywwgLKn5AsQjJBHWpsaK6cZdbmIVOpd1t1G/eWjUmrdFS2VwCs7ABXDBFWiCe9ACbYBBBl7AK3iznq1368P6XIyWrGKnCv7J+voFU5GepQ==</latexit>

xdn

<latexit sha1_base64="LcwA8WCzzfsBZhmUV3W/EYJm0ow=">AAACE3icbZDLSgMxGIUz9Vbrrdqlm2ARXJUZKai7ohuXFewFOsOQSdM2NJchyUjLMI/h2q0+gztx6wP4CL6FaTsLbXsgcDjn/0nyRTGj2rjut1PY2Nza3inulvb2Dw6PyscnbS0ThUkLSyZVN0KaMCpIy1DDSDdWBPGIkU40vpv1nSeiNJXi0UxjEnA0FHRAMTI2CsuVSZj6PJKT1DdUTGFfZFlYrro1dy64arzcVEGuZlj+8fsSJ5wIgxnSuue5sQlSpAzFjGQlP9EkRniMhqRnrUCc6CCdPz6D5zbpw4FU9ggD5+nfjRRxrac8spMcmZFe7mbh2i7i6+JeYgbXQUpFnBgi8OL+QcKgkXAGCPapItgwi4IirKj9AsQjpBA2FmPJsvGWSaya9mXNq9duHurVxm1OqQhOwRm4AB64Ag1wD5qgBTCYghfwCt6cZ+fd+XA+F6MFJ9+pgH9yvn4BNNmekg==</latexit>

Ldn

<latexit sha1_base64="mrVB/vzDph98YJ6hb16QzjJVroU=">AAACE3icbZDLSgMxGIUz9VbrbbRLN8EiuCozUlB3RTcuXFSwF+gMQyZN29BchiQjlqGP4dqtPoM7cesD+Ai+hWk7C217IHA45/9J8sUJo9p43rdTWFvf2Nwqbpd2dvf2D9zDo5aWqcKkiSWTqhMjTRgVpGmoYaSTKIJ4zEg7Ht1M+/YjUZpK8WDGCQk5GgjapxgZG0Vu+S7KAh7LpywwVIxhT0wmkVvxqt5McNn4uamAXI3I/Ql6EqecCIMZ0rrre4kJM6QMxYxMSkGqSYLwCA1I11qBONFhNnv8BJ7apAf7UtkjDJylfzcyxLUe89hOcmSGerGbhiu7mK+Ku6npX4YZFUlqiMDz+/spg0bCKSDYo4pgwywKirCi9gsQD5FC2FiMJcvGXySxbFrnVb9WvbqvVerXOaUiOAYn4Az44ALUwS1ogCbAYAxewCt4c56dd+fD+ZyPFpx8pwz+yfn6BesOnmY=</latexit>

x0

<latexit sha1_base64="oLy8m4GMcYFUmu1+nNuYxK5/16o=">AAACA3icbZDNTgIxFIXv4B/iH+rSTSMxcUVmDIm6I7pxiYkDJDAhndKBhrYzaTtGMmHp2q0+gzvj1gfxEXwLC8xCgZM0+XLOvWl7woQzbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TRahPYh6rdog15UxS3zDDaTtRFIuQ01Y4up3mrUeqNIvlgxknNBB4IFnECDbW8p96mTvplStu1Z0JLYOXQwVyNXrln24/Jqmg0hCOte54bmKCDCvDCKeTUjfVNMFkhAe0Y1FiQXWQzR47QWfW6aMoVvZIg2bu340MC63HIrSTApuhXsym5sosFKvsTmqiqyBjMkkNlWR+f5RyZGI0LQT1maLE8LEFTBSzX0BkiBUmxtZWst14i00sQ/Oi6tWq1/e1Sv0mb6kIJ3AK5+DBJdThDhrgAwEGL/AKb86z8+58OJ/z0YKT7xzDPzlfv+zdl+k=</latexit>

Figure 36.10: Zonal-vertical view of a single layer of shallow water fluid moving in a zonally re-enetrant channel
for use in Exercise 36.6. The domain has a topographic ridge that is a function just of the zonal direction and has
constant slopes on its western and eastern sides. There is a constant eastward zonal wind stress.

exercise 36.7: Geostrophic transport
Consider a zonal-vertical section of shallow water flow in the middle latitude northern hemisphere.
Let the section be 1000 m deep and away from side and bottom boundaries. Assume the sea
level is 1 cm higher at the eastern end of the section than the western end. Estimate the mass
transport (kg/sec) of constant density seawater going through the section. What direction is
the transport? Hint: Assume geostrophic balance; choose a representative constant seawater
density; and note that the zonal width of the section cancels out so it is not needed.

exercise 36.8: APE for two shallow water layers
Compute the APE for two shallow water layers using the notation from Figure 35.6 with
nontrivial bottom topography, z = ηb(x, y). Show that the APE is non-negative. Assume the
domain is simply connected. Hint: The answer is given by specializing the arbitrary N results
in equation (36.139) to the special case of the N = 2. However, for this exercise you should not
merely quote that result. Instead, show all steps starting from the potential energy for an N = 2
layer model.

exercise 36.9: ratio of KE to APE for single layer f-plane geostrophy
Consider a single layer of shallow water fluid in geostrophic balance on an f -plane with a flat
bottom. Show that the ratio of kinetic energy to available potential energy scales like

EKE

EAPE

∼
[
Lext

d

L

]2
. (36.213)

In this equation, L is the horizontal length scale for the fluctuation of the free surface η (i.e.,
∇η ∼ η′/L), and

Lext
d =

√
g H

f
(36.214)

is the external deformation radius. The scaling (36.213) means that for scales larger than the
external deformation radius, Ld, the available potential energy is larger than the kinetic energy.
The converse holds for scales smaller than Ld.

exercise 36.10: ratio of KE to APE for 1.5 layer f-plane geostrophy
Consider a reduced gravity system (Section 35.3) in geostrophic balance on an f -plane. Show

page 1018 of 2158 geophysical fluid mechanics



36.9. EXERCISES

that the ratio of kinetic energy to available potential energy scales like

EKE

EAPE

∼
[
Lint

d

L

]2
. (36.215)

In this equation, L is the horizontal length scale for the fluctuation of the internal interface η3/2
(i.e., ∇η3/2 ∼ η′3/2/L), and

Lint
d =

√
gr

3/2 h

f
(36.216)

is the internal deformation radius with gr

3/2 = g (ρ2 − ρ1)/ρref the reduced gravity and h =

A−1
´
(η1/2 − η3/2) dS the area averaged layer thickness (see Figure 35.4). The scaling (36.215)

means that for scales larger than the internal deformation radius, Lint
d , the available potential

energy is larger than the kinetic energy, and conversely for scales smaller than Lint
d .

To solve this exercise you must make use of the following.

• Derive the APE for two layers with a flat bottom.

• Assume the contribution to the APE from free surface undulations, is much smaller than
from the interior interface. So that the APE is roughly due just to undulations of the
interior interface. This assumption follows from Figure 35.5.

• The scaling (36.215) is identical to that found for the quasi-geostrophic system in Section
45.9.4. However, to solve this exercise it is not sufficient to merely reproduce the scaling
discussed in Section 45.9.4. Instead, use here the expressions for APE and KE appropriate
for the shallow water system.

exercise 36.11: Non-dimensionalized linear shallow water equations
For the linear equations (55.147a)-(55.147b), introduce

x = L x̂, u′ = U û, t =
L t̂

U
, f = f̂ T−1, η′ = H η̂, (36.217)

where L is a horizontal length scale, T = L/U is an advective time scale, U is a velocity scale,
and H ≪ L is the resting layer thickness. All variables with hats are non-dimensional and not
to be confused with unit vectors. Substitute into equations (55.147a)-(55.147b) and identify the
non-dimensional ratio of the advective velocity scale to the non-rotating gravity wave speed

Fr ≡ U√
g H

. (36.218)

This non-dimensional number is known as the Froude number. As seen in our brief discussion of
non-rotating hydraulics in Section 55.5.4, the fluid can experience an instability known as an
hydraulic jump when the Froude number is greater than unity.
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Part VII

Vorticity and potential vorticity
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Vorticity locally measures the spin of a fluid element. For geophysical flows, external forces,
ultimately due to differential heating over the planet, resupply vorticity in the face of dissipation.
The addition of planetary vorticity, arising from motion on a rotating spherical planet, also
renders a nonzero vorticity to geophysical fluids even when the fluid is at rest in the rotating
earth reference frame. Vorticity thus plays a central role in characterizing geophysical fluid
motions, even for relatively sluggish and laminar flow, since motion on a rotating planet always
involves vorticity.

Besides offering a key method for flow characterization, vorticity evolution and its steady
balances provide the means to mechanically understand how flows respond under changes to
forces. Surprisingly, it does so even without needing to directly compute forces acting on the
fluid. We thus encounter examples where vorticity mechanics offers a more direct and focused
explanation for flow behavior than momentum or energy mechanics. This practical feature of
vorticity mechanics represents the central reason it is so essential to the theoretical machinery of
geophysical fluid mechanics.

Potential vorticity is a strategically chosen component of vorticity whose evolution is simpler
than the full vorticity vector, thus helping to identify key facets of geophysical flows, their forcing,
and constraints. Indeed, under certain assumptions of balance (considered in Part VIII of this
book), knowledge of potential vorticity offers the means to deduce all prognostic information
about certain rotating and stratified flows. For these and other reasons explored in this part of
the book, potential vorticity has found great use for understanding and predicting geophysical
fluid flows. Indeed, the central importance of potential vorticity for the study of atmospheric
and oceanic flows helps to distinguish geophysical fluid mechanics from other areas of fluid
mechanics.

outline for this part of the book

We start this part of the book by introducing vorticity and circulation in Chapter 37, making
use of Stokes’ Theorem to show that the area integral of vorticity over a finite region yields the
circulation around the region’s boundary. In Chapter 38 we study vorticity in a horizontal flow
that is non-divergent, thus leading to the study of non-divergent barotropic flow. This flow is
fully described by the vorticity field, and it offers many insights into large-scale vortical flows in
the atmosphere and ocean. Chapter 39 then introduces the mechanics of vorticity and potential
vorticity within a shallow water fluid. It was for the shallow water system that Rossby (1940)
revealed the power of potential vorticity conservation for understanding geophysical fluid flow
patterns.

In Chapter 40 we fully dive into the fundamentals of vorticity and circulation. It is here that
we encounter Kelvin’s circulation theorem, which identifies the materially conserved nature of
circulation around an arbitrary simply closed loop in a perfect barotropic flow. In Chapter 41
we explore the foundations of potential vorticity and then in Chapter 42 develop differential and
integral potential vorticity budget equations. Our study of potential vorticity budgets exposes
the remarkable impermeability property of the potential vorticity flux vector.



Chapter 37

VORTICITY AND CIRCULATION

Vorticity measures the angular motion contained in a fluid flow at each point within the fluid;
i.e., it is a measure of spin. Vorticity generalizes to continuum mechanics the notion of angular
momentum that is central to the study of rigid body mechanics. We here relate the two, showing
that flows with a nonzero strain lead to distinctions between vorticity and angular momentum.
Circulation measures the fluid flow computed over a closed line integral (circuit) within the fluid.
Helmholtz was an early proponent of vorticity whereas Kelvin introduced circulation to help
understand vorticity. These two flow properties are connected through Stokes’ theorem, with
the study of vortex lines and vortex tubes clearly exposing the connections.

chapter guide

We here study kinematic properties of vorticity and circulation, making use of vector
calculus with Cartesian coordinates and Cartesian tensors as detailed in Chapter 2. The
concepts and methods introduced in this chapter are fundamental to the remaining
chapters throughout this part of the book.

37.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
37.2 Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024

37.2.1 Rotation of line elements . . . . . . . . . . . . . . . . . . . . . . . 1025
37.2.2 Rotating reference frame . . . . . . . . . . . . . . . . . . . . . . . 1025
37.2.3 There are no vorticity sources . . . . . . . . . . . . . . . . . . . . 1026
37.2.4 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

37.3 Irrotational flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
37.3.1 Characterizing irrotational flows . . . . . . . . . . . . . . . . . . 1026
37.3.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027

37.4 Circulation of the velocity field . . . . . . . . . . . . . . . . . . . . . . . . 1027
37.5 The free vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028

37.5.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
37.5.2 Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
37.5.3 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . 1030
37.5.4 Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

37.6 Translation and rigid-body rotation . . . . . . . . . . . . . . . . . . . . . 1030
37.6.1 Absolute vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
37.6.2 Rigid-body rotation on a plane . . . . . . . . . . . . . . . . . . . 1032
37.6.3 Circulation for rigid-body rotation . . . . . . . . . . . . . . . . . 1032
37.6.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032

37.7 Kinematics of vortex lines and vortex tubes . . . . . . . . . . . . . . . . 1032
37.7.1 Vortex lines and vortex tubes . . . . . . . . . . . . . . . . . . . . 1032
37.7.2 Kinematic properties . . . . . . . . . . . . . . . . . . . . . . . . . 1033
37.7.3 Helmholtz’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . 1034

1023



37.1. LOOSE THREADS

37.7.4 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
37.8 Relative vorticity from curvature and shear . . . . . . . . . . . . . . . . 1036

37.8.1 Circular flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
37.8.2 Generalization to natural coordinates . . . . . . . . . . . . . . . . 1037
37.8.3 Example vorticities . . . . . . . . . . . . . . . . . . . . . . . . . . 1037

37.9 Relating angular momentum to vorticity and strain . . . . . . . . . . . . 1039
37.9.1 Linear momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
37.9.2 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . 1041
37.9.3 Taylor expanding the velocity . . . . . . . . . . . . . . . . . . . . 1042
37.9.4 Angular momentum, strain rate, and vorticity . . . . . . . . . . . 1042
37.9.5 Comments and further reading . . . . . . . . . . . . . . . . . . . 1043

37.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044

37.1 Loose threads
• Write up the solution to Exercise 37.7.

• Write up the solution to Exercise 37.9.

37.2 Vorticity
Vorticity is the curl of the velocity field

ω = ∇× v. (37.1)

Vorticity measures the rotation or spin of fluid flow at each point and, unlike angular momentum,
it does so without reference to an origin. In this manner, vorticity is an intrinsic property of
the flow. In addition to writing vorticity as the curl of the velocity, we may choose to use the
equivalent expression

ω = [∇ · (v × x̂)] x̂+ [∇ · (v × ŷ)] ŷ + [∇ · (v × ẑ)] ẑ. (37.2)

That is, a vorticity component in a particular coordinate direction is the divergence of the
velocity field after being rotated by −π/2 around the coordinate axis direction. For example,
the vector v × ẑ is the result of rotating the velocity by −π/2 radians around the ẑ axis, with
the identity

ẑ · (∇× v) = ∇ · (v × ẑ) = ∂xv − ∂yu (37.3)

leading to the vertical component of the vorticity in equation (37.2).

Being the curl of a vector, the vorticity transforms as a vector under coordinate rotations.
However, vorticity changes sign under mirror symmetry, thus making it a pseudo-vector (Section
1.7.2). A simple means to understand this property is to note that the spinning earth rotates
counter-clockwise when viewed from above the north pole and clockwise when viewed from below
the south pole (see Figure 4.3).

Figure 37.1 provides an example zonal flow with a meridional strain (shear). The vertical
component to the vorticity is negative for this flow, as per the right hand rule

ζ = ẑ · (∇× v) = ∂xv − ∂yu < 0. (37.4)

Furthermore, an imaginary test “paddle wheel” placed anywhere within this flow spins clockwise
about its axis. The nonzero spin of a test paddle wheel is a fundamental property of fluid flow
with nonzero vorticity.
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y

x
ζ < 0

Figure 37.1: An example zonal flow with a meridional shear, v = u(y) x̂, and a corresponding vertical vorticity
component that is negative: ζ = ẑ · (∇× v) = ∂v/∂x− ∂u/∂y = −∂u/∂y < 0. The clockwise arrow surrounds
a test “paddle wheel” that exhibits a clockwise spin about its axis when placed in this flow. Such test paddle
wheels only spin when there is nonzero vorticity. The right hand rule determines the sign of the vorticity, which
for this example is into the page (negative ẑ).

37.2.1 Rotation of line elements

In Section 18.6 we considered the kinematics of a material line element, δx, whose evolution is
given by equation (18.85)

D(δxm)

Dt
= δxn

∂vm
∂xn

=⇒ D(δx)

Dt
= (δx · ∇)v. (37.5)

This equation says that the material line element evolves according to the velocity gradient
tensor ∂nvm. The symmetric portion of this tensor is the strain rate tensor,

Smn = (∂nvm + ∂mvn)/2, (37.6)

whose action generates changes in the distance between the fluid particles (Section 18.8.4). The
anti-symmetric portion to the velocity gradient tensor is known as the rotation tensor,

Rmn = (∂nvm − ∂mvn)/2. (37.7)

The rotation tensor is related to vorticity via equation (18.102)

Rmn = −ϵmnp ωp/2⇐⇒ R =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (37.8)

so that
2Rmn δxn = −ϵmnp ωp δxn =⇒ 2R · δx = ω × δx. (37.9)

From our discussion of rotation in Section 11.2.3, this equation means that vorticity in a fluid
generates a rigid rotation of a material line element around the instantaneous axis defined by
the vorticity (Section 18.8.5). This result accords with Figure 37.1, whereby vorticity leads to
the spin of a test paddle wheel; i.e., the rotation of line elements.

37.2.2 Rotating reference frame

For another means to understand the kinematics of vorticity, view the flow field from a reference
frame that rotates with a constant angular velocity, Γ, analogous to the case of observing
geophysical flows from the non-inertial terrestrial reference frame. Following equation (13.42e),
we know that the velocity observed in the non-rotating or absolute reference frame, va, is related
to the rotating reference frame velocity, v, via

va = v + Γ× x. (37.10)
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The vorticity measured in the absolute reference frame, ωa, is related to the relative vorticity
measured in the rotating reference frame, ω, via

ωa = ∇× va = ∇× v +∇× (Γ× x) = ω + 2Γ. (37.11)

If there is a point in the fluid whereby the rotating reference frame’s angular velocity equals
to one-half the absolute vorticity at that point, Γ = ωa/2, then the rotating reference frame’s
vorticity (the relative vorticity) vanishes at that point

Γ = ωa/2 =⇒ ω = 0. (37.12)

Hence, we may interpret ωa/2 as twice the local and instantaneous angular velocity of the
fluid. Correspondingly, if the absolute vorticity, ωa, is spatially constant, then we can move to
a rotating reference frame in which the relative vorticity vanishes everywhere, with such flow
referred to as irrotational.

37.2.3 There are no vorticity sources
Vorticity has zero divergence

∇ · ω = ∇ · (∇× v) = 0. (37.13)

This property is akin to the non-divergent nature of the velocity vector in an incompressible flow
(see Chapter 21). However, vorticity is non-divergent for both compressible and incompressible
flow. Consequently, there are no interior sources or sinks of vorticity for any fluid. This very basic
kinematic property plays an important role in developing some further properties of vorticity in
Chapter 40.

37.2.4 Further study
This video from 3Blue1Brown provides some compelling graphics to help develop intuition for
the divergence and curl of a vector, with examples drawn from fluid flow.

37.3 Irrotational flows
Most geophysical flows have nonzero vorticity. Indeed, even when at rest on the earth, a
geophysical fluid carries the vorticity of the rotating planet. However, if we can ignore the
planetary vorticity component, as when focused on motions too small to feel the Coriolis
acceleration, we can find some geophysically relevant flows with vanishing vorticity. Linear
gravity waves in the absence of planetary rotation provide a particularly relevant example
(Section 55.3.3). There are also many examples from engineering flows.

37.3.1 Characterizing irrotational flows
Irrotational fluid flow is characterized by a zero vorticity

ω = 0 = irrotational flow. (37.14)

Since the curl of a gradient vanishes, irrotational flow has a velocity field equal to the gradient
of a velocity potential

∇× v = 0 =⇒ v = ∇Ψ. (37.15)

Irrotational flow is therefore sometimes call potential flow. Figure 37.2 illustrates a two-
dimensional flow field generated by taking the gradient of a scalar potential so that the flow has
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zero vorticity. In this case, the vertical component of the vorticity vanishes at each point since
∂v/∂x = ∂u/∂y.

If the flow is non-divergent, as in a Boussinesq ocean (Section 29.1), then the velocity
potential is a harmonic function since it satisfies Laplace’s equation

∇ · v = 0 =⇒ ∇2Ψ = 0. (37.16)

The study of harmonic functions is a very mature area of mathematical physics, thus providing
a great deal of analytic power towards the study of potential / non-divergent flows.

Figure 37.2: An example horizontal flow based on a potential, Ψ = sin(x/5) sin(y/5). The flow has zero vorticity,
ω · ẑ = ζ = ∂v/∂x− ∂u/∂y = 0, since the flow is based on a scalar potential: ω = ∇× v = ∇×∇Ψ = 0. This
example illustrates how irrotational flow may have nontrivial structure even though a test paddle wheel will not
spin anywhere in the flow, since there is zero vorticity given that ∂v/∂x = ∂u/∂y.

37.3.2 Comments
This book does not discuss turbulence in any depth. Nevertheless, we here note that three
dimensional turbulence fundamentally relies on vorticity. Hence, irrotational flows, though
they may exhibit chaotic motions, are not turbulent since they do not allow for the nonlinear
cascade of energy to small spatial scales, with this cascade a fundamental characteristic of three
dimensional turbulence. As we see in Section 40.3, vorticity evolves from sources that tilt and
stretch vortex tubes. Vortex stretching is the key source for the turbulent cascade in three
dimensional turbulence. Section 3.3 of Tennekes and Lumley (1972) provides a pedagogical
discussion of vorticity in the context of three-dimensional turbulence.

37.4 Circulation of the velocity field
The velocity circulation, or more briefly the circulation, is defined as the oriented closed loop
line integral of velocity as projected onto the unit tangent of the path

C ≡
‰
∂S
v · dx, (37.17)

with Figure 37.3 offering a schematic. The line element, dx, is oriented in the counter-clockwise
direction around the circuit ∂S. More precisely, let x(φ) be an expression for the position of a
point on the circuit, with φ(x, y, z, t) a parameter that measures the distance along the closed
circuit (see Section 2.4). The difference between two very close positions along the circuit defines
the increment

dx = x(φ+ δφ)− x(φ). (37.18)
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By construction, dx is tangent to the circuit so that v · dx picks out the component of the
velocity that is tangent to the path.
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S

Figure 37.3: The velocity circulation around the boundary of a surface, ∂S, is determined by the line integral
of the velocity projected into the direction of the line integral, v · dx. Stokes’ theorem shows that the velocity
circulation computed as a line integral is identical to the normal projection of the vorticity integrated over the
area of the region, C =


∂S

v · dx =
´
S
ω · n̂ dS.

Stokes’ theorem (Section 2.6) renders the very important identity

C =

‰
∂S
v · dx =

ˆ
S

(∇× v) · n̂dS =

ˆ
S

ω · n̂dS, (37.19)

where n̂ is the outward unit normal vector orienting the area according to the right-hand rule
applied to the bounding circuit. The area integral expression motivates interpreting velocity
circulation as the “integrated flux of vorticity” that penetrates the surface. Stokes’ theorem
provides the means to connect the vorticity theories promoted by Helmholtz to the circulation
theories of Kelvin.

37.5 The free vortex

Consider a two-dimensional rotating fluid in the x-y plane with angular velocity given by

Ω =
x× v
r2

=
K ẑ

r2
. (37.20)

The constant K has dimensions L2 T−1, and r2 = x2 + y2 is the squared distance from the axis
of rotation with ẑ the unit vector normal to the x-y plane. The angular velocity falls off as the
squared distance from the center, whereas it is singular at the origin. As shown in this section,
the fluid flow associated with this free vortex has zero vorticity and zero circulation for all points
except the origin. Yet the same points with zero vorticity and zero circulation have a constant
angular momentum relative to the origin. As shown by Exercise 37.5, and pursued in more
detail in Section 37.9, nonzero angular momentum can arise in a fluid with zero circulation so
long as there is a nonzero strain within the fluid, such as the flow arising from the free vortex.
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Figure 37.4: Irrotational counter-clockwise planar flow in the presence of a free vortex with velocity v = (K/r) ϑ̂.
The tangential velocity decays as 1/r from the origin and the vorticity, ∇× v, vanishes for all points except the
origin. Test paddle wheels (colored line segments) do not spin when placed anywhere except at the origin. The
free vortex has constant angular momentum per mass (computed relative to the origin), since the tangential
velocity falls off as 1/r thus canceling the moment-arm distance r.

37.5.1 Velocity

Fluid flows in a circular orbit when in the free vortex flow field. Hence, the velocity of a fluid
particle is perpendicular to its position vector, x = x x̂+ y ŷ, with respect to the origin

v · x = 0. (37.21)

The velocity for pure rotational flow is given by (see Section 11.2.3)

v = Ω× x =
K (−y x̂+ x ŷ)

r2
=
Kϑ̂

r
, (37.22)

where ϑ̂ is the polar angle unit vector oriented in the counter-clockwise direction (see Section
4.22). We illustrate the velocity field (37.22) in Figure 37.4, which reveals the 1/r behavior with
a singularity at the origin.

37.5.2 Vorticity

Away from the origin the vorticity vector vanishes

ω = ∇× v = 0, (37.23)

whereas it is singular at the origin. It is useful to expose a few details of this calculation by
considering the vertical component to the vorticity, as computed using the polar coordinate curl
(4.199c), in which

ẑ · (∇× v) = r−1 ∂r(r v
ϑ)− r−1 ∂ϑv

r. (37.24)

Since vr = 0 there is a contribution only from the first term. Yet for the velocity (37.22) we have
r vϑ = K, so that ∂r(r v

ϑ) = 0. It is further insightful to perform the product rule to render

ẑ · (∇× v) = vϑ/r + ∂rv
ϑ = K/r2 −K/r2 = 0, (37.25)
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which reveals that zero vorticity arises from an exact compensation between the curvature
induced vorticity, vϑ/r, and the normal shear induced vorticity, ∂rv

ϑ

vϑ/r = −∂rvϑ = K/r2. (37.26)

We return to this result in Section 37.8, where we present a general means to decompose the
vorticity into that arising from curvature in the flow plus that arising from normal shears (see
Figure 37.10). The free vortex is a special case where these two contributions exactly counteract
one another, thus leaving zero net vorticity.

In Figure 37.4 we exhibit a test paddle wheel in various positions around the free vortex. As
the paddle wheel center moves counter-clockwise with the flow, the marked paddle wheel blades
remain oriented at the same fixed angle. That is, the paddle wheel orbits around the vortex
center but it does not spin since the vorticity vanishes in the region bounded away from the
origin. Again, the vorticity vanishes in this case since the curvature induced vorticity exactly
counteracts the normal shear induced vorticity, as per equation (37.26).

37.5.3 Angular momentum
Although vorticity is zero everywhere, except at the origin, the angular momentum (computed
relative to the origin) is nonzero, as expected since the fluid is rotating around the vortex center.
The angular momentum arises just from the nonzero strain in the flow field (see Exercise 37.5),
with the strain causing fluid particles to move relative to one another. The angular momentum
per unit mass, relative to the center of the vortex, is constant and pointed vertically

x× v = r r̂ × (K/r) ϑ̂ = K ẑ. (37.27)

This result follows since the velocity falls of as 1/r to cancel the moment-arm distance, r. Hence,
the angular momentum per mass is the same for all fluid particles in the presence of a free
vortex, no matter what radial distance the particles have from the vortex center.

37.5.4 Circulation
The circulation vanishes for any circuit bounded away from the origin since vorticity vanishes
away from the origin. However, the circulation is nonzero for any circuit enclosing the origin

C =

‰
∂S
v · dx =

ˆ 2π

0
v · ϑ̂ r dϑ = 2πK. (37.28)

To reach this result, we set the line element to

dx = ϑ̂ r dϑ (37.29)

and inserted the velocity (37.22) represented in cylindrical polar coordinates, v · ϑ̂ = K/r. Hence,
the singular point vortex at r = 0 induces a nonzero circulation for all circuits that enclose the
origin.

37.6 Translation and rigid-body rotation
Rigid-body fluid motion occurs when all fluid particles are rigidly locked into their relative
positions. There are two kinds of rigid body motion: translation and rotation. The velocity field
for this motion is given by

v = U + Γ× x, (37.30)
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where x is the position vector relative to the origin, U is a translation velocity, and Γ is an
angular velocity. For rigid body motion, both U and Γ are spatially uniform, but can in general
be time dependent. The strain rate tensor vanishes for uniform translation or rigid-body motion
(see Exercise 18.2)

Smn =
1

2
(∂mvn + ∂nvm) = 0. (37.31)

A zero strain rate tensor is expected since strain measures the relative motion between fluid
particles, and for a rigid-body motion there is no such motion. Even so, the vorticity for
rigid-body flow is nonzero (see Exercise 37.2)

ω = ∇× (Γ× x) = 2Γ. (37.32)

We encountered this vorticity in Section 37.2.2 when connecting vorticity and angular velocity.
In the remainder of this section, we set the rotation rate to that of the planet, Γ = Ω, and
assume it to be constant in space and time.

37.6.1 Absolute vorticity

For planetary fluid mechanics, planetary rotation imparts planetary vorticity to fluids. Hence,
the total or absolute vorticity of a fluid is the vector sum of the relative vorticity, ω, plus the
planetary vorticity

ωa = ωplanet + ω. (37.33)

In this equation,
ωplanet = 2Ωplanet (37.34)

is the planetary vorticity associated with rigid-body motion of a fluid particle stationary with
respect to the planet, and

ω = ∇× v (37.35)

is the relative vorticity. The relative vorticity measures the vorticity of the fluid due to motion
relative to the rotating sphere, with v the velocity relative to the rotating sphere.

x

y
r

⌦ ẑ
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Figure 37.5: Rigid body fluid motion, whereby the fluid velocity is: (A) purely tangential and linearly proportional
to the radial distance from the vortex center, v = |Ω| r ϑ̂; (B) fluid particles maintain a fixed relative position; (C)
and vorticity is constant and points perpendicular to the page, ω = 2Ω = 2 |Ω| ẑ. Test paddle wheels rigidly
move around the center, and they exhibit a spin about their axis that manifests the nonzero vorticity.
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37.6.2 Rigid-body rotation on a plane

Consider the circular rigid-body rotation on a plane shown in Figure 37.5, in which the velocity
is purely tangential and linearly proportional to the distance from the center

v = Ω× x = |Ω| (−y x̂+ x ŷ) = |Ω| r ϑ̂. (37.36)

Assuming the center of mass to be at the circle center, the angular momentum for the flow is
the same as that for a rigid-body. Even though the motion of each fluid particle is rigidly fixed
relative to all other particles, there is a nonzero vorticity in this flow as illustrated by the spin
of colored test paddle wheels in Figure 37.5.

37.6.3 Circulation for rigid-body rotation

For rigid-body rotation, the velocity circulation around a circular path of radius R is given by

C =

‰
v · dx =

‰
(Ω× x) · dx = R2 |Ω|

‰
dϑ = 2πR2 |Ω| = 2A |Ω|, (37.37)

where A = πR2 is the area of the circle. Hence, the circulation per area for rigid-body rotating
fluid flow is twice the angular rotation rate, which is the magnitude of the vorticity

C/A = |ω| = 2 |Ω|. (37.38)

37.6.4 Comments

As seen in Section 37.5, fluid flow in the presence of a free vortex has zero vorticity for all
points except the origin of the vortex. However, the same points also have a constant angular
momentum relative to the origin, and they experience a nonzero strain. In contrast, constant
rigid-body rotating fluid flow has a nonzero vorticity, nonzero angular momentum, yet a zero
strain. Section 37.9 details the connection between vorticity, strain, and angular momentum,
where we see that angular momentum can be nonzero if either vorticity or strain are nonzero.
These ideas are illustrated in this 3-minute video as well as in this 10 minute video from the
Open University.

37.7 Kinematics of vortex lines and vortex tubes

We here develop the basics of vortex kinematics, with this discussion closely following from the
kinematics of material line elements discussed in Section 18.6.3.

37.7.1 Vortex lines and vortex tubes

A vortex line is a curve in the fluid that is instantaneously tangent to the vorticity at each point
along the curve.1 That is, the collection of vortex lines provides the collection of integral curves
for the vorticity field. A vortex line is mathematically parameterized just like any other curve,
whereby we write the spatial coordinates along the curve as a function of a suitable parameter φ
(e.g., the arc-length)

x(φ) = x(φ) x̂+ y(φ) ŷ + z(φ) ẑ. (37.39)

1As noted in Section 1.4 of Saffman (1992), a vortex filament is a vortex tube surrounded by irrotational fluid,
which contrasts to the more general concept of a vortex line.
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Correspondingly, the tangent vector for the curve is given by

dx(φ)

dφ
=

dx(φ)

dφ
x̂+

dy(φ)

dφ
ŷ +

dz(φ)

dφ
ẑ. (37.40)

The three coordinates of the vortex line are constrained so that the tangent is parallel to vorticity
at each point

dx(φ)

dφ
× ω = 0, (37.41)

which is satisfied by the following constraint

dx/dφ

ωx
=

dy/dφ

ωy
=

dz/dφ

ωz
. (37.42)

These equations are directly analogous to those satisfied by velocity streamlines as discussed in
Section 17.7.2. Notably, the velocity is not constant along a velocity streamline, nor is vorticity
constant along a vortex line. In a steady state, streamlines map the trajectory of a fluid particle
(see Section 17.7). However, a vortex line does not offer an interpretation in terms of trajectories.

A vortex tube is a bundle of vortex lines that pass through a simple closed curve such as that
illustrated in Figure 37.6. By definition, the sides of the vortex tube are parallel to the vorticity
field, since the sides are constructed from vortex lines.2

C
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Figure 37.6: A vortex line is a line in the fluid that is everywhere tangent to the vorticity vector. A vortex tube is
the accumulation of vortex lines passing through a closed loop. A related, but distinct, concept arises when a vortex
tube is surrounded by irrotational flow, with such tubes referred to as vortex filaments (see Section 1.4 of Saffman
(1992)). We here depict a vortex tube and circulation computed around the tube C =


∂S

v · dx =
´
ω · n̂dS.

Since vorticity has zero divergence, the circulation is the same for any loop embracing the vortex tube (Helmholtz’s
first theorem from Section 37.7.3). A uniform circulation along the tube means that the magnitude of the vorticity
is larger in regions where the tube has a small area and conversely the circulation magnitude is smaller where the
tube has a large area. Note that orientation of the circulation integral must accommodate the oppositely directed
outward normals on the tube end caps. That is, circulation is computed around a counter-clockwise orientated
path, with this orientation determined relative to the outward normal.

37.7.2 Kinematic properties

Vorticity has zero divergence
∇ · ω = ∇ · (∇× v) = 0, (37.43)

2We defined a similar notion, the streamtube, for a non-divergent velocity in Figure 17.5.
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which follows since the divergence of a curl vanishes. Integrating the non-divergence relation
over an arbitrary closed volume within the fluid leads to

ˆ
R

∇ · ω dV =

˛
∂R
ω · n̂dS = 0, (37.44)

where we made use of Gauss’s divergence theorem to reach the surface integral expression, with
n̂ dS the oriented area element on the boundary of the volume, ∂R, and n̂ the outward normal
on the boundary. This result means there is no net vorticity entering or leaving an arbitrary
closed region. That is, there is a vanishing net integrated “flux” of vorticity across the surface
bounding a closed region. Consequently, there are no sources or sinks of vorticity within the
fluid, meaning there is no accumulation nor depletion of vorticity within any arbitrary closed
region within the fluid.

Now specialize the surface integral in equation (37.44) to a volume along a chosen vortex
tube such as in Figure 37.6. The two ends of the tube generally have different cross-sectional
areas. The integral over the sides of the vortex tube vanishes since vorticity is parallel to the
sides of the tube. Hence, the surface integral only picks up contributions from the two ends of
the tube3 ˆ

A

ω · n̂dSA +

ˆ
B

ω · n̂dSB = 0. (37.45)

The outward normals point in the opposite direction so that the flux of vorticity is independent
of position along the tube. Stoke’s theorem transfers the vorticity constraint to a constraint on
the circulation around the circumference of the tube‰

A

v · dx+

‰
B

v · dx = 0. (37.46)

Hence, the circulation around the vortex tube is the same no matter where it is computed. The
circulation constraints (37.45) and (37.46) are kinematic, holding for any vorticity field. We now
consider some consequences of this constraint.

37.7.3 Helmholtz’s theorems

There are a few basic properties of vorticity that follow from its vanishing divergence. These
properties are known as Helmholtz’s theorems.

Helmholtz’s first theorem

Since the cross-sectional slices used to derive the circulation constraint (37.46) are arbitrary,
the constraint holds throughout the full extent of the vortex tube. Hence, as noted following
equation (37.46), the circulation is the same for any position along the vortex tube; i.e., the
strength of a vortex tube is the same value along its length (see Figure 37.6). This result is
known as Helmholtz’s first theorem.

As a corollary, we refer to the vorticity constraint (37.45) to note that any process that
changes in the vortex tube cross-sectional area is compensated by changes in vorticity. For
example, let the vortex tube shrink over some region. To maintain constant circulation along
the tube, the vorticity magnitude must increase where the area decreases, which in turn means
that the velocity circulating around the tube increases in magnitude as the area reduces. Think
of a tornado as in Figure 37.7, which is a natural expression of a vortex tube. Near the ground,
the cross-sectional area of the tornado is small, with the tangential velocity of a fluid particle

3In Exercise 21.9, we developed a similar set of results for a streamtube in a non-divergent velocity field.
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clouds

ground

Figure 37.7: A vortex tube idealization of a tornado. Since the circulation around the tube is uniform (Helmholtz’s
first theorem), the tangential velocity of a fluid particle has a larger magnitude in regions where the vortex area is
smaller, such as near the ground. As the tornado reaches into the clouds, it generally has a larger cross-sectional
area and thus a smaller magnitude for the tangential velocity.

within the tube relatively large. Near the tornado top, the cross-sectional area is large so the
tangential velocity is relatively small.

Helmholtz’s second theorem

The vorticity constraint (37.45) cannot be satisfied by a finite vorticity if the area of a vortex
tube vanishes anywhere. Hence, a vortex tube cannot begin or end within the fluid. This result
follows from the absence of vortex sources and sinks within the fluid. Hence, a vortex tube can
only loop with itself (e.g., a smoke ring as in Figure 37.8), or intersect a boundary (as for a
tornado in Figure 37.7, where the ground and clouds form the boundary).

Figure 37.8: A vortex ring (torus) is a vortex tube that closes on itself. We here depict a vortex ring with
vorticity pointing counter-clockwise around the ring. The tangential velocity is oriented as shown so that the
vorticity points according to the right hand rule. That is, orient the fingers on the right hand according to the
tangential velocity. The thumb of the right hand then points in the direction of the vorticity vector.

Helmholtz’s third theorem

Helmholtz’s third theorem states that an unforced inviscid barotropic fluid that has zero vorticity
remains irrotational forever. This theorem is a special case of Kelvin’s circulation theorem that
is studied in Section 40.2.
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37.7.4 Further study
A particularly insightful and pedagogical discussion of the ideas in this section can be found in
Chapter 5 of Acheson (1990). Additionally, the following videos offer laboratory demonstrations
of vorticity in non-rotating and rotating flows.

• Helmholtz’s theorems are vividly exhibited by this video from the Physics Girl of flow
generated by a paddle in a swimming pool. She also discusses vortex rings in this video.

• Vorticity and Helmholtz’s theorems are also described by this classic video from Prof.
Shapiro.

• A rotating tank experiment shown near the 15 minute mark of this video from Prof. Fultz
shows how vorticity is affected by vortex stretching.

• This video offers a classic tutorial on vorticity in non-rotating fluids from Prof. Shapiro.

37.8 Relative vorticity from curvature and shear
In this section we decompose the vorticity into two terms: one arising from curvature in the
flow and another arising from shears in the direction normal to the flow. This decomposition is
formulated for horizontal flows, but can be generalized to arbitrary flow. It offers yet another
means to understand the kinematic properties of vorticity.

37.8.1 Circular flow
Before treating the general case, consider a two-dimensional velocity that locally takes the form
of an angular flow

u = uϑ(r, ϑ) ϑ̂, (37.47)

where ϑ is the polar angle. Circulation around the circular wedge shown in Figure 37.9 has
zero contributions from the two radial segments since these segments are perpendicular to the
angular flow. The circulation is thus given by

C =

‰
wedge

u · dx (37.48a)

=

ˆ ϑ+δϑ

ϑ
uϑ(r + δr, ϑ′) (r + δr) dϑ′ +

ˆ ϑ

ϑ+δϑ
uϑ(r, ϑ′) r dϑ′ (37.48b)

=

ˆ ϑ+δϑ

ϑ

[
uϑ(r + δr, ϑ′) (r + δr)− r uϑ(r, ϑ′)

]
dϑ′ (37.48c)

≈
ˆ ϑ+δϑ

ϑ

[
uϑ(r, ϑ′) δr +

∂uϑ

∂r
r δr

]
dϑ′ (37.48d)

= r δr

ˆ ϑ+δϑ

ϑ

[
uϑ

r
+
∂uϑ

∂r

]
dϑ′, (37.48e)

where the approximation holds when δr → 0. Taking the further limit δϑ→ 0 renders

C ≈ ζ δA = ζ r δr δϑ =

[
uϑ

r
+
∂uϑ

∂r

]
r δr δϑ =⇒ ζ =

uϑ

r
+
∂uϑ

∂r
. (37.49)

The first term in the vorticity arises from the nonzero radius of curvature of the circular flow
whereas the second term arises from radial shear.

page 1036 of 2158 geophysical fluid mechanics

https://www.youtube.com/watch?v=pnbJEg9r1o8
https://www.youtube.com/watch?v=N7d_RWyOv20
https://www.youtube.com/watch?v=h6bmrRFYFbc&t=15s
https://www.youtube.com/watch?v=h6bmrRFYFbc&t=15s
https://www.youtube.com/watch?v=Ans3tnvMyTk&list=PL0EC6527BE871ABA3&index=24&t=0s
https://www.youtube.com/watch?v=_KMw2bbRfI8


37.8. RELATIVE VORTICITY FROM CURVATURE AND SHEAR

<latexit sha1_base64="A58cpS5G37jlK7vc9ZsfAXEy4kA=">AAAB/3icbZDNTgIxFIXv4B/iH+rSTSMxcUVmjEaXRDcuIZGfBCakUy7Q0M5M2o6RTFi4dqvP4M649VF8BN/CArNQ4CRNvpxzb9qeIBZcG9f9dnJr6xubW/ntws7u3v5B8fCooaNEMayzSESqFVCNgodYN9wIbMUKqQwENoPR3TRvPqLSPAofzDhGX9JByPucUWOt2lO3WHLL7kxkGbwMSpCp2i3+dHoRSySGhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtMaQStZ/OHjohZ9bpkX6k7AkNmbl/N1IqtR7LwE5KaoZ6MZuaK7NArrLbienf+CkP48RgyOb39xNBTESmZZAeV8iMGFugTHH7BcKGVFFmbGUF24232MQyNC7K3lXZrV2WKrdZS3k4gVM4Bw+uoQL3UIU6MEB4gVd4c56dd+fD+ZyP5pxs5xj+yfn6Bd5KljI=</latexit>x

<latexit sha1_base64="THtZH1hdW9Ej0X733kxxaIbIIB8=">AAAB/3icbZDNSgMxFIXv1L9a/6ou3QSL4KrMiKLLohuXLdgfaIeSSe+0oZnMkGSEMnTh2q0+gztx66P4CL6FaTsLrT0Q+DjnXpKcIBFcG9f9cgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3SxvP6LSPJYPZpKgH9Gh5CFn1FirMemXK27VnYv8By+HCuSq98vfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xalDRC7Wfzh07JmXUGJIyVPdKQuft7I6OR1pMosJMRNSO9nM3MlVkQrbK7qQlv/IzLJDUo2eL+MBXExGRWBhlwhcyIiQXKFLdfIGxEFWXGVlay3XjLTfyH1kXVu6q6jctK7TZvqQgncArn4ME11OAe6tAEBgjP8AKvzpPz5rw7H4vRgpPvHMMfOZ8/3+WWMw==</latexit>y

<latexit sha1_base64="7xHLa1i1cQnlASvqxaxDDHo41CU=">AAAB/3icbZDNSgMxFIXv1L9a/6ou3QSL4KrMiKLLohuXLdgfaIeSSe+0oZnMkGSEMnTh2q0+gztx66P4CL6FaTsLrT0Q+DjnXpKcIBFcG9f9cgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3SxvP6LSPJYPZpKgH9Gh5CFn1Firofrlilt15yL/wcuhArnq/fJ3bxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELsWJY1Q+9n8oVNyZp0BCWNljzRk7v7eyGik9SQK7GREzUgvZzNzZRZEq+xuasIbP+MySQ1Ktrg/TAUxMZmVQQZcITNiYoEyxe0XCBtRRZmxlZVsN95yE/+hdVH1rqpu47JSu81bKsIJnMI5eHANNbiHOjSBAcIzvMCr8+S8Oe/Ox2K04OQ7x/BHzucP1KiWLA==</latexit>r
<latexit sha1_base64="ORPwtCD4cFApOq1knzJQVGZP5Sw=">AAACCnicbZDLSgMxGIX/8VrrrerSTbAIglBmRNFl0Y3LCvYCnaFkMpk2NMkMSUYoQ9/AtVt9Bnfi1pfwEXwL03YW2vZA4OOc/yfJCVPOtHHdb2dldW19Y7O0Vd7e2d3brxwctnSSKUKbJOGJ6oRYU84kbRpmOO2kimIRctoOh3eTvP1ElWaJfDSjlAYC9yWLGcHGWr5C58iPKDcYqV6l6tbcqdAieAVUoVCjV/nxo4RkgkpDONa667mpCXKsDCOcjst+pmmKyRD3adeixILqIJ++eYxOrROhOFH2SIOm7t+NHAutRyK0kwKbgZ7PJubSLBTL7G5m4psgZzLNDJVkdn+ccWQSNOkFRUxRYvjIAiaK2S8gMsAKE2PbK9tuvPkmFqF1UfOuau7DZbV+W7RUgmM4gTPw4BrqcA8NaAKBFF7gFd6cZ+fd+XA+Z6MrTrFzBP/kfP0C76WZ/Q==</latexit>

r + �r

<latexit sha1_base64="uRUPpld7SxNjYoJla0xzaVoDFtg=">AAACHHicbZDLSsNAFIYnXmu9RV3qYrAIglASUXRZdOOygr1AE8pkctoOnUnCzKRQQjc+iGu3+gzuxK3gI/gWTtsg2vaHgZ/vXIbzBwlnSjvOl7W0vLK6tl7YKG5ube/s2nv7dRWnkkKNxjyWzYAo4CyCmmaaQzORQETAoRH0b8f1xgCkYnH0oIcJ+IJ0I9ZhlGiD2vaRNyBS90ATfIa9ELgxv6htl5yyMxGeN25uSihXtW1/e2FMUwGRppwo1XKdRPuZWccoh1HRSxUkhPZJF1rGRkSA8rPJFSN8YkiIO7E0L9J4Qv9OZEQoNRSB6RRE99RsbQwX1gKxCLdS3bn2MxYlqYaITv/vpBzrGI+TwiGTQDUfGkOoZOYETHtEEqpNnkWTjTubxLypn5fdy7Jzf1Gq3OQpFdAhOkanyEVXqILuUBXVEEWP6Bm9oFfryXqz3q2PaeuSlc8coH+yPn8AwjGhYA==</latexit>

#+ �#

<latexit sha1_base64="lEySksompDfUoXkaKEBMJ8NYbS0=">AAACB3icbVDLTgJBEOzFF+IL9ehlIzHxRHaNRo9ELx4xkYeBDZkdGpgwM7uZmSUhGz7As1f9Bm/Gq5/hJ/gXDrAHBSrppFLV3TNdYcyZNp737eTW1jc2t/LbhZ3dvf2D4uFRXUeJolijEY9UMyQaOZNYM8xwbMYKiQg5NsLh3dRvjFBpFslHM44xEKQvWY9RYqz01B4RZQZoSKdY8sreDO4y8TNSggzVTvGn3Y1oIlAayonWLd+LTZDadYxynBTaicaY0CHpY8tSSQTqIJ19eOKeWaXr9iJlSxp3pv6dSInQeixC2ymIGehFbyqu9EKxSm4lpncTpEzGiUFJ5+/3Eu6ayJ2G4naZQmr42BJCFbMnuHRAFKHGRlew2fiLSSyT+kXZvyp7D5elym2WUh5O4BTOwYdrqMA9VKEGFAS8wCu8Oc/Ou/PhfM5bc042cwz/4Hz9AlI0mcU=</latexit>

#

Figure 37.9: Circulation around the circular wedge [r, r + δr]⊗ [ϑ, ϑ+ δϑ].

37.8.2 Generalization to natural coordinates

The decomposition (37.49) can be generalized to arbitrary horizontal flow by making use of the
natural coordinates from Section 32.2. Here, we introduce the locally orthogonal coordinates,
(s, n), with s the arc-length defined along the trajectory of a fluid element and n measuring
the distance normal to the trajectory. We make the convention that the unit tangent direction,
û, is aligned along the local flow direction whereas the unit normal direction, n̂, is to the left
facing downstream. Furthermore, the radius of curvature at a point along a trajectory (see
Section 5.2.3) is positive if the flow turns into the positive n̂ direction (left turn) and negative for
oppositely curved flow (right turn) (see Figures 32.2 and 32.3). Finally, the radius of curvature
is infinite for straight flow.

For the counter-clockwise circuit in Figure 37.9, a left turn occurs with n̂ = −r̂ so that
equation (37.49) takes on the general form

ζ =
|u|
R︸︷︷︸

curvature

− ∂|u|
∂n︸︷︷︸
shear

= ζcurv + ζshear. (37.50)

Again, the first term arises from curvature in the flow, with R the radius of curvature. This
curvature vorticity is sometimes also called the orbital vorticity. A trajectory turning to the
left has R > 0 and this curved trajectory contributes to a positive vorticity; conversely for a
trajectory turning to the right. The second term in equation (37.50) arises from shears computed
normal to the flow direction. If the flow speed decreases in the normal direction (e.g., towards the
center of the circle in Figure 37.9), then that too contributes to a positive vorticity. Furthermore,
flow with ζ = 0 arises if there is an exact compensation between the curvature-induced vorticity
with the shear-induced vorticity

ζ = 0 =⇒ |u|
R

=
∂|u|
∂n

. (37.51)

37.8.3 Example vorticities

Rigid body vortex and free vortex

To help further understand the decomposition (37.50), consider the case of rigid-body rotation
(Figure 37.5) where v = Ω r ϑ̂ and n̂ = −r̂. For a circle the radius of curvature equals to the
radius of the circle, so that

ζcurv =
Ω r

r
= Ω and ζshear = −∂n|u| = ∂r(Ω r) = Ω, (37.52)
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Free vortex Solid body vortex

Figure 37.10: Decomposing the relative vorticity into its contributions from curvature and normal shear. Left
panel: the free vortex from Figure 37.4 has ζcurv = −ζshear = K/r2 so that ζ = ζcurv + ζshear = 0. Right panel:
the rigid-body vortex from Figure 37.5 has ζcurv = ζshear = Ω so that ζ = 2Ω.

in which case
ζ = ζcurv + ζshear = 2Ω = ẑ · (∇× v), (37.53)

as depicted in the right panel of Figure 37.10. Likewise, for the free vortex (Figure 37.4) we
have v = (K/r) ϑ̂ so that

ζcurv = K/r2 and ζshear = ∂|u|/∂r = −K/r2, (37.54)

which yields zero relative vorticity

ζ = ζcurv + ζshear = 0, (37.55)

as depicted in the left panel of Figure 37.10.

Gaussian jet moving along a line and around a circle

Next consider a Gaussian jet moving along a straight line in the meridional direction with
velocity field

v(x) = v(x) ŷ = v0 exp[−(x− xmax)
2/L2] ŷ, (37.56)

where v0 is the velocity scale, L is the e-folding length scale for the jet, and xmax is the position
of the jet maximum. The corresponding vorticity of the jet is given by

ζline = ∂xv = −2 [(x− xmax)/L
2] v(x). (37.57)

We depict the velocity (37.56) and vorticity (37.57) in the top row of Figure 37.11. Note the
symmetry of the vorticity around the jet maximum at x = xmax, with the vorticity extrema
corresponding to inflection points of the jet.4

Now assume the same jet is moving counter-clockwise around a circle so that the velocity
field is given by

v(r) = v(r) ϑ̂ = v0 exp[−(r − rmax)
2/L2] ϑ̂, (37.58)

where we made use of the polar coordinates from Section 4.22 with r2 = x2 + y2 the squared
radial distance from the center, and ϑ̂ the unit vector pointing in the counter-clockwise direction
from the x̂ axis. Making use of the curl operation in polar coordinates given by equation (4.199c)

4Inflection points are where the curvature vanishes and has opposite signs on either side. For a function of a
single variable, an inflection point is where the second derivative vanishes and changes sign when moving to either
side.
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Figure 37.11: Top row: velocity and vorticity within a Gaussian jet that is moving along a straight line according
to equations (37.56) and (37.57). We set the jet e-folding scale as L = 50 km, jet maximum at xmax = 150 km,
and velocity scale as v0 = 1 m s−1. Note the symmetry of the vorticity relative to the jet maximum, with the
vorticity extrema corresponding to the inflection points of the Gaussian velocity field. Middle left: the same
Gaussian velocity profile only now for a jet that is moving counter-clockwise around a circle so that v = v(r) ϑ̂
according to equation (37.58). To avoid a singularity of the curvature vorticity at r = 0 (infinite curvature) we
assume the velocity field vanishes within a small distance from the origin. Middle right: vorticity for the Gaussian
jet moving around the circle, with ζ = r−1 ∂r(r v). Notice how the vorticity is not symmetric relative to the jet
maximum. Rather, the zero vorticity occurs to the right of the jet maximum, and the vorticity on the inside of
the jet maximum is larger in magnitude than the outer vorticity. Lower left: vorticity due to the curvature of the
jet as it moves around the circle, ζcurve = v(r)/r. Lower right: vorticity due to the radial shear in the Gaussian
jet, ζshear = −2 (r − rmax) v(r)/L

2.

renders the vorticity

ζ = r−1 ∂r(r v) =
v

r
− 2 (r − rmax) v

L2
= ζcurve + ζshear. (37.59)

We depict these terms in the third row of Figure 37.11. Note how the vorticity, ζ, has the
amplitude of its maximum increased, whereas the amplitude of its minimum is decreased.
Correspondingly, the vorticity is not symmetric about the jet maximum, with its zero crossing to
the outside of the jet maximum. Asymmetry of the vorticity arises from the curvature vorticity,
ζcurve = v/r, which has its peak inside the jet maximum. So although the shear vorticity, ζcurve,
is symmetric around the jet axis, the curvature vorticity causes a movement of vorticity towards
the center of the circle.

37.9 Relating angular momentum to vorticity and strain
As noted in Section 37.6.4, fluid flow in the presence of a free vortex (Section 37.5) has zero
vorticity for all points except the origin of the vortex. However, the same points with zero
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vorticity also have a constant angular momentum relative to the origin, and they experience a
nonzero strain. In contrast, rigid-body fluid flow (Section 37.6) has a nonzero vorticity, nonzero
angular momentum, yet a zero strain rate. In this section we study the connection between
vorticity, strain rate, and angular momentum for a fluid. We here show that angular momentum
and vorticity are fundamentally distinct in a fluid that has straining motion between fluid
elements. In contrast, angular momentum and vorticity are directly proportional (through the
moment of inertia tensor) when the fluid exhibits rigid-body motion in which the strain rate
tensor vanishes.

In this section we make use of the Lagrangian description from Section 18.2, whereby we
write the trajectory of a fluid particle as in equation (18.2) using the motion field. Namely, by
fixing the material coordinate, a, the motion field provides the spatial position, x, of the fluid
particle as a function of the Lagrangian time, T

x =X(a, T ). (37.60)

37.9.1 Linear momentum

Consider the velocity and linear momentum of a simply connected material fluid region denoted
by R(v), with each point of the region moving with the fluid velocity. Let an arbitrary fluid
particle within this region be marked with the material label, a, so that its position vector is
X(a, T ) and its velocity is

vL(a, T ) = ∂TX(a, T ), (37.61)

where the time derivative is computed holding the material label fixed, and where the “L”
superscript signals a Lagrangian velocity. Since the fluid particle is within a finite material
region, we can decompose its motion into the sum of the region’s center of mass motion plus
motion of the particle relative to the center of mass

vL(a, T ) = ∂TX(a, T ), (37.62a)

= ∂T [X(T ) +X ′(a, T )] (37.62b)

= vL(T ) + vL′
(a, T ). (37.62c)

The velocity, vL′
(a, T ), is defined relative to the region’s center of mass velocity, vL(T ). Further-

more, the center of mass velocity is given by

vL =
dX

dT
(37.63a)

=
d

dT

[´
R(v) x ρdV´
R(v) ρdV

]
(37.63b)

=
1

M

ˆ
R(v)

Dx

Dt
ρdV (37.63c)

=
1

M

ˆ
R(v)

v ρ dV. (37.63d)

The identity (37.63c) follows since the material region maintains a constant mass,

M =

ˆ
R(v)

ρdV =⇒ dM

dt
= 0, (37.64)

allowing the denominator to come outside the Lagrangian time derivative. Additionally, each of
the fluid parcels in the region maintains constant mass. As per Reynold’s transport theorem
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(Section 19.5), the time derivative moves across the integral to act materially on the position
vector. The final equality, (37.63d), follows since the material time derivative of a particle
trajectory, when evaluated at a point, x, equals to the velocity field at that point

v(x, t) =
Dx

Dt
. (37.65)

It follows that the linear momentum for the material fluid region is given by

P =

ˆ
R(v)

v ρdV =M vL. (37.66)

We conclude that the total linear momentum of an material fluid region equals to that of a point
particle of mass, M =

´
R(v) ρdV , moving with the center of mass velocity, vL. The analogous

result was derived in Section 11.5 for a system of discrete point particles.

37.9.2 Angular momentum

Consider angular momentum for a material fluid region, which is determined by the material
integral of the angular momentum for each fluid parcel

L =

ˆ
R(v)

(x× v) ρ dV. (37.67)

Our goal is to expose how physically distinct aspects of the fluid motion contribute to the angular
momentum. To proceed, decompose the position vector of a point within the region into the
center of mass position plus a deviation, x = x+ x′, where x = X is the instantaneous position
of the moving center of mass. The angular momentum thus takes the form

L =

ˆ
R(v)

(x× v) ρdV (37.68a)

=

ˆ
R(v)

[(x+ x′)× v] ρ dV (37.68b)

=X ×
[ˆ

R(v)
v ρ dV

]
+

ˆ
R(v)

(x′ × v) ρdV (37.68c)

= (X × P ) +

ˆ
R(v)

(x′ × v) ρdV. (37.68d)

The final equality introduced the linear momentum for the fluid region, P , in the form of
equation (37.66). The first term in equation (37.68d) is the angular momentum of the region
with respect to the position of the center of mass. The second term arises from deviations of
fluid particle positions relative to the center of mass.

We now focus on how the deviation term,
´
R(v)(x

′ × v) ρdV , contributes to the angular

momentum (37.67). As we will see, this analysis exposes how angular momentum of the extended
material fluid region is affected by vorticity and strain rate in the fluid flow. To facilitate some
of the manipulations, we make use of basic Cartesian tensor analysis from Chapter 1, including
the summation convention whereby repeated indices are summed over their range.

CHAPTER 37. VORTICITY AND CIRCULATION page 1041 of 2158



37.9. RELATING ANGULAR MOMENTUM TO VORTICITY AND STRAIN

37.9.3 Taylor expanding the velocity

We perform a Taylor expansion of the velocity v(x) around the instantaneous center of mass
position, x = X, and truncate the expansion to the leading order term5

v(x) = v(x+ x′) ≈ v(x) + (x′ · ∇)v|x=x. (37.69)

We are thus left with

L = (X × P ) +

ˆ
R(v)

(x′ × v) ρdV (37.70a)

= (X × P ) +

ˆ
R(v)

[x′ × v(x)] ρdV +

ˆ
R(v)

[x′ × (x′ · ∇)v(x)] ρ dV. (37.70b)

The velocity, v(x), can be removed from the integration since it is evaluated at the center of
mass point. Hence, the second term in equation (37.70b) vanishes

ˆ
R(v)

[x′ × v(x)] ρdV =

[ˆ
R(v)

x′ ρdV

]
× v(x) = 0, (37.71)

where
´
R(v) x

′ ρdV = 0 by definition of the center of mass. The angular momentum is thus
given by the two terms

L = (X × P ) +

ˆ
R(v)

[x′ × (x′ · ∇)v(x)] ρdV. (37.72)

The m′th component of the second right hand side term can be written

ˆ
R(v)

[x′ × (x′ · ∇)v(x)]m ρdV = ϵmnp

ˆ
R(v)

x′n [(x
′ · ∇)v(x)]p ρdV (37.73a)

= ϵmnp

ˆ
R(v)

x′n x
′
q ∂qvp(x) ρ dV (37.73b)

= ϵmnp

[ˆ
R(v)

x′n x
′
q ρ dV

]
∂qvp(x). (37.73c)

We removed the velocity derivatives

∂qvp(x) =

[
∂vp
∂xq

]
x=x

(37.74)

from the integral, since they are evaluated at the center of mass point and so do not participate
in the integration.

37.9.4 Angular momentum, strain rate, and vorticity

Following from the discussion in Section 18.8, we know that the velocity derivatives, ∂qvp,
appearing in equation (37.73c) form the components to a second order tensor known as the
velocity gradient tensor, which can be decomposed into the strain rate tensor, S, and the rotation
tensor, R. Introducing these two tensors brings the angular momentum for a continuum fluid

5The velocity field evaluated at the center of mass position, v(x), is not equal to the center of mass velocity:
v(x) ̸= vL.
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region into the form

Lm = (X × P )m + ϵmnp

[ˆ
R(v)

x′n x
′
q ρdV

]
Sqp + ϵmnp

[ˆ
R(v)

x′n x
′
q ρ dV

]
Rqp (37.75a)

= (X × P )m + ϵmnp

[ˆ
R(v)

x′n x
′
q ρdV

]
Sqp +

1

2
ϵmnp ϵsqp

[ˆ
R(v)

x′n x
′
q ρdV

]
ωs (37.75b)

= (X × P )m︸ ︷︷ ︸
center of mass

+ ϵmnp

[ˆ
R(v)

x′n x
′
q ρdV

]
Sqp︸ ︷︷ ︸

strain rate contribution

+
1

2

[ˆ
R(v)

(x′ · x′ δms − x′m x′s) ρdV
]
ωs︸ ︷︷ ︸

vorticity contribution

.

(37.75c)

Since each point in the fluid continuum can be considered the center of mass for an arbitrary
material region, the decomposition (37.75c) holds in general.

• Center of mass angular momentum: The first term on the right hand side of equation
(37.75c) arises from the angular momentum of the material region as measured with respect
to the center of mass position. It has the form of angular momentum for a point particle
(see equation (11.39)).

• Strains: The second contribution is proportional to fluid deformations studied in Section
18.8. At each point of the fluid, deformations are measured by the strain rate tensor, Sqp.
A rigid body moves by uniform translations and/or rigid-body rotations, with the strain
rate tensor vanishing for rigid-body motions (see Section 37.6). The contribution from
strain rates is weighted by an integral of fluid particle position relative to the center of
mass position. A closed form expression for this integral is available only for special shapes.

• Vorticity: The third contribution to angular momentum (37.75c) contains the vorticity
as weighted by the moment of inertia tensor

Ims ≡
ˆ
R(v)

(x′ · x′ δms − x′m x′s) ρdV. (37.76)

Since the material region is evolving and is not rigid, the moment of inertia tensor is time
dependent. Even so, the contribution

Lvorticity
m ≡ 1

2
Ims ωs (37.77)

has the same form as angular momentum for a rigid body, with one-half the vorticity
playing the role of angular velocity (see equation (11.41a) for the point particle expression).
Evidently, vorticity in fluid flow contributes to angular momentum for a material region
via its product with the moment of inertia tensor for the region.

37.9.5 Comments and further reading
Angular momentum is computed relative to a chosen origin, whereas vorticity is an intrinsic
property measuring the spin of the fluid at a point. So although they both offer measures of
the rotational properties of fluid motion, they are distinct when the fluid experiences a nonzero
strain rate. It is only for the special case of a rigid-body motion that the strain rate vanishes, in
which case the angular momentum of a fluid region is directly related to vorticity.

Further discussion of the material in this section can be found in Chatwin (1973), Section
2.3.1 of Davidson (2015), and the online notes “The Vorticity Equation and Conservation of
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Angular Momentum” from A.J. DeCaria. See also Section 1.2 of the vorticity monograph by
Saffman (1992).

37.10 Exercises
exercise 37.1: Vorticity at a static no-slip boundary
Show that ω · n̂ = 0 at a static no-slip boundary, such as a solid wall. Here, n̂ = 0 is the outward
normal at the boundary. Hint: make use of Stoke’s theorem and the adherence condition, v = 0,
at a static no-slip boundary.

exercise 37.2: Vorticity for rigid-body rotation
A fluid in rigid-body rotation has an angular velocity

vrigid-body = Ω× x, (37.78)

with x the position vector of a point in the fluid. Show that this fluid velocity has a corresponding
vorticity given by

∇× vrigid-body = 2Ω. (37.79)

There are a few methods to prove this result. Display one method and be sure it is fully
explained.

exercise 37.3: Planetary rotation is non-divergent
Show that a fluid in rigid-body rotation with angular velocity

vrigid-body = Ω× x, (37.80)

has zero divergence
∇ · vrigid-body = 0. (37.81)

Consequently, rotation of the planet imparts zero divergence to fluid motion. We make use of
this result in part to justify our study of non-rotating fluid kinematics in Part III of this book.

exercise 37.4: Velocity potential for the free vortex
What is the velocity potential (37.15) for the free vortex whose velocity field is given by equation
(37.22)? Hint: The problem is two-dimensional and rotationally symmetric, so it is convenient
to make use of polar coordinates x = r cosϑ and y = r sinϑ as in Section 4.22.

exercise 37.5: Strain tensor for the free vortex
Determine all components to the strain rate tensor (Section 18.8)

Spq =

[
S11 S12
S21 S22

]
=

 ∂u
∂x

1
2

[
∂u
∂y + ∂v

∂x

]
1
2

[
∂v
∂x + ∂u

∂y

]
∂v
∂y

 (37.82)

for the free vortex as specified by the velocity field (37.22). Present the answer in the form of a
2× 2 matrix.

exercise 37.6: Vanishing viscous friction for rigid-body motion
As discussed in Section 25.8.6, viscous effects from molecular viscosity in a non-divergent flow
appear in the momentum equation as a Laplacian weighted by a constant molecular viscosity

viscous force per mass = ν∇2v, (37.83)
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where ν > 0 is the molecular kinematic viscosity, which is a constant that is a property of the
fluid. Show that the viscous operator vanishes for a non-divergent flow in rigid-body rotation.
That is, rigid-body motion engenders no frictional dissipation. This result reflects the lack of
frictional interaction in a strain-free flow.

exercise 37.7: Moment of inertia for cylinder and sphere
The moment of inertia for a continuous distribution of matter is defined by equation (37.76).
In this exercise we compute the moment of inertia for two matter distributions with constant
density but with different shapes. The results can be found through Google, so be sure to check
your answer.

(a) Determine the moment of inertia for a right circular cylinder, where the moment is
computed relative to the axis through the center of the cylinder. For simplicity, use
cylindrical-polar coordinates and orient the vertical axis through the center of the cylinder.

(b) Determine the moment of inertia for a sphere computed around an axis through the center
of the sphere.

exercise 37.8: Vorticity for a C-grid numerical model
Vorticity is commonly diagnosed in numerical model simulations. In this exercise we consider
how one might determine a discrete equation for the vertical vorticity when the horizontal
velocity is arranged according to the Arakawa C-grid (Arakawa and Lamb, 1977) commonly used
in ocean models, and as depicted in Figure 37.12. Derive an expression for the area averaged
vorticity over the shaded grid cell region centered at the vorticity point, qi,j . Make use of Stokes’
theorem with the surrounding C-grid velocity components and the corresponding grid distances.

qi,j

qi+1,j+1

Ti,j Ti+1,j

Ti,j+1 Ti+1,j+1

vi,j vi+1,j

ui,j

ui,j+1

qi+1,j

dyti+1,jdyti,j

dxti,j

dxti,j+1

Figure 37.12: Layout for velocity on a discrete Arakawa C-grid for use in Exercise 37.8. The central T-point is
labeled Ti,j and its corresponding vorticity point, qi,j , is located to its northeast. This exercise aims to determine
the area averaged vorticity for the shaded region. The zonal velocity, ui,j , is arranged on the east face of the
T-cell, whereas the meridional velocity, vi,j , is on the north face. The zonal and meridional grid distances are
indicated, thus measuring distances between adjacent tracer points and so measuring the sides of the shaded
region.

exercise 37.9: Particle trajectories from a point vortex and point divergence
Consider a two-dimensional (horizontal) flow resulting from a point vortex as well as a point
divergence, both at x = 0,

ẑ · (∇× u) = C δ(x) (37.84a)

∇ · u = D δ(x). (37.84b)
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We here introduced the constants, C > 0 and D > 0, as well as the Dirac delta, δ(x) = δ(x) δ(y).
From Chapter 7 recall that the Dirac delta satisfies the normalization condition,

´
S
δ(x) dS = 1,

for any region, S, that includes the origin, x = 0. Consequently, the Dirac delta has physical
dimensions of inverse area.

Throughout this exercise we ignore boundaries, so that the flow is considered on an infinite
plane. Also, the reference frame is not rotating. Furthermore, the flow resulting from each
point source is axially symmetric, so that the only functional dependence is radial; i.e., distance
from the origin. You are thus asked to use polar coordinates from Section 4.22 throughout this
exercise.

(a) Given the dimensions of the Dirac delta and those for the vorticity and divergence, then
what are the physical dimensions of C an D?

(b) What is the horizontal velocity field resulting from the point vortex (C > 0 and D = 0)?
Sketch this field.

(c) What is the expression for the fluid particle trajectory within the velocity field generated
by the point vortex?

(d) What is the horizontal velocity field resulting from the point divergence (C = 0 and D > 0)?
Sketch this field.

(e) What is the expression for the fluid particle trajectory within the velocity field generated
by the point divergence?

(f) Compute the fluid particle trajectories when the divergence source picks up an oscillatory
time dependence, so that

ẑ · (∇× u) = C δ(x) (37.85a)

∇ · u = D δ(x) sin(ωd t). (37.85b)

What parameter settings ensure that radial oscillations of the particle position are small
relative to the initial radial distance? Only derive the angular position, ϑ(t), assuming
these parameter settings.

(g) Now also include an oscillatory behavior to the vortex source, so that

ẑ · (∇× u) = C δ(x) cos(ωc t) (37.86a)

∇ · u = D δ(x) sin(ωd t). (37.86b)

Compute the fluid particle trajectories assuming the condition from the previous part of
this exercise is met. That is, assume the parameter settings ensure that radial oscillations
of the particle position are small relative to the initial radial distance.

You may choose to consider the following hints.

• We are only concerned with horizontal motion in this exercise.

• In Section 38.2.8 we study point vortices in the horizontally non-divergent fluid. The
velocity field for the point vortex is derived there.

• When both sources are turned on, the velocity field is the linear superposition of the
velocity from the point vortex and that from the point divergence. The reason is that we
are ignoring any back-reaction of the flow from one source onto the other source.
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• It is useful to recall the discussion of fluid particle trajectories from Section 17.7.1.
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Chapter 38

TWO-DIMENSIONAL NON-DIVERGENT BAROTROPIC FLOW

A single layer of homogeneous shallow water fluid is among the simplest conceptual models
available for the study of fluid motion. In the language of vorticity as described in Chapter 40,
a single shallow water layer is a barotropic fluid since it has zero baroclinicity (Section 40.4).
Notably, the shallow water layer has constant density, and so the flow has zero three-dimensional
divergence (∇ · v = 0). Yet the layer thickness fluctuates as a result of a nonzero divergence to
the horizontal flow (∇h · u ≠ 0), so that the single shallow water layer is a horizontally divergent
barotropic model.

For some geophysical fluid studies, we are primarily interested in the vortical (Rossby wave)
motions (Chapters 55 and 54), with these motions having far lower frequency than the gravity
wave motions associated with horizontal divergence (Section 55.5 and Chapter 57). The two-
dimensional non-divergent barotropic model focuses on vortical motion by assuming the horizontal
velocity has zero divergence, with that assumption serving to filter out all gravity waves. We
here study the non-divergent barotropic model with a flat free surface (i.e., rigid lid). For this
flow the vertical fluid columns have a fixed thickness, which contrasts to the extensible columns
found in the shallow water model. To retain a flat upper boundary requires the imposition of
a lid pressure. Indeed, it is the lid pressure that provides the force generating fluid motion.
We study the nature of these pressure forces, and in so doing garner insights into the pressure
gradient force.

For many purposes, we do not need to compute the lid pressure since the relative vorticity
is the primary dynamical field in the non-divergent barotropic model. That is, knowledge of
the vorticity is sufficient to determine the streamfunction (through solving an elliptic boundary
value problem), which then renders the velocity. Furthermore, the absolute vorticity is materially
invariant in the absence of irreversible processes such as friction. Hence, meridional motion of
a fluid column is associated with an exchange of vorticity between the fluid and the rotating
reference frame (i.e., the rotating planet). This exchange constrains the flow, and we examine
case studies to illustrate how this constraint affects motion. In particular, this constraint, in its
linearized form, provides the physical mechanism for Rossby waves, which we study in Section
54.3.
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chapter guide

We here develop some properties of the non-divergent barotropic model, and use this
model to exemplify basic features of geophysical flows constrained by conservation of
absolute vorticity. The model served as the basis for the pioneering numerical weather
prediction model of Charney et al. (1950), and it has become a valued theoretical model
for large-scale dynamics. It is also useful for studies of coherent vortex structures, with
Chapter 3 of McWilliams (2006) exploring analytical vortex solutions. We return to this
model in Sections 54.2 and 54.3 when studying Rossby waves.
Since all fields in this chapter are a spatial function only of the horizontal position, the
vector gradient operator is itself two-dimensional; e.g., ∇ψ = ∇hψ. Furthermore, we retain
the use of Cartesian coordinates as per the tangent plane approximation, with extensions
to general coordinates following the tensor analysis methods from Chapter 4.
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38.1 Basic equations and their properties
The non-divergent barotropic model arises from the following assumptions.

• The flow occurs in a single homogeneous fluid layer.

• The horizontal velocity is non-divergent: ∇ · u = ∂xu+ ∂yv = 0, which means that the
thickness of the layer is time independent.

The second property provides rather strict constraints on the flow relative to flow in the
horizontally divergent shallow water layer from Part VI of this book. In this section we exhibit
the governing equations and derive some of their properties.

38.1.1 Equations for velocity

The velocity equation for the non-divergent barotropic model follows in a manner akin to the
shallow water model from Chapter 35. Namely, the fluid is a homogeneous (uniform and constant
density) layer so that the horizontal velocity satisfies

Du

Dt
+ f ẑ × u = −∇φ and ∇ · u = 0, (38.1)

where the pressure is normalized according to

φ = p/ρ (38.2)

with ρ the constant layer density, and where material evolution occurs with the two-dimensional
non-divergent flow

D

Dt
=

∂

∂t
+ u · ∇. (38.3)

All fields are depth independent and there is no vertical motion (w = 0), so that the flow occurs
in rigid fluid columns. Making use of the vector identity (2.44)

(u · ∇)u = ζ ẑ × u+∇(u2/2), (38.4)

brings the velocity equation (38.1) into its vector-invariant form

∂tu+ (f + ζ) ẑ × u = −∇(φ+ u · u/2), (38.5)

which is a useful starting point in Section 38.2 for deriving the equation for the vorticity

ζ = ẑ · (∇× u) = ∂xv − ∂yu. (38.6)

The horizontal non-divergent flow can be described by a streamfunction

u = ẑ ×∇ψ =⇒ u = −∂yψ and v = ∂xψ. (38.7)

Making use of the identities

∇ψ = −ẑ × u =⇒ u · ∇ψ = 0 (38.8)
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brings the vector-invariant velocity equation (38.5) into the form

∂tu− (f + ζ)∇ψ = −∇(φ+ u · u/2). (38.9)

38.1.2 Kinetic energy of the flow

Taking the scalar product of the velocity with the velocity equation (38.9) yields the kinetic
energy equation

∂tK = −∇ · [u (K + φ)] =⇒ DK

Dt
= −∇ · (uφ), (38.10)

where we introduced the kinetic energy per mass

K = u · u/2 = (u2 + v2)/2 = ∇ψ · ∇ψ/2. (38.11)

The gravitational potential energy is constant since the fluid density is a uniform constant (so the
buoyancy vanishes) and the vertical velocity vanishes. Hence, mechanical energy transformation
only involves kinetic energy. Furthermore, the domain integrated kinetic energy is a constant
(for the inviscid case), as shown in Exercise 38.5.

38.1.3 Kinematics of rigid fluid columns

Recall the thickness equation (35.20) for a shallow water layer

Dh

Dt
= −h∇ · u, (38.12)

where h = η − ηb is the column thickness, z = η(x, y, t) is the upper layer interface (the free
surface), and z = ηb(x, y) is the lower interface (the bottom topography) (see Figure 35.1). With
zero divergence in the horizontal velocity, the thickness of a fluid column is constant

(∂t + u · ∇)h = ∂t(η − ηb) + u · ∇(η − ηb) = 0. (38.13)

Choosing η = 0 to satisfy the thickness equation

We choose to satisfy the thickness equation (38.13) by setting the upper surface to be static and
flat

η = 0, (38.14)

so that the column thickness is constant at each point in space

∂th = ∂t(η − ηb) = 0. (38.15)

By setting η = 0 we constrain the horizontal flow to follow the bottom topography so that

u · ∇ηb = (∇ψ ×∇ηb) · ẑ = 0. (38.16)

The case of a flat bottom offers no constraint, since ∇ηb = 0. However, for the case with
nontrivial bottom topography, the constraint (38.16) is satisfied only if the flow streamfunction,
ψ, is a function of the bottom topography,

ψ = ψ(ηb), (38.17)

so that the streamfunction is a constant along isolines of constant topography. Taking the limit
as the sides become vertical, this boundary condition means that ψ is a constant along vertical
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sidewalls so that
u · n̂ = (ẑ ×∇ψ) · n̂ = t̂ · ∇ψ = 0, (38.18)

where n̂ is the horizontal outward unit vector at the boundary, and t̂ = n̂× ẑ is the unit tangent
vector along the boundary.

Streamfunction for the thickness-weighted velocity

With rigid columns, the thickness equation (38.12) reduces to the non-divergence condition,

∇ · (hu) = 0. (38.19)

We can thus introduce a streamfunction, Ψ, for the thickness weighted horizontal velocity

hu = ẑ ×∇Ψ = ẑ × h∇ψ. (38.20)

Ψ has physical dimensions of L3 T−1, whereas the velocity streamfunction, ψ, has physical
dimensions of L2 T−1.

Summary

We formulate the two-dimensional non-divergent flow within a homogeneous fluid layer, for
which a fluid column does not expand or contract, vertical motion vanishes (as explored in
Section 38.1.4), and the flow is constrained to move along lines of constant topography so that
the streamfunction depends only on the bottom topography.

38.1.4 Vertical velocity

Vanishing vertical velocity

With zero horizontal divergence and with a flat free surface (η = 0), there is identically zero
vertical motion within the layer

w = 0. (38.21)

Another manner to deduce this property is by noting that the surface kinematic boundary
condition for a static and flat free surface leads to

w(η) = ∂tη + u · ∇η = 0 + 0, (38.22)

so that the vertical velocity at z = η = 0 vanishes. With w(0) = 0, and with ∇ · u = 0 for the
horizontal velocity, then w = 0 throughout the layer. Correspondingly, this constraint means
that the no-normal flow bottom kinematic condition (Section 19.6.1) renders a horizontal velocity
that is aligned with the topography, u · ∇ηb = 0, which is a property we already encountered in
Section 38.1.3. Since the vertical velocity is zero, the gravitational potential energy is a uniform
constant, so that the mechanical energy budget involves only the kinetic energy.

But can there be a non-vanishing vertical velocity?

In Section 38.1.3 we chose to satisfy the thickness equation by setting ∂tη = 0 and ∇η = 0,
in which case the vertical velocity vanishes so long as the horizontal flow follows the bottom
topography. A static and flat upper boundary is a sufficient condition, yet it is not necessary for
satisfying the thickness equation. Is there a viable alternative?
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Another approach to satisfying the thickness equation (38.13) is to consider a static yet
non-flat free surface (η ̸= 0) with horizontal flow constrained so that

u · ∇(η − ηb) = 0. (38.23)

The surface and bottom kinematic boundary conditions then result in a vertical velocity at the
surface and bottom

w(η) = −u · ∇η and w(ηb) = −u · ∇ηb. (38.24)

These two boundary velocities must be equal to ensure ∂zw = 0. If the bottom topography is
flat, ∇ηb = 0, then w(ηb) = w(η) = 0, in which case ∇η = 0, so that the upper surface is flat. If
the bottom is not flat, then the kinematic constraints lead to

∇η = ∇ηb, (38.25)

so that the upper surface slope equals to the slope of the bottom topography. In the ocean, it is
generally the case that the upper ocean surface undulates far less than the bottom topography.
Hence, ∇η = ∇ηb is not generally a realistic behavior, though one may study this case particularly
with weakly sloping bottom topography.

For the remainder of this chapter we follow the conventional approach whereby w = 0
everywhere. Hence, the upper boundary is static and flat, and we set η = 0. In the presence of a
non-flat bottom, then the horizontal flow follows lines of constant bottom topography so that
u · ∇ηb = 0.

38.1.5 Velocity self-advection and the kinetic stress tensor
The velocity self-advection appearing in the velocity equation (38.1) can be written as the
divergence of a 2× 2 symmetric tensor

−(u · ∇)u = ∇ · E⇐⇒ −um∂mun = −∂m(um un) = ∂mEmn, (38.26)

where

Emn = −um un ←→ E = −u⊗ u =

[
−u2 −u v
−u v −v2

]
, (38.27)

thus bringing the momentum equation (38.1) to the Eulerian form

∂tu+ f ẑ × u = −∇φ+∇ · E. (38.28)

We refer to
ρE = −ρu⊗ u (38.29)

as the kinetic stress tensor, with its three-dimensional form introduced in Section 25.6.
In anticipation of our study of vorticity in Section 38.2, we find it useful to decompose the

kinetic stress tensor into its horizontally isotropic and horizontally anisotropic components1

E =

[
−u2 −u v
−u v −v2

]
= −K

[
1 0
0 1

]
+

[
−(u2 − v2)/2 −u v
−u v (u2 − v2)/2

]
≡ −K I + F, (38.30)

where we introduced the kinetic energy per mass according to equation (38.11), as well as the
trace-free anisotropic portion of the kinetic stress tensor

F = K I + E =

[
−(u2 − v2)/2 −u v
−u v (u2 − v2)/2

]
⇐⇒ Fmn = K δmn − um un. (38.31)

1Recall our discussion of isotropy in Section 1.11.
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Making use of the decomposition (38.30) brings the velocity equation (38.32) to the form

∂tu+ f ẑ × u = ∇ · [F− I(K + φ)]. (38.32)

Comparing to the vector-invariant velocity equation (38.5) allows us to infer the identity

∇ · F = −ζ (ẑ × u). (38.33)

We provide an alternative derivation of this identity in Exercise (38.1).

38.1.6 Further reading

As discussed by Hoskins et al. (1983), Waterman and Hoskins (2013) and Waterman and Lilly
(2015), the decomposition (38.30) is useful for developing a geometric interpretation of eddying
flow features.

38.2 Vorticity

For the two-dimensional non-divergent flow with a vanishing vertical velocity, the vertical
component of the relative vorticity is the only nonzero vorticity component, and it is given by
the Laplacian of the streamfunction

ζ = ẑ · (∇× u) = ∂xv − ∂yu = ∇2ψ = ∇ · (h−1∇Ψ). (38.34)

We here derive basic features of the vorticity for this fluid on the β-plane whereby the Coriolis
parameter is (Section 24.5)

f = fo + β (y − y0). (38.35)

38.2.1 Vorticity equation

To form the dynamical equation for the vorticity, take the zonal derivative of the meridional
momentum equation (see equation (38.1)), the meridional derivative of the zonal momentum
equation, and then subtract

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+

∂

∂x
[∇ · (u v)]− ∂

∂y
[∇ · (uu)] + f∇ · u+ β v = 0. (38.36)

The pressure gradient dropped out since there is zero baroclinicity for a barotropic flow.2 We
now make use of the identity

∂

∂x
[∇ · (u v)]− ∂

∂y
[∇ · (uu)] = ∂u

∂x
· ∇v − ∂u

∂y
· ∇u+ u · ∇ζ = u · ∇ζ, (38.37)

where we used the non-divergence condition, ∂xu+ ∂yv = 0, thus rendering

∂u

∂x
· ∇v − ∂u

∂y
· ∇u =

∂u

∂x

∂v

∂x
+
∂v

∂x

∂v

∂y
− ∂u

∂y

∂u

∂x
− ∂v

∂y

∂u

∂y
(38.38a)

= −∂v
∂y

∂v

∂x
+
∂v

∂x

∂v

∂y
+
∂u

∂y

∂v

∂y
− ∂v

∂y

∂u

∂y
(38.38b)

= 0. (38.38c)

2We discuss baroclinicity in Section 40.4.
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We are thus led to the vorticity equation

∂ζ

∂t
+∇ · (u ζ) = −β v and

Dζ

Dt
= −β v. (38.39)

Evidently, the material evolution of relative vorticity in a horizontally non-divergent barotropic
fluid is only affected by meridional advection of planetary vorticity. Since β > 0 over the globe,
northward flow (v > 0) produces a negative source (clockwise tendency) for relative vorticity
following a fluid parcel. This source term is the beta effect that we study in Section 40.6.

38.2.2 Constraints from material invariance of absolute vorticity

Since f is time independent, we can write the vorticity equation (38.39) in the form

(∂t + u · ∇)ζa = 0⇐⇒ Dζa
Dt

= 0, (38.40)

where
ζa = ζ + f (38.41)

is the vertical component of the absolute vorticity. Equation (38.40) is a relatively simple version
of the vorticity equation encountered in this book. It is simple because there are no sources
on the right hand side, with nonzero sources studied in Chapter 40. In particular, there is no
stretching or tilting of fluid columns in the non-divergent barotropic fluid.3

To maintain a materially constant absolute vorticity requires the relative vorticity to change
oppositely to that of the planetary vorticity. For example, in the northern hemisphere the
relative vorticity must decrease in value (ζ ↓) for fluid particles moving northward. This change
in the relative vorticity is needed to counteract the increasing planetary vorticity (f ↑) when
moving northward. This result accords with the −β v source found in the relative vorticity
equation (38.39). Furthermore, it is a reflection of the beta effect studied in Section 40.6.2. We
further pursue these invariance properties in Section 38.5.

38.2.3 Rossby potential vorticity

According to the kinematic boundary condition (38.16), horizontal flow is aligned with isobaths
(lines of constant bathymetry or topography). Flow moving along constant isobaths generally
crosses latitude lines, and in so doing the relative vorticity must change precisely to maintain
f +ζ materially constant. As shown here, we can combine the absolute vorticity with the bottom
topography to render a materially conserved object, the Rossby potential vorticity, which further
helps to understand constraints on the flow (see Section 38.6 for an example).

As noted in Section 41.1.6 (see equation (41.24)), the absolute vorticity is the form of Ertel’s
potential vorticity for the horizontally non-divergent barotropic model. Additionally, since fluid
columns are rigid so that Dh/Dt = 0, the Rossby potential vorticity is materially conserved (in
the absence of non-conservative processes)

DQ

Dt
= 0 with Q = (ζ + f)/h. (38.42)

As discussed in Section 39.3, this form of potential vorticity conservation also holds for the
inviscid shallow water equations, yet where h is no longer rigid so that flow can cross isobaths.

3In Section 40.5, we see how stretching and tilting of fluid columns provides a sources of vorticity for more
general fluid flow.
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38.2.4 Jacobian forms of vorticity advection
In some contexts it is convenient to write the advection operator acting on relative vorticity as

u · ∇ζ = u ∂xζ + v ∂yζ (38.43a)

= −∂yψ ∂xζ + ∂xψ ∂yζ (38.43b)

= ẑ · (∇ψ ×∇ζ) (38.43c)

≡ J(ψ, ζ), (38.43d)

where J is the Jacobian operator

J(A,B) = ẑ · (∇A×∇B) =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x
. (38.44)

We can also make use of the Jacobian for the advection of absolute vorticity4

u · ∇ζa = ẑ · (∇ψ ×∇ζa) ≡ J(ψ, ζ + f). (38.45)

38.2.5 Taylor-Bretherton identity
An equivalent means to write the vorticity equation is to start from the velocity equation in the
form (38.32). Taking the curl and projecting onto the vertical direction then leads to

∂tζ = −β v + ẑ · [∇×∇ · F]. (38.46)

The nonlinear forcing from the anisotropic portion of the kinetic stress can be written

ẑ · [∇×∇ · F] = ẑn ϵnpq ∂p(∂mFmq) (38.47a)

= ∂m∂p(ϵnpq ẑn Fmq) (38.47b)

= −∂m∂p(ϵpnq ẑn Fqm) (38.47c)

= −∂m∂p(ẑ × F)pm (38.47d)

= −∇ · [∇ · (ẑ × F)], (38.47e)

where we used symmetry of the anisotropic kinetic tensor, Fmq = Fqm.

Taylor-Bretherton identity for relative vorticity

Comparing to the vorticity equation in the form (38.39) reveals the identity

∇ · (u ζ) = ∇ · [∇ · (ẑ × F)] =⇒ u ζ = ∇ · (ẑ × F). (38.48)

This equation says that the advective vorticity flux equals to the divergence of the counter-
clockwise rotated anisotropic kinetic stress tensor. Equation (38.48) is a special form of the Taylor-
Bretherton identity that provides a connection between the vorticity flux and the momentum
flux. We encounter the shallow water form of this identity in Chapter 67 when studying the
decomposition of eddy and mean flows.

Verifying the Taylor-Bretherton identity

The divergence expression on the left hand side of equation (38.48) can be satisfied by ẑ×∇Υ+
∇ · (ẑ × F), with Υ an arbitrary gauge function. However, Υ = 0 is zero for the anisotropic

4The Jacobian operator corresponds to the Poisson bracket used in Hamiltonian mechanics.
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kinetic tensor (38.31), as seen by

[∇ · (ẑ × F)]1 = ∂m(ϵmnp ẑn Fp1) (38.49a)

= ϵm3p ∂mFp1 (38.49b)

= −ϵ3mp ∂mFp1 (38.49c)

= −ϵ312 ∂1F21 − ϵ321 ∂2F11 (38.49d)

= −∂xF21 + ∂yF11 (38.49e)

= ∂x(u v) + ∂y(−u2 + v2)/2 (38.49f)

= v ∂xu+ u ∂xv − u ∂yu+ v ∂yv (38.49g)

= u ζ, (38.49h)

and likewise
[∇ · (ẑ × F)]2 = ∂yF12 − ∂xF22 = v ζ. (38.50)

Taylor-Bretherton identity for potential vorticity

Building from the development for relative vorticity, we can readily connect the potential vorticity
flux, u q = u ζa, to the anisotropic kinetic stress. We do so by considering the two equivalent
forms for the potential vorticity equation

∂tq = −∇ · (u q) and ∂tq = −∇ · [u f +∇ · (ẑ × F)]. (38.51)

Hence, the Taylor-Bretherton identity for potential vorticity in the two dimensional non-divergent
flow is given by

u q = u f +∇ · (ẑ × F). (38.52)

38.2.6 Poisson equation for the streamfunction
Given boundary conditions, the barotropic vorticity equation (38.40) allows us to determine the
evolution of vorticity. We can in turn invert the Poisson equation5

∇2ψ = ζ (38.53)

to determine the streamfunction and then the velocity field, u = ẑ×∇ψ. This inversion requires
information about the boundary conditions for the streamfunction, as discussed in Section
38.1.3. By this method, time integration of the absolute vorticity equation is sufficient to fully
specify time evolution of the horizontal velocity. Notably, we do not need to explicitly determine
pressure to determine the flow.

38.2.7 Zonal flow as an exact geostrophic solution
An arbitrary zonal velocity with a meridional shear, u = U(y) x̂, is an exact solution of the
inviscid non-divergent barotropic model. We see this property by plugging into the velocity
equation (38.1) and noting that Du/Dt = 0. Hence, this flow is an exact geostrophic solution
whose pressure field is itself also just a function of latitude and whose meridional gradient is
determined by

f ẑ × u = −∇φ =⇒ ∂yφ = −f(y)U(y). (38.54)

Furthermore, each term in the vorticity equation (38.39) identically vanishes, so that the vorticity

ζ = −∂yU (38.55)

5See Section 6.5 for a study of the Poisson equation.
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remains constant in time at each point in space. These properties make u = U(y) x̂ a common
choice for a background flow in the study of Rossby waves (Section 54.3).

38.2.8 A point vortex and the free space Green’s function

Consider an axially symmetric vortex centered at the origin, x = 0, and in an infinite free space
so there are no boundaries. Making use of polar coordinates from Section 4.22, we know that
the relative vorticity for this vortex is related to the velocity via

ζ = ẑ · (∇× u) = r−1 ∂r(r u
ϑ), (38.56)

with r the distance from the origin and ϑ the polar angle. The identity (38.56) holds since all
of the flow fields have axial symmetry, meaning that all fields are a function only of the radial
distance from the origin. Now further assume the vorticity is given by

ζpoint = −α δ(x), (38.57)

where α is a constant, and we use equation (7.66) to write the Dirac delta in polar coordinates

δ(x) = r−1 δ(r) δ(ϑ). (38.58)

In this manner we assume the vortex has zero extent yet infinite strength.6 We can connect the
constant, α, to the circulation by considering an arbitrary circuit that encloses the origin

C =

‰
∂S
u · dr =

ˆ
S

ζpoint dS = −α, (38.59)

so that
ζpoint = C δ(x) = (C/r) δ(r) δ(ϑ). (38.60)

Referring to the Green’s function discussion in Section 9.2, we see that the streamfunction
for the point vortex (again, in the absence of boundaries) is the free space Green’s functions
for the Laplace operator. Equation (9.5b) provides an expression for this Green’s function
in the two-dimensional space of the barotropic model, which then leads to the point vortex
streamfunction

∇2ψpoint = C δ(x)⇐⇒ ψpoint = (C/2π) ln(r/r0). (38.61)

We introduced the arbitrary constant, r0, to ensure the argument to the natural log is dimension-
less. But r0 merely adds a constant to the streamfunction, and so its precise value is physically
irrelevant and so it is ignored in the following. The flow associated with the point vortex is
given by

u = ẑ ×∇ψpoint =
C ϑ̂

2π r
. (38.62)

Evidently, the flow is a purely angular swirling motion around the point vortex that falls off as
the inverse distance from the vortex.

Though highly idealized, the flow field arising from the point vortex is aligned with that in
the far field for realistic localized vorticies, thus making the point vortex a physically relevant
theoretical idealization. The discussion here briefly touched upon the theoretical richness of
point vorticies in fluid mechanics, with chapter 3 of McWilliams (2006) offering a more thorough
study, also in the context of two dimensional non-divergent flow.

6See Chapter 7 for properties of the Dirac delta.
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38.2.9 Green’s function solution
Since the Poisson equation for the streamfunction is a linear partial differential equation, we
can use the principle of superposition to have the point vortex solution (38.61) build up the
streamfunction arising from an arbitrary vorticity. This approach makes use of the Green’s
function method from Chapter 9. For brevity, we only consider the case without boundaries,
with the more general case including boundaries detailed in Sections 9.3 and 9.4.

We seek a streamfunction that satisfies the Poisson equation

∇2ψ = ζ, (38.63)

with ζ a given vorticity that is localized in space. Making use of the free space Green’s function
(9.5b) leads to

ψ(x) =
1

2π

ˆ
ζ(y) ln(|x− y|) dSy (38.64)

where dSy is the area element for the horizontal integral over y. This streamfunction is built by
convolving the vorticity source with the free space Green’s function. The corresponding velocity
is given by

u(x) = ẑ ×∇ψ(x) = 1

2π

ˆ
ζ(y)

ẑ × (x− y)
|x− y|2 dSy. (38.65)

As a check, we see that if the vorticity source is chosen to be a point vortex at the origin,
ζ(y) = C δ(y), then u correctly reduces to the point vortex velocity (38.62). The expression
(38.65) is sometimes referred to as the two-dimensional Biot-Savart law, which arises from the
analog in electromagnetism.7

38.3 Connection to equivalent barotropic flow8

In many cases, flows respecting the assumptions of quasi-geostrophy (Section 43.5) possess a
vertical profile that can be separated from the horizontal. In this case we write the horizontal
velocity as

u(x, y, z, t) = Γ(z)ueb(x, y, t), (38.66)

where Γ > 0 is a single-signed non-dimensional structure function that has a unit vertical
average, ⟨Γ⟩ = 1, when computed over the fluid layer thickness, and where ueb(x, y, t) carries
the horizontal spatial dependence of the flow. With Γ > 0, the horizontal flow remains in
the same direction throughout the fluid column; i.e., eastward flow at the top of the column
remains eastward at the bottom. This orientation of the flow is generally referred to as equivalent
barotropic.

38.3.1 Vorticity equation for the depth averaged flow
To connect the very particular form (38.66) for the flow with the non-divergent barotropic model,
we anticipate a discussion in Section 45.2.2 in which the quasi-geostrophic vorticity equation is
shown to be

∂ζg
∂t

+ ug · ∇ζg = −β ζg + fo
∂w

∂z
, (38.67)

7See, for example, Section 5.2 of Jackson (1975) or Section 5.2 of Griffiths (1981) for an electromagnetism
discussion of the Biot-Savart law. Note, however, that the more common expression of the Biot-Savart law is given
in three-dimensions, where the magnetic field has a (x− y)/|x− y|3 dependence rather than the (x− y)/|x− y|2
dependence found in two-dimensions as in equation (38.65).

8Section 38.3 requires a basic understanding of quasi-geostrophic theory as discussed in Section 43.5. So
this discussion here can be readily skipped on first reading, then returned to after studying quasi-geostrophy in
Chapter 45.
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where ug is the horizontally non-divergent geostrophic velocity, and ζg = ẑ · (∇ × ug) is the
geostrophic relative vorticity. We see that the quasi-geostrophic vorticity is affected by both
the beta-effect and by vertical stretching of fluid columns (the ∂w/∂z term), whereas vertical
stretching is absent from the vorticity equation (38.39) for the horizontally non-divergent
barotropic fluid. There are occasions in which it is sensible to assume the vertical velocity for
a quasi-geostrophic flow vanishes at the top and bottom of the fluid domain, such as when
considering flow in the absence of topography. In this case, performing the decomposition (38.66)
for the horizontal flow and then taking a vertical average of the quasi-geostrophic vorticity
equation (38.67) leads to

∂ζeb
g

∂t
+ ⟨Γ2⟩ueb

g · ∇ζeb
g = −β veb

g . (38.68)

This equation motivates us to define

u∗ = ⟨Γ2⟩ueb
g and ζ∗ = ⟨Γ2⟩ ζeb

g , (38.69)

which are the original geostrophic fields, ug(x, y, z, t) and ζg(x, y, z, t), when evaluated at a depth
where Γ(z∗) = ⟨Γ2⟩. The depth, z∗, is known as the equivalent barotropic depth. Introduction of
the starred fields then brings the vorticity equation (38.68) into the form of the non-divergent
barotropic vorticity equation

∂ζ∗

∂t
+ u∗ · ∇ζ∗ = −β v∗. (38.70)

38.3.2 Comments

Charney et al. (1950) justified their study of the non-divergent barotropic vorticity model by
noting its connection to the commonly observed equivalent barotropic stucture of the large-scale
middle latitude atmosphere. The equivalent barotropic model has been a very useful analysis and
prediction tool for meteorologists, and it formed the basis of many numerical weather prediction
models into the 1980s. Section 7.1 of Haltiner and Williams (1980) offers further details on such
numerical models.

One hypothesis for why quasi-geostrophic flows tend towards an equivalent barotropic
profile relates to movement of energy in rotationally dominant turbulent flows, whereby energy
cascades to the larger scales. As discussed in Smith and Vallis (2001) and Venaille et al. (2012),
among others, this inverse energy cascade pumps mechanical energy into a vertically uniform or
“barotropic” stucture. In a realistic flow, including topography, stratification, and variable forcing,
this cascade is never realized completely, thus rendering a flow that approaches an equivalent
barotropic structure but never quite gets there fully.

The case of f = 0 with flat bottom is referred to as two-dimensional turbulence (Kraichnan
and Montgomery , 1980). This model has a history of key theoretical results that presaged their
analog in quasi-geostrophic turbulence. See chapters 11 and 12 of Vallis (2017) for further
discussion of this model and its relevance to geostrophic turbulence of the ocean and atmosphere.

38.4 The externally applied lid pressure

Recall the velocity equation (38.1) for the two-dimensional non-divergent flow

[∂t + (u · ∇)]u+ f ẑ × u = −∇φ. (38.71)

As noted in Section 38.2.6, we do not need to determine the lid pressure, φ, to determine
the evolution of the flow. Instead, we can determine the flow by time stepping vorticity and
then inverting the elliptic problem to get the streamfunction. Furthermore, the free surface is
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absolutely flat even in the presence of topography. Hence, there is no pressure generated by
undulations of the free surface. So how is there flow in this model?!

We answer this question by studying the lid pressure. It is the lid pressure that maintains
a flat rigid lid upper surface in the two-dimensional non-divergent barotropic model. The lid
pressure is imposed by some external means (whose details are not important), thus ensuring
that the flow remains horizontally non-divergent. In turn, it is the lid pressure that provides the
force to drive flow. We here expose details to help understand the fundamental, yet somewhat
hidden, role for the lid pressure.

To further motivate the analysis, we again emphasize the strong constraints placed on the
horizontal flow, which must satisfy the following conditions at each space and time point

∇ · u = 0 and u · ∇ηb = 0 and w = 0. (38.72)

Kinematics of the constrained flow induce a depth-independent pressure that enforces these
constraints. Examining the resulting pressure field furthers our understanding of the forces
acting in the moving fluid. This role for pressure as an enforcer of non-divergence is shared
by the three-dimensional non-divergent flow found in a Boussinesq ocean (see Section 29.3).
It is simpler to visualize fields in the two dimensional non-divergent barotropic model, thus
facilitating understanding and insights that are also useful for the three dimensional case.

38.4.1 Poisson equation for pressure
We derive the pressure equation by using the two-dimensional non-divergence property of the
horizontal flow and then developing a diagnostic relation. We can eliminate the time derivative
from equation (38.1) by taking ∂/∂x on the zonal equation and ∂/∂y on the meridional equation,
then adding. The result is a diagnostic relation for the Laplacian of the pressure9

−∇2φ = ∂x[∇ · (uu)] + ∂y[∇ · (u v)]− f ζ + β u, (38.73)

where we set
∇ · ∂tu = ∂t∇ · u = 0 =⇒ ∂x(∂tu) = −∂y(∂tv). (38.74)

Making use of the boundary conditions discussed in Section 38.1.3, the elliptic partial differential
equation (38.73) can be inverted to find the pressure field (Section 6.5). As for the three-
dimensional Boussinesq ocean, or for a three-dimensional incompressible fluid, pressure is the
force that instantaneously constrains the velocity to remain non-divergent.

Numerically inverting an elliptic operator in equation (38.73) is straightforward on simple
domains, such as flat bottom rectangular regions or a smooth sphere. However, when the bottom
is not flat, or when there are islands (i.e., the domain is not simply connected), then the elliptic
inversion can be numerically difficult to perform. This algorithmic complexity is one reason
numerical barotropic models are less commonly used for realistic numerical experimentation than
the more general shallow water models. Even so, as pursued in the remainder of this section, we
can make use of idealized configurations to garner insight into how pressure maintains the flow
constraints.

38.4.2 Gradient wind balance
For two-dimensional non-divergent flow we can write the contribution to the pressure equation
(38.73) from self-advection in terms of the streamfunction, or equivalently as the Jacobian of the

9We maintain the minus sign on the left hand side of equation (38.73) so that a positive source on the right
hand side leads to a positive φ. We can readily understand the sign by taking a Fourier transform, whereby the
Laplacian operator picks up a minus sign when converted to Fourier space. We follow the same sign convention
when studying the Green’s function for the Poisson equation in Chapter 9.
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velocity field. We do so through the following manipulations

∂x[∇ · (uu)] + ∂y[∇ · (u v)] = ∇ · (∂xuu) +∇ · (u ∂xu) +∇ · (∂yu v) +∇ · (u ∂yv) (38.75a)

= ∂xu · ∇u+ ∂yu · ∇v (38.75b)

= (∂xu)
2 + (∂yv)

2 + 2 ∂xv ∂yu (38.75c)

= 2 [(∂xu)
2 + ∂xv ∂yu] (38.75d)

= 2 [(∂xyψ)
2 − ∂xxψ ∂yyψ] (38.75e)

= 2 ẑ · (∂x∇ψ × ∂y∇ψ) (38.75f)

= −2 J(∂xψ, ∂yψ), (38.75g)

= 2 J(v, u), (38.75h)

where we introduced the Jacobian operator from equation (38.39). The pressure equation (38.73)
thus takes on the form

−∇2φ = 2 J(u, v)−∇ · (f ∇ψ), (38.76)

where we also wrote

−∇ · (f ∇ψ) = −f ∇2ψ − β ∂yψ = −f ζ + β u. (38.77)

We refer to equation (38.76) as a gradient wind balance in analog to the gradient wind balance
discussed in Section 32.6. Here, the Jacobian term accounts for the centrifugal acceleration of
the curved fluid motion, and the ∇ · (f ∇ψ) term accounts for the Coriolis acceleration, both for
the f -plane and β-plane. Equation (38.76) thus offers a more accurate diagnostic relation for
the pressure field than provided by assuming a geostrophically balanced flow.

38.4.3 Pressure source from self-advection

We introduce yet another way to examine the self-advection source appearing in the pressure
equation (38.73), and do so by writing it as

∂x[∇ · (uu)] + ∂y[∇ · (u v)] = Smn Smn − Rmn Rmn, (38.78)

where the strain rate tensor, S, and rotation tensor, R, have components given by equations
(18.90a) and (18.90b)

Smn = (∂nvm + ∂mvn)/2 = Snm strain rate tensor (38.79)

Rmn = (∂nvm − ∂mvn)/2 = −Rnm rotation tensor. (38.80)

For two-dimensional flow the rotation tensor is related to the relative vorticity via

Rmn = −ϵmn ζ/2 = −ϵmn∇2ψ/2, (38.81)

where ϵmn is the anti-symmetric Levi-Civita permutation symbol (see Section 1.7.1)

ϵmn =

[
ϵ11 ϵ12
ϵ21 ϵ22

]
=

[
0 1
−1 0

]
, (38.82)

which leads to the double contraction of the rotation tensor

Rmn Rmn = ζ2/2. (38.83)
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The identity (38.78) indicates that the squared strain rate (sometimes referred to as the splat)
provides a positive source to the Poisson equation (38.73) whereas squared vorticity provides a
negative source. Bringing these results together leads to the pressure equation

−∇2φ = Smn Smn − ζ2/2−∇ · (f ∇ψ) = 2 [(∂xyψ)
2 − ∂xxψ ∂yyψ]−∇ · (f ∇ψ), (38.84)

where the second equality made use of equation (38.75e) to write the pressure source fully in
terms of the streamfunction.

In the following sections, we present two examples to help understand how pressure gradients
arise in a two-dimensional barotropic flow, with the pressure gradients maintaining a non-
divergent two-dimensional velocity field. We start by assuming a non-rotating reference frame, so
that it is sufficient to examine how pressure responds to the nonlinear source term Smn Smn−ζ2/2.
Thereafter we include sources from the rotating reference frame.

38.4.4 Pressure source from circular rigid-body flow

Consider a velocity field in a flat domain that is initialized in circular rigid-body motion (Figure
38.1)

u = Ω× x = Ω(−y x̂+ x ŷ), (38.85)

where Ω = Ω ẑ is a constant angular velocity. This flow has zero strain (as do all rigid-body
flows) yet constant vorticity

ẑ · (∇× u) = ζ = 2Ω =⇒ −Rmn Rmn = −2Ω2. (38.86)

The velocity time tendency from the self-advection acceleration is

−(u · ∇)u = Ω2 x, (38.87)

which is the outward directed centrifugal acceleration associated with the circular rigid-body
motion.10 The velocity equation (38.71) thus takes the form (recall we are considering f = 0 for
now)

∂tu = Ω2 x−∇φ. (38.88)

Pressure gradient acceleration exactly balances centrifugal acceleration

If acting alone, the centrifugal acceleration would create a velocity field that diverges from the
origin. However, the velocity is constrained to remain non-divergent at each instance, so the
centrifugal acceleration cannot be the full story. Indeed, to maintain a non-divergent flow we
find a pressure gradient that exactly balances the centrifugal acceleration. This pressure gradient
is established instantaneously as per the solution to the elliptic pressure equation. We thus infer
that there is a low pressure at the origin so that the pressure gradient force points inward, thus
balancing the centrifugal acceleration.

We can extrapolate from this example to conclude that vorticity provides a source of low
pressure in a non-divergent flow. Furthermore, since the centrifugal acceleration from the velocity
self-advection is exactly balanced by the pressure gradient acceleration, the rigid-body flow is an
exact steady solution for the non-divergent and non-rotating (zero Coriolis) barotropic system.
This result holds even in the presence of viscosity, since the rigid-body flow has no strain and
hence it does not support viscous stresses (see Section 25.8).

10We considered the more general case in Section 32.2.2 when decomposing the material acceleration for
two-dimensional flow into natural coordinates.

page 1064 of 2158 geophysical fluid mechanics



38.4. THE EXTERNALLY APPLIED LID PRESSURE

Figure 38.1: Left panel: example flow field from rigid-body rotation, u = Ω×x = Ω(−y, x), which has vorticity
∇× u = 2Ω and zero strain. Right panel: corresponding acceleration from self-advection, −(u · ∇)u = Ω2 x,
which is a centrifugal acceleration. The centrifugal acceleration from self-advection is exactly compensated by
the pressure gradient force: −(u · ∇)u−∇φ = 0, thus allowing for the rigid-body motion to be an exact steady
solution to two-dimensional non-divergent flow. The units are arbitrary.

Rotationally symmetric pressure field

We can support the above general statements by deriving an explicit expression for the pressure
field, and we do so by solving the pressure Poisson equation (38.73). Since we have assumed
zero planetary rotation (f = 0), equation (38.73) reduces to

−∇2φ = −2Ω2, (38.89)

which also follows from taking the divergence of equation (38.88) and noting that ∇ · x = 2.
Furthermore, the solid-body flow is assumed to be rotationally symmetric so that all fields have
only radial dependence. In this case, pressure satisfies the ordinary differential equation

r−1 ∂r(r ∂rφ) = 2Ω2, (38.90)

where r is the radial distance from the origin and we used the polar coordinate version of the
Laplacian given by equation (4.197b). The solution to the pressure equation (38.90) is given by

φ = (Ω r)2/2 and −∇φ = −Ω2 x = (u · ∇)u, (38.91)

where we set φ(r = 0) = 0. Evidently, the pressure grows parabolically moving radially away
from the center.

The pressure field in relation to rigid-body rotating shallow water

To help understand the physics of the pressure field (38.91), recall the analysis in Section 27.5 of
a rigid-body rotating homogeneous shallow water fluid layer in a cylindrical tank. In contrast
to the barotropic system, the horizontal velocity in a homogeneous fluid layer, such as in a
shallow water fluid, is divergent so that the layer thickness is not constrained to remain flat.
Hence, the centrifugal acceleration causes the velocity to diverge from the center so that the
layer thickness increases radially outward, with the layer bounded by the tank wall. At steady
state, the homogeneous fluid layer has a parabolic free surface with a minimum at the center (see
equation (27.106)). The parabolic free surface creates a pressure field that precisely corresponds
to the pressure field (38.91) in the non-divergent barotropic system. Note that the dynamical
adjustment of a homogeneous shallow water fluid layer contain linear fluctuations in the form of
gravity waves such as discussed in Chapter 36. In contrast, the adjustment required to reach a
steady state occurs instantaneously in the non-divergent barotropic fluid.
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Figure 38.2: Left panel: example purely strained flow field with zero vorticity, u = Ω(−x x̂+ y ŷ). Right panel:
corresponding converging acceleration from self-advection, −(u · ∇)u = −Ω2 x. The units are arbitrary.

38.4.5 Pressure source from irrotational (pure strain) flow

Consider the following pure strain flow (Figure 38.2)

u = Ω(−x x̂+ y ŷ), (38.92)

whose vorticity vanishes and whose self-advection acceleration is given by

−(u · ∇)u = −Ω2 x =⇒ Smn Smn = 2Ω2, (38.93)

thus leading to a velocity equation (again, f = 0 is assumed)

∂tu = −Ω2 x−∇φ. (38.94)

The acceleration (38.93) is exactly the opposite of that produced by the rigid rotation studied
in the previous example (equation (38.87)). Hence, to maintain a horizontally non-divergent
barotropic flow, a pressure field is established with a high pressure at the center that exactly
counteracts the converging self-advection acceleration present in the pure strain flow

φ = −(Ω r)2/2 and −∇φ = Ω2 x = (u · ∇)u. (38.95)

This example illustrates how strain provides a source for high pressure in a non-divergent flow.
Furthermore, we see that this flow, in the absence of viscosity, is an exact steady solution for
non-divergent barotropic flow in a non-rotating reference frame. However, in contrast to the
rigid-body flow in Section 38.4.4, the purely strained flow (38.92) supports viscous friction, so
that this flow does not remain steady in the presence of viscosity.

38.4.6 Pressure source from Coriolis acceleration

In addition to the self-advection source, pressure is affected by a source from the Coriolis
acceleration

−∇2φgeostrophy ≡ ∇ · (f ẑ × u) = −∇ · (f ∇ψ) = β u− ζ f. (38.96)

As such, we can write the pressure gradient as11

−∇φgeostrophy = f ẑ × u. (38.97)

11Formally, we can add an arbitrary gauge function to the right hand side of equation (38.97), with this term
of the form ẑ ×∇χ. However, since we derived the pressure Poisson equation from the velocity equation, then we
know there is no gauge function arising in equation (38.97).
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Consider cyclonic flow around an arbitrary point. What is the pressure field induced by this
flow? As in our discussion in Section 38.4.4 of the rigid-body rotating flow, a cyclonic flow
has an associated centrifugal acceleration that points outward. To counteract the centrifugal
acceleration, and thus to maintain a non-divergent flow, requires an inward pointing pressure
force; i.e., a low pressure center. Hence, cyclonic circulation induces, through the Coriolis
acceleration, a negative pressure source whereas anti-cyclonic circulation induces a positive
pressure source. This is indeed an interesting perspective on geostrophic balance!

38.4.7 Pressure source from friction

Consider flow with friction, in which case the velocity equation (38.1) takes the form

Du

Dt
+ f ẑ × u = −∇φ+ F , (38.98)

with F a frictional acceleration. In this case we have yet another source for pressure given by

−∇2φfriction ≡ −∇ · F . (38.99)

As discussed in Section 25.8, viscous friction is generally associated with a nonzero strain rate.
We see that the frictional acceleration induces a high pressure source in regions where frictional
accelerations converge, −∇ · F > 0, with this source acting to maintain non-divergent flow in
the presence of converging frictional acceleration.

38.4.8 Comments and further study

• The pressure equation (38.73) is elliptic, and elliptic equations need boundary conditions. In
the presence of topography the boundary conditions are modified relative to the flat bottom
case. Hence, pressure knows about topography through its boundary conditions. The
resulting pressure force keeps the flow non-divergent and the flow aligned with topography
as per the kinematic conditions in Section 38.1.3.

• The discussion of pressure induced by self-advection in Sections 38.4.4 and 38.4.5 is based
on a similar presentation in Appendix B of Jeevanjee and Romps (2015a).

• Bryan (1969) provided the first working numerical algorithm to simulate the ocean general
circulation. Bryan’s method made use of the rigid lid approximation of Section 38.4 so
that the depth integrated velocity is non-divergent. However, the vorticity in Bryan’s
ocean model is affected by more than just the beta-effect. The reason is that the depth
integrated velocity equation includes contributions from baroclinic processes, and such
processes affect the barotropic vorticity in a baroclinic fluid. We detail such effects in
Sections 44.5 and 44.6.

The rigid lid method was used for large-scale ocean circulation modeling until the late
1990s. Free surface methods, allowing divergence in the depth integrated flow, have largely
displaced the rigid lid as a practical method for time stepping ocean models (e.g., see
chapter 12 of Griffies (2004)).

38.5 Constraints from material invariance of absolute vorticity
Following from Section 38.2.2, we here examine constraints on the flow imposed by material
invariance of absolute vorticity, which holds for two-dimensional non-divergent flow when there
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is no dissipation
D(ζ + f)

Dt
= 0. (38.100)

These constraints offer insights into the flow behavior and allow us to predict responses to
perturbations. Notably, these predictions arise even without direct information about the forces
giving rise to the responses. Rather, we deduce the responses based on vorticity constraints
alone.

We frame the discussion in terms of the decomposition (37.50) of relative vorticity into a
curvature (or orbital) term and normal shear term

ζ =
|u|
R
− ∂|u|

∂n
≡ ζcurv + ζshear, (38.101)

so that
D(ζcurv + ζshear + f)

Dt
= 0. (38.102)

When the flow turns, the curvature term contributes with R the radius of curvature.12 If the
flow develops shears in the direction normal to the flow, then the shear term contributes. In
the presence of β = ∂yf , meridional motion through the planetary vorticity field requires a
compensating response from relative vorticity. In general each of the three terms contribute
to the relative vorticity, yet for pedagogical purposes we consider cases where one term is
subdominant and so can be ignored.

38.5.1 Relative vorticity from curvature and planetary beta

According to the decomposition (38.101), fluid flow that curves to the left (facing downstream)
picks up a positive relative vorticity from flow curvature, R > 0⇒ ζ > 0, as depicted in Figure
38.3. The oppositely curved flow has a negative radius of curvature so flow curving to the right
picks up a negative relative vorticity, R < 0 ⇒ ζ < 0. We focus here on the case where the
normal shear induced relative vorticity can be neglected so that we are only concerned with
curvature induced vorticity plus planetary vorticity (beta effect).

Consider a flow that is initially zonal with zero relative vorticity. If the flow turns meridionally
then it experiences a change in relative vorticity both through the curvature term plus a change in
planetary vorticity since f changes. To maintain constant absolute vorticity, a fluid column that
moves meridionally requires the relative vorticity induced by the curved flow path to counteract
the change in planetary vorticity. As we now discuss, the constraint of fixed absolute vorticity,
in the absence of induced normal shears, means that eastward flow (westerly winds) cannot turn
meridionally while maintaining fixed absolute vorticity, whereas westward flow (easterly winds)
can turn (see Figure 38.3).

Consider westward flow in the northern hemisphere (f > 0). If the flow turns to the north
(to the right facing downstream) then this flow picks up a curvature-induced negative relative
vorticity, ζ < 0, and an increase in the planetary vorticity (f increases). Likewise, a westward
flowing fluid column that turns equatorward (to the left) has a positive curvature-induced relative
vorticity (ζ > 0) and a reduction in planetary vorticity (f decreases). Hence, westward flow in
the northern hemisphere can turn either poleward (to the north) or equatorward (to the south)
and still maintain constant absolute vorticity, so long as the curved motion induces the proper
relative vorticity to counteract the changes to f . The same arguments also hold in the southern
hemisphere, so that the general scenarios are depicted in Figure 38.3.

12As discussed in Section 32.2, we take the convention whereby the normal direction is to the left of flow when
facing downstream. Flow turning into the normal direction (to the left) has a positive radius of curvature, R > 0,
and flow turning opposite to the normal direction (to the right) has R < 0.
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Figure 38.3: Illustrating the constraints on a two dimensional non-divergent flow imposed by material invariance
of absolute vorticity: ζ + f = constant. We assume flow is over a flat region and assume there is only curvature
induced relative vorticity (no shear-induced relative vorticity; ∂|u|/∂n = 0) as per the decomposition in equation
(38.101). In each of the four cases depicted, the entering flow has zero relative vorticity, which means that absolute
vorticity must remain constant at the initial Coriolis parameter, ζ + f = finitial. The red eastward flow (westerly
winds) that turns meridionally picks up a curvature vorticity that supports the change in planetary vorticity,
thus precluding material invariance of absolute vorticity. Hence, the meridional turning of eastward flow is not
allowed so that flow must remain zonal for absolute vorticity to remain invariant. In contrast, the oppositely
directed westward flow (easterly winds) can deviate either to the north or south and still retain a constant absolute
vorticity. We illustrate flows for both the northern and southern hemispheres. This figure is adapted from Figure
4.13 of Holton and Hakim (2013).

The situation is different for eastward flow. Consider again flow in the northern hemisphere.
A poleward (to the left) turning fluid column is associated with a positive curvature-induced
relative vorticity, ζ > 0, as well as an increase in the planetary vorticity. Hence, this motion
changes the absolute vorticity and as such it is not allowed if the absolute vorticity is constrained
to remain constant. Likewise, an equatorward (to the right) turning eastward fluid column
induces a negative curvature-induced relative vorticity, ζ < 0, and a decrease in planetary
vorticity, again leading to a change in absolute vorticity. Hence, eastward flow (westerly winds)
in either hemisphere must remain zonal to maintain a constant absolute vorticity.

As an application of these results, consider the situation depicted in Figure 38.4, whereby
inviscid flow in the interior of an ocean domain moves westward into a frictional western boundary
layer. The constraints imposed by absolute vorticity invariance allow for this flow to occur,
whereas the opposite is disallowed whereby eastward inviscid flow cannot enter an eastern
boundary. We return to this example in Section 39.7 when discussing western intensification of
ocean gyres.

38.5.2 Relative vorticity from curvature and normal shears
Now consider the case in which the meridional displacements are small so that the beta effect can
be neglected. In this case there is an exchange between relative vorticity arising from curvature
and relative vorticity from normal shears, thus leaving their sum materially invariant

D(ζcurv + ζshear)

Dt
= 0. (38.103)

We depict an example in Figure 38.5 whereby a vortex undergoes a left turn facing downstream.
While on the curve, the relative vorticity of the vortex is in part due to the positive curvature
vorticity, ζcurv > 0. If the relative vorticity is positive on the straight portion of the trajectory,
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Figure 38.4: Illustrating the constraints on a homogeneous and constant thickness fluid layer imposed by material
invariance of absolute vorticity: ζ + f = constant. As per the results from Figure 38.3, inviscid flow with initially
zero relative vorticity can enter a western boundary layer as depicted here, whereas it cannot enter an eastern
boundary layer. This conclusion assumes that there is no shear-induced relative vorticity (∂|u|/∂n = 0) that can
overcome changes in the vorticity induced by changes to f and by curvature-induced relative vorticity (see Section
37.8.2). This figure is adapted from Figure 19.12 of Vallis (2017).

then when on the curve the shear vorticity must lose some of its strength in order to compensate
for the curvature vorticity. Conversely, if the relative vorticity is negative on the straight portion
of the trajectory, then when on the curve the shear vorticity gains in strength to allow for the
positive curvature vorticity.

38.5.3 Curvature, shear, and planetary contributions
We now consider all three terms appearing in the vorticity equation (38.102). Let us consider
again the eastward flow that turns to the north in the northern hemisphere. Such flow is not
allowed if the only source for relative vorticity is curvature. However, if the eastward flow, as
it turns, picks up a shear that induces a nonzero negative relative vorticity, then such flow
can turn so long as the shear-induced negative relative vorticity balances the positive absolute
vorticity from increases in f and the curvature-induced vorticity. Writing this condition for the
shear-induced relative vorticity yields

ζshear = −∆f − ζcurv = −(ffinal − finit)− ζcurv < 0, (38.104)

where finit and ffinal are the initial and final Coriolis parameters. Conversely, if the flow deviates
towards the equator then it can do so only if there is a positive shear-induced relative vorticity

ζshear = −(ffinal − finit)− ζcurv > 0. (38.105)

38.5.4 Beta drift
In Exercise 24.6 we introduced the Rossby effect (Rossby , 1948), in which a circular cyclonic
vortex experiences an area integrated Coriolis acceleration that is directed poleward, and with
the integrated acceleration vanishing on the f -plane. Hence, this poleward drift arises from
the beta effect. Following Rossby (1948), we did not consider the pressure field associated with
the vortex, so it is unclear whether such a vortex would actually drift due northward. Indeed,
subsequent studies showed that motion of an initially circular vortex sets up a secondary flow
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Figure 38.5: Material invariance of relative vorticity, Dζ/Dt = D(ζcurv + ζshear)/Dt = 0, means that as a vortex
moves around a curve its shear vorticity is modified to keep the total relative vorticity invariant. On the straight
portion of these trajectories, the relative vorticity is due only to shear vorticity, ζ = ζshear since ζcurve = 0.
However, when the vortex enters the curve, maintaining a constant relative vorticity requires an exchange of shear
vorticity with the curvature vorticity. In this example we illustrate a steady flow that turns to the left so that the
vortex picks up a positive curvature vorticity when on the curve, ζcurve > 0. Left panel: a vortex that enters the
left turn with a positive relative vorticity must give some of its shear vorticity to the curvature vorticity in order
to maintain ζ constant along the trajectory. Right panel: a vortex that enters the curve with a negative relative
vorticity sees its shear vorticity increase in magnitude to compensate for the positive curvature vorticity.

that renders a poleward+westward beta drift; i.e., northwestward in the northern hemisphere
and southwestward in the southern hemisphere. As for the other motions considered in this
section, we describe the mechanism for beta drift by invoking conservation of absolute vorticity
respected by an inviscid non-divergent barotropic flow. This discussion reflects similar ideas
encountered when studying Rossby waves in Section 54.3.

Consider a circularly symmetric northern hemisphere cyclonic monopole as shown in Figure
38.6. The monopole flow has positive circulation and thus positive relative vorticity. On an
f -plane this circulation is stationary, whereas parcels moving around the monopole on the
β-plane pick up anomalous relative vorticity according to the beta effect: Dζ/Dt = −β v. On
the west side of the monopole, fluid elements are moving southward and thus pick up a positive
anomalous relative vorticity (−β v > 0), whereas on the east side the northward flow picks up a
negative relative vorticity anomaly. We note that the material evolution of relative vorticity
is also reflected in the local time changes, since for an initially circular monopole, the only
contribution to the local evolution is given by the beta effect. We see this property by writing
the vorticity equation using polar coordinates (see Section 4.22)

∂tζ = −β v − u · ∇ζ = −β v − (ṙ ∂r + ϑ̇ ∂ϑ) ζ, (38.106)

where r is the radial coordinate and ϑ is the angular coordinate measured counter-clockwise
from the x-axis. By assumption, the flow is initially moving only in the angular direction, so
that ṙ = 0. Additionally, the monopole is symmetric in the angular direction, so that ∂ϑζ = 0.
As a result, ∂tζ = −β v.

From the above analysis, we see that throughout the western side of the monopole, beta
induces a positive anomalous vorticity, whereas beta induces a negative vorticity anomaly
throughout the eastern side. When combined with the vorticity from the monopole, we see that
the beta induced anomalous vorticity leads to a westward drift of the location for the maximum
vorticity; i.e., the monopole maximum drifts to the west. Yet that is not the full story.

In addition to the westward drift of the monopole maximum, the positive vorticity anomaly
on the western side induces a positive gyre-like circulation referred to as a beta gyre. Likewise,
the negative vorticity on the eastern side induces a negative beta gyre. The beta gyre circulations
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Figure 38.6: Schematic cyclonic and circularly symmetric northern hemisphere (f > 0) monopole flow in a
two-dimensional non-divergent barotropic flow. The monopole has positive circulation and thus positive relative
vorticity. On the β-plane, parcels moving around the monopole pick up anomalous relative vorticity according to
the beta effect: Dζ/Dt = −β v. On the western side, parcels move southward and thus pick up a positive relative
vorticity anomaly (−β v > 0), whereas on the eastern side the northward flow picks up a negative relative vorticity
anomaly. The beta effect thus induces a westward drift of the monopole maximum, towards where the relative
vorticity is increasing. Additionally, the positive anomaly on the western side of the monopole induces a secondary
circulation known as a beta gyre, with this gyre rotating counter-clockwise, whereas there is an oppositely oriented
beta gyre on the eastern side. The secondary circulation from the counter-rotating beta gyres induces a northward
drift to the monopole. The combined effect of the westward beta induced drift and the northward drift from the
beta gyres leads to a net northwestward beta drift for the monopole.

are referred to as secondary circulations since they arise in response to the anomalies induced by
motion through the primary monopole circulation. Furthermore, the counter-rotating beta gyres
induce a northward drift of the monopole. The combined westward drift induced by beta acting
on the primary monopole circulation, plus the northward drift from the secondary beta gyre
circulations, leads to an overall northwestward drift of the monopole. More generally, a cyclonic
monopole experiences a poleward and westward beta drift, whereas for anti-cyclonic monopoles
the beta drift is equatorward and westward.

The extent to which beta drift is respected by more realistic monopoles depends on many
factors, such as the strength and radius of the monopole, strength of the background planetary
vorticity gradient, and stability of the monopole. The literature on these topics makes use
of numerical models to probe the nonlinearities associated with these relatively strong, and
sometimes unstable, flow regimes. Some of the papers are motivated by motion of coherent ocean
eddies (e.g., McWilliams and Flierl , 1979; Carnevale et al., 1991), and others are motivated
by motion of atmospheric tropical cyclones (e.g., Holland , 1983; Smith, 1993). For tropical
cyclones born off the coast of Africa in the tropical Atlantic, beta drift gives the cyclones a
general tendency to move northwestward toward North America (absent environmental flows
that can counteract the beta drift). More recently, Gavriel and Kaspi (2021) employed these
concepts to help understand vortices found in the polar regions of the Jovian atmosphere.

38.5.5 Understanding and prediction
The examples in this section illustrate the power of vorticity constraints for the purpose of
predicting flow responses. The power largely rests on our ability to determine flow responses
without directly determining forces causing the response. Even so, without determining the
forces acting in the fluid, our understanding of the dynamics remains incomplete even if our
ability to predict is complete. So when one can determine the forces (it is not always as simple
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as the examples in Section 38.4), then doing so offers further physical insights into the nature of
the flow.

38.6 Steady flow and the β-plume
In this section we consider the steady solution to the horizontally non-divergent barotropic
model in the planetary geostrophic regime (Section 31.5 and Chapter 44). For this purpose, we
return to the Rossby potential vorticity (38.42) and add a Rayleigh drag (Section 25.8.5) along
with a frictional stress vector, τ .

38.6.1 The Rossby potential vorticity equation

Introducing the Rayleigh drag and frictional stresses into the velocity equation (38.1) leads to

Du

Dt
+ f ẑ × u = −∇φ− γ u+ F . (38.107)

In this equation, γ ≥ 0 is the constant Rayleigh drag coefficient (with dimensions of inverse
time), and

F =
τwind − τ bot

h ρo
(38.108)

is the acceleration arising from difference between the surface wind stress, τwind, and bottom
stress, τ bot (see equation (35.135)). Carrying the Rayleigh drag and boundary stresses through
the derivation of the Rossby potential vorticity equation (38.42) yields

h
DQ

Dt
= −γ ζ + ẑ · (∇× F ) with Q = (f + ζ)/h. (38.109)

Evidently, potential vorticity is no longer materially conserved in the presence of either Rayleigh
drag or boundary stresses.

38.6.2 Steady flow balances

For steady flow, the potential vorticity equation (38.109) reads

hu · ∇Q = −γ ζ + ẑ · (∇× F ), (38.110)

which takes on the following form in terms of the transport streamfunction, hu = ẑ × ∇Ψ
(equation (38.20)),

(ẑ ×∇Q) · ∇Ψ = −γ∇ · (h−1∇Ψ) + ẑ · (∇× F ), (38.111)

where the potential vorticity is

hQ = f + ζ = f +∇ · (h−1∇Ψ). (38.112)

Use of the product rule on the Rayleigh drag term, and rearrangement, leads to

(h ẑ ×∇Q+ γ∇ lnh) · ∇Ψ = γ∇2Ψ+ h ẑ · (∇× F ). (38.113)

To help intrepret this streamfunction equation, introduce

A ≡ h ẑ ×∇Q+ γ∇ lnh, (38.114)

CHAPTER 38. TWO-DIMENSIONAL NON-DIVERGENT BAROTROPIC FLOW page 1073 of 2158



38.6. STEADY FLOW AND THE β-PLUME

which is a horizontally divergent vector (∇·A ̸= 0) with physical dimensions L−1 T−1 (the same
dimensions as β = ∂yf). In this case the streamfunction equation (38.113) takes on the form of
a steady advective-diffusive-source equation13

A · ∇Ψ︸ ︷︷ ︸
advection

= γ∇2Ψ︸ ︷︷ ︸
diffusion

+h ẑ · (∇× F ).︸ ︷︷ ︸
source

(38.115)

The vector, A, serves as an advection “velocity” that acts to align the streamfunction along
integral paths defined by A; i.e., the streamfunction is “advected” by A. For example, in the
absence of non-conservative process and boundary stresses, isolines of constant streamfunction
and Rossby potential vorticity are aligned,

(ẑ ×∇Q) · ∇Ψ = (∇Q×∇Ψ) · ẑ = 0 if γ = 0 and F = 0. (38.116)

In this case, the streamfunction functionally depends only on the potential vorticity, Ψ = Ψ(Q),
which is another way of stating that the steady unforced and inviscid flow is along lines of
constant Q. The presence of boundary stresses, ẑ · (∇×F ) ̸= 0, causes the steady flow to deviate
from Q isolines, with the stresses providing a source to the streamfunction equation (38.115).
Finally, the presence of Rayleigh drag (γ > 0) acts to diffuse or spread the streamfunction
isolines.

38.6.3 Planetary geostrophic flow and the effective beta

We develop more insights into the steady flow by linearizing the streamfunction equation (38.115),
which is done by assuming the flow maintains a planetary geostrophic balance (Section 31.5 and
Chapter 44). In this case the potential vorticity is independent of the streamfunction and takes
on the form

Qpg = f/h. (38.117)

Correspondingly, A is now independent of the streamfunction and is given by

A = −β x̂−Qpg ẑ ×∇h+ γ∇ lnh (38.118a)

= x̂ [−β +Qpg ∂yh+ (γ/h) ∂xh] + ŷ [−Qpg ∂xh+ (γ/h) ∂yh]. (38.118b)

In the special case of a uniform layer thickness (∇h = 0), we find A = −β x̂, so that the
streamlines are advected to the west according to planetary beta. The more general advection
is somewhat more complex. Even so, below we find interesting cases in which the advection
remains zonal.

The advection velocity, A, is purely zonal if

hQpg ∂xh = γ ∂yh =⇒ f ∂xh = γ ∂yh, (38.119)

which then leads to

A = −βeff x̂ with βeff = β + ∂yh (f
2 + γ2)/(h f). (38.120)

Stated in terms of the topographic slopes, the advective streamfunction transport is zonal if the
topography satisfies

∇ lnh =
(βeff − β) (γ x̂+ f ŷ)

f2 + γ2
. (38.121)

13We study the physics of advection and diffusion in Chapter 69. We here only require a few basic features of
this equation.
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The effective beta parameter, βeff , is comprised of three contributions:

βplanetary = β = ∂yf (38.122a)

βtopog = f ∂y lnh = Qpg ∂yh (38.122b)

βRayleigh = (γ2/f) ∂y lnh = (γ2/f2)Qpg ∂yh. (38.122c)

The first term, βplanetary, is the planetary beta that arises from meridional dependence of
the planetary Coriolis parameter, β = ∂yf . The second term, βtopog, arises from meridional
dependence of the bottom topography in the presence of planetary rotation. The third term,
βRayleigh, arises from meridional dependence of the bottom topography in the presence of Rayleigh
drag and planetary rotation.

Note that βeff is not sign-definite, and it passes through zero if

Qpg ∂yh
zero = − β f2

f2 + γ2
< 0. (38.123)

In this case the planetary potential vorticity has an opposite sign from the meridional topographic
slope, with Qpg ∂yh

zero = −β for case of vanishing Rayleigh drag.

38.6.4 The beta plume Green’s function
(LOOK AT Belmadani et al. (2013) for further insights)

With a zonal advective transport, the streamfunction equation (38.115) reduces to the linear
partial differential equation14

−(βeff ∂x + γ∇2)Ψ = h ẑ · (∇× F ). (38.124)

It is notable that the linear differential operator on the left hand side is not self-adjoint, in a
manner akin to the diffusion operator introduced in Section 6.6. We can make use of Green’s
function methods from Chapter 9 to write an expression for the streamfunction. Ignoring
boundaries (i.e., assume an infinite β-plane) brings about the solution from Section 9.5

Ψ(x) =

ˆ
h ẑ · (∇× F )G‡(x|x0) dS0, (38.125)

where G‡(x|x0) is the adjoint free space Green’s function that satisfies

−(−βeff ∂x + γ∇2)G‡(x|x0) = δ(x− x0), (38.126)

where δ(x − x0) is the Dirac delta with source at x = x0 (see Chapter 7). Following the
derivation of reciprocity in Section 9.5.7, we can relate the adjoint free space Green’s function,
G‡(x|x0) to the free space Green’s function, G(x|x0), through

G‡(x|x0) = G(x0|x), (38.127)

where G(x|x0) satisfies
−(βeff ∂x + γ∇2)G(x|x0) = δ(x− x0). (38.128)

Since the Dirac delta is a positive point source, it provides a positive point source to for the
Green’s function equation (38.128). We refer to the Green’s function, G(x|x0), as the beta plume,
with this name motivated by the sketch in Figure 38.7. That is, consider the case of βeff > 0, so

14We encounter equation (38.124) again in Section 39.7.5 when studying the western intensification of ocean
gyres. Namely, the analysis of Stommel (1948) leads to the Stommel equation (39.100) for the streamfunction,
which is the same as the beta plume equation (38.124).
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that the beta plume streamlines extend to the west of the Dirac delta source. The Rayleigh
drag, γ > 0, causes the streamlines to spread both zonally and meridionally westward away from
the source.

We can determine an analytical expression for the Green’s function, G(x|x0), through the
substitution

G(x|x0) = e−(x−x0)/Ls Φ(x|x0), (38.129)

where we introduced the length scale

Ls ≡ 2 γ/βeff . (38.130)

It is notable that this length scale increases when increasing the Rayleigh drag, which reflects the
contribution of the Rayleigh drag to the westward spreading of the streamlines. The substitution
(38.129) brings the Green’s function problem (38.128) into the form

−(∇2 − L−2
s ) Φ(x|x0) = δ(x− x0)/γ, (38.131)

which is the two-dimensional version of the screened Poisson equation discussed in Section 9.2.6.
Note that for the right hand side we set δ(x−x0) e

−(x−x0)/Ls = δ(x−x0), since the exponential
factor equals unity at x = x0 and so it does not alter the Dirac delta (see Section 7.8 for more
details).

The solution to equation (38.131) is proportional to the Hankel function of the first kind

and zeroth order, H
(1)
0 , with the argument a pure imaginary number.15 Reintroducing the

exponential scaling from equation (38.129) then renders the beta plume Green’s function

G(x|x0) =
i

4 γ
H

(1)
0 (i r/Ls) e

−(x−x0)/Ls , (38.132)

where i =
√
−1. We plot the magnitude of this Green’s function in Figure 38.7. The exponential

scaling makes the beta plume highly asymmetric, with more amplitude to the west of the Dirac
source. The Dirac source in equation (38.128) provides a positive point source, so that the
circulation is counter-clockwise around the source point.

38.6.5 Further study

Much from this section follows Rhines (1980) and Haine and Fuller (2016). Welander (1968)
suggested interpreting the steady streamfunction equation (38.113) in terms of a steady advective-
diffusive-source balance, and we pursue a similar interpretation for the steady shallow water
planetary geostrophic flow in Section (39.7.8).

38.7 Exercises
exercise 38.1: vorticity identity in a two-dimensional non-divergent barotropic
flow
Directly prove the identity (38.33) holding for the two-dimensional non-divergent barotropic
flow.

exercise 38.2: Alternative form of the vorticity flux

15The Hankel function with an imaginary argument is sometimes referred to as MacDonalds’ function.
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Figure 38.7: Sketch of the magnitude for the non-dimensional beta plume Green’s function, γ G(x|x0), given by
equation (38.132) and here shown with βeff = 1.62× 10−11 m−1 s−1, which is equal to the planetary β at latitude
π/4. We furthermore choose the Rayleigh drag of γ = (2 year)−1, and scale the coordinate axes by the length,
Ls = 2 γ/βeff ≈ 2 km, from equation (38.130).

Show that the vorticity flux can be written

u ζ = u∇v − v∇u+ ẑ ×∇K, (38.133)

so that the vorticity equation (38.39) can be written in the alternative form

∂ζ

∂t
+∇ · (u∇v − v∇u) = −β v. (38.134)

As a corollary, we see that steady f -plane flow satisfies the constraint

∇ · (u∇v − v∇u) = u∇2v − v∇2u = 0. (38.135)

exercise 38.3: Example two-dimensional non-divergent flow
Consider a perfect two-dimensional non-divergent flow in a non-rotating reference frame

Du

Dt
= −∇φ and ∇ · u = 0. (38.136)

Let the velocity be given by the steady flow

u = U [x̂ sin(k y) + ŷ sin(k x)], (38.137)

where U is a constant with dimensions L T−1 and k is a wavenumber with dimensions L−1. We
provide a sketch of this flow in Figure 38.8.

(a) Compute the streamfunction, ψ, so that u = ẑ ×∇ψ.

(b) Compute the self-advection, (u · ∇)u and show that ∇× [(u · ∇)u] = 0.

(c) Compute the vorticity, ζ = ẑ · (∇× u).

(d) Compute the pressure, to within an arbitrary constant.
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Figure 38.8: A sketch of the steady two-dimensional non-divergent sinusoidal flow (38.137), as given by
u = U [x̂ sin(k y) + ŷ sin(k x)]. The units are arbitrary. This flow is considered in Exercise 38.3.

exercise 38.4: Velocity arising from a given vorticity
Following the discusson in Section 38.2.8, consider an axially symmetric two-dimensional non-
divergent flow with a single vortex of the form

ζ(r) =

[
ζ0 for r < r0
0 for r > r0.

(38.138)

(a) What is the velocity field corresponding to this vorticity?

(b) What is the circulation around a circular circuit with radius r < r0? Assume the velocity
is non-singular at the origin.

(c) What is the circulation around a circular circuit with radius r > r0?

(d) For both the circular circuits with r < r0 and r > r0, write the circulation in terms of the
velocity.

exercise 38.5: Integral properties of the inviscid 2d non-divergent flow
In this exercise, we establish some domain integrated conservation properties for inviscid two-
dimensional non-divergent flow on a β-plane. Assume the geometry is a flat plane defined over
a finite region, S, with static material boundary, ∂S. Many of the properties derived here are
discussed in Section 3.1 of McWilliams (2006).

(a) Show that the domain integrated kinetic energy per mass remains constant in time

d

dt

ˆ
S

K dS =
1

2

d

dt

ˆ
S

u · udS = 0, (38.139)

where the horizontal integral extends over the full fluid domain S.

(b) Why is the mechanical energy budget only associated with kinetic energy? What about
the gravitational potential energy?

(c) Show that the domain integrated relative vorticity (equal also to the relative circulation)
is constant in time

dC

dt
=

d

dt

ˆ
S

ζ dS = 0. (38.140)
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(d) Show that the domain integrated enstrophy is constant in time for f -plane motion (β = 0)

dZ(ζ)

dt
=

d

dt

ˆ
S

ζ2 dS = 0. (38.141)

(e) Show that the domain integrated potential enstrophy is constant in time even with β ̸= 0

dZ(q)

dt
=

d

dt

ˆ
S

q2 dS = 0. (38.142)

exercise 38.6: Alternative expression for the domain integrated kinetic energy
For a simply connected region, S, with static material boundary, ∂S, show that the globally
integrated kinetic energy per mass can be written

ˆ
S

K dS =
1

2

ˆ
S

u · u dS =
1

2

ˆ
S

ζ (ψb − ψ) dS =
1

2

[
ψb C −

ˆ
S

ψ ζ dS
]
, (38.143)

where u = ẑ × ∇ψ is the horizontally non-divergent velocity, ψ is the streamfunction, ψb is
the streamfunction on the boundary, and ζ = ∇2ψ is the vorticity. Hint: recall from Section
21.4.2 that the streamfunction for two-dimensional non-divergent flow is a constant on material
boundaries.

exercise 38.7: Circulation in a 2d barotropic flow
Consider a non-divergent barotropic flow on a β-plane in the presence of a biharmonic friction
operator, where the governing vorticity equation is

∂ζ

∂t
+ J(ψ, ζ + βy) = −ν∇4ζ, (38.144)

with ν > 0 a constant biharmonic viscosity with dimensions of L4 T−1. Show that the circulation
around a fixed material area, S, in the fluid evolves according to

dC

dt
= −

˛
∂S

[
ψ
∂q

∂s
+ ν

∂(∇2ζ)

∂n

]
ds, (38.145)

where s is the arc-length along the boundary of the region and n is a coordinate normal to the
boundary.

exercise 38.8: Kinematics of vorticity gradients
For many purposes it is of interest to develop equations describing the evolution of scalar
gradients. We developed a general expression in Exercise 17.4. Here, we derive a similar equation
for the gradient of relative vorticity in a non-divergent barotropic flow. For this purpose, consider
the inviscid barotropic vorticity equation on an f -plane

∂ζ

∂t
+ J(ψ, ζ) = 0. (38.146)

(a) Show that the material evolution of the vorticity gradient is given by

D(∇ζ)
Dt

= −J(∇ψ, ζ). (38.147)

(b) Show that the material evolution of the squared vorticity gradient is given by

D|∇ζ|2
Dt

= 2 J(ζ,∇ψ) · ∇ζ. (38.148)
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exercise 38.9: Angular momentum for barotropic flow in a basin
The exercise derives some equations presented in Holloway and Rhines (1991), who offer a
specialized example of the shallow water angular momentum discussed in Section 36.8.

As in Section 36.8.1, the relative angular momentum for a region of fluid is given by

L =

ˆ
dS

ˆ
(x× v) ρ dz, (38.149)

where x is the position vector and the relative angular momentum is that due to the motion of
the fluid with respect to the rigid-body. For a barotropic fluid of constant density and constant
thickness, and correspondingly a zero vertical velocity, the relative angular momentum reduces
to

L = ρH

ˆ
S

(x× u) dS, (38.150)

with u the horizontal velocity and S the horizontal region. For barotropic motion on a tangent
plane we are interested in the vertical component of the relative angular momentum

Lz = ρH

ˆ
S

ẑ · (x× u) dS. (38.151)

Show for a simply connected and bounded region, Lz can be written

Lz = 2 ρH

ˆ
S

(ψb − ψ) dS (38.152)

where ψ is the streamfunction satisfying u = ẑ ×∇ψ, and ψb is the value of the streamfunction
evaluated on the region boundary. Hint: note that ∇·x = 2 for a horizontal position vector. Also
recall from Section 21.4.2 that the streamfunction equals to a spatial constant when evaluated
along the domain boundary.

exercise 38.10: Steady axially symmetric flow
Consider a two-dimensional non-divergent velocity

v = ẑ ×∇ψ. (38.153)

Assume the streamfunction is static and depends only on the radial distance from an arbitrary
origin,

ψ = ψ(r), (38.154)

where r =
√
x2 + y2, and assume the velocity is a solution to the steady inviscid non-divergent

barotropic dynamics on an f -plane.

(a) Show that the velocity only has an angular component

v = vφ φ̂, (38.155)

where φ̂ is the angular unit vector oriented counter-clockwise from the x̂ axis.16 Express
vφ in terms of the streamfunction ψ. Hint: see Figure 4.2 and Section 4.22 for a reminder
of polar coordinates.

(b) Write the relative vorticity in terms of the streamfunction using polar coordinates.

16The azimuthal angular coordinate, φ, that appears in v = vφ φ̂, is not the same as the density normalized
pressure, φ = p/ρ, defined by equation (38.2) and used throughout this chapter.
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(c) Consider the circulation

C =

‰
∂S
v · dr, (38.156)

where S is a circular region in the x-y plane centered at r = 0. Express the circulation in
terms of vφ and the radius of the circle.

(d) Write the pressure gradient acceleration in terms of vφ, f , and r. Hint: remember that φ̂
is a function of the polar angle φ.

(e) Interpret the steady balance of accelerations in terms of the balanced dynamics in Chapter
32.

(f) Why is this axial symmetric solution only valid for an f -plane? Hint: show that if β ̸= 0
that there is an inconsistency in the velocity equation.

exercise 38.11: Galilean transformation of PV advection and the APV method
In Section 17.5 we established the invariance of the material time derivative operator under a
Galilean transformation

x = x+U t and u = u+U , (38.157)

where U is a constant. Here we study the Galilean transformation properties of the non-divergent
barotropic model on a β-plane.

(a) Determine the Galilean transformation properties of the potential vorticity equation

∂q

∂t
+ u · ∇q = ∂q

∂t
+ J(ψ, q) = 0, (38.158)

where q = ζ + f , ẑ × ψ = u, and J is the Jacobian operator.

(b) Determine the Galilean transformation properties of the relative vorticity equation (38.39)

∂ζ

∂t
+ u · ∇ · ζ = −β v. (38.159)

Discuss why there is Galilean invariance only for zonal Galilean boosts, U = x̂U .

(c) An Euler forward time stepping scheme for the PV equation leads to

qn+1 = qn −∆tun · ∇qn, (38.160)

where ∆t is the discrete time step and the integer n represents the discrete time label.
Inspired by this time discrete expression, Sadourny and Basdevant (1985) proposed the
anticipated potential vorticity (APV) method for parameterizing subgrid scale processes.
The simplest form of APV is given by

∂q

∂t
= −u · ∇[q − τ u · ∇q] = −J [ψ, q − τ J(ψ, q)], (38.161)

with τ a constant time scale. From the time discrete expression (38.160), we see that
the APV method makes use of an estimate for the future value of PV in computing the
advection operator, thus motivating the term “anticipated” in the method’s name.

Show that τ ̸= 0 breaks Galilean invariance for the equation (38.161). Provide a discussion
of why invariance is broken. Hint: Vallis and Hua (1988) offer a technical reason for why
Galilean invariance is broken, making use of the streamfunction and Jacobian form. You
do not necessarily need to follow their approach. Rather, it is sufficient to merely note
how velocity appears in the APV operator.
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exercise 38.12: Elements of the Fofonoff gyre
A Fofonoff gyre is an unforced inviscid solution in a flat bottom bounded domain with a rigid
lid. For a single layer of homogeneous fluid with constant thickness, the absolute vorticity is
materially invariant, D(ζ + f)/Dt = 0. An explicit solution is derived in Section 19.5.3 of Vallis
(2017) for quasi-geostrophic flow using the method of matched asymptotics. We depict elements
of a double Fofonoff gyre in Figure 38.9. Provide a narrative for this flow based on material
conservation of absolute vorticity. In particular, discuss how the flow enters and leaves the side
boundaries and conversely how it leaves and enters the interior region. We are not concerned
with how this flow is established. Instead, assume the flow exists and discuss how its existence
is consistent with D(ζ + f)/Dt = 0. Hint: recall our discussion of Figure 38.3.

x
y

f > 0

ζ > 0 ζ > 0

ζ < 0ζ < 0

ζ = 0

Figure 38.9: A Fofonoff gyre is an unforced inviscid flow in a bounded domain where D(ζ + f)/Dt = 0. We here
depict elements of this double-gyre flow in the northern hemisphere as part of Exercise 38.12.

exercise 38.13: Pressure equation with w ̸= 0
Equation (38.73) or equation (38.76) provide equivalent expressons for the pressure Poisson
equation with ∇η = 0 and, correspondingly, with w = 0. However, in Section 38.1.4 we
considered the possibility of ∇η = ∇ηb, thus providing a solution with w ̸= 0. In this case,
derive the Poisson equation for pressure as decomposed according to φ = g η + φ′.
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Chapter 39

SHALLOW WATER VORTICITY AND POTENTIAL VORTICITY

In this chapter we study vorticity and potential vorticity within the shallow water system. We
start by deriving the evolution equation for vorticity by taking the curl of the velocity equation.
Combining vorticity evolution with mass continuity then renders the evolution equation for
potential vorticity. Potential vorticity is a material invariant for inviscid shallow water motion,
thus providing a mechanical constraint on the fluid flow. After developing the basic concepts and
equations, we consider a variety of flow regimes and case studies, mostly with an ocean focus.
These case studies illustrate where the study of vorticity, potential vorticity, and circulation
enhances our understanding of geophysical fluid mechanics.

chapter guide

The shallow water fluid offers a fruitful conceptual model to introduce the dynamics of
vorticity and potential vorticity while requiring a relatively modest level of mathematical
sophistication. Even so, we require vector calculus identities for Cartesian coordinates
as detailed in Chapter 2. We also require an understanding of shallow water mechanics
from Chapters 35 and 36, as well as the vorticity kinematics introduced in Chapter 37.
The concepts and methods developed in this chapter are fundamental to the remaining
chapters in this part of the book.
As anticipated in Section 38.2.3, the form of potential vorticity encountered here is
sometimes referred to as Rossby potential vorticity or shallow water potential vorticity. Its
connection to the more general Ertel potential vorticity (Chapter 41) is postponed until
Chapter 66, where we study the Boussinesq ocean equations using isopycnal coordinates.
As we see there, the shallow water equations provide a discrete representation of the
isopycnal equations. Correspondingly, the Ertel potential vorticity expressed using
isopycnal coordinates has its discrete form given by shallow water potential vorticity.
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39.1 Shallow water vorticity equation

In this section we formulate the vorticity equation for the shallow water fluid, starting with
a single layer and then extending to multiple layers. We sometimes make use of the vertical
component to the absolute vorticity from equation (35.108)

ω∗
a = (ζ + f) ẑ = ζa ẑ, (39.1)

which is the sum of the relative vorticity of the horizontal flow, ω∗ = ζ ẑ, plus the rigid-body
vorticity, f ẑ, due to motion of the rotating reference frame (recall Section 37.6.1). The absolute
vorticity appears in the vector-invariant velocity equation (35.113), which is valid for each of the
layers in a shallow water fluid

∂tu+ ω∗
a × u = −∇(p/ρref + u · u/2). (39.2)

This equation forms the starting point for deriving the shallow water vorticity equation.
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39.1.1 Vorticity equation for a single layer
We make use of the vector identity from Section 2.3.4 to express the curl of the Magnus
acceleration plus Coriolis acceleration in the form

∇× (ω∗
a × u) = ω∗

a (∇ · u) + (u · ∇)ω∗
a − u (∇ · ω∗

a)− (ω∗
a · ∇)u (39.3a)

= ω∗
a (∇ · u) + (u · ∇)ω∗

a , (39.3b)

so that
ẑ · [∇× (ω∗

a × u)] = ∇ · (u ζa) (39.4)

Equation (39.3b) required setting

∇ · ω∗
a = ∇ · ω∗ +∇ · (f ẑ) = 0, (39.5)

which follows since this expression involves the divergence of a curl (first right hand side term)
and since f has no z dependence. We furthermore set

(ω∗
a · ∇)u = ζa ∂zu = 0, (39.6)

which follows since the horizontal velocity in a shallow water fluid is depth independent within a
layer (see Section 35.2).

Applying the curl operator, ẑ · (∇×), onto the vector-invariant velocity equation (39.2)
annihilates the gradient of pressure and kinetic energy, with the identity (39.4) leading to the
flux-form evolution equation for absolute vorticity

∂tζa +∇ · (u ζa) = 0. (39.7)

This equation says that the vertical component to the absolute vorticity, ζa, at a point in the
inviscid shallow water fluid changes according to the horizontal convergence of vorticity advected
to that point

∂tζa = −∇ · (u ζa). (39.8)

We can write the vorticity equation (39.7) in the material form

Dζa
Dt

= −ζa∇ · u, (39.9)

where the material time derivative for the shallow water fluid includes advection just by the
horizontal flow

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+ u ∂x + v ∂y. (39.10)

The material evolution equation (39.9) means that the absolute vorticity of a shallow water fluid
column, moving with the horizontal flow, changes according to the horizontal convergence of the
fluid flow as multiplied by the absolute vorticity. For comparison, recall the horizontally non-
divergent barotropic fluid has ∇ · u = 0, so that the absolute vorticity in that flow is materially
invariant (see equation (38.40)). In contrast, the shallow water fluid supports horizontal flow
convergence, and with the flow convergence providing a source to the vorticity.

39.1.2 Vorticity equation for N -layers
The previous results for a single layer are readily extended to N -layers, simply because the
velocity for layer-k evolves according to equation (39.2), now with a subscript k to denote the
layer

∂tuk + (f + ζk) ẑ × uk = −∇(pk/ρref + uk · uk/2), (39.11)
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where ζk = ẑ · (∇×uk) is the vertical component to the layer-k relative vorticity. Taking the curl
and making use of the mathematical identities used for single layer in Section 39.1.1 renders the
vorticity equation for layer-k

∂tζak +∇ · (uk ζak) = 0⇐⇒ Dkζak
Dt

= −ζak∇ · uk (39.12)

where
ζak = f + ζk (39.13)

is the vertical component to the absolute vorticity of layer-k. Hence, the vorticity equation for
an arbitrary layer in a stacked shallow water model is the same as that for a single shallow water
layer.

39.1.3 Vorticity flux divergence and curl of nonlinear advection

We revisit the manipulations from Section 39.1.1 to explicitly identify a connection between the
nonlinear terms in the vorticity equation. Start by writing the velocity equation in the advective
form and the vector invariant form

∂tu+ (u · ∇)u+ f ẑ × u = −g∇η (39.14a)

∂tu+ (f + ζ) ẑ × u = −∇ (g η + u · u/2) . (39.14b)

Taking their curl yields two expressions of the vorticity equation

∂tω
∗ +∇× [(u · ∇)u] +∇× [f ẑ × u] = 0 (39.15a)

∂ω∗

∂t
+∇× [(f + ζ) ẑ × u] = 0, (39.15b)

whose equality leads to
∇× [(u · ∇)u− ζ ẑ × u] = 0. (39.16)

Making use of the identity
ẑ · [∇× (ζ ẑ × u)] = ∇ · (u ζ) (39.17)

renders the relation
ẑ · ∇ × [(u · ∇)u] = ∇ · (u ζ). (39.18)

We thus see that the divergence of the advective vorticity flux (right hand side) equals to the
curl of the nonlinear advection (left hand side). This identity holds for each layer in an N -layer
shallow water model.

39.2 Potential vorticity for a rotating cylinder

To introduce the concept of shallow water potential vorticity, consider a fluid cylinder of constant
mass M , constant density ρ, variable radius R, and variable height h, and assume the cylinder
rotates about its central axis. Furthermore, assume the fluid particles within the cylinder rotate
as a rigid-body, meaning there are no strains in the fluid, and yet allow the cylinder radius
and height to change. This analysis offers a useful (albeit incomplete) conceptual picture for a
coherently rotating column of a shallow water layer, in which time derivatives in the following
are interpreted as material derivatives.
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39.2.1 Mass conservation
With a constant density, mass conservation for the material cylinder means that its volume is
fixed. Hence, mass conservation constrains the relative changes to the radius and height of the
cylinder. Namely, a materially constant cylinder mass

M = π R2 h ρ (39.19)

implies
2

R

DR

Dt
= −1

h

Dh

Dt
. (39.20)

That is, mass conservation means that the relative height decreases as twice the relative radius
increases. So if the cylinder is squashed (h decreases) then it thickens (R increases). Conversely,
the cylinder thins (R decreases) as it extends (h increases).

39.2.2 Angular momentum conservation
A second constraint arises from angular momentum conservation. Choose the center of mass
coordinate axes through the center of the cylinder, with the z-axis along the central line of the
cylinder and with z = 0 at the cylinder mid-point. The angular rotation vector is thus given by

Ω = Ω ẑ. (39.21)

With this axis orientation, rotation occurs about the center of mass so that the angular
momentum of the center of mass vanishes. The moment of inertia tensor for a cylinder with this
axis orientation is given by1

Imn = δmn
MR2

2
. (39.22)

The moment of inertia is a measure of the rotational inertia of a moving continuous body. For
the cylinder it is directly related to the cylinder mass (assumed fixed here) and the radius (which
can change). Notably, the moment of inertia about the central vertical axis is not a function of
the cylinder height. The reason is that the moment measures the inertia relative to the rotational
axis, which is here along the central vertical axis. The angular momentum for the cylinder is
thus given by

L =
MR2

2
Ω ẑ. (39.23)

The familiar ice skater example occurs when the cylinder radius changes and thus changes
the moment of inertia (e.g., the ice skater’s arms are brought in toward the central axis of the
body or out away from the body). Maintaining constant angular momentum and constant mass
means that the angular velocity, Ω, increases in magnitude (rotates faster) when the cylinder
radius decreases, and vice versa. Explicitly for the cylinder we have dL/dt = 0 and dM/dt = 0
thus rendering

2

R

DR

Dt
= − 1

Ω

DΩ

Dt
. (39.24)

We see that reducing the moment of inertia for a constant mass body by bringing its mass
distribution towards the central axis (converging mass) leads, through angular momentum
conservation, to an increase in rotation speed. The opposite occurs when mass diverges from a
region, thus reducing the rotation speed.

Although the angular momentum constraint means that the spin rate changes when changing
the moment of inertia, it does not impose a preferred direction. For example, no matter what

1See Marion and Thornton (1988) or other classical mechanics texts for a discussion of the moment of inertia
for a variety of bodies.
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Figure 39.1: Illustrating the conservation of angular momentum for a spinning constant mass cylinder of
shallow water fluid rotating around its central axis. Fluid particles within the cylinder are assumed to rotate
as a rigid-body, meaning there are no strains in the fluid, and yet the cylinder radius and height are allowed to
change. The moment of inertia (relative to the central axis) for the left cylinder is larger since more of its mass is
distributed away from the central axis than in the right configuration. If the initial spin for the left cylinder is
counterclockwise, then the two configurations have identical angular momentum if the right cylinder spins more
rapidly than the left, since the moment of inertia for the right cylinder is smaller. This example exemplifies the
familiar ice skater experience, whereby the skater’s spin rate increases when bringing arms (mass) inward towards
the central axis of the body (depicted by the inward arrows on the right panel), whereas the skater’s rotation
slows when extending arms outward (depicted by the outward arrows on the left panel).

direction a skater is rotating, decreasing the moment of inertia increases the spin rate in that
particular direction. Yet when placing the spinning column on a rotating planet, the planetary
rotation breaks the symmetry and thus prescribes the direction for the spin changes. The reason
is that planetary rotation contributes to the spin of the column, even if the column has no spin
relative to the rotating planetary reference frame. We encounter this additional part of the story
in Section 39.3.

39.2.3 Material invariance of potential vorticity

Combining angular momentum conservation (39.24) with mass conservation (39.20) leads to the
material conservation law

D(Ω/h)

Dt
= 0. (39.25)

Equation (39.25) means that the potential vorticity is constant for a material fluid column, with
potential vorticity for the cylinder given by

Q ≡ Ω/h. (39.26)

For example, if the column thickens then the rotational velocity increases in order to maintain
Q = Ω/h constant. Equivalently, if the column cross-sectional area decreases, the column
thickness increases according to volume conservation, which in turn results in an increase in the
spin according to angular momentum conservation.

39.2.4 Connecting angular momentum and vorticity

When allowing the shallow water fluid to exhibit motion that is more general than a rigid-body
cylinder rotation (i.e., when allowing for strains in the fluid), then the angular rotation rate
appearing in the potential vorticity (39.26) is generalized to the absolute vorticity, and we
consider this generalization in Section 39.3. Furthermore, as shown in Section 37.6, the vorticity
equals to twice the rotation rate, 2Ω. Hence, the numerator for the potential vorticity of the
rigid-body rotating cylinder equals to one-half the vorticity.
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39.2.5 Comments and further study

The discussion in this section is motivated by Section 2.4 of Salmon (1998). The rotating
cylinder succintly identifies the two mechanical properties contributing to the potential vorticity
conservation law (39.25): a kinematic property (mass conservation) and a dynamic property
(angular momentum conservation). For the rotating cylinder, the implications of potential
vorticity conservation are well gleaned from the separate mass and angular momentum con-
servation principles. Hence, potential vorticity conservation lends little novel insight for the
cylinder. However, the material invariance of potential vorticity is of fundamental use for studies
of rotating and stratified fluids where the flow generally has strains that make vorticity distinct
from angular momentum (Section 37.9).

Another important element missing from this discussion is the beta effect, which accounts for
the changes in planetary vorticity when moving on a rotating spherical planet. We encounter
this effect in the following sections.

39.3 Shallow water (Rossby) potential vorticity

We now consider the potential vorticity for a single layer of shallow water fluid. The form of
the shallow water potential vorticity is sometimes referred to as the Rossby potential vorticity.
The derivation here makes use of fluid mechanical equations rather than those from rigid-body
mechanics, thus allowing for the added feature of strains in the fluid that distinguish vorticity
from angular momentum. We present two derivations: one based on manipulations of the mass
and momentum equations, and one based on the small aspect ratio limit of Kelvin’s circulation
theorem, with Kelvin’s theorem more thoroughly studied in Chapter 40.

Figure 39.2 summarizes key elements leading to potential vorticity conservation for a shallow
water fluid layer. Namely, as shown in this section, shallow water potential vorticity conservation
arises from combining the kinematic constraint of mass conservation (material invariance of hA)
with either the vorticity equation or Kelvin’s circulation theorem for a small aspect ratio fluid.

In the absence of non-conservative processes, we show that shallow water potential vorticity
for a material column of fluid remains constant. We often refer to this conservation property as
material invariance, since the property remains invariant (constant) when following material
fluid columns. This terminology was introduced in Section 17.4.5.

h

A

ω

hA = constant
<latexit sha1_base64="Qdjn/Np+N0VqgnaUjv+LcLwgUg0=">AAACAXicbVDLSgNBEJyNrxhfUS+Cl8EgeJCwGwW9CFEvHiOYByRLmJ3MJkNmZ5aZXjEs8eKvePGgiFf/wpt/4+Rx0MSChqKqm+6uIBbcgOt+O5mFxaXllexqbm19Y3Mrv71TMyrRlFWpEko3AmKY4JJVgYNgjVgzEgWC1YP+9civ3zNtuJJ3MIiZH5Gu5CGnBKzUzu/1cOsYX+IL3IoC9ZBSJQ0QCcN2vuAW3THwPPGmpICmqLTzX62OoknEJFBBjGl6bgx+SjRwKtgw10oMiwntky5rWipJxIyfjj8Y4kOrdHCotC0JeKz+nkhJZMwgCmxnRKBnZr2R+J/XTCA891Mu4wSYpJNFYSIwKDyKA3e4ZhTEwBJCNbe3YtojmlCwoeVsCN7sy/OkVip6J8XS7WmhfDWNI4v20QE6Qh46Q2V0gyqoiih6RM/oFb05T86L8+58TFozznRmF/2B8/kDBG6WAQ==</latexit>

Figure 39.2: Illustrating the material invariance of potential vorticity for a layer of shallow water fluid column.
Material invariance results from merging mass conservation (material invariance of the column volume, hA), to
either the vorticity equation or Kelvin’s circulation theorem for a small aspect ratio fluid (material invariance of
ζ A).
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39.3.1 Mass conservation plus the vorticity equation
To derive the potential vorticity equation, we here make use of the vorticity equation (39.9) and
combine it with mass conservation.

Shallow water vorticity and vortex stretching

Mass conservation in the form of the material thickness equation (35.20) leads to the following
expression for the divergence of the horizontal velocity

∇ · u = −1

h

Dh

Dt
. (39.27)

Making use of this result in the vorticity equation (39.9) allows us to eliminate the horizontal
convergence

Dζa
Dt

= −ζa∇ · u =
ζa
h

Dh

Dt
. (39.28)

This equation says that material changes in shallow water absolute vorticity arise only from
material changes in the layer thickness; i.e., absolute vorticity increases in magnitude if the
column stretches and decreases if the column compresses. We refer to this process as vortex
stretching.

We see in Section 40.5.3 that vorticity in continuously stratified fluids is affected by vortex
stretching and vortex tilting, as well as torques from baroclinicity. In contrast, equation (39.28)
says that the material evolution of absolute vorticity for a shallow water fluid is affected only
through vortex stretching. This behavior is a result of the depth independence of the horizontal
velocity within a shallow water layer and the associated vertical columnar motion of fluid within
the layer. On a related note, we see in Section 39.3.3 that vortex tubes in a shallow water layer
are nearly vertical, so that we are only concerned with the vertical component of shallow water
vorticity. Correspondingly, shallow water vortex tubes never close.

Material invariance of shallow water potential vorticity

Equation (39.28) can be written as an expression of the material invariance of the shallow water
potential vorticity

DQ

Dt
= 0, (39.29)

where

Q =
ζa
h

=
ζ + f

h
(39.30)

is the shallow water potential vorticity. As defined, shallow water potential vorticity is the ratio
of absolute vorticity to the thickness of the fluid layer. The material conservation law (39.29) says
that this ratio remains constant for the shallow water layer in the absence of non-conservative
processes such as friction.

39.3.2 Motivating the name
Material invariance of the shallow water potential vorticity in equation (39.30) is most practically
a statement about how the relative vorticity, ζ, changes when changing column thickness or
latitude. That is, by maintaining Q fixed, ζ must change when either the column thickness, h,
changes or when the column moves meridionally and thus alters the planetary vorticity, f . By
focusing on relative vorticity we are offered insights into how the fluid motion is constrained and
thus a means to predict changes in that motion. In turn, these changes in ζ motivate the name
“potential vorticity” as we now see.
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Potential vorticity measures the ability for a shallow water fluid column to either spin up or
spin down (change its relative vorticity) relative a standard configuration. For example, let the
standard configuration be defined by an arbitrary standard thickness, hs, at the equator (where
f = 0). Now move an off-equatorial shallow water fluid column with zero relative vorticity to the
equator and stretch/compress the column to the standard thickness. Material invariance of the
column’s potential vorticity allows us to deduce the column’s relative vorticity at the equator,
given information about the initial column thickness and initial Coriolis parameter (see Figure
39.3). Hence, potential vorticity, as an invariant material property, provides the “potential” for
a fluid column to manifest a particular value of the relative vorticity when moved and stretched
into a standard configuration. In this manner, the use of “potential” in “potential vorticity” is
directly analogous to the use of “potential” in “potential temperature” as described in Section
23.3, or gravitational potential energy as discussed in Section 26.2.

f + 0
h

= Q
0 + ⇣

hs

= Q
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Figure 39.3: Left panel: an arbitrary shallow water column with zero relative vorticity and potential vorticity
Q = f/h, with f > 0 assumed for this figure (northern hemisphere). Right panel: the same fluid column moved
to the equator (where f = 0) and stretched to have the standard thickness, hs > h. The relative vorticity of the
column at the equator is given by ζ = f (hs/h), where f is the Coriolis parameter at the original latitude where
f > 0. Potential vorticity thus provides a means to deduce the relative vorticity that can be realized by moving
any particular configuration to a standard location and with a standard thickness. This property motivates the
“potential” used in the name.

39.3.3 Mass conservation + Kelvin’s circulation theorem
Although we have yet to discuss Kelvin’s theorem (Section 40.2), we here invoke it to illustrate
another way to derive the material invariance of shallow water potential vorticity. As we see,
this derivation provides a direct analog to the rotating cylinder discussed in Section 39.2.

When applied to an infinitesimal circuit in an inviscid and constant density fluid, Kelvin’s
theorem says that

D (ωa · n̂ δS)
Dt

= 0, (39.31)

where ωa is the absolute vorticity
ωa = ω + f ẑ, (39.32)

n̂ δS is the infinitesimal surface area enclosed by the closed circuit, with n̂ the unit outward
normal to the surface. Hence, equation (39.31) says that the projection of the absolute vorticity
onto the local normal of an area element, multiplied by that area element, remains materially
constant. This identity offers a very strong constraint on the flow.

To make use of equation (39.31) for the shallow water layer, decompose absolute vorticity
into

ωa = ẑ (ζ + f) + ωh, (39.33)
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where
ωh = −ẑ ×∇w = x̂ ∂yw − ŷ ∂xw (39.34)

is the horizontal component to the shallow water relative vorticity from equation (35.106d)
(recall the expression for ωh follows since the horizontal velocity components have no vertical
dependence within a shallow water layer: ∂u/∂z = ∂v/∂z = 0). Inserting the absolute vorticity
(39.33) into Kelvin’s theorem (39.31) leads to

D

Dt
[(ζ + f) δA+ ωh · n̂ δS] = 0, (39.35)

where the horizontal area element, δA, is the projection of the surface area element onto the
vertical direction

δA = ẑ · n̂dS. (39.36)

Shallow water fluid mechanics arises from considering a constant density fluid layer whose
flow respects the small aspect ratio limit: H/L≪ 1, with H the vertical length scale of the flow,
and L the horizontal length scale of the flow. Under this limit, the second term in equation
(39.35) is much smaller than the first. It is further reduced in size since n̂ is nearly vertical, so
that n̂ · x̂ ≈ 0 and n̂ · ŷ ≈ 0, in which case we are led to the scaling

|ωh · n̂ δS|
|(ζ + f) δA| ≪ 1. (39.37)

This result is consistent with our earlier comment in Section 39.3.1 that shallow water vortex
tubes never close. Rather, they are nearly vertical, running from the bottom of a shallow water
layer to the top. With the scaling (39.37), we find

D

Dt

[(
ζ + f

h

)
h δA

]
= 0, (39.38)

where h is the layer thickness and h δA is the volume of a fluid column extending through the
shallow water layer. Given the incompressible nature of the fluid in a shallow water layer, the
column volume is materially constant

D (h δA)

Dt
= 0, (39.39)

so that equation (39.38) yields material invariance of shallow water potential vorticity

D

Dt

[
ζ + f

h

]
=

DQ

Dt
= 0, (39.40)

where Q = (ζ + f)/h is the same shallow water potential vorticity derived above in Section
39.3.1.

39.3.4 A fluid column with constant f ̸= 0

Some of the essential features of shallow water potential vorticity material conservation are
depicted in Figure 39.4 for the case of a fluid column with constant f ̸= 0. In the left panel, the
column thickness increases (column is stretched). Volume conservation for the column means
that the column radius decreases. As the material in the column moves radially inward toward
the center, it experiences a Coriolis deflection to the right in the northern hemisphere and to
the left in the southern. Both of these deflections renders a cyclonic tendency to the relative
vorticity, creating a positive relative vorticity tendency in the northern hemisphere and negative
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relative vorticity tendency in the southern hemisphere.

An equivalent way to understand the cyclonic tendency is to consider the angular momentum
of the fluid column, assuming the column moves coherently as a rigid-body as in Section 39.2.2

As the radius of the column decreases so too does its moment of inertia. Angular momentum
conservation means that the column picks up a tendency that causes its spin to increase. The
direction of this spin increase accords with the background f of the environment. Returning to
the skater analog in Figure 39.1, we consider f to be the initial spin of the skater so that when
the moment of inertia decreases the column picks up a spin in the same direction as f ; i.e., a
cyclonic tendency.3

In both hemispheres, the Coriolis deflection, or equivalently angular momentum conservation,
creates a cyclonic relative vorticity tendency when the column stretches, thus maintaining
Q = (f+ζ)/h fixed. Again, the cyclonic relative vorticity adds to the magnitude of the planetary
vorticity to ensure that the absolute vorticity magnitude increases in accord with the column
thickness increase, thus keeping Q = ζa/h constant. The converse holds when the column is
flattened/squashed, whereby the relative vorticity picks up an anti-cyclonic tendency (negative
relative vorticity tendency in the northern hemisphere and positive relative vorticity tendency
in the southern). Doing so reduces the magnitude of the absolute vorticity in accord with the
reduced column thickness.

h

δA

convergence
divergence

h
δA

D(h δA)
Dt

= 0
D[δA ( f + ζ)]

Dt
= 0 ⟹

D[( f + ζ)/h]
Dt

= 0

cyclonic tendency

anti-cyclonic tendency
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f > 0

Figure 39.4: Material invariance for shallow water potential vorticity results from combining material invariance
of the volume of a coherent fluid column with the material invariance of the area weighted absolute vorticity. As
the cross-sectional area of the column decreases, as in a converging flow, the thickness of the fluid must increase
in order to maintain constant volume. Furthermore, potential vorticity material invariance can be maintained by
changing the fluid spin, as measured by the relative vorticity, or by changing the latitude and thus changing its
planetary vorticity (the β-effect discussed in Section 40.6). We here depict the case with f > 0 constant (so that
β = 0). Flow converging toward the center of the column picks up a Coriolis acceleration that creates a cyclonic
tendency in the relative vorticity, just like the spinning cylinder in Figure 39.1. Equivalently, as the radius of
the column decreases so too does its moment of inertia so that the column must pick up a cyclonic tendency
to conserve angular momentum. Conversely, as the cross-sectional area increases, the diverging flow creates an
anti-cyclonic tendency in the relative vorticity.

2Recall that in Section 39.2, the column rotates as a rigid-body, meaning there is no strain in the fluid, and
yet the radius and thickness are allowed to change.

3The connection between the Coriolis acceleration and angular momentum conservation was discussed for
particle mechanics in Section 14.6.
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39.3.5 Material invariance of an arbitrary function of PV
The material invariance of shallow water potential vorticity, equation (39.29), means that any
function, F (Q) is also materially constant. We see this property through the chain rule

DF

Dt
=

dF

dQ

DQ

Dt
= 0. (39.41)

Since F is arbitrary, there are an infinite number of material invariants corresponding to distinct
functions F . This result holds for all materially invariant scalar properties of the fluid.

39.3.6 N -layer potential vorticity
The thickness equation (35.79a) and the vorticity equation (39.12) for an N -layer shallow water
model are given by

Dkhk

Dt
= −hk∇ · uk and

Dkζak
Dt

= −ζak∇ · uk, (39.42)

where there is no implied summation over the layer index k. These forms are isomorphic to the
single layer equations so that the potential vorticity of layer-k is given by

Qk =
f + ζk
hk

, (39.43)

and for a perfect shallow water fluid this layer potential vorticity is materially constant

DkQk

Dt
=
∂Qk

∂t
+ uk · ∇Qk = 0, (39.44)

where, again, there is no implied summation over k.

39.3.7 Further study
The shallow water potential vorticity (39.30) was introduced by Rossby (1940) and as such it is
sometimes referred to as the Rossby potential vorticity. Non-rotating shallow water potential
vorticity, ζ/h, is illustratated in this video from Prof. Shapiro at around the 11 minute mark.
Note that he does not use the term “potential vorticity”, instead invoking mass conservation
and angular momentum conservation to describe the motion.

39.4 Potential vorticity with non-conservative processes
In this section we consider the role of a non-conservative acceleration, F , with this term arising
from friction and boundary stresses (Section 35.6.5). Additionally, we allow for the presence
of a boundary volume source, w(η̇) (as in precipitation minus evaporation), thus changing the
volume in the layer. We introduced such processes in Section 35.6, in which case the shallow
water equations take on the form

Du

Dt
+ f ẑ × u = −g∇η + F and

Dh

Dt
+ h∇ · u = w(η̇). (39.45)

39.4.1 Material time evolution of potential vorticity
In the presence of non-conservative forces, the absolute vorticity equation (39.7) becomes

∂tζa +∇ · (u ζa) = ẑ · (∇× F ) =⇒ Dζa
Dt

+ ζa∇ · u = ẑ · (∇× F ), (39.46)
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so that vorticity is now affected by the curl of F . As before, we make use of the thickness
equation to replace the horizontal divergence according to

∇ · u =
1

h

[
−Dh

Dt
+ w(η̇)

]
. (39.47)

The presence of w(η̇) modifies the divergence of the horizontal velocity beyond that for a
conservative fluid. We are thus led to the potential vorticity equation

h
DQ

Dt
= −Qw(η̇) + ẑ · (∇× F ). (39.48)

Hence, with w(η̇) ≠ 0 and/or ẑ · (∇ × F ) ̸= 0, shallow water potential vorticity is no longer
materially invariant.

39.4.2 The potential vorticity flux

Deriving the flux-form equation

We can convert the potential vorticity equation (39.48) into a flux-form conservation equation
by making use of the thickness equation

h
DQ

Dt
= h

[
∂Q

∂t
+ u · ∇Q

]
+Q

[
∂h

Dt
+∇ · (hu)− w(η̇)

]
=
∂(hQ)

∂t
+∇·(uhQ)−Qw(η̇), (39.49)

thus rendering
∂t(hQ) +∇ · (huQ) = ẑ · (∇× F ). (39.50)

As a final step, make use of the identity

ẑ · (∇× F ) = −∇ · (ẑ × F ), (39.51)

so that the thickness weighted potential vorticity equation (39.50) can be written

∂t(hQ) = −∇ · (hQu+ ẑ × F ). (39.52)

Note how the volume source term, w(η̇), does not explicitly appear in the flux-form equation
(39.52) since the effects from w(η̇) are captured by the divergence, ∇ ·u, as per equation (39.47).

For the shallow water fluid, the thickness weighted potential vorticity equals to the absolute
vorticity

hQ = ζa. (39.53)

Consequently, the flux-form conservation form of the potential vorticity equation (39.52) is
identical to equation (39.46) for the absolute vorticity

∂t(hQ) = −∇ · (hQu+ ẑ × F )⇐⇒ ∂tζa = −∇ · (ζa u+ ẑ × F ). (39.54)

Potential vorticity flux vector

It is remarkable that even with non-conservative forcing, the thickness weighted potential vorticity
(equivalently, the absolute vorticity) has its Eulerian evolution determined by the convergence of
a flux,

JQ = hQu+ ẑ × F . (39.55)

Observe that this potential vorticity flux is oriented in the horizontal direction. As detailed in
Chapters 42 and 66, the potential vorticity flux never crosses the interface between two shallow
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water layers, even in the presence of non-conservative processes such as mixing and friction. This
result is a special case of the more general impermeability theorem that holds for continuously
stratified fluids (Section 42.2).

A kinematic expression for the potential vorticity flux vector

The flux convergence evolution for the potential vorticity equation (39.54) is a kinematic result
of the definition of potential vorticity. Namely,

hQ− f = ζ = ∇ · (u× ẑ) (39.56)

so that
∂t(hQ) = ∇ · (∂tu× ẑ) ≡ −∇ · Jkin, (39.57)

where we defined the kinematic potential vorticity flux vector

Jkin ≡ −∂tu× ẑ. (39.58)

We can relate the kinematic potential vorticity flux vector to JQ through the following. Take
the cross product of the vector invariant velocity equation (39.2) with ẑ to find

∂tu× ẑ + ζa u = −∇(g η + u · u/2)× ẑ + F × ẑ. (39.59)

Now write
ζa u = hQu = JQ − ẑ × F (39.60)

to have
Jkin = JQ +∇× [ẑ (g η + u · u/2)]. (39.61)

Since the two potential vorticity fluxes differ by a curl; i.e., a rotational term, their divergences
are identical

∇ · Jkin = ∇ · JQ, (39.62)

so that their convergence leads to the same evolution of hQ. Stated more formally, Jkin and JQ

differ by a gauge, with the gauge function given by g η + u · u/2.

39.5 Example implications of material PV invariance
The material invariance of shallow water potential vorticity constrains the shallow water motion
by stating that f, h, ζ cannot change independently of the other. Rather, the combination
Q = (f + ζ)/h must remain materially invariant (in the absence of non-conservative processes).
There are a variety of situations that induce changes in one or two of the terms, with the third
term constrained to ensure Q remains unchanged. We here consider some thought experiments
to garner experience with shallow water PV-thinking.

39.5.1 Topographic beta effect
Changes in the topography affect the potential vorticity by changing the thickness of a fluid
column via (see Figure 35.1)

h = H +∆η −∆ηb, (39.63)

with H = h the area mean layer thickness, ∆η = η − η the deviation of the free surface from
its area mean, and ∆ηb = ηb − ηb the deviation of the bottom from its area mean. For relative
vorticity, we note that spatial changes in the topography act to drive a vertical velocity at the
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layer bottom as per equation (35.29),

w =
Dηb
Dt

at z = ηb, (39.64)

which then leads to vortex stretching and hence to a change in relative vorticity. In this subsection
we highlight the analog between topographic slopes and planetary beta to thus motivate the
term topographic beta effect.

To mathematically exhibit the topographic beta effect, consider a fluid column whose vorticity
is dominated by planetary vorticity and with bottom topography having a small and linear slope
in the meridional direction

∆ηb = δ y, (39.65)

where |δ| ≪ 1 is the topographic slope. Assuming the free surface undulations are small relative
to the resting layer thickness, ∆η ≪ H, we can expand the potential vorticity according to

Q =
f + ζ

h
(39.66a)

=
fo + β y + ζ

H +∆η − δ y (39.66b)

≈ fo + β y + ζ

H

[
1−H−1 (∆η − δ y)

]
(39.66c)

≈ fo + β y + ζ

H
− fo
H2

(∆η − δ y). (39.66d)

Setting DQ/Dt = 0 and rearranging leads to the material evolution of relative vorticity

Dζ

Dt
= −v (β + foδ/H) +

fow(η)

H
. (39.67)

The second term on the right hand side is the vortex stretching associated with vertical motion
at the top of the layer, where

w(η) =
D(∆η)

Dt
=

Dη

Dt
, (39.68)

according to the surface kinematic boundary condition (35.37). The first term on the right hand
side is vortex stretching arising from both planetary beta and topographic slopes. It is written
in a form revealing the parallels between these two contributions, and it is readily generalized to
the following for arbitrary topography

βeff = (H − ηb)∇[f/(H − ηb)] ≈ β ŷ + (fo/H)∇ηb. (39.69)

One of the more prominant roles for topographic beta is in supporting topographic Rossby waves,
which are analogous to the Rossby waves supported by planetary beta (see Section 54.3). We
also encounter the topographic beta effect in Section 43.6.1 in our study of the quasi-geostrophic
shallow water model.

39.5.2 Planetary geostrophic potential vorticity and f/H contours

As introduced in Section 31.5, planetary geostrophy (PG) is used to study the large-scale laminar
ocean circulation where relative vorticity is ignored. Furthermore, as shown in Section 43.4, the
inviscid and adiabatic PG system materially preserves the PG potential vorticity, Q = f/h, so
that

D(f/h)

Dt
= 0. (39.70)
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Consequently, fluid particles respecting the inviscid planetary geostrophic equations follow
contours of constant f/h. These contours are referred to as geostrophic contours since the flow
is under geostrophic balance. In Section 39.7.3 we offer a geometrical interpretation of Q = f/h
material invariance in terms of the Taylor-Proudman effect.

Example f/H contours

If we assume the free surface undulations are negligible compared to the bottom topography (a
useful assumption for planetary geostrophic flow), then shallow water columns follow contours of
constant f/H, where z = −H(x, y) = ηb(x, y) is the vertical position of the bottom topography.
In Figure 39.5 we illustrate f/H contours for a topographic seamount (bump), a topographic
depression (bowl), and a shelf/slope along the western boundary. We see that f/H contours
are diverted equatorward when depth decreases, whereas they are diverted poleward when
encountering deeper water. Furthermore, those contours near to either a bump or bowl are
closed, so that fluid columns following these contours are trapped around the topographic feature.

For the shelf/slope region in Figure 39.5, the f/H contours are horizontal where the
topography is flat, which for this example is on the shelf and in the open ocean, whereas
they are steered toward the equator as they pass from the shelf toward the coast. In this example,
the difference between the shelf and deep ocean is only around 200 m, so that this example
corresponds to upper ocean columns interacting with the continental slope. Part of the reason
for choosing this geometry is that thicker fluid columns from the open ocean are unable to
reach the continental shelf. The reason is that thick columns, as they reach the slope, have
their f/H contours reach the equator along the slope before they reach the shelf. That is, the
f/H contours for thick open ocean columns are almost entirely southward when reaching the
continental slope, so that they cannot climb to shallower depths on the shelf.

10 20 30 40 50 60 70 80
longitude

60

50

40

30

20

10

la
tit

ud
e

f/H contours for a southern hemisphere Gaussian bump
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f/H contours for a southern hemisphere Gaussian bowl
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f/H contours for a northern hemisphere tanh shelf on the west

Figure 39.5: When a shallow water fluid is governed by the inviscid and adiabatic planetary geostrophic equations
and there is no external forcing, then shallow water fluid columns maintain fixed planetary geostrophic potential
vorticity, D(f/h)/Dt = 0. Ignoring free surface undulations relative to changes in the bottom depth means
that f/H remains fixed following the inviscid geostrophic flow, where z = −H(x, y) = ηb(x, y) is the bottom
topography. We illustrate these geostrophic contours for three topographic features: a Gaussian seamount or
bump and a Gaussian bowl, both in the southern hemisphere; and a western boundary continental slope and shelf
in the northern hemisphere. Contours of f/H follow lines of constant latitude when H is constant, f/H contours
are steered equatorward when moving into a region of shoaling water (H decreases), and steered poleward when
moving into deeper water (H increases). Futhermore, note that contours near the seamount and bowl can close,
in which case the associated geostrophic contours are trapped next to the topographic features.

How planetary β affects f/H contours

The shelf example in Figure 39.5 reveals that for a given change in depth, the latitudinal diversion
of an f/H contour is larger in magnitude for poleward contours relative to equatorward contours.
We here show that this property of the f/H contours arises from planetary β.
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For this purpose, consider a particular f/H contour, on which the latitude and depth change
so as to keep f/H fixed so that

δ(f/H) = 0, (39.71)

where δ is a differential operator following the f/H contour. With f = 2Ω sinϕ, the constraint
(39.71) relates deviations in latitude, δϕ, to deviations in depth, δH, along an f/H contour

δϕ = (δH/H) tanϕ =
f/H

2Ω cosϕ
=

f

H

δH

Re β
=⇒ δϕ

δH
=

f

H

1

Re β
, (39.72)

where we introduced planetary β according to

β = ∂yf = (2Ω/Re) cosϕ. (39.73)

For a particular f/H contour, we see that δϕ/δH is proportional to β−1. Consequently, the
magnitude of δϕ/δH increases moving poleward, as β decreases toward zero.

39.5.3 Spin up of converging flow
Consider the flow shown in Figure 39.6, whereby mass in the shallow water layer converges
into a region. Just as described in the potential vorticity derivation Figure 39.4, increasing the
column thickness, without substantially altering the planetary vorticity (e.g., f -plane), requires
∂ζ/∂t > 0 in order to maintain Q = (ζ + f)/h materially constant. Following our discussion
of the rotating column in Section 39.2, note that convergence of mass reduces the moment of
inertia relative to the center of the region. Angular momentum conservation requires the fluid to
rotate faster thus picking up a positive relative vorticity. This dynamical process is embedded in
the material invariance of potential vorticity. Finally, note that the opposite occurs in a region of
diverging fluid, whereby potential vorticity material invariance implies that the relative vorticity
has a negative tendency (∂ζ/∂t < 0) (see also Figure 39.4).

convergence convergence

stretching

f + ⇣

h
= constant
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Figure 39.6: Illustrating the implications of potential vorticity material invariance for a shallow water fluid on
an f -plane. If mass converges into a region, thus stretching the fluid column, then potential vorticity material
invariance implies the relative vorticity increases, ∂ζ/∂t > 0. This result is directly analogous to the rotating
cylinder example considered in Figures 39.1 and 39.4. Namely, converging a region of constant mass reduces its
moment of inertia so that angular momentum conservation leads to an increase in spin.

39.5.4 Further study
Section 4.5 of Holton and Hakim (2013) discusses the case of flow over topography where the full
shallow water potential vorticity is materially invariant, D(f + ζ)/Dt = 0. In that case there is
a dramatic difference between easterly and westerly flows. In the northern hemisphere, westerly
winds (eastward flow) deflects over the topography and downstream it undulates as topographic
leewaves. A rotating tank offers a useful controlled setting to observe leewaves, such as shown
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near the 20 minute mark in this video from Prof. Fultz. Easterly winds (westward flow) do
not exhibit a wavelike pattern, instead following a trajectory similar to the f/H contours of
planetary geostrophic case, though modified by relative vorticity. In general, the study of flow
near topography, either in the shallow water or continuously stratified, introduces a wealth of
dynamical behaviors where material invariance of potential vorticity provides an important tool
to help unravel mechanisms.

39.6 Circulation with non-conservative processes

We follow the discussion in Section 39.4 to study the evolution of circulation in the presence of
non-conservative processes such as dia-surface transport and boundary stresses (Section 35.6).
For this purpose, consider the velocity circulation around a closed horizontal area, S (see Figure
39.7)

C =

ˆ
S

ζ dS =

‰
∂S
u · t̂dℓ. (39.74)

In this equation, t̂ dℓ is the vector line increment around the contour, and t̂ is the tangent vector
orienting the contour integral in a counterclockwise direction. We assume the circulation contour
extends vertically through the non-vanishing fluid layer4 so that the unit outward normal, n̂, to
the contour is strictly horizontal, as is the tangent vector, t̂. We now seek an evolution equation
for this circulation by making use of the vorticty equation (39.54).

n̂
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@S

Figure 39.7: Illustrating the calculation of circulation around the contour, ∂S, of a static horizontal area, S,
within a layer of shallow water fluid. The circulation theorem (39.78) provides the means to compute the time
changes in circulation as a function of the advection of absolute vorticity crossing the contour plus the circulation
of friction. Note that the contour has a vertical extent throughout the shallow water layer, so that the unit
outward normal, n̂, and the unit tangent direction, t̂, are both horizontal vectors.

To develop an evolution equation for C, integrate the vorticity equation (39.54) over the area
S to yield

ˆ
S

∂ζ

∂t
dS =

ˆ
S

[−∇ · (ζa u+ ẑ × F )] dS = −
˛
∂S

[ζa u+ ẑ × F )] · n̂dℓ, (39.75)

where
¸
symbolizes an integral around the contour. To reach this equation we used the divergence

theorem on the right hand side, with n̂ the horizontal unit outward normal vector along the
contour, ∂S, and dℓ is the line increment along the contour. We also set ∂f/∂t = 0 as part of

4The case of a vanishing layer thickness, such as occurs when allowing for sloped side boundaries as per a
seashore, is handled by studying the thickness weighted velocity equation and the corresponding column vorticity.
We consider this topic in Section 39.8.
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the time derivative of the absolute vorticity. The non-conservative forcing term can be written

(ẑ × F ) · n̂ = (n̂× ẑ) · F = −t̂ · F , (39.76)

thus leading to ˆ
S

∂ζ

∂t
dS = −

˛
∂S
ζa u · n̂dℓ+

‰
∂S
F · t̂dℓ, (39.77)

where


is the counter-clockwise oriented closed contour integral. We next assume the area S is
constant in time, so that the Eulerian time derivative can be pulled across the integral to render

dC

dt
= −

˛
∂S
ζa u · n̂dℓ+

‰
∂S
F · t̂dℓ. (39.78)

The first term on the right hand side arises from the horizontal advection of absolute vorticity
across the contour. This term is not oriented and so the integral sign has no arrow. The second
term arises from the counter-clockwise oriented circulation of any non-conservative accelerations.
We refer to equation (39.78) as a circulation theorem. It has many uses under specific cases,
some of which are described in the remainder of this chapter.

39.6.1 Circulation around a closed streamline in steady flow

As a particular example of the circulation theorem (39.78), consider a steady flow in the absence
of boundary volume sources (w(η̇) = 0). In this case, the thickness equation (35.19) reduces
to ∇ · (hu) = 0 so that we can introduce a transport streamfunction, Ψ (with dimensions of
L3 T−1)

hu = ẑ ×∇Ψ. (39.79)

In a bounded domain, the streamlines (contours of constant Ψ) are closed. Furthermore, the unit
outward normal to a closed streamline is perpendicular to the velocity, u · n̂ = 0. We thus see
that the steady state expression of the circulation theorem (39.78), computed around a closed
streamline, leads to the following constraint on the non-conservative forces

‰
streamline

F · t̂dℓ =
ˆ

streamline area

(∇× F ) · ẑ dS = 0, (39.80)

where the second equality follows from Stokes’ theorem applied over the area bounded by the
streamline. Equation (39.80) provides a constraint on the non-conservative forcing that must be
satisfied to enable a steady flow. For example, when integrated around a closed streamline, the
wind stress forcing must balance dissipation. If the constraint (39.80) is not satisfied, then the
flow cannot reach a steady state. Although we may not know explicit details of the streamlines,
we can still make use of this constraint if we assume the flow is steady. The analysis in Section
39.7 offers an example application of these ideas for studies of circulation in steady ocean gyres.

39.6.2 Circulation from wind stress and Rayleigh drag

A particularly simple form for the non-conservative acceleration is given by

F = −γ u+ τwind/(h ρ) ≡ −γ u+ F wind. (39.81)

The first term is referred to as Rayleigh drag with γ > 0 a constant with dimensions of inverse
time.5 Rayleigh drag damps all flow to rest with γ−1 the e-folding time for the damping. The

5See Section 33.2.4 for more discussion of Rayleigh drag in the context of Ekman mechanics.
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second term in equation (39.81) is the acceleration on the layer from wind stress,

F wind =
τwind

h ρ
, (39.82)

with this form following from the discussion of boundary stresses in Section 35.6.5. Namely,
homogeneity of the shallow water layer renders the contact stress from winds into a body stress
applied throughout the layer.

Plugging the acceleration (39.81) into the time dependent circulation theorem (39.78) leads
to

(d/dt+ γ)C = −
ˆ
∂S
ζa u · n̂dℓ+

‰
∂S
F wind · t̂ dℓ. (39.83)

Specializing to a steady state and choosing the contour as a closed streamline (along which
u · n̂ = 0), renders

C = γ−1

‰
streamline

F wind · t̂ dℓ = (γ ρ)−1

‰
streamline

(τwind/h) · t̂dℓ. (39.84)

This equation says that velocity circulation around a closed streamline is determined by wind
stress circulation around that streamline plus knowledge of the Rayleigh drag damping time
scale γ−1. This result supports our expectation that the steady circulation around a closed
streamline is oriented with the same sense as the applied wind stress.

39.7 A primer on steady ocean gyres
Large-scale gyres are a prominent feature of ocean circulation, with the North Atlantic and
North Pacific middle-latitude gyres two canonical examples. It is particularly remarkable that
ocean gyres are not symmetric in the east-west direction, with a prominent western side where
poleward flow is stronger than the more sluggish equatorward flow in the interior. As shown in
this section, gyre zonal asymmetry is not a response to the wind forcing, with the asymmetry
found even without any zonal variations in the boundary forcing. Instead, it is a manifestation
of the beta effect present for flow on a rotating spherical planet (or idealized as the β-plane from
Section 24.5). The role of

β = ∂yf > 0 (39.85)

in western intensification was first articulated by Stommel (1948), with β encapsulating the
leading order role of the earth’s sphericity on large-scale flows in the atmosphere and ocean.

We have the basic tools in hand to understand the physical balances leading to western
intensification in steady ocean gyres. We follow the traditional approach by focusing on vorticity
balance, which offer a more direct path towards understanding western intensification than the
momentum or axial angular momentum balances used to explore channel flow in Sections 28.5
and 36.7. Furthermore, observe that with western intensification fundamentally relying on β > 0,
then the arguments given below hold for both hemispheres; i.e., gyres are western intensified in
both hemispheres and with either signed wind stress curl. So although we orient the discussion
according to a northern hemisphere anti-cyclonic gyre, the arguments hold in general.

39.7.1 Steady and large-scale vorticity balance
The steady circulation theorem (39.84) holds regardless the bottom topography or surface height
undulations. Again, it says that circulation around a closed streamline is in the same sense as
the wind circulation. However, we need more information to see how western intensification
emerges as a property of the flow in ocean gyres. For that purpose, consider the steady absolute
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vorticity equation (39.54), again in the presence of wind forcing and Rayleigh drag

∇ · (u ζa) = −γ ζ + ẑ · (∇× F wind). (39.86)

Introducting the shallow water potential vorticity, Q = ζa/h, allows us to write

∇ · (u ζa) = ∇ · (huQ). (39.87)

The steady state thickness equation (35.19) means that ∇ · (hu) = 0, so that the vorticity
equation (39.86) takes the form

hu · ∇Q = −γ ζ + ẑ · (∇× F wind). (39.88)

This equation says that in the absence of the Rayleigh friction (γ = 0) and with a zero wind stress
curl, the steady horizontal flow is aligned with potential vorticity contours. This result follows
directly from the material invariance of potential vorticity in the absence of non-conservative
processes. However, in the presence of Rayleigh drag and/or wind stress curl, the potential
vorticity is modified when following the flow so that u · ∇Q ̸= 0, in which case the circulation
does not follow Q contours.

39.7.2 Planetary geostrophic flow and the Sverdrup balance

For large-scale flow away from lateral boundaries, the flow has an absolute vorticity that is
dominated by planetary vorticity so that

Q ≈ Qpg = f/h, (39.89)

which is the potential vorticity for shallow water planetary geostrophic flow introduced in Section
39.5.2 and studied more thoroughly in Sections 31.5 and 43.4. In this flow the only means for
changing potential vorticity arise from changes to planetary vorticity (changes to f) and changes
to layer thickness, h.

Away from boundaries we also assume the Rayleigh drag term is negligible since the relative
vorticity is small. In this case, the potential vorticity equation (39.88) takes the form

hu · ∇Qpg = ẑ · (∇× F wind). (39.90)

Expanding the left hand side and introducing the planetary vorticity gradient renders the shallow
water Sverdrup balance

β v = Qpg u · ∇h+ ẑ · (∇× F wind) shallow water Sverdrup balance. (39.91)

This balance states how horizontal advection of layer thickness (first right hand side term) plus
the wind stress curl (second term) balance meridional motion for flow on a rotating sphere (beta
effect on left hand side). Gradients in the layer thickness arise from free surface undulations as
well as gradients in the bottom topography (see Figure 35.1). The traditional Sverdrup balance
arises when we assume the flow takes place over a flat bottom and the free surface undulations
are negligible, in which case ∇h = 0 so that

β v = ẑ · (∇× F wind) traditional Sverdrup balance. (39.92)

This balance is also suited to a stratified ocean in regions where the upper ocean flow does not
interact with the bottom, such as in regions far from the continental shelves, or in regions where
vertical stratification (i.e., the pynocline) shields the upper ocean flows from bottom topography.
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39.7.3 Taylor-Proudman, Sverdrup balance, and f/h invariance
Material invariance of planetary geostrophic potential vorticity, Qpg = f/h, has a geometric
interpretation in terms of the Taylor-Proudman vertical stiffening discussed in Section 31.5.3.
As shown in Figure 39.8, since Qpg is materially conserved then so is the stiffness distance,
hstiff = h/ sinϕ = 2Ω/Qpg, where we wrote the Coriolis parameter as f = 2Ω sinϕ. Material
invariance of hstiff manifests the Taylor-Proudman effect, whereby geostrophically balanced fluid
columns are stiffened in the direction of the rotation axis. Here, the rotation axis is the planetary
axis through the poles.

Vertical fluid columns respecting the planetary geostrophic balance are stiffened in a direction
that parallels the planetary rotation axis. As a result, processes that cause the layer thickness,
h, to squash/compress must occur with equatorward movement, whereas expansion/stretching
of layer thickness occurs with poleward movement. Figure 39.8 provides a geometric lens for
understanding the shallow water Sverdrup balance (39.91) discussed in Section 39.7.2, with
boundary stresses and nonlinear advection leading to changes in layer thickness and so leading
to meridional motion. This geometrical view makes it clear that Sverdrup balance requires
planetary curvature.
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Figure 39.8: This figure depicts a homogeneous layer of shallow water fluid (light gray shell; not drawn to
scale!) covering a rotating planet, with h the fluid layer thickness. Material invariance of planetary geostrophic
potential vorticity, Qpg = f/h = 2Ω sinϕ/h, also means that the distance, hstiff = h/ sinϕ = 2Ω/Qpg, is materially
conserved. Material conservation of hstiff reflects the vertical stiffening along the rotational axis that occurs for
geostrophic flows as per the Taylor-Proudman effect (Section 31.5.3). Processes that change the layer thickness
correspond to meridional movement of the fluid column in such a manner to maintain material invariance of hstiff.
Namely, a process that causes h to squash/compress leads to equatorward movement whereas expanding/stretching
h leads to poleward movement. This constrained motion extends to multiple shallow water layers, yet with the
interior interfaces allowed to expand or contract. This figure is inspired by Figure 1 of Rhines (1980).

39.7.4 Sverdrup flow in a closed domain with anti-cyclonic wind stress
Consider a closed northern hemisphere middle latitude β-plane domain driven by an anti-cyclonic
wind stress

ẑ · (∇× F wind) < 0 northern hemisphere anti-cyclonic wind stress. (39.93)

This situation is depicted in Figure 39.9, where we also illustrate a commonly used wind stress
profile that is purely zonal and has a co-sinusoidal meridional structure that is symmetric about
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the central latitude of the domain

F wind = −x̂A cos[π (y − y0 + L/2)/L] (39.94a)

ẑ · (∇× F wind) = −(π A/L) sin[π (y − y0 + L/2)/L]. (39.94b)

In these equations, A > 0 is the magnitude of the wind stress acceleration applied to the layer,
and the domain extends meridionally from y0 − L/2 ≤ y ≤ y0 + L/2 with y = y0 the central
latitude. This wind stress has westerlies on the poleward side of the domain and easterlies (trade
winds) on the equatorward side so that ẑ · (∇× τ ) < 0 throughout the domain.

The Sverdrup balance (39.92) indicates that an anti-cyclonic wind stress curl drives an
equatorward Sverdrup flow. We emphasize that this flow is not the result of meridional winds
pushing the fluid to the south. Instead, it arises in response to the constraints of vorticity
balance with an anti-cyclonic wind stress curl in the presence of the beta effect. Indeed, for the
idealized wind stress (39.94a) there is no meridional wind component. Although fluid satisfying
Sverdrup balance flows south, all the fluid in the domain cannot be moving to the south. Rather,
volume conservation requires a poleward return flow somewhere outside the region of Sverdrup
balance.
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Figure 39.9: Illustrating the southward Sverdrup flow in response to an anti-cyclonic wind stress forcing in a
bounded northern hemisphere domain. A northward return flow is required to satisfy volume conservation. As
seen in Section 39.7.5, a linear vorticity balance between beta, winds, and friction lead to a western boundary
return flow and corresponding western intensification. An analogous eastern intensification is not dynamically
allowed.

39.7.5 Western intensification and the role of beta
Volume conservation is a kinematic constraint that requires a return flow on either the eastern or
western side of the domain, outside the region of Sverdrup balance. But what side? We offer the
following arguments for the western side, with these arguments representing the basic elements
to the Stommel model.

Inertial entry into a boundary layer region

Recall the discussion of Figure 38.4 where we considered how inviscid flow of a two-dimensional
non-divergent fluid over a flat bottom region materially preserves absolute vorticity in the
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presence of a meridional barrier. To materially preserve absolute vorticity (and ignoring free
surface undulations relative to the depth of the fluid), the flow can deviate meridionally, either
northward or southward, when encountering a western wall. In contrast, such meridional
deviation is prohibited for absolute vorticity preserving flow that encounters an eastern wall.
So in referring to Figure 39.9, southward flow can make a turn westward towards the western
boundary, enter the boundary layer, and move northward within the boundary layer. It cannot
do so for the eastern side. The central limitation of this argument concerns the presence of
dissipation in the boundary, in which absolute vorticity is no longer materially preserved. Even
so, the argument offers a useful first suggestion for the flow favoring the western side.

Steady vorticity balance and a role for dissipation

Even if the western side is the preferred region for the return flow, we still need an argument for
intensification of that flow. To develop an argument, recall that the return flow region is not in
Sverdrup balance. To see what terms can break that balance, consider again the steady vorticity
balance (39.88). Continuing to assume a flat bottom and rigid lid surface leads to

β v = −γ ζ + ẑ · (∇× F wind), (39.95)

where we dropped the nonlinear advection term u · ∇ζ (the “inertial” term) since we wish to
determine whether a linear balance can give rise to western intensification (we return to this
assumption in Section 39.7.9). The Rayleigh drag on the right hand side breaks the Sverdrup
balance in regions where the relative vorticity is nontrivial. Since we know there must be a
return flow somewhere in the domain, we know there must be a region where dissipation is
sufficiently strong to break Sverdrup balance.

What is required for the steady and linear dissipative vorticity balance (39.95) to be main-
tained in the northward return flow region? To answer this question, expose the signs on the
terms in equation (39.95)

β v︸︷︷︸
positive

+ γ ζ︸︷︷︸
unspecified

= ẑ · (∇× F wind).︸ ︷︷ ︸
negative

(39.96)

We have β v > 0 since we are concerned with the region of northward return flow, and ẑ · (∇×
F wind) < 0 by assumption of anti-cyclonic wind stress over the full domain. Hence, for the
balance (39.96) to be realized requires ζ < 0, with the value large enough to balance both the
winds and the meridional advection of planetary vorticity

γ ζ︸︷︷︸
negative

= −β v︸ ︷︷ ︸
negative

+ ẑ · (∇× F wind).︸ ︷︷ ︸
negative

(39.97)

For anti-cyclonic gyre flow, as required by the circulation condition (39.84), the only way to
realize ζ < 0 of sufficient magnitude is to have an intensified flow along the western side of the
gyre. In this region, ζ ≈ ∂v/∂x < 0 can become sufficiently large in magnitude. Furthermore,
since the wind stress is applied throughout the domain, all streamlines feel the winds and must
pass through the western boundary region where vorticity is enhanced and Rayleigh drag is able
to balance the winds and planetary advection. The required boundary current flow is depicted
in Figure 39.9.

The importance of beta

In the absence of beta, there would be no interior region in Sverdrup balance driving southward
flow. The flow would thus only be subject to the circulation condition (39.84) whereby linear
flow can symmetrically dissipate the wind stress. Hence, the beta effect is the fundamental
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element that causes poleward flow to intensify along the western side of the gyre in response to
the equatorward interior flow.

Western intensification regardless the sense for the wind stress curl

The steady circulation theorem (39.84) means that the flow circulation is in the same sense as
the wind circulation. The arguments offered above for western intensification focused on the
anti-cyclonic winds, as per the middle latitude gyres in the northern hemisphere Atlantic and
Pacific oceans. What if the winds were cyclonic? In that case, the steady circulation theorem
(39.84) means that the circulation is also cyclonic. Even so, the arguments based on the beta
effect still result in western intensification. Namely, with cyclonic winds the interior Sverdrup
flow is northward, so that the return flow must be southward. For this case, equation (39.97)
now takes the form

γ ζ︸︷︷︸
positive

= −β v︸ ︷︷ ︸
positive

+ ẑ · (∇× F wind).︸ ︷︷ ︸
positive

(39.98)

Again, we find that vorticity arguments lead to western intensifiction of the cyclonic gyre.

The Stommel equation for the streamfunction

By assuming a rigid lid and homogeneous fluid layer, the fluid velocity is horizontally non-
divergent and so it can be written in terms of a streamfunction

∇ · (hu) = h∇ · u = 0 =⇒ u = ẑ ×∇ψ = h−1 ẑ ×∇Ψ, (39.99)

where Ψ is the streamfunction for the thickness weighted velocity from equation (39.79). Intro-
ducing the streamfunction into the linearized vorticity balance (39.95) leads to

(γ∇2 + β ∂x)ψ = ẑ · (∇× F wind). (39.100)

We encountered this linear partial differential equation in Section 38.6.4 when studying the
beta plume. The two problems describe steady gyre circulations in the presence of Rayleigh
drag, the beta effect, and wind stress curl. For the beta plume we ignored boundaries and
solved for the free space Green’s function shown in Figure 38.7. Here, the western boundary is a
fundamental feature of the problem, with further analysis prompting the use of rudimentary
boundary layer theory to match the interior Sverdrup solution to the boundary region. That
analysis is summarized in Section 19.1.3 of Vallis (2017).

39.7.6 A role for bottom pressure torques
Recall the shallow water Sverdrup balance (39.91), here with the addition of Rayleigh drag

β v = Qpg u · ∇h− γ ζ + ẑ · (∇× F wind). (39.101)

For the right hand side, we have thus far considered a flat bottom and ignored free surface
undulations, in which case ∇h = 0. In this case, the only way to balance meridional motion on
a beta plane is to invoke non-conservative processes either from wind stress or Rayleigh drag.

Spatial variations in the bottom topography open up the possibility for an inviscid balance

β v = Qpg u · ∇h, (39.102)

or more generally a balance where frictional vorticity sinks are unimportant except for regions
very close to the boundary. For example, consider northward flow in the northern hemisphere
along a shallow western continental shelf. Assume the bottom topography only has variations in
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the zonal direction, with ∂xh > 0 reflecting deeper water to the east of the shelf. The inviscid
vorticity balance (39.102) thus takes the form

β v = (f/h)u ∂xh. (39.103)

Since β v > 0 and (f/h) ∂xh > 0, we must have u > 0. Hence, flow departs from purely northward
motion by leaving the shelf and moving into deeper waters. This behavior is also revealed by
the western shelf example in Figure 39.5, where the f/H contours deviate from contours of
constant depth when there is a nonzero β. As examined in this section, the bottom pressure
torque, arising from bottom topographic form stress, plays the lead role in the corresponding
vorticity balance.

Curl of the form stresses

In the present analysis, we are only concerned with that portion of u · ∇h directly arising from
pressure gradients. We thus consider just the geostrophic flow to arrive at

u · ∇h = (g/f)∇h · (ẑ ×∇η) = (g/f) ẑ · (∇η ×∇h). (39.104)

It is this term that contains the various pressure torques arising from form stresses. But before
unpacking those torques, briefly return to the above shelf example and note that with ∇h = x̂ ∂xh
then there is a nonzero u · ∇h only with a nonzero ∂yη, which in turn means there is a nonzero
zonal geostrophic flow. As noted above, this zonal flow is a consequence of the sloping bottom
topography.

Pressure torques

Returning to the general situation, we determine the expressions for the pressure torques
contained in the term u · ∇h by making use of the hydrostatic relation pb = pa + ρ g h, and the
layer thickness, h = η − ηb (see Figure 35.1), in which case

u · ∇h = (g/f) ẑ · (∇η ×∇h) (39.105a)

= 1/(ρ f) ẑ · [∇× (pa∇η) +∇η ×∇pb] (39.105b)

= 1/(ρ f) ẑ · [∇× (pa∇η)−∇× (pb∇ηb) +∇h×∇pb] (39.105c)

= 1/(ρ f) ẑ · [∇× (pa∇η)−∇× (pb∇ηb) +∇pb ×∇pa/(ρ g)] . (39.105d)

The first and second terms are the curls of the pressure form stresses applied to the surface
(atmospheric) and bottom boundaries (Section 28.2), respectively, which we refer to as the
atmospheric and bottom pressure torques. The third term is a torque arising from misalignment
of the applied pressure and bottom pressure. Inserting equation (39.105d) in the vorticity
balance (39.101) leads to the steady balance

β ρh v = ẑ · [∇× (pa∇η)−∇× (pb∇ηb) +∇pb ×∇pa/(ρ g)] + ρ h [−γ ζ + ẑ · (∇× F wind)] .
(39.106)

We consider a few special cases to see how the pressure torques affect the meridional flow in a
gyre circulation, with a focus on bottom pressure torque since this term is generally far larger
than those torques involving the atmospheric pressure.

Inviscid balance between meridional flow and bottom pressure torque

In the absence of friction and wind forcing, and with a uniform atmospheric pressure (∇pa = 0),
then β times the depth integrated meridional mass transport in equation (39.106) is balanced
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by the bottom pressure torque (i.e., curl of the topographic form stress)

β ρh v = −ẑ · (∇× pb∇ηb) linear inviscid and unforced. (39.107)

Again consider the example of northward flow along a western continental shelf. In this case,
∇ηb = x̂ ∂xηb < 0, so that the balance (39.107) reduces to

β ρh v = ∂ypb ∂xηb. (39.108)

This balance says that if the bottom depth increases eastward away from the shelf, so that
∂xηb < 0, then northward flow corresponds to a northward decrease in the bottom pressure,
∂ypb < 0. That is, the northward flow is directed down the bottom pressure gradient.

Association rather than causality

The inviscid planetary geostrophic balance (39.107) does not express causality. Rather, it
expresses a balance or association that is maintained by steady linear flows in the presence of
sloping topography. Hence, it is incorrect to say that bottom pressure torque gives rise to (i.e.,
causes) inviscid planetary geostrophic flow. Rather, the balance (39.107) says for planetary
geostrophic flow, there is no bottom pressure torque without a meridional flow, and conversely
there is no meridional flow without bottom pressure torque.

Vanishing topographic form stress curl for geostrophic f -plane motion

From the balance (39.107), we find that a linear inviscid and unforced geostrophic flow on an
f -plane satisfies

ẑ · (∇× pb∇ηb) = ẑ · (∇pb ×∇ηb) = 0 β = 0. (39.109)

When we can ignore the applied surface pressure, pa = 0, then the bottom pressure is given
by pb = g ρ h = g ρ (η − ηb), in which case ẑ · (∇pb ×∇ηb) = ẑ · (∇η ×∇ηb). Evidently, linear
inviscid and unforced geostrophic flow on an f -plane means that ẑ · (∇η ×∇ηb) = 0. That is,
isolines of surface height align with isolines of bottom topography. Conversely, surface height
contours that deviate from bottom topography contours signal the role of friction and/or β
acting on the planetary geostrophic flow.

Local generation of bottom pressure torque

The beta effect provides an inviscid means to balance a misalignment between the surface height
and the bottom topography, with misalignment required to generate a nonzero topographic form
stress curl, which we have been referring to as the bottom pressure torque. We discussed an
analogous misalignment is Section 36.7 when studying the force balances in a steady zonally
re-entrant channel with bottom topography. Wind stress forcing and dissipation offer another
means to balance (η, ηb)-misalignment, as seen merely by rewriting the vorticity balance (39.106)
as an expression for the bottom pressure torque

ẑ · (∇× pb∇ηb) =
− β ρh v + ẑ · [∇× (pa∇η) +∇pb ×∇pa/(ρ g)] + ρ h [−γ ζ + ẑ · (∇× F wind)] . (39.110)

In our discussion of western intensification in Section 39.7.5, we ignored the role of bottom
pressure torque. However, as seen by this balance, bottom pressure torque plays a role when
topography and surface height are misaligned, with that role in some locations more important
than friction. Ssee Becker and Salmon (1997), Hughes (2000), Hughes and de Cueves (2001),
Jackson et al. (2006) and Patmore et al. (2019) for examples.

CHAPTER 39. SHALLOW WATER VORTICITY AND POTENTIAL VORTICITY page 1109 of 2158



39.7. A PRIMER ON STEADY OCEAN GYRES

39.7.7 Properties of area integrated bottom pressure torques
Consider a simply connected fluid domain bounded by an isobath. Stokes’ theorem reveals that
the integral of the bottom pressure torque, ẑ · (∇× pb∇ηb), vanishes when computed over the
area bounded by any isobath

ˆ
S

ẑ · (∇× pb∇ηb) dS =

‰
∂S
pb∇ηb · t̂dℓ = 0. (39.111)

The integrand for the line integral vanishes pointwise since, by construction, the boundary, ∂S,
is determined by an isobath so its the tangent vector, t̂, is orthogonal to ∇ηb. The identical
argument holds for an area bounded by an isobar of bottom pressure since, for any region,

ˆ
S

ẑ · (∇× pb∇ηb) dS = −
ˆ
S

ẑ · (∇× ηb∇pb) dS = −
‰
∂S
ηb∇pb · t̂ dℓ. (39.112)

Now if the region is bounded by an isobar, then ∇pb · t̂ = 0 at each point along the region
boundary. With a bit more work, we can show that the area integral of the bottom pressure
torque vanishes for an annular region bounded by any two isobaths or any two bottom pressure
isobars. The proof is presented in the caption to Figure 39.10.

These mathematical identities mean that bottom pressure torque plays no role in the
area integrated vorticity budget for regions bounded by isobaths or bottom pressure isobars.
In particular, taking a contour that encircles the global ocean reveals that bottom pressure
torque does not alter the global area integrated vorticity. Equivalently, topographic form
stresses integrated around a closed contour defined by an isobath or isobar do not alter the
circulation around that contour. Evidently, topographic form stress cannot spin-up or spin-down
the circulation around a contour determined by isobaths or bottom pressure isobars. Other
processes, such as flow nonlinearities, viscous friction, and/or boundary stresses, must play role
in determining the circulation since their contour integrals are unconstrained. As studied by
Stewart et al. (2021), these very special properties of bottom pressure torque and topographic
form stress introduce a variety of nuances when interpreting the area integrated vorticity budget.
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Figure 39.10: Stokes’ theorem is generally applicable in a simply connected region. However, an annulus region,
S, is not simply connected since it has a hole. To apply Stokes’ theorem over an annulus we imagine snipping the
outer contour, ∂S1, and inner contour, ∂S2, and then connecting the two ends of the snipped contours as shown
here. In this manner we convert the non-simply connected annulus into a simply connected region, over which we
can apply Stokes’ theorem in the naive manner. Importantly, we see that the the two segments connecting the
inner and outer contour are traversed in opposite directions when performing the contour integral. Assuming all
functions are smooth, we can take the limit as these two contours get infinitesimally close, in which they cancel
identically. This limit also recovers the connected outer and inner contours. If the outer and inner contours
are defined by isobaths or bottom pressure isobars, then the bottom pressure torque identically vanishes on the
contours. In this manner we have proven that the bottom pressure torque vanishes within the annulus region. We
make use of this method in Exercise 40.10 when considering the circulation in an ocean domain with islands.
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39.7.8 Advection-diffusion of the steady streamfunction6

Since the steady state flow satisfies ∇ · (hu) = 0, we can introduce a streamfunction

hu = ẑ ×∇Ψ, (39.113)

in which case the relative vorticity becomes

ζ = ẑ · (∇× u) = ∇ · (h−1∇ψ), (39.114)

and the steady vorticity equation (39.88) can be written

ẑ · (∇Ψ×∇Q) = −γ∇ · (h−1∇Ψ) + ẑ · (∇× F wind). (39.115)

Following Welander (1968), we interpret equation (39.115) as a steady advection-diffusion
equation for Ψ. Namely, introduce the horizontally non-divergent vector

u(Q) = ẑ ×∇Q, (39.116)

in which case the streamfunction equation (39.115) becomes

u(Q) · ∇Ψ = γ∇ · (h−1∇Ψ)− ẑ · (∇× F wind). (39.117)

With zero wind stress curl and zero Rayleigh drag, the contours of the steady streamfunction
are aligned with u(Q); that is, Ψ and Q contours are parallel. In the presence of Rayleigh drag,
the streamfunction deviates from the Q contours, as it does in the presence of a wind stress curl.

These results represent a mere repackaging of results found earlier. Even so, the advection-
diffusion interpretation offers complementary insights into the patterns of the steady stream-
function. Indeed, as we see in Section 39.9, the advective-diffusive interpretation proves very
useful when studying patterns of steady sea level in planetary geostrophic gyres.

39.7.9 Comments and further study

Friction is needed to close the vorticity budget in a flat bottom linear ocean

This video from SciencePrimer provides a concise summary of the dynamics of ocean gyres and
western boundary intensification due to the beta effect. Chapter 19 of Vallis (2017) provides a
lucid treatment of ocean gyre dynamics by working through the key features of the Stommel
(1948) model, as well as variants such as that from Munk (1950), who considered a viscous
closure (most important next to side boundaries) rather than the Rayleigh drag used by Stommel.
The Stommel model and its variants are themselves very idealized renditions of the ocean gyres
occuring in Nature. Notable further factors become important in studying Nature’s gyres, such
as topography (briefly discussed in Section 39.7.6), flow nonlinearities and instabilities (recall
we dropped the inertial term in Section 39.7.5, thus focusing on linear balances), turbulent
boundary layers, and coupled air-sea processes. Each of these processes render the study of
western boundary currents one of the most complex and timeless areas of physical oceanography.

Distinguishing beta-induced western boundary currents from frictional boundary layers

Western intensification of the gyre, implied by β > 0, is distinct from a frictional boundary layer,
implied by a no-slip side boundary (e.g., Section 25.8). Namely, a frictional western boundary
layer, supported by a no-slip solid earth boundary, leads to cyclonic flow within the boundary

6We study the physics of advection and diffusion in Chapter 69. For Section 39.7.8 we only require a few
basic features of this equation.
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layer. In contrast, as discussed in this section, planetary β-induced western intensification gives
rise to anti-cyclonic flow in the western boundary current. This distinction emphasizes the
importance of the side boundary condition, be it no-slip, free-slip, or partial slip. Namely, the
free-slip boundary does not support the cyclonic boundary layer of the no-slip. As explored
in Kiss (2002) and Kiss (2004), these distinct boundary conditions lead to distinct boundary
current properties, with impacts on the dynamics of how the boundary current separates from
the side.

Topographic form stress reduces the fundamental role of friction

Friction plays a central role in the Stommel and Munk models of western intensification. As
described in Chapter 19 of Vallis (2017), there have been attempts to produce an inviscid (and
unforced) gyre solution, with the study from Fofonoff (1954) of particular note. We consider
elements of the Fofonoff gyre in Exercise 38.12. Additionally, we raised the importance of sloping
sides in Section 39.7.6 and in the earlier discussion of axial angular momentum in Section 28.5.
Sloping sides enable bottom topographic form stress and bottom pressure torques to dominate
over bottom turbulent stresses and turbulent torques. In so doing, sloping sides play a leading
role in gyre balances, though we did note in the discussion surrounding equation (39.111) that
friction remains essential to close the vorticity balance integrated around the gyre. The role of
sloping sides for gyre circulations was emphasized by Hughes (2000), Hughes and de Cueves
(2001), with Stewart et al. (2021) identifying further nuances related to the integrated properties
in Section 39.7.7.

Flow nonlinearities also reduce the role of friction

Furthermore, we ignored the role of nonlinearities, which generally require the use of numerical
models to investigate. Indeed, one of the first numerical simulations was from Bryan (1963), who
showed that western boundary currents in a flat bottom gyre generally experience hydrodynamical
instabilities when the flows become strong enough. Becker and Salmon (1997) and Becker (1999)
further studied the case of a nonlinear gyre circulation in the presence of a sloping side shelf,
thus allowing for the role of both nonlinearities and topographic form stress in the vorticity
balance. These, and many other, studies allow for inviscid contributions to the vorticity balance,
thus alleviating the need for invoking strong frictional effects found in the models of Stommel
and Munk.

39.8 Column vorticity
Throughout this chapter we have focused on vorticity as defined by the curl of the horizontal
velocity, ζ = ẑ · (∇×u). Since flow within a shallow water layer moves in coherent and extensible
vertical columns (Section 35.2), the shallow water vorticity measures the spin of a shallow water
column.

We can also measure the column spin by considering the curl of the thickness weighted
velocity

Σ = ẑ · ∇ × (hu) = h ζ + ẑ · ∇h× u. (39.118)

We refer to Σ as the column vorticity, though note that it has the dimensions of a velocity due
to the thickness weighting. In addition to the thickness weighted relative vorticity, the column
vorticity measures the misalignment between the layer thickness gradient and the velocity, with
ẑ · ∇h × u generally nonzero especially for geostrophic flows. Hence, the second term offers
an extra measure of the spin for the fluid column beyond the relative vorticity measure.7 The

7Exercise 39.8 offers a particular example of a geostrophic flow that is aligned perpendicular to ∇h, as found
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layer thickness factor ensures that Σ directly probes stresses acting at the layer interfaces, as
well as stresses within the fluid layer. Besides its intrinsic interest, this analysis is motivated by
studies of the depth integrated flow commonly pursued in oceanography, with examples studied
in Chapter 44. It also provides a venue for studying vorticity in those situations where the
shallow water layer thickness vanishes, such as for a shallow water layer along a sloping side
boundary.

39.8.1 Formulating the column vorticity equation
To formulate the dynamical equation for Σ, we start from the momentum equation (36.29)

∂(hu)

∂t
+∇ · (hu⊗ u) + f ẑ × (hu) = −g h∇ηeff + fnc (39.119)

where
fnc = hF (39.120)

is the thickness weighted acceleration (dimension of squared velocity) arising from non-conservative
processes, such as from horizontal strains in the presence of viscosity and the boundary transfer
of turbulent momentum such as through winds and bottom drag (see Section 35.6). For example,
recall the acceleration given by equation (39.81), which is built from Rayleigh drag plus wind
stress, in which case

fnc = −γ hu+ τwind/ρ = −γ hu+ hF wind. (39.121)

Taking the vertically projected curl of equation (39.119) leads to

∂tΣ+ ẑ · ∇ × [∇ · (hu⊗ u)] +∇ · (f hu) = −g ẑ · (∇h×∇ηeff) + ẑ · (∇× fnc). (39.122)

Let us now examine each of these terms and offer physical interpretations.

Frictional torques and boundary pressure torques

The term ẑ · (∇×fnc) in equation (39.122) provides a torque from boundary stresses and interior
viscous stresses. The term g∇h×∇ηeff provides a torque whenever the thickness gradients are
not aligned with the gradients in the effective surface height. We can write this term in the
equivalent form based on the following identities

ρ g∇h×∇ηeff = ρ g∇h×∇η +∇h×∇pa (39.123a)

= −∇pa ×∇η +∇pb ×∇η +∇(pb − pa)×∇pa/(ρ g) (39.123b)

= −∇pa ×∇η +∇pb ×∇[η + pa/(ρ g)] (39.123c)

= −∇pa ×∇η +∇pb ×∇[ηb + h+ pa/(ρ g)] (39.123d)

= −∇pa ×∇η +∇pb ×∇ηb (39.123e)

= ∇× (−pa∇η + pb∇ηb), (39.123f)

where we made use of the hydrostatic relation pb = pa + ρ g h. We thus see that −g∇h×∇ηeff =
ρ−1∇× (pa∇η− pb∇ηb) arises from pressure torques acting on the surface and bottom interfaces
of the shallow water layer. These torques spin the column if there is a misalignment between
the boundary pressure gradients and the boundary surface slopes. Notably, it is commonly the
case that the torque associated with the applied surface pressure is far smaller than that from
the bottom pressure, in which case

−g∇h×∇ηeff ≈ −ρ−1∇× (pb∇ηb) = −ρ−1∇pb ×∇ηb. (39.124)

in a geostrophic shallow water front.
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Torque from the nonlinear transport

The nonlinear term ẑ · ∇ × [∇ · (hu⊗ u)] can be written

ẑ · ∇ × [∇ · (hu⊗ u)] = ẑm ϵmst ∂s[∂n (hun ut)] (39.125a)

= ∂n ∂s[(hun) ϵmst ẑm ut] (39.125b)

= ∂n[∂s(hun) ϵmst ẑm ut + hun ζ] (39.125c)

= −∂n[ϵsmt ẑm ut ∂s(hun)] +∇ · (h ζ u), (39.125d)

which exposes the divergence of the thickness weighted advective flux of relative vorticity. Further
manipulations lead to

−∂n[ϵsmt ẑm ut ∂s(hun)] = −∂n[ϵsmt ẑm ut un ∂sh+ ϵsmt ẑm ut h ∂sun] (39.126a)

= ∂n[ẑm (ϵmst ∂shut)un − h ϵsmt ẑm ut ∂sun] (39.126b)

= ∇ · [ẑ · (∇h× u)u]− ∂n[h (ẑ × u) · ∇un] (39.126c)

= ∇ · [ẑ · (∇h× u)u] +∇ · [h (v ∂x − u ∂y)u], (39.126d)

so that the nonlinear term takes the form

ẑ · ∇ × [∇ · (hu⊗ u)] = ∇ · [Σu+ h (v ∂x − u ∂y)u] = ∇ · [Σu+ h (uclock · ∇)u]. (39.127)

The first term inside the square bracket is the advective flux of Σ. The second term is the
thickness weighted transport of u by the clockwise rotated horizontal velocity

uclock = −ẑ × u. (39.128)

39.8.2 Summary of the column vorticity equation

The above manipulations bring the Σ equation (39.122) into the flux-form

∂tΣ = −∇ · JΣ + ρ−1 ẑ · ∇ × [−pa∇η + pb∇ηb + ρfnc], (39.129)

where

JΣ ≡ [h f +Σ+ h (v ∂x − u ∂y)]u = h ζa u+ [v (∂xh+ h ∂x)− u (∂yh+ h ∂y)]u (39.130)

is the total flux of Σ. The corresponding material time derivative form of equation (39.129) is
given by

DΣ

Dt
+Σ∇ · u+∇ · [h f u+ h (v ∂x − u ∂y)u] = ρ−1 ẑ · ∇ × [−pa∇η + pb∇ηb + ρfnc]. (39.131)

The thickness equation (35.119)

Dh

Dt
= −h∇ · u+ w(η̇), (39.132)

brings equation (39.131) into the form

h
D(Σ/h)

Dt
+∇· [h f u−h ẑ ·(u×∇)u] = −Σw(η̇)

h
+ρ−1 ẑ ·∇× [−pa∇η+pb∇ηb+ρfnc], (39.133)

where we wrote
v ∂x − u ∂y = −ẑ · (u×∇). (39.134)
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39.8.3 Steady linear column vorticity balance and the island rule
To garner experience with the column vorticity equation (39.129), consider the steady state and
assume JΣ is dominated by the planetary vorticity

JΣ ≈ h f u, (39.135)

in which case the budget equation (39.129) reduces to the balance

∇ · (h f u) = ρ−1 ẑ · ∇ × [−pa∇η + pb∇ηb + ρfnc]. (39.136)

Hence, torques due to interface pressures and turbulent stresses are balanced by the divergence
of the thickness weighted advective flux of planetary vorticity. Furthermore, since ∇ · (hu) = 0
in the steady state, equation (39.136) takes the form

ρ hβ v = ẑ · ∇ × (−pa∇η + pb∇ηb + ρfnc), (39.137)

which connects to the discussion of pressure torques given in Section 39.7.6. It says that for
planetary geostrophic flow, meridional transport in the presence of β ̸= 0 is balanced by the
torques arising from atmospheric and bottom form stresses, as well as from non-conservative
processes such as wind stress, viscous friction, and bottom drag.

Formulating an integral balance

The local balance (39.136) holding for planetary geostrophic flow leads to an integral balance
through an area integral computed over an arbitrary closed domain

˛
S

∇ · (h f u) dS = ρ−1

˛
S

ẑ · ∇ × [−pa∇η + pb∇ηb + ρfnc] dS. (39.138)

Making use of Gauss’ divergence theorem on the left hand side and Stokes’ curl theorem on the
right hand side renders

˛
∂S
h f u · n̂dℓ = ρ−1

‰
∂S

[−pa∇η + pb∇ηb + ρfnc] · t̂ dℓ. (39.139)

The left hand side is a contour integral with n̂ the unit outward normal along the contour.
The right hand side is also a contour integral, yet with t̂ the unit tangent along the contour
oriented in the counter-clockwise sense. The integral balance (39.139) says that the advective
transport of planetary vorticity leaving the closed region (left hand side) is balanced by the
oriented contour integral of the pressure and turbulent stresses.

The integral balance (39.139) is a rather remarkable statement that equates the transport
leaving a region (left hand side) to pressure and turbulent stresses integrated along the region
boundary (right hand side). For example, if the contour used to compute the integrals in equation
(39.139) follows a closed streamline, on which u · n̂ = 0, then the left hand side vanishes, which
in turn means that the right hand side contour integral must also vanish. Godfrey (1989) chose
another contour, such as that depicted in Figure 39.11, and made some assumptions about the
stresses along the contour. His assumptions allow for an estimate of the transport, with this
estimate having proven quite useful for many purposes. We present the arguments next.

Assumptions about the stresses

A portion of the red contour in Figure 39.11 traverses the eastern boundary on both Island A
and Island B. As shown in Section 39.7, friction in the eastern boundary region of an ocean
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gyre is much less than the western boundary, motivating us to ignore friction (either viscous or
bottom drag) along the eastern boundary portions of the contour. Likewise, friction is generally
small for the open ocean portion along the two latitudinal lines. Hence, wind stress is the only
non-conservative process that affects the right hand side of equation (39.139).

Godfrey (1989) furthermore ignored pressure form stresses and their associated torques. This
assumption is reasonable for the atmospheric form stress, −pa∇η, which is generally quite small
(it is zero for a rigid lid approximation). However, the bottom form stress, pb∇ηb, and the
associated bottom pressure torque, can be larger than the wind stress and wind stress curl,
especially near the continential margins and with strong currents. Hence, ignoring bottom
pressure torque is an unsatisfying assumption.

The island rule
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fsouth

Figure 39.11: Illustrating the island rule with two land masses (“islands”). The red contour surrounds all of
Island A and traverses along the eastern side of both Island A and Island B. The northern contour extends along
a constant latitude line with a corresponding Coriolis parameter fnorth, whereas the southern contour has Coriolis
parameter fsouth. Ignoring any precipitation or evaporation crossing the surface, steady state volume conservation
means that the same meridional transport, T, crosses both the southern and northern contours. Godfrey’s island
rule (39.142) provides an estimate for this transport when given the wind stress along the contour.

The islands are material surfaces so that u · n̂ = 0 along those portions of the contour that
are adjacent to the coasts. Integrating along the northern latitude, with n̂ = ŷ, yields

fnorth

ˆ
ynorth

h v dx ≡ fnorth T, (39.140)

where T is the meridional transport. Ignoring any volume transport through the layer surface
(e.g., w(η̇) = 0), the steady transport crossing the northern boundary equals to that crossing the
southern boundary, so that

fsouth

ˆ
ysouth

h v dx ≡ fsouth T. (39.141)

Making use of these results in the integral balance (39.139), and following the above assumptions
about the boundary stresses, leads to Godfrey’s island rule

ρT =
1

fnorth − fsouth

‰
∂S
τwind · t̂ dℓ, (39.142)

where τwind is the wind stress, and where the minus sign on fsouth arises since n̂ = −ŷ along
the southern latitude contour. This expression provides an approximation to the flow around
Island A, noting that the only nonzero flow normal to the contour is through the two latitudinal
segments.
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39.8.4 Further study
Godfrey (1989) applied the island rule (39.142) to estimate transport around Austral-Asia, New
Zealand, and Malagasy. Further discussion of Godfrey’s island rule can be found in Tomczak
and Godfrey (1994), Pedlosky et al. (1997), and Klinger and Haine (2019).

39.9 Free surface patterns in steady ocean gyres
We here consider basic features of steady free surface patterns realized by a shallow water fluid.
The basic question is how to relate the free surface near the coast to that in the interior of an
ocean gyre. We formulate the steady linear case with sloping bottom topography.

39.9.1 Formulating the free surface equation
We make use of the steady frictional geostrophic equations, with the velocity equation given by
the linearized version of equation (39.119)

f ẑ × hu = −g h∇η + fnc. (39.143)

Here, fnc is the thickness weighted acceleration from non-conservative processes, such as the
wind stress, viscous friction, and bottom drag, with details provided in Section 39.8.1. Since the
flow is steady, the layer thickness equation (35.20) leads to the non-divergence condition

∇ · (hu) = 0. (39.144)

We now formulate a vorticity-like equation. Yet rather than taking the curl of equation (39.143),
thus emulating the work from Section 39.8, we first divide equation (39.143) by the Coriolis
parameter to write

ẑ × hu = −(g h/f)∇η + fnc/f, (39.145)

so that the curl leads to

ẑ · [∇(g h/f)×∇η] = ẑ · ∇ × (fnc/f), (39.146)

where we used the non-divergence condition (39.144). Dividing by the Coriolis parameter limits
the analysis to regions bounded away from the equator, which is not a problem for our focus
on middle or high latitude planetary geostrophic ocean gyres. We are motivated to pursue this
formulation since it supports the use of equation (39.146) next to sloping boundaries, in which
the layer thickness vanishes (h = 0) at the shoreline edge of the domain.

39.9.2 Advecting the free surface
To help interpret the conservative portion of the free surface equation (39.146), we introduce
the streamfunction8

ψ(η) ≡ −g h/f, (39.147)

so that equation (39.146) takes the form

u(η) · ∇η = −ẑ · ∇ × (fnc/f), with u(η) = ẑ ×∇ψ(η) = −ẑ ×∇(g h/f). (39.148)

8We follow the sign convention of Wise et al. (2018) by introducing ψ(η) = −g h/f in equation (39.147). The
alternative choice of ψ(η) = +g h/f is less convenient for interpreting the direction of the velocity induced by
topographic slopes. Additionally, in equation (39.155) we introduce Rayleigh drag and interpret the resulting
equation as an advective-diffusion balance. If we take ψ(η) = +g h/f then it would be an advective-anti-diffusive
balance, which is far less physically satisfying.
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The left hand side is written as the advection of the free surface by the horizontally non-divergent
velocity, u(η). That is, the velocity, u(η), advects the free surface, whereas the fluid velocity,
u, advects matter. In the absence of non-conservative forces (fnc = 0), the free surface is
aligned with isolines of h/f = 1/Qpg, or equivalently with lines of constant planetary geostrophic
potential vorticity, Qpg (recall that Qpg = f/h as defined by equation (39.89)). For free surface
contours to deviate from Qpg contours requires non-conservative forces, such as those from wind
stresses and frictional dissipation. This discussion is related to that given in Section 39.5.2 where
we introduced the notion of f/H contours for planetary geostrophic flow.

The advection operator

The layer thickness is the difference between the free surface and bottom topography, h =
η − ηb ≥ 0 (see Figure 35.1), in which case the advection operator takes on the form

∇ψ(η) ×∇η = −(g/f)∇(η − ηb)×∇η + (g h/f2)β ŷ ×∇η (39.149a)

= (g/f) [∇ηb + (hβ/f) ŷ]×∇η. (39.149b)

This result motivates decomposing u(η) into two terms

u(b) = (g/f) ẑ ×∇ηb = (g/f) (−x̂ ∂yηb + ŷ ∂xηb) (39.150a)

u(β) = ẑ × (g h β/f2) ŷ = −(g h β/f2) x̂, (39.150b)

so that the free surface equation (39.148) takes on the form

(u(b) + u(β)) · ∇η = −ẑ · ∇ × (fnc/f). (39.151)

As so defined, u(b) arises from gradients in the bottom topography and it is directed with shallow
water to the right in the northern hemisphere and to the left in the southern hemisphere (just
as the phase velocity for a coastally trapped Kelvin wave; see Section 55.7). The velocity, u(β),
arises from the planetary vorticity gradient and is always directed to the west, just as the phase
velocity of a Rossby wave (Section 55.9). Notably, u(η) has a meridional component only so long
as there is a zonal topographic slope, ∂xηb ̸= 0.

Free surface trajectories in the absence of non-conservative forcing

In the absence of non-conservative forces the steady free surface equation (39.151) is

(u(b) + u(β)) · ∇η = 0 =⇒ [ẑ ×∇ηb − (hβ/f) x̂] · ∇η = 0. (39.152)

For the case of a flat bottom domain, so that u(b) = 0, free surface contours are purely zonal
(∂xη = 0). Conversely, on an f -plane, so that u(β) = 0, free surface contours are aligned with
the bottom topography, ẑ · (∇ηb×∇η) = 0. In the general case, the unforced steady free surface
contours are aligned according to the interplay between planetary beta and bottom topography
according to equation (39.152).

It is instructive to imagine a free surface “trajectory” as defined by integral curves of u(η).
Consider one such trajectory that moves from the interior of a northern hemisphere gyre onto the
continental shelf, such as in the example depicted in Figure 39.5. In the interior we assume the
bottom topography is nearly flat, so that u(b) ≈ 0 and the corresponding free surface trajectory
is along a constant latitude line. As we reach the continental slope, the trajectory becomes
southwestward with a trajectory slope determined by the zonal slope of the topography. Finally,
as the continental shelf is reached, which is relatively flat, the trajectory returns to a near
constant latitude contour.
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39.9.3 Rayleigh drag and free surface diffusion
The free surface equation (39.151) indicates that any non-conservative acceleration, fnc, causes
the free surface to deviate from contours of constant streamfunction, ψ(η) = −g h/f . The
dominant contribution to fnc arises from wind stress. Here, we consider the role of a thickness
weighted Rayleigh drag assumed to take the form given by equation (39.121)

fnc = −γ hug, (39.153)

where γ has dimensions of inverse time and ug is the geostrophic flow given by

ug = (g/f) ẑ ×∇η. (39.154)

Substituting into the free surface equation (39.151) leads to

(u(b) + u(β)) · ∇η︸ ︷︷ ︸
advection

= ∇ · [(γ h g/f2)∇η]︸ ︷︷ ︸
diffusion

−ẑ · ∇ × [τwind/(ρ f)].︸ ︷︷ ︸
source from ∇ × τwind/f

(39.155)

In the absence of a wind stress, the free surface satisfies a steady advective-diffusive balance.9

Evidently, the Rayleigh drag, acting as a sink to the geostrophic momentum, also acts to diffuse
the free surface and so to cause the free surface contours to deviate or spread out from contours
of constant g h/f . Notice that the diffusion coefficient,

κ = γ h g/f2 = −(γ/f)ψ(η), (39.156)

gets larger moving toward the equator. Hence, free surface contours can more readily deviate
from contours of constant ψ(η) when moving towards the equator.

39.9.4 Further study
Inspiration for this section follows from Minobe et al. (2017), Wise et al. (2018), Wise et al.
(2020a) and Wise et al. (2020b). Also note that the advection-diffusion interpretation of the
streamfunction equation follows Welander (1968), and was already introduced in Section 39.7.8
and used in Section 38.6 for the study of beta plumes. We formulated the steady linear case
following Wise et al. (2018), who considered sloping bottom topography rather than the vertical
walls assumed by Minobe et al. (2017). The transient case, which involves coastal boundary
waves, is considered by Hughes et al. (2019), Wise et al. (2020a) and Wise et al. (2020b).

39.10 Exercises
exercise 39.1: Flow near a topographic bump in a reduced gravity model
Elements of this exercise are motivated by Figure 2 from Adcock and Marshall (2000) and Figure
1 from Marshall et al. (2012), where we consider a reduced gravity model with a dynamic lower
layer and stagnant upper layer. Place a topographic bump (e.g., seamount or mountain) fully
within the lower layer as shown in Figure 39.12.

(a) Following Exercise 35.5, derive the momentum and thickness equations for a reduced
gravity model with a stagnant upper layer. Then derive the potential vorticity equation
for the dynamical layer.

9We study advection and diffusion in Chapter 69.
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(b) Now assume an f -plane. If the lower layer potential vorticity is (somehow) horizonally
homogenized (e.g., some form of mixing produces a horizontally constant potential vorticity),
draw the resulting layer interface η3/2. Assume the relative vorticity is negligible compared
to the planetary vorticity so that the flow satisfies the planetary geostrophic scaling
introduced in Section 39.5.2 and further pursued in Section 43.4. Also, ignore any non-
steady processes; we are only interested here in the steady flow.

(c) For the case of horizontally homogenized potential vorticity from the previous part, what
is the direction for a geostrophically balanced flow: cyclonic or anti-cyclonic? Hint: make
use of Exercise 35.5 for the momentum equation of an inverted reduced gravity model.

z
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Figure 39.12: A reduced gravity model (see Section 35.3) with a stagnant upper layer and a dynamic lower layer
as in Exercise 35.5. A seamount sits fully within the lower layer.

exercise 39.2: Potential vorticity for two shallow water layers
Consider the inviscid Boussinesq two-layer shallow water model as discussed in Section 35.4.
Derive the potential vorticity equation for each layer, showing the mathematical steps used in
the derivation. Hint: the answer is given in Section 39.3.6.

exercise 39.3: Average vorticity in a shallow water layer
Consider a single layer of shallow water fluid on a rotating plane with rotation rate Ω = ẑΩ.
Assume the fluid is contained in an arbitrary horizontal region and that it has a constant total
volume given by

V =

ˆ [ˆ
dz

]
dS =

ˆ
hdS =

ˆ
(H +∆η − ηb) dS = H S, (39.157)

where S is the horizontal area of the domain, h(x, y, t) = H +∆η(x, y, t)− ηb(x, y) is the layer
thickness, H is the resting depth relative to z = 0, ∆η is the sea level deviation from resting,
and ηb is the undulation of the bottom topography (see Figure 35.1). Additionally, recall that
z = 0 is set according to ˆ

ηb dS = 0, (39.158)

and volume conservation ensures that ˆ
∆η dS = 0. (39.159)
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(a) Determine the volume average of the vorticity ẑ ·ωrigid arising from the rigid-body rotation

⟨ẑ · ωrigid⟩ = V−1

ˆ
ẑ · ωrigid dV. (39.160)

(b) Determine the area average of the relative vorticity,

ζ = S−1

ˆ
ẑ · ω dS, (39.161)

in terms of the circulation around the boundary of the domain.

(c) Determine the volume average of the relative vorticity

⟨ζ⟩ = V−1

ˆ
ẑ · ω dV. (39.162)

Write the expression in terms of the area average vorticity, ζ, and the correlation, ζ ′ h′,
where primes are deviations from the area mean.

exercise 39.4: Application of the material invariance of potential vorticity
In an adiabatic shallow water fluid in a rotating reference frame, show that the potential vorticity
satisfies

D

Dt

[
ζ + f

η − ηb

]
= 0, (39.163)

where η is the height of the free surface and ηb is the height of the bottom topography (see
Figure 35.1). For both of the following questions, assume constant volume for the fluid column.
Also, assume the column rotates coherently about its axis.

(a) A cylindrical column of air at 30◦ latitude with radius 100 km expands horizontally to
twice its original radius. If the air is initially at rest, what is the mean tangential velocity
at the perimeter after the expansion?

(b) An air column at 60◦N with zero relative vorticity (ζ = 0) stretches from the surface to the
tropopause, which we assume is a rigid lid at 10 km. The air column moves zonally onto
a plateau 2.5 km high. What is its relative vorticity? Suppose it then moves southward
along the plateau to 30◦N, starting from the relative vorticity it obtained from the plateau.
What is its new relative vorticity?

exercise 39.5: Application of the material invariance of potential vorticity
An air column at 60◦N with ζ = 0 initially reaches from the surface to a fixed tropopause at
10 km height. If the air column moves across a mountain 2.5 km high at 45◦N, what is its
absolute vorticity and relative vorticity as it passes the mountaintop? Hint: Use the material
invariance of shallow water potential vorticity, and assume the top of the column remains at
10 km.

exercise 39.6: Steady shallow water flow in a rotating channel
In Figure 39.13 we depict a single layer of shallow water fluid moving within a zonal channel on
a northern hemisphere f -plane with meridional extent y = y0 − L/2 and y = y0 + L/2, where
y0 is the latitude of the f -plane. The fluid moves in the zonal direction under the influence of
an imposed pressure gradient and under a rigid lid at z = H. The lower boundary that starts
at z = 0 and transitions to z = d at some upstream position. Assume the fluid moves without
frictional dissipation so that all solid surfaces are free-slip. As a hint to this exercise, refer to
Section 2.4 of Stern (1975).

CHAPTER 39. SHALLOW WATER VORTICITY AND POTENTIAL VORTICITY page 1121 of 2158



39.10. EXERCISES

(a) Assuming a non-rotating reference frame, determine the velocity in the far downstream
where the fluid thickness is H − d.

(b) Now assume an f -plane and determine the meridional profile of the zonal velocity at a
distance far downstream.
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z = d

Figure 39.13: A single layer of shallow water fluid flows in a free-slip zonal channel on a northern hemisphere
f -plane with vertical walls at y = y0 ± L/2 and rigid upper surface at z = H. An imposed pressure gradient
causes the fluid to flow from left to right, with u = U x̂ the velocity in the far upstream direction given.

exercise 39.7: Properties of the steady state shallow water fluid
Consider a single layer of shallow water fluid in steady state (i.e., all Eulerian time derivatives
vanish).

(a) Show that there exists a streamfunction for the steady state thickness weighted horizontal
flow

hu = ẑ ×∇Ψ. (39.164)

(b) What are the physical dimensions of Ψ?

(c) Show that the shallow water potential vorticity is a constant along the steady state
streamlines of the thickness weighted flow

Q = Q(Ψ). (39.165)

(d) Show that the Bernoulli function,

B = g η + u · u/2 (39.166)

is also a constant along the same streamlines; i.e.,

B = B(Ψ). (39.167)

(e) What is the functional relation between the Bernoulli function and the potential vorticity?
Hint: make use of the physical dimensions for Q, B, and Ψ to be sure that your solution
is dimensionally consistent.

exercise 39.8: Zonally symmetric shallow water front
Consider a single layer of shallow water fluid on a β-plane (f = fo + β y) with a flat bottom.
Assume all fields possess zonal symmetry as in the zonal front shown in Figure 39.14. Since
the zonal pressure gradient vanishes under the assumption of zonal symmetry, the geostrophic
portion of the meridional velocity vanishes. However, there is generally a non-zero ageostrophic
component to this velocity, and we retain that possibility throughout this exercise.
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z

y

f > 0

h(y, t)

Figure 39.14: Schematic of a zonally symmetric front in a shallow water layer in the northern hemisphere
(f > 0), here used for Exercise 39.8. The thickness decreases to the north. If the zonal flow is in geostrophic
balance, then the northward pressure gradient is in geostrophic balance with a southward Coriolis acceleration
arising from an eastward (out of the page) geostrophic current (see also Figure 36.1). The geostrophic component
of the meridional flow vanishes due to zonal symmetry, but the full meridional flow need not vanish if there are
ageostrophic processes. We allow for the possibility of a nonzero meridional velocity throughout this exercise.

(a) Write the potential vorticity, Q, assuming the zonal flow is in geostrophic balance. Write
Q terms of meridional derivatives of the layer thickness.

(b) From the shallow water equations, explicitly show that the potential vorticity is materially
constant (i.e., it is a Lagrangian invariant). To do so, work through the usual shallow water
potential vorticity material conservation derivation yet make use of the zonally symmetric
equations of motion. Allow for a nonzero ageostrophic meridional flow. Show all relevant
steps.

(c) Show that the potential vorticity can be written as Q = −(∂yM)/h, where h is the
layer thickness. What is the expression for M? Hint: recall our discussion of potential
momentum in Section 14.3.

(d) Potential vorticity is not the only material constant for this system. Due to the zonal
symmetry, Noether’s Theorem indicates there is another. Show that M is materially
constant. Again, continue to allow for a nonzero meridional velocity component.

exercise 39.9: Rayleigh drag and Galilean invariance
Recall the discussion of Galilean invariance from Section 17.5. Is the Rayleigh drag used in
equation (39.81) Galilean invariant? Why? If not, then should that be of concern for its use in
studying flow in a closed and bounded domain?

exercise 39.10: Gyres in the presence of cyclonic winds
Consider the ocean gyre discussion in Section 39.7. Rather than anti-cyclonic winds, now apply
a cyclonic wind stress to the domain. As per the circulation theorem (39.84), the gyre flow will
have a cyclonic sense. Will the resulting gyre exhibit eastern intensification or western? Appeal
to whatever arguments you wish.

exercise 39.11: Shallow water equations with divergence-damping
When breaking the continuous symmetry of the equations of motion, a discretized numerical
simulation admits unphysical flow features sometimes referred to as computational modes. Some
computational modes can evolve in time with energy accumulating at high wave numbers, in
which case the numerical simulation produces unphysical grid noise and becomes of little physical
use. To suppress grid noise, numerical models commonly introduce numerical dissipation, even
if the continuous equations have zero dissipation. The formulation of numerical dissipation is

CHAPTER 39. SHALLOW WATER VORTICITY AND POTENTIAL VORTICITY page 1123 of 2158



39.10. EXERCISES

largely an art guided by the dual needs of suppressing grid noise without otherwise damaging
physical properties of the simulated flow. We here consider physical properties of a specific
form of numerical dissipation known as divergence-damping. We work within the framework of
the continuous equations so to develop generic physical properties of the divergence-damping
operator. No knowledge of numerical methods is required to solve this problem.

Divergence-damping is motivated by the desire to leave the vorticity equation untouched
while damping divergent motion that can arise in numerical simulations. This motivation is based
on noting that much of the large-scale circulation in a rotating fluid has a nontrivial absolute
vorticity yet a relatively small horizontal divergence. For example, geostrophic flow on an f -plane
has vorticity dominated by planetary vorticity f , while it is has zero horizontal divergence (see
Section 31.4 or the 2d barotropic equation in Section 38.1). The divergence-damping operator is
thus designed to reduce the magnitude of the horizontal divergence while leaving the vorticity
untouched.

We here examine the impacts of divergence-damping on mechanical energy and angular
momentum. For this purpose, consider a single layer of shallow water fluid with divergence-
damping. This system is described by the momentum and thickness equations

Du

Dt
+ f ẑ × u = −∇ (g η + αΓ) (39.168a)

Dh

Dt
= −h∇ · u. (39.168b)

The parameter α > 0 is a constant and the field Γ is given by the Laplacian of the horizontal
flow divergence

Γ = ∇2D, (39.169)

where
D = ∇ · u. (39.170)

The divergence has physical dimensions of inverse time (T−1), so that its Laplacian, Γ, has
dimensions of L−2 T−1, and the coefficient α has dimensions L4 T−1.

Divergence damping leads to a modification to the horizontal pressure gradient. We may
think of this modification as arising from the horizontal gradient of a modified free surface height

η̃ = η +
αΓ

g
. (39.171)

Notably, mass conservation remains the same since the thickness equation is unchanged. Hence,
momentum evolution is modified by changing the pressure gradient, yet the thickness equation
remains the same.

(a) Show that the vorticity equation (39.9) remains unchanged in the presence of divergence-
damping.

(b) Show that the potential vorticity equation (39.29) remains unchanged in the presence of
divergence-damping.

(c) Show that the horizontal divergence evolves according to

∂D

∂t
=

[
∂D

∂t

]
α=0

− α∇2Γ. (39.172)
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(d) Show that the evolution of gravitational potential energy per horizontal area

P = g ρ

ˆ η

ηb

z dz (39.173)

remains unchanged from that determined in Section 36.5.1.

(e) Show that the kinetic energy per horizontal area evolves according to

∂K

∂t
+∇ · (uK) = −hρ gu · ∇η̃, (39.174)

where

K =
1

2

ηˆ

ηb

ρu2 dz = ρ hu2/2, (39.175)

is the horizontal kinetic energy per area (Section 36.5.2).

(f) Determine the evolution equation for global integrated kinetic energy

∂

∂t

[ˆ
K dA

]
=

∂

∂t

[ˆ ˆ η

ηb

(ρu · u/2) dz dA
]
. (39.176)

Hint: drop all lateral boundary terms by assuming either solid lateral walls or periodicity.

(g) Consider a single shallow water layer in a rotating tank as in Section 36.8. Show that the
material evolution of angular momentum relative to the vertical rotational axis is given by

1

δM

DLz

Dt
= −g ∂η

∂ϕ
+T. (39.177)

What is the mathematical form for T? Hint: check your answer with the next part of this
exercise.

(h) Show that the domain integrated angular momentum satisfies the equation

∂

∂t

ˆ
Lz = αρ

ˆ
Γ
∂η

∂ϕ
dA. (39.178)

where we assume the bottom topography is flat so that h = η.

(i) The linearized thickness equation (see Section 55.5) for a flat bottom is given by

∂η

∂t
+H∇ · u = 0, (39.179)

where H is the thickness of the resting fluid layer. Show that the time change for the
global integrated angular momentum is given by

∂

∂t

ˆ
Lz = −αρ

H

ˆ [
∂

∂t
∇2η

]
∂η

∂ϕ
dA. (39.180)
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Chapter 40

VORTICITY AND CIRCULATION MECHANICS

In this chapter we study the kinematics and dynamics of vorticity and circulation, extending our
introductory study in earlier chapters in this part of the book. An understanding of vorticity
mechanics offers many insights into the nature of fluid flow and how that flow is constrained. In
making use of vorticity for geophysical fluids, it can be useful to move beyond the vorticity of a
fluid element as defined by the curl of the velocity field. For example, as a means to summarize
facets of the vorticity contained within a three-dimensional fluid, we study the depth integral of
the vorticity equation in Section 40.8 for a hydrostatic and Boussinesq fluid and in Section 44.3
for a planetary geostrophic flow. This analysis is particularly useful in understanding facets of
ocean circulation. Relatedly, there are occasions to study vorticity of the depth integrated flow
(i.e., vorticity of the transport) or depth averaged flow (i.e., vorticity of the barotropic flow), and
we do so in Section 40.9. Such studies emphasize the importance of boundary forces and their
curls (“torques”) for the vorticity of a fluid column. Details of the terms affecting such vorticities
depend on the form of the vorticity, with somewhat complementary features emphasized.

chapter guide

This chapter assumes an understanding of vorticity developed in earlier chapters in this
part of the book. We also make use of fluid kinematics from Part III and fluid dynamics
from Part V. As for the shallow water vorticity discussed in Chapter 39, we here make
use of vector calculus identities for Cartesian coordinates as detailed in Chapter 2. The
concepts and methods developed in this chapter are fundamental to the notions of vorticity
and circulation, with elements encountered in the remainder of this part of the book as
well as in the study of balanced models in Part VIII.
Throughout this chapter, when considering spherical geometry, we make use of the
planetary Cartesian coordinates from Figure 4.3. Since the sphere is assumed to be
embedded in Euclidean space, we can naively perform integrals of vectors over the
Euclidean space.
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40.1 Loose threads

• Rewrite Section 40.8 using the full vertical vorticity equation derived in Section 40.3.4.
The only difference is the presence of a component of baroclinicity, −ẑ × ρ−1∇p.

• Summarize the various forms of the vorticity budget as per McWilliams et al. (2024)
Section 2.
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40.2 Kelvin’s circulation theorem

In this section we study the evolution of circulation around a closed loop that follows the flow,
or equivalently (through Stokes’ theorem) with the change in vorticity penetrating the area
enclosed by the loop

dC

dt
=

d

dt

‰
∂S(v)

v · dx =
d

dt

ˆ
S(v)

ω · n̂dS, (40.1)

where S(v) designates a surface whose points all move with the fluid flow. We here consider the
case of a non-rotating reference frame, with the straightforward extension to rotating reference
frames in Section 40.6. Kelvin’s theorem refers to the special case of a perfect barotropic fluid,
whereas the treatment here considers how circulation evolves for more general flows.

We emphasize that our concern is with circulation computed around closed loops that follow
the flow. For single-component fluids, such loops are material (i.e., the same fluid particles are
fixed to the loop). Correspondingly, we can make use of Kelvin’s circulation theorem for any
material loop, including loops next to static material boundaries such as that considered in
Exercise 40.11. For multi-component fluids there is no perfectly material loop in the presence of
diffusion, and yet we can still make use of Kelvin’s theorem for loops that follow the barycentric
velocity, v (see Section 20.1 for a discussion of the barycentric velocity in the context of tracer
mechanics).

40.2.1 Formulation

Since the circulation is computed for a closed circuit following the flow, the time derivative in
equation (40.1) moves inside the integral as a material/Lagrangian time derivative1

dC

dt
=

d

dt

‰
∂S(v)

v · dx =

‰
∂S(v)

D(v · dx)
Dt

. (40.2)

The material evolution of v is determined by Newton’s law of motion, which for a non-rotating
reference frame is given by (see Section 26.13)

Dv

Dt
= −1

ρ
∇p−∇Φ+ F . (40.3)

In this equation, p is the pressure, ρ is the mass density, Φ is the geopotential (and/or the
potential for any conservative force), and F is the acceleration from any non-conservative forces
such as from viscous stresses and/or boundary stresses.

The material time derivative of the differential line element moving around the circuit equals
to the differential of the velocity on the circuit

D(dx)

Dt
= dv. (40.4)

This result follows since all points along the circuit follow the flow, by construction. Consequently,
evolution of circulation following a loop becomes

dC

dt
=

‰
∂S(v)

[(
−ρ−1∇p−∇Φ+ F

)
· dx+ v · dv

]
(40.5a)

=

‰
∂S(v)

[(
−ρ−1∇p+ F

)
· dx+ d(−Φ+ v · v/2)

]
(40.5b)

1In Section 20.2, we studied how to take derivatives of flow-following integrals.
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=

‰
∂S(v)

(−ρ−1∇p+ F ) · dx (40.5c)

=

ˆ
S(v)

[
−∇×

(
ρ−1∇p

)
+∇× F

]
· n̂dS (40.5d)

=

ˆ
S(v)

(B +∇× F ) · n̂dS. (40.5e)

We noted that when integrating over space at a particular time, ∇Φ ·dx = dΦ is an exact spatial
differential, and so is dv2. Hence, they both have a zero line integral around a closed circuit in
space2 ‰

∂S(v)
dΦ = 0 and

‰
∂S(v)

dv2 = 0. (40.6)

40.2.2 Two processes affecting circulation

Equation (40.5e) says that the circulation around a flow-following loop is affected by two
processes, whose form depends on whether considering their line integral or surface integral
expressions. The contribution from non-conservative forces take the form

‰
∂S(v)

F · dx =

ˆ
S(v)

(∇× F ) · n̂dS. (40.7)

The line integral form expresses the mechanical work per unit mass (acceleration times distance)
done by the non-conservative forces around the closed loop.3 If the force is associated with
friction, then friction acts to dissipate kinetic energy (see Section 26.3.3), with friction also
leading, in general, to a reduction of the circulation magnitude. The surface integral form
expresses the curl of friction as integrated over the surface.

The pressure gradient acceleration appears in equation (40.5e), and it provides a reversible
mechanical process affecting circulation

‰
∂S(v)

(−ρ−1∇p) · dx =

ˆ
S(v)

ρ−2(∇ρ×∇p) · n̂dS =

ˆ
S(v)

B · n̂dS. (40.8)

As for friction, the line integral form expresses the mechanical work per unit mass (acceleration
times distance) done by the pressure gradient acceleration as integrated around the circuit. The
vector B is referred to as the baroclinicity

B = −∇× (ρ−1∇p) = ρ−2∇ρ×∇p, (40.9)

and it has physical dimensions of inverse squared time, T−2. Its appearance in the circulation
theorem arises from the non-alignment of density and pressure isolines.

Work done by pressure around an arbitrary loop does not generally vanish, nor does it have
a specific sign. However, there are a variety of special loops around which the pressure work
does vanish. For example, the pressure work vanishes for closed contours on surfaces of constant
density or constant pressure. However, such contours are generally not flow-following, and so
their circulation is not considered as part of Kelvin’s theorem. In the remainder of this section,
we consider some further cases where baroclinicity vanishes.

2See Section 2.8 for more on exact differentials.
3We introduced the notions of mechanical work in Section 11.1.4.
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40.2.3 Barotropic flow

The solenoidal/baroclinicity vector vanishes for a constant density fluid, in which ∇ρ = 0 such
as for a single layer of shallow water fluid. More generally, the baroclinicity vector vanishes for
barotropic flow, in which

p = p(ρ) =⇒ barotropic flow. (40.10)

Kelvin’s circulation theorem then follows, which states that for inviscid barotropic flow the
circulation around any closed flow-following circuit remains constant

dC

dt
=

d

dt

‰
∂S(v)

v · dx =
d

dt

ˆ
S(v)

ω · n̂dS = 0 ⇐= inviscid barotropic flow. (40.11)

That is, the circulation around any closed flow-following circuit in a perfect barotropic fluid
remains materially constant. This remarkable result greatly constrains the flow and thus provides
a wealth of insights into the nature of the flow field.

Another way to recognize that baroclinicity vanishes for a barotropic flow is to note that the
curl of the pressure gradient acceleration vanishes

∇× (ρ−1∇p) = −ρ−2∇ρ×∇p = −ρ−2 (∂p/∂ρ)∇ρ×∇ρ = 0. (40.12)

Hence, for a barotropic fluid there is a scalar potential whereby

∇Φp = ρ−1∇p. (40.13)

This identity means that the pressure gradient acceleration for a barotropic flow is an exact
spatial differential

ρ−1∇p · dx = ρ−1 dp ≡ dΦp, (40.14)

with integration leading to

Φp =

ˆ p

p0

dp′

ρ(p′)
, (40.15)

where p0 is an arbitrary reference pressure. Since the closed loop integral of an exact differential
vanishes, we again see that the pressure gradient acceleration has no impact on circulation
around flow-following loops in a barotropic flow. Stated alternatively, with ∇Φp = ρ−1∇p, then
the Euler equation takes on the form

Dv

Dt
= −∇(Φp +Φ), (40.16)

which renders a materially constant circulation.

40.2.4 Pressure contribution to circulation in an ideal gas

Building on the notions from a barotropic flow in Section 40.2.3, we here determine a class of
contours for an ideal gas where baroclinicity vanishes even if the flow is not barotropic. To start,
recall from Exercise 23.3 that we derived equation (23.106) for an ideal gas

ρ−1∇p = θ∇Π, (40.17)

where θ is the potential temperature (equation (23.92)) and Π is the Exner function (equation
(23.93)). This equation says that the pressure gradient acceleration, for an ideal gas, is equal
to the potential temperature times the gradient of the Exner function. We can thus write the
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pressure gradient acceleration contribution in equation (40.5c) as

−
‰
∂S(v)

ρ−1∇p · dx = −
‰
∂S(v)

θ∇Π · dx = −
‰
∂S(v)

θ dΠ =

‰
∂S(v)

Πdθ, (40.18)

where the final step noted that the closed loop integral of an exact differential vanishes

‰
∂S(v)

d(θΠ) = 0. (40.19)

Hence, the contribution from baroclinicity (i.e., pressure gradient acceleration) vanishes for
closed contours drawn either on a constant Π surface or a constant θ surface. For an ideal
gas, changes in θ are directly related to changes in specific entropy (see equation (26.200) from
Exercise 26.4). Hence, for a perfect fluid flow of an ideal gas, where specific entropy is materially
invariant, so too is potential temperature: Dθ/Dt = 0. It follows that a contour drawn on a
potential temperature surface remains a flow-following contour for a perfect fluid. We have thus
deduced that isentropic flow of an ideal gas has a flow-following circulation that is unaffected by
baroclinicity.

40.2.5 Circulation around a loop with constant entropy and concentration
We here make use of the expression (26.69) for the pressure gradient acceleration in terms of
thermodynamic functions

−ρ−1∇p = −∇H + T ∇S+ µ∇C, (40.20)

where H is the specific enthalpy, S is the specific entropy, T is the thermodynamic (Kelvin) in situ
temperature, C is the material tracer concentration, and µ is the chemical potential for a binary
fluid such as commonly assumed for the ocean (freshwater and salt) and atmosphere (dry air
and water vapor). Equation (40.20) holds for a compressible fluid, in which the thermodynamic
pressure and mechanical pressure are the same (Section 25.8.1).

The identity (40.20) brings the pressure gradient contribution to Kelvin’s circulation theorem
(40.5e) into

−
‰
∂S(v)

ρ−1∇p · dx =

‰
∂S(v)

(T ∇S+ µ∇C) · dx, (40.21)

where we set ‰
∂S(v)

∇H · dx = 0, (40.22)

which holds since H is a state function so that for any time instance,

∇H · dx = dH (40.23)

is an exact spatial differential. The decomposition (40.21) reveals that the pressure contribution
to circulation vanishes when computing circulation for an isentropic and constant concentration
loop4 ‰

∂S(v)
ρ−1∇p · dx = 0 if dS = 0 and dC = 0. (40.24)

Such loops follow the flow in those cases where specific entropy and matter concentration are
materially invariant

DS

Dt
= 0 and

DC

Dt
= 0. (40.25)

4For the ocean, an isentropic and constant salt concentration process maintains a constant Conservative
Temperature.
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It follows that for the special case of a homogeneous fluid (C = constant) undergoing isentropic
quasi-static changes, pressure plays no role in the circulation computed around an isentropic
loop.

40.2.6 Circulation around a loop with constant S and Θ

Rather than invoking the gradient form of the fundamental thermodynamic relation (40.20),
consider an ocean application where equation (30.10) says that the in situ density, ρ, takes on
the functional form

ρ = ρ(S,Θ, p), (40.26)

with S the salinity and Θ the Conservative Temperature. It follows that along a contour that
maintains fixed S and Θ, the pressure gradient acceleration is a function just of the pressure, in
which case we write

ρ−1∇p · dx = ρ−1(Sconst,Θconst, p) dp ≡ dΨp if S = Sconst and Θ = Θconst, (40.27)

where we followed the barotropic case of equation (40.15) to write

Ψp(Sconst,Θconst, p) =

ˆ p

p0

dp′

ρ(Sconst,Θconst, p′)
, (40.28)

with p0 an arbitrary reference pressure. As in Section 40.2.5, we conclude that pressure plays no
role in affecting circulation around loops with fixed S and Θ

‰
∂S(v)

ρ−1∇p · dx =

‰
∂S(v)

dΨp(S,Θ, p) = 0 if S = Sconst and Θ = Θconst, (40.29)

which follows since dΨp is an exact spatial differential. Such closed loop contours follow the flow
if S and Θ are materially invariant

DS

Dt
= 0 and

DΘ

Dt
= 0, (40.30)

which is the case in the absence of mixing and/or sources of S and Θ.

40.2.7 Comments and further reading
There is no guarantee that the closed flow-following contours discussed in Sections 40.2.5 and
40.2.6 exist in any particular flow. Rather, all we showed is that if such closed contours exist,
and if the flow maintains materially invariant specific entropy and concentration (Section 40.2.5)
or salinity and Conservative Temperature (Section 40.2.6), then the circulation around such
loops is unaffected by the pressure gradient acceleration.

Our presentation of Kelvin’s circulation theorem anticipates analogous considerations en-
countered with potential vorticity in Chapter 41, with portions of the discussion motivated by
our study of Kooloth et al. (2022) given in Section 41.6.

40.3 Vorticity dynamics
We now study the time evolution of vorticity and the processes leading to this evolution. We
considered this question in Chapter 39 when focused on shallow water vorticity, and in Chapter
38 for the horizontally non-divergent barotropic flow. Here, we consider the general case of a
stratified flow with non-conservative forces. As for Kelvin’s theorem, we make use of Newton’s
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law of motion, written here in the form for a rotating fluid (see Section 26.13)

Dv

Dt
+ 2Ω× v = −ρ−1∇p−∇Φ+ F , (40.31)

where Ω is the angular velocity of the rotating reference frame.

40.3.1 Vector-invariant velocity equation
As for the shallow water fluid in Section 39.1, we find it useful to convert the advective-form
momentum equation to vector-invariant velocity equation. For this purpose, make use of the
vector identity (see Section 2.3.4)

ω × v = −(1/2)∇(v · v) + (v · ∇)v (40.32)

to eliminate velocity self-advection in favor of vorticity and kinetic energy

∂tv + ωa × v = −ρ−1∇p−∇(v2/2 + Φ) + F . (40.33)

We here introduced the absolute vorticity

ωa = ∇× (v +Ω× x) = ω + 2Ω, (40.34)

which is the curl of the absolute (inertial frame) velocity, and which equals to the sum of the
relative vorticity plus the planetary vorticity (see Section 37.6.1).

40.3.2 Basic form of the vorticity equation
Taking the curl of the vector-invariant momentum equation (40.33) removes the mechanical
energy per mass, v2/2 + Φ, thus leaving

∂tω +∇× (ωa × v) = ρ−2 (∇ρ×∇p) +∇× F . (40.35)

For geophysical fluid mechanics, we generally assume that Ω has zero time tendency so that

∂tωa = ∂t (ω + 2Ω) = ∂tω, (40.36)

in which case equation (40.35) can be written as an equation for absolute vorticity

∂tωa +∇× (ωa × v) = B +∇× F , (40.37)

where B is the baroclinicity vector given by equation (40.9).

40.3.3 Massaged form of the vorticity equation
Physical interpretation of the term ∇× (ωa × v) appearing in the prognostic equation (40.37)
can be made more transparent by using the following vector identity

∇× (ωa × v) = (v · ∇)ωa − (ωa · ∇)v + ωa∇ · v − v∇ · ωa (40.38a)

= (v · ∇)ωa − (ωa · ∇)v −
ωa

ρ

Dρ

Dt
. (40.38b)

The second equality required the continuity equation

Dρ

Dt
= −ρ∇ · v, (40.39)
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and the non-divergent nature of the absolute vorticity

∇ · ωa = ∇ · (∇× v + 2Ω) = 0. (40.40)

Equation (40.37) thus takes the form

Dωa

Dt
− ωa

ρ

Dρ

Dt
= (ωa · ∇)v +

1

ρ2
(∇ρ×∇p) +∇× F , (40.41)

which can be written

ρ
D(ωa/ρ)

Dt
= (ωa · ∇)v +B +∇× F . (40.42)

Each term on the right hand side of the material evolution equation (40.42) represents
a distinct physical process that affects ωa/ρ of a fluid element. The first term, (ωa · ∇)v,
embodies stretching and twisting and is explored in Section 40.5 in the simplified context of
a barotropic fluid. The second term arises from baroclinicity as introduced in equation (40.9)
and given a mechanical interpretation in Section 40.4. The third term arises from the curl of
the non-conservative forces (e.g., friction). Such forces contribute especially in boundary layer
regions where friction curls are relatively large in magnitude.

40.3.4 Evolution of Cartesian vorticity components
Terms appearing on the right hand side of the vorticity equation (40.42) provide sources for the
vorticity of a fluid element. Here we derive flux-form conservation equations that are separately
satisfied by each of the vorticity components. We find that each vorticity component has an
Eulerian time derivative determined by the convergence of a corresponding flux.

Vertical component to the absolute vorticity

Consider the material evolution equation for the vertical component of the absolute vorticity

ρ
D(ζa/ρ)

Dt
= (ωa · ∇)w + ẑ · (B +∇× F ) with ζa = ẑ · ωa. (40.43)

Making use of the identities5

ρ
D(ζa/ρ)

Dt
=
∂ζa
∂t

+∇ · (v ζa) (40.44a)

(ωa · ∇)w = ∇ · (ωaw) (40.44b)

ẑ ·B = −ẑ · [∇× (ρ−1∇p)] = ∇ · (ẑ × ρ−1∇p) (40.44c)

ẑ · (∇× F ) = −∇ · (ẑ × F ), (40.44d)

brings equation (40.43) into the flux-form

∂tζa = −∇ · Jζa with Jζa = v ζa − ωaw − ẑ × ρ−1∇p+ ẑ × F . (40.45)

This budget equation says that ζa evolves at a point according to the convergence of a vorticity
flux, Jζa . The vorticity flux is comprised of the following terms:

• advective flux of vertical vorticity: v ζa,

5Exercise 40.1 asks for a proof of the identity (40.44a), which follows from use of the mass continuity equation
in the form of equation (19.10). For equation (40.44d) we can use ẑ · (∇× F ) = ∇z · (∇× F ) = ∇ · [z∇× F ] =
∇ · [∇× (z F )−∇z × F ] = −∇ · (ẑ × F ).
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• absolute vorticity transported vertically: −ωaw,

• pressure gradient acceleration rotated clockwise by π/2 radians around the vertical axis:
−ẑ × ρ−1∇p,

• π/2 counter-clockwise rotated friction acceleration, ẑ × F .

Note that there is no vertical component to the vorticity flux:

ẑ · Jζa = ẑ · [v ζa − ωaw − ẑ × ρ−1∇p+ ẑ × F ] = 0, (40.46)

so that ζa is only affected by the convergence of a purely horizontal flux. We offer a schematic of
this property in Figure 40.1.
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ẑ · Jωa = 0
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ωtεa = →↑ · Jωa

Figure 40.1: Tendency for the vertical component to the absolute vorticity arises from convergence of the
vorticity flux, Jζa , given by equation (40.45). This vorticity flux is strictly horizontal, ẑ · Jζa = 0. This result
generalizes for any arbitrary Cartesian component of the absolute vorticity, whereby the corresponding vorticity
flux is orthogonal to its vorticity component. Generalization of this result leads to the impermeability theorem of
potential vorticity studied in Section 42.2.

Flux for the other Cartesian directions

Mathematically, there is nothing special about the vertical vorticity component. Hence, we
readily find that the horizontal vorticity components also satisfy their own respective flux-form
conservation equations, thus leading to the general result

∂t(ê · ωa) = −∇ · [v (ê · ωa)− ωa (ê · v)− ê× ρ−1∇p+ ê× F ], (40.47)

where ê is any one of the Cartesian unit vectors x̂, ŷ, ẑ. Furthermore, we readily see that the
vorticity flux satisfies

ê · [v (ê · ωa)− ωa (ê · v)− ê× ρ−1∇p+ ê× F ] = 0, (40.48)

so that the time tendency for ê · ωa is affected by a flux in the directions orthogonal to ê. This
property of the vorticity flux is generalized via the impermeability theorem of potential vorticity
studied in Section 42.2, with particular connection to the present discussion given in Section
42.2.2.

The kinematic vorticity flux

Following our study of vorticity for the shallow water fluid in Section 39.4.2, we here show that
there is a kinematic reason that each Cartesian component of vorticity has a time tendency
given by the convergence of a flux. For this purpose, recall the identity (37.2), in which the
vertical component to the relative vorticity is written as the divergence of the velocity rotated
by π/2 in the clockwise direction around the vertical axis

ζ = ∇ · (v × ẑ). (40.49)
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It follows, quite trivially, that

∂tζa = ∇ · (∂tv × ẑ) ≡ −∇ · Jkin. (40.50)

The kinematic flux,
Jkin = −∂tv × ẑ, (40.51)

differs from Jζa by a total curl, so that their convergences are identical. We prove this assertion
by returning to the vector-invariant velocity equation (40.33), which leads to the identity

−∂tv × ẑ = (ωa × v)× ẑ +∇× [ẑ (Φ + v · v/2)]− ẑ × ρ−1∇p+ ẑ × F , (40.52)

which then renders
Jkin = Jζa +∇× [ẑ (Φ + v · v/2)]. (40.53)

The rotational term equals to the mechanical energy per mass, which was also found for the
shallow water case given by equation (39.61).

40.3.5 Evolution of the normal component of absolute vorticity

As a further examination of vorticity components, we here consider the material evolution
of vorticity projected onto the unit normal vector, n̂, for an infinitesimal material area, δS.
This discussion leads to an infinitesimal version of Kelvin’s circulation theorem, thus explicitly
linking the evolution equations for vorticity and circulation. In the process we make use of some
kinematics from Chapter 18.

The unit normal vector to a material surface evolves according to equation (18.130e)

Dn̂m
Dt

= −n̂ · ∂surf
m v, (40.54)

where the surface derivative, and corresponding surface divergence, are given from equation
(18.126)

∂surf
m = ∂m − n̂m (n̂ · ∇) and ∇surf = ∇− n̂ (n̂ · ∇). (40.55)

Making use of the vorticity equation in the form (40.41), along with the continuity equation
(40.39), leads to

n̂ · Dωa

Dt
= −(n̂ · ωa)∇ · v + n̂j (ωa · ∇) vj + n̂ · (B +∇× F ). (40.56)

Likewise, taking the dot product of ωa with the evolution equation (40.54) yields

ωa ·
Dn̂

Dt
= n̂j [−(ωa · ∇) + (n̂ · ωa) (n̂ · ∇)] vj . (40.57)

Adding these two equations renders the material time evolution

D(ωa · n̂)
Dt

= −(ωa · n̂)∇surf · v + n̂ · (B +∇× F ). (40.58)

The surface divergence of the velocity measures, via equation (18.127), evolution of the material
surface area

1

δS

DδS

Dt
= ∇surf · v, (40.59)
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so that the material evolution equation for the n̂ component of absolute vorticity is

D(ωa · n̂)
Dt

= −(ωa · n̂)
δS

DδS

Dt
+ n̂ · (B +∇× F ). (40.60)

The area term arises from the familiar “ice-skater” effect that reflects angular momentum
conservation for the column (Section 39.2.2), whereas the other terms are the projection of
the baroclinicity and friction curl onto n̂. Bringing the area term onto the left hand side then
renders the infinitesimal form of Kelvin’s circulation theorem (40.5e)

D

Dt
(ωa · n̂dS) = (B +∇× F ) · n̂dS. (40.61)

Note the presence of the absolute vorticity, ωa, in equation (40.60) rather than the relative
vorticity considered in Section 40.2. We return in Section 40.6 to the question of circulation
arising from planetary rotation, where we derive the finite version of the circulation theorem
(40.60).

40.3.6 Vorticity, angular momentum, and torques
Both vorticity and angular momentum offer measures of the rotational motion of a fluid flow.
However, there are key distinctions as detailed in Section 37.9. Perhaps the most fundamental
distinction is that vorticity measures the rotation or spin without reference to an origin, whereas
angular momentum is computed relative to a subjectively chosen origin. Vorticity is thus an
intrinsic property of the fluid flow, whereas angular momentum depends on the chosen origin
and is affected by fluid strains. Consequently, there is a direct connection between angular
momentum and vorticity only for the special case of flow exhibiting rigid-body motion.

Angular momentum of motion relative to an origin changes in the presence of torques
computed about the chosen origin, with the torque equal to the crosss product of the position
vector of a point and the force vector acting at that point. In contrast, vorticity at a point is
affected by the curl of the force per mass acting at the point. Furthermore, angular momentum
is a property of any mechanical system, including point particles and rigid bodies, whereas
vorticity is a property only of a continuous media where we can compute spatial derivatives of
the velocity field.

When the curl of a force per mass is applied to a fluid and thus changes its vorticity, we
commonly use the term “torque” in reference to this force curl. For example, in Section 40.4
we explore baroclinicity, which is the key mechanism for how inviscid torques from pressure
modify vorticity. In that discussion, we see that baroclinicity provides a vorticity source when
the pressure force acting on a fluid element does not pass through the center of mass of that
element. When there is baroclinicity, the pressure force spins the fluid element thus affecting
vorticity. Analogous inviscid and viscous force curls act on boundaries, such as when a fluid
interacts with the solid earth. It is within this context that we use the term “torque” when
referring to a vorticity source. Correspondingly, the torques providing a vorticity source have
the dimension of force per mass per length, whereas the torques altering angular momentum
have the dimension of force times length.6

40.4 Mechanics of baroclinicity
Baroclinicity is present in most geophysical flows, thus affecting the material evolution of
circulation and vorticity. Flow with a nonzero baroclinicity vector is generally referred to as

6See Section 2 of Hughes (2000) for a similar perspective on usage of the term “torque” for processes affecting
vorticity.
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baroclinic flow, whereas barotropic flows have zero baroclinicity. We illustrate the basic distinction
between barotropic and baroclinic fluids in Figure 40.2. We observe that a baroclinic fluid is
associated with fluid motion that is a function of the vertical direction. In contrast, a barotropic
fluid in the special case of pressure and density surfaces aligned with geopotentials, supports no
motion. We further develop these points as we explore the mechanics of baroclinicity.

z

p p

ρ ρ

Barotropic fluid Baroclinic fluid

Figure 40.2: Left panel: a barotropic fluid, whereby density is a function just of pressure, ρ = ρ(p), so that
density surfaces (dashed lines) and pressure surfaces (solid lines) are parallel. Horizontal density and pressure
surfaces in a barotropic fluid support no motion. Right panel: a baroclinic fluid, whereby density and pressure
surfaces generally differ so that density is a function of more than just the pressure. A baroclinic fluid is associated
with fluid motion that is a function of the vertical direction.

40.4.1 Curl of the pressure gradient body force
Baroclinicity is the curl of the pressure gradient body force

B = ∇× Fpress = ∇× (−ρ−1∇p) = −∇ρ−1 ×∇p = ∇ρ×∇p
ρ2

. (40.62)

As discussed in Section 40.3.6, the curl of a force provides a torque that spins the fluid, thus
rendering a vorticity source. Geometrically, baroclinicity arises when there is nonzero change in
pressure along contours of constant density, or conversely changes in density along contours of
constant pressure.7 It can be useful to introduce the notion of a solenoid, which is a tube region
in the fluid that is perpendicular to both ∇ρ and ∇p. There are no solenoids for barotropic
flows, whereby p = p(ρ) (see equation (40.10)). For baroclinic flow, solenoids are associated with
a torque that affects vorticity.

To further understand the mechanical interpretation of solenoids in terms of a torque, consider
the cross product

ρB = F press ×∇ρ = (−ρ−1∇p)×∇ρ. (40.63)

The first term on the right hand side is the pressure gradient acceleration that is oriented down
the pressure gradient. Now consider a tiny fluid element such as shown in Figure 40.3. By
construction, the pressure force acts at the geometric center of the element. However, the nonzero
density gradient means that the center of mass for the fluid element is not at the geometric
center. In this case, the pressure gradient force does not pass through the center of mass, so that
it imparts a torque to the fluid element. This torque then modifies the vorticity and hence the
circulation around the boundary of the element. As an example, consider a horizontal pressure
gradient acting in a fluid that is vertically stratified so ∂zρ ̸= 0. There is a non-zero baroclinicity
pointing in the horizontal direction (perpendicular to the horizontal pressure gradient and vertical
density gradient), with this horizontal baroclinicity vector providing a source for horizontal
vorticity. It is only if the pressure gradient force is aligned with the density gradient (barotropic

7See Exercise 5.1 for a two-dimensional example of this geometry.
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flow), or if the density is spatially uniform (e.g., constant density homogeneous fluid), that
we find the pressure gradient force passing through the center of mass and thus inducing no
vorticity.

p = constant
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Figure 40.3: A mechanical interpretation of the baroclinicity vector. We consider a tiny fluid element bounded
by surfaces of constant pressure and density. By construction, the pressure gradient force acts at the geometric
center of the element, whereas the center of mass for the element is off-center due to the density gradient across
the element. The pressure gradient force thus provides a torque for the fluid element, with the moment-arm for
the torque determined by the distance between the geometric center and the center of mass. This torque modifies
the vorticity of the fluid element, and in turn modifies the circulation computed around the element’s boundary.
As depicted here, the baroclinicity vector points into the page (right hand rule for (−ρ−1 ∇p)×∇ρ), so that this
baroclinicity spins-up a clockwise circulation around the element, or equivalently a clockwise vorticity. This figure
is adapted from Figure 14.9 of Thorne and Blandford (2017).

40.4.2 Kelvin’s circulation theorem and contact pressure forces
We are afforded another means to understand baroclinicity by returning to the formulation of
Kelvin’s circulation theorem in Section 40.2.1. Focusing just on the baroclinicity contribution in
equation (40.5e) we have[

dC

dt

]
baroclinicity

=

‰
∂S(v)

−ρ−1∇p · dx =

‰
∂S(v)

ρ−2 (−p∇ρ) · dx, (40.64)

which follows since, at any particular instance,

‰
∂S(v)

∇(p/ρ) · dx =

‰
∂S(v)

d(p/ρ) = 0. (40.65)

The term −p∇ρ in equation (40.64) is proportional to the compressive contact pressure force
(Section 25.2) acting normal to a constant density surface. Consequently, if the material surface
on which we are computing circulation happens to be parallel to a constant density surface,
then pressure cannot generate any circulation around that material circuit. The left circuit in
Figure 40.4 illustrates this situation. For the more general case where a material surface crosses
constant density surfaces, pressure modifies circulation computed around such circuits (right
circuit in Figure 40.4).

40.4.3 Bottom pressure contributions at the solid-earth boundary
As an application of the above ideas, consider a fluid region that intersects the solid-earth
boundary. The solid-earth boundary is material so that we can apply Kelvin’s circulation
theorem to a circuit on the boundary. Consider the situation in Figure 40.5, which shows a
vertical slice next to a sloping bottom with constant density surfaces intersecting the bottom.
As in our considerations in Section 40.4.2, any material circuit that sits within the bottom
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∇ρ

ρ1

ρ2

Figure 40.4: The material circuit on the left is assumed to be within a constant density surface. In this case,
∇ρ · dx = 0 so that pressure cannot modify the circulation around this circuit. However, if a material circuit is
not contained fully within constant density surface, such as depicted on the right, then pressure is able to modify
the circulation computed around the circuit.

boundary crosses density surfaces, in which case circulation is affected by the bottom pressure.
Indeed, even if the bottom is flat, so long as density is not constant along the bottom, then a
material circuit within the bottom has circulation modified by bottom pressure.

To develop the mathematics of the above ideas, write the differential line element within the
bottom circuit as

dx = x̂ dx+ ŷ dy + ẑ dz = (x̂+ ẑ ∂xηb)dx+ (ŷ + ẑ ∂yηb)dy. (40.66)

To reach this result we set z = ηb(x, y) since the circuit is along the bottom boundary, which in
turn means that8

dz = dηb = ∇ηb · (x̂dx+ ŷ dy) = ∇ηb · dxhorz. (40.67)

Consequently, the projection of the density gradient onto the circuit is given by

∇ρ · dx = (∇hρ+ ∂zρ∇ηb) · dxhorz. (40.68)

Making use of this result in Kelvin’s circulation theorem and focusing on the pressure contribution,
as in equation (40.64), leads to[

dC

dt

]
bottom

= −
‰
∂Sbottom

p ρ−2∇ρ · dx = −
‰
∂Sbottom

pb
ρ2

(∇hρ+ ∂zρ∇ηb) · dxhorz. (40.69)

There are two contributions to the circulation changes revealed by equation (40.69). The first
arises from the sloped density surfaces next to the bottom, and the second arises from the sloped
bottom multiplied by the vertical density gradient. These two contributions are weighted by
the bottom pressure, pb, which is normalized by the squared density. Circulation modifications
are enhanced by increased horizontal density gradients next to the bottom, as well as increased
topographic slopes. For the special case of flat topography and flat density there are no bottom
pressure-induced changes to the circulation around a bottom material circuit.

40.4.4 Further study
This video from Prof. Shapiro provides a lucid discussion of baroclinicity and its role in affecting
vorticity and circulation.

8Since ηb = ηb(x, y), its gradient is horizontal: ∇ηb = x̂ ∂xηb + ŷ ∂yηb.
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z = ⌘b(x, y)

Figure 40.5: Constant density surfaces intersecting a sloped solid-earth boundary. Any circuit that sits along the
boundary is material since the bottom is material. For circuits that cross density surfaces, the bottom pressure
acts to modify circulation computed for this circuit.

40.5 Vortex lines and material lines
We here study the physics of the source term

(ωa · ∇)v = f ∂zv + (ω · ∇)v (40.70)

appearing in the vorticity equation (40.42). The contribution from ẑ f ∂zw to the first term is
further explored when studying the planetary geostrophic equations in Sections 31.5 and 44.2,
given its importance for large-scale meridional motion on a spherical planet. The second term,
(ω · ∇)v, is the focus of this section.

40.5.1 Vortex lines evolve through the strain rate tensor
To help unpack the physics of the source, (ω · ∇)v, write it in the following form found by
exposing Cartesian tensor labels

ωm ∂mvn = (ωm/2) [(∂mvn + ∂nvm) + (∂mvn − ∂nvm)] (40.71a)

= ωm Smn − ωm Rmn, (40.71b)

where Smn = (1/2) (∂nvm + ∂mvn) are components to the strain rate tensor and Rmn =
(1/2) (∂nvm − ∂mvn) are components to the rotation tensor. These tensors were introduced in
Section 18.6 when studying the kinematics of line elements. As shown in that discussion, the
rotation tensor is related to the vorticity by the identity (18.102), whose use leads to

2ωm Rmn = −ωm ϵmnp ωp = ϵnmp ωm ωp = (ω × ω)n = 0. (40.72)

Recalling that the rotation tensor generates rotations about the axis defined by vorticity, we
can understand why ω · R = 0. Namely, there is no rotation generated when a vector is rotated
about its own axis. We are thus left just with

(ω · ∇)v = ω · S. (40.73)

That is, the source, (ω ·∇)v, appearing in the vorticity equation is determined by the projection
of the vorticity onto the strain rate tensor. This result highlights the fundamental role of flow
strains in affecting vorticity.
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40.5.2 Frozen-in nature of vorticity

Consider an inviscid barotropic fluid in the absence of planetary rotation and whose flow is
non-divergent, in which case the vorticity equation (40.42) reduces to

Dω

Dt
= (ω · ∇)v, (40.74)

and recall the evolution equation for a material line element as detailed in Section 18.6

D(δx)

Dt
= (δx · ∇)v. (40.75)

Now recall from Section 37.7.1 that a vortex line is a line drawn through the fluid that is
everywhere parallel to the vorticity. Such a line connects material fluid particles, so that a vortex
line constitutes a particular case of a material line. At some initial time, t = 0, let the vorticity
on an infinitesimal vortex line be related to the material line element according to

δx(0) = Γω(x, 0), (40.76)

where Γ has dimensions LT and is determined by the initial vorticity and initial line element.
Since the vorticity equation (40.74) has precisely the same mathematical form as the material
line element equation (40.75), the difference vector

A ≡ δx− Γω, (40.77)

evolves according to
DA

Dt
= (A · ∇)v. (40.78)

But since A vanishes at t = 0, we conclude that it vanishes for all time

DA

Dt
= 0. (40.79)

Consequently, the relation (40.76) holds for all time with Γ a constant. That is, the vortex
line and its corresponding line element remain parallel as they both evolve according to their
projection onto the strain rate tensor. We thus say that vorticity is a frozen-in property as
illustrated by Figure 40.6. Although we established this property only for the case of an inviscid,
barotropic fluid with non-divergent flow, it offers insight into the more general situation occuring
in real fluids.

40.5.3 Stretching and tilting of vortex tubes

Vorticity responds when vortex lines or tubes are stretched or bent by the strain rate tensor.
To help understand the response, consider again the perfect fluid barotropic vorticity equation
with a non-divergent flow (equation (40.74)) and focus on the material evolution of the vertical
vorticity component

Dωz
Dt

= ωx
∂w

∂x
+ ωy

∂w

∂y
+ ωz

∂w

∂z
= ω · ∇w = ∇ · (wω). (40.80)

The following discussion closely emulates that given for a material line element in Section 18.8.3.
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Figure 40.6: For the non-divergent flow of a perfect barotropic fluid, vortex lines are also material lines. This
property means that for an arbitrary vortex line drawn in the fluid, the fluid particles that are initially on the
vortex line remain on the line as it moves through the fluid according to the strain rate tensor. We here show two
instances of the same vortex line along with sample test fluid particles. The left configuration stretches into the
right configuration, with the vorticity increasing as the vortex line stretches according to the discussion in Section
40.5.3. This property of a vortex line is known as its frozen-in nature. The frozen-in nature of vortex lines strictly
holds only for perfect barotropic fluid exhibiting non-divergent flow, yet it offers useful insights into the vortex
dynamics of more general fluids.

Stretching

Consider the vortex tube to be initially aligned with the ẑ-axis, so that ωx = ωy = 0, in which
case there is only a single term impacting the material evolution of vertical vorticity9

Dωz
Dt

= ωz
∂w

∂z
. (40.81)

Since the flow is non-divergent, the volume of an infinitesimal portion of the vortex tube is
materially constant

D(δV )

Dt
= 0, (40.82)

which means that the vertical extent, δz, and cross-sectional area, δA, are constrained

1

δz

D(δz)

Dt
+

1

δA

D(δA)

Dt
= 0. (40.83)

As the tube stretches vertically, its horizontal area reduces, and vice versa. Making use of the
expression for the evolution of a material line segment (equation (40.75)) allows us to write

1

δz

D(δz)

Dt
=
∂w

∂z
, (40.84)

so that the vorticity equation (40.81) becomes

Dωz
Dt

= ωz
∂w

∂z
= ωz

[
1

δz

D(δz)

Dt

]
= −ωz

[
1

δA

D(δA)

Dt

]
. (40.85)

Rearrangement leads to
D(ωz δA)

Dt
= 0, (40.86)

which is an expression of Kelvin’s circulation theorem (equation (40.11)) for a horizontal
cross-section of the vortex tube.

The above manipulations suggest the following interpretation for the stretching term,
ωz (∂w/∂z), appearing in the vertical vorticity equation (40.80) and illustrated in Figure 40.7.

9Be mindful to distinguish the symbols for the vertical component of vorticity, ωz, and the vertical component
of velocity, w.

page 1144 of 2158 geophysical fluid mechanics



40.5. VORTEX LINES AND MATERIAL LINES

Namely, as the vortex tube is stretched and its cross-sectional area is compressed, the vorticity
magnitude increases so to maintain a constant circulation around the tube, as per Kelvin’s
theorem (or equivalently as per Helmholtz’s first theorem discussed in Section 37.7.3). Stretching
a vortex tube increases the magnitude of the vorticity in the direction of the stretching whereas
compressing a tube reduces the vorticity magnitude. This result accords with our understanding
of angular momentum conservation as discussed for the rotating cylinder in Section 39.2.2 and
depicted by Figure 39.1.

stretching

!z = 0
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x
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Figure 40.7: Ilustrating how stretching and tilting of a vortex tube impacts on the vorticity. Top panels: As the
cross-sectional area of the vortex tube shrinks, and the vertical extent of the tube stretches, the magnitude of the
vorticity along the axis of the tube increases. This result accords with our understanding of angular momentum
conservation as discussed for the rotating cylinder in Section 39.2.2 and depicted by Figure 39.1, as well as with
Helmholtz’s first theorem in Section 37.7.3 and Figure 37.7. Lower panels: The initial vortex tube is assumed to
be aligned parallel to the x-axis, so that it has zero projection in the vertical direction. A horizontal shear of the
vertical velocity (∂w/∂x ̸= 0) deforms the vortex tube. Upon deforming (or tilting), the tube picks up a nonzero
projection in the vertical, which means that it now has a nonzero vertical component to vorticity.

Tilting

Now consider an initially horizontal vortex tube as in the lower left panel of Figure 40.7 so that
ωz = 0. Furthermore, to focus on just one of the two horizontal directions we set ωy = 0 so that
equation (40.80) for the vertical vorticity becomes

Dωz
Dt

= ωx
∂w

∂x
. (40.87)

If there is no horizontal shear in the vertical velocity (∂w/∂x = 0), then the vortex tube remains
horizontal. However, in the presence of ∂w/∂x ̸= 0, the vorticity vector picks up a nonzero
vertical projection. To help visualize this process, recall the frozen-in nature of vortex lines, and
consider the evolution of an infinitesimal line segment on the vortex tube. With the vortex tube
initially aligned parallel to the x-axis, the evolution of a material line segment (equation (40.75))
is given by

D(δx)

Dt
= δx

∂v

∂x
. (40.88)

The initially horizontal line segment thus picks up a projection in the vertical so long as
∂w/∂x ̸= 0. Correspondingly, the vorticity picks up a vertical component. We can think of this
process as a tilting or deforming of the initially horizontal vortex tube, with the tilted tube
having a nonzero vertical projection.
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40.5.4 Shallow water vorticity revisited

We here revisit our discussion of the shallow water vorticity from Chapter 39 in light of the
vorticity equation (40.42). Notably, an inviscid shallow water fluid has zero baroclinicity, so that
only stretching and tilting affect shallow water vorticity.

Vortex tubes never close in a shallow water layer

The absolute vorticity vector in a shallow water layer is given by equation (35.106d)

ωa = ∇× v + ẑ f = ωh + ẑ (ζ + f) = x̂ ∂yw − ŷ ∂xw + ẑ ζa = −ẑ ×∇w + ẑ ζa, (40.89)

where we set ∂zu = ∂zv = 0 for the horizontal velocity within a shallow water layer. Since
the shallow water fluid is hydrostatic, the horizontal vorticity component is much smaller in
magnitude than the vertical component,

|∂xw, ∂yw| ≪ |ζ|. (40.90)

Vortex tubes in a shallow water fluid do not close, since to close requires breaking this inequality.
Hence, shallow water vortex tubes reach from the bottom of the layer to the top, with only a
slight tilt relative to the vertical.

Material time evolution of shallow water vorticity

To determine how shallow water vorticity evolves, we make use of the stretching and tilting term
in the form of equation (40.73) so that

Dωa

Dt
= (ωa · ∇)v =⇒ Dωan

Dt
= ωam Smn. (40.91)

The strain rate tensor for the shallow water fluid is

S =
1

2

 2 ∂xu ∂yu+ ∂xv ∂zu+ ∂xw
∂xv + ∂yu 2 ∂yv ∂zv + ∂yw
∂xw + ∂zu ∂yw + ∂zv 2 ∂zw

 =
1

2

 2 ∂xu ∂yu+ ∂xv ∂xw
∂xv + ∂yu 2 ∂yv ∂yw
∂xw ∂yw 2 ∂zw

 ,
(40.92)

so that material time evolution of the vertical vorticity component, is given by

D(ζ + f)

Dt
= ω1 S13 + ω2 S23 + ẑ · ωa S33 (40.93a)

= (1/2) (ω1 ∂xw + ω2 ∂yw) + ωa3 ∂zw (40.93b)

= (ζ + f) ∂zw (40.93c)

= −(ζ + f)∇ · u, (40.93d)

which agrees with the shallow water vorticity equation (39.9). For the zonal vorticity component
we have

Dω1

Dt
= ω1 S11 + ω2 S21 + ẑ · ωa S31 (40.94a)

= ω1 ∂xu+ ω2 (∂xv + ∂yu)/2 + ω3 ∂xw, (40.94b)

and a similar expression for the meridional component.
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Flux-form evolution of Cartesian vorticity components

In Section 40.3.4, we showed how each of the three Cartesian vorticity components evolves
according to a flux-form equation. For the vertical component to the vorticity, the vorticity flux,
Jζa , is given by equation (40.45) and it takes on the following form for a shallow water layer

Jζa = v ζa − wωa = u ζa − wωh = u ζa + w ẑ ×∇w = u ζa + ẑ ×∇w2/2. (40.95)

The term
ẑ ×∇w2/2 = −∇× ẑw2/2 (40.96)

has a zero divergence and so has no contribution to the convergence of the vorticity flux. Hence,
the vorticity flux, Jζa , derived here differs by a gauge from the purely advective flux, u ζa,
considered in the shallow water vorticity equation (39.7).

For the zonal component to the vorticity, the vorticity flux, Jω1 , is given by equation (40.47)
and it takes on the following form for a shallow water layer

Jω1 = v ωa1−uωa = (ŷ v+ẑw)ω1−ŷ ω2−ẑ (ζ+f) = ŷ (v ω1−uω2)+ẑ [wω1−u (ζ+f)], (40.97)

with a similar form for the flux of the meridional vorticity component, Jω2 .

40.5.5 Concerning three-dimensional turbulence

As a vortex tube is stretched in the presence of straining motion, it spins faster as its radius
decreases. Hence, its kinetic energy moves from larger to smaller spatial scales. This process of
downscale energy cascade (i.e., the movement of kinetic energy from large to small scales) is a
fundamental property of three dimensional turbulence, and vortex stretching is the dominant
mechanism for the cascade. In contrast, two dimensional turbulence, which occurs in horizontal
non-divergent flows, does not support vortex stretching and consequently does not support the
downscale energy cascade. Instead, two dimensional turbulence supports an inverse cascade
whereby there is a net flow of energy to larger scales, with that flow related to the material
conservation of vorticity in two dimensional non-divergent flows (see Chapter 38). Vallis (2017)
provides a lucid discussion of energy cascades in both two and three dimesional turbulence.

40.6 Circulation viewed in a rotating reference frame

We here tie up an important loose end by studying circulation and vorticity for fluids in a rotating
reference frame, such as those on a rotating planet. It turns out that incorporating rotation is
straightforward, and yet the implications are quite profound for the motion of geophysical fluids.
In this section we are careful to make use of planetary Cartesian coordinates, whereby the origin
of the coordinate system is at the center of the planet (see Figure 4.3).

Start by recalling the expression from Section 13.7.1 for the inertial or absolute velocity (i.e.,
velocity measured in an inertial frame)

va = v +Ω× x, (40.98)

where v is the velocity measured in the rotating frame (relative velocity), and x is the position
vector relative to the origin (e.g., center of earth). The absolute circulation around an arbitrary
circuit (a circuit that is not necessarily material) is thus given by

Ca =

‰
∂S

(v +Ω× x) · dx = C + Cplanet, (40.99)
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where the circulation measured in the rotating reference frame is

C =

‰
∂S
v · dx (40.100)

and the circulation associated with the rotating planet is

Cplanet =

‰
∂S

(Ω× x) · dx. (40.101)

A fluid element at rest in the rotating reference frame still has a nonzero absolute circulation
as given by the planetary circulation. Making use of Stokes’ theorem leads to the equivalent
forms for the circulations

C =

‰
∂S
v · dx =

ˆ
S

ω · n̂dS relative circulation (40.102a)

Cplanet =

‰
∂S

(Ω× x) · dx =

ˆ
S

ωplanet · n̂dS planetary circulation (40.102b)

Ca =

‰
∂S
va · dx =

ˆ
S

ωa · n̂dS absolute circulation, (40.102c)

where

ω = ∇× v relative vorticity (40.103a)

ωplanet = ∇× (Ω× x) = 2Ω planetary vorticity (40.103b)

ωa = ∇× (v +Ω× x) = ω + ωplanet absolute vorticity. (40.103c)

Thus far we have merely substituted in the expression (40.98) for the inertial velocity and then
decomposed the vorticity and circulation into its relative and planetary components. Next we
consider how circulation evolves, in which case we see how the relative and planetary circulations
interact.

40.6.1 Material evolution of absolute circulation

Consider how the absolute circulation evolves for a material circuit that moves with the fluid

dCa

dt
=

d

dt

‰
∂S(v)

va · dx =
d

dt

‰
∂S(v)

(v +Ω× x) · dx. (40.104)

We measure fluid motion in the rotating frame so that the material time derivative is computed
with the velocity, v, rather than the absolute velocity, va. Following the derivation of Kelvin’s
circulation theorem in a non-rotating reference frame from Section 40.2 leads to

dCa

dt
=

d

dt

‰
∂S(v)

(v +Ω× x) · dx (40.105a)

=

‰
∂S(v)

[
Dv

Dt
+Ω× Dx

Dt

]
· dx+

‰
∂S(v)

(v +Ω× x) · dv (40.105b)

=

‰
∂S(v)

[
Dv

Dt
+Ω× v

]
· dx+

‰
∂S(v)

(Ω× x) · dv (40.105c)

=

‰
∂S(v)

[
Dv

Dt
+ 2Ω× v

]
· dx. (40.105d)
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To reach this result we set

v =
Dx

Dt
, (40.106)

for the velocity of a fluid particle on the circuit. We also used the identity

‰
∂S(v)

v · dv =
1

2

‰
∂S(v)

d(v · v) = 0 (40.107)

as well as‰
∂S(v)

(Ω× x) · dv =

‰
∂S(v)

d [(Ω× x) · v]−
‰
∂S(v)

(Ω× dx) · v =

‰
∂S(v)

(Ω× v) · dx, (40.108)

where we set ‰
∂S(v)

d [(Ω× x) · v] = 0 (40.109)

since, as for equation (40.107), the closed loop integral of an exact spatial differential vanishes.
We also noted that Ω is a constant vector so that dΩ = 0. Now insert the momentum equation
(40.31) into equation (40.105d) to yield

dCa

dt
=

‰
∂S(v)

[
Dv

Dt
+ 2Ω× v

]
· dx. (40.110a)

=

‰
∂S(v)

[
−1

ρ
∇p−∇Φ+ F

]
· dx. (40.110b)

=

‰
∂S(v)

[
−dp

ρ
+ F · dx

]
. (40.110c)

Making use of Stokes’ theorem leads to the evolution of absolute circulation around a material
loop

dCa

dt
=

‰
∂S(v)

[
−dp

ρ
+ F · dx

]
=

ˆ
S(v)

(B +∇× F ) · n̂dS, (40.111)

where B = ρ−2∇ρ×∇p is the baroclinicity vector from equation (40.62).

The circulation theorem (40.111) is the same as obtained for Kelvin’s circulation theorem in
a non-rotating reference frame as discussed in Section 40.2 (see equation (40.5e)). As such, we
find that time changes to the absolute circulation are affected by the work applied by pressure
and friction when integrated around the material circuit. Evidently, the formalism confirms that
absolute circulation is a frame invariant property of the fluid, in which its evolution is unchanged
when moving to a non-inertial rotating frame.

40.6.2 The beta effect
As given by equation (40.99), the absolute circulation around an arbitrary circuit equals to the
circulation of fluid measured in the rotating frame (relative circulation) plus circulation of the
rotating frame itself (planetary circulation)

Ca = C + Cplanet = C + 2

ˆ
S

Ω · n̂dS ⇐⇒ dCa

dt
=

dC

dt
+

dCplanet

dt
. (40.112)

We can determine the processes that affect the absolute circulation around a material loop by
using the circulation theorem (40.111)

dC

dt
= −dCplanet

dt
+

dCa

dt
(40.113a)
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= −2 d

dt

[ˆ
S(v)

Ω · n̂dS

]
+

ˆ
S(v)

(B +∇× F ) · n̂dS. (40.113b)

We generally assume that the planetary rotation is a constant in time and points through the
north pole of the sphere10 Ω = Ω Ẑ, so that

ˆ
S(v)

Ω · n̂dS = Ω

ˆ
S(v)

Ẑ · n̂dS = ΩA⊥. (40.114)

The area, A⊥, is the projection of the spherical area enclosed by the circuit onto the horizontal
equatorial plane, with Figure 40.8 illustrating the geometry. This result has profound impact on
large scale geophysical fluid motion, whereby relative circulation around a material circuit in the
rotating frame changes according to

dC

dt
= −2Ω dA⊥

dt︸ ︷︷ ︸
beta effect

+

ˆ
S

(B +∇× F ) · n̂dS(v)︸ ︷︷ ︸
baroclinicity plus friction curl

. (40.115)

Equation (40.115) is sometimes referred to as the Bjerknes circulation theorem (see Holton and
Hakim (2013) equation (4.5)). The second term, comprised of baroclinicity and friction, also
appears in case of a non-rotating reference frame that we studied in Sections 40.2 and 40.4.

A
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equatorial plane

Figure 40.8: Geometry of the beta effect on a rotating sphere. According to the Bjerknes circulation theorem
(40.115), the circulation for a material loop on the surface of a rotating sphere is affected by baroclinicity and
friction, as for a non-rotating sphere, as well as latitudinal motion of the loop. The latitudinal motion alters the
area of the loop as projected onto the equatorial plane, with the projected area increasing as the loop moves
poleward. When multiplied by the magnitude of the planetary vorticity, 2Ω, the area contribution is termed
planetary induction (i.e., relative circulation is induced by latitudinal motion), or more commonly it is called the
beta effect. The beta effect requires both rotation (2Ω) and curvature of the sphere (∂yf = β); it is therefore
absent on the f -plane.

The first term in the circulation theorem (40.115) is fundamentally new. It is nonzero in the
presence of both rotation and curvature of the sphere. The spherical effect arises from latitudinal
movement of a material circuit, with the area, A⊥, changing under such motion. When the
circuit moves poleward, the projected area, A⊥, increases whereas it decreases to zero as it
moves equatorward. The material change in A⊥, when multiplied by the planetary vorticity,
modifies the relative circulation around the material circuit. We refer to planetary induction as

10We follow the notational conventions of Figure 4.3 with one exception. Here, the vertical Cartesian direction
through the north pole is written Ẑ to avoid confusion with the local vertical direction ẑ determined by the
geopotential.
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the process whereby relative circulation is modified by latitudinal motion of a material circuit
on a rotating sphere. Or more commonly, planetary induction is referred to as the beta effect,
given its connection to the latitudinal gradient of the Coriolis parameter, β = ∂yf . Notably,
longitudinal motion of the circuit has no impact on A⊥, so that longitudinal motion imparts no
planetary induction of relative circulation.

In theories of large-scale laminar planetary flows, the baroclinicity and friction terms are
typically sub-dominant. For these flows, the material evolution of relative circulation is dominated
by the beta effect. Planetary geostrophic flow is the canonical example of such flow, as studied
in Section 31.5 as well as Chapters 43 and 44. In such flows, forces that lead to meridional
motion also give rise to changes in the relative circulation. Conversely, forces that change the
circulation around a material loop affect meridional motion of the loop.

40.6.3 The case of two-dimensional non-divergent flow
To garner further insight into the nature of the beta effect, consider a perfect (i.e., inviscid)
two-dimensional and non-divergent flow (zero vertical velocity) on a rotating sphere. In this
case there is only a vertical component to vorticity and baroclinicity vanishes. Hence, relative
vorticity is affected only via the beta effect. In addition, the fluid flow materially preserves the
area of any material region. This two-dimensional non-divergent barotropic flow is discussed in
more detail in Chapter 38. We here use it as an example to expose essential features of the beta
effect (see also Section 38.2.2).

In the rotating frame, circulation around an infinitesimal closed material loop is

C = Aζ, (40.116)

where ζ is the relative vorticity and A is the area enclosed by the loop. Because the fluid flow is
non-divergent, the loop area A remains constant even as the loop becomes contorted (see Section
21.6). This area preservation property simplifies the evolution equation for the circulation, which
is given by

DC

Dt
=

D(Aζ)

Dt
= A

Dζ

Dt
. (40.117)

Equating this result to the circulation change implied by Bjerknes’ circulation theorem (40.115)
renders

DC

Dt
= A

Dζ

Dt
= −2Ω DA⊥

Dt
. (40.118)

Let the material circuit be at a latitude, ϕ, so that the projection of the loop area onto the
equatorial plane is (see Figure 40.8)

A⊥ = A sinϕ. (40.119)

Hence, material evolution of the circulation is

DC

Dt
= A

Dζ

Dt
(40.120a)

= −2Ω DA⊥
Dt

(40.120b)

= −2AΩ
Dsinϕ

Dt
(40.120c)

= −2AΩ cosϕ
Dϕ

Dt
(40.120d)

= −A
[
2Ω cosϕ

R

] [
R
Dϕ

Dt

]
(40.120e)

= −Aβ v, (40.120f)
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where we introduced the meridional velocity component

v = R
Dϕ

Dt
(40.121)

and the meridional derivative of the planetary vorticity

β =
df

dy
=

1

R

d

dϕ
(2Ω sinϕ) =

2Ω cosϕ

R
. (40.122)

The result (40.120f)
1

A

DC

Dt
=

Dζ

Dt
= −β v, (40.123)

shows how meridional motion on a rotating sphere induces relative circulation, and thus relative
vorticity. It furthermore motivates the name beta effect for the planetary induction.

40.6.4 Planetary circulation, planetary vorticity, and the Coriolis acceleration

From equation (40.103b) we know that the planetary vorticity is given by the constant vector

ωplanet = ∇× (Ω× x) = 2Ω. (40.124)

As a constant vector, it is the same everywhere in space. However, its impact on the fluid
circulation and vorticity depends on what latitude the rotation vector is sampled. We here focus
on the radial component of the planetary vorticity by measuring the circulation per area for
fixed radius circuits, with reference to Figure 40.9.

Planetary circulation centered on the pole and on the equator

Equation (40.114) leads to the planetary circulation

Cplanet = 2ΩA⊥, (40.125)

for an arbitrary constant radius circuit. Stokes’ theorem then says that the planetary vorticity,
as projected onto the local radial direction (outward normal to the surface), has value

ωplanet · n̂ ≈ Cplanet/S = 2ΩA⊥/S, (40.126)

where S =
´
S
dS is the area enclosed by the circuit. In the limit that the circuit becomes

infinitesimal, then A⊥ → S when the circuit is centered on the north pole, whereas A⊥ → 0 for
an equatorially centered circuit. Correspondingly, the planetary vorticity, when projected into
the radial direction, is 2Ω at the north pole (and −2Ω at the south pole), whereas it vanishes
at the equator. We emphasize that it is not the planetary vorticity that vanishes at the equator,
which is obvious since ωplanet = 2Ω is a constant vector. Rather, it is the radial projection,
ωplanet · r̂, that vanishes at the equator.

Comments on the Coriolis acceleration

Although ωplanet · r̂ = 0 at the equator, the Coriolis acceleration does not generally vanish
there. That is, recall the discussion in Section 13.9.8 where the Coriolis acceleration in spherical
coordinates is written

ACoriolis = −2Ω
[
λ̂ (w cosϕ− v sinϕ) + ϕ̂u sinϕ− r̂ u cosϕ

]
, (40.127)
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equatorial plane

polar circuit

equatorial circuit
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Cplanet/S ⇡ 0
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Cplanet/S ⇡ 2⌦

Figure 40.9: Area mean of the planetary vorticity as computed around two closed circular loops with area S.
One circuit is centered on the north pole, in which case the area mean planetary circulation, Cplanet/S ≈ 2Ω. The
other circuit is centered on the equator so that Cplanet/S ≈ 0. Stokes’ theorem says that the planetary vorticity, as
projected onto the local radial direction (outward normal), has value ωplanet · r̂ ≈ Cplanet/S. Hence, the planetary
vorticity equals 2Ω at the north pole (and −2Ω at the south pole), whereas it vanishes at the equator.

which, at ϕ = 0, is
ACoriolis(ϕ = 0) = −2Ω (w λ̂− u r̂). (40.128)

Evidently, a nonzero Coriolis acceleration at the equator arises since it depends on Ω = ωplanet/2
rather than just its radial projection, ωplanet · r̂. For large-scale flows, we commonly ignore
ACoriolis(ϕ = 0) since its radial term is tiny relative to the gravitational acceleration, and the
longitudinal term is small for large-scale flows where the vertical velocity is typically small.11

Indeed, these points were made in Section 13.9.8, whereby the Coriolis acceleration for large-scale
planetary flows is approximated by equation (13.99)

Alarge-scale
Coriolis ≡ −2Ω sinϕ (−λ̂ v + ϕ̂u) ≡ −f r̂ × v. (40.129)

This approximate Coriolis acceleration does vanish at the equator, and it is the form resulting
from the Traditional Approximation used for the hydrostatic primitive equations in Section
27.1.3.

40.6.5 Further study

The beta effect and its role in vorticity is nicely summarized in this video from Science Primer
in the context of Rossby waves.

40.7 Vorticity budget for a primitive equation Boussinesq ocean

In this section we develop the vorticity budget for a hydrostatic primitive equation Boussinesq
ocean in the presence of diabatic sources and frictional forcing. This system is of particular
importance for ocean circulation models. The governing primitive equations, as derived in

11Stewart and Dellar (2011) argue for the importance of the full expression of the Coriolis acceleration (40.127)
for the dynamics of cross-equatorial abyssal ocean flows.
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Section 29.1.6, are given by

Du

Dt
+ f ẑ × v = −∇hφ+ F (40.130a)

∂zφ = b (40.130b)

∇ · v = 0 (40.130c)

Db

Dt
= ḃ, (40.130d)

with the non-divergent velocity field written

v = (u, w) = u+ w ẑ. (40.131)

The perturbation pressure is given by

ρo φ = δp = p− p0, (40.132)

with the reference pressure, p0 = p0(z), in hydrostatic balance with the constant reference
density

dp0
dz

= −g ρo, (40.133)

and p the hydrostatic pressure satisfying the local hydrostatic balance

∂zp = −g ρ. (40.134)

The globally referenced Archimedean buoyancy is given by

b = −g (ρ− ρo)/ρo, (40.135)

with this field discussed in Section 30.4.2. As mentioned at the end of Section 40.6.4, we here
assume the Coriolis acceleration of the form relevant to the Traditional approximation (Section
27.1.3), in which we are only concerned with the local vertical component of planetary rotation
so that

f ẑ × v = f ẑ × u. (40.136)

Finally, the friction acceleration vector is horizontal

F = (F x, F y, 0) (40.137)

and the gradient operator is decomposed into its horizontal plus vertical contribution.

∇ = ∇h + ẑ ∂z. (40.138)

40.7.1 Deriving the vorticity equation

Vector invariant velocity equation

To derive the vorticity equation, it is useful to combine the horizontal momentum equation with
the hydrostatic balance, in which case

Du

Dt
+ f ẑ × v = −∇φ+ b ẑ + F . (40.139)

As for the non-hydrostatic case (Section 40.3.1), we rewrite the self-advection operator, (v ·∇)u,
before taking the curl. In turn, we introduce the hydrostatic relative vorticity given by the curl
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of the horizontal velocity

ωhy = ∇× u = ẑ × ∂zu+ ẑ ζ = −x̂ ∂zv + ŷ ∂zu+ ẑ ζ, (40.140)

where
ζ = ∂xv − ∂yu (40.141)

is the vertical component to the relative vorticity, and the hydrostatic vorticity is non-divergent

∇ · ωhy = 0. (40.142)

It is then straightforward to show that

ωhy × v = x̂ (w ∂zu− v ∂xv + v ∂yu) + ŷ (w ∂zv − u ∂yu+ u ∂xv)− ẑ ∂z(u2 + v2)/2 (40.143a)

= w ∂zu+ ζ (−v x̂+ u ŷ)− ẑ ∂z(u2 + v2)/2, (40.143b)

in which case

∇(u2/2) + ωhy × v = ∇ (u2 + v2)/2− ẑ ∂z (u2 + v2)/2 + w ∂zu+ ζ (−v x̂+ u ŷ) (40.144a)

= (u ∂x + v ∂y + w ∂z)u (40.144b)

= (v · ∇)u. (40.144c)

The material time derivative of the horizontal velocity can thus be written

Du

Dt
= ∂tu+ (v · ∇)u = ∂tu+ ωhy × v +∇(u2/2), (40.145)

which then leads to the vector invariant horizontal velocity equation

∂tu+ (f ẑ + ωhy)× v = −∇(φ+ u2/2) + b ẑ + F , (40.146)

which can be written in the equivalent form12

(∂t + w ∂z)u+ (f + ζ) ẑ × u = −∇h (φ+ u2/2)− (∂zφ− b) ẑ + F . (40.147)

Curl of the velocity equation to render the vorticity equation

Now take the curl of the vector invariant velocity equation (40.146), and make use of the identity

∇× (ωhy
a × v) = (v · ∇)ωhy

a − (ωhy
a · ∇)v, (40.148)

where we introduced the absolute vorticity for a hydrostatic fluid

ωhy
a = f ẑ + ωhy. (40.149)

The result is the vorticity equation

∂tω
hy + (v · ∇)ωhy

a = (ωhy
a · ∇)v +∇× ẑ b+∇× F . (40.150)

12As discussed in Griffies et al. (2020), the form (40.147) is commonly used for Boussinesq and hydrostatic
ocean models.
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Since the Coriolis parameter is time independent, we can add it to the time derivative to yield
and equation for absolute vorticity

Dωhy
a

Dt
= (ωhy

a · ∇)v︸ ︷︷ ︸
stretching + tilting

+ ∇× ẑ b︸ ︷︷ ︸
baroclinicity

+ ∇× F .︸ ︷︷ ︸
friction curl

(40.151)

It is notable that the pressure gradient is eliminated from the Boussinesq vorticity equation.
Even so, the vorticity is affected by baroclinicity as manifested through horizontal gradients in
the buoyancy field, which we discuss next.

40.7.2 Boussinesq baroclinicity

Let us compare the Boussinesq vorticity equation (40.151) to the vorticity equation (40.42) for
a non-hydrostatic and non-Boussinesq fluid. One difference concerns the form of the vorticity,
which differs due to the use of only the horizontal velocity, ωhy = ∇×u, for the hydrostatic fluid
whereas the full velocity is used for the non-hydrostatic case, ω = ∇×v. Even so, both vorticity
equations have a vorticity source due to stretching and tilting, and both have a source due to
the curl of friction. The key difference arises in the form of the baroclinicity vector. Namely, the
Boussinesq baroclinicity does not involve the Boussinesq pressure gradient acceleration since it
has zero curl. Instead, Boussinesq baroclinicity is given by13

Bbouss = ∇× ẑ b = ∇b× ẑ. (40.152)

Boussinesq baroclinicity has a somewhat simpler form than baroclinicity in a compressible fluid,
as given by equation (40.62)

B = (∇ρ×∇p)/ρ2 = −∇× (ρ−1∇p). (40.153)

Again, the fundamental difference arises since the Boussinesq pressure gradient acceleration is
annihilated when taking the curl of the velocity equation to produce the Boussinesq vorticity
equation. So rather than arise from the misalignment of pressure and density isolines, Boussinesq
baroclinicity arises from the misalignment of the gravity field and density gradients.

One practical feature of the Boussinesq baroclinicity (40.152) is that we can readily deduce
the presence of baroclinicity (either for the non-hydrostatic or hydrostatic Boussinesq ocean)
merely by noting whether there is a slope to the buoyancy surfaces relative to the horizontal
(e.g., Figure 40.10). That is, a sloping buoyancy surface provides a vorticity source for the
Boussinesq ocean.

Boussinesq baroclinicity only affects a horizontal vorticity tendency

Given that the Boussinesq baroclinicity (40.152) does not involve the pressure gradient accel-
eration, we must modify the physical interpretation offered in Section 40.4. In particular, the
curl of the non-Boussinesq pressure acceleration has components in all three directions so that
the non-Boussinesq baroclinicity affects a source for each of the three vorticity components. In
contrast, the Boussinesq baroclinicity is the curl of the Archimedean buoyant acceleration and
this acceleration acts only in the vertical. Consequently, the Boussinesq baroclinicity has no
direct affect on the vertical component to absolute vorticity

ẑ ·Bbouss = ẑ · (∇× ẑ b) = 0. (40.154)

13We see in Exercise 41.2 that the baroclinicity vector (40.152) also applies for the non-hydrostatic Boussinesq
ocean.
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Rather, Boussinesq baroclinicity only acts directly as a source for horizontal vorticity. Thus,
Boussinesq baroclinicity can only indirectly affect vertical vorticity through the effects of
baroclinicity on vertical velocity and the corresponding vertical stretching.

b
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b′ > 0 b′ > 0b′ < 0

Figure 40.10: Baroclinicity in a Boussinesq ocean is manifest by nonzero horizontal gradients in the buoyancy
field. Here we depict a region of relatively strong baroclinicity above a region of weaker baroclinicity. A sloping
buoyancy surface is therefore synonymous with a nontrivial baroclinic structure. We label anomalously positive
(b′ > 0) and negative buoyancy (b′ < 0), where the prime denotes anomalies relative to a horizontal average.
Furthermore, as per equation (40.154), baroclinicity in a Boussinesq ocean only acts as a source for horizontal
vorticity.

Comments on shallow water vorticity

In Chapter 39, we studied vorticity in the shallow water fluid. As noted in Section 39.3.3, we
are only concerned with the vertical component to vorticity in the shallow water fluid, since
the horizontal components are tiny by comparison. Furthermore, equation (39.28) says that
the vertical component to shallow water absolute vorticity is materially altered only through
material changes to the layer thickness. There is no impact from baroclinicity on the shallow
water vorticity. The absence of baroclinicity follows trivially from the absence of any horizontal
buoyancy gradients within the shallow water layer. In this manner, the shallow water layer is
barotropic.

40.7.3 Vertical vorticity equation

Following the discussion in Section 40.3.4 for the unapproximated vorticity, we here examine the
vertical component of the hydrostatic and Boussinesq vorticity equation (40.151)

Dζa
Dt

= (ωhy
a · ∇)w + ẑ · (∇× F ), (40.155)

with the absence of baroclinicity noted above in Section 40.7.2. The stretching, tilting, and
friction curl appearing on the right hand side provide vorticity sources that affect the left hand
side’s material time evolution. We see this evolution more fully by expanding the terms to render

∂tζa + (v · ∇) ζ + β v = ẑ · (∂zu×∇hw) + (ζ + f) ∂zw + ẑ · (∇× F ). (40.156)
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Planetary geostrophic limit

The linearized, inviscid, and steady version of the vorticity equation (40.156) leads to the linear
vorticity balance studied in Section 31.5.4 and Chapter 44

β v = f ∂zw. (40.157)

This relation comprises the inviscid vorticity equation for the planetary geostrophic equations.
It represents a kinematic balance since no forces are exposed here to explicitly cause motion,
though such forces do appear in the momentum equation. Reading the balance from right to
left indicates that any process generating vorticity via vortex stretching must be balanced by
meridional motion. That is, the fluid responds to vortex stretching by moving meridionally
through the planet’s vorticity field. Since the vorticity of a planetary geostrophic fluid is solely
determined by planetary vorticity, meridional movement is the only means for the fluid to balance
vortex sources. Conversely, reading the equality from left to right reveals that any meridional
motion itself must be balanced by vortex stretching.

Vorticity flux vector

We can write the vorticity equation (40.156) in an alternative form by making use of ∇ · v =
∇ · ωhy

a = 0 to yield
∂tζa = −∇ · (v ζa − wωhy

a ) + ẑ · (∇× F ). (40.158)

Furthermore, we can use equation (40.44d) for the friction curl, ẑ · (∇× F ) = −∇ · (ẑ × F ).
Hence, the vertical component of the Boussinesq vorticity evolves according to the convergence
of the vorticity flux

∂tζa = −∇ · Jζa with Jζa = v ζa − wωhy
a + ẑ × F , (40.159)

which can be compared to the vorticity flux (40.45) for the compressible nonhydrostatic fluid.
Again, the main difference arises from the absence of a baroclinicity contribution for the
hydrostatic Boussinesq ocean.

The identity ωhy
a = ẑ × ∂zu+ ẑ ζa allows us to write

v ζa − wωhy
a = u ζa − w ẑ × ∂zu, (40.160)

which is a horizontal vector. Furthermore, note that ẑ × F is a horizontal vector, which then
means that there is no vertical contribution to the vorticity flux vector, Jζa · ẑ = 0. We
previously encountered this property in Section 40.3.4 when discussing the vorticity flux for the
non-Boussinesq fluid, with Figure 40.1 providing a schematic.

40.8 Evolution of depth integrated vertical vorticity
In this section we study the depth integral of the vertical vorticity equation (40.45)

∂tζa = −∇ · Jζa with Jζa = v ζa − ωaw − ẑ × ρ−1∇p+ ẑ × F . (40.161)

We perform the depth integral over the full depth of the ocean from its bottom at z = ηb(x, y)
to the ocean surface at z = η(x, y, t) (see Figure 35.1). Studies of the depth integrated
vorticity equation allow us to focus on the two dimensional budgets with particular attention
to how boundary torques alter the budget. This section anticipates analysis of the depth
integrated planetary geostrophic vorticity equation in Section 44.3, with that analysis of use
for understanding the role of topography in forcing the large-scale ocean circulation. We also
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consider the vorticity of the depth integrated flow in Section 40.9, which is commonly considered
in numerical applications. Notably, the discussion in the present section does not assume pressure
is approximatly hydrostatic, so that all results hold for the general case of a non-hydrostatic
flow.

40.8.1 Comments on the role of baroclinicity

Results of the analysis in this section can be readily specialized to the Boussinesq and hydrostatic
case given by equation (40.159). The key distinction, as noted in Section 40.7.2, is that Boussinesq
baroclinicity does not directly affect changes to the vertical component of the Boussinesq vorticity
(whether hydrostatic or non-hydrostatic; see Exercise 41.2). This property of the Boussinesq
baroclinicity means that the boundary pressure torques discussed in Sections 40.8.3 and 40.8.4
play no direct role in the Boussinesq vorticity equation. However, these boundary pressure
torques play a direct role in vertical motion next to the boundaries, especially next to the bottom,
with such motion affecting a source to vorticity through stretching. We have much to say in
Section 44.3 concerning how boundary pressure torques affect vertical motion for vorticity for
the planetary geostrophic fluid. Additionally, as seen in Section 40.9, boundary pressure torques
do play a direct role in affecting vorticity of the depth integrated flow in both the Boussinesq
and non-Boussinesq fluids.

This discussion exemplifies the sometimes subtle differences between vorticity sources de-
pending on the precise nature of the vorticity, whether it be vorticity for a fluid element as
discussed in this section, vorticity of the depth integrated flow in Section 40.9, or vorticity of the
depth averaged flow in Section 40.9.7. When studying flavors of vorticity, it is important to be
clear on details of their evolution equations since the details color the physical interpretations.

40.8.2 Leibniz rule expressions

The necessary manipulations are typical for the analysis of depth integrated budgets, such as
considered for the depth integrated momentum in Section 28.4 and depth integrated angular
momentum in Section 28.5. For vorticity we are interested in manipulating following equation

ˆ η

ηb

∂ζa
∂t

dz = −
ˆ η

ηb

∇ · Jζa dz, (40.162)

where Jζa is the vorticity flux given by equation (40.161). We make use of Leibniz’s rule (Section
20.2.4) to move the time and space derivatives from inside the integrals to outside14

ˆ η

ηb

∂ζa
∂t

dz = −[ζa ∂tη]z=η +
∂

∂t

ˆ η

ηb

ζa dz (40.163)

−
ˆ η

ηb

∇h · Jζa dz = [∇hη · Jζa ]z=η − [∇hηb · Jζa ]z=ηb −∇h ·
ˆ η

ηb

Jζa dz (40.164)

−
ˆ η

ηb

∂(ẑ · Jζa)
∂z

dz = −[ẑ · Jζa ]z=η + [ẑ · Jζa ]z=ηb . (40.165)

These results then lead to

∂

∂t

ˆ η

ηb

ζa dz =
[
ζa ∂tη −∇(z − η) · Jζa

]
z=η

+
[
∇(z − ηb) · Jζa

]
z=ηb
−∇h ·

ˆ η

ηb

Jζa dz. (40.166)

14 Recall that since η(x, y, t) is a spatial function just of the horizontal position, there is no difference between
∇η and ∇hη. The same point holds for ηb(x, y) as well.
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The time tendency for the depth integral of the vertical component of absolute vorticity, for a
fluid column at a fixed horizontal position (left hand side) is determined by a suite of boundary
contributions due to baroclinicity, vortex stretching and friction, plus the convergence of the
depth integrated vorticity flux (final term on right hand side). We next massage the boundary
contributions to expose their associated physical processes.

40.8.3 Bottom boundary contribution
The bottom boundary contribution to the vorticity equation (40.166) takes on the form

∇(z − ηb) · Jζa = ∇(z − ηb) ·
[
v ζa − ωaw − ẑ × ρ−1∇p+ ẑ × F

]
z=ηb

(40.167a)

= −|∇(z − ηb)| n̂ ·
[
−ωaw − ẑ × ρ−1∇p+ ẑ × F

]
z=ηb

, (40.167b)

where we made use of the no-normal flow bottom kinematic boundary condition, n̂ · v = 0
(Section 19.6.1), and where

n̂ = −
[ ∇(z − ηb)
|∇(z − ηb)|

]
= −

[
ẑ −∇hηb√

1 +∇hηb · ∇hηb

]
(40.168)

is the outward unit normal at the bottom.

Vortex stretching by vertical flow along a sloping bottom

The first term in the bottom boundary flux (40.167b) provides an inviscid vertical transport of
the normal component of the absolute vorticity at the boundary. This term contributes through
the action of vertical motion next to a sloping bottom, thus providing a vertical transfer of the
vorticity component that is perpendicular to the bottom. This motion provides a form of vortex
stretching that vanishes for a flat bottom, in which case w(ηb) = 0. It also vanishes for flow that
parallels the bottom, whereby u · ∇ηb = 0 so that w(ηb) = 0 according to the bottom kinematic
boundary condition (19.56).

Bottom pressure torques

The second term in the bottom boundary flux (40.167b) arises from baroclinicity next to the
bottom, in which case we consider the following term

n̂ · [ẑ × (ρ−1∇p)]z=ηb = [ρ−1∇p]z=ηb · (n̂× ẑ) ≡ [ρ−1∇p]z=ηb · t, (40.169)

where we introduced the tangent direction

t = n̂× ẑ =

[ ∇ηb × ẑ
|∇(z − ηb)|

]
. (40.170)

The vector t is horizontal and it points along isolines of constant topography in a direction with
land to the left pointing in the direction of t, as depicted in Figure 40.11. Since ẑ and n̂ are not
orthogonal, t is not normalized so that it is not adorned with a hat.

Let us decompose the pressure gradient at the bottom according to

∇p = n̂ (n̂ · ∇p) + t̂ (t̂ · ∇p) z = ηb, (40.171)

where t̂ = t/|t| is the normalized horizontal tangent vector. Evidently, for the boundary condition
(40.169) we only need the t̂ (t̂ · ∇p) term. But that term is simply the gradient of the bottom
pressure

t̂ (t̂ · ∇p) = ∇pb. (40.172)
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We can provide a bit more thorough derivation of this result by using the methods of generalized
vertical coordinates from Section 63.12, whereby

∇p = (ẑ −∇σz) ∂zp+∇σp, (40.173)

where σ is an arbitrary generalized vertical coordinate. Evaluating the pressure gradient (40.173)
at the ocean bottom (z = ηb), and letting σ align with the bottom, leads to

[∇p]z=ηb = (ẑ −∇ηb) ∂zp+∇pb. (40.174)

As before, we conclude that ∇pb is the horizontal component of [∇p]z=ηb in the direction tangent
to the bottom.

We thus find the contribution from baroclinicity at the ocean bottom takes the form

∇(z−ηb) ·Jbaroclinicity

ζ = ρ−1∇pb · (∇ηb× ẑ) = ρ−1ẑ · [∇pb×∇ηb] = ρ−1ẑ · [∇× (pb∇ηb)]. (40.175)

Evidently, the contribution from baroclinicity next to the bottom arises from the bottom pressure
torque due to bottom pressure isolines that are not parallel to bottom topography isolines. We
have more to say concerning boundary pressure torques in Section 40.9.3 as they also affect
vorticity of the depth integrated flow.
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t = n̂⇥ ẑ

Land

Figure 40.11: Orientation of the unit vectors next to the bottom of the fluid. The vertical unit vector, ẑ,
points vertically upward and the outward unit vector, n̂, points downward into the rock (shaded gray). The
along-topography horizontal vector, t = n̂× ẑ, points along lines of constant topography with land to the left
when facing in the direction of t; in this figure it points out from the page. The vector t is not necessarily a unit
vector since it is not orthogonal to n̂.

Torques from bottom friction

The third term in the boundary flux (40.167b) is the contribution from friction along the bottom

−n̂ · (ẑ × F ) = −F · (n̂× ẑ) ≡ −F · t. (40.176)

Hence, contributions to the vertical vorticity evolution arise from the component of friction that
projects onto the direction that parallels isobaths. To further our understanding of this result,
consider a bottom friction written as a Rayleigh drag (e.g., Section 33.2.3) so that F = −γ u
and

−F · t = γ u · t, (40.177)

with γ an inverse time scale. If the flow is oriented with shallow water to the right; e.g., into
the page in Figure 40.11, then −F · t < 0, thus contributing a negative vorticity tendency. In
general, the bottom friction acts to damp the depth integrated vorticity, which is expected since
bottom friction does not spontaneously spin-up the flow.
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40.8.4 Surface boundary contribution
The surface boundary contribution to the vorticity equation (40.166) takes on a similar form to
the bottom, with the new feature that the free surface is both moving and permeable (Section
19.6.3). This boundary term is given by

ζa ∂tη −∇(z − η) · Jζa = ζa ∂tη −∇(z − η) ·
[
v ζa − wωa − ẑ × ρ−1∇p+ ẑ × F

]
z=η

(40.178a)

= ζa [∂tη + u · ∇hη − w]z=η +∇(z − η) ·
[
wωa + ẑ × ρ−1∇p− ẑ × F

]
z=η

(40.178b)

= ζaQm/ρ+ |∇(z − η)| n̂ ·
[
wωa + ẑ × ρ−1∇p− ẑ × F

]
z=η

, (40.178c)

where we made use of the surface kinematic boundary condition (19.94) to introduce the surface
mass flux Qm, and where

n̂ =
∇(z − η)
|∇(z − η)| =

∇hη + ẑ√
1 +∇hη · ∇hη

(40.179)

is the outward unit normal at the surface. The first term in the surface boundary flux (40.178c)
provides transport of boundary vorticity due to the transfer of mass across the boundary. The
second term provides an inviscid vertical transport of absolute vorticity at the surface boundary,
thus acting as a vortex stretching contribution. The third term provides a torque due to
misalignments between the applied pressure isobars and the free surface isolines

|∇(z − η)| n̂ · (ẑ × ρ−1∇pa) = ρ−1∇pa · (∇η × ẑ) = ρ−1 ẑ · (∇pa ×∇η) = ρ−1 ẑ · [∇× (pa∇η)],
(40.180)

where the density, ρ, is evaluated at the ocean surface. Note that we made use of the same
kinematics as for the bottom, thus allowing us to write

n̂ · [ẑ × ρ−1∇p]z=η = n̂ · (ẑ × ρ−1∇pa), (40.181)

which is directly analogous to the bottom pressure equation (40.173). The fourth term in
equation (40.178c) provides the corresponding contribution from the friction along the upper
surface, with friction acting to reduce the magnitude of the surface boundary vorticity. For a
rigid lid surface, w(0) = 0, η = 0, and Qm = 0 so that the only surface boundary contribution
arises from friction.

40.8.5 Comments
The depth integrated vorticity budget as derived in this section is perhaps the most physically
straightforward of the suite of depth integrated vorticity budgets. However, in the practice
of ocean modeling, this budget is generally not used since it requires an online coding of the
vorticity equation and then its depth integral. As ocean models generally time step the velocity
rather than the vorticity, it is common to form a vorticity budget based on the depth integrated
flow or the depth averaged flow. We develop these budgets in the following section.

40.9 Vorticity for depth integrated hydrostatic flow
In this section we develop dynamical equations for vorticity of the depth integrated flow in a
hydrostatic primitive equation fluid. A compelling application of these ideas comes from the
study of large-scale ocean circulation. The leading order impacts from bottom pressure torques
has emerged from research during recent decades, thus pointing to the fundamental role of
bottom topography and flows next to sloping bottom (rather than vertical sidewalls) in affecting
the ocean circulation. This recognition contrasts to traditional theories whereby the wind stress
curl balances meridional motion through the beta effect. In particular, numerical model studies
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reveal that wind stress curl is sub-dominant in any region with nontrivial bottom velocities.15

In this section we introduce the basics and provide more discussion in Sections 44.5 and 44.6
when studying vorticity dynamics for the planetary geostrophic system.

40.9.1 Comparing the two vorticities

In Section 40.8 we derived the evolution equation for the depth integral of the vertical component
to the absolute vorticity, ˆ η

ηb

ζa dz =

ˆ η

ηb

(f + ẑ · ∇ × u) dz. (40.182)

In this section we study the evolution equation for the relative vorticity in the depth integrated
horizontal flow

ẑ · ∇ ×Uρ = ẑ · ∇ ×
ˆ η

ηb

u ρdz, (40.183)

where we introduced the depth integrated horizontal mass flux

Uρ =

ˆ η

ηb

ρudz. (40.184)

For a Boussinesq ocean we set the density to a constant, in which case the difference between
the two relative vorticities is16

ẑ · ∇ ×
[ˆ η

ηb

udz

]
−
ˆ η

ηb

ẑ · ∇ × udz = ẑ · [∇η × u(η)−∇ηb × u(ηb)] . (40.185)

Flows along boundaries generally have a nontrivial projection in the direction parallel to boundary
isosurfaces, in which case the cross products are nonzero thus leading to differences in the two
relative vorticities.

40.9.2 Evolution of vorticity for the depth integrated horizontal flow

In Section 28.4 we developed the depth integrated horizontal momentum equation for a hydrostatic
fluid, as given by equation (28.50)

(∂t + f ẑ×)Uρ = u(η)Qm − η∇hpa + ηb∇hpb −∇hP+D +∇h ·
[ˆ η

ηb

Tkinetic
hor dz

]
. (40.186)

We here introduced the potential energy per horizontal area of the fluid column (equation
(28.40)), the depth integrated horizontal friction (equation (28.51)), and the divergence of the
horizontal kinetic stress tensor (equation (28.33))

P =

ˆ η

ηb

g ρ z dz and D =

ˆ η

ηb

ρFhorz dz and Tkinetic
hor = −ρu⊗ u. (40.187)

15The natural ocean has no distinction between side and bottom. Rather, as discussed in Figure 28.6, the
ocean has a sloping bottom that reaches to the surface along its boundary at the “beach.” Hallberg and Rhines
(1996), Hughes and de Cueves (2001), and many subsequent studies emphasize that theoretical and numerical
models using vertical sides and a flat bottom exhibit somewhat unnatural dynamical balances, whereas models
with sloping bottoms better capture effects from topography consistent with the theory presented in this chapter.

16As noted in footnote 14, we can reduce notational clutter by writing ∇ rather than ∇h when operating
on functions that are independent of z, such as η, pa, ηb and pb. Since these fields are independent of z, then
∇hη = ∇η, and likewise for pa, ηb and pb. We sometimes make use of this notation, though write ∇h where it can
help to reduce ambiguity.
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All terms on the right hand side of equation (40.186) provide a stress that drives changes in Uρ.
Hence, the curl of these terms provides a torque, in which case we have

ẑ · ∂t(∇×Uρ) = −∇ · (f Uρ)

+ ẑ · ∇ ×
[
u(η)Qm − η∇hpa + ηb∇hpb +∆τ +D +∇h ·

(ˆ η

ηb

Tkinetic
hor dz

)]
, (40.188)

where we used the vector identity

ẑ · ∇ × (f ẑ ×Uρ) = ∇ · (f Uρ), (40.189)

as well as ∇×∇hP = 0. We now discuss the various physical processes appearing in the vorticity
equation (40.188).

Beta effect

The first term on the right hand side of the vorticity equation (40.188) arises from the convergence
of mass within a fluid column due to depth integrated horizontal flow. We can further decompose
the effects from this term by performing the product rule

−∇ · (f Uρ) = −f ∇ ·Uρ − β V ρ. (40.190)

The contribution from β V ρ arises from the beta effect as discussed in Section 40.6.2. For the
first term, the weighting by the Coriolis parameter means that mass convergence at higher
latitudes has more impact on vorticity changes than at lower latitudes. We can understand this
weighting by noting that vertical fluid columns are more aligned with the planetary rotation at
the high latitudes. Hence, when the mass of vertical columns converges at the higher latitudes,
there is more impact on changes to the vorticity of the depth integrated flow.

Mass transfer, turbulent momentum transfer, and nonlinear effects

The term ∇× [u(η)Qm] appearing in in equation (40.191) accounts for vorticity crossing the
ocean surface as affected by the mass flux. The term ∇ × ∆τ is the torque from turbulent
stresses at the ocean surface and bottom, and ẑ · ∇ ×D is the torque from horizontal frictional
stresses in the fluid interior. The final term arises from the nonlinear kinetic stresses, Tkinetic

hor ,
that account for curls in the self-advection operator.

40.9.3 Boundary pressure torques
The pressure terms in equation (40.188)

ẑ · ∇ × (−η∇pa + ηb∇pb) = ẑ · ∇ × (pa∇η − pb∇ηb) (40.191)

arise from curls of the pressure form stresses (see Chapter 28) at the ocean surface and bottom,
and these contributions are referred to as pressure torques. When the fluid is a column of ocean
water, then the surface pressure contribution is the atmospheric pressure torque and the bottom
pressure term is the bottom pressure torque.

Geometry of boundary pressure torques

Geometrically, there is a nonzero atmospheric pressure torque when the applied pressure, pa, has
a gradient when moving along contours of constant free surface. Likewise, there is a nonzero
bottom pressure torque when bottom pressure, pb, changes along contours of constant bottom
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topography. Mathematically, we reveal these properties through use of either Exercise 5.1 or
40.14. For example, the bottom pressure torque along an isobath (contour of constant ηb) can
be written

ẑ · ∇ηb ×∇pb = −(n̂ · ∇ηb) (t̂ · ∇pb), (40.192)

where t̂ is a unit tangent vector directed along the isobath, and n̂ is a unit vector that points to
the left of t̂ (see Figure 40.12). Both t̂ and n̂ are horizontal vectors.17 Hence, n̂ · ∇ηb measures
the slope of the bottom topography in the direction normal to an isobath, and t̂ · ∇pb measures
the change of the bottom pressure along the isobath. There is a nonzero bottom pressure torque
along an isobath so long as there is a slope to the bottom pressure along the isobath, and there
is a change in bottom pressure moving along the isobath.
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t̂

Figure 40.12: Geometry depicting a contour along a particular line of constant topography (i.e., an isobath),
ηb(x, y). The along-contour direction is t̂ = dx/ds, with s the arc length along the contour. The unit direction
pointing to the left of t̂ is written n̂, with n̂ · t̂ = 0 and t̂ × n̂ = ẑ. Both n̂ and t̂ are horizontal unit vectors.
There is a nonzero bottom pressure torque if bottom pressure changes when following an isobath.

Geostrophic velocity associated with the bottom pressure torque

To further our understanding of the pressure torques in equation (40.191), focus on the bottom
pressure and introduce a geostrophic velocity18

ρo f ug = ẑ × (∇hp)z=ηb = ẑ × [∇pb + g ρ(ηb)∇ηb], (40.193)

where the second equality made use of equation (27.60b) to express the horizontal pressure
gradient at the bottom, (∇hp)z=ηb , in terms of the gradient of bottom pressure and gradient of
bottom topography. Hence,

∇pb = −ρo f ẑ × ug − g ρ(ηb)∇ηb, (40.194)

so that the bottom pressure torque takes the form

ẑ · ∇ × (ηb∇pb) = ẑ · (∇ηb ×∇pb) = −ρo f ug · ∇ηb. (40.195)

17It is important to note that n̂ is not the outward normal direction to the bottom, contrary to its usage
in Section 40.8. Here, n̂ it is the horizontal direction within the bottom surface that is normal to contours of
constant topography.

18The geostrophic velocity is a balance between the Coriolis acceleration and the horizontal pressure gradient.
We thus need to decompose the horizontal pressure gradient into the bottom pressure gradient and the gradient
of the botom slope, as per equation (27.60b).
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This equation is merely a replacement of the bottom pressure gradient with a corresponding
geostrophic velocity. However, if this geostrophic velocity is assumed to satisfy the kinematic
boundary condition (19.56), then we reach the equality19

ẑ · ∇ηb ×∇pb = −ρo f wg, (40.196)

which links the bottom pressure torque to vertical vortex stretching by the vertical component
to the geostrophic velocity. Evidently, if the bottom geostrophic velocity is negative (wg < 0),
then that induces vortex stretching and a corresponding positive tendency for vorticity of the
depth integrated flow. The opposite holds with wg > 0, in which vortex squashing induces a
negative tendency for vorticity of the depth integrated flow.

The equality (40.196) is sometimes used to infer the bottom pressure torque by diagnosing the
bottom vertical velocity, w(ηb) (Spence et al., 2012). Although this diagnostic is suitable for some
studies, there are important caveats. Namely, the bottom vertical velocity is generally affected
by bottom frictional effects and thus can have a nontrivial Ekman component.20 Nonlinear
effects can also be important especially when considering motions with sizable Rossby numbers.
Neither the Ekman component nor nonlinear terms are directly related to the bottom pressure
torque. We thus expect ρo f w(ηb) to be distinct from ẑ · ∇ηb ×∇pb in regions of sizable deep
flows where bottom friction and/or nonlinear effects are of leading order importance.21 The
studies from Gula et al. (2015) and LeCorre et al. (2020) illustrate these points from numerical
simulations of the subpolar North Atlantic circulation.

40.9.4 Steady state vorticity budget

The steady state form of the vorticity budget (40.188) leads to the balance

β V ρ = −f ∇ ·Uρ

+ ẑ · ∇ ×
[
u(η)Qm − η∇hpa + ηb∇hpb +∆τ +D +∇h ·

(ˆ η

ηb

Tkinetic
hor dz

)]
. (40.197)

Writing the balance in this manner reveals how the beta affect affords a steady meridional mass
transport as a balance with the variety of terms on the right hand side.

Specializing the budget to expose a variety of balanced flow regimes

Let us further specialize to the case appropriate for many studies of the large-scale circulation,
whereby we make the following assumptions.

• Uniform mass atmosphere so that pa is a constant.

• The frictional stresses from horizontal strains within the fluid interior, D, can be neglected.

• Zero boundary mass transport so that Qm = 0 and, correspondingly, the steady depth
integrated mass budget (19.103) means that ∇ ·Uρ = 0 when Qm = 0.

19The velocity, v, satisfies the kinematic boundary condition (19.56), in which v(ηb) · n̂ = 0. Decomposing the
velocity into its geostrophic and ageostrophic components, v = vg + va, does not generally imply that vg and va

separately satisfy the kinematic boundary condition. Rather, we must make that assumption in order to reach the
equality (40.196).

20Recall our discussion of Ekman boundary layers in Chapter 33.
21In addition to the Ekman and nonlinear effects noted here, diagnosing w(ηb) in a numerical model can be

frought with difficulties related to the discrete grid stencil given that grids can be quite coarse in the deep ocean
with many ocean model configurations.
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These simplifications bring the balance (40.197) to the form

β V ρ = ẑ · ∇ ×
[
ηb∇hpb +∆τ +∇h ·

(ˆ η

ηb

Tkinetic
hor dz

)]
(40.198a)

meridional transport = bottom press torque + boundary stress + nonlinear.
(40.198b)

This steady balance reveals distinct flow regimes depending on which of the terms dominate,
and as such it serves as a useful framework for analysis.

Topographic nonlinear balance

Jackson et al. (2006), Patmore et al. (2019), and LeCorre et al. (2020) emphasize the importance
of the nonlinear term in equation (40.198b) when flows are especially strong. The bottom
pressure torque contribution is particularly strong where flows are strong near the bottom. Such
nonlinear flow regimes generally have variations over length scales much smaller than that of the
wind stress. Hence, if the horizontal friction is small, as it is even for strong flows not directly
adjacent to solid boundaries, and the bottom frictional drag is small, then the vorticity balance
(40.198a) in the nonlinear inviscid regime takes on the form

β V ρ = ẑ · ∇ ×
[
ηb∇hpb +∇h ·

(ˆ η

ηb

Tkinetic
hor dz

)]
topographic nonlinear balance. (40.199)

Observe that the nonlinear term and bottom pressure torque have derivatives wherease there
are none on the β V ρ term. These derivatives make the right hand side terms have variations
at smaller scales than β V ρ. We infer that the smaller scales present in the bottom pressure
torque and the nonlinear term nearly balance, and with any residual leading to the broader
scale meridional transport. Figure 6 in LeCorre et al. (2020) provides a striking example of this
balance in a numerical simulation of the North Atlantic subpolar gyre.

Linear regime of planetary geostrophy

For the linear regime of planetary geostrophic flow (Chapter 44), the nonlinear term from the
kinetic stress is small, so that the balance is between meridional transport, bottom pressure
torque, and curl of turbulent boundary stresses. The Sverdrup balance is one particular example
of a planetary geostrophic balance, with Sverdrup balance ignoring the bottom pressure torque
and bottom turbulent stresses, and thus focuses just on the balance between meridional transport
with the turbulent surface stresses largely arising from winds

β V ρ = ẑ · ∇ × τ η Sverdrup balance. (40.200)

However, as emphasized by Hallberg and Rhines (1996) and Hughes and de Cueves (2001), as
well as more recent studies, contributions from bottom pressure torques are of leading order
importance in the presence of flow next to sloping side boundaries, thus making the traditional
Sverdrup balance mostly relevant in the open ocean away from boundaries. A more general
balance is known as topographic Sverdrup balance

β V ρ = ẑ · ∇ × (ηb∇hpb + τ η) topographic Sverdrup balance. (40.201)

We further study these balances of planetary geostrophy in Sections 44.3, 44.5, and 44.6.
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40.9.5 Integral balances satisfied by steady flows

Reconsider the steady vorticity balance (40.197), here written in the form

∇ · (f Uρ) = ẑ · ∇ ×M (40.202)

where we introduced the stress vector

M = u(η)Qm − η∇hpa + ηb∇hpb +∆τ +D +∇h ·
(ˆ η

ηb

Tkinetic
hor dz

)
. (40.203)

Now integrate equation (40.202) over an area, S, with Gauss’s divergence theorem on the left
hand side leading to ˆ

S

∇ · (f Uρ) dS =

˛
∂S
f Uρ · n̂ds, (40.204)

where n̂ is the horizontal outward unit normal on the boundary, ∂S, and ds is the arc-length
increment along the boundary. This term is the mass transport crossing the boundary as
weighted by the Coriolis parameter.

Use of Stokes’ curl theorem on the right hand side of equation (40.202) leads to

ˆ
S

ẑ · ∇ ×M dS =

‰
∂S
M · t̂ ds, (40.205)

where t̂ is the horizontal unit tangent vector along the boundary, and the integral is oriented in
the counter-clockwise direction. To help interpret the closed loop integral in equation (40.205),
consider just the contribution from bottom pressure

‰
∂S
Mbottom press · t̂ds =

‰
∂S
ηb∇pb · t̂ds = −

‰
∂S
pb∇ηb · t̂ ds, (40.206)

which is the work done by bottom topographic form stress around the closed contour. The other
terms in equation (40.202) have interpretations as the work arising from integrating stresses
from mass transport through the surface, atmospheric form stress, turbulent boundary stresses,
interior frictional stresses, and nonlinear kinetic stress. Observe that the integral of bottom
pressure torque in equation (40.206) vanishes if the closed contour follows either an isobath or a
bottom pressure isobar. The vanishing of this integral means that bottom pressure torques have
zero net circulation around isobaths or bottom isobars. An analogous property is satisfied by the
atmospheric pressure torque when integrated around closed contours of constant atmospheric
pressure, pa, or constant surface height, η.

Bringing the above results together renders the general balance around the boundray of an
arbitrary closed region ˛

∂S
f Uρ · n̂ds =

‰
∂S
M · t̂ds. (40.207)

We thus see that transport across the closed boundary, as weighted by the Coriolis parameter,
arises from a nonzero net work around the boundary by the variety of stresses comprising M .
We are afforded a key simplification if Uρ · n̂ = 0 at each point along the boundary. For example,
if ∇ · Uρ = 0, which generally also requires Qm = 0, then contours along which Uρ · n̂ = 0
correspond to closed streamlines of the steady Uρ. Hence, we find the following balance holds
around any closed streamline

‰
∂S
M · t̂ds = 0. for ∂S a closed streamline of Uρ. (40.208)
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Closed streamlines do not always exist. But when they do, such as for steady ocean gyre
circulations, this balance holds. In Section 44.5.3, we consider the planetary geostrophic version
of this balance.

40.9.6 Formulation based on the vector-invariant velocity equation
In formulating the budget equation (40.188) for vorticity of the depth integrated flow, we started
with the depth integrated momentum in Section 28.4.5. However, many numerical models are
formulated using the vector invariant form of the horizontal velocity equation (40.147), here
written in the equivalent form for a Boussinesq ocean

∂tu+ f ẑ × u+∇hp/ρo − F︸ ︷︷ ︸
linear terms plus friction

= −ζ ẑ × u− w ∂zu−∇hu2/2.︸ ︷︷ ︸
Magnus + vertical advection + kinetic energy

(40.209)

The three nonlinear terms on the right hand side arise from expanding the nonlinear self-advection
term, (v · ∇)u, following the manipulations in Section 40.7.1. Much of the formulation to follow
emulates that considered thus far, with the exception of the nonlinear terms and elements of the
boundary contributions.

We take the vertical integral of equation (40.209)

ˆ η

ηb

[∂tu+ f ẑ × u+∇hp/ρo − F ] dz = −
ˆ η

ηb

(
ζ ẑ × u+ w ∂zu+∇hu2/2

)
dz, (40.210)

and then the curl

∇×
ˆ η

ηb

(∂tu+ f ẑ × u+∇hp/ρo − F ) dz = −∇×
ˆ η

ηb

(ζ ẑ × u+ w ∂zu+∇hu2/2) dz. (40.211)

Making use of the following identities

ẑ ·
[
∇×

ˆ η

ηb

∂tu dz

]
= ẑ · ∂t(∇×U)− ẑ · ∇ × [u(η) ∂tη] (40.212a)

ẑ ·
[
∇×

ˆ η

ηb

f ẑ × u dz

]
= ∇ · (f U) (40.212b)

ẑ ·
[
∇×

ˆ η

ηb

∇hpdz
]
= ẑ · ∇ × (η∇pa − ηb∇pb) (40.212c)

ẑ ·
[
∇×

ˆ η

ηb

ζ ẑ × udz

]
= ∇ ·

[ˆ η

ηb

ζ udz

]
(40.212d)

ẑ ·
[
∇×

ˆ η

ηb

ρo F dz

]
= ẑ · ∇ × (∆τ +D), (40.212e)

leads to

ẑ · ∂t(∇×U) = −∇ ·
[
f U +

ˆ η

ηb

ζ udz

]
+ ẑ · ∇ ×

[
u(η) ∂tη − η∇pa + ηb∇pb + (∆τ +D)/ρo −

ˆ η

ηb

(w ∂zu+∇hu2/2) dz

]
. (40.213)

The left hand side is the time tendency of the vorticity of the depth integrated horizontal flow,
with this time tendency driven by the various linear and nonlinear terms on the right hand side.
This evolution equation should be compared to equation (40.188) as derived from the advective
form of the momentum equation. Likewise, we derive a steady state balance by setting the time

CHAPTER 40. VORTICITY AND CIRCULATION MECHANICS page 1169 of 2158



40.10. EXERCISES

tendencies to zero to yield

β V = −f ∇ ·U −∇ ·
[ˆ η

ηb

ζ udz

]
+ ẑ · ∇ ×

[
u(η) ∂tη − η∇pa + ηb∇pb + (∆τ +D)/ρo −

ˆ η

ηb

(w ∂zu+∇hu2/2) dz

]
, (40.214)

which should be compared to equation (40.197).

40.9.7 Vorticity of the depth averaged flow
The vorticity of the depth averaged flow is given by ẑ · ∇ × u, where u is given by equation
(28.34) for a compressible non-Boussinesq fluid, and which takes on the following form for a
Boussinesq ocean

u =

´ η
ηb
udz

η − ηb
=

U

η − ηb
. (40.215)

The difference is given by

∇×U − (η − ηb)∇× u = ∇(η − ηb)× u, (40.216)

so that the two vorticities are the same in the special case of a depth averaged flow that is
parallel to ∇(η − ηb). Quite trivially, ∇(η − ηb)× u = 0 occurs for a rigid lid and flat bottom
ocean, in which ∇η = ∇ηb = 0. More generally, ∇(η − ηb)× u ≠ 0, particularly in the presence
of topography. We further study the budgets for these two vorticities, for planetary geostrophic
flow, in Sections 44.5 and 44.6.

40.9.8 Comments and further study
The diagnostic budgets derived in this section have appeared in many studies of ocean vorticity.
When diagnosing the budget terms in a numerical model, the choice for how to mathematically
formulate the diagnostic balances is largely driven by physical transparency as well as by
numerical precision. Concerning numerical precision, it is useful to note that vorticity, as the
derivative of velocity, has more power at the high spatial wave numbers than does velocity. In a
numerical model, such power can manifest as grid scale noise. It is thus of use to perform much
of the calculation online to enable the most accurate available diagnostic. Even so, further spatial
smoothing is generally required, especially in realistic models, to extract physically interpretable
signals.

40.10 Exercises
exercise 40.1: Filling in details to a derivation
Fill in the mathematical details to prove the identity (40.44a)

ρ
D(ζa/ρ)

Dt
=
∂ζa
∂t

+∇ · (v ζa) (40.217)

Hint: make use of mass continuity in the form of equation (19.10).

exercise 40.2: Relating the integral of divergence and vorticity
For some purposes, it is useful to consider evolution of the flow divergence as well as the vorticity.
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In this chapter we focused on the vorticity. Here are to prove, using Cartesian tensors, that

ˆ
R

(v∇ · v + ω × v) dV =

˛
∂R

[v (v · n̂)− n̂K] dS, (40.218)

where K = v · v/2 is the kinetic energy per mass. Hint: make use of the vector identity (40.32)
as well as the scalar form of Gauss’s divergence theorem given by equation (2.84).

exercise 40.3: Strain and rotation for stretching and tilting
In this exercise we write the 3× 3 strain rate tensor, S, and rotation tensor, R, for the examples
of vortex stretching and vortex tilting considered in Section 40.5.3. Recall that elements of S
are given by equation (18.90a) and R have elements given by equation (18.90b). Hint: there is
no unique answer for the strain rate tensors, so offer a simple example that renders the desired
behavior of a vortex line.

(a) Write a strain rate tensor corresponding to vortex stretching as per equation (40.81) along
with ωx = ωy = 0, and write the corresponding vorticity source term ω · S.

(b) Write the rotation tensor for vortex stretching as per equation (40.81) and verify that
ωm · Rmn = 0.

(c) Write a strain rate tensor corresponding to vortex tilting as per equation (40.87) along
with ωy = ωz = 0.

(d) Write the rotation tensor for vortex tilting as per equation (40.87) and verify that ωm Rmn =
0.

exercise 40.4: Friction in the vorticity equation
Assume a viscous friction operator of the form

F = ν∇2v, (40.219)

with ν a constant molecular kinematic viscosity. Assuming Cartesian coordinates, write the
vorticity equation (40.42) with this term included.

exercise 40.5: Friction for non-divergent flows
Consider a non-divergent flow with a Laplacian frictional acceleration

F = ν∇2v with ∇ · v = 0, (40.220)

with ν a constant molecular kinematic viscosity. Write this expression in terms of the vorticity.
Hint: check that ∇ × F equals to the friction appearing in the vorticity equation derived in
exercise 40.4. Further hint: the derivation is given in Section 25.8.9.

exercise 40.6: Vorticity for steady non-divergent y-z circulation
This exercise is based on exercise (1) in Section 1.1 of Pratt and Whitehead (2008). Consider
inviscid, constant density, and non-divergent flow in the y-z (meridional-vertical) plane and in a
non-rotating reference frame

ρ (∂t + v ∂y + w ∂z)v = −∂yp (40.221a)

ρ (∂t + v ∂y + w ∂z)w = −∂zp− ρ g (40.221b)

∂yv + ∂zw = 0. (40.221c)

(a) Show that the zonal component of the relative vorticity is materially constant following
the y-z flow

(∂t + v ∂y + w ∂z)ω
x = 0 with ωx = x̂ · (∇× v) = ∂yw − ∂zv. (40.222)
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(b) Introduce the y-z (meridional-vertical) overturning streamfunction

(v, w) = x̂×∇ψ = −ŷ∂zψ + ẑ ∂yψ, (40.223)

so that the vorticity is the Laplacian of the streamfunction

ωx = (∂yy + ∂zz)ψ. (40.224)

Write the vorticity equation (40.222) in terms of the streamfunction. Check your answer by
showing that the steady vorticity equation implies that the Jacobian of the streamfunction
with the vorticity vanishes

J(ψ, ωx) = ∂yψ ∂zω
x − ∂zψ ∂yωx = 0. (40.225)

(c) Following from the previous part, show that for steady flow that the vorticity is a function
just of the streamfunction,

ωx = F (ψ), (40.226)

where the function, F , is determined by the value of the vorticity along the streamlines.

Hint: we already know that ωx = (∂yy + ∂zz)ψ, even for time dependent flow, which
follows from the non-divergent nature of the y-z overturning circulation. What equation
(40.226) says is that for steady flow, the vorticity is a function just of the streamfunction.
Consequently, if we specify the vorticity at any point along a streamline, then we know
the vorticity everywhere along the streamline since it remains constant. Furthermore, it
means that the streamfunction satisfies the elliptic problem

(∂yy + ∂zz)ψ = F (ψ). (40.227)

exercise 40.7: Baroclinicity with ρo(z)
Recall the discussion of the Boussinesq momentum equation in Section 29.1.2. The form given
by equation (29.8) is written with the reference density, ρo = ρo(z). We then stated that the form
of the baroclinicity vector appearing in the Boussinesq vorticity equation is greatly simplified by
setting ρo to a global constant, and thus dropping the z dependence. Derive the second term in
the baroclinicity

B = ∇
[
b− δp

ρ2o

dρo
dz

]
× ẑ, (40.228)

so that B = ∇b× ẑ when ρo is assumed to be a global constant. Hint: write the vector-invariant
form of equation (29.8) with ρo(z). Then take the curl.

exercise 40.8: Generation of vorticity by baroclinicity
Consider a body of water with a flat bottom and rigid sides. Let the top surface be at z = 0
and bottom at z = −H, and assume zero pressure applied at the top surface. Let the density
have a horizontal structure given by

ρ(x) = ρo (1− γ x) (40.229)

where ρo and γ are positive constants (with dimensions of density and inverse length, respectively).
We furthermore assume that γ|x| ≪ 1 so that the density is XFstrictly positive. Note that a
study of Figure 40.3 helps with this exercise.

As posed, the fluid is not in mechanical equilibrium since there is a horizontal density gradient.
Hence, the fluid will adjust as a result of the nonzero horizontal pressure gradient force. Our
aim here is to compute the baroclinicity contained in the fluid to garner a sense for the initial
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adjustment of vorticity.

(a) Compute the density gradient ∇ρ and draw a schematic.

(b) Compute the pressure gradient, ∇p, assuming approximate hydrostatic balance so that
∂p/∂z = −ρ g. Draw a schematic at x = 0.

(c) Compute the baroclinicity/solenoidal vector B = ρ−2 (∇ρ×∇p). Draw a schematic.

(d) Describe the vorticity induced by the baroclinicity vector.

exercise 40.9: Generation of circulation by baroclinicity in an ideal gas
In this exercise we examine the baroclinicity vector for a simple ideal gas, which is described by
the equation of state (23.48)

ρ =
pMmole

T Rg
≡ p

T RM
, (40.230)

where Rg is the universal gas constant and RM is the specific gas constant. We also assume
the atmosphere is in approximate hydrostatic balance (Section 27.2), and we ignore rotation
(relatively small lateral region of the atmosphere). For further hints to this exercise, see Section
4.1 of Holton and Hakim (2013) or Section 2.4.3 of Markowski and Richardson (2010), where
they discuss circulation generated by differences in land-sea temperatures, thus leading to a sea
breeze.

(a) Express the baroclinicity vector, B, in terms of pressure and temperature gradients.

(b) Express the baroclinicity vector in terms of pressure and potential temperature gradients.
Hint: see Section 23.4.11 for potential temperature in an ideal gas.

(c) Consider an ideal gas atmosphere straddling the ocean and flat land as in Figure 40.13.
Let the daytime air be relatively cool over the ocean and relatively warm over the land.
Furthermore, assume the sea level pressure is the same value over land and ocean. Ignoring
rotation, draw isolines of constant temperature and constant pressure. Assume the
horizontal temperature gradient is constant with height. Here are some hints.

• Temperature decreases from land to ocean and decreases when ascending into the
atmosphere.

• Pressure is assumed to be horizontally constant at sea level and it decreases upward.
Use the ideal gas law to determine the sense for the horizontal pressure gradient as
one ascends. Consult the discussion in Section 23.4.10 for geopotentials in an ideal
gas atmosphere.

• We are only concerned with a qualitative sense for the isolines in the lower atmosphere
and over a horizontal region small enough that rotation can be ignored.

(d) Describe the sense for the circulation induced by the baroclinicity. Does circulation
correspond to your experience at a sunny beach day as the air warms over the land faster
than over the adjacent ocean? What force causes air to rise and to fall?

exercise 40.10: Circulation with islands
Our discussion of Stokes’ theorem has been thus far restricted to a simply connected domain, in
which ‰

∂S
v · dx =

ˆ
S

ω · n̂dS. (40.231)

For a simply connected domain, the closed contour can be shrunk to a point without leaving the
domain.
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Figure 40.13: Setup for the sea breeze Exercise 40.9. We here depict a vertical-zonal crossection of the atmosphere
where the lower boundary straddles the ocean and land. The atmosphere over the ocean is assumed to be cooler
than the atmosphere over the land, as typically occurs on a sunny afternoon with solar radiation warming land
faster than the ocean.

A more general topology consists of a region with holes, whereby closed contours cannot
in general be shrunk to a point without leaving the region. In an oceanographic context, the
“holes” are islands or continents and the circulation is that for the depth integrated flow. Figure
40.14 shows a region of the ocean containing three arbitrarily shaped impenetrable islands, with
the three islands surrounded by a contour. The contour cannot be shrunk to a point without
crossing over the islands, thus making this region of the ocean multiply-connected. The presence
of islands thus adds a level of complexity to the World Ocean that is absent an AquaPlanet or
the global atmosphere.

Derive the following expression for the circulation in multiply-connected regions

‰
∂S
v · dx =

N∑
n=1

(‰
∂Sn

v · dx
)
+

ˆ
S

ω · n̂dS, (40.232)

where N is the number of islands, Sn is the contour surrounding each island, and S is the region
of water that excludes the islands. In words, this result says that the circulation around a region
equals to the circulation around the islands within the region, plus the normal component of the
vorticity integrated over the area within the fluid region. Removing the islands allows the island
contours to be shrunk to zero size, in which case we recover the simply connected result (40.231).
As part of your solution, make use of the contour integral method detailed in Figure 39.10.

exercise 40.11: Evolution of circulation around islands
The momentum equation for a homogeneous layer of inviscid shallow water fluid on a tangent
plane is given by

∂tu+ (u · ∇)u+ f ẑ × u = −g∇η. (40.233)

In this equation, u = (u, v) is the horizontal velocity, f is the Coriolis parameter (need not be
constant), g is the effective gravitational acceleration, and η is the deviation of the free surface
from its horizontal resting position. All spatial derivatives are horizontal, so that

u · ∇ = u ∂x + v ∂y. (40.234)

Use of a vector identity allows us to write

∂tu+ (f + ζ) ẑ × u = −∇ (u2/2 + g η), (40.235)

where
ζ = ẑ · (∇× u) (40.236)
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Figure 40.14: A region of the ocean consisting of three islands, S1, S2, and S3, each with boundaries ∂Sn and
with the closed contour, ∂S, drawn around the three islands. The contour ∂S cannot be shrunk to a point without
crossing over the islands, thus indicating that the domain is multiply connected. Exercise 40.10 is concerned with
deriving an expression for the circulation of the depth-integrated flow as defined along the closed contour, ∂S. In
that derivation we can make use of the contour initegral method detailed in Figure 39.10.

is the vorticity of the shallow water fluid.

Consider an island, such as one shown in Figure 40.14. Each island is static and impenetrable
to fluid flow, which means that

u · n̂ = 0 (40.237)

where n̂ is the outward normal on an island boundary. For simplicity, assume this island outward
normal is horizontal; i.e., the island is bounded by a vertical side. This no-normal flow constraint
means that the velocity just next to an island is parallel to the island22

u× dx = 0. (40.238)

Equivalently, the island represents a solid material boundary across which no flow passes.

Show that the inviscid shallow-water circulation around an island remains constant in time

d

dt

‰
I

u · dx = 0. (40.239)

Recall that Kelvin’s circulation theorem is formulated for a material circuit in an inviscid fluid,
with the circuit moving with the flow. This exercise shows that the circulation theorem also
holds for a material circuit enclosing a static solid boundary.

exercise 40.12: Helicity for a perfect barotropic fluid in a gravity field and
non-rotating reference frame
Consider a closed material volume, R, of a perfect single-constituent barotropic fluid (ρ = ρ(p))
in a gravity field (g = −∇Φ) and in a non-rotating reference frame (Ω = 0). Let this material
volume have a boundary that is always tangent to the fluid vorticity, ω. Hence, the outward
normal to the region boundary is orthogonal to the vorticity,

n̂ · ω = 0. (40.240)

22This boundary condition is valid only for inviscid fluids such as that considered here. For a real fluid with
nonzero viscosity, all components of the velocity vector vanish at solid boundaries due to the no-slip condition
discussed in Section 25.8.8.
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Such volumes define closed vortex tubes, such as a smoke ring or linked smoke rings. The helicity
of the fluid within the vortex tube volume is defined as the integration of the helicity density,
v · ω, over the closed volume

H =

ˆ
R(v)

v · ω dV, (40.241)

where the volume R(v) is material. In Cartesian coordinates, the helicity density takes the form

v · ω = u (∂yw − ∂zv) + v (∂zu− ∂xw) + w (∂xv − ∂yu). (40.242)

Although the helicity density vanishes for some common examples, such as for a fluid in rigid-body
rotation, it need not vanish in general.

(a) Show that helicity is materially constant following the material volume

dH
dt

= 0. (40.243)

(b) Discuss why helicity is not defined for a shallow water fluid.

Use the following hints.

• Make use of Φp that satisfies equation (40.13).

• The shallow water fluid model is based on the small aspect ratio limit, in which the fluid
depth is much smaller than its lateral extent. In this limit, the vertical component of
vorticity dominates over the horizontal. See further discussion in Section 40.5.4.

exercise 40.13: Discrete calculation of bottom pressure torque
In many diagnostic studies with numerical models it is of interest to compute pressure torques
affecting vorticity. One particularly common diagnostic concers the bottom pressure torque
arising in equation (40.191). Derive a discrete expression for the area averaged bottom pressure
torque

BPT = A−1

ˆ
S

ẑ · ∇ × (ηb∇pb) dS = A−1

‰
∂S
ηb∇pb · t̂ dℓ,= −A−1

‰
∂S
pb∇ηb · t̂dℓ, (40.244)

over the shaded region depicted in Figure 40.15, with A =
´
S
dS the horizontal area of this region.

Hint: this exercise shares much with the area averaged vorticity in Exercise 37.8, although
the final result is distinct. Note: given that the bottom pressure torque is generally the small
difference between large numbers, it is very useful to perform the diagnostic calculation online
so that full computational precision can be maintained.

exercise 40.14: Dynamical portion of the topographic form stress
We discussed bottom topographic form stress in Chapter 28, with its curl leading to the bottom
pressure torque in equation (40.191). As noted in Section 28.1.3, the dominant portion of the
bottom topographic form stress acting on the ocean has little to do with fluid motion. Rather, it
merely holds the ocean fluid within the basin, much as water is held within a drinking container
through pressure imparted by the container sides.

(a) To help isolate the dynamically relevant portion of the bottom bottom pressure, show
that we can write the horizontal gradient of the bottom pressure for a hydrostatic fluid
according to

∇hpb = g [ρ(η)∇hη − ρ(ηb)∇hηb] + g

ˆ η

ηb

∇hρdz. (40.245)

where we ignore the applied surface pressure, pa, for simplicity.
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Figure 40.15: Discrete grid layout for variables needed to compute the bottom pressure torque as averaged over
the shaded vorticity region. The bottom topography and bottom pressure are both known at the tracer points.

(b) Hence, show that the bottom pressure torque takes the form

ẑ · ∇hηb ×∇hpb = g ẑ · ∇hηb ×
[
ρ(η)∇hη +

ˆ η

ηb

∇hρ dz
]
≡ ẑ · ∇ηb ×∇p∗b , (40.246)

where

∇hp∗b = g ρ(η)∇hη + g

ˆ η

ηb

∇hρdz. (40.247)

Note how ∇hp∗b has no contribution from the potentially very large term, −g ρ(ηb)∇hηb,
arising from gradients in the bottom topography.

(c) Molemaker et al. (2015) and Gula et al. (2015) assume knowledge of the bottom pressure
torque along contours of constant topography. Given that knowledge they then make use
of the following diagnostic expression for p∗b

p∗b (s)− p∗b (s0) = −
ˆ s

s0

ẑ · (∇ηb ×∇pb)
n̂ · ∇ηb

ds, (40.248)

with p∗b (s0) the value at the arbitrary starting point for the contour. Derive equation
(40.248), with the following information of possible use.

• As depicted in Figure 40.12, s is the arc length along the chosen contour of constant ηb,
with s increasing in the tangent direction, t̂. Likewise, n̂ is a unit vector pointing to the
left of the contour so that n̂ · t̂ = 0 and t̂× n̂ = ẑ.

• Along any contour of constant ηb(x, y) we have

0 = dηb = ∇ηb · dx = ∇ηb ·
dx

ds
ds = ∇ηb · t̂ ds. (40.249)

• The main mathematics of this exercise are contained in Exercise 5.1.

Equation (40.248) provides a means to compute the anomalous p∗b [anomalous relative to p∗b (s0)]
along a constant topography contour. Mapping p∗b (s) − p∗b (s0) for a suite of contours then
provides the means to determine the dynamically relevant portion of the bottom pressure and
then, when multiplying by the bottom slope, compute the dynamically relevant portion of the
form stress.
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Chapter 41

POTENTIAL VORTICITY MECHANICS

Potential vorticity (PV) is a dynamical tracer of immense importance to the study of geophysical
fluid mechanics. One application of potential vorticity concerns its direct connection to the flow
field in certain balanced models (e.g., geostrophically balanced models), with Hoskins (1991)
providing an insightful starting point for this perspective. Potential vorticity is also useful as a
tracer whose structure signals a variety of dynamical interactions, particularly with boundaries,
and that can be directly tied to flow stability properties. In this chapter we establish fundamental
properties of potential vorticity and its time evolution. The potential vorticity we consider here
is sometimes referred to as Ertel potential vorticity (Ertel , 1942), which is the most basic of the
many potential vorticities encountered in geophysical fluids mechanics.

The barotropic fluid forms a pedagogically useful starting point for our study. However,
realistic geophysical flows are baroclinic, and it is the baroclinic fluid where “PV thinking” is
arguably the most useful and powerful. The general method exploited for the construction of
potential vorticity is to choose a scalar field to strategically orient the absolute vorticity. If the
scalar is a material invariant, and it annihilates the baroclinicity vector, then the corresponding
potential vorticity is a material invariant in the absence of irreversible processes. For a barotropic
fluid, the choice of scalar field is rather arbitrary, with preference given to one that is materially
invariant. For a baroclinic fluid we are more restricted since the scalar must orient vorticity in a
direction that annihilates the torque from baroclinicity and, ideally, be itself materially invariant
in the absence of irreversible processes. Even in the presence of irreversible processes, potential
vorticity remains an important flow property that constrains the motion and provides insights
into the mechanics of that motion.

chapter guide

This chapter requires an understanding of vorticity from Chapter 40 as well as skills with
vector calculus identities for Cartesian coordinates as detailed in Chapter 2. The concepts
and methods developed in this chapter are fundamental to the notions of potential vorticity,
and are essential for the budget equations developed in Chapter 42. We also encounter
potential vorticity when studying balanced models in Part VIII of this book.
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41.1 Potential vorticity in perfect fluids

In this section we derive the material invariance of potential vorticity (PV) for a perfect
homogeneous fluid.1 We make use of Kelvin’s circulation theorem for an infinitesimal closed
loop, in which case the primary object of interest is a particular component of the absolute
vorticity.

41.1.1 Perfect barotropic fluid

Consider a perfect barotropic fluid. As for the shallow water discussion in Section 39.3.3, we can
apply Kelvin’s circulation theorem (Section 40.2.3) to an infinitesimal material circuit within
the fluid (Figure 41.1) to render the material invariance

D

Dt
(ωa · n̂ δS) = 0, (41.1)

with δS the area enclosed by the circuit. The conservation of potential vorticity is built from
specializing this result. For that purpose, introduce a materially invariant field

Dχ

Dt
= 0. (41.2)

In most applications, χ is a scalar field such as tracer concentration, globally referenced
Archimedean buoyancy, Conservative Temperature, or specific entropy. However, in equa-
tion (41.21) we consider the non-standard case of χ = z, which is relevant for two-dimensional
non-divergent barotropic fluids. The one key assumption we make is that χ is a smooth field
that is not a spatial constant, so that |∇χ| ≠ 0.

1A perfect homogeneous fluid has zero viscosity (inviscid) and a single material component. There can be no
mixing of matter in this fluid since every fluid element has the same homogeneous concentration. So without
viscosity, the homogeneous fluid is perfect.
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n̂

δS

ωa

Figure 41.1: The projection of the absolute vorticity, ωa, onto the normal direction of an infinitesimal moving
surface, n̂ δS.

41.1.2 Cylinder between two constant χ surfaces

We make use of isosurfaces of χ to orient a material circuit used to compute circulation and
hence to orient the vorticity. In particular, referring to Figure 41.2, let the circuit bound a small
cylinder whose ends sit on isosurfaces with concentrations χ − δχ/2 and χ + δχ/2. We can
consider this cylinder to be a portion of a vortex tube that is bounded by the two χ isosurfaces.
The cylinder’s volume is given by

δV = δS δh, (41.3)

where δh is the distance between the χ isosurfaces. The unit normal direction orienting the area,
δS, is given by

n̂ = ∇χ/|∇χ|. (41.4)

It is the need to define n̂ that requires us to assume |∇χ| ≠ 0. The distance, δh, between the
two isosurfaces is related to the χ increment, δχ, through

δχ = ∇χ · δx = |∇χ| n̂ · δx = |∇χ| δh. (41.5)

This result takes on the equivalent form

δχ = |∇χ| δh = (n̂ · ∇χ) δh, (41.6)

so that the distance (or thickness) between the two isosurfaces is

δh = δχ/|∇χ|. (41.7)

As seen in Figure 41.2, the spatial separation between the two isosurfaces is relatively small
in regions of strong scalar gradients (large |∇χ|), whereas the separation is relatively large in
regions of small |∇χ|.

41.1.3 Material invariance

We now have the necessary pieces to write the normal projection of the absolute vorticity
according to the following

ωa · n̂ δS =
ωa · ∇χ
|∇χ| δS equation (41.4) (41.8a)

=
ωa · ∇χ
|∇χ|

δV

δh
equation (41.3) (41.8b)

= (ωa · ∇χ)
δV

δχ
equation (41.7) (41.8c)
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dS

n̂ = ∇χ/|∇χ|

δh = δχ/|∇χ|

χ + δχ/2

χ − δχ/2

Figure 41.2: Illustrating the geometry of a cylindrical region of fluid between two iso-surfaces of a field χ,
separated by the infinitesimal amount δχ. The volume of the cylinder is δV = δS δh, with δh the thickness and
δS the area. By convention, the unit normal vector, n̂ = ∇χ/|∇χ|, points towards larger values of χ. It is here
depicted at the center of the cylinder, which differs by an infinitesimal amount from the normal computed on
either χ + δχ/2 or χ − δχ/2. If χ is a material invariant so that Dχ/Dt = 0, then so too is its infinitesimal
increment, D(δχ)/Dt = 0. As per equation (41.7), the geometric thickness between the isosurfaces is related to
the field increment by δh = δχ/|∇χ|, so that the larger the magnitude of the gradient in the scalar field, the
smaller the layer thickness. For a baroclinic fluid, material invariance of potential vorticity in a perfect fluid holds
if we can find a field such that n̂ ·B = 0, with baroclinicity B = (∇ρ×∇p)/ρ2. The cylindrical tube acts as a
vortex tube for that component of absolute vorticity, ωa · n̂, that is parallel to the tube.

=
ωa · ∇χ

ρ

ρ δV

δχ
multiply by ρ/ρ. (41.8d)

Mass is materially invariant so that
D(ρ δV )

Dt
= 0. (41.9)

Likewise, by assumption χ is materially invariant so that the increment between two χ isosurfaces
is materially invariant

D(δχ)

Dt
= 0. (41.10)

Bringing these elements into Kelvin’s circulation theorem (41.1) leads us to conclude that the
potential vorticity, Q, is also materially invariant

Q ≡ ωa · ∇χ
ρ

=
∇ · (ωa

χ)

ρ
with

DQ

Dt
= 0. (41.11)

This expression for the potential vorticity is the most general form and it is often referred to
as the Ertel potential vorticity (Ertel , 1942). The first expression shows the numerator as the
projection of the absolute vorticity into the direction normal to χ isosurfaces. Conversely, it is
a measure of the χ stratification in the direction of the absolute vorticity vector. The second
expression follows since the absolute vorticity has zero divergence so that the numerator is
a total divergence. This divergence form of the potential vorticity numerator has important
implications for the potential vorticity budgets studied in Section 41.4 and throughout Chapter
42.
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41.1.4 Perfect baroclinic fluid
Consider the case of a perfect baroclinic fluid, in which Kelvin’s circulation theorem for an
infinitesimal circuit takes the form

D

Dt
(ωa · n̂ δS) = B · n̂ δS. (41.12)

The source on the right hand side involves the baroclinicity vector, B, discussed in Sections 40.2
and 40.4, which is the curl of the pressure gradient acceleration

B = ∇× (−ρ−1∇p) = ρ−2∇ρ×∇p. (41.13)

Now assume there exists a materially invariant field, Dχ/Dt = 0, that also annihilates the
baroclinicity vector as in Figure 41.3, so that

B · n̂ =
B · ∇χ
|∇χ| = 0. (41.14)

In that case, the derivation detailed earlier for the barotropic fluid follows directly for the
baroclinic case, in which case we conclude that potential vorticity remains materially invariant

DQ

Dt
= 0 where Q =

ωa · ∇χ
ρ

. (41.15)

n̂ = ∇χ/|∇χ|

B

n̂ ·B = 0χ isosurface

Figure 41.3: Material invariance of potential vorticity is ensured for perfect fluids that admit a materially
invariant field that also annihilates the baroclinicity vector. Mathematically, this property means that n̂ ·B = 0
where n̂ = ∇χ/|∇χ| is the unit normal direction for the surface. In this figure we depict the baroclinicity vector,
B, that is aligned with χ isosurfaces.

The existence of a materially invariant potential vorticity for perfect baroclinic fluids depends
on the existence of a materially invariant scalar field that annihilates the baroclinicity vector.
Buoyancy is the most common choice for this field in geophysical fluid applications, with buoyancy
typically measured by specific entropy or potential temperature in the atmosphere and potential
density in the ocean. We have more to say on the chosen field in the remainder of this chapter
as well as in Section 42.3.

41.1.5 A variety of materially invariant potential vorticities
The material invariant statement

DQ

Dt
=

D(ρ−1ωa · ∇χ)
Dt

= 0 (41.16)

generates a number of further materially invariant fields. First, consider any function of Q,
whereby

DF(Q)

Dt
=

dF

dQ

DQ

Dt
= 0, (41.17)
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which follows since DQ/Dt = 0. Among the infinite number of possible functions, F(Q), the
most commonly considered is F(Q) = Q2, whose global integral is referred to as the potential
enstrophy.

Second, consider the iterated potential vorticity defined according to

Q(1) = ρ−1ωa · ∇χ and Q(n) = ωa · ∇Q(n−1) for n = 2, 3, 4... (41.18)

As defined, Q(1) is the familiar Ertel potential vorticity, whereas higher iterations replace the
field, χ, with Q(n−1). Since Q(n−1) is materially invariant, so too is Q(n). Consider the example

Q(2) = ωa · ∇Q(1) = ωa · ∇(ρ−1ωa · ∇χ) = ∇ · [ωa ρ
−1 (ωa · ∇χ)], (41.19)

which reveals that there are n powers of absolute vorticity for Q(n).

41.1.6 Some remarks about potential vorticity
Perfect fluid PV material invariance ↔ Kelvin’s circulation theorem

Kelvin’s circulation theorem from Section 40.2.3 is at the heart of the derivations presented in
this section, with the theorem applied to a strategically chosen infinitesimal loop. Because the
loop is tiny, we use Stokes’ theorem to convert the line integral expression of Kelvin’s theorem
into a statement about the material evolution of absolute vorticity projected onto the normal
direction of the loop, and multiplied by the loop area. We further specialize the theorem to
a cylindrical region between two isosurfaces of a materially invariant field. For the perfect
barotropic fluid, we require the mass of the cylinder to be materially invariant, as well as the
scalar field. In this case there is a potential vorticity that is also materially invariant. For a
baroclinic fluid, material invariance of potential vorticity requires a field that is both materially
invariant and that annihilates the baroclinicity vector. We have more to say regarding the
availability of such fields in the remainder of this chapter.

There are numerous forms for potential vorticity

The expression (41.11) is, on first glance, quite distinct from the shallow water (Rossby) potential
vorticity, Q = (ζ + f)/h, studied in Chapter 39 (see equation (39.30)). However, as shown
in Section 66.3, they are closely related for the special case of entropic potential vorticity in
a Boussinesq ocean when formulated using isopycnal/isentropic coordinates. Even so, there
are a variety of other forms for potential vorticity, with the forms (and physical dimensions)
depending on the dynamical and thermodynamical properties. We encounter some further forms
of potential vorticity in the remainder of this chapter, as well as in the oceanic potential vorticity
discussions of Chapter 66 and in our study of balanced models in Part VIII. The review paper by
Müller (1995) offers a lucid presentation of potential vorticity and its many forms encountered
in physical oceanography.

Motivating the adjective “potential”

In Section 39.3.2 we motivated the advective “potential” for the shallow water potential vorticity.
We do so here for Ertel’s potential vorticity. For that purpose, write potential vorticity in the
form

Q =
ωa · n̂
ρ
|∇χ| with n̂ =

∇χ
|∇χ| . (41.20)

In cases where ρ is roughly a constant (e.g., Boussinesq ocean), and when Q is materially
invariant, the component of the absolute vorticity increases in the direction parallel to ∇χ
when the fluid parcel moves into a region where |∇χ| decreases. Hence, there is a “release” of
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absolute vorticity aligned with ∇χ in regions where χ isosurfaces are spread. We conceive of
this increased vorticity as through the stretching of the cylindrical tube extending between χ

isosurfaces along the n̂ direction, with this tube acting as a vortex tube for that component of
vorticity parallel to the tube. In contrast, when the χ isosurfaces are tightly packed, then the
vortex tube is squashed and so too is the vorticity. We thus conceive of potential vorticity as
the “potential” for releasing absolute vorticity that is oriented in the direction parallel to ∇χ.

Potential vorticity as a dynamical tracer

We refer to potential vorticity as a dynamical tracer since it depends directly on the velocity
field through the vorticity. It also depends on the scalar field, χ, which is commonly taken as a
thermodynamic tracer such as the potential temperature, θ. In these cases, potential vorticity
embodies both dynamical and thermodynamical information. In contrast, material tracers such
as salinity, and thermodynamic tracers such as θ, are properties of the fluid whose distribution
is affected by the velocity but whose local measurement does not require knowledge of the flow.

Entropic potential vorticity as the grand unifier

Entropic potential vorticity provides a connection between vorticity (mechanics) and stratification
(thermodynamics). By connecting these two basic facets of geophysical fluid flows, the study
of potential vorticity and its conservation properties provides a powerful and unique lens to
help rationalize the huge variety of geophysical flow regimes, and to predict their response to
changes in forcing. It is for this reason that potential vorticity is sometimes considered the grand
unifying concept in geophysical fluid mechanics.

Potential vorticity as a diagnostic tracer

Suppose we have an initial flow field in which ρQ = ωa · ∇χ = 0, which means that the absolute
vorticity is aligned with surfaces of constant χ. In an inviscid and adiabatic fluid, material
conservation of Q means that ωa remains within constant χ surfaces for all time. We infer from
this particular example that if we know the evolution of χ, then we know the evolution of vortex
lines defined by ωa, which in turn allows for the inference of a number of further flow properties.
This particular example offers a hint at the multiple applications of “PV thinking” to understand
and predict fluid motion, with Hoskins (1991) providing an elegant survey of such thinking.

Potential vorticity versus momentum

Momentum is affected by pressure, and pressure fluctuations propagate at the speed of sound
(Chapter 51) for compressible flows (including the Boussinesq ocean; see Section 29.1.9), whereas
they move with infinite speed for incompressible fluids. In contrast, potential vorticity, for those
cases where we can remove the effects of the baroclinicity vector, does not directly feel the
impacts from pressure fluctuations. Hence, potential vorticity, much like vorticity in a barotropic
fluid, evolves much slower and more locally than momentum. This dynamical difference offers a
key reason that potential vorticity offers added insights into fluid flows beyond that afforded by
momentum.

Potential vorticity for horizontally non-divergent barotropic flow

A non-standard, but relevant, choice for the function χ used to define potential vorticity is given
by the vertical coordinate

χ = z, (41.21)
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in which case
ρQ = ωa · ẑ = ζa. (41.22)

In Chapter 38, we consider the two-dimensional non-divergent barotropic model, in which case ρ
is a constant and

w =
Dz

Dt
= 0. (41.23)

The corresponding materially invariant potential vorticity is the vertical component of the
absolute vorticity divided by the constant density. Ignoring the constant density factor leads us
to identify the absolute vorticity as the Ertel potential vorticity for this flow

q = ζa = ζ + f. (41.24)

As discussed in Section 38.2.3, the horizontally non-divergent barotropic flow also maintains
material constancy (in the absence of non-conservative processes) of the Rossby potential vorticity,
(ζ + f)/h, with this property holding since Dh/Dt = 0 for this flow.

41.2 Potential vorticity and seawater
As seen in Section 41.1, material invariance of potential vorticity for a perfect fluid requires a
materially invariant scalar field to annihilate the baroclinicity vector. There is no such scalar
field for the ocean with a realistic seawater equation of state. Nonetheless, there are important
approximate cases that allow for material potential vorticity invariance, and we explore such
cases in this section.

41.2.1 Baroclinicity vector
Recall the baroclinicity vector given by (Sections 40.2 and 40.4)

B =
∇ρ×∇p

ρ2
. (41.25)

If we take the in situ density as the scalar field to define potential vorticity, then B · ∇ρ = 0.
However, in situ density is not a conserved scalar in the ocean due to pressure effects. Namely,
with in situ density having the function dependence ρ = ρ(S,Θ, p) (see Section 30.3), its material
time derivative is

Dρ

Dt
=
∂ρ

∂S

DS

Dt
+
∂ρ

∂Θ

DΘ

Dt
+
∂ρ

∂p

Dp

Dt
. (41.26)

Even when salinity and Conservative Temperature are materially constant, DS/Dt = 0 and
DΘ/Dt = 0, the in situ density has a nonzero material time derivative due to material pressure
changes, Dp/Dt ̸= 0. Material changes in the pressure of a fluid element arise even in the absence
of irreversible processes such as mixing. In general, such mechanical changes arise due to the
gradients in the pressure field that the fluid element feels. Given that pressure affects in situ
density, with such effects occuring even in a perfect fluid, we conclude that in situ density is
not an appropriate scalar for developing a materially invariant potential vorticity. For the same
reason, we do not consider pressure as a suitable scalar field.

41.2.2 Potential vorticity based on potential density, ϱ
Potential density is commonly used in oceanography (see Section 30.3.4), with potential density
the in situ density referenced to a chosen pressure.2 We write potential density as in equation

2Oceanographers often choose the reference pressure as the standard atmospheric sea level pressure. However,
that is not required for the following formalism to hold, with any reference pressure suitable.
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(30.18)
ϱ(S,Θ) = ρ(S,Θ, p = pref), (41.27)

so that its material time derivative is

Dϱ

Dt
=
∂ϱ

∂S

DS

Dt
+
∂ϱ

∂Θ

DΘ

Dt
, (41.28)

which vanishes in the absence of irreversible material changes to salinity and Conservative
Temperature. When using potential density as the scalar field for potential vorticity, the
baroclinicity vector projects onto the diapycnal direction according to

ρ2B · ∇ϱ = (∇ρ×∇p) · ∇ϱ (41.29a)

= (∇ϱ×∇ρ) · ∇p (41.29b)

= [(ϱS ∇S + ϱΘ∇Θ)× (ρS ∇S + ρΘ∇Θ+ ρp∇p)] · ∇p (41.29c)

= [(ϱS ∇S + ϱΘ∇Θ)× (ρS ∇S + ρΘ∇Θ)] · ∇p (41.29d)

= [ϱS ∇S × ρΘ∇Θ+ ϱΘ∇Θ× ρS ∇S] · ∇p (41.29e)

= (ϱS ρΘ − ϱΘ ρS) (∇S ×∇Θ) · ∇p, (41.29f)

where we used the shorthand notation for partial derivatives

ρS =
∂ρ

∂S
and ϱS =

∂ϱ

∂S
(41.30a)

ρΘ =
∂ρ

∂Θ
and ϱΘ =

∂ϱ

∂Θ
. (41.30b)

Note that the triple product, (∇S ×∇Θ) · ∇p, also appears in the discussion of neutral helicity
in Section 30.7 (see equation (30.65)). Equation (41.29f) allows us to identify cases where the
baroclinicity vector is annihilated, B · ∇ϱ = 0, thus yielding a materially invariant potential
vorticity in the absence of irreversible processes.

• uniform salinity or uniform Conservative Temperature: If salinity or Conserva-
tive Temperature are spatially uniform, then B · ∇ϱ = 0.

• additive pressure dependence to the in situ density: There is a materially invariant
potential vorticity with a vanishing thermodynamic pre-factor in equation (41.29f), ϱS ρΘ−
ϱΘ ρS . This term does not generally vanish since the ocean has a pressure dependent
equation of state, and this pressure dependence generally means that B · ∇ϱ ̸= 0. Even so,
we can annihilate the baroclinicity vector if the in situ density has a pressure dependence
that is additive, in which case we can write

ρ(S,Θ, p) = ϱ(S,Θ) + F (p)− F (pref) =⇒ ϱS ρΘ − ϱΘ ρS = 0. (41.31)

Notably, we did not assume a linear equation of state; only that it has the special functional
form in equation (41.31). For some cases, we may assume F to be a constant, in which case
there is no pressure dependence so that in situ density is the same as potential density.

41.2.3 An example EOS admitting a materially invariant PV

An explicit realization of the equation of state (41.31) can be found by taking a Taylor
series expansion of the in situ density around the reference pressure, and evaluating the
derivatives in the expansion in terms of a chosen reference pressure, reference salinity, and
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reference Conservative Temperature

ρ(S,Θ, p) ≈ ϱ(S,Θ) + (p− pref)
[
∂ρ

∂p

]
S=Sref,Θ=Θref,p=pref

+H.O.T.︸ ︷︷ ︸
F (p)−F (pref)

(41.32)

where
ϱ(S,Θ) = ρ(S,Θ, pref) (41.33)

is the potential density referenced to p = pref, and where H.O.T. symbolizes higher order
terms. This approach ignores the salinity and Conservative Temperature dependence
of terms in the Taylor series expansion. Ignoring this dependence is a rather good
approximation for many purposes since the ocean sound speed is not far from a constant

c−2
s =

∂ρ

∂p
≈ constant. (41.34)

In this case, the equation of state takes the form

ρ(S,Θ, p) ≈ ϱ(S,Θ) +
p− pref
c2s

, (41.35)

41.2.4 Further reading
The presentation given here follows that given in Section 4.5.4 of Vallis (2017). Straub (1999)
focuses on the source of potential vorticity arising from a nonzero thermobaricity parameter,
T = ∂p(α/β) (see Section 72.3.4). In Section 41.6 we reconsider the notions presented here by
suggesting the relevance of an alternative potential vorticity field that is attached to a finite
sized region rather than to a fluid particle.

41.3 Potential vorticity evolution in real fluids
Thus far we have considered perfect fluids, with the use of Kelvin’s circulation theorem a suitable
framework to derive the material invariance of potential vorticity. In this section we consider a
real fluid that contains non-conservative processes. Potential vorticity is no longer materially
invariant when exposed to non-conservative processes such as mixing, friction, and diabatic
sources.

To develop the potential vorticity budget in the presence of non-conservative processes, we
pursue an algebraic approach that starts from the vorticity equation (40.42)

ρ
D(ωa/ρ)

Dt
= (ωa · ∇)v +B +∇× F , (41.36)

where F is the acceleration from non-conservative forces and B the baroclinicity vector. Fur-
thermore, we introduce a scalar field that generally has a nonzero material evolution

Dχ

Dt
= χ̇, (41.37)

with χ̇ arising from diffusion, sources, boundary fluxes, or other processes that lead to material
evolution of χ.

As part of the manipulations in this section, we make use of the identity

(ωa · ∇)
Dχ

Dt
= ωa ·

D(∇χ)
Dt

+ [(ωa · ∇)v] · ∇χ, (41.38)
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which is readily proven by expanding terms and assuming Cartesian coordinates. Rearrangement,
and use of the scalar equation (41.37), leads to

ωa ·
D(∇χ)

Dt
= (ωa · ∇) χ̇− [(ωa · ∇)v] · ∇χ. (41.39)

Now project the vorticity equation (41.36) onto the direction normal to the χ isosurfaces

ρ∇χ · D(ωa/ρ)

Dt
= ∇χ · [(ωa · ∇)v] +∇χ · (B +∇× F ). (41.40)

The sum of equations (41.39) and (41.40) leads to

ρ
D(∇χ · ωa/ρ)

Dt
= (ωa · ∇) χ̇+∇χ · (B +∇× F ). (41.41)

This equation is general so that it applies to any scalar field.

To simplify the source terms on the right hand side of equation (41.41), follow the discussion
from Section 41.1.4 by assuming that χ annihilates the baroclinicity vector.3 This scalar field is
typically given by potential temperature, specific entropy, buoyancy, or potential density. We
thus have

∇χ ·B = 0, (41.42)

which in turn leads to the potential vorticity equation in the presence of irreversible processes
such as friction and mixing

ρ
DQ

Dt
= (ωa · ∇) χ̇+∇χ · (∇× F ), (41.43)

where the potential vorticity is again given by

Q = ρ−1ωa · ∇χ. (41.44)

If χ is a thermodynamic scalar such as potential entropy, then the material evolution of potential
vorticity is affected by diabatic processes (heating and cooling) as well as friction. Hence, the
potential vorticity of a fluid element can be either generated or destroyed depending on details
of these irreversible process. Such processes are often localized to areas of mixing as well as to
boundaries where strong mechanical and/or buoyant processes are active. The study of how
potential vorticity is materially modified by irreversible processes forms an important area of
research in potential vorticity dynamics. We have more to say on this notion when studying
finite volume budgets of potential vorticity in Chapter 42.

41.4 Flux-form potential vorticity budget
The material invariance of potential vorticity is an example of a material or Lagrangian conser-
vation property of perfect fluids, with the material conservation statement ρDQ/Dt = 0 having
its flux-form expression

∂t(ρQ) +∇ · (ρvQ) = 0 perfect fluid, (41.45)

which is derived through use of mass conservation (19.10). Following the formalism established for
material tracers in Section 20.2, the flux-form local conservation law (41.45) leads to conservation
properties over finite regions, which we refer to as global conservation laws. In this section

3In Section 42.3 we study what happens when no such scalar exists.
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we examine the flux-form budget in the presence of non-conservative processes. In particular,
we show that the Eulerian evolution of potential vorticity continues to be determined by the
convergence of a flux, thus allowing for natural extensions to global conservation laws and budget
analyses. These properties were observed earlier in our study of shallow water potential vorticity
in Section 39.4.2 and absolute vorticity in Section 40.3.4. These common features of the various
vorticity budgets relate to the ability to write components of the absolute vorticity (including
the potential vorticity) as the divergence of a vector.

41.4.1 Deriving the flux-form potential vorticity budget
To transform the material evolution equation (41.43) into a flux-form equation we make use of
the following identities

D

Dt
=

∂

∂t
+ v · ∇ relating material and Eulerian time changes (41.46a)

Dρ

Dt
= −ρ∇ · v mass conservation (41.46b)

(ωa · ∇) χ̇ = ∇ · (ωa
χ̇) absolute vorticity is non-divergent: ∇ · ωa = 0 (41.46c)

∇χ · (∇× F ) = ∇ · (F ×∇χ) divergence of curl vanishes. (41.46d)

The identity (41.46d) follows from

∇χ · (∇× F ) = ∇ · (χ∇× F ) = ∇ · [∇× (χF )−∇χ× F ] = ∇ · (F ×∇χ), (41.47)

where a vanishing divergence of a curl is needed to reach the first and third equalities. These
identities then lead to the material evolution equation

ρ
DQ

Dt
= ∇ · (ωa

χ̇+ F ×∇χ). (41.48)

Now converting the material time derivative into its Eulerian expression, and making use of
mass conservation, renders the flux-form potential vorticity budget equation

∂t(ρQ) +∇ · [ρQv − ωa
χ̇− F ×∇χ] = 0. (41.49)

41.4.2 PV-substance and the potential vorticity flux
The budget equation (41.49) says that the density-weighted potential vorticity,

ρQ = ωa · ∇χ, (41.50)

has a local time tendency determined by the convergence of the potential vorticity flux vector

∂t(ρQ) = −∇ · JQ with JQ = ρQv − ωa
χ̇+∇χ× F . (41.51)

The potential vorticity flux vector, JQ, compares to that found for shallow water potential
vorticity given by equation (39.55). The budget (41.49) follows a form similar to material
tracers detailed in Chapter 20, though here with some particularly specific terms in the potential
vorticity flux vector, JQ. The correspondence suggests that one consider equation (41.49) as the
local budget for PV-substance, with Q the concentration of PV-substance and JQ its flux. This
interpretation is pursued further in Chapter 42 when exposing the rather novel properties of
budgets for PV-substance when integrated over regions bounded by isentropes.

The first term in the PV-substance flux vector (41.51) arises from the advection of PV-
substance; the second contribution arises from processes leading to material evolution of χ; and
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the third from any non-conservative acceleration, F , that is not parallel to ∇χ. Note that the
form of the non-conservative contribution, ∇χ× F , suggests that we think of F as contributing
to a torque that rotates the χ isosurfaces as it modifies the PV-substance (see Figure 41.4).

∇χ
F

χ isosurface

Figure 41.4: The contribution from any non-conservative acceleration (e.g., friction) to the potential vorticity
flux is given by Jfriction = ∇χ× F . This cross product is nonzero only when F is not fully aligned with ∇χ, so
that non-conservative forces create potential vorticity by rotating χ isosurfaces. Hence, if F is aligned with ∇χ,
or when there is no spatial structure to ∇χ× F (i.e., zero divergence), then non-conservative accelerations do
not contribute to potential vorticity evolution. This interpretation is analogous to that given to the effects from
baroclinicity on vorticity given in Section 40.4.

41.4.3 Gauge freedom in JQ and the kinematic flux
As seen by the potential vorticity equation (41.51), the time tendency for PV-substance, ∂t(ρQ),
is unchanged by adding the curl of a vector to the flux, JQ. This ambiguity manifests a gauge
freedom. We here exhibit the gauge freedom associated with JQ, and then in Section 41.4.4
expose yet another gauge freedom associated with the potential vorticity itself.4

Kinematic potential vorticity flux

Consider the identity
ρQ = ∇χ · ωa = ∇ · (χωa), (41.52)

which means that

∂t(ρQ) = ∂t[∇ · (χωa)] = ∇ · [∂t(χωa)] = −∇ · Jkin, (41.53)

where the time derivative commutes with the divergence operator. The final equality introduced
the kinematic potential vorticity flux

Jkin ≡ −∂t(χωa), (41.54)

which compares to the shallow water version given by equation (39.58). We conclude that the
two potential vorticity fluxes, Jkin and JQ, have equal divergence

∇ · Jkin = ∇ · JQ, (41.55)

and so they differ at most by the curl of a vector

Jkin = JQ +∇×A, (41.56)

4We offer more discussion of gauge freedom in Section 21.5.1 and further the use of gauge freedom for the
study of potential vorticity in Section 41.5 as well as throughout Chapter 42.
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withA referred to as a gauge function. There are a variety of potential vorticity fluxes encountered
in the study of potential vorticity, with each flux differing by the curl of a gauge function.

Relating the potential vorticity fluxes J kin and JQ

We determine the relation between Jkin and JQ through the following steps starting from

Jkin = −∂t(χωa) = −∂tχωa − χ (∇× ∂tv). (41.57)

To reach this result required the identity

∂tωa = ∇× ∂t(v +Ω× x) = ∇× ∂tv, (41.58)

which follows since Ω is time independent, and ∂tx = 0 since the Eulerian time derivative is
computed at a fixed space point. We next use the identity

−χ (∇× ∂tv) = −∇× (χ∂tv) +∇χ× ∂tv, (41.59)

so that the kinematic flux from equation (41.57) becomes

Jkin = −∂tχωa +∇χ× ∂tv −∇× (χ∂tv). (41.60)

Next recall the vector-invariant form of the velocity equation (40.33), here written in the form

∂tv + ωa × v = −ρ−1∇p−∇M + F , (41.61)

where we introduced the mechanical energy per mass

M = v · v/2 + Φ. (41.62)

Equation (41.61) then leads to the cross product

∇χ× ∂tv = ρQv − (χ̇− ∂tχ)ωa −∇χ× ρ−1∇p−∇× (χ∇M) +∇χ× F , (41.63)

where we used the identities

(ωa × v)×∇χ = (∇χ · ωa)v − (∇χ · v)ωa = ρQv − (χ̇− ∂tχ)ωa. (41.64)

Making use of equation (41.63) brings the kinematic flux (41.60) into the form

Jkin = ρQv − χ̇ωa −∇χ× ρ−1∇p+∇χ× F −∇× (χ∇M + χ∂tv). (41.65)

Comparing to equation (41.51) for JQ leads to the relation

Jkin = JQ − χB +∇× [χ (∂tv + ρ−1∇p+∇M)], (41.66)

where we introduced the baroclinicity vector, B = ∇× (−ρ−1∇p). Although the term −χB
does not appear in the form of a curl, it does have a zero divergence

∇ · (χB) = ∇χ ·B + χ∇ ·B = 0 + 0, (41.67)

where we set ∇χ · B = 0, and noted that the baroclinicity has zero divergence, ∇ · B =
∇ · [∇× (−ρ−1∇p)] = 0. As a result, we have shown that ∇ · Jkin = ∇ · JQ, which means that
each flux has the same affect on the time evolution of ρQ.
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41.4.4 Gauge freedom resulting from ∇ · ωa = 0

The divergence form of PV-substance given by equation (41.52) reveals that ρQ remains
unchanged if we add a total curl to the argument of the divergence operator. In particular,
consider the identities5

χωa = χ (∇× v + 2Ω) since ωa = ω + 2Ω (41.68a)

= ∇× (χv)−∇χ× v + χ 2Ω move gradient operator. (41.68b)

We have thus moved the curl operation acting on the velocity field (to compute relative
vorticity) onto a gradient of the scalar field, with a total curl making up the difference. Since
∇ · [∇× (χv)] = 0, we are led to the equivalent expressions for PV-substance

ρQ = ∇χ ·ωa = ∇ · (χ 2Ω+ χω) = ∇ · (2Ωχ−∇χ× v) = ∇χ · (2Ω)−∇ · (∇χ× v). (41.69)

The result of these manipulations is an expression for the Ertel potential vorticity that does not
involve the relative vorticity, but is instead written as the convergence of a vector

ρQ = −∇ · (−2Ωχ+∇χ× v). (41.70)

This form involves the component of the velocity that is parallel to χ isosurfaces since

(∇χ× v) · ∇χ = 0. (41.71)

Besides offering a curious expression for potential vorticity that does not require the relative
vorticity, we show in Section 42.4 how the formulation (41.70) can be especially useful for
developing budgets of integrated PV-substance.

In the manipulations (41.68a)-(41.68b), we did not touch the planetary vorticity term. We
certainly could do so, in which case

χ 2Ω = χ∇× (Ω× x) = ∇× (χΩ× x)−∇χ× (Ω× x). (41.72)

The term ∇ × (χΩ × x) drops out when taking the divergence. However, the term Ω × x
requires us to evaluate the position vector, x, for each point in the fluid, and doing so is not
generally convenient. For this reason, we do not modify the planetary vorticity contribution to
the potential vorticity, preferring to keep the form χ 2Ω in equation (41.70).

41.5 A hydrostatic primitive equation and Boussinesq ocean
Building on the vorticity budget in Section 40.7, we here develop the PV-substance budget for
a hydrostatic primitive equation Boussinesq ocean in the presence of diabatic processes and
non-conservative forces such as friction. For that purpose, recall the vorticity equation for a
hydrostatic and Boussinesq ocean (40.151)

Dωhy
a

Dt
= (ωhy

a · ∇)v︸ ︷︷ ︸
stretching + tilting

+ ∇× ẑ b︸ ︷︷ ︸
baroclinicity

+ ∇× F ,︸ ︷︷ ︸
friction curl

(41.73)

where b is the Archimedean buoyancy used in our discussion of the Boussinesq ocean in Chapter
29, and

ωhy
a = ωhy + f ẑ = ∇× u+ f ẑ (41.74)

5We encounter similar mathematical manipulations in Section 69.4 when studying the connection between
advection and skew diffusion in the tracer equation.
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is the absolute vorticity for the hydrostatic fluid with u the horizontal velocity (see equations
(40.140) and (40.149)).

41.5.1 Potential vorticity
Baroclinicity is eliminated from the vorticity equation (41.73) by projecting the absolute vorticity
onto the direction normal to buoyancy surfaces

∇b · Dω
hy
a

Dt
= ∇b · [(ωhy

a · ∇)v] +∇b · (∇× F ), (41.75)

where we used
∇b · (∇× ẑ b) = ∇b · (∇b× ẑ) = 0. (41.76)

We next make use of the identity

D(∂b/∂xi)

Dt
=

∂

∂xi

[
Db

Dt

]
−∇b · ∂v

∂xi
=

∂ḃ

∂xi
−∇b · ∂v

∂xi
, (41.77)

so that

ωhy
a ·
[
D∇b
Dt

]
= ωhy

a · ∇ḃ−∇b · [(ωhy
a · ∇)v]. (41.78)

Making use of this result in equation (41.75) renders

∇b · Dω
hy
a

Dt
+ ωhy

a ·
D∇b
Dt

= ωhy
a · ∇ḃ+∇b · (∇× F ), (41.79)

which leads to
DQ

Dt
= (ωhy

a · ∇) ḃ+∇b · (∇× F ) (41.80)

where
Q = ωhy

a · ∇b = ωhy · ∇b+ f ∂zb (41.81)

is the potential vorticity for a rotating hydrostatic Boussinesq ocean. Potential vorticity is
materially invariant for the inviscid and adiabatic case, in which F = 0 and ḃ = 0.

It is sometimes useful to split the hydrostatic vorticity into its vertical and horizontal terms
as per equation (40.140). In this way, potential vorticity takes on the form

Q =
∂u

∂z

∂b

∂y
− ∂v

∂z

∂b

∂x
+ (ζ + f)

∂b

∂z
= ẑ ·

[
∂u

∂z
×∇b

]
+ (ζ + f)

∂b

∂z
. (41.82)

This expression plays an important role in characterizing flows with order unity Rossby number,
where the term ẑ · (∂zu×∇b) can become comparable to (ζ + f) ∂zb, particularly in regions of
strong horizontal buoyancy fronts such as those studied by Thomas et al. (2008) and Thomas
et al. (2013).

41.5.2 Potential vorticity flux vector
The material form of the potential vorticity equation (41.80) is converted into its flux-form via

∂tQ+∇ · (vQ) = ωhy
a · ∇ḃ+∇b · (∇× F ) (41.83a)

= ∇ · [ḃωhy
a + b (∇× F )] (41.83b)

= ∇ · [ḃωhy
a +∇× (bF )−∇b× F ] (41.83c)

= ∇ · (ḃωhy
a −∇b× F ), (41.83d)
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where we used

∇ · v = 0 Boussinesq flow is non-divergent (41.84a)

∇ · ωhy
a = 0 vorticity always has zero divergence (41.84b)

∇ · (∇× F ) = 0 divergence of curl vanishes (41.84c)

∇ · [∇× (bF )] = 0 divergence of curl vanishes. (41.84d)

The conservation equation (41.83d) allows us to identify a potential vorticity flux vector for the
hydrostatic Boussinesq ocean

JQ = vQ− ḃωhy
a +∇b× F , (41.85)

so that the potential vorticity equation takes the form

∂tQ+∇ · JQ = 0. (41.86)

The potential vorticity flux (41.85) compares directly to the potential vorticity flux (41.51) suited
to the non-hydrostatic and non-Boussinesq fluid. As such, it is comprised of an advective term

Jadvective = vQ, (41.87)

and non-advective terms arising from diabatic processes and non-conservative accelerations (e.g.,
friction)

Jnon-advective = −ḃωhy
a +∇b× F . (41.88)

41.5.3 Kinematic derivation of the potential vorticity flux

Following the discussion in Section 41.4.3, we consider a kinematic derivation of the potential
vorticity flux vector for the hydrostatic and Boussinesq ocean. For that purpose, write the
hydrostatic Boussinesq potential vorticity (41.81) in the form

Q = ωhy
a · ∇b = ∇ · (bωhy

a ), (41.89)

which follows since ∇ · ωhy
a = 0. Taking the Eulerian time derivative then leads to

∂tQ = −∇ · Jkin (41.90)

where we defined the kinematic potential vorticity flux

Jkin = −∂t(bωhy
a ). (41.91)

The kinematic potential vorticity flux (41.91) is directly analogous to the potential vorticity flux
(41.54) appearing in the non-hydrostatic and non-Boussinesq fluid.

Manifesting impermeability

The potential vorticity flux (41.91) manifests the impermeability property of Chapter 42 since

n̂ · Jkin/Q = − 1

|∇b|
∂b

∂t
= n̂ · vb⊥, (41.92)
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where n̂ = ∇b/|∇b| is the outward unit normal for a buoyancy surface, and with vb⊥ the velocity
of a point on the isopycnal that satisfies

(∂t + vb⊥ · ∇) b = 0. (41.93)

We return in Chapter 42 to help clarify this particular point about impermeability.

Relating JQ and J kin

We relate the two potential vorticity fluxes, JQ and Jkin, just like in Section 41.4.3 for the
non-hydrostatic and non-Boussinesq fluid. Although the steps are exactly analogous, it is good
practice to work through the details. For that purpose, start with the kinematic flux to write

Jkin = −∂t(bωhy
a ) = −∂tbωhy

a − b (∇× ∂tu), (41.94)

where we used
∂tω

hy
a = ∂tω

hy = ∇× ∂tu. (41.95)

Next use the identity
−b (∇× ∂tu) = −∇× (b ∂tu) +∇b× ∂tu, (41.96)

so that the kinematic flux from equation (41.94) becomes

Jkin = −∂tbωhy
a +∇b× ∂tu−∇× (b ∂tu). (41.97)

Next recall the vector-invariant form of the hydrostatic and Boussineq velocity equation (40.146)

∂tu+ ωhy
a × v = −∇(φ+ u2/2) + b ẑ + F , (41.98)

This equation then leads to the cross product

∇b× ∂tu = Qv − (ḃ− ∂tb)ωhy
a −∇× [b∇(φ+ u · u/2)− (b2/2) ẑ] +∇b× F , (41.99)

where we used the identities

(ωhy
a × v)×∇b = (∇b · ωhy

a )v − (∇b · v)ωhy
a = Qv − (ḃ− ∂tb)ωhy

a . (41.100)

Bringing everything together leads to the kinematic potential vorticity flux

Jkin = −∂tbωhy
a +∇b× ∂tu−∇× (b ∂tu) (41.101a)

= Qv − ḃωhy
a +∇b× F +∇× [−b∇(φ+ u · u/2) + b2 ẑ − b ∂tu] (41.101b)

= JQ +∇× [−b∇(φ+ u · u/2) + b2 ẑ − b ∂tu]. (41.101c)

We have thus verified that Jkin and JQ differ by the curl of a vector, so that their divergences
are indeed equal.

41.5.4 A potential vorticity flux vector suited to steady flows
Schär (1993) provided a generalization of Bernoulli’s theorem for understanding steady geophysi-
cal flows, with Marshall (2000), Marshall et al. (2001), and Polton and Marshall (2007) applying
this theorem to oceanic contexts within a hydrostatic and Boussinesq ocean.6 We here derive
their potential vorticity flux vector for the hydrostatic and Boussinesq ocean. The manipulations
share similarities with those in Section 41.5.3, yet we present the details for further developing

6We studied the Bernoulli potential and Bernoulli theorem in Section 26.9.3.
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an appreciation of the various manipulations, which are a central facet of working with potential
vorticity. The presentation here is a warm-up to the non-Boussinesq and non-hydrostatic case
studied in Section 42.3.1, where we also provide example uses for the formulation.

Momentum equation

We start by exposing the Boussinesq form of the Bernoulli potential within the vector-invariant
velocity equation. For this purpose, return to the horizontal momentum equation (40.146), and
expand the expressions for perturbation pressure and the buoyancy

∂tu+ (f + ωhy)× v = −∇ (φ+ |u|2/2) + ẑ b+ F (41.102a)

= −∇ (|u|2/2)−∇(p− p0)/ρo − ẑ g (ρ− ρo)/ρo + F (41.102b)

= −∇ (|u|2/2)−∇(p/ρo)− ẑ g ρ/ρo + F (41.102c)

= −∇(|u|2/2 + p/ρo)− ẑ
[
g ρ− g ρo + g ρo

ρo

]
+ F (41.102d)

= −∇(|u|2/2 + p/ρo + g z)− ẑ g (ρ− ρo)/ρo + F (41.102e)

= −∇B + ẑ b+ F , (41.102f)

where we introduced the Bernoulli potential for a hydrostatic and Boussinesq fluid7

B = |u|2/2 + p/ρo + g z. (41.103)

Potential vorticity flux

The flux-form potential vorticity conservation statement remains as given by equation (41.83d),
and the PV-substance flux is given by equation (41.85). However, we can make use of the gauge
invariance of the potential vorticity flux to write it in a manner conducive to analyzing steady
state conditions. For this purpose, operate with ∇b× on the velocity equation (41.102f) to have

∇b× ∂tu+∇b× (ωhy
a × v) = −∇b×∇B +∇b× ẑ b+∇b× F . (41.104)

Now make use of the identity

∇b× (ωhy
a × v) = (∇b · v)ωhy

a − (ωhy
a · ∇b)v (41.105)

in equation (41.104) to yield

(v · ∇b)ωhy
a − (ωhy

a · ∇b)v = −∇b× ∂tu−∇b×∇B +∇b× ẑ b+∇b× F . (41.106)

We next make use of this identity for the purpose of manipulating the potential vorticity flux
given by equation (41.85)

JQ = vQ− ḃωhy
a +∇b× F (41.107a)

= v (ωhy
a · ∇b)− [∂tb+ v · ∇b]ωhy

a +∇b× F (41.107b)

= [v (ωhy
a · ∇b)− (v · ∇b)ωhy

a ]− ∂tbωhy
a +∇b× F (41.107c)

= [∇b× ∂tu+∇b×∇B −∇b× ẑ b−∇b× F ]− ∂tbωhy
a +∇b× F (41.107d)

= ∇b× ∂tu− ∂tbωhy
a +∇b×∇B −∇b× ẑ b (41.107e)

= ∇b× [∂tu+∇B]− ∂tbωhy
a −∇× (ẑ b2/2). (41.107f)

7See Section 26.9 for the non-Boussinesq Bernoulli potential.
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Dropping the rotational (gauge) term, −∇× (ẑ b2/2), leads to the flux vector

J ss = ∇b× (∂tu+∇B)− ∂tbωhy
a (41.108)

We have now reached our goal whereby the steady state version of the potential vorticity
flux (41.108) takes the rather elegant form

J ss = ∇b×∇B = ∇× b∇B = −∇× B∇b steady state. (41.109)

Hence, the steady state potential vorticity flux is aligned with the intersection of surfaces of
constant buoyancy and Bernoulli potential

∇b · J ss = 0 and ∇B · J ss = 0 steady state. (41.110)

Recalling our discussion of vector streamfunctions in Section 21.5.3, where here see that the
buoyancy and Bernoulli potential serve as the two scalar functions that build the vector
streamfunction for the steady state potential vorticity flux. Mapping surfaces of constant
buoyancy and constant Bernoulli potential, and determining their intersections, then determines
the pathways for potential vorticity flux operating in a steady state. Figure 41.5 offers a schematic
based on the analogous situation for a velocity streamfunction shown in Figure 21.3. This result
is the Boussinesq/hydrostatic form of the more general non-Boussinesq/non-hydrostatic case
derived in Section 42.3.3.
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B = B1

Figure 41.5: Isosurfaces of constant buoyancy, b, and Bernoulli potential, B, serving as the two scalar functions
building the vector streamfunction for potential vorticity flux, JQ

ss , in the steady state (see equation (41.110)).
Streamlines are defined by the intersections of the b and B isosurfaces, as shown by four streamlines along the
corners of this particular volume. The transport of PV-substance through the surface, S, is determined by the
line integral,


∂S

B db = −

∂S
b dB = (B1 − B2) (b2 − b1), around the boundary circuit.

41.6 Potential vorticity over finite regions

In Section 41.2, we detailed why there is no materially invariant potential vorticity for a
realistic equation of state for seawater, in which ρ = ρ(S,Θ, p). A similar limitation holds for
the atmosphere, where the specific entropy is a function of pressure, density, and moisture
concentration. We here build from our discussion of Kelvin’s circulation theorem in Section 40.2
to consider a finite volume pancake potential vorticity. Rather than being a property carried by
each fluid particle, the pancake potential vorticity is carried by a finite fluid region and it is
materially invariant for perfect fluid flows, even for a realistic equation of state. The discussion
here follows that given by Kooloth et al. (2022).
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41.6. POTENTIAL VORTICITY OVER FINITE REGIONS

41.6.1 Differential relations

The starting point is the potential vorticity equation written as in equation (41.41)

ρ
DQ

Dt
= (ωa · ∇) χ̇+∇χ · [∇× (−ρ−1∇p)] +∇χ · (∇× F ) with Q = ρ−1∇χ · ωa. (41.111)

The key step in the derivation is to replace the pressure gradient acceleration with its equivalent
in terms of specific enthalpy and its partial derivatives.8 For this purpose, write the specific
enthalpy as a function of Conservative Temperature, salinity, and pressure

H = H(Θ, S, p), (41.112)

which leads to the spatial gradient9

∇H = ρ−1∇p+
[
∂H

∂Θ

]
p,S

∇Θ+

[
∂H

∂S

]
Θ,p

∇S, (41.113)

which then leads to the expression for the pressure gradient acceleration

−ρ−1∇p = −∇H +HΘ∇Θ+HS ∇S, (41.114)

where we introduced the shorthand notation

HΘ =

[
∂H

∂Θ

]
p,S

and HS =

[
∂H

∂S

]
Θ,p

. (41.115)

Use of the identity (41.114) within the potential vorticity equation (41.111) leads to

ρ
DQ

Dt
= (ωa · ∇) χ̇+∇χ · ∇ × [HΘ∇Θ+HS ∇S + F ] , (41.116)

where we set ∇×∇H = 0. Now make use of the following vector identity, with C an arbitrary
vector,

∇χ · (∇×C) = ∇ · (χ∇×C) = ∇ · [∇× (χC)−∇χ×C] = −∇ · (∇χ×C), (41.117)

to bring the potential vorticity equation (41.116) to

ρ
DQ

Dt
= ∇ ·

[
ωa
χ̇−∇χ× (HΘ∇Θ+HS ∇S + F )

]
. (41.118)

41.6.2 Integral relations

Equation (41.118) is quite general. To reduce by one the terms on the right hand side, we can
either choose χ = Θ or χ = S. Let us choose χ = Θ, in which case

ρ
DQ(Θ)

Dt
= ∇ ·

[
HS ∇S ×∇Θ+ F ×∇Θ+ ωa Θ̇

]
with Q(Θ) = ρ−1∇Θ · ωa. (41.119)

We still have the reversible term, HS ∇S ×∇Θ, contributing to the material time evolution of
Q(Θ), and this term vanishes only for particularly idealized forms of the fluid thermodynamics.
Rather than pursue material invariance for potential vorticity along a fluid particle, consider an

8We made use of a similar approach when studying circulation in Section 40.2.5.
9We performed a similar manipulation in Section 26.6.2.
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integration of Q(Θ) over a finite region that moves with the flow, and take its time derivative

d

dt

ˆ
R(v)

ρQ(Θ) dV =

ˆ
R(v)

ρ
DQ(Θ)

Dt
dV (41.120a)

=

ˆ
R(v)
∇ ·
[
HS ∇S ×∇Θ+ F ×∇Θ+ ωa Θ̇

]
dV (41.120b)

=

˛
∂R(v)

[
HS ∇S ×∇Θ+ F ×∇Θ+ ωa Θ̇

]
· n̂dS. (41.120c)

The first and second terms on the right hand side vanish if we choose a volume whose boundary
has an outward unit normal vector, n̂, parallel to ∇Θ at every point around the closed region.
This sort of Θ-bubble is uncommon in a stably stratified fluid, though it may occur over relatively
small scales in turbulent flows.

For another arrangement, consider the case of salinity with closed contours on Conservative
Temperature surfaces. We thus take a pancake/disk region with n̂ parallel to ∇Θ on its top
and bottom and n̂ parallel to ∇S on the sides.10 For this region, the ∇S ×∇Θ contribution
vanishes along all the boundaries, and the contribution from F only appears on the sides where
n̂ is parallel to ∇S. We can take a complementary approach by setting χ = S, in which case
the previous discussion holds yet with Θ and S interchanged. Either of these pancake regions
preserves the materially integrated potential vorticity for inviscid flows with S and Θ both
materially invariant.

41.7 Exercises

exercise 41.1: Potential vorticity for a perfect non-hydrostatic Boussinesq
ocean
Consider a perfect tangent plane Boussinesq ocean whose governing equations are given by

Dv

Dt
+ f (ẑ × v) = −∇φ+ b ẑ (41.121)

∇ · v = 0 (41.122)

Db

Dt
= 0 (41.123)

b = −g (ρ− ρo)
ρo

= g α θ, (41.124)

where θ is the potential temperature and α > 0 is a constant thermal expansion coefficient, and
we assumed a linear equation of state for density whereby

ρ = ρo (1− α θ). (41.125)

Further details are provided in Section 29.1.6. Some of this exercise follows the hydrostatic
Boussinesq discussion in Section 41.5, though they differ in important places, so be careful!

(a) Derive the equation for the material time evolution of potential vorticity in this fluid
system. Show all steps in the derivation.

10The geometry is similar to that shown in Figure 41.5 when discussing the steady state potential vorticity flux.
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(b) The baroclinicity vector appearing in the Boussinesq vorticity equation is B = ∇× ẑ b =
∇b × ẑ (see Section 40.7.1 to check the derivation in part (a) above). Show that this
vector results upon making the Boussinesq approximation to the non-Boussinesq expression
B = (∇ρ × ∇p)/ρ2. Hint: drop the δρ and δp product given that it is a higher order
quantity.

(c) Show that the vertical portion of Qbouss can be written

Qbouss
vert = (ζ + f)N2 (41.126)

where ζ = ∂xv − ∂yu is the vertical component to the relative vorticity and N2 = ∂b/∂z is
the squared buoyancy frequency (Section 30.6). Hint: this is not tough to show; there is
no trick.

(d) If flow maintains hydrostatic and geostrophic balance, show that the horizontal portion of
Qbouss can be written

Qbouss
horz = ω · ∇hb ≈ −f−1|∇hb|2. (41.127)

Hint: recall that for hydrostatic and geostrophic flow, the vertical velocity is much smaller
than horizontal.

exercise 41.2: Potential vorticity for diabatic and frictional non-hydrostatic
Boussinesq ocean
Reconsider Exercise 41.1 in the presence of irreversible forces (e.g., friction) and buoyancy
sources so that the governing tangent plane equations are

Dv

Dt
+ f (ẑ × v) = −∇φ+ b ẑ + F (41.128)

∇ · v = 0 (41.129)

Db

Dt
= ḃ (41.130)

b = −g (ρ− ρo)
ρo

= g α θ. (41.131)

In these equations we assumed a linear equation of state for density whereby

ρ = ρo (1− α θ), (41.132)

with α > 0 a constant thermal expansion coefficient. Hence, material time changes to the
buoyancy are given by

Db

Dt
= ḃ = g α θ̇, (41.133)

where θ̇ is a diabatic heating source/sink. We also included F to the velocity equation (41.128),
which represents a non-conservative acceleration such as from friction or boundary stresses.

(a) Derive the equation for the material time evolution of potential vorticity in this fluid
system, including the irreversible contributions from non-conservative accelerations and
from heating.

(b) Derive an equation for the potential vorticity time tendency (i.e., Eulerian time derivative),
written in the form

∂tQ = −∇ · JQ. (41.134)
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What is the potential vorticity flux JQ? Note that your answer is unique up to the curl of
an arbitrary vector (gauge symmetry). Also note that for a Boussinesq flow we drop the
constant reference density in the definition of JQ.

(c) A common diabatic process is written in the form of a damping source

ḃ = −µ (b− b∗), (41.135)

where µ is a constant Newtonian damping coefficient (dimensions of inverse time), and b∗

is a specified buoyancy profile. This form of a buoyancy source acts to damp the buoyancy
towards a specified profile b∗. Show that Newtonian damping of buoyancy corresponds to
potential vorticity damping towards Q∗ = ωa · ∇b∗.

(d) A form for the friction operator is given by Rayleigh drag

F = −γ v, (41.136)

with γ a constant Rayleigh damping coefficient with dimension of inverse time. Show
that Rayleigh drag in the momentum equation, which acts to damp velocity towards zero,
corresponds to a damping of potential vorticity towards its planetary geostrophic form,
Qpg = f N2, where N2 = ∂b/∂z is the squared buoyancy frequency.

(e) Discuss the balance needed between forcing terms in JQ to arrive at a steady state (i.e.,
zero Eulerian time tendency). Continue to assume the friction is in the form of Rayleigh
drag and heating is in the form of Newtonian damping.
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Chapter 42

POTENTIAL VORTICITY BUDGETS

In Chapter 41 we studied properties of the Ertel potential vorticity, Q = ρ−1ωa · ∇χ, which
is the specific volume times the projection of the absolute vorticity, ωa, onto the gradient of a
scalar field, ∇χ. For a perfect fluid (i.e., no friction, heating, or diffusion) with ∇χ orthogonal
to the baroclinicity vector, B = ρ−2∇ρ × ∇p, and if χ is itself materially invariant, then Q
is a material invariant: DQ/Dt = 0, meaning that Q remains constant when following a fluid
particle. In geophysical fluid mechanics, it is common to define potential vorticity with χ equal
to the specific entropy (for the atmosphere) or Archimedean buoyancy (for the ocean). Specific
entropy and buoyancy are thermodynamic tracers that are a function of the fluid state (e.g.,
temperature, pressure, salinity), whereas potential vorticity is a function of the flow (via the
absolute vorticity). It is remarkable that a materially invariant property of the fluid can, if it
annihilates baroclinicity, generate a materially invariant property of the flow.

In this chapter we develop finite volume budgets for potential vorticity substance,
´
R
Qρ dV ,

with such budgets fundamentally affected by the impermeability theorem respected by the
potential vorticity flux, JQ. Impermeability says that there is identically zero potential vorticity
flux crossing χ-isosurfaces, with this property holding even when there are mass and thermal
fluxes crossing χ-isosurfaces. Such generality signals the kinematic nature of impermeability,
which ultimately follows from the non-divergent nature of vorticity. It offers further insight into
why, as developed in Section 42.4, the volume integrated PV-substance,

´
R
Qρ dV , changes only

when χ surfaces intersect a boundary.

Impermeability and material invariance are two aspects of potential vorticity that are easily
confused. Here we summarize their basic elements that are explored within this chapter.

• The potential vorticity flux, JQ, does not cross χ isosurfaces, and this property is referred
to as impermeability. Impermeability holds for all flows, even with irreversible processes
and with Dχ/Dt ̸= 0. Hence, any closed volume, Rχ, moving with velocity, vQ = JQ/(ρQ),
maintains a constant

´
Rχ
ρQ dV , so that the addition or removal of mass to the region only

dilutes or concentrates the potential vorticity substance. This finite domain conservation
of potential vorticity substance is a kinematic property that follows from the non-divergent
nature of absolute vorticity, or, equivalently, since ρQ = ωa · ∇χ = ∇ · (ωa

χ) equals to a
divergence.

• Material invariance of potential vorticity, DQ/Dt = 0, holds for a perfect fluid and for
Q that is defined according to a materially constant scalar field, χ, that annihilates
baroclinicity via ρ−2 (∇ρ×∇p) · ∇χ = 0. Material conservation of potential vorticity is
a local property holding for each fluid particle, and as such it is a far more restrictive
property than impermeability and the associated finite volume conservation of potential
vorticity substance.
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42.1. LOOSE THREADS

chapter guide

The goal of this chapter is to fill in the conceptual and technical details needed to
understand the above two bullet points about finite volume and local conservation
properties of potential vorticity. We build from the potential vorticity mechanics introduced
in Chapter 41, and make use of vector calculus summarized in Chapter 2. This chapter is
an essential read for those interested in potential vorticity theory and potential vorticity
budgets. Further study of these topics are summarized by Müller (1995).

42.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204
42.2 Variations on the impermeability theorem . . . . . . . . . . . . . . . . . 1205

42.2.1 Impermeability for the Haynes-McIntyre potential vorticity flux . 1205
42.2.2 A kinematic derivation of impermeability . . . . . . . . . . . . . 1207
42.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208

42.3 Impermeability theorem for seawater . . . . . . . . . . . . . . . . . . . . 1208
42.3.1 Ocean potential vorticity in terms of potential density . . . . . . 1208
42.3.2 A modified PV-substance flux . . . . . . . . . . . . . . . . . . . . 1209
42.3.3 Integral constraints for steady state . . . . . . . . . . . . . . . . . 1210
42.3.4 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210

42.4 Integrated potential vorticity substance . . . . . . . . . . . . . . . . . . . 1211
42.4.1 The primary role of boundaries . . . . . . . . . . . . . . . . . . . 1211
42.4.2 Region bounded by a single buoyancy surface . . . . . . . . . . . 1212
42.4.3 Region bounded by two buoyancy surfaces . . . . . . . . . . . . . 1213
42.4.4 Region bounded by land and a buoyancy surface . . . . . . . . . 1214
42.4.5 A layer outcropping at the ocean surface . . . . . . . . . . . . . . 1215
42.4.6 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216

42.5 Boundary fluxes of PV-substance . . . . . . . . . . . . . . . . . . . . . . 1216
42.5.1 Layer integrated budget . . . . . . . . . . . . . . . . . . . . . . . 1216
42.5.2 Impermeability across interior layer interfaces . . . . . . . . . . . 1217
42.5.3 Potential vorticity flux at a land-sea boundary . . . . . . . . . . 1218
42.5.4 Potential vorticity flux at the air-sea boundary . . . . . . . . . . 1219
42.5.5 Thought experiments . . . . . . . . . . . . . . . . . . . . . . . . . 1220
42.5.6 Is there a preferred form of the PV-substance flux? . . . . . . . . 1221
42.5.7 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222

42.1 Loose threads

• Make a table with PV and PV fluxes. They can get rather confusing.

• Callies and Ferrari (2018) and bottom mixing induced circulation. Connect the thermal
wind next to the bottom, inducing flow counter to Kelvin waves, to the potential vorticity
boundary fluxes in Section 42.5.3. Discuss the spin up experiment in Section 4 of Callies
and Ferrari (2018) from a potential vorticity perspective. Note the role of bottom friction
in enabling the bottom buoyancy mixing to impart potential vorticity to the flow. without
friction then there would be no way to introduce potential vorticity to the flow. That then
couples the buoyancy mixing to the friction. Callies and Ferrari (2018) also note that to
satisfy n̂ · ∇b = 0 requires friction. I do not understand that fully, but must be related to
this potential vorticity argument.
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42.2 Variations on the impermeability theorem
In this section we derive the impermeabity theorem satisfied by the potential vorticity flux
vector. We illustrate the theorm for a variety of potential vorticity flux vectors that differ by
a gauge function. So although these fluxes have identical divergences, the physical content of
the fluxes is distinct. Consequently, one may choose to use a particular flux depending on the
context of their use. We return to this point in Section 42.5.6.

42.2.1 Impermeability for the Haynes-McIntyre potential vorticity flux
We start with the flux-form evolution equation for PV-substance given by equation (41.49)

∂t(ρQ) +∇ · JQ = 0 with JQ = ρvQ− χ̇ωa +∇χ× F , (42.1)

with χ̇ = Dχ/Dt, and with the PV-substance flux vector, JQ, given in the form examined in
Haynes and McIntyre (1987).1 Following the derivation in Haynes and McIntyre (1987), we
decompose the velocity into two components, one oriented parallel to constant χ surfaces and
one oriented perpendicular

v∥ = v − n̂ (v · n̂) and v⊥ = − n̂ ∂
χ/∂t

|∇χ| =⇒ v = v∥ + v⊥ +
n̂ χ̇

|∇χ| (42.2)

where
n̂ = ∇χ/|∇χ| (42.3)

is the unit normal vector for χ-isosurfaces. By construction, the velocity v⊥ satisfies

(∂t + v⊥ · ∇)χ = 0. (42.4)

Hence, according to the kinematics detailed in Section 19.6.2,

v⊥ · n̂ = vχ · n̂, (42.5)

where vχ is the velocity of a point fixed on a constant χ surface. That is, v⊥ provides a measure
of the velocity for a point following a constant χ surface, even as that surface moves through
the fluid. We make use of this key identity below.

With the velocity decomposition (42.2), the PV-substance flux vector takes the form

JQ = ρvQ− χ̇ωa +∇χ× F (42.6a)

=

[
v∥ + v⊥ +

χ̇∇χ
|∇χ|2

]
ρQ− χ̇ωa +∇χ× F (42.6b)

= (v∥ + v⊥) ρQ− χ̇ [ωa − (ωa · n̂) n̂] +∇χ× F (42.6c)

= (v∥ + v⊥) ρQ− χ̇ (ωa)∥ +∇χ× F (42.6d)

= v⊥ ρQ︸ ︷︷ ︸
J⊥

+
[
ρQv∥ − χ̇ (ωa)∥

]
+∇χ× F︸ ︷︷ ︸

J∥

(42.6e)

≡ J⊥ + J∥, (42.6f)

where

(ωa)∥ = ωa − (ωa · n̂) n̂ = ωa −
[
ωa · ∇χ
|∇χ|2

]
∇χ = ωa −

ρQ

|∇χ| n̂. (42.7)

1Following Haynes and McIntyre (1987), we set the gauge function, A, to zero in equation (42.1).
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The above results motivate us to write the PV-substance budget equation (42.1) in the form

∂t(ρQ) +∇ · (vQ ρQ) = 0, (42.8)

where

vQ ≡
JQ

ρQ
definition of vQ (42.9a)

= v +
−χ̇ωa +∇χ× F

ρQ
equation (42.1) (42.9b)

= v⊥ + v∥ +
−χ̇ (ωa)∥ +∇χ× F

ρQ
equation (42.6e), (42.9c)

so that vQ is the velocity that advects the PV-substance through the fluid. A direct calculation
shows that vQ satisfies the following property

vQ · n̂ = v⊥ · n̂ = vχ · n̂, (42.10)

where the final equality made use of the identity (42.5). As a result, vQ has a normal component
that is identical to that of the velocity of a point fixed on the χ surface

(∂t + vQ · ∇)χ = 0. (42.11)

We depict this result in Figure 42.1, whereby the PV-substance flux never crosses the χ-isosurface,
even as the surface moves and even in the presence of processes that allow for matter and thermal
properties to cross the surface. This result holds since the χ-isosurface moves in a way to
precisely track the PV-substance flux. In general, χ surfaces are permeable to matter and
thermal properties but, as we have just shown, are impermeable to PV-substance. This is a
rather remarkable kinematic result that has important implications for budgets of PV-substance
within regions bounded by constant χ surfaces.

n̂ = ∇χ/|∇χ|

vQ · n̂ = vχ · n̂
χ isosurface

Figure 42.1: The flux, JQ, of PV-substance, ρQ = ∇ · (χωa), does not penetrate a surface of constant χ.
This kinematic result follows since the effective velocity of PV-substance, vQ = JQ/(ρQ), has the same normal
component as a point fixed on a χ surface, vQ · n̂ = vχ · n̂. Consequently, the χ surface moves in a manner so that
no flux of PV-substance crosses the surface, even in the presence of irreversible processes. This result is known as
the impermeability theorem since χ surfaces are impermeable to the flux of PV-substance, even though they are
permeable to matter and thermal properties.
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42.2.2 A kinematic derivation of impermeability
The derivation of impermeability in Section 42.2.1 follows that given by Haynes and McIntyre
(1987). We now complement that derivation by an alternative that emphasizes the kinematic
origins of impermeability. For that purpose, we make no use of the vorticity equation or the
equation for χ. Instead, we merely use the definition of potential vorticity and the non-divergence
property of absolute vorticity. This derivation follows our discussion of gauge freedom introduced
in Section 41.4.3, as well as the discussion of potential vorticity for a hydrostatic Boussinesq
ocean in Section 41.5.

The key identity we need was already given by equation (41.11)

ρQ = ωa · ∇χ = ∇ · (ωa
χ), (42.12)

thus revealing that ρQ is a pure divergence. Taking the Eulerian time derivative then leads to

∂t(ρQ) = −∇ · Jkin, (42.13)

where
Jkin = −∂t(ωa

χ) (42.14)

is the kinematic form of the PV-substance flux. By construction, this flux vanishes in the steady
state

Jkin = 0 in steady state, (42.15)

which certainly contrasts to the steady state Haynes-McIntyre flux given by equation (42.1).

Introducing the velocity seen from an inertial reference frame (also called the absolute velocity
(Section 13.7.1)

va = v +Ω× x (42.16)

leads to

−(∂tωa)χ = −∂t(∇× va)χ = −(∇× ∂tva)χ = −∇× (∂tva
χ) +∇χ× ∂tva. (42.17)

Dropping the total curl (which amounts to choosing a gauge function) yields the modified
kinematic form for the PV-substance flux

J̃kin = −∂tva ×∇χ− ωa ∂tχ. (42.18)

It follows that

ṽkin · n̂ =
J̃kin · n̂
ρQ

= −ωa · ∇χ
ρQ

∂χ

∂t

1

|∇χ| = −
∂χ

∂t

1

|∇χ| = vχ · n̂, (42.19)

which is the same result (42.10) as found for the Haynes-McIntyre flux. This result allows us
to conclude that J̃kin satisfies the impermeability theorem. We again emphasize that there
has been no use of the dynamical equations for vorticity or for χ. Instead, this expression of
impermeability only used the definition of potential vorticity, along with the non-divergent
nature of vorticity, ∇ · ωa = 0.

Throughout this discussion, we assumed χ to be an arbitrary smooth scalar field. Hence,
any scalar field used to project out a component of the absolute vorticity has its iso-surfaces
impenetrable to the flux of the corresponding component of absolute vorticity. This result
trivializes the impermeability theorem from a mathematical perspective. In Section 40.3.4
we somewhat anticipated this result when studying the Cartesian components of the absolute
vorticity (see also Section 5 of Haynes and McIntyre (1987)). This trivial mathematical result
does not reduce the importance of the entropic potential vorticity impermeability theorem for
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studying stratified fluid flows. The importance holds since this particular potential vorticity has
direct connection to dynamics and thermodynamics.

42.2.3 Comments

The impermeability theorem was introduced by Haynes and McIntyre (1987). Their paper was
met by some confusion thus prompting them to write Haynes and McIntyre (1990). Besides
exposing the purely kinematic aspects of impermeability, the presentation in this section reveals
that there are multiple potential vorticity flux vectors that satisfy impermeability, with the
vectors differing by a gauge transformation. Which flux vector is prefered depends on the
application, with Bretherton and Schär (1993), Davies-Jones (2003a), and Marshall et al. (2001)
proposing criteria favoring one form over another. We pursue such considerations in Section
42.3.

42.3 Impermeability theorem for seawater

As seen from Section 42.2.2, impermeability holds for any component of vorticity and the
corresponding scalar isosurface. In contrast, material invariance of potential vorticity requires a
materially conserved scalar to annihilate the baroclinicity vector (e.g., Section 41.1.4). Conse-
quently, material invariance is much tougher to satisfy than impermeability. Indeed, as shown in
Section 41.2, there is no materially invariant potential vorticity for an ocean with a realistic
nonlinear equation of state (EOS). Hence, there is no materially invariant potential vorticity for
the ocean even in the absence of irreversible processes. Nevertheless, one can define an ocean
potential vorticity according to any scalar field, such as potential density, and still make use of
the impermeability theorem when performing a potential vorticity budget. We here expose the
details.

42.3.1 Ocean potential vorticity in terms of potential density

Following Marshall et al. (2001), we introduce an ocean potential vorticity field according to

Qocn = ρ−1∇b · ωa, (42.20)

where the Archimedean buoyancy field, b, is approximated by a chosen potential density (see
Section 30.3.4). As shown in Section 41.2, a globally defined buoyancy does not annihilate the
baroclinicity vector for a realistic seawater equation of state

B · ∇b = [−∇(1/ρ)×∇p] · ∇b ̸= 0. (42.21)

Consequently, DQocn/Dt ̸= 0 even in the absence of irreversible processes. Nonetheless, the
Eulerian budget for PV-substance satisfies

∂t(ρQ
ocn) = −∇ · J̃Q-ocn, (42.22)

and J̃Q-ocn satisfies the impermeability theorem for b-surfaces. A flux-form budget equation
greatly facilitates the study of budgets for PV-substance even within an ocean with a realistic
equation of state. Derivation of the flux-form equation (42.22) follows from the discussion in
Section 42.2.2, where we know that the kinematic flux

J̃Q-ocn = −∂tva ×∇b− ωa ∂tb = −∂tv ×∇b− ωa ∂tb (42.23)
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satisfies the impermeability theorem for b-surfaces and whose convergence drives the time
tendency for the PV-substance. Note that the second equality in equation (42.23) follows since

∂tva = ∂t(v +Ω× x) = ∂tv, (42.24)

given that the Eulerian time derivative is computed at a fixed position, x, and the planetary
rotation is assumed constant, ∂tΩ = 0.

42.3.2 A modified PV-substance flux
The kinematic flux (42.23) vanishes in the steady state. We here motivate a gauge transformed
flux that leads to the same flux divergence yet that renders a nonzero steady state flux. For this
purpose, make use of the vector-invariant velocity equation (equation (40.33))

∂tv + ωa × v = −ρ−1∇p−∇M + F , (42.25)

where
M = v · v/2 + Φ (42.26)

is the mechanical energy per mass of a fluid element. Bringing the pressure term inside of the
gradient operator leads to

∂tv + ωa × v = p∇(1/ρ)−∇(M + p/ρ) + F . (42.27)

Following our treatment of the hydrostatic Boussinesq ocean in Section 41.5.4, we introduce the
Bernoulli function2

B = M + p/ρ. (42.28)

The vector-invariant velocity equation (42.27) thus leads to the cross-product

∂tv ×∇b = −(ωa × v)×∇b+ [p∇(1/ρ)−∇(M + p/ρ) + F ]×∇b (42.29a)

= −(∇b · ωa)v + (∇b · v)ωa + [p∇(1/ρ)−∇(M + p/ρ) + F ]×∇b (42.29b)

= −v ρQocn + (ḃ− ∂tb)ωa + [p∇(1/ρ)−∇(M + p/ρ) + F ]×∇b. (42.29c)

Use of this result leads to the flux (42.23)

J̃Q-ocn = −∂tv ×∇b− ωa ∂tb (42.30a)

= v ρQocn − ḃωa − F ×∇b+ [∇(M + p/ρ)− p∇(1/ρ)]×∇b (42.30b)

= JQ + [∇(M + p/ρ)− p∇(1/ρ)]×∇b, (42.30c)

where JQ is the Haynes-McIntyre form of the PV-substance flux given by equation (42.1). The
term

∇(M + p/ρ)×∇b = ∇× [(M + p/ρ)∇b] (42.31)

is a total curl and as such it can be moved around without altering the evolution of PV-substance.
Furthermore, since it is parallel to buoyancy isosurfaces it does not alter the impermeability
properties of the PV-substance flux.

Marshall et al. (2001) focused attention on the flux

Jmarshall = J̃Q-ocn −∇(M + p/ρ)×∇b = −[∂tv +∇(M + p/ρ)]×∇b− ωa ∂tb. (42.32)

2The Bernoulli potential, B, arises from an analysis of the total energy budget as in equation (26.104), where
we see that the Bernoulli potential in a compressible (non-Boussinesq) fluid, B = M + p/ρ+ I, also includes the
internal energy per mass, I. However, the internal energy is missing from equation (42.28), thus motivating our
use of the terminology “a Bernoulli function” rather than “the Bernoulli potential”.
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Since Jmarshall differs from J̃Q-ocn by a total curl, their divergences are equal. Diagnostically
desirable features of Jmarshall include the following:

• ∇b · Jmarshall/(ρQ) = ∂tb, thus satisfying the impermeability theorem.

• Jmarshall has no explicit reference to irreversible processes. Consequently, in some cases it
can be simpler to diagnose than the Haynes-McIntyre flux, JQ.

• In a steady state, the flux is given by

Jmarshall = ∇b×∇(M + p/ρ) = ∇× [b∇(M + p/ρ)]. (42.33)

Consequently, M + p/ρ provides a streamfunction for the steady state flux on buoyancy
surfaces. As emphasized by Schär (1993), this result holds even when there are irreversible
processes, thus providing useful diagnostics even in the presence of dissipation.

42.3.3 Integral constraints for steady state

The steady state PV-substance flux in the form (42.33) can be used to develop some integral
constraints on the steady flow. For this purpose consider the steady form of Jmarshall and integrate
over an arbitrary simply connected area making use of Stokes’ theorem

ˆ
S

∇× [b∇B] · n̂dS =

‰
∂S
b∇B · dr =

‰
∂S
bdB = −

‰
∂S
B db. (42.34a)

The first equality made use of Stokes’ theorem; the second make use of the identity for exact
differentials

∇B · dr = dB; (42.35)

and the final equality made use of

bdB = d(bB)−B db (42.36)

and noted that the closed loop integral of an exact differential vanishes, so that

‰
∂S

d(B b) = 0. (42.37)

If we can find a closed contour where either B is a constant (dB = 0), or the buoyancy is a
constant (db = 0), then we have the steady state constraint

ˆ
S

Jmarshall · n̂dS = 0 area enclosed by contour with M + p/ρ constant or b constant.

(42.38)
In regions where there are such closed contours, this constraint offers useful insight into the
steady state balances. Marshall (2000) and Polton and Marshall (2007) make particular use of
closed B contours on constant depth surfaces (so that n̂ = ẑ) in a Boussinesq ocean.

42.3.4 Further study

Marshall et al. (2001) builds from the generalized Bernoulli theorem of Schär (1993) and
Bretherton and Schär (1993). We also consider these topics for a hydrostatic Boussinesq ocean
in Section 41.5.4.
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42.4 Integrated potential vorticity substance
In this section we derive some properties of integrated potential vorticity, with these properties
merely the result of how potential vorticity is defined. We write potential vorticity using a global
buoyancy field, b, as in our discussion of ocean potential vorticity in Section 42.3

ρQ = ωa · ∇b = ∇ · (ωa b) = ∇ · [(ω + 2Ω) b]. (42.39)

The following points are central to the results derived in this section, and they all follow from
the non-divergent nature of the absolute vorticity.

• The divergence form given in the second and third equalities of equation (42.39) is the
starting point for the derivations in this section. Indeed, as emphasized by Morel et al.
(2019), the divergence form is appropriate for deriving discrete approximations since in this
case the discrete potential vorticity also satisfies the properties developed in this section.

• As emphasized in Section 42.2, the properties in this section hold for any smooth scalar
field that is used to define the potential vorticity.

• The properties in this section hold even when there is no materially invariant potential
vorticity since we only make use of the non-divergent nature of the absolute vorticity.

42.4.1 The primary role of boundaries

Integral in terms of boundary vorticity and boundary buoyancy

We consider Q to be an intensive fluid propery measuring the amount of PV-substance per unit
mass (i.e., the concentration of PV-substance), and correspondingly with ρQ the amount of
PV-substance per volume.3 With this interpretation, the amount of PV-substance within an
arbitrary finite region is determined by the volume integral of ρQ

I =

ˆ
R

QρdV =

ˆ
R

∇ · (ωa b) dV =

˛
∂R
bωa · n̂dS, (42.40)

where the final equality used Gauss’s divergence theorem. Hence, the volume integrated PV-
substance in a region is determined solely by values of the absolute vorticity and buoyancy on
the region boundary. This property is strikingly distinct from material tracers. In practice it can
be useful to decompose the absolute vorticity into the relative vorticity plus planetary vorticity

I =

ˆ
R

QρdV =

˛
∂R
bωa · n̂dS =

˛
∂R
bω · n̂dS +

˛
∂R
b 2Ω · n̂dS. (42.41)

Integral in terms of boundary velocity and boundary buoyancy gradient

We follow Morel et al. (2019) by deriving an alternative expression for I in equation (42.41),
with this alternative expression more convenient in some cases. For this purpose we write

bω = b∇× v = ∇× (bv)−∇b× v, (42.42)

and use the divergence theorem to eliminate the total curl term (see Section 2.7.6)

˛
∂R
∇× (bv) · n̂dS =

ˆ
R

∇ · [∇× (bv)] dV = 0. (42.43)

3Recall our discussion of extensive and intensive fluid properties in Section 20.2.1.
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b = b2

R

Figure 42.2: Integrating PV-substance over regions bounded by constant buoyancy surfaces that do not intersect
the ground. Here we show a single buoyancy surface, b = b2, bounding the bubble-like fluid region, R. Notably,
the region inside the bubble generally has a nontrivial buoyancy distribution. The only assumption is that it is
wholly contained inside the b = b2 contour. There is identically zero domain integrated potential vorticity in R.
Hence, if there is any nontrivial distribution of potential vorticity somewhere in the domain, there must be as
much integrated positive values as there are negative.

We are thus led to the equivalent expressions for the integrated potential vorticity substance

I =

ˆ
R

QρdV =

˛
∂R
bω · n̂dS + 2

˛
∂R
bΩ · n̂dS = −

˛
∂R

(∇b× v) · n̂dS + 2

˛
∂R
bΩ · n̂dS.

(42.44)
In effect, the alternative forms move the derivative operator between the boundary velocity
(for computing the relative vorticity) and the boundary buoyancy. One formulation may be
more convenient than the other, depending on the boundary conditions. We emphasize that
once a particular formulation is chosen, it is necessary to use that formulation for all of the
domain boundaries. We must do so since the curl term that moves us from one form to the
other vanishes only when integrating over the full domain boundary.

42.4.2 Region bounded by a single buoyancy surface

Consider a volume of fluid bounded by a single buoyancy surface as shown in the bubble-like
region in Figure 42.2. Since the outer boundary of the region is set by a constant b-surface, we
can pull b outside of the surface integral in equation (42.44) so that

I =

˛
∂R
ωa b · n̂dS = b2

˛
∂R
ωa · n̂dS. (42.45)

We can now use the divergence theorem to return to the volume integral, only now with b outside
of the integral

I = b2

ˆ
R

∇ · ωa dV = 0, (42.46)

where ∇ · ωa = 0 led to the final equality. Equivalently, we can use Stokes’ theorem to convert
the closed area integral,

¸
∂R ωa · n̂ dS, to a line integral around the boundary. However, there is

no boundary for the closed area since it covers the sphere, thus again showing that I = 0 (see
also Section 2.7.6).

Yet another way to derive the identity (42.46) is to make use of the alternative expression
for I given by equation (42.44)

I = −
˛
∂R

(∇b× v) · n̂dS + 2

˛
∂R
bΩ · n̂dS. (42.47)

Since the domain is bounded by a constant b surface, the outward normal is parallel to ∇b so
that the first integral vanishes. Furthermore, since b is a constant in the second integral we are
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b = b2

b = b1

R12earth

Figure 42.3: Integrating PV-substance over regions bounded by constant buoyancy surfaces that do not intersect
the ground. Here we show a buoyancy layer or shell, R12, bounded by two buoyancy isosurfaces, b1 < b2,
surrounding the earth, with neither surface intersecting the ground. There is identically zero domain integrated
potential vorticity in R12. Hence, if there is any nontrivial distribution of potential vorticity somewhere in the
domain, there must be as much integrated positive values as there are negative.

led to consider˛
∂R

2Ω · n̂dS =

˛
∂R

[∇× (Ω× x)] · n̂dS =

ˆ
R

∇ · [∇× (Ω× x)] dV = 0, (42.48)

which made use of the divergence theorem and the vanishing divergence of a curl.

The identity (42.46) says that there is zero integrated PV-substance contained within any
region bounded by a single buoyancy surface; i.e., a bubble. The result holds whether there are
reversible or irreversible processes acting on the buoyancy surface, and it holds if the b-surface
is moving in space. Hence, within the domain there is just as much positive PV-substance as
there is negative PV-substance. So if potential vorticity changes locally within the domain, then
somewhere else it must experience an oppositely signed change so to leave a zero net integrated
PV-substance. We emphasize that this result holds at each time instance.

42.4.3 Region bounded by two buoyancy surfaces

The identity (42.46) has a corollary, in which we consider a region bounded by two b-surfaces
such as the region R12 shown in Figure 42.3. The above arguments hold for that region as well,
since we can decompose the surface integral into two integrals separately over b1 and b2

I =

ˆ
R12

∇ · (ωa b) dV =

ˆ
R2

∇ · (ωa b) dV −
ˆ
R1

∇ · (ωa b) dV, (42.49)

where the domain R1 extends from the ground up to b1 and R2 extends from the ground up
to b2. Integration over the region below b1 cancels through the subtraction. Indeed, the region
below b1 could be anything without changing the result. So let that region be filled with fluid
throughout (i.e., ignore the earth) to allow us to extend both integrals throughout the spherical
region just like in the buoyancy bubble R in Figure 42.3. Invoking the buoyancy bubble result
we see that both integrals separately vanish. We are thus led to a vanishing integral for the layer

I =

ˆ
R12

∇ · (ωa b) dV = 0. (42.50)

Again, the key assumption is that no buoyancy surface intersects land, in which case we are able
to ignore the presence of land altogether and thus make use of the buoyancy bubble result. The
identity (42.50) also follows from the second form of equation (42.44).
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SA
SB

RAB

Figure 42.4: A fluid region, RAB, bounded by two buoyancy surfaces, SA and SB. The upper surface, SA, is
defined by a buoyancy isosurface, b = bA, with this surface intersecting the ground. The lower surface, SB, is
along the ground (which is generally not flat, as shown here) and has a buoyancy that is a function of space and
time, b = bB(x, t).

42.4.4 Region bounded by land and a buoyancy surface

We now consider a domain consisting of fluid bounded by a buoyancy surface that intersects
(incrops) the ground, such as the region shown in Figure 42.4. This atmospheric example can
be turned over to produce an ocean example with buoyancy surfaces outcropping at the ocean
surface. Using the vorticity form of the integrated potential vorticity in equation (42.44) leads
to

I =

ˆ
RAB

∇ · (ωa b) dV (42.51a)

=

ˆ
SA

ωa b · n̂dS +

ˆ
SB

ωa b · n̂dS (42.51b)

= bA

ˆ
SA

ωa · n̂dS +

ˆ
SB

bωa · n̂dS (42.51c)

= bA

[ˆ
SA

ωa · n̂dS +

ˆ
SB

ωa · n̂dS −
ˆ
SB

ωa · n̂dS

]
+

ˆ
SB

bωa · n̂dS (42.51d)

= bA

ˆ
RAB

∇ · ωa dV +

ˆ
SB

(b− bA)ωa · n̂dS (42.51e)

=

ˆ
SB

(b− bA) (ω + 2Ω) · n̂dS, (42.51f)

where we made use of ∇ · ωa = 0 to reach the final equality. As both the ground and the ocean
surface have buoyancy gradients, they contribute to the PV-substance within the region they
bound.

For this domain it can be quite useful to use the second form of the integral in equation
(42.44). For this purpose we write

ˆ
SB

(b− bA)ω · n̂dS =

ˆ
SB+SA

(b− bA)ω · n̂dS (42.52a)

= −
ˆ
SB+SA

(∇b× v) · n̂dS (42.52b)

= −
ˆ
SB

(∇b× v) · n̂dS. (42.52c)

Equation (42.52a) follows from

ˆ
SA

(b− bA)ω · n̂dS = 0 since b = bA on SA. (42.53)
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Equation (42.52b) follows from the divergence theorem

ˆ
SB+SA

∇× [(b− bA)v] · n̂dS =

ˆ
RAB

∇ · (∇× [(b− bA)v]) dV = 0. (42.54)

And equation (42.52c) holds since n̂×∇b = 0 along SA. The expression (42.52c) is particularly
convenient for the case of a no-slip boundary condition (Section 25.10.3), whereby the velocity
vanishes along SB so that we are left with the rather tidy expression

I = 2

ˆ
SB

(b− bA)Ω · n̂dS no-slip condition on SB. (42.55)

42.4.5 A layer outcropping at the ocean surface

Figure 42.5 depicts a buoyancy layer that outcrops at the ocean surface at both of its ends.
Following the derivation in Section 42.4.4 leads to the integrated PV-substance

IA ≡
ˆ
S1+S2+S3+SA

bωa · n̂dS =

ˆ
S1+S2+S3

(b− bA)ωa · n̂dS (42.56a)

IB ≡
ˆ
S2+SB

bωa · n̂dS =

ˆ
S2

(b− bB)ωa · n̂dS, (42.56b)

with the difference leading to the integrated potential vorticity within the layer RAB

IAB ≡ IA − IB =

ˆ
RAB

ρQdV =

ˆ
S1+S3

(b− bA)ωa · n̂dS + (bB − bA)
ˆ
S2

ωa · n̂dS. (42.57)

The relation (42.57) requires information about the absolute vorticity over the region S2

that lies outside the outcrop regions. To instead only make use of information over the outcrop
areas, S1 and S3, we consider buoyancy gradients when considering the contributions from the
relative vorticity

ˆ
S1+S2+S3+SA

bω · n̂dS −
ˆ
S2+SB

bω · n̂dS

= −
ˆ
S1+S2+S3+SA

(∇b× v) · n̂dS +

ˆ
S2+SB

(∇b× v) · n̂dS. (42.58)

We can drop the integrals along SA and SB since their respective normals are parallel to ∇b, in
which caseˆ

S1+S2+S3+SA

bω · n̂dS −
ˆ
S2+SB

bω · n̂dS = −
ˆ
S1+S3

(∇b× v) · n̂dS. (42.59)

We are thus led to write the layer integrated PV-substance in the form

IAB = −
ˆ
S1+S3

(∇b× v) · n̂dS +

ˆ
S1+S3

(b− bA) 2Ω · n̂dS + (bB − bA)
ˆ
S2

2Ω · n̂dS. (42.60)

As desired, this alternative formulation only requires information about the flow field and
buoyancy field over the outcrop surfaces, S1 and S3. For the region between the outcrops, we
only need to know its area and outward normal, with n̂ ≈ ẑ an accurate approximation.
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Figure 42.5: This figure depicts a buoyancy layer in the ocean that outcrops at both ends of the layer. The
boundaries for the layer are given by the following surfaces. Surfaces SA and SB are defined by buoyancy
isosurfaces with bA < bB. The sea surface is decomposed into three regions, S1,S2, and S3 according to the
outcrop locations of SA and SB .

42.4.6 Further study

Section 4.8 of Vallis (2017) discusses the integrated PV-substance in terms of the vorticity
formulation, whereas Morel et al. (2019) introduced the dual perspective based on the buoyancy
gradient formulation. Morel et al. (2019) also provide details for the practical diagnosis of
potential vorticity in a numerical ocean model or from observational based measurements.

42.5 Boundary fluxes of PV-substance
In Section 42.4 we developed kinematic expressions for the PV-substance integrated over a
selection of volumes. That discussion illustrated how the volume integrated potential vorticity
has contributions only from boundaries; e.g., where an atmospheric region intersects the ground
or ocean, and where an oceanic region intersects the ground or the atmosphere. In this section
we further our understanding of budgets for PV-substance by examining a buoyancy layer within
the ocean that intersects the bottom on one side and the atmosphere on the other (Figure 42.6).
We garner further understanding of the physical processes affecting changes to the PV-substance
by here unpacking the boundary fluxes.

A buoyancy layer generally moves as it expands and contracts due to both reversible and
irreversible processes (waves, currents, mixing). The impermeability theorem means that the
total potential vorticity substance for the layer changes only through exchanges at the boundaries,
including the bottom (boundary between the solid earth and the fluid) and air-sea boundaries.
Removing interior interfaces from the layer PV-substance budget simplifies the budget analysis,
as already revealed in Section 42.4. As per the discussion of Section 42.3, the results in this
section apply even when there is no materially invariant potential vorticity. All we require is
a flux-form budget along with the impermeability theorem, which holds for potential vorticity
defined according to an arbitrary smooth scalar field (Section 42.2.2).

42.5.1 Layer integrated budget

In addition to waves, currents, mixing, and sources affecting the layer interfaces, there is
movement of the intersection of the layer with the side boundaries, thus changing the vertical
and horizontal extents of these intersections. As a formulational framework, we derive the layer
potential vorticity budget making use of the Leibniz-Reynolds transport theorem derived in
Section 20.2.4. Just as for the layer integrated tracer budget considered in Section 20.4, applying
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R

z

Figure 42.6: A buoyancy layer of seawater denoted by R, with the layer intersecting bottom topography on one
side and the atmosphere on the other. The interior boundaries of the layer are formed by constant buoyancy
surfaces.

Leibniz-Reynolds to the layer integrated potential vorticity budget renders

d

dt

[ˆ
R

ρQdV

]
=

ˆ
R

∂t(ρQ) dV +

˛
∂R
ρQ ẋ · n̂dS, (42.61)

where R is the domain defined by the layer (Figure 42.6), ∂R is its boundary, and

ẋ =
dx

dt
(42.62)

is the velocity for a point on the boundary. Making use of the potential vorticity equation,

∂t(ρQ) = −∇ · JQ, (42.63)

and the divergence theorem renders

d

dt

[ˆ
R

ρQdV

]
=

˛
∂R

(−JQ + ρQ ẋ) · n̂dS. (42.64)

This result holds around the full domain boundary. Now we decompose that boundary into
portions defined by layer interfaces and those along the air-sea and land-sea boundaries.

42.5.2 Impermeability across interior layer interfaces

Rather than invoking the impermeability theorem derived in Section 42.2, we rederive it within
the present context to further our confidence in its use. We thus consider the following for
interior layer interfaces, here making use of the Haynes-McIntyre form (42.1) of the potential
vorticity flux vector

[−JQ + ρQ ẋ] · n̂ =
[
ρQ (ẋ− v) + ḃωa −∇b× F

]
· n̂ (42.65a)

=
[
(ωa · ∇b) (ẋ− v) + ḃωa

]
· n̂ (42.65b)

= [(ωa · ∇b) (ẋ− v) + (∂tb+ v · ∇b)ωa] · n̂ (42.65c)

= [(ωa · ∇b) ẋ+ ωa ∂tb] · n̂, (42.65d)
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where
n̂ = ∇b/|∇b| (42.66)

is the outward unit normal vector pointing to regions of higher buoyancy. Now recall that the
velocity of a point fixed on an layer interface has a normal component that satisfies equation
(42.10) (here applied to buoyancy surfaces)

ẋ · n̂ = −∂tb/|∇b|. (42.67)

This result then leads to the impermeability statement for isopycnal interfaces in the fluid
interior

(−JQ + ρQ ẋ) · n̂ = 0. (42.68)

We thus conclude that changes to the layer integrated potential vorticity occur only via transfer
across the land-sea boundary and the air-sea boundary

d

dt

[ˆ
R

ρQdV

]
=

ˆ
land-sea

[−JQ + ρQ ẋ] · n̂dS +

ˆ
air-sea

[−JQ + ρQ ẋ] · n̂dS. (42.69)

We now separately consider these two boundaries.

42.5.3 Potential vorticity flux at a land-sea boundary

We here evaluate the potential vorticity flux from equation (42.6a) at a land-sea boundary

−JQ + ρQ ẋ = ρQ (ẋ− v) + ḃωa −∇b× F . (42.70)

At a solid and static boundary, the no-normal flow boundary condition (Section 19.6.1) means
that n̂ · v = 0. Likewise, the velocity of a point along the boundary moves along the tangent to
the boundary so that ẋ · n̂ = 0. Hence, the bottom boundary condition is solely comprised of
irreversible processes

(−JQ + ρQ ẋ) · n̂ = (ḃωa −∇b× F ) · n̂. (42.71)

If this boundary flux is positive, then it acts to increase the integrated PV-substance of the
region, and conversely if the boundary flux is negative.

In many parts of the ocean bottom, geothermal heating is negligible so that there is no
buoyancy input at the bottom, thus leaving just the contribution from friction

no geothermal heating =⇒ (−JQ + ρQ ẋ) · n̂ = −(∇b× F ) · n̂ = (∇b× n̂) · F . (42.72)

Furthermore, in the absence of geothermal heating the buoyancy satisfies a no-flux boundary
condition, which can be ensured by having the buoyancy satisfying

no geothermal heating =⇒ n̂ · ∇b = 0. (42.73)

Buoyancy isolines thus intersect the bottom parallel to the bottom outward normal, as shown in
Figure 42.7.4 Correspondingly, (∇b× n̂) · F projects onto that component of the friction vector
pointing parallel to the bottom. Assuming buoyancy increases upward along the sloping bottom,
as per a stably stratified fluid, then ∇b× n̂ points counter-clockwise around bowls and clockwise
around bumps (see Figure 42.7).

4There is ongoing research aimed at determining the thickness of the region over which the boundary condition
(42.73) is accurate. The boundary condition presumably holds within a molecular sublayer. But the question is
whether larger scale motions near the ocean bottom allow for this condition to hold over a thicker region. See the
review chapter by Polzin and McDougall (2021) for discussion.
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Within the bottom boundary layer, quadratic bottom drag is a common parameterization of
the acceleration associated with turbulent frictional processes

F = −Cd |u|u, (42.74)

where Cd is a non-dimensional drag coefficient and u is the horizontal velocity. In this case the
boundary condition for potential vorticity takes the form

(−JQ + ρQ ẋ) · n̂ = (∇b× n̂) · F = −Cd |u| (∇b× n̂) · u. (42.75)

We see that the sign of the bottom boundary potential vorticity flux depends on the relative
orientation of the bottom flow and the vector ∇b× n̂. To help understand the sign, consider
an abyssal bowl with buoyancy increasing upward along the sloping bottom, in which case
∇b× n̂ points counter-clockwise around the bowl. A bottom boundary flow that is also oriented
counter-clockwise carries a positive curvature relative vorticity (Section 37.8). This positive
relative vorticity is damped by the bottom friction, which corresponds to the negative potential
vorticity source as per equation (42.75). Conversely, a bottom boundary flow that is oriented
clockwise around the abyssal bowl carries a negative curvature relative vorticity. This negative
relative vorticity is damped by the bottom friction, which corresponds to the positive potential
vorticity source as per equation (42.75).

Consider a component to the bottom flow that is parallel to ∇b. Theis flow provides a zero
potential vorticity source since ∇b × F = 0 (again, assuming F = −Cd |u|u). This result is
expected from the discussion in Section 41.4 and Figure 41.4, where we note that friction changes
potential vorticity by rotating buoyancy surfaces, with that rotation realized only when friction
is not aligned with ∇b.

z

∇b

n̂

∇b

n̂

Figure 42.7: Depicting a buoyancy isosurface that intersects the bottom. As discussed in Section 20.4 and
depicted in Figure 20.5, in the absence of geothermal heating, a buoyancy isosurface satisfies the no-normal flux
bottom boundary condition, n̂ ·∇b = 0. This boundary condition requires buoyancy isosurfaces to be orthogonal to
the bottom. Assuming buoyancy increases upward along the sloping bottom, then ∇b× n̂ points counterclockwise
around bowls and clockwise around bumps (when viewed from above). This structure for the buoyancy surfaces
affects how friction impacts on the layer-integrated potential vorticity budget, with details provided in Section
42.5.3.

42.5.4 Potential vorticity flux at the air-sea boundary

For the permeable air-sea boundary, we make use of the kinematic boundary condition derived
in Section 19.6.3, where the boundary condition (19.78) leads to

ρ n̂ · (ẋ− v) = Qm air-sea boundary, (42.76)
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with Qm the mass per time per surface area of matter that crosses the air-sea boundary. We are
thus led to the air-sea boundary condition

(−JQ + ρQ ẋ) · n̂ = QQm + (ḃωa −∇b× F ) · n̂. (42.77)

Besides the irreversible processes, potential vorticity is affected at the air-sea interface by the
transfer of matter across the boundary via the term QQm. We can think of this term as an
advection of potential vorticity across the boundary via the boundary mass transport. More
generally, we can think of the full boundary flux (42.77) as acting to stretch/compress the fluid
column so to alter vorticity and hence the potential vorticity.

To help interpret the friction term appearing in the flux (42.77), write

(ḃωa −∇b× F ) · n̂ = (ωa · n̂) (∂tb+ v · ∇b) + (n̂× F ) · ∇b (42.78a)

= (ωa · n̂) [∂tb+ (v − vE) · ∇b] , (42.78b)

where we introduced the generalized Ekman velocity

vE ≡
F × n̂
ωa · n̂

, (42.79)

thus bringing the air-sea boundary potential vorticity flux (42.77) to the form

(−JQ + ρQ ẋ) · n̂ = QQm + (ωa · n̂) [∂tb+ (v − vE) · ∇b] . (42.80)

Note that for the special case of a vertical outward normal, n̂ = ẑ, and weak relative vorticity,
f + ζ ≈ f , we have

vE ≈ f−1 F × ẑ, (42.81)

which is the Ekman velocity given by equation (33.4). We thus see that the sign of the (ωa · n̂)
portion of the potential vorticity flux is determined by whether the surface buoyancy is increasing
or decreasing in time following the velocity difference, v − vE, along the air-sea boundary. We
can interpret v − vE as the inviscid portion of the velocity since it removes that portion arising
from friction.5

42.5.5 Thought experiments
The surface potential vorticity flux (42.77), or its rewritten form in equation (42.80), provide an
explicit expression for how surface boundary fluxes affect the potential vorticity budget within a
buoyancy layer outcropping at the ocean surface. It contains a wealth of physics that can be
explored via thought experiments.

Potential vorticity generation in a fluid with zero initial baroclinicity

Consider a fluid region initially with zero baroclinicity and zero flow so that the initial potential
vorticity is given by f N2, with N2 the squared buoyancy frequency. The surface potential vor-
ticity flux (42.77) creates potential vorticity via the mass flux term and through heating/cooling.
If this term alone affected the potential vorticity, and it did so uniformly in space, then it would
alter potential vorticity only via changes in the vertical stratification. More generally, both the
mass term and the diabatic term create horizontal buoyancy gradients, which then generate
currents and vorticity that generate further contributions to the potential vorticity flux.

5The velocity difference, v− vE, is not equal to the inviscid velocity that would appear in an inviscid (perfect)
fluid. Rather, v = vE + (v − vE) is an interpretational decomposition akin to that studied in Chapter 33 for
Ekman mechanics. See the comment after equation (33.4) for more on this point.
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Potential vorticity generation in a fluid that is initially homogeneous

Consider an initially homogenous box of seawater with zero potential vorticity. In this case it is
only the buoyancy term, ḃ f , that contributes to initial changes in potential vorticity. Northern
hemisphere (f > 0) surface cooling (ḃ < 0) adds negative potential vorticity to the box. Cooling
also initiates gravitational instability that mixes the water and in turn spreads the negative
potential vorticity boundary source throughout the fluid. Cooling adds structure to the buoyancy
field by inflating the formerly zero thickness buoyancy layers, with layer inflation originating
from the boundary. Once inflated, the impermeability theorem dictates that the layer integrated
PV-substance changes only via boundary interactions, whereas stirring and mixing transport
potential vorticity into the fluid interior. Notably, a region with f Q < 0 is locally unstable to
symmetric instability, with the generated symmetric instability acting to locally bring the flow
towards a state with zero potential vorticity. However, the constraints from impermeability mean
that the net PV-substance remains unchanged within a buoyancy layer, even in the presence of
mixing.

42.5.6 Is there a preferred form of the PV-substance flux?

Analysis in this section made use of the Haynes-McIntyre form of the PV-substance flux (equation
(42.1))

JQ = ρvQ− ḃωa +∇b× F . (42.82)

We could have instead chosen to work with the Marshall form (equation (42.32))

Jmarshall = − [∂tv +∇(M + p/ρ)]×∇b− ωa ∂tb, (42.83)

or the modified kinematic form (equation (42.18))

J̃kin = −∂tva ×∇b− ωa ∂tb. (42.84)

These fluxes differ by a gauge choice and yet they each satisfy the impermeability theorem.
Subjective choices determine which one is preferred. Importantly, once chosen, we can use only
a single form of the flux throughout the budget analysis in order to remain self-consistent with
the form of the total curl that is removed by the divergence operator.

The PV-substance budget, though invariant to the choice of flux, has distinct physical
pictures depending on the choice of the flux. As a particularly clear example consider a steady
state budget in which the fluxes take the form

JQ = ρvQ− (v · ∇b)ωa +∇b× F (42.85)

Jmarshall = −∇(M + p/ρ)×∇b (42.86)

J̃kin = 0. (42.87)

The physical picture for J̃kin is rather trivial, whereby the PV-substance stays constant within
buoyancy layers and there are zero PV-substance fluxes across all boundaries of the layer. In
contrast, a steady state budget when working with JQ or Jmarshall afford a physical picture of
PV-substance entering, leaving, and transported through the buoyancy layers. Marshall et al.
(2001) developed a rather elegant analysis framework using Jmarshall for steady budgets, and we
explore facets of that approach in Section 41.5 for the special case of a Boussinesq hydrostatic
fluid.

Nevertheless, our use of the Haynes-McIntyre PV-substance flux in the present section is
motivated by its utility for describing how boundary forcing can change the sign of the potential
vorticity. Such forcing exposes the flow to a variety of local instabilities (e.g., symmetric,
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centrifugal, gravitational). Thomas et al. (2008) offer a pedagogical review for the ocean;
Thomas et al. (2013) provides a thorough study of the upper reaches of the Gulf Stream; and
Naveira Garabato et al. (2019) provide evidence for such boundary forcing in regions of strong
abyssal flows. Each of these studies points to the need to further understand details of the
boundary potential vorticity flux and to furthermore ensure it is properly formulated within
numerical models (e.g., Hallberg and Rhines (1996)).

42.5.7 Further study
The study of boundary potential vorticity fluxes generally requires careful analysis of the
multitude of processes active in boundary layers. The interested reader can find ocean examples
of these analyses in Benthuysen and Thomas (2012) and Wenegrat et al. (2018), and the references
therein.
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Nearly geostrophic flows
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Fluid motion dominated by rotation is characterized by a small Rossby number. To zeroth
order in an asymptotic expansion in Rossby number, the flow maintains geostrophic balance,
which is a balance between the Coriolis acceleration and pressure gradient acceleration. As seen
in Chapter 31, the geostrophic balance is diagnostic, which means it offers no means to compute
time evolution of the motion. To obtain a prognostic equation requires going to next order in
Rossby number within the asymptotic expansion. For quasi-geostrophy (QG), the resulting
prognostic equation makes use of ageostrophic motions, though only as an intermediate step
towards an evolution equation involving just zeroth order geostrophically balanced fields. For
planetary geostrophy (PG), the prognostic equation arises from mass (or volume) conservation,
whereas fluid motion is a directly determined by evolution of the mass field.

The nuts and bolts of this part of the book involve methods of scaling analysis and asymptotic
analysis via perturbation series. In Chapter 43, we use these tools to derive equations for both
planetary geostrophy and quasi-geostrophy within shallow water flows, and then extend that
discussion to continuously stratified flows in Chapters 44 and 45. Planetary geostrophy and quasi-
geostrophy are both very useful theoretical models lending insights into ocean and atmosphere
fluid mechanics. In particular, planetary geostrophy is often the foundation for theories of
large-scale laminar ocean circulation. Quasi-geostrophy serves as a theoretical model for studies
of both oceanic and atmospheric flows at or near the deformation radius, particularly when
concerned with transient features such as Rossby waves, baroclinic instability, and geostrophic
turbulence.

One central property of balanced flow is that knowledge of the relevant balanced version of
potential vorticity is sufficient to determine the flow field. A way to appreciate this property is
to consider a horizontally non-divergent barotropic flow (Chapter 38), in which the Laplacian of
the streamfunction gives the relative vorticity, ζ = ∇2ψ. Conversely, if we know the vorticity
then we can invert the Laplacian (with suitable boundary conditions) to yield the streamfunction
and hence the velocity.6 In our discussion of quasi-geostrophy in Chapter 45, we extend this
result to three-dimensional quasi-geostrophic flow, where the prognostic fields are the horizontal
components to the geostrophic flow, plus the buoyancy field. Such methods of potential vorticity
inversion are routinely used to study atmospheric flows given maps of potential vorticity (see
Hoskins (1991) for a review).

6Recall the study of Green’s function methods in Chapter 9 for examples of inverting the partial differential
equation to determine the solution to an elliptic boundary value problem.



Chapter 43

MODELS OF NEARLY GEOSTROPHIC FLOWS

Planetary rotation, and the corresponding Coriolis acceleration, is a primary feature of geophysical
fluid flows. To probe the physics of such flows, it is useful to develop mathematical models where
rotation of the reference frame is a prominent facet of the equations of motion. Systematically
deriving such models is the focus of this chapter, where we develop the mechanical equations
for planetary geostrophy (PG) and quasi-geostrophy (QG) within the shallow water fluid. We
also work through non-dimensionalization of the stratified Boussinesq equations, thus providing
the foundations for the equations of stratified planetary geostrophy in Chapter 44 and stratified
quasi-geostrophy in Chapter 45.

reader’s guide for this chapter
This chapter makes use of dimensional analysis, scale analysis, and asymptotic methods

to derive approximate geostrophic equations. As such, the chapter is technical in nature and
with mathematical derivations offered in detail. We assume an understanding of the equations
for a single layer of shallow water fluid as derived in Chapter 35, as well as the Boussinesq
ocean equations from Chapter 29. We follow this work with studies of continuously stratified
planetary geostrophy in Chapter 44 and continuously stratified quasi-geostrophy in Chapter
45.
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43.1 Loose threads
• External and internal modes for QG two layers in Section 43.6.10.

43.2 Scale analysis and the Buckingham-Π theorem
Scale analysis is ubiquitous in physics, with geophysical fluid mechanics no exception. We find it
useful to distinguish two classes of scales. External scales are prescribed as part of the physical
system under consideration, and they can be considered to be under “control” of the physicist.
Examples include planetary rotation rate, gravitational acceleration, and domain geometry.
Internal scales emerge from the flow itself, such as the length and time scales of the flow, and as
such internal scales are only indirectly controlled by the physicist.

The Buckingham-Π theorem provides a useful framework for organizing dimensions and
scales. The theorem states that the number of dimensionless parameters characterizing a physical
system is a function of the number of dimensional parameters or scales, Kscales (e.g., scales for the
velocity, rotation rate, pressure force, friction force, gravitational acceleration) and the number
of physical dimensions, Kdimensions (e.g., time, length, mass). Precisely, Buckingham-Π states
that the number of dimensionless parameters is

Ndimensionless = Kscales −Kdimensions. (43.1)

Different physical systems possessing the same suite of dimensionless parameters are isomorphic.
For example, a laboratory study of flow around a cylinder contains two dimensionless parameters:
the drag coefficient, Cd, and the Reynolds number, Re. If the problem is scaled up to a building
with the same shape, then so long as the values for the dimensionless parameters are the same
(e.g., same drag coefficient and same Reynolds number), one can make use of the laboratory
analog for determining suitability of the building architecture. Similar isomorphisms exist
between flows in a rotating tank and flows in the ocean and atmosphere.

The Buckingham-Π theorem does not provide the form of the dimensionless parameters.
Nor does the theorem determine their values. This information comes only after introducing
physical prejudices surrounding a regime of chosen interest. Additionally, Buckingham-Π does
not offer information about how the dimensionless parameters might be related. Instead, any
such relations arise from the mechanical and thermodynamical equations describing the system.
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Consequently, mechanical and thermodynamical equations generally mean that fewer than
Ndimensionless non-dimensional numbers are independent.

We focus in this chapter on the regime of large-scale atmospheric and oceanic flow where the
shallow water fluid is close to geostrophic balance. That choice then guides the length and time
scales, which in turn determines the size of the dimensionless parameters. In many cases, one is
able to identify dimensionless parameters that are large or small in particular regimes, which in
turn suggests asymptotic analyses to render equations specific to the regime of interest.

43.3 Shallow water equations
A single-layer of inviscid shallow water fluid of thickness h is governed by the velocity and
thickness equations (Chapter 35)

∂tu+ (u · ∇)u+ f × u = −g∇η (43.2a)

∂th+∇ · (hu) = 0, (43.2b)

where u is the horizontal velocity that is independent of depth within the layer (∂zu = 0). The
vertical bounds for the layer are specified by the free surface height, z = η(x, y, t), and bottom
topography, z = ηb(x, y) (see Figure 35.1). They are related according to

η = ηb + h = H + ηb + η′ = h+ ηb + η′, (43.3)

where H = h is the area average layer thickness, ηb is the area average of the bottom topography,
η′ = η − η is the deviation of the surface height from its area average, η = ηb +H. We also find
occasion to write the layer thickness in the form

h = η − ηb = H + (ηb − ηb) + η′ = h− η′b + η′ = h+ h′, (43.4)

where η′b = ηb − ηb is the deviation of the bottom topography from its area average, and we
introduced the thickness deviation

h′ = h− h = η′ − η′b. (43.5)

Dexterity with the geometrical relations (43.3)-(43.5) is assumed in the following.

43.3.1 Dimensional scales
We identify the following nine dimensional scales for the shallow water layer.

• length scales

⋆ H = depth scale of the fluid layer. Given that the layer is homogeneous, we take H
equal to the area average layer thickness (see Figure 35.1).

⋆ L = horizontal/lateral length scale of flows under consideration. We assume both
horizontal directions to have the same flow length scale. This assumption is not
necessarily appropriate on a rotating planet, where flows in the zonal (east-west)
direction typically have length scales longer than meridional (north-south) flow scales.
Nonetheless, this choice does not preclude the dynamical emergence of anisotropic
length scales, and so it serves our uses for the present analysis.

⋆ Re = prescribed radius of the planet. We include this scale anticipating that for
length scales small compared to the earth’s radius, the Coriolis parameter may be
approximated by a constant (f -plane) or linear function of latitude (β-plane).
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⋆ H = length scale for deviations of the free surface height, η, relative to its area
average, η, so that η′ = η − η ∼ H.

⋆ B = prescribed length scale for deviations of the bottom topography, ηb, relative to
its area average, ηb, so that η′b = ηb − ηb ∼ B.

• velocity scales

⋆ U = velocity scale for horizontal fluid particle motion; i.e., the speed for horizontal
flows.

⋆ c = scale for wave speeds. For the shallow water model, the wave speed is given by
the shallow water gravity wave (Section 55.5.1)

c =
√
g H. (43.6)

We introduce the wave speed anticipating the presence of distinct flow regimes
depending on whether the fluid particle speed is larger or smaller than the wave speed.
The ratio of the fluid particle speed (advection speed) to the wave speed is known as
the Froude number (Section 43.3.4).

• body forces: There are two body forces acting on the fluid; one from gravity and one
from Coriolis. These two forces are scaled according to the following prescribed parameters:

⋆ g = gravitational acceleration

⋆ f = Coriolis frequency.

If we were interested in other forces, such as electromagnetic or frictional forces, then we add
further dimensional parameters corresponding to these forces.

43.3.2 Physical dimensions
There are two physical dimensions in the shallow water system: length, L, and time, T . Notably,
there is no mass in the shallow water system. The reason is that the fluid density is assumed
uniform within a shallow water layer so that mass is described by area times thickness

M =

ˆ
ρ dV [≡] L2H ρ, (43.7)

where [≡] is read “has dimensions”.

43.3.3 Number of non-dimensional parameters
The Buckingham-Π theorem says there are

Ndimensionless = 9− 2 = 7 (43.8)

non-dimensional parameters that characterize the flow within a single shallow water layer. So
we expect to find seven non-dimensional parameters as part of the analysis.

How do we know that we properly counted the physical dimensions or the dimensional scales?
Fortunately, the process of determining the non-dimensional parameters is largely self-correcting.
Namely, if a physical dimension or a physical scale is omitted, then it would appear somewhere
in the subsequent analysis. Indeed, such omissions often are only found at the point of a
mathematical or physical inconsistency. Hence, the analyst must remain cognizant of the need
to self-correct when performing dimensional analysis.
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43.3.4 Choosing the non-dimensional parameters
There is no unique choice for the non-dimensional parameters. Our choice is guided by experience,
interest, and what parameters might be available to experimental control or measurement.

1. vertical to horizontal/lateral aspect ratio: The ratio of the vertical scale of the
layer to the horizontal/lateral scale of the flow1 defines the aspect ratio

δvertical/horizontal =
vertical length scale

horizontal length scale
=
H

L
. (43.9)

2. ratio of horizontal/lateral scale to planetary scale: The ratio of the horizontal
length scale of the flow to the planetary radius is

δhorizontal/planet =
horizontal length scale

planetary length scale
=

L

Re

. (43.10)

3. ratio of free surface undulation to vertical length scale: The ratio of the free
surface undulations that emerge from the flow, to the vertical length scale of the layer is

δfree surface/depth =
free surface undulation scale

vertical length scale
=

H

H
. (43.11)

4. ratio of bottom topography undulation to vertical length: The ratio of the
prescribed bottom topography undulation scale to the vertical length scale is

δbottom/depth =
bottom topography undulation scale

vertical length scale
=

B

H
. (43.12)

5. Froude number: The Froude number is the ratio of the fluid particle speed emerging
from the flow, to the gravity wave speed determined by geophysical parameters. For the
shallow water system, this ratio is

Fr =
U

c
=

U√
g H

. (43.13)

6. Rossby number: The Rossby number is the ratio of the fluid particle acceleration scale
to the Coriolis acceleration scale, both of which emerge from the flow

Ro =
particle acceleration

Coriolis acceleration
. (43.14)

The particle acceleration scale is determined by the local time tendency plus advection

particle acceleration =
∂u

∂t
+ (u · ∇)u ∼ U

T
+
U2

L
. (43.15)

The local time tendency and advection generally have distinct scales, thus leading to the
potential for two Rossby numbers

Rotendency =
1

T f
and Roadvection =

U

Lf
. (43.16)

1The terms “lateral” and “horizontal” are used interchangeably, referring to motion at constant vertical
position either on the sphere or on the plane.
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In the following we consider these two Rossby numbers to have the same scale, which is
realized by advective contributions to material time evolution being comparable to local
time changes. We refer to this choice as an advective time scale, whereby

T =
L

U
=⇒ U2

L
=
U

T
, (43.17)

so that there is only one Rossby number

Ro =
1

f T
=

U

f L
. (43.18)

Another interpretation for the Rossby number is the ratio of the relative vorticity to the
planetary vorticity

Ro =
relative vorticity

planetary vorticity
. (43.19)

With the relative vorticity scaling as U/L and the planetary vorticity scaling as f , we
recover the expression (43.18) for the Rossby number.

7. Geostrophic number: We define the geostrophic number as the ratio of the Coriolis
acceleration scale to the scale of the pressure gradient acceleration

Ge =
Coriolis acceleration

pressure gradient acceleration
. (43.20)

The Coriolis acceleration scales as

Coriolis acceleration ∼ f U, (43.21)

whereas the pressure gradient acceleration, −g∇η, scales as

pressure gradient acceleration ∼ gH

L
, (43.22)

so that

Ge =
Coriolis acceleration

pressure gradient acceleration
=

f U

(g/L)H
. (43.23)

43.3.5 Assumed values for the non-dimensional parameters
We now enumerate the assumed values for the non-dimensional parameters. These values are
based on the preconceived topic of the analysis as determined by a chosen range of external and
internal scales. Here, those scales arise from our interest in large scale flows in the atmosphere
and ocean.

1. small vertical to horizontal aspect ratio: The aspect ratio is generally small for
large-scale atmospheric and oceanic fluid systems

δvertical/horizontal = H/L≪ 1. (43.24)

This assumption was made when formulating the shallow water system, which is based on
hydrostatic balance (see Section 35.2). We thus retain this assumption as we further scale
the shallow water system.

2. small or order one ratio of horizontal/lateral to planetary scales: The
ratio of the lateral length scale to the planet radius is small for quasi-geostrophic systems
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and order unity for planetary geostrophy

δhorizontal/planet = L/Re ≪ 1 quasi-geostrophy (43.25a)

δhorizontal/planet = L/Re ∼ 1 planetary geostrophy. (43.25b)

3. ratio of free surface undulation to vertical length scale: The ratio H/H is
implied below by assuming a unit geostrophic number.

4. ratio of bottom topography undulation to vertical length scale: For quasi-
geostrophy, we assume that undulations in the bottom topography are small relative to
the vertical length scale, whereas there is no restriction for planetary geostrophy. “Small”
in the present context is determined by the Rossby number, in which case

δbottom/depth = B/H = Ro for quasi-geostrophy. (43.26)

5. Froude number: We find that the Froude number is implied by scales assumed for the
other non-dimensional numbers.

6. Small Rossby number: The Rossby number is assumed small

Ro = U/(f L)≪ 1, (43.27)

which means that the Coriolis acceleration is a leading order term in the horizontal velocity
equation (43.2a).

7. Unit geostrophic number: The geostrophic number is assumed to be order unity

Ge ∼ 1. (43.28)

This assumption means that the Coriolis acceleration and pressure gradient acceleration
scale together

f U ∼ (g/L)H. (43.29)

Making use of the velocity equation (43.2a), we see that this scaling is consistent only so
long as the Rossby number is small, Ro ≪ 1. Furthermore, this scaling constrains the
scale of the free surface undulation, H, as we discuss in Section 43.3.6.

43.3.6 Deformation radius and the free surface undulation scale
We determine the scale for the free surface height undulation, H, by making use of the assumed
order unity geostrophic number. For this purpose, start from the geostrophic scaling of Coriolis
and pressure gradient accelerations, equation (43.29), to express the free surface undulation
scale according to

η′ ∼ H =
f U L

g
= Ro

f2 L2

g
= RoH

f2 L2

g H
= RoH

[
L

Ld

]2
. (43.30)

In the final equality we introduced the deformation radius

Ld =
√
g H/f = cgrav/f, (43.31)

where cgrav =
√
g H is the shallow water gravity wave speed (Section 55.5.1). The deformation

radius distinguishes flows where the Coriolis force is important, L ≥ Ld, from those where the
Coriolis can be neglected, L ≪ Ld. Since the deformation radius decreases toward the poles,
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rotational effects are felt by smaller scales in the high latitudes than in the tropics. The shallow
water deformation radius is an external scale that we find in Section 43.6.2 acts as a regime
boundary between relative vorticity and vortex stretching for the quasi-geostrophic potential
vorticity. We again encounter the shallow water deformation radius when discussing shallow
water waves in Chapter 55.

We can use Ld to rewrite the Froude number as

Fr = U/
√
g H = U/(f Ld) = Ro (L/Ld), (43.32)

where the second equality wrote the Froude number as the ratio of the advection speed, U , to
the rotation speed, f Ld. Furthermore, the squared ratio of the deformation radius to the lateral
length scale of the flow is termed the Burger number

Bu = (Ld/L)
2. (43.33)

Use of the Burger number allows us to write the Froude number in terms of the Rossby number
and Burger number

Fr = Ro/
√
Bu. (43.34)

Likewise, the free surface height undulation scale can be written

H = H Ro (L/Ld)
2 = H Ro/Bu = H Fr2/Ro. (43.35)

Hence, the ratio of the free surface undulations to the layer thickness (depth) scale is given by

δfree surface/depth = H/H = Ro (L/Ld)
2 = Ro/Bu = Fr2/Ro. (43.36)

Again, this scaling is implied by making the dynamical assumption of a unit geostrophic number,
which means that the pressure gradient acceleration scales according to the Coriolis acceleration.

43.3.7 Non-dimensional shallow water equations

To non-dimensionalize the shallow water equations we introduce non-dimensional variables for
time, space, velocity, and Coriolis parameter. Non-dimensional variables are adorned with a
widehat2

t = T t̂, (x, y) = L (x̂, ŷ), ∂t = ∂t̂/T, ∇ = ∇̂/L, (u, v) = U (û, v̂), f = fo f̂ , (43.37)

where fo is the Coriolis parameter at the central latitude for the β-plane approximation (Section
24.5). We also require non-dimensional variables for the surface and bottom undulations

η′ = H η̂, η′b = B η̂b, h = H + η′ − η′b = H +H η̂ − B η̂b, (43.38)

where we used equation (43.4) for the layer thickness. Importantly, we assume that the non-
dimensional variables (the widehat variables) are order unity. That assumption is critical for
organizing terms in the asymptotic expansion.

2The LATEX widehat symbol is used for non-dimensional variables, such as the non-dimensional velocity,
û. The widehat is distinguished from the hat used for unit vectors, such as for the vertical unit vector, ẑ. We
also use widehats for thickness weighted means in Chapter 67, but that usage is completely distinct from the
non-dimensionalization usage in the present chapter.
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Non-dimensional velocity equation

Introducing the above variables into the shallow water velocity equation (43.2a) renders

U

T

∂û

∂t̂
+
U2

L
(û · ∇̂) û+ fo U (f̂ × û) = −gH

L
∇̂η̂. (43.39)

As before, we assume the time scale is given by the advection time

T = L/U = 1/(Ro fo), (43.40)

so that dividing by fo U leads to

Ro

[
∂û

∂t̂
+ (û · ∇̂) û

]
+ (f̂ × û) = −

[
g H

fo LU

Ro

Bu

]
∇̂η̂, (43.41)

where we set H = H (Ro/Bu) according to equation (43.36). We simplify the factor on the right
hand side according to

g H

fo LU

Ro

Bu
=

g H

fo LU

U

fo L

L2

L2
d

=
g H

fo LU

U

fo L

L2 f2o
g H

= 1. (43.42)

Hence, the non-dimensional inviscid shallow water velocity equation takes on the rather elegant
form

Ro

[
∂û

∂t̂
+ (û · ∇̂) û

]
+ f̂ × û = −∇̂η̂. (43.43)

Introducing the non-dimensional material time derivative

D

Dt̂
=

∂

∂t̂
+ û · ∇̂ (43.44)

brings the velocity equation to

Ro
Dû

Dt̂
+ f̂ × û = −∇̂η̂. (43.45)

The velocity equation is consistent with a unit geostrophy number (i.e., Coriolis acceleration
balances pressure gradient acceleration) if and only if the Rossby number is small, thus eliminating
the material acceleration. We noted this point earlier when studying geostrophic motion, such as
in Chapter 31. Even so, it is reassuring to see it emerge from the process of non-dimensionalization
and scaling.

Non-dimensional thickness equation

The thickness equation (43.2b) can be written

∂η′

∂t
+∇ · [(H + η′ − η′b)u] = 0, (43.46)

which takes on the non-dimensional form

H

T

∂η̂

∂t̂
+
U H

L
∇̂ · [(1 + η̂H/H − η̂b B/H) û] = 0. (43.47)
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The advective time scaling T = L/U brings the thickness equation to

H

H

∂η̂

∂t̂
+ ∇̂ · [(1 + η̂H/H − η̂b B/H) û] = 0. (43.48)

We further specialize this equation in the following, as determined by the assumed horizontal
length scale of the flow.

43.4 Shallow water planetary geostrophy
We make use of the non-dimensional equations derived in Section 43.3.7 to derive the mechanical
equations for planetary geostrophy. We already encountered facets of planetary geostrophy for
the continuously stratified case in Section 31.5 and for the shallow water in Sections 39.7, 39.9,
and 39.8. We further pursue the continuously stratified theory in Chapter 44, developing a
variety of vorticity analyses for use in understanding the large-scale ocean circulation. For these
reasons, our presentation here is rather brief.

Planetary geostrophy is realized by dropping the fluid particle acceleration from the momen-
tum equation (43.45), given that it is one order of Rossby number smaller than the Coriolis and
pressure gradient accelerations. This assumption means that the velocity equation reduces to
the geostrophic balance

f̂ × û = −∇̂η̂. (43.49)

We furthermore assume that the Rossby number and Burger number scale together

Ro ∼ Bu = (Ld/L)
2 ≪ 1, (43.50)

so that the horizontal length scale for the planetary geostrophic flow is much larger than the
deformation radius

L≫ Ld. (43.51)

This assumption is consistent with dropping material acceleration in the velocity equation.
Although the velocity equation is greatly simplified, we make no assumption concerning the
thickness equation. Consequently, the free surface and bottom undulations are unconstrained
with planetary geostrophic flows, so long as the flow maintains the hydrostatic balance.

In summary, the thickness equation for the planetary geostrophic fluid retains its full
unapproximated form, whereas the velocity equation reduces to geostrophy. Reintroducing
dimensions leads to the planetary geostrophic equations

f ẑ × u = −g∇η and
Dh

Dt
= −h∇ · u and h = η − ηb. (43.52)

Since the Coriolis parameter retains its spatial dependence, and so includes the beta effect, the
horizontal velocity field is divergent

f ∇ · u = −β (g/f) ∂xη = −β v. (43.53)

As shown in Exercise 43.1, the shallow water planetary geostrophic equations are equivalent to

f ẑ × u = −g∇η and
DQ

Dt
= 0 with Q = f/h. (43.54)

As seen in Chapter 44, the planetary geostrophic potential vorticity, Q = f/h, plays a huge role
in the mechanical interpretation of large scale flows in the ocean.
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43.5 Shallow water quasi-geostrophy
In this section we develop the quasi-geostrophic equations for a single shallow water layer.
Doing so requires far more work than for the planetary geostrophic equations. In particular,
we use rudimentary asymptotic methods with the Rossby number acting as the relvant small
non-dimensional parameter.

43.5.1 Quasi-geostrophic scaling
Quasi-geostrophic scaling is based on the following assumptions, with the first and second shared
with planetary geostrophy whereas the remaining are distinct.

1. small Rossby number: Ro≪ 1, which is fundamental to geostrophic scaling.

2. advective time scale: T ∼ L/U ; that is, the time scale is determined by horizontal
advection of the horizontal flow, which is how we scale time throughout this chapter.
Notably, we do not distinguish between the two horizontal directions, so that L and U are
scales for both the zonal and meridional flow. This assumption will be jettisoned when
considering the dynamics of fronts in Section 59.9, which then leads to the semi-geostrophic
equations.

3. order Rossby number beta effect: |β L| ≪ |fo|, which means that the Coriolis
frequency does not vary much from its central value. To incorporate this assumption into
the asymptotics, we expand the non-dimensional Coriolis parameter in terms of the Rossby
number3

f̂ = f/fo = (1 + β y/fo) ≡ (f̂0 +Ro β̂ ŷ). (43.55)

Making use of the advective scaling for time as in equation (43.40) renders4

β̂ ŷ = β y/(Ro fo) = T β y and f̂0 = fo/fo = 1. (43.56)

The non-dimensional Coriolis parameter (43.55) and the scaling (43.56) are motivated
by assuming the horizontal scales of motion are on the same order as the deformation
radius, and that the Coriolis parameter does not vary much from its central value. Quasi-
geostrophy is thus formulated within the beta plane approximation discussed in Section
24.5.

4. Burger number order one: Bu ∼ 1, which means that the horizontal scales of motion
for the quasi-geostrophic flows are on the same order as the deformation radius, L ∼ Ld.

5. order Rossby number free surface undulations: From equation (43.36), an order
unity Burger number means that undulations of the free surface height scale according to
the Rossby number: H/H = Ro, so that free surface height undulations are small.

6. order Rossby number bottom topography undulations: As seen in Section 43.6.4,
for the quasi-geostrophic potential vorticity to correspond to the small Rossby number
version of the shallow water potential vorticity requires the topography undulations to scale
as B/H = Ro. The assumed scaling for the bottom topography undulation pairs with that
for the free surface, so that the layer thickness undulations, h′ = η′ − η′b, also scale as Ro.
We are thus able to take a sensible Ro expansion of the 1/h factor appearing in the shallow

3One could conceive of another small parameter that scales the beta effect, but the resulting asymptotics
would be more difficult to manage given the need to keep track of two small parameters.

4Although f̂0 = 1 in equation (43.56), it is useful to retain this term as a placeholder in the manipulations to
follow. In particular, it helps when reintroducing dimensions in Section 43.6.1.
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water potential vorticity (Section 43.6.4). It is useful to maintain a direct connection to
the shallow water model as doing so helps to ensure that the resulting asymptotic theory
is self-consistent. In particular, it ensures that quasi-geostrophic energetics are physically
sensible since there is a direct lineage to the shallow water energetics.

The B/H = Ro scaling is consistent with the assumption that the planetary beta effect is
small. Together, the two scalings

B/H = Ro and H/H = Ro (43.57)

mean that the effective beta effect (arising from both planetary and topographic variations;
see Section 43.6.1 below) are small.

43.5.2 Outlining the asymptotic method
To derive equations for the quasi-geostrophic shallow water model, we employ an asymptotic
method with the Rossby number as the small parameter. Furthermore, we stop at the first
nontrivial order. For this purpose, recall the non-dimensional shallow water equations from
Section 43.3.7, and make use of the assumed Bu ∼ 1 scaling

Ro
Dû

Dt̂
+ (f̂ × û) = −∇̂η̂ (43.58a)

Ro

[
∂(η̂ − η̂b)

∂t̂
+ ∇̂ · [(η̂ − η̂b) û]

]
= −∇̂ · û. (43.58b)

We brought the time independent bottom topography, η̂b, into the time derivative for the
thickness equation, as doing so provides some symmetry with η̂.5

Asymptotic expansion of the prognostic fields

Asymptotic methods are ideally suited for non-dimensional equations since we can unambiguously
determine scales via the size of non-dimensional parameters. We here assume the Rossby number
to be small, in which case we are led to perform an asymptotic expansion of the prognostic fields
in terms of the Rossby number. There are three prognostic fields, û, v̂, η̂, and corresponding
vertical velocity, ŵ, which we assume can be written as an asymptotic series

û = û0 +Ro û1 +Ro2 û2 + . . . (43.59a)

v̂ = v̂0 +Ro v̂1 +Ro2 v̂2 + . . . (43.59b)

ŵ = ŵ0 +Ro ŵ1 +Ro2 ŵ2 + . . . (43.59c)

η̂ = η̂0 +Ro η̂1 +Ro2 η̂2 + . . . (43.59d)

We thus refer to the zeroth, first, second, etc. order of the asymptotic expansion. The three
components of the velocity satisfy the non-divergence condition at each order

∇ · v̂n = 0 ∀ n. (43.60)

Practical goal

The practical goal of asymptotic analysis is to develop a closed set of prognostic equations for
functions appearing in the asymptotic expansions (43.59a)-(43.59d). For our purposes, we are

5Also recall our nomenclature, whereby u is the horizontal velocity, so that −∇̂ · û is the non-dimensionalized
horizontal convergence of the horizontal velocity. Also, since η is a function just of the horizontal directions (and

time), ∇̂η̂ is the non-dimensionalized horizontal gradient of the free surface.
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content to stop at the lowest nontrivial order, meaning the point at which there is a prognostic
equation that provides a means to move the system forward in time. Motivation for asymptotic
analysis is to produce an equation set offering a means to focus analysis on dynamics most active
under the regime determined by the chosen non-dimensional parameters. Each higher order in
asymptotic expansion generally produces more accurate solutions, and yet requires more complex
algebraic manipulations. Hence, pursuit of higher order expansions should be undertaken only
after first determining that the lower order equation set remains physically lacking.

Enabling the machinery

At this point we enable the machinery by “turning the crank”. To do so, insert the asymptotic
expansions (43.59a)-(43.59d) into the non-dimensional partial differential equations (43.58a) and
(43.58b). Since the Rossby number, Ro, is arbitrarily small, and all non-dimensional fields are
order unity regardless their order, the only means to maintain self-consistency is for terms to
balance at equal order in Rossby number. Hence, we do not mix terms from different orders of
Rossby number. This point is fundamental to asymptotic methods.

Again, our goal is to establish a set of prognostic equations that allows us to evolve a
state that is arbitrarily close to geostrophic balance. We anticipate that at zeroth order, the
asymptotic method offers us just the geostrophic balance, which has no prognostic value. Hence,
we need to go at least to order Ro1, and hopefully no further since the algebraic tedium increases
with order. With that anticipation and hope (and prior knowledge of what is sufficient), we only
keep track of terms of order Ro0 and Ro1, in which the momentum and continuity equations
become

Ro
D0û0

Dt̂
+ (f̂0 +Ro β̂ ŷ) ẑ × (û0 +Ro û1) = −∇̂(η̂0 +Ro η̂1) (43.61a)

Ro

[
∂η̂0

∂t̂
+ ∇̂ · [(η̂0 − η̂b) û0] + ∇̂ · û1

]
= −∇̂ · û0. (43.61b)

Note that the material time derivative in equation (43.61a) makes use of only the zeroth order
geostrophic horizontal velocity

D0

Dt̂
=

∂

∂t̂
+ û0 · ∇̂. (43.62)

43.5.3 Order Ro0 asymptotic equations
Terms in equations (43.61a) and (43.61b) balancing at order Ro0 are given by

f̂0 × û0 = −∇̂η̂0 (43.63a)

∇̂ · û0 = 0. (43.63b)

The zeroth order velocity equation (43.63a) is the f -plane geostrophic balance. Furthermore,
the vertical component to the curl of equation (43.63a) leads to the horizontal non-divergence
condition, ∇̂ · û0 = 0, which is identical to the zeroth order thickness equation (43.63b). Hence,
the zeroth order horizontal velocity is given by f -plane geostrophy within a single shallow water
layer.

The geostrophic streamfunction

Given the non-divergence condition (43.63b), the zeroth order velocity field can be written in
terms of a geostrophic streamfunction

û0 = −∂ŷψ̂0 and v̂0 = ∂x̂ψ̂0 and ζ̂0 = ∇̂2ψ̂0, (43.64)
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where the zeroth order streamfunction is the ratio of the zeroth order surface height to zeroth
order Coriolis parameter

ψ̂0 = η̂0/f̂0, (43.65)

and we introduced the non-dimensional sgeostrophic relative vorticity

ζ̂0 = ∂x̂v̂0 − ∂ŷû0. (43.66)

The corresponding dimensionful quantities are

ψ = (U L) ψ̂0 and ζ = (U/L) ζ̂0. (43.67)

We dropped the asymptotic label on the dimensional geostrophic streamfunction since it is the
only streamfunction considered in quasi-geostrophy.6

Horizontally non-divergent flow with an undulating free surface

Recall the discussion of horizontally non-divergent flow in Chapter 38, where the vertical velocity
vanishes and the lid pressure renders a surface interface that is rigid and flat. We here also
have a horizontally non-divergent flow, and yet it is within a single shallow water layer with a
free surface that is not flat and that provides a pressure gradient in geostrophic balance with
the Coriolis acceleration. Geostrophy and horizontal non-divergence enforces a free surface
(and hence pressure field) that is related to relative vorticity through the Laplacian operator in
equation (43.64). Furthermore, in the absence of horizontal convergence, there is no means for
the flow to generate a vertical velocity, so that at this order we have

ŵ0 = 0 (43.68)

for shallow water quasi-geostrophy.

43.5.4 Order Ro1 asymptotic equations

Time derivatives appear at order Ro1, with the velocity and thickness equations given by

D0û0

Dt̂
+ f̂0 ẑ × û1 + β̂ ŷ ẑ × û0 = −∇̂η̂1 (43.69a)

D0(η̂0 − η̂b)
Dt̂

= −∇̂ · û1. (43.69b)

These equations appear to be unclosed because the evolution equation for zeroth order (geostrophic)
terms is dependent on first order (ageostrophic) terms. However, the ageostrophic terms can
be eliminated using two steps. First, we produce the vorticity equation from the momentum
equation, which removes the ageostrophic pressure gradient, −∇̂η̂1. Second, combining the vor-
ticity equation and continuity equation eliminates the horizontal convergence of the ageostrophic
velocity, −∇̂ · û1. The second step leads to the quasi-geostrophic potential vorticity equation.
Although details are specific to the present study of shallow water quasi-geostrophy, similar
steps are encountered in other balanced geophysical fluid systems.

6In some of our discussions, it is useful to introduce “g” or “ag” subscripts to distinguish O(Ro0) geostrophic
terms from O(Ro1) ageostrophic terms.
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The geostrophic vorticity equation

Taking the curl of the momentum equation (43.69a) eliminates the ageostrophic pressure gradient,
∇̂η̂1, thus producing the vorticity equation

∂t̂ζ̂0 + (û0 · ∇̂) (ζ̂0 + β̂ ŷ) = −f̂0 ∇̂ · û1. (43.70)

The right hand side term arises from stretching in the presence of planetary rotation, which can
be seen by using continuity to express the right hand side as

−f̂0 ∇̂ · û1 = f̂0 ∂ẑŵ1. (43.71)

Evidently, to this order in Rossby number, stretching arises just from the planetary vorticity, with
stretching due to relative vorticity appearing at a higher order. Since β̂ ŷ is time independent,
we can write the vorticity equation (43.70) using the geostrophic material time derivative

D0 (ζ̂0 + β̂ ŷ)

Dt̂
= −f̂0 ∇̂ · û1. (43.72)

The quasi-geostrophic potential vorticity equation

We need one more step to close the system since the evolution of zeroth order vorticity in
equations (43.70) and (43.72) depends on vortex stretching induced by convergence of the first
order velocity. To eliminate ∇̂ · û1, we substitute from the thickness equation (43.69b), thus
leading to a prognostic equation involving just zeroth order terms

∂[ζ̂0 + β̂ ŷ − f̂0 (η̂0 − η̂b)]
∂t̂

+ û0 · ∇̂[ζ̂0 + β̂ ŷ − f̂0 (η̂0 − η̂b)] = 0, (43.73)

which can be written in the material form

D0

Dt̂

[
ζ̂0 + β̂ ŷ − f̂0 (η̂0 − η̂b)

]
= 0. (43.74)

Finally, we introduce the geostrophic streamfunction ψ̂0 = η̂0/f̂0 (equation (43.65)) to render

D0

Dt̂

[
∇̂2 ψ̂0 + β̂ ŷ + f̂0 η̂b − f̂20 ψ̂0

]
= 0. (43.75)

Equation (43.75) is a statement of the material conservation of quasi-geostrophic potential
vorticity (in its non-dimensional form), where material evolution is defined by the horizontal
geostrophic currents (equation (43.62)). This equation is the culmination of our quest to derive a
prognostic equation for the evolution of geostrophic flow. It enables us to evolve the geostrophic
velocity and geostrophic free surface by accessing, but not explicitly determining, the leading
order ageostrophic motions. Practical use of the quasi-geostrophic method is based on time
stepping the quasi-geostrophic potential vorticity, and then inverting the potential vorticity
equation to diagnose the streamfunction to then determine the geostrophic velocity and free
surface. That inversion requires solving an elliptic boundary value problem (see Chapters 6 and
9), and we present further remarks on inversion in Section 43.6.5.

43.6 Elements of shallow water quasi-geostrophy
The asymptotic analysis of Section 43.5 worked with non-dimensional quantities, which are
suitable for determining the scales required for organizing terms in the asymptotic expansion.

CHAPTER 43. MODELS OF NEARLY GEOSTROPHIC FLOWS page 1239 of 2158



43.6. ELEMENTS OF SHALLOW WATER QUASI-GEOSTROPHY

Now that we have worked through the details, we can make use of that effort to further expose
the physical content of shallow water quasi-geostrophy theory. For that purpose, it is useful to
reintroduce physical dimensions.

43.6.1 Dimensional potential vorticity and streamfunction

To introduce physical dimensions, we invert the relations used in Section 43.3.7

t̂ = t/T (x̂, ŷ) = (x, y)/L ∂t̂ = T ∂t ∇̂ = L∇ (û, v̂) = (u, v)/U (43.76a)

η̂ = η′/H η̂b = η′b/B H = H Ro B = H Ro (43.76b)

f̂0 = fo/fo β̂ ŷ = β y/(Ro fo) = (L/U)β y ζ̂ = (L/U) ζ = L2∇2ψ. (43.76c)

We often drop asymptotic subscripts on dimensional terms to help reduce clutter, though at
times it is useful to introduce a g or ag subscript to distinguish the geostrophic and ageostrophic
components (e.g., see Section 43.6.6).

Starting from the non-dimensional quasi-geostrophic potential vorticity (43.74), the reintro-
duction of dimensions leads to

q̂ = ζ̂0 + β̂ ŷ + f̂0 η̂b − f̂0 η̂0 (43.77a)

=
L

U
(ζ + β y) +

η′b
B
− η′

H
(43.77b)

=
L

U
(ζ + β y) +

η′b
H Ro

− η′

H Ro
(43.77c)

=
L

U

[
ζ + β y − fo (η

′ − η′b)
H

]
(43.77d)

=
L

U

[
ζ + β y − g (η′ − η′b)

fo

1

L2
d

]
(43.77e)

=
L

U

[
ζ + β y − L−2

d (ψ − ψb)
]
, (43.77f)

where Ld =
√
g H/f is the shallow water deformation radius (equation (43.31)), and we introduced

the geostrophic streamfunction7

ψ = (g/fo) η
′. (43.78)

We also wrote the contribution from topography as

ψb = (g/fo) η
′
b, (43.79)

which is a static field. We are thus led to the dimensionful quasi-geostrophic potential vorticity
for a single shallow water layer

q = fo (1 + Ro q̂) = (ζ + f)− L−2
d (ψ − ψb) = f + ψb L

−2
d + (∇2 − L−2

d )ψ. (43.80)

We took the liberty of adding the constant, fo, to the QG potential vorticity, which does not
alter the dynamics but does allow us to introduce the planetary vorticity, f = fo +β y. Evidently,
the dynamically relevant portions of q appear at order Ro, as expected since the zeroth order
theory is f -plane geostrophy, which provides no prognostic capability.

7The geostrophic streamfunction is arbitrary up to a constant. For example, Vallis (2017) defines the
geostrophic streamfunction in his equation (5.69) as ψvallis = g η/fo = ψ + g H/fo, which differs by the constant
g H/fo.
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43.6.2 Contributions to quasi-geostrophic potential vorticity
The quasi-geostrophic potential vorticity (43.80) has three main contributions

q = f + ζ − fo h′/H, (43.81)

where we wrote
L−2

d (ψ − ψb) = f2o /(g H) (g/fo) (η
′ − η′b) = fo h

′/H, (43.82)

with h′ the undulations in the layer thickness due to undulations in the free surface and bottom
topography. Heuristically, we can connect q to the shallow water Q = (f + ζ)/h by

(f + ζ)/h ≈ (f + ζ) (1− h′/H) ≈ H−1 (f + ζ − fo h′/H), (43.83)

where we assumed β y, ζ, and h′ are order Ro whereas fo is order unity. We pursue this expansion
more formally in Section 43.6.4.

It is notable that the quasi-geostrophic potential vorticity, q, is determined by the free surface
height, the bottom topography, and the Coriolis parameter. That is, once f , ηb, and η are
known, then we have q and thus, through inversion, the geostrophic flow is determined. This is
a rather remarkable result that embodies the following variety of physical processes contributing
to potential vorticity, and hence to quasi-geostrophic dynamics.

• planetary vorticity: The contribution f = fo +β y arises from planetary vorticity, with
the dynamically relevant contribution for quasi-geostrophy arising just from the β y term.
The difference, q − f , is sometimes referred to as the relative potential vorticity, in analog
to the relative vorticity, ζ = ζa − f .

• geostrophic relative vorticity: ζ = ∇2ψ = (g/fo)∇2η is the relative vorticity of
the geostrophic flow. The Laplacian operator emphasizes small spatial scales, so that the
relative vorticity is most important at scales at or smaller than the deformation radius.

• effective beta: The contribution from the gradient of planetary vorticity is given by
β y = x · ∇f . Likewise, the contribution from topography is given by

ψb L
−2
d = fo η

′
b/H = (fo/H) (ηb − ηb) ≈ (fo/H)x · ∇ηb, (43.84)

where the approximate expression made use of a Taylor series. These two contributions
can be combined into an effective beta

β y + ψb L
−2
d = x · ∇(f + fo ηb/H) ≈ x · (H − ηb)∇[f/(H − ηb)], (43.85)

with the final approximate expression connecting to the effective beta discussed in Section
39.5.1.

• vertical stretching: As discussed in Section 35.2, shallow water fluids move as vertical
columns that can expand (stretch) and contract (squash). Hence, the term (fo/H)h′

accounts for the contribution to potential vorticity from column stretching and squashing.
It is most important for scales at or larger than those where the relative vorticity is
important; i.e., at or larger than the deformation radius.

• Flow regimes relative to the deformation radius: The term (∇2−L−2
d )ψ signals

two regimes as determined by the deformation radius. For lateral scales on the order
of the deformation radius, both the relative vorticity and vortex stretching make equal
contributions to the potential vorticity. For smaller scales, relative vorticity is more
important whereas for larger scales vortex stretching dominates.
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43.6.3 Connecting to background (resting state) potential vorticity

For some purposes, particularly when studying Rossby waves in Section 55.9, we find it useful to
unpack the material time derivative,

Dq/Dt = ∂tq + ẑ · (∇ψ ×∇q), (43.86)

to expose the role of the potential vorticity contained in a resting fluid. For this purpose, expand
the gradient

∇q = ∇(∇2ψ)−∇ψ/L2
d +∇f +∇ψb/L

2
d , (43.87)

so that
∇ψ ×∇q = ∇ψ ×∇(∇2ψ) +∇ψ × (∇f +∇ψb/L

2
d ). (43.88)

The second term on the right hand side can be written in terms of the resting state potential
vorticity

∇f +∇ψb/L
2
d = ∇f + (fo/H)∇η′b = ∇f − (fo/H)∇(H − η′b) ≈ H∇(f/Hr) = H∇Qr, (43.89)

where Hr = H − η′b is the thickness of the resting fluid, and Qr is the potential vorticity of the
resting fluid. The approximation in the penultimate step follows from assuming η′b/H = O(Ro),
as per the quasi-geostrophic scaling in Section 43.5.1.

Bringing the pieces together leads us to write the material time evolution of quasi-geostrophic
potential vorticity as

(fo/g)Dq/Dt = ∂t [(L
−2
d −∇2) η′]−H ẑ · (∇η′ ×∇Qr)− (g/fo) ẑ · [∇η′ ×∇(∇2η′)]. (43.90)

The second term on the right hand side arises from geostrophic advection of the potential
vorticity in the resting fluid. This linear term is fundamental to the Rossby wave dispersion
relation studied in Section 55.9. The nonlinear term on the right hand side arises from advection
of the geostrophic relative vorticity by the geostrophic velocity. This term is generally ignored
when studying small amplitude wave fluctuations. Furthermore, it is notable that this term
vanishes identically for plane waves (see Section 55.9.2 for more discussion).

43.6.4 Connecting to Rossby’s shallow water potential vorticity

We here determine how potential vorticity for shallow water quasi-geostrophy relates to Rossby’s
shallow water potential vorticity studied in Chapter 39. For that purpose, recall that the
potential vorticity for a single layer of shallow water fluid is (Section 39.3)

Q =
f + ζ

h
, (43.91)

where h = H + η′ − η′b (equation (43.4)) is the layer thickness.

To connect to the quasi-geostrophic potential vorticity, we non-dimensionalize the potential
vorticity and then perform an asymptotic expansion to order Ro1. For this purpose, use the
scaling relations from Section 43.3.7 to write the geostrophic relative vorticity as

ζ = ∇2ψ = (g/fo)∇2η′ = (gH)/(fo L
2) ∇̂2η̂ = (g H Ro)/(fo L

2) ζ̂0 = fo Ro (Ld/L)
2 ζ̂0, (43.92)

as well as

h = H +H Ro (η̂ − η̂b) (43.93a)

f = fo (f̂0 +Ro β̂ ŷ). (43.93b)
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Taking the ratio and expanding to order Ro1 leads to

f + ζ

h
=
fo
H

[
f̂0 +Ro (Ld/L)

2 ζ̂0 +Ro β̂ ŷ

1 + Ro (η̂ − η̂b)

]
(43.94a)

≈ fo
H

+
fo Ro

H

[
−f̂0 (η̂ − η̂b) + (Ld/L)

2 ζ̂0 + β̂ ŷ
]

(43.94b)

=
fo
H

+
fo Ro

H

[
(Ld/L)

2 ζ̂0 + β̂ ŷ − f̂0 (η̂ − η̂b)
]

(43.94c)

=
fo
H

+
fo Ro

H

[
ζ

fo Ro
+

β y

fo Ro
− η′

H
+
η′b
B

]
(43.94d)

=
1

H

[
ζ + fo + β y − fo (η

′ − η′b)
H

]
(43.94e)

= q̂ U/(H L) (43.94f)

= q/H. (43.94g)

We are thus led to the relation between the shallow water potential vorticity and the quasi-
geostrophic shallow water potential vorticity

f + ζ

h
=

q

H

[
1 +O(Ro2)

]
. (43.95)

As noted in Section 43.5.1, this connection between the potential vorticities only holds when
assuming deviations in both the bottom topography and free surface scale according to the
Rossby number, η′ = HRo and η′b = BRo, thus allowing us to combine η̂ and η̂b in the thickness
equation (43.93a). That is, we must assume that both the planetary beta and topographic beta
are on the order of Ro1.

The identity (43.95) is a consequence of the asymptotic expansion of the velocity and
thickness equations. We could alternatively invert our development of quasi-geostrophy by using
the quasi-geostrophic potential vorticity as the basis for deriving the governing equations. We
pursue that approach to derive the layered quasi-geostrophic equations in Section 43.6.10.

43.6.5 Geostrophic flow via potential vorticity inversion

Here are the key pieces to single layer shallow water quasi-geostrophic theory:

u = ẑ ×∇ψ and ζ = ẑ · ∇ × u = ∇2ψ and q = f + ζ − L−2
d (ψ − ψb) (43.96a)

ψ = (g/fo) η
′ and ψb = (g/fo) η

′
b and Ld =

√
g H/fo. (43.96b)

Note that we can choose to use the full free surface height, η = η′ + η, and bottom topography,
ηb = η′b − ηb, since doing so only adds a dynamically irrelevant constant to ψ, ψb, and q.

As seen in Section 43.5.4, evolution of the geostrophic flow is determined by material
evolution of the quasi-geostrophic potential vorticity following the horizontal geostrophic flow.
This evolution equation takes on the dimensional form

Dq

Dt
= (∂t + u · ∇) q = ∂tq + ẑ · (∇ψ ×∇q) = ∂tq + J(ψ, q), (43.97)

where the final equality introduced the Jacobian operator

J(ψ, q) = ẑ · (∇ψ ×∇q) = ∂xψ ∂yq − ∂yψ ∂xq. (43.98)

For a perfect fluid, the quasi-geostrophic potential vorticity is materially constant, whereas more
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general flows have forcing and dissipation so that

Dq

Dt
= forcing− dissipation. (43.99)

As a method to evolve the quasi-geostrophic state forward in time, we first update the
potential vorticity to a new time step. Thereafter, we must diagnose the streamfunction,
ψ = g η/fo, by solving the elliptic boundary value problem for ψ,

(∇2 − L−2
d )ψ = q − f − ψb/L

2
d , (43.100)

at which point we have the updated free surface and updated velocity. This same inversion
method was outlined for time stepping the two-dimensional non-divergent barotropic model in
Section 38.2.6. It is here referred to as potential vorticity inversion.

The streamfunction equation (43.100) is a forced Helmholtz equation (Section 6.7.3), which
is an elliptic partial differential equation.8 While q results from taking derivatives of ψ, the
streamfunction results from taking integrals of q. Consequently, maps of the potential vorticity
have more structure at the high wave numbers (small scales) relative to the streamfunction.
Writing the potential vorticity in equation (43.100) as

(∇2 − L−2
d ) (ψ − ψb) = q − f − L−2

d ∇2ψb (43.101)

offers us further interpretations, based on properties of the horizontal Laplacian operator. Namely,
regions of relatively low ψ − ψb correspond to regions of relatively high q − f − L−2

d ∇2ψb, and
vice versa. For a flat bottom where ψb is a constant, relatively low sea level regions (low pressure
regions) correspond to regions of relatively high q−f . Finally, on the f -plane with a flat bottom,
relatively low pressure regions correspond to relatively high potential vorticity regions.

43.6.6 Evolution of quasi-geostrophic vorticity, velocity, and free surface

When making use of the potential vorticity inversion method from Section 43.6.5, we are
unconcerned with the velocity equation and the free surface equation. Rather, it is sufficient
to invert the potential vorticity equation (43.100) to find the streamfunction, from which both
the velocity and the free surface are diagnosed. Even so, there are physical insights resulting
from analysis of the quasi-geostrophic velocity, vorticity, and free surface. We here discuss these
equations and identify a notable ambiguity in their specification.

Quasi-geostrophic absolute vorticity equation

Reintroducing dimensions to the non-dimensional quasi-geostrophic vorticity equation (43.70)
leads to

(∂t + ug · ∇) (ζg + f) = −fo∇ · uag, (43.102)

which takes on the equivalent form using the geostrophic material time derivative9

Dg(ζg + f)

Dt
= −fo∇ · uag with

Dg

Dt
= ∂t + ug · ∇. (43.103)

8We can mathematically formulate the inversion problem using the Green’s function method for elliptic
operators studied in Chapter 9.

9It is important to remember our notation for the velocity, in which ug is horizontal so that ug ·∇ = ug ∂x+vg ∂y.
See also equation (43.106).
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In these equations we introduced subscripts to distinguish the geostrophic velocity and corre-
sponding free surface height,

fo ẑ × ug = −g∇ηg, (43.104)

from the ageostrophic velocity, uag, and ageostrophic free surface height, ηag. We have already
discussed the vorticity equation (43.103) in its non-dimensional form. There, we emphasized the
central role of the horizontal convergence of the ageostrophic flow in providing a source for the
geostrophic material time evolution of the geostrophic absolute vorticity.

Quasi-geostrophic velocity and free surface equations: Version I

The velocity and free surface equations are determined by the order Ro1 equations derived in
Section 43.5.4. These equations take on the following dimensional form

∂tug + (ug · ∇)ug + (fo + β y) ẑ × ug + fo ẑ × uag = −g∇(ηg + ηag) (43.105a)

∂t(ηg − ηb) + (ug · ∇) (ηg − ηb) = −H∇ · uag. (43.105b)

The ageostrophic velocity generally has a nonzero horizontal convergence. Even so, it is three
dimensionally non-divergent since the fluid layer has constant density. Hence, vertical component
to the ageostrophic velocity satisfies

vag = uag + ẑwag with ∇ · vag = ∂xuag + ∂yvag + ∂zwag = 0. (43.106)

Cancelling the geostrophic balance (43.104) from the velocity equation (43.105a), making use of
continuity (43.106), and introducing the geostrophic material time derivative (equation (43.103))
leads to

Dgug

Dt
+ (β y) ẑ × ug + fo ẑ × uag = −g∇ηag (43.107a)

Dg(ηg − ηb)
Dt

= H ∂zwag. (43.107b)

Quasi-geostrophic velocity and free surface equations: Version II

As seen in Section 43.5.4, we eliminate the ageostrophic pressure gradient, −g∇ηag, by forming
the quasi-geostrophic vorticity equation. The resulting source term arises from convergence
of the ageostrophic flow, −fo∇ · uag, with continuity equating this vorticity source to vortex
stretching by the ageostrophic flow in a rotating reference frame, −fo∇ · uag = fo ∂zw (see
equation (43.103)). Evidently, the vorticity equation is unchanged if the ageostrophic free surface
is modified by an arbitrary scalar function, since that function is annihilated when taking the
curl to form the vorticity equation. Likewise, the ageostrophic velocity is arbitrary up to a
horizontally non-divergent velocity, since that extra non-divergent velocity also plays no role in
the vorticity equation.

The ambiguity in specifying ηag and uag is constrained, as revealed by taking the divergence
of the velocity equation (43.107a) and noting that ∇ · ug = 0, in which case

g∇2ηag = 2 J(ug, vg) + β (y ζg − ug) + fo ζag, (43.108)

where we used

∇ · (β y ẑ × ug) = −β y ζg + β ug (43.109a)

∇ · (fo ẑ × uag) = −fo ζag (43.109b)

∇ · ∂tug = ∂t(∇ · ug) = 0 (43.109c)
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∇ · [∂tug + (ug · ∇)ug] = −2 J(ug, vg), (43.109d)

with
ζag = ∂xvag − ∂yuag (43.110)

the relative vorticity contained in the horizontal ageostrophic flow. The constraint (43.108)
means that adding a horizontally non-divergent velocity, ũ, to the ageostrophic velocity, uag,
requires a corresponding modification to the free surface via η̃ added to ηag, in which η̃ satisfies
the Poisson equation

g∇2η̃ = fo ẑ · (∇× ũ). (43.111)

Again, these ambiguities arise in quasi-geostrophy since potential vorticity inversion is
sufficient to specify evolution of the flow and free surface, with ηag and uag having no affect on
the quasi-geostrophic potential vorticity. We refer to this freedom as a gauge freedom. Following
Section 6.3 of Holton and Hakim (2013), a convenient gauge choice sets ηag = 0 so that all
ageostrophic effects live within the ageostrophic flow, uag + ẑwag. In this case the momentum
equation (43.107a) takes on the particularly tidy form

Dgug

Dt
+ (β y) ẑ × ug + fo ẑ × uag = 0, (43.112)

so that the f -plane ageostrophic Coriolis acceleration is the only means for the ageostrophic
flow to affect the geostrophic flow. The ηag = 0 gauge choice amounts to expanding the velocity
fields in the asymptotic series (43.59a)–(43.59c), whereas the free surface appears only at zeroth
order.10 The corresponding divergence equation (43.108) reveals that the ageostrophic relative
vorticity is diagnosed from the geostrophic flow according to

fo ζag = −2 J(ug, vg)− β (y ζg − ug). (43.113)

43.6.7 Unpacking quasi-geostrophic evolution
Evolution of the quasi-geostrophic state occurs via the geostrophic material evolution of potential
vorticity and then potential vorticity inversion (Section 43.6.5). This perspective is complete
and elegant, and it encompasses a wealth of processes. To help expose those processes, and thus
to reveal the fine tuned nature of quasi-geostrophic evolution, consider the evolution equation
(43.112) for the geostropic velocity along with equation (43.107b) for the free surface, written in
the form

Dgug

Dt
= −(β y) ẑ × ug − fo ẑ × uag (43.114a)

Dgηg
Dt

=
Dgηb
Dt

+H ∂zwag. (43.114b)

The quasi-geostrophic flow retains a geostrophically balanced state, fo ẑ × ug = −g∇ηg, at each
point in space and for each time instance.11 Consequently, geostrophic balance is maintained for
an observer following a fluid particle moving with the horizontal geostrophic velocity, ug, so that

Dg

Dt
(fo ẑ × ug + g∇ηg) = 0. (43.115)

Performing the material time derivatives in equation (43.115), and making use of the evolution

10We know of no other gauge choice discussed in the literature.
11Maintaining geostrophic balance at each point in space and time is a constraint analogous to the non-divergent

flow condition maintained by a Boussinesq ocean. In that case, the pressure field satisfies an elliptic partial
differential equation that ensures the flow satisfies non-divergence (see Section 29.3).
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equations (43.114a) and (43.114b), lead to the balance

fo β yug + gQ(ηg) + g∇ (ug · ∇ηb)︸ ︷︷ ︸
geostrophic

+ f2o uag + g H∇∂zwag︸ ︷︷ ︸
ageostrophic

= 0, (43.116)

where we used

Dg(∇ηg)/Dt = ∇ (Dgηg/Dt) +Q
(ηg) = ∇ (ug · ∇ηb) +H∇(∂zwag) +Q

(ηg). (43.117)

Q(ηg) is a vector arising from the nonlinear coupling of horizontal shears in the geostrophic flow
with gradients in the free surface

gQ(ηg) = −g x̂ ∂xug · ∇ηg − g ŷ ∂yug · ∇ηg (43.118a)

= fo x̂ [∂xug · (ẑ × ug)] + fo ŷ [∂yug · (ẑ × ug)] (43.118b)

= fo x̂ [ẑ · (ug × ∂xug)] + fo ŷ [ẑ · (ug × ∂yug)], (43.118c)

where the second equality used the geostrophic balance. If any process contributes to changes in
one of the terms in the balance (43.116), then the other terms compensate to retain the balance
and thus to retain geostrophy.

The special case of a flat bottom β-plane is of particular interest, in which case the nonlinear
geostrophic term, Q(ηg), balances the ageostrophic terms

gQ(ηg) = −[f2o uag + g H∇∂zwag]. (43.119)

For example, if Q(ηg) grows, say from a wave or instability, ageostrophic processes arise to
compensate, thus preserving the balance (43.119) and, by extension, preserving geostrophy.
From its definition (43.118a), for Q(ηg) to be nonzero requires the geostrophic flow to not be
parallel to its horizontal shear. For example, geostrophic flow along a straight front (say, with
ug = x̂ug(y) and ∇ηg = ŷ ∂yηg) has Q(ηg) = 0, whereas Q(ηg) ̸= 0 for fronts with curvature.
Hoskins (1975) and Section 6.5 of Holton and Hakim (2013) provide a thorough discussion of
this term and its role in the dynamics of atmospheric fronts.

43.6.8 Energetics of quasi-geostrophic flows

To derive the energetic balances within an unforced quasi-geostrophic shallow water flow, we
start by multiplying the potential vorticity equation by the streamfunction

ψ ∂tq + ψu · ∇q = 0. (43.120)

The time tendency term can be written

ψ ∂tq = ψ (∂tζ − L−2
d ∂tψ) (43.121a)

= ψ∇ · (∇∂tψ)− (1/2)L−2
d ∂t(ψ)

2 (43.121b)

= ∇ · (ψ∇∂tψ)−∇ψ · ∇(∂tψ)− (1/2)L−2
d ∂t(ψ)

2 (43.121c)

= ∇ · (ψ∇∂tψ)− ∂t(u · u+ L−2
d ψ2)/2, (43.121d)

whereas the advection term can be written

ψu · ∇q = ψ∇ · (u q) = ∇ · (ψu q)−∇ψ · u q = ∇ · (ψu q), (43.122)

where we used
∇ψ · u = ∇ψ · (ẑ ×∇ψ) = 0. (43.123)
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We are thus led to the energy equation for shallow water quasi-geostrophy

∂t(u · u+ L−2
d ψ2)/2 = ∇ · (ψ∇∂tψ + u q ψ). (43.124)

The first term on the left hand side is the kinetic energy per mass. The second term is the
available potential energy per mass, where the available potential energy is proportional to the
free surface height undulation (Section 36.5.6)

L−2
d ψ2 = f2o /(g H) (g2/f2o ) (η

′)2 = (g/H) (η′)2 = c2grav (η
′/H)2, (43.125)

where the final step introduced the shallow water gravity wave speed cgrav =
√
g H.

43.6.9 Considering topography to be O(Ro0)

In our treatment of quasi-geostrophy, we assumed the topographic undulations to be on the
order of Ro. Doing so ensured asymptotic consistency by combining η′ and η′b into an order
Rossby number fluctuation of the layer thickness. We just encountered this need in Section
43.6.4 when connecting quasi-geostrophic potential vorticity to Ertel potential vorticity (see also
Section 43.5.1). What happens if we allow for arbitrarily large topographic undulations? It
is not uncommon to examine how an asymptotic theory performs when outside of its formal
regime of validity, particularly with the advent of numerical codes to facilitate such studies. In
many cases the theories continue to provide provocative, and sometimes physically relevant,
information.

To see what happens, consider the quasi-geostrophic PV equation

(∂t + u · ∇) [ζ + β y + L−2
d (ψb − ψ)] = 0. (43.126)

If ψb order Ro0, whereas the other terms are order Ro, then to leading order the potential
vorticity is given by the static term, L−2

d ψb, so that material conservation of potential vorticity
reduces to

u · ∇ψb = 0 =⇒ u · ∇ηb = 0. (43.127)

This constraint means that the f -plane geostrophic flow is constrained to flow along lines of
constant topography (isobaths), in which case the geostrophic streamfunction satisfies

(f/g)u · ∇ηb = ẑ · (∇η ×∇ηb) ≡ J(η, ηb) = 0. (43.128)

Evidently, the order unity bottom topography undulations provide a constraint on the quasi-
geostrophic flow, making the flow align with the bottom topography and in turn aligning surface
height undulations with bottom undulations. We uncovered this constraint in our analysis of
topographic form stress in Section 39.7.6. We also discussed this flow as a particular realization
of the two-dimensional non-divergent barotropic flow in Section 38.1.4.

43.6.10 Two layer quasi-geostrophy

In Section 35.4 we developed the equations for an adiabatic stacked shallow water model. We here
specialize those equations to a two-layer quasi-geostrophic model, with extensions to multiple
layers following straightforwardly. Rather than pursue the formal asymptotic methods used
previously, we here make use of our observation in Section 43.6.4 concerning the connection
between shallow water and quasi-geostrophic potential vorticities.

To get started, recall from Section 39.3.6 that the shallow water potential vorticity for an
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arbitrary layer, labelled by the index k, is given by

Qk =
f + ζk
hk

, (43.129)

As in Section 43.6.2, we assume β y, ζk, and h
′
k scale as Ro, in which case we have the quasi-

geostrophic potential vorticity for each layer

qk = f + ζk − fo h′k/H, (43.130)

where ζk is here the geostrophic relative vorticity for layer k.

From our asymptotic analysis earlier in this section, the toughest part of that analysis
concerned derivation of the quasi-geostrophic potential vorticity equation. In the present
approach, we already have the potential vorticity for each layer via equation (43.130). What we
need is the velocity field to advect it. Again, we know what that velocity is: it is the f -plane
geostrophic velocity for each layer. The 2-layer velocity equations are given by equations (35.75a)
and (35.75b), with their geostrophic components determined by

fo ẑ × u1 = −g∇(η′b + h′1 + h′2) (43.131a)

fo ẑ × u2 = −∇
[
gr

1/2 (η
′
b + h′1 + h′2) + gr

3/2 (η
′
b + h′2)

]
. (43.131b)

In these equations we set the applied atmospheric pressure to a constant, and made use of the
reduced gravities at the layer interfaces are

gr

1/2 = g (ρ1 − ρatm)/ρref ≈ g and gr

3/2 = g (ρ2 − ρ1)/ρref , (43.132)

with the Boussinesq reference density taken as ρref = ρ1. Furthermore, we assume ρatm ≪ ρref so
that the top interface reduced gravity is well approximated by the full gravity. From equations
(43.131a) and (43.131b) we can identify the geostrophic streamfunctions

ψ1 = (g/fo) (η
′
b + h′1 + h′2) (43.133a)

ψ2 = (1/fo)
[
gr

1/2 (η
′
b + h′1 + h′2) + gr

3/2 (η
′
b + h′2)

]
, (43.133b)

so that the layer geostrophic velocities are given by

u1 = ẑ ×∇ψ1 and u2 = ẑ ×∇ψ2. (43.134)

We thus proceed with the usual quasi-geostrophic method, whereby evolution is determined by
the material time changes of the potential vorticity with advection given by the layer geostrophic
flow

(∂t + uk · ∇)qk = 0. (43.135)

43.6.11 Rigid lid shallow water quasi-geostrophy

We studied the horizontally non-divergent barotropic model in Chapter 38, whereby the full
velocity field has zero horizontal divergence, thus leading to a rigid surface boundary. Gradients
in the lid pressure drive the flow, with the lid pressure required to maintain the non-divergence
constraint on the horizontal flow. For a single layer of quasi-geostrophic shallow water fluid, the
rigid lid approximation means that the external deformation radius goes to infinity, so that the
quasi-geostrophic potential vorticity reduces to the absolute geostrophic vorticity

Ld →∞ =⇒ q = ζ + f. (43.136)
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That is, the single rigid layer reduces to the non-divergent barotropic model in Chapter 38.

For more than one layer, we follow the rigid lid stacked shallow water model discussed in
Section 35.4.5. In this case, the rigid upper surface means that η′1/2 = 0 so that fluctuations in
the upper layer are given just by that of its lower interface

h′1 = η′1/2 − η′3/2 = −η′3/2. (43.137)

As a result, the upper layer potential vorticity is given by

q1 = f + ζ1 − fo h′1/H = f + ζ1 + fo η
′
3/2/H. (43.138)

43.6.12 Further study

Section 6.4 of Holton and Hakim (2013) provides an insightful discussion of potential vorticity
inversion for example atmospheric flows.

43.7 Non-dimensional Boussinesq ocean equations

In this section we non-dimensionalize the continuously stratified Boussinesq ocean equations. As
part of this process we identify a variety of non-dimensional numbers that characterize the flow.
As for the shallow water system in Section 43.4, continuously stratified planetary geostrophy
is rather simple to derive, so that the detailed work in this section is arguably not necessary.
However, the details here are essential for systematically deriving the continuously stratified
quasi-geostrophic theory pursued in Chapter 45.

Our starting point is the perfect fluid stratified hydrostatic Boussinesq equations (Section
29.1.6)

Du

Dt
+ f ẑ × u = −∇hφ (43.139a)

∂φ

∂z
= b (43.139b)

Db

Dt
= 0 (43.139c)

∇ · v = 0, (43.139d)

where v = (u, w) is the three-dimensional velocity written using Cartesian coordinates, b =
−g (ρ− ρo)/ρo is the Archimedian buoyancy relative to a constant reference density, ρo, with ρ
the density. We also write φ = δp/ρo for the dynamic pressure (dimensions of L2 T−2), and
∇h = (∂x, ∂y, 0) for the horizontal gradient operator. We separate a background vertical buoyancy
profile from a space-time fluctuating buoyancy

b = b̃(z) + b′(x, y, z, t), (43.140)

and introduce the corresponding background squared buoyancy frequency

N2(z) =
db̃(z)

dz
. (43.141)

The background stratification is not determined by the quasi-geostrophic theory. Rather, it is
assumed to be a prescribed function.
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With the above decomposition, the buoyancy equation (43.139c) takes the form

Db′

Dt
+ wN2 = 0. (43.142)

We also introduce an associated decomposition of the hydrostatic pressure

φ = φ̃(z) + φ′(x, y, z, t) (43.143)

where φ̃ is hydrostatically balanced by b̃

dφ̃

dz
= b̃, (43.144)

and the fluctuating pressure, φ′, is hydrostatically balanced by b′

∂φ′

∂z
= b′. (43.145)

43.7.1 Dimensional parameters
As for the shallow water discussion in Section 43.3.1, we have the following dimensional parameters
for the perfect Boussinesq fluid.

• length scales

⋆ H = length scale of a typical vertical structure in the fluid (e.g., the depth of the
ocean pycnocline or height of the atmospheric tropopause). This scale is affected by
the prescribed vertical stratification, N(z).

⋆ L = horizontal/lateral length scale of the flow (e.g., Gulf Stream rings, atmospheric
synoptic weather pattern, ocean gyre).

⋆ Re = radius of the planet.

• velocity scales

⋆ U = horizontal velocity scale for fluid motion.

⋆ W = vertical velocity scale for fluid motion.

• pressure and buoyancy scales: Pressure is a contact force, acting on the boundary of
an arbitrary fluid region, and buoyancy arises from the gravitational force that acts to
raise or lower a fluid element depending on its density relative to the environment. They
have scales given by the following.

⋆ Φ = scale for pressure fluctuations, φ′ (dimensions of pressure divided by density =
length scale × acceleration).

⋆ B = scale of buoyancy fluctuations, b′ (dimensions of acceleration).

• body forces: There are two body forces acting on the fluid, one from gravity and one
from Coriolis.

⋆ g = gravitational acceleration

⋆ f = Coriolis frequency.

Contrary to the shallow water discussion in Section 43.3.1, we do not introduce a wave speed
since it does not affect the asymptotics considered here. Also, we do not introduce a scale for
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the bottom topography undulations, since for planetary geostrophy there is no constraint on
topographic undulations. However, for quasi-geostrophy in Chapter 45 we follow the approach
used for shallow water in Section 43.3.5 by assuming topographic undulations scale like the
Rossby number. Further details of the bottom boundary conditions and their scaling are detailed
in Section 45.6.

43.7.2 Physical dimensions and non-dimensional parameters
There are two physical dimensions in the Boussinesq system: length, L, and time, T . As for the
shallow water system, there is no need to consider a mass dimension since mass is determined
by the density (buoyancy) and volume. The Buckingham-Π theorem then says there are

Ndimensionless = 9− 2 = 7 (43.146)

non-dimensional parameters.

43.7.3 Choosing the non-dimensional parameters
Following the shallow water discussion in Section 43.3.4, we choose the following non-dimensional
parameters.

1. vertical to horizontal aspect ratio: The ratio of the vertical length scale to the
horizontal length scale of the flow defines the aspect ratio

δvertical/horizontal =
vertical length scale

horizontal length scale
=
H

L
. (43.147)

2. ratio of horizontal scale to planetary scale: The ratio of the horizontal length
scale of the flow to the planetary radius is given by

δhorizontal/planet =
horizontal length scale

planetary length scale
=

L

Re

. (43.148)

3. Ratio vertical to horizontal velocity scales: The ratio of the vertical to horizontal
velocity scales is given by

vertical velocity scale

horizontal velocity scale
=
W

U
. (43.149)

4. Hydrostatic number: The hydrostatic number is the ratio of the pressure fluctuation
scale to the buoyancy fluctuation scale,

pressure fluctuations

buoyancy fluctuations
=

Φ/H

B
. (43.150)

5. Rossby number: The Rossby number is the ratio of the fluid particle acceleration scale
to the Coriolis acceleration

Ro =
particle acceleration

Coriolis acceleration
=

U

f L
. (43.151)

As in Section 43.3.4, we assume that the time scale is advective

T ∼ L/U =⇒ Ro = U/(f L) = (f T )−1. (43.152)
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6. Geostrophic number: The ratio of the Coriolis acceleration to the pressure gradient
acceleration defines the geostrophic number

Ge =
Coriolis acceleration

pressure gradient acceleration
. (43.153)

The Coriolis acceleration scales as

Coriolis acceleration ∼ f U (43.154)

whereas the pressure gradient acceleration from the fluctuating pressure, φ′, scales as

pressure gradient acceleration ∼ Φ/L, (43.155)

so that

Ge =
Coriolis acceleration

pressure gradient acceleration
=

f U

(Φ/L)
. (43.156)

7. ratio of fluctuating stratification to background stratification: The ratio
of the buoyancy frequency arising from the fluctuating buoyancy, B/H, to the background
squared buoyancy frequency, N2(z), is given by

fluctuating squared buoyancy frequency

background squared buoyancy frequency
=

B/H

N2(z)
. (43.157)

43.7.4 Relating the buoyancy scale to the Coriolis acceleration scale

The fluctuating buoyancy, b′, and fluctuating pressure, φ′, have scales related through the
hydrostatic balance. Hence, taking a unit hydrostatic number from equation (43.150) renders

B = Φ/H. (43.158)

Additionally, assuming geostrophic scaling as per equation (43.156) means that the fluctuating
pressure has a scale related to the Coriolis acceleration scale according to

Φ = U f L. (43.159)

Evidently, the scale for the fluctuating buoyancy is given by

B = f U (L/H). (43.160)

We emphasize that the scale for pressure fluctuation, Φ = U f L, is distinct from the non-rotating
case considered in Section 29.2.3, where Φ = U2.

43.7.5 Richardson number and QG/PG flow regimes

The Richardson number provides a measure of the stabilizing effects from vertical stratification
versus the destabilizing effects from vertical shear

Ri =
vertical stratification

vertical shear
. (43.161)
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More precisely, the Richardson number is given by the ratio of the squared buoyancy frequency
to the squared vertical shear of the horizontal velocity

Ri =
N2

|∂zu|2
. (43.162)

In regions where Ri < 1, the vertical shear is stronger than the stabilizing effects from vertical
stratification. In regions with small Richardson numbers, there is enough kinetic energy in the
vertical shear to extract potential energy from the stratification, and this extraction process
occurs via a vertical shear instability as studied in Chapter 61. In contrast, for large-scale highly
stratified flow, the Richardson number is quite large, with Ri ∼ 100 common. Large Richardson
number flow regimes are where quasi-geostrophy is relevant (Chapter 45).

Given the fundamental role of the Richardson number for stratified fluid motions, it is
useful to introduce it as one of our dimensionless parameters. Namely, we define the vertically
dependent Richardson number scale as

Ri(z) =
N2(z)

(U/H)2
, (43.163)

where we set the vertical length scale to H, the horizontal velocity scale to U , and the squared
buoyancy frequency to the background value, N2(z), introduced by equation (43.141). Retaining
vertical dependence to the background buoyancy frequency means that the Richardson number
scale is also vertically dependent.

The Richardson number scale can be related to the Rossby and Burger numbers through

Bu(z) =

[
Ld(z)

L

]2
=

[
N(z)H

f L

]2
=

U2Ri(z)

U2/(Ro)2
= (Ro)2Ri(z). (43.164)

Evidently, vertical dependence to the prescribed background buoyancy frequency makes the
Burger number and Richardson number vertically dependent, as well as the deformation radius.

One further way to write the Burger number is by introducing the angle φ defined by the
vertical and horizontal length scales

tanφ ≡ H/L (43.165)

in which case

Bu =

[
Ld

L

]2
=

[
N H

f L

]2
= (Ro)2Ri = [(N/f) tanφ]2. (43.166)

When tan2 φ is set according to the slope of the ocean bottom, then [(N/f) tanφ]2 is known as
the slope Burger number (MacCready and Rhines, 1993; Peterson and Callies, 2022).

The horizontal length scales, L, for quasi-geostrophic flows are assumed to be on the order
of the deformation radius, Ld, in which case the Burger number is close to unity. The relation
(43.164) means that the Richardson number scales as

Ri ∼ (Ro)−2 quasi-geostrophic flow regime. (43.167)

For atmospheric flows with a Rossby number order 1/10, quasi-geostrophic flow regimes are
realized with a Richardson number ∼ 100. For the ocean, the Rossby number can be even
smaller, in which case quasi-geostrophic flows are characeterized by an even larger Richardson
number. For planetary geostrophy, the Burger number is small. Hence, planetary geostrophic
flows are characterized by somewhat smaller Richardson numbers than quasi-geostrophic flows.
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43.7.6 The Rossby deformation radius
The combined effects of buoyancy and rotation yield the richness of continuously stratified
planetary geostrophic and quasi-geostrophic motions. Hence, the buoyancy frequency and the
Coriolis parameter play central role in characterizing these flow regimes. The ratio of these two
frequencies, N/f , in regions of nontrivial vertical stratification is typically around 100. Hence,
rotational inertial oscillations (usually just called inertial oscillations; Section 14.4) have about
100 times longer period, 2π/f , than buoyancy oscillations with period 2π/N .

Letting the squared buoyancy frequency, N2, refer to a value typical of a particular flow
regime, one can define the Rossby deformation radius

Ld = H (N/f). (43.168)

As defined, the deformation radius is the vertical length scale multiplied by the ratio of the buoy-
ancy frequency to the Coriolis frequency. The ratio, f/N , appears frequently in rotating/stratified
fluids, and is sometimes called the Prandtl ratio

Prandtl ratio = f/N. (43.169)

With H ≈ 1 km and N/f ≈ 100, the Rossby deformation radius is roughly 100 km. This
length scale measures the relative importance of stratification and rotation. Depending on the
ratio L/Ld, we can have large or small stratification fluctuations relative to the background
stratification. Furthermore, as studied in Chapter 62, the deformation radius sets the scale for
unstable baroclinic waves leading to baroclinically unstable flow.

For some context, recall the shallow water deformation radius is given by equation (43.31),
Ld =

√
g H/f , which is the ratio of the gravity wave speed to Coriolis frequency. With

N = 100 f = 10−2 s−1 and H = 103 m, the shallow water deformation radius is about an order
of magnitude larger than the internal deformation radius. This scale difference means that the
characteristic length scales, as set by Ld, are much larger in a single layer of shallow water fluid
than in a stratified fluid.

43.7.7 Assumed values for the non-dimensional parameters
We now enumerate the assumed values for the non-dimensional parameters, again following the
choices made for the shallow water layer in Section 43.3.5. These assumptions are guided by the
flow regimes of interest.

1. small vertical to horizontal aspect ratio: The aspect ratio is generally small for
large-scale atmospheric and oceanic flows

δvertical/horizontal ≪ 1. (43.170)

This assumption is part of the hydrostatic approximation (Section 27.2), and as such it is
a necessary scaling for any asymptotic theory based on a hydrostatic starting point.

2. small or order one ratio of horizontal to planetary scales: The ratio of the
horizontal length scale of the flow to the planetary radius is small for quasi-geostrophic
systems, whereas the ratio is order unity for planetary geostrophy

δhorizontal/planet ≪ 1 quasi-geostrophy (43.171a)

δhorizontal/planet ∼ 1 planetary geostrophy. (43.171b)

For example, the vertical length scale could be determined by the averaged depth of the
pycnocline in the ocean, or the averaged height of the tropopause in the atmosphere. For
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the horizontal length scale in quasi-geostrophic theory, we might choose the scale of a Gulf
Stream ring in the ocean or synoptic weather pattern in the atmosphere. Alternatively, we
might choose the laterial scale of an ocean gyre for planetary geostrophy.

3. small ratio of vertical to horizontal velocity scales: The continuity equation
implies

W/H = U/L, (43.172)

so that
W = U (H/L). (43.173)

As noted above, for a hydrostatic fluid the vertical to horizontal aspect ratio, H/L, is small,
so that the vertical velocity scale is smaller than the horizontal velocity scale. Furthermore,
when the fluid is close to geostrophically balanced, the vertical velocity scale is even smaller,
by a factor of Ro. We see that factor emerge in the following scale analysis.

4. Unit hydrostatic number: The hydrostatic balance (43.139b) means that the scales
for a buoyancy fluctuation and pressure fluctuation are related by (see equation (43.150))

Φ = H B. (43.174)

5. Small Rossby number: The Rossby number is assumed small

Ro = U/(f L) = (f T )−1 ≪ 1, (43.175)

where we set the time scale for the motion according to advection, T = L/U .

6. Unit geostrophic number: The geostrophic number is assumed to be order unity

Ge ∼ 1, (43.176)

which means that the Coriolis acceleration and pressure gradient acceleration scale together

f U ∼ Φ/L =⇒ Φ ∼ U f L. (43.177)

This scaling is consistent with the momentum equation (43.139a) so long as the Rossby
number is small, Ro≪ 1.

7. stratification fluctuations compared to background stratification: Making
use of the assumed unit geostrophic number, the ratio of the buoyancy frequency arising
from the fluctuating buoyancy to the background buoyancy frequency is given by

B/H

N2
=

Φ

H2N2
=

f U L

H2N2
=

U

f L

L2 f2

H2N2
= Ro

L2

L2
d

=
Ro

Bu2(z)
, (43.178)

where we introduced the deformation radius (43.168) Ld = H (N/f), which is a function
of vertical position through the prescribed background buoyancy frequency, N(z). We
also introduced the Burger number, Bu(z) = (Ld(z)/L)

2, as per equation (43.33). It
is important to keep the depth dependence of N2,Bu(z), and Ld(z), when returning to
dimensional fields, particularly for the quasi-geostrophic equations derived in Section
45.3.7.
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43.7.8 Non-dimensional Boussinesq equations

Following the shallow water approach in Section 43.3.7, we introduce non-dimensional variables
according to

t = T t̂ (x, y) = L (x̂, ŷ) ∂t = ∂t̂/T ∇h = ∇̂h/L ∂z = ∂ẑ/H f = fo f̂ (43.179a)

(u, v) = U (û, v̂) w =W ŵ φ′ = fo U L φ̂ b′ = B b̂ = (fo U L/H) b̂. (43.179b)

For the second equality in the buoyancy scale, we made use of equation (43.160) to connect the
buoyancy fluctuation scale to the Coriolis acceleration scale. We also make use of the following
relations between scales

T = L/U advective scaling for T (43.180)

W = U (H/L) continuity scaling for W (43.181)

Ro = U/(fo L) = (Tfo)
−1 advective scaling for T . (43.182)

The first relation assumes the time scale is determined by the advection time, T = L/U , which
then means that the Rossby number is the ratio of the advective frequency, 1/T , to the Coriolis
frequency, fo. Furthermore, we assume a vertical velocity scale according to the continuity
equation, W = U (H/L). This continuity scaling for W is actually an over-estimate, where we
find below that W instead scales like W = RoU (H/L).

Non-dimensional momentum equation

Introducing the dimensionless variables and dimensionful scales into the Boussinesq momentum
equation (43.139a) renders

U

T

∂û

∂t̂
+
U2

L
(û · ∇̂h) û+

W U

H
ŵ
∂û

∂ẑ
+ fo U (f̂ × û) = −fo U ∇̂h φ̂, (43.183)

and dividing by fo U leads to

Ro

[
∂û

∂t̂
+ (û · ∇̂h) û+ ŵ

∂û

∂ẑ

]
+ (f̂ × û) = −∇̂h φ̂. (43.184)

The non-dimensional hydrostatic balance is given by

∂φ̂

∂ẑ
= b̂, (43.185)

and the non-dimensional continuity equation is

∇̂ · v̂ = 0. (43.186)

Non-dimensional buoyancy equation

The buoyancy equation (43.142) requires a bit more work to non-dimensionalize. The material
time derivative takes the form

Db′

Dt
=
B

T

Db̂

Dt̂
=
U

L

fo U L

H

Db̂

Dt̂
=
fo U

2

H

Db̂

Dt̂
, (43.187)
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where we made use of the advective scaling T = L/U and continuity scaling W = U (H/L). The
vertical advection of background stratification is given by

N2w = N2W ŵ = N2 U (H/L) ŵ = L2
d

U f2o
H L

ŵ, (43.188)

where we introduced the deformation radius, Ld = H(N/f), from equation (43.168). Bringing
these two pieces together leads to

Ro
Db̂

Dt̂
+Bu ŵ = 0, (43.189)

where we introduced the Burger number, Bu = (Ld/L)
2.

43.7.9 Comments
As stated earlier, the material in this section serves as the starting point for a systematic
derivation of the continuously stratified planetary geostrophic equations in Chapter 44, and
the continuously stratified quasi-geostrophic equations in Chapter 45. Particularly for the
quasi-geostrophic equations, we make use of asymptotic methods as for the shallow water
quasi-geostrophic equations in Section 43.5.

43.8 Exercises
exercise 43.1: PV conservation for planetary geostrophy
Show that the planetary geostrophic equations

f × u = −g∇η and
Dh

Dt
= −h∇ · u with η = ηb + h (43.190)

are equivalent to

f × u = −g∇η and
DQ

Dt
= 0 with Q =

f

h
. (43.191)

This result shows that the shallow water PG equations may be written as an evolution equation
for an approximated version of the shallow water potential vorticity, (f + ζ)/h ≈ f/h. This
limit holds when the Rossby number is small.

exercise 43.2: Constraints on steady state planetary geostrophic flow
Consider a shallow water fluid satisfying the planetary geostrophic equations developed in Section
43.4. Assume the flow is in steady state.

(a) In what manner does potential vorticity conservation constrain the velocity field?

(b) Consider an initially zonal geostrophic flow. In what direction (poleward or equatorward)
will a fluid parcel deviate when encountering a seamount (i.e., a region of relatively shallow
depth)?

(c) Describe the geostrophic contours (i.e., path of fluid particles following the geostrophic
flow) for the case where the ocean sea surface height undulations, η′, are far smaller than
undulations in the bottom topography, η′b (see Figure 35.1 for notation).
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(d) For the special case of an f -plane, show that the velocity is aligned with isolines of bottom
topography.

(e) For the special case of a flat bottom and latitudinally dependent Coriolis parameter, f(y),
show that there is no meridional geostrophic velocity. That is, the flow is zonally aligned.
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Chapter 44

PLANETARY GEOSTROPHIC VORTICITY ANALYSIS

The planetary geostrophic equations consist of steady and linear frictional geostrophic flow
coupled to the non-steady and nonlinear buoyancy evolution. Consequently, the fluid state
evolves through the buoyancy equation, whereas the flow is diagnosed from frictional geostrophy
and continuity. Furthermore, there is no turbulence in planetary geostrophy since the momentum
equation is linear and steady. Evidently, planetary geostrophy is focused on large-scale flow of a
stably stratified laminar fluid whose vorticity is dominated by planetary rotation in the presence
of planetary beta and topographic beta.

We already studied various physical properties of planetary geostrophy in Chapter 31, such
as geostrophy, vorticity, thermal wind, and Taylor-Proudman. We also made use of planetary
geostrophy to study western boundary current intensification for a shallow water layer in Section
39.7. We were able to present those studies earlier in the book since, as seen in Section 43.4 for
the shallow water, derivation of the planetary geostrophic equations is a very simple task, thus
allowing the equations to be plausibly written down without needing any formal asymptotics.

The stratified planetary geostrophic equations form the foundation for theories of the large-
scale ocean circulation, with vorticity constraints providing a key reason for the central role
of planetary geostrophy. The central role for vorticity motivates a focus in this chapter on
the mathematical and physical basis for planetary geostrophic vorticity analysis. It is notable
that in a planetary geostrophic flow, we are only concerned with planetary vorticity, and thus
ignore relative vorticity. Consequently, we ignore vorticity sources from baroclinicity and tilting.
Instead, we focus on how vertical stretching modifies a fluid’s planetary vorticity, and how the
fluid responds by moving meridionally to adjust its planetary vorticity in response to stretching.

After summarizing the planetary geostrophic equation set, we derive the planetary geostrophic
potential vorticity budget and determine how the impermeability theorem from Section 42.2
appears in planetary geostrophy. We then study a suite of vorticity budgets arrived at through
vertical integration the fluid from its bottom to top, with particular focus on ocean applications.
Each of the resulting two-dimensional vorticity budgets offers insights into how large-scale ocean
flow is constrained by rotation and the beta effect. In particular, these budgets render insights
into how forces and the curl of forces generate vertical flow next to the boundaries as well as
meridional flow for the full fluid column.

chapter guide

We here extend the shallow water discussions from Chapter 43 to develop an understanding
of the continuously stratified planetary geostrophic equations. We make use of stratified
geophysical fluid dynamics from Chapters 24 and 31, vorticity and the planetary beta
effect from Chapter 40, and potential vorticity from Chapter 41. Physical properties of
stratified geostrophic mechanics were considered in Chapter 31, with an understanding of
that material assumed here.
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44.6 Vorticity equation for the depth averaged velocity . . . . . . . . . . . . . 1278
44.6.1 Relating the depth average velocity to boundary velocities . . . . 1278
44.6.2 Formulation of the vorticity equation . . . . . . . . . . . . . . . . 1278
44.6.3 Rigid lid approximation and the role of JEBAR . . . . . . . . . . 1279
44.6.4 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

44.1 Equations for planetary geostrophy
Just like for the shallow water model in Section 43.4, the planetary geostrophic model for the
stratified Boussinesq ocean is a rather simple asymptotic theory. For this case, we assume the
horizontal scales are large compared to the deformation radius, so that

Ro/Bu ∼ 1 =⇒ RoL2 ∼ L2
d . (44.1)

With this scaling, and with a small Rossby number, the momentum equation (43.184) reduces
to geostrophic balance. However, the continuity and buoyancy equations retain their unap-
proximated Boussinesq form. Hence, in dimensional form, the perfect (adiabatic and inviscid)
planetary geostrophic equations for a stratified Boussinesq ocean are

Db′

Dt
+ wN2 = 0 and f ẑ × u = −∇hφ′ and

∂φ′

∂z
= b′ and ∇ · v = 0. (44.2)

44.1.1 Common form of the equations
We could just as well write the planetary geostrophic equations (44.2) in terms of the full
buoyancy

b = b̃(z) + b′, (44.3)

and full pressure,
p = p0(z) + ρo φ. (44.4)

Additionally, it is quite useful to include non-conservative terms such as buoyancy mixing, ḃ, to
allow for the study of how stratification evolves, as well as horizontal frictional accelerations
and/or boundary accelerations, F , to include boundary stress driven circulations through Ekman
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layers (Chapter 33). For these reasons, we take the frictional and diabatic planetary geostrophic
equations as the basis for discussions in this chapter

f ẑ × u = −ρ−1
0 ∇hp+ F frictional geostrophy (44.5a)

(∂t + u · ∇h) b+N2w = ḃ diabatic buoyancy equation (44.5b)

∂zp = −ρ g hydrostatic balance (44.5c)

∇ · v = ∇h · u+ ∂zw = 0 non-divergent flow (44.5d)

N2 = ∂zb squared buoyancy frequency (44.5e)

b = −g (ρ− ρo)/ρo Archimedean buoyancy. (44.5f)

Note that the material time derivative in planetary geostrophy makes use of advection by
the three velocity components, v = (u, w), as seen in the buoyancy equation (44.5b), with
the horizontal velocity components determined by the frictional geostrophic balance (44.5a).
This situation contrasts to quasi-geostrophy, where it is only the horizontal advection by the
geostrophic flow that contributes to material time evolution (Section 45.2).

As for the Boussinesq ocean equations discussed in Section 29.1.6, we sometimes find it
convenient to combine the horizontal velocity equation with the hydrostatic balance to write

f ẑ × u = −∇φ+ b ẑ + F . (44.6)

Furthermore, it is common to assume an equation of state that is independent of pressure, so
that material time changes in buoyancy arise only from changes in Conservative Temperature
and/or salinity

ḃ =
∂b

∂S
Ṡ +

∂b

∂Θ
Θ̇. (44.7)

The partial derivatives, ∂b/∂Θ and ∂b/∂S, are commonly assumed constant in idealized studies.

44.1.2 Planetary geostrophic energetics

Since the velocity is diagnostic in planetary geostrophy, it is determined by the buoyancy field. In
turn, there is a prognostic equation for potential energy that arises from the buoyancy equation,
whereas kinetic energy is diagnostic. The energetics are thus a special case of the Boussinesq
energetics studied in Section 29.6. We here consider just the basics.

General considerations

Multiplying the buoyancy equation (44.5b) by z leads to the potential energy equation

∂tP +∇ · (v P ) + w b = −z ḃ, (44.8)

where we introduced the potential energy per mass relative to the reference density1

P = −z b = z g (ρ− ρo)/ρo. (44.9)

Equation (44.8) says that the potential energy at a point in the planetary geostrophic fluid is
affected by advective transport, buoyancy work, and diabatic processes. As we will see, diabatic
processes such as diffusion provide a local source for potential energy, whereas buoyancy work
transfers potential energy to kinetic energy.

1We considered this same form for the potential energy in Section 29.7 as well as Exercise 29.5 as part of the
Boussinesq ocean chapter.
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Projecting the geostrophic/hydrostatic balance equation (44.6) onto the velocity leads to the
diagnostic balance between pressure work, buoyancy work, and friction

v · ∇φ− w b = u · F . (44.10)

We can add this balance to the potential energy equation (44.8) to eliminate the buoyancy work
term, w b, thus yielding

∂tP +∇ · (v P + v φ) = u · F − z ḃ, (44.11)

where we used ∇ · v = 0 to bring v φ inside the divergence. We thus see that potential
energy at a point in the planetary geostrophic fluid is affected by reversible transport processes
from advection and pressure work, along with irreversible processes from friction and material
buoyancy changes.

Diffusively driven flow

It is revealing to consider the special case of a constant volume domain with static and rigid
boundaries and with no boundary fluxes. We also assume that buoyancy is irreversibly modified
through diffusion

ḃ = ∇ · (κ∇b), (44.12)

with κ > 0 an isotropic kinematic diffusivity that can be a function of space and time. Integrating
the potential energy equation (44.11) over the domain leads to

∂t⟨P ⟩ = ⟨u · F ⟩+ ⟨κN2⟩, (44.13)

where the angle brackets signify volume means. To reach this identity we made use of

z ḃ = z∇ · (κ∇b) = ∇ · (z κ∇b)− κ ∂zb = ∇ · (z κ∇b)− κN2, (44.14)

with ∇· (z κ∇b) integrating to zero in the absence of boundary fluxes. The global mean potential
energy equation (44.13) indicates that diffusion increases volume mean potential energy for
a stably stratified fluid (N2 > 0), whereas friction generally dissipates potential energy since
⟨u · F ⟩ < 0 (Section 26.3.3). So diffusion is the only source for potential energy, with spatial
variations in potential energy leading to motion through the geostrophic balance. In the steady
state this diffusively driven flow leads to the global mean balance between diffusion and friction

⟨κN2⟩ = −⟨u · F ⟩ steady state. (44.15)

44.2 Planetary geostrophic potential vorticity
In Section 41.5 we developed the potential vorticity equation for the hydrostatic Boussinesq
ocean in the presence of horizontal friction in the momentum equation and diabatic terms in the
buoyancy equation. Here we specialize that result to the case of planetary geostrophic system
written in the form of equations (44.5a)-(44.5e).

44.2.1 Derivation
Derivation of the potential vorticity equation proceeds much like that for the hydrostatic
Boussinesq ocean. The first step requires the planetary geostrophic vorticity equation as
determined by taking the curl of the momentum equation (44.5a). The vertical component of
this vorticity equation is given by (see also Section 31.5.2)

β v = f ∂zw + ẑ · (∇h × F ) with β = ∂yf. (44.16)
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Next, make use of frictional thermal wind balance

f ∂zu = ẑ ×∇h − ∂z(ẑ × F ) (44.17)

as well as the identities

N2 Df

Dt
= N2 β v (44.18a)

f
DN2

Dt
= f

∂ḃ

∂z
− f ∇b · ∂v

∂z
(44.18b)

f ∇b · ∂v
∂z

= f N2 ∂w

∂z
− ∂(ẑ × F )

∂z
· ∇hb, (44.18c)

to render

D(f N2)

Dt
= N2 β v + f

∂ḃ

∂z
− f ∇b · ∂v

∂z
(44.19a)

= N2

[
f
∂w

∂z
+ ẑ · (∇h × F )

]
+ f

∂ḃ

∂z
− f N2 ∂w

∂z
+
∂(ẑ × F )

∂z
· ∇hb (44.19b)

= f
∂ḃ

∂z
+∇b · (∇× F ) (44.19c)

= ∇ · (f ḃ ẑ + F ×∇b). (44.19d)

We thus identify the planetary geostrophic potential vorticity

Qpg = f N2, (44.20)

which is materially invariant in the absence of diabatic processes and friction

DQpg

Dt
= 0 if ḃ = 0 and F = 0. (44.21)

We can write the general budget equation in the form of an Eulerian flux-form expression

∂tQ
pg +∇ · Jpg = 0, (44.22)

where the planetary geostrophic potential vorticity flux is given by

Jpg = vQ
pg − ḃ f ẑ +∇b× F +∇×A. (44.23)

The vector A is an arbitrary gauge function that has no impact on the potential vorticity
evolution. Comparing to the hydrostatic Boussinesq ocean expression (41.85), we see that the
planetary geostrophic result follows by approximating the absolute vorticity by just the planetary
vorticity.

44.2.2 Impermeability theorem

Following the discussion in Section 42.2.2, we verify that the potential vorticity flux vector
(44.23) satisfies the impermeability theorem for buoyancy isosurfaces. We do so for the particular
case of a zero gauge function (A = 0), in which case

vpg · ∇b = (JPG/Q) · ∇b = v · ∇b− ḃ = −∂tb, (44.24)
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so that
(∂t + vpg · ∇)b = 0. (44.25)

Evidently, there is zero flux of PV-substance crossing buoyancy isosurfaces, even in the presence
of irreversible processes that allow matter and buoyancy to cross those surfaces. As shown in
the next subsection, we identify two more forms of the PV-substance flux vector that also satisfy
impermeability, with these alternative forms differing by gauge transformations.

44.2.3 A kinematic PV flux satisfying impermeability

Following the discussion of impermeability for the Ertel potential vorticity in Section 42.2.2,
we expose a purely kinematic means to derive the impermeability theorem for the planetary
geostrophic potential vorticity. This derivation follows by computing the time tendency of the
potential vorticity

∂Q

∂t
=

∂

∂t
∇ · (f b ẑ) = ∇ ·

[
f
∂b

∂t
ẑ

]
≡ −∇ · J̃pg, (44.26)

where
J̃pg = −f ∂tb ẑ. (44.27)

This form of the PV-substance flux also satisfies impermeability since

ṽpg · ∇b = (J̃pg/Q) · ∇b = −∂tb, (44.28)

so that
(∂t + ṽpg · ∇)b = 0. (44.29)

The PV-substance flux, J̃pg, vanishes in the steady state, whereas the steady state form of
the alternative flux, JPG, is nonzero. Following the discussion in Section 42.3.2, we may choose
to introduce a gauge transformation to the kinematic flux, J̃pg, so that it does not vanish in the
steady state. Taking the small Rossby number limit of the flux (42.32) renders

Jmarshall PG
Q = −∇(g z + φ)×∇b− f ∂tb ẑ. (44.30)

This flux differs from J̃pg by a curl

∇(g z + φ)×∇b = ∇× [(g z + φ)∇b], (44.31)

and it also satisfies the impermeability theorem. As discussed in Section 42.5.6, there are
a variety of motivations for using one form of the PV-substance flux versus another. Some
applications prefer a nonzero steady flux that also does not expose any irreversible processes,
with Jmarshall PG

Q satisfying these desires.

44.3 Depth integrated vorticity budget

In a planetary geostrophic flow, vorticity arises just from planetary vorticity since relative
vorticity is negligible by comparison. With planetary vorticity a function just of latitude, a
budget for the planetary geostrophic vorticity reveals how the curl of forces imparted to the fluid
cause meridional motion as the fluid meets the constraints imposed by the vorticity equation.
As per our discussion in Section 40.3.6, we refer to a force curl as a “torque” in our study of
vorticity sources. However, one must keep in mind that more common usage in physics refers to
a torque as affecting changes to angular momentum, with angular momentum generally distinct
from vorticity (see Section 37.9 for a discussion of the distinction).
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In this section we study the depth integrated vorticity budget for the planetary geostrophic
fluid and derive implications for the meridional flow. For this purpose we focus on frictional and
boundary accelerations that take the form of a vertical divergence of horizontal turbulent stress
vector

F = ∂zτ . (44.32)

The curl of this stress, as well as pressure forces, provide torques that generate meridional motion
as revealed by the planetary geostrophic vorticity budget.

44.3.1 The β-effect, stretching, and meridional transport
In Section 31.5.2 we derived the vorticity equation for planetary geostrophy. We also encountered
this equation when deriving the potential vorticity budget in Section 44.2.1. With friction
written as a vertical divergence of horizontal turbulent stresses (equation (44.32)), the vertical
component of the planetary geostrophic vorticity equation takes the form

ρo β v = ∂z [ρo f w + ẑ · (∇× τ )] . (44.33)

Vertical integration from the ocean bottom at z = ηb(x, y) to sea surface at z = η(x, y, t) leads
to2

ρo β V = ρo f [w(η)− w(ηb)]︸ ︷︷ ︸
column stretching

+ ẑ · (∇×∆τ )︸ ︷︷ ︸
boundary stresses

, (44.34)

where

V =

ˆ η

ηb

v dz (44.35)

is the depth-integrated meridional flow, and

∆τ = τ (η)− τ (ηb) (44.36)

is the difference in boundary stresses applied at the ocean surface and ocean bottom. Note that
∆τ is just a function of horizontal position and time.

For a planetary geostrophic flow, absolute vorticity is approximated by just the planetary
vorticity

ζa = ζ + f ≈ f. (44.37)

As revealed by the vorticity equation (44.34), vorticity sources in a planetary geostrophic fluid
lead to meridional motion, with meridional motion the only way a planetary geostrophic fluid
can modify its vorticity in response to vorticity sources.

The first term on the right hand side of the vorticity equation (44.34) arises from vertical
stretching of the depth integrated column, as measured by differences in the vertical velocity
at the ocean surface and bottom. For example, vertical stretching caused by positive surface
velocity, w(η) > 0, or a negative bottom velocity, w(ηb) < 0, lead to poleward motion of the
fluid column. Conversely, vertical squashing leads to equatorward motion. We emphasize that
when studying the motion of the depth integrated flow, we are only concerned with vertical
stretching from differences in the boundary vertical velocity rather than the vertical velocity
within the fluid interior.

The second term in the vorticity equation (44.34) arises from differences in the vorticity
imparted by surface and bottom boundary stresses. Positive vorticity is imparted to the fluid
through a positive curl of wind stresses, ẑ · [∇ × τ (η)] > 0, or by a negative curl of bottom

2As a means to unclutter notation, we write ∇, rather than ∇h, whenever acting on a field that is just a
function of horizontal position, such as pa, pb, ηb and ∆τ . We can do so since, for example, ∇pb = ∇hpb, since
∂zpb = 0.
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stresses, ẑ · [∇×τ (ηb)] < 0, with such stress curls leading to poleward motion of the fluid column.
The opposite motion occurs from the converse curls.

The β-effect (Section 40.6.2) is a fundamental element of the depth integrated vorticity equa-
tion (44.34). Namely, as fluid columns are stretched or squashed, they must move meridionally
to maintain vorticity balance for a planetary geostrophic fluid on a rotating spherical earth. The
planetary geostrophic vorticity equation restricts attention to vertical stretching through vertical
motion (the w terms) and through the vorticity imparted by the curl of boundary stresses.
Notably, the curl of boundary stresses also imparts vertical motion through surface and bottom
Ekman layer dynamics (see Chapter 33). Hence, the right hand side of the vorticity equation
(44.34) is fundamentally related to vortex stretching.

Equation (44.34) is central to mechanical descriptions of large-scale ocean circulation. For
many flow regimes, the curl of the surface wind stress dominates, thus allowing us to ignore the
vertical velocity terms as well as bottom frictional stresses. Formally, we isolate the wind stress
when studying a flat bottom rigid lid model, whereby w(η) = w(ηb) = 0. However, there can be
nontrivial impacts from bottom pressure torques when flow interacts with sloping topography,
with the North Atlantic and Southern Ocean providing important case studies. Other processes
can be important in various flow regimes, thus prompting us to derive a full diagnostic framework
to identify where these processes are important. To pursue that framework, we make use of the
kinematic boundary conditions and the horizontal momentum equation to unpack the vertical
velocity terms. Doing so reveals the forces and their curls that drive vertical motion at the
boundaries for a planetary geostrophic flow.

44.3.2 Bottom kinematics and dynamics

The bottom kinematic boundary condition applied at z = ηb(x, y) (Section 19.6.1) is given by

w = u · ∇ηb at z = ηb(x, y). (44.38)

This relation expresses the no-normal flow condition, n̂ · v = 0, at the ocean bottom, with

n̂ = − ∇(z − ηb)|∇(z − ηb)|
= −

[
ẑ −∇ηb√

1 +∇ηb · ∇ηb

]
(44.39)

the outward unit normal to the bottom. The boundary condition constrains the flow so that
any horizontal motion next to a sloping bottom that is oriented either up or down the slope
must have an associated vertical motion. As we see in this section, such vertical motion next
to the bottom boundary arises from force curls acting to stretch or squash a fluid column. In
turn, through the vorticity equation (44.34), vertical motion at the bottom leads to meridional
motion of the full fluid column.

Expressions for bottom vertical velocity

The bottom kinematic boundary condition holds for all dynamical flow regimes. For the particular
case of planetary geostrophy, we garner insight into the forces that drive vertical flow near the
bottom by making use of the planetary geostrophic momentum equation (44.5a). Evaluating
the horizontal components of this equation at the ocean bottom yields3

ρo f ẑ × u = −(∇p)z=ηb + Fb, (44.40)

3Recall that since pb = pb(x, y, t), we have ∇pb = ∇hpb. As noted in the footnote on page 1267, we drop the z
script to reduce notational clutter.
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where (∇p)z=ηb is the horizontal pressure gradient evaluated at the ocean bottom and Fb(x, y, t)
is the bottom friction. For the special case of a no-slip bottom, all velocity components vanish
at z = ηb. In that case, we consider u in equation (44.40) to be the horizontal velocity averaged
within the bottom boundary layer, and w the corresponding vertical velocity leaving the boundary
layer.

It is convenient to decompose the bottom horizontal velocity into its geostrophic and Ekman4

components via
ρo f ẑ × ug = −(∇p)z=ηb and ρo f ẑ × ue = Fb, (44.41)

so that

ug =
ẑ × (∇p)z=ηb

ρo f
and ue = −

ẑ × Fb

ρo f
. (44.42)

For the horizontal horizontal pressure gradient at the ocean bottom, we make use of equation
(27.60b) to write

(∇hp)z=ηb = ∇hpb + g ρ(ηb)∇hηb. (44.43)

The corresponding bottom vertical velocity components are determined by inserting equations
(44.42) and (44.43) into the bottom kinematic boundary condition (44.38)

wg =
ẑ · (−∇ηb ×∇pb)

ρo f
and we =

ẑ · (∇ηb × Fb)

ρo f
. (44.44)

These equations reveal how the curl of pressure forces and boundary frictional forces drive a
nonzero vertical motion next to the bottom, while maintaining the bottom kinematic boundary
condition (44.38). As seen by these equations, is only the projection of ∇pb and Fb onto the
isobath direction that contributes to a nonzero vertical velocity. These along-isobath forces are
needed to render a horizontal velocity that is itself misaligned with isobaths, thus satisfying the
kinematic requirement for vertical motion.5

To further understand the bottom pressure term, we write it as

wg =
ẑ · (−∇ηb ×∇pb)

ρo f
=
ẑ · [∇× pb∇ηb]

ρo f
. (44.45)

The numerator is the curl of the horizontal projection of the pressure contact force along the
bottom, pb∇ηb. This term is the topographic form stress discussed in Section 28.2 for a general
fluid and in Section 39.7.6 for the shallow water. We thus conclude that vertical geostrophic
motion next to the bottom arises from the curl of the topographic form stress. This is an
important result that will appear again within this section as well as in Sections 44.5 and 44.6.

Comments on the bottom vertical geostrophic velocity

A large part of the bottom pressure gradient driving the horizontal geostrophic flow in equation
(44.42) arises from changes in bottom depth. However, that portion of the bottom pressure
gradient has no impact on wg, since it only drives horizontal flow along isobaths. We see this
property by writing

pb = −ρo g ηb + p′b =⇒ wg =
ẑ · (−∇ηb ×∇p′b)

ρo f
. (44.46)

When there is misalignment between isolines of bottom pressure and bottom topography, the
geostrophic flow in a fluid column crosses isobaths. Correspondingly, with the pressure force
misaligned with topographic gradients, the fluid column experiences a twisting action akin

4Recall our discussion of Ekman mechanics in Chapter 33.
5Note that we derived the expression (44.44) for wg in equation (40.196) when studying vorticity mechanics.
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Figure 44.1: Depicting how bottom pressure gradients create vertical motion in planetary geostrophic flow
next to a sloping bottom according to equations (44.44) and (44.46). Here we show a bowl or depression (local
maximum in the depth) with −ηb increasing inward toward the bowl center. Only those portions of ∇pb and Fb

that are aligned parallel to the topographic slope contribute to vertical motion. We illustrate here a case where
the bottom pressure gradient leads to −∇ηb · ug > 0 so that wg < 0 in the northern hemisphere and wg > 0 in the
southern hemisphere.

to how baroclinicity spins a fluid element if the pressure force does not act through the fluid
element’s center of mass (see Section 40.4).

To illustrate the above, consider the topographic bowl in Figure 44.1, with sides steep
enough so that the bottom pressure gradient is dominated by the topographic slopes. Along
the bottom the pressure increases moving down (increasing depth) towards the bowl center.
The corresponding bottom geostrophic flow is anti-cyclonic within the bowl and largely follows
isobaths. As already noted, if the geostrophic flow exactly follows isobaths, then there is no
corresponding vertical component to the bottom velocity. A vertical velocity arises only in the
presence of an anomalous bottom pressure gradient, ∇p′b, that is misaligned with the bottom
slope, ∇ηb. This bottom pressure gradient balances a geostrophic flow that deviates from isobaths
thus giving rise to a nonzero wg. Similar geometric analysis holds for the bottom friction vector,
Fb, and how it gives rise to a nonzero vertical Ekman velocity, we.

What causes misalignment between pb and ηb?

As we just discussed, misalignment of pb and ηb lead to vertical geostrophic motion along the
bottom. In Section 44.3.3 we will see a similar relation for vertical geostrophic motion at the
ocean surface. But what causes such misalignment? The answer to this question is circular
when working within planetary geostrophy since its momentum equation is diagnostic. Even
so, we can offer some insight by returning to the depth-integrated vorticity balance (44.34) and
rewriting it as an expression for vertical motion

ρo f [w(ηb)− w(η)] = −ρo β V + ẑ · (∇×∆τ ). (44.47)

Hence, vertical motion at the surface and bottom balance meridional motion in the presence of
planetary beta, plus the curl of surface and bottom stresses. The absence of planetary beta, and
the absence of boundary stress curls, realizes w(ηb) = w(η).
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44.3.3 Surface kinematics and dynamics

For purposes of large-scale circulation studies using planetary geostrophy, it is generally sufficient
to assume a rigid lid upper boundary condition, whereby w(η) = w(0) = 0. Even so, we find
it revealing to present the results for a free surface in which there is the possibility of nonzero
surface mass fluxes. This situation is commonly encountered in general circulation models. The
surface kinematic boundary condition for a Boussinesq fluid (Section 21.3) is given by

w = −Qm/ρo + (∂t + u · ∇)η at z = η(x, y, t). (44.48)

We retain the sea surface time tendency, ∂tη, even though for transient solutions the time
tendency is many orders of magnitude smaller than the typical vertical velocity under the
planetary geostrophic regime.6 Evaluating the horizontal planetary geostrophic momentum
equation (31.25a) at the ocean surface renders

ρo f ẑ × u = −(∇hp)z=η + Fη, (44.49)

where Fη is the horizontal friction vector at the surface, and (see equation (27.60a))

(∇hp)z=η = ∇hpa + g ρ(η)∇hη (44.50)

is the horizontal pressure gradient at the ocean surface. Like the bottom, we decompose the
horizontal velocity into a geostrophic component and an Ekman component via

ρo f ẑ × ug = −(∇hp)z=η and ρo f ẑ × ue = Fη, (44.51)

so that

ug =
ẑ × (∇hp)z=η

ρo f
and ue = −

ẑ × Fη
ρo f

. (44.52)

The corresponding vertical velocity components are determined by inserting into the surface
kinematic boundary condition (44.48)

wQη = −
Qm

ρo
+
∂η

∂t
and wg =

ẑ · (−∇η ×∇pa)
ρo f

and we =
ẑ · (∇η × Fη)

ρo f
, (44.53)

where we introduced a vertical velocity, wQη, associated with the boundary mass flux and
transient sea level fluctuations. As for the bottom, the second and third of these equations reveal
how the curl of inviscid pressure forces and boundary frictional forces drive a nonzero vertical
motion at the ocean surface, all while maintaining the surface kinematic boundary condition
(44.48). Furthermore, it is only the projection of ∇pa and Fη onto the direction parallel to sea
surface height contours that contributes to a nonzero vertical velocity. This orientation of the
surface forces is needed to render a horizontal velocity that is itself misaligned with sea surface
height contours, thus satisfying the kinematics required to render vertical motion.

44.3.4 Summary of force curls driving depth integrated meridional flow

Plugging expressions (44.44), (44.46), and (44.53) into equation (44.34) renders the depth
integrated planetary vorticity balance

ρo β V = f (−Qm + ρo ∂tη) + ẑ ·
[
∇η × (Fη −∇pa)−∇ηb × (Fb −∇p′b) +∇×∆τ

]
. (44.54)

6See Section 3.3 of Samelson (2011) for more details on this scaling of the planetary geostrophic equations.
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Evidently, the force curls are symmetrically applied at the surface and bottom, which is part of
the motivation for exposing the surface terms even though they are generally subdominant. In
general, equation (44.54) shows that the depth integrated meridional flow, within the planetary
geostrophic regime, is driven by the following processes.

Surface mass transport plus sea surface fluctuations

The term f ρo (−Qm/ρo+∂tη) arises from mass transport across the ocean surface plus fluctuations
in the sea surface height. For example, as sea surface height increases or as water leaves the ocean
surface, they impart a positive surface vertical velocity, w(η) > 0, thus causing column stretching
and poleward meridional depth integrated flow. In the steady state, where it is just the mass
flux term that contributes, the meridional circulation is known as the Goldsbrough-Stommel
circulation (see Huang and Schmitt (1993) for a review).

Curl of turbulent boundary stresses

The term ẑ · (∇×∆τ ) arises from the curl of the turbulent wind stress and turbulent bottom
stress. The wind stress term is generally larger than the bottom turbulent stress, with many
theories for ocean circulation, particularly those with a flat bottom, almost exclusively focused
on the role of surface stress in forcing planetary geostrophic vorticity. We comment more on
this case in Section 44.4 where we discuss the Sverdrup balance.

Atmospheric pressure torque

The term
∇pa ×∇η = ∇× (pa∇η) = −∇× (η∇pa) (44.55)

arises from differences in lines of constant atmospheric pressure and lines of constant sea surface
height. Such misalignments create a torque akin to the baroclinicity detailed in Section 40.4, with
these misalignments driving vertical motion and a corresponding depth integrated meridional
flow.

Bottom pressure torque

The term
∇p′b × (−∇ηb) = ∇× (−p′b∇ηb) = ∇× (ηb∇p′b) (44.56)

arises from differences in lines of constant bottom pressure and lines of constant bottom
topography. That is, bottom pressure torque requires a gradient of bottom pressure along
isobaths, thus producing a bottom geostrophic flow that deviates from isobaths. As for the
atmospheric pressure torques, such misalignments create a torque that drives a depth integrated
meridional flow, with this term vanishing when the bottom topography is flat. In many cases
with strong flow next to sloping bottoms, this term can contribute more to the vorticity budget
than the turbulent bottom stress. Indeed, in some cases it can rival contributions from the
surface wind stress. We sketched out such cases for the shallow water when discussing western
boundary currents in Section 39.7.6.

Surface frictional acceleration

The term
ẑ · (∇η × Fη) = ẑ · [∇η × ∂zτη] (44.57)

arises from evaluating the vertical divergence of the frictional stress at the sea surface. A finite
volume boundary layer treatment of this term prompts us to integrate the stress divergence over
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the extent of the surface Ekman layer to render the alternative expression

ẑ ·
ˆ η

−he-surf
[∇η × ∂zτ ] dz = ẑ · [∇η × τ (η)], (44.58)

where we assumed τ is negligible at the base of the surface Ekman layer, z = −he-surf(x, y, t).
The term ẑ · [∇η × τ (η)] creates a torque from that component of the surface turbulent stress
that is aligned with isolines of the sea surface height.

Bottom frictional acceleration

The term

ẑ · (−∇ηb × Fb) = ẑ ·
[
−∇ηb ×

∂τb
∂z

]
(44.59)

arises from evaluating the vertical divergence of the frictional stress at the ocean bottom. As for
the analogous term for the surface, we offer a finite volume Ekman boundary layer treatment to
render the alternative expression

ẑ ·
ˆ he-bot

ηb

[
−∇ηb ×

∂τ

∂z

]
dz = ẑ · [−∇ηb × τ (ηb)], (44.60)

where we assumed τ is negligible at the top of the bottom Ekman layer, z = −ηb + he-bot. The
term ẑ · [−∇ηb × τ (ηb)] creates a torque from that component of the bottom turbulent stress
that is aligned with isobaths.

44.3.5 Integral constraints
The atmospheric and bottom pressure torques appearing in the depth integrated planetary
vorticity balance (44.54) satisfy an integral constraint that follows from Stokes’ curl theorem.
To illustrate this constraint, consider the bottom pressure torque integrated over an arbitrary
area along the bottom

ˆ
(∇ηb ×∇p′b) · ẑ dA =

ˆ
[∇× (ηb∇p′b)] · ẑ dA (44.61a)

=

‰
ηb∇p′b · t̂ ds (44.61b)

= −
‰
p′b∇ηb · t̂ ds. (44.61c)

We see that the bottom pressure torque vanishes when integrated around a closed loop that
follows either an isobath or a bottom isobar, since the integrand vanishes identically. A similar
constraint holds for the atmospheric pressure torque, whereas there is generally no analogous
constraint satisfied by the turbulent boundary stresses.

One exception for the turbulent stresses occurs for f -plane flow (β = 0) where the depth
integrated flow is non-divergent

∂tη −Qm/ρo = −∇ ·U = 0, (44.62)

and where the interior friction vanishes at the surface and bottom boundaries, Fη = Fb = 0.
From equation (44.54), we see that a steady state is realized only if there is a balance between
pressure torques and turbulent boundary stresses

ẑ · (∇η ×∇pa −∇ηb ×∇p′b) = ẑ · (∇×∆τ ). (44.63)
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Consider even further specialization in which the atmospheric pressure torque vanishes, and the
bottom turbulent stress is negligible, in which case a steady state balance requires a balance
between bottom pressure torques and torques from surface turbulent wind stress

−ẑ · (∇ηb ×∇p′b) = ẑ · [∇× τ (η)]. (44.64)

Integration over either an isobath or bottom pressure isobar then requires, for a steady state,
the following identity

ˆ
[∇× τ (η)] · ẑ dA =

‰
τ (η) · t̂ds = 0 f -plane closed isobath or closed isobar. (44.65)

Deviation from this identity leads to non-steady flow on the f -plane. In contrast, the β-plane
has no such steady state constraint since meridional flow can balance the circulation imparted
by turbulent wind stresses.

44.4 Sverdrup balance and geostrophic Sverdrup balance

The balance (44.54) exposes the many processes that affect meridional flow in a planetary
geostrophic fluid. However, when confronted with minimal information from ocean measurements,
we are motivated to examine just the main contributors to this balance.

The Sverdrup balance is a very simplified form of the balance (44.54), and it was first
encountered in Section 31.5.5

ρo β VSverdrup = ẑ · [∇× τ (η)] Sverdrup balance. (44.66)

This balance arises from dropping the vertical velocity at both the ocean surface and ocean
bottom; ignoring horizontal frictional stresses; and assuming ∂tη = −Qm/ρo = 0 as per a rigid
lid flow in which ∇ ·U = 0. The Sverdrup balance offers a null hypothesis for the large-scale
and low frequency meridional ocean circulation away from sloping sides; i.e., in regions where
bottom pressure torques can be ignored.

To derive the Sverdrup balance (44.66), we performed a depth integral of the planetary
geostrophic vorticity equation (44.33) from the ocean bottom to the free surface. This integral
encompasses both the geostrophic interior and the ageostrophic Ekman flow in the top and
bottom Ekman layers. In some treatments we focus exclusively on contributions from the
geostrophic interior, in which case the depth integral extends from the top of the bottom Ekman
layer, z = ηeb, to the bottom of the top Ekman layer, z = ηet, thus leading to the depth integrated
geostrophic transport

Vg ≡
ˆ ηet

ηeb

v dz. (44.67)

Integrating the planetary geostrophic vorticity balance (44.33) over this depth range, and ignoring
contributions from friction since we are concerned just with the geostrophic interior, leads to

ρo β Vg = f [w(ηet)− w(ηeb)]. (44.68)

This equation provides a balance between the depth integrated meridional transport within the
geostrophic interior (left hand side), with the vertical vortex stretching within this depth range
(right hand side).

We now make use of the Ekman theory from Chapter 33 to approximate the vertical velocities
in equation (44.68). For this purpose we neglect both the time tendency for the vertical position
of the Ekman layer and the slope of the Ekman layer, in which case the kinematic identity
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(33.38), applied at the Ekman base, z = ηe(x, y, t), is approximated by

w(η̇e) = w − (∂tz + u · ∇z) ≈ w at z = ηe(x, y, t), (44.69)

where z = ηe is ths vertical position of the Ekman layer. We now make use of the Ekman layer
mass budgets to determine the entrainment velocity, w(η̇e). In particular, equation (33.45) is
used for w(ηet) to give

w(ηet) ≈ w(η̇e)
Ekman-top = (1/ρo) ẑ · [∇× (τ (η)/f)]. (44.70)

with a similar treatment for the bottom leading to

w(ηeb) ≈ w(η̇e)
Ekman-bot = (1/ρo)f ẑ · [∇× (τ (ηb)/f)]. (44.71)

Bringing these results into equation (44.68) leads to

ρo β Vg = f ẑ · ∇ × [τ (η)/f − τ (ηb)/f ]. (44.72)

Since the bottom turbulent stress is generally much smaller than the surface, it is typically
ignored, in which case we reach the geostrophic Sverdrup balance

ρo β Vg = f ẑ · ∇ × [τ (η)/f ] geostrophic Sverdrup balance. (44.73)

The geostrophic Sverdrup balance relates the meridional geostrophic transport to the curl of τ/f
due to upper ocean mechanical stresses from boundary processes; i.e., wind stress and ice-ocean
stresses. It is differs from the full Sverdrup balance in equation (44.66) by the presence of the
f outside of the curl and 1/f inside the curl. Gray and Riser (2014) assess the geostrophic
Sverdrup balance based on ocean measurements.

44.5 Vorticity of the depth integrated velocity

In Section 44.3 we studied the depth integrated vorticity budget for planetary geostrophic flow.
We were led to see how boundary torques (i.e., the curl of boundary forces) lead to vertical
motion and in turn, through the β-effect, lead to meridional motion of the depth integrated flow.
In this section we present another analysis of vorticity in the planetary geostrophic regime, here
focusing on vorticity of the depth integrated velocity. Elements of this material were discussed
in Section 40.9 without making the planetary geostrophic assumption. By assuming planetary
geostrophy we can further constrain the flow by focusing just on vortex stretching.

44.5.1 Depth integrated velocity equation

The depth integrated horizontal velocity equation (44.5a) is given by

ρo f ẑ ×U = −
ˆ η

ηb

∇hp dz +∆τ (44.74)

where

U =

ˆ η

ηb

u dz (44.75)

is the depth integrated horizontal velocity, and we assumed friction in the form of the vertical
divergence of a horizontal turbulent stress as in equation (44.32). For the depth integrated
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pressure gradient, we follow the decomposition in Section 28.4.4 by writing

ˆ η

ηb

p dz =

ˆ η

ηb

[d(p z)− z dp] = pa η − pb ηb +P, (44.76)

where we used the hydrostatic balance to write dp = −g ρ dz, which is valid for each fluid column.
We also introduced the potential energy per horizontal area of a fluid column

P =

ˆ η

ηb

g ρ z dz = (g ρo/2) (η
2 − η2b ) +

ˆ η

ηb

g ρ′ z dz, (44.77)

where
ρ′ = ρ− ρo (44.78)

is the density deviation from the background reference density. These results then lead to the
depth integrated horizontal pressure gradient

ˆ η

ηb

∇hp dz = ∇h
[ˆ η

ηb

p dz

]
− pa∇hη + pb∇hηb (44.79a)

= ∇h [pa η − pb ηb +P]− pa∇hη + pb∇hηb (44.79b)

= η∇hpa − ηb∇hpb +∇hP, (44.79c)

= η∇pa − ηb∇pb +∇P, (44.79d)

where the final equality follows since pa, ηb, pb, and P, are functions just of horizontal position
and time. We are thus led to the depth integrated planetary geostrophic momentum balance

ρo f ẑ ×U = −η∇pa + ηb∇pb −∇P+∆τ . (44.80)

The depth integrated balance is here written in terms of gradients in the surface and bottom
pressures, the gradient of the potential energy per area, and the difference in turbulent stresses
at the top and bottom boundaries, ∆τ = τ (η)− τ (ηb).

44.5.2 Vorticity budget

Taking the curl of the depth integrated balance (44.80) annihilates the potential energy term,
thus leaving

ρo β V = −ρo f ∇ ·U + ẑ · ∇ × [pa∇η + τ (η)− pb∇ηb − τ (ηb)]. (44.81)

From Section 21.8, we know that the divergence of the depth-integrated flow for a steady
Boussinesq fluid is given by

ρo∇ ·U = Qm, (44.82)

so that
ρo β V = −f Qm + ẑ · ∇ × [pa∇η + τ (η)− pb∇ηb − τ (ηb)]. (44.83)

This is the vorticity equation for the depth integrated planetary geostrophic fluid. It is quite
similar to the vorticity balance for a shallow water fluid as given by equation (39.106) (which
considered zero atmospheric pressure). In the presence of β, meridional mass transport for
the fluid column is balanced by surface mass fluxes, Qm ̸= 0; the curl of surface form stresses
and surface turbulent stresses; and the curl of topographic form stresses and bottom turbulent
stresses. This result follows quite naturally when recognizing that the forces acting on a depth
integrated fluid column arise from the depth integrated stresses acting on the column sides plus
those acting on the top and bottom boundaries. In the absence of interior friction stresses due
to horizontal strains (as assumed here), it is only the depth integrated pressure that acts on the
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column sides, and this term has zero curl. We are thus left just with the curl of the surface and
bottom boundary form stresses and turbulent stresses, along with a contribution from boundary
mass transport.

The Sverdrup balance (44.66) is a special case of the more complete vorticity budget (44.81).
Furthermore, the topographic Sverdrup balance results when meridional transport balances the
curl of the wind plus bottom pressure form stress

ρo β Vtopo-Sverdrup = ẑ · ∇ × (τ (η)− pb∇ηb) topographic Sverdrup balance. (44.84)

In the presence of flows interacting with topography, where bottom pressure torques are sizable,
this balance is generally much more accurate than the Sverdrup balance.

44.5.3 Integral balances for steady flows

Following the discussion in Section 40.9.5, we write the vorticity balance (44.81) in the form

ρo∇ · (f U) = ẑ · ∇ × [pa∇η + τ (η)− pb∇ηb − τ (ηb)]. (44.85)

Integrating over a horizontal area, S, leads to

ρo

˛
∂S
f U · n̂ds =

‰
∂S

[pa∇η + τ (η)− pb∇ηb − τ (ηb)] · t̂ ds. (44.86)

To reach this result we used Gauss’s divergence theorem for the left hand side and Stokes’
curl theorem for the right hand side. The unit vector n̂ points horizontally outward from the
boundary of the area, whereas the unit vector t̂ is the counter-clockwise oriented tangent to the
closed contour around the boundary. For the special case of Qm = 0 we are afforded a steady
state streamfunction for the depth-integrate flow since ∇ ·U = 0. Choosing the area, S, to be
bounded by a closed streamline allows us to set U · n̂ = 0 along that streamline. We thus see
that for steady planetary geostrophic flow with ∇ · U = 0, any closed streamline of the flow
must maintain the following work balance around the streamline

‰
∂S

[pa∇η + τ (η)− pb∇ηb − τ (ηb)] · t̂ds = 0. (44.87)

This equation is a simplified form of equation (40.208) that was formulated for a more general
flow. We can rearrange equation (44.87) to display an integrated balance between the work done
by boundary pressure form stresses around a closed streamline, and work done by boundary
turbulent stresses around the same streamline‰

∂S
(pa∇η − pb∇ηb) · t̂ ds = −

‰
∂S

[τ (η)− τ (ηb)] · t̂ds. (44.88)

44.5.4 Comments

Yeager (2015) connects torques acting on the depth integrated horizontal flow in the North
Atlantic to buoyancy forces affecting the Atlantic meridional overturning circulation, thus
illustrating how the formulation in this section can be of use for the analysis of an ocean
circulation model.
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44.6 Vorticity equation for the depth averaged velocity

In some numerical models, it is more common to have access to the depth averaged velocity

u =
1

D

ˆ η

ηb

udz with D = η − ηb. (44.89)

We thus find it useful to develop a budget for the vorticity of the depth averaged velocity. In
this discussion we encounter a distinct means for describing how bottom topography, in the
presence of baroclinicity, generates meridional flow.

44.6.1 Relating the depth average velocity to boundary velocities

Before studying the vorticity equation, we here relate the depth averaged velocity, u(x, y, t),
to the surface velocity, u(x, y, z = η, t), and bottom velocity, u(x, y, z = ηb, t). This analysis
exposes some general features of how the boundary flows are driven away from the depth average.

The starting point is the identity

ˆ η

ηb

udz = (η − ηb)u(η)−
ˆ η

ηb

∂u

∂z
(z − ηb) dz, (44.90)

which, along with the analogous identity for the bottom flow, leads to

u− u(η) = −
ˆ η

ηb

∂u

∂z

[
z − ηb
η − ηb

]
dz and u− u(ηb) =

ˆ η

ηb

∂u

∂z

[
η − z
η − ηb

]
dz. (44.91)

Note that u(η)− u(ηb) =
´ η
ηb
(∂u/∂z) dz serves as a useful check on the manipulations leading

to equation (44.91). We see that the difference between the depth averaged flow and the surface
flow, u − u(η), is determined by the integral of the weighted vertical shear, with the weight
linearly decreasing from unity at the surface to zero at the bottom. The minus sign in front of
the integral for u− u(η) follows because if the flow increases in the positive direction from the
bottom to the surface, then the depth averaged flow will have a smaller magnitude than the
surface flow. The converse weighting holds for computing the difference u− u(ηb).

The identities (44.91) hold for arbitrary horizontal velocity fields. Assuming the flow satisfies
frictional geostrophy as per equation (44.5a) leads to the frictional thermal wind relation

f u = ρ−1
o ẑ ×∇p− ẑ × F =⇒ f ∂zu = −(g/ρo) ẑ ×∇ρ− ẑ × ∂zF , (44.92)

so that the velocity differences are given by

f [u− u(η)] =
ˆ η

ηb

[(g/ρo) ẑ ×∇ρ− ẑ × ∂zF ]

[
z − ηb
η − ηb

]
dz (44.93a)

f [u− u(ηb)] = −
ˆ η

ηb

[(g/ρo) ẑ ×∇ρ− ẑ × ∂zF ]

[
η − z
η − ηb

]
dz. (44.93b)

Hence, differences between the depth averaged flow and the boundary flows are determined by
weighted integrals of the baroclinicity and vertical friction shears.

44.6.2 Formulation of the vorticity equation

To develop the vorticity equation, we start by deriving the momentum equation for the depth
averaged flow. For that purpose, rearrange the depth integrated momentum budget (44.80)
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according to
ρo f ẑ ×U = −η∇h(pa − pb)−D∇pb −∇P+∆τ , (44.94)

and then divide by the column thickness, D = η − ηb, to render

ρo f ẑ × u = −(η/D)∇(pa − pb)−∇pb + (1/D) (−∇P+∆τ ). (44.95)

Taking the curl then leads to

ρo∇ · (f u) = −ẑ · ∇ × [(η/D)∇(pa − pb)] +D−2 ẑ · [∇× (D∇P)] + ẑ · [∇× (D−1∆τ )]
(44.96a)

= ẑ · ∇ × [(pa − pb)∇(η/D)]−D−2 ẑ · [∇× (P∇D)] + ẑ · [∇× (D−1∆τ )].
(44.96b)

The vorticity budget (44.96) is a bit less tidy than that for the depth integrated budget
(44.83). Nonetheless, it offers some novel insights concerning the flow, which can be seen by
writing the left hand side in the form

∇ · (f u) = ∇ · [(f/D)U ], (44.97)

with f/D reminiscient of the shallow water potential vorticity for the planetary geostrophic flow
(Section 43.4). Motivated by this analog, we write the vorticity equation (44.96) in the form

ρoU · ∇(f/D) = −ρo (f/D)∇ ·U + ẑ · ∇ × [(pa − pb)∇(η/D)]

−D−2 ẑ · [∇× (P∇D)] + ẑ · [∇× (D−1∆τ )]. (44.98)

Contrary to the shallow water case, we here see that even for a perfect planetary geostrophic
fluid, the depth-integrated flow does not generally follow contours of constant f/D. Even so, it
is of interest to examine how the processes on the right hand side contribute to flow deviations
from f/D contours. For that purpose we simplify the flow even more by making the rigid lid
approximation.

44.6.3 Rigid lid approximation and the role of JEBAR

The rigid lid approximation is commonly made for studies of large-scale circulation. Indeed, it
was the basis for many ocean general circulation models following the work of Bryan (1969). A
fluid satisfying the rigid lid approximation has a vanishing horizontal divergence for the depth
integrated flow

rigid lid approximation =⇒ ∇ ·U = 0. (44.99)

Furthermore, as part of the rigid lid approximation we assume the free surface undulations are
much smaller than the resting ocean depth so that

|η| ≪ |ηb| =⇒ η/D ≈ 0 (44.100a)

1/(η − ηb) ≈ 1/(−ηb) = 1/H. (44.100b)

We introduced
H = −ηb (44.101)
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to correspond to the literature for rigid lid models and the JEBAR term.7 Hence, with the rigid
lid approximation the vorticity equation (44.98) takes the simplified form

U · ∇(f/H) = ρ−1
o ẑ · [∇× (P∇H−1) +∇× (H−1∆τ )]. (44.102)

Each term in this equation has dimensions of inverse squared time, T−2.

JEBAR drives deviations from f/H aligned flow

The first term on the right hand side of the vorticity equation (44.102) is referred to as the Joint
Effect of Baroclinicity and Relief (JEBAR)

JEBAR ≡ ρ−1
o ẑ · [∇× (P∇H−1)] = ρ−1

o ẑ · [∇P×∇H−1]. (44.103)

This name arises since JEBAR is nonzero only in the presence of non-flat topography (“relief”)
and (as shown below) when density is not a constant (i.e., for baroclinic flow). In addition to
contributions from boundary stresses, equation (44.102) says that misalignment of f/H contours
with the depth-integrated steady rigid lid flow is driven by misalignments of isobaths and isolines
of the depth integrated potential energy.

Contributions to JEBAR arise only from the component of the potential energy that deviates
from a constant density reference state. To show that property, note that in the rigid lid
approximation, the potential energy in a column, as given by equation (44.77), takes the form

P = (1/2) g ρo H
2 + g

ˆ 0

−H

ρ′ z dz, (44.104)

where ρ′ = ρ− ρo. With ∇H2 ×∇(1/H) = 0, we are left with just the contribution from ρ′

JEBAR = ρ−1
o ẑ ·

[
∇
(
g

ˆ 0

−H

ρ′ z dz

)
×∇H−1

]
. (44.105)

JEBAR vanishes for a homogeneous density field, where ρ′ is a constant, but is nonzero with a
nonzero ρ′. In a Boussinesq ocean, a nonzero ρ′ is associated with baroclinicity (Figure 40.10).

Relating JEBAR to pressure

JEBAR as given by equation (44.103) has the appearance of the curl of a form stress, and yet
it is not. The reason is that P is the potential energy of the fluid column rather than bottom
pressure. We make this point explicit by recalling the decomposition (44.76), here specialized to
the rigid lid in which

P = H (p− pb) with p = H−1

ˆ 0

−H

p dz = (−ηb)−1

ˆ 0

ηb

p dz. (44.106)

Plugging into the vorticity equation (44.102) leads to

ρoU · ∇(f/H) = H−1 ẑ · [∇H×∇(p− pb)] + ẑ · ∇ × (H−1∆τ )]. (44.107)

Evidently, JEBAR is nonzero where the depth averaged pressure deviates from the bottom
pressure

JEBAR = ρ−1
o ẑ · [∇P×∇H−1)] = (ρo H)

−1 ẑ · [∇H×∇(p− pb)]. (44.108)

7Note that H is the vertical depth scale, which is a constant, and it is distinct from H(x, y) = −ηb(x, y), which
is a function of horizontal position.
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We can go one more step in exposing the pressure difference through use of equation (44.91),
here applied to hydrostatic pressure, in which case (remember that H = −ηb)

p− pb =
ˆ 0

ηb

∂p

∂z

z

ηb
dz = (g/H)

ˆ 0

−H

z ρdz = H−1P, (44.109)

so that8

∇h(p− pb) = −g ρ(z = −H)∇hH+ g

ˆ 0

−H

∇h(ρ z/H) dz. (44.110)

The first term arises from slopes in the bottom topography as weighted by the bottom density,
whereas the second term arises from the integral of horizontal gradients in the z/H weighted
density.

Alternatively, we can introduce a geostrophic velocity associated with the gradient of the
bottom pressure as well as the vertically averaged pressure

ρo f ẑ × ugb = −∇pb and ρo f ẑ × ug = −∇p =⇒ ∇(p− pb) = ρo f ẑ × (ugb − ug). (44.111)

Doing so brings JEBAR from equation (44.108) into the form

JEBAR = (ρo H)
−1 ẑ · [∇H×∇(p− pb)] = −f H−1∇H · (ug − ugb). (44.112)

JEBAR thus arises from a nonzero projection onto the bottom slope of the difference between
the geostrophic velocity arising from the bottom pressure and the geostrophic velocity arising
from the depth averaged pressure.

Equation (44.83) provides the budget for vorticity of the depth integrated flow, in which
we find the curl of the topographic form stress leads to vortex stretching. For the vorticity of
the depth averaged flow, we instead encounter the JEBAR term in equation (44.107), which
is not a pure vortex stretching term. Instead, it accounts for the fact that it is the horizontal
velocity flowing across isobaths, u(z = ηb), rather than depth averaged horizontal velocity, u,
that leads to vortex stretching. Hence, when studying vorticity of the depth averaged velocity,
u, accounting for the role of vortex stretching requires us to include JEBAR.

Integral balances

Since the depth integrated flow is assumed to be non-divergent in the rigid lid approximation,
∇ ·U = 0, we know there exists a streamfunction for this flow. Consider a region where there
are closed streamlines. Following the steps in Section (44.5.3), we integrate the steady vorticity
equation (44.102) around the streamline. Noting that U · n̂ = 0 along the streamline, where n̂
is the horizontal unit normal to the streamline, thus renders the steady balance

‰
∂Sstreamline

(P∇H−1 + H−1∆τ ) · t̂ds = 0. (44.113)

44.6.4 Further study

Mertz and Wright (1992) discuss the physics of how JEBAR relates to the curl of the topographic
form stress as well as other mathematically equivalent forms. Cane et al. (1998) as well as Section
2.5 of Drijfhout et al. (2013) discusses how JEBAR can be physically misleading. For this reason,
recent studies of vorticity budgets in ocean models generally eschew JEBAR, instead favoring
an analysis of vorticity of the depth integrated flow as in Section 44.5 or the depth integrated

8We reintroduced the notation, ∇h, given the presence of z and ρ(z) in the integral in equation (44.110).
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vorticity from Section 44.3. Waldman and Giordani (2023) provide a review of vorticity analysis
for the ocean.
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Chapter 45

FOUNDATIONS OF QUASI-GEOSTROPHY

Quasi-geostrophy (QG) is the canonical balanced model in geophysical fluid mechanics whereby
the quasi-geostrophic potential vorticity is the sole prognostic field. All other fields, such as
the velocity and buoyancy, are diagnosed from potential vorticity. The process of diagnosing
the allied fields requires solving an elliptic boundary value problem to compute the geostrophic
streamfunction with potential vorticity acting as the source. This connection between poten-
tial vorticity and streamfunction represents an invertibility principle, with the mathematical
technology required for inversion shared with many other elliptic problems in mathematical
physics.1

Quasi-geostrophy is an elegant theory of mathematical physics that offers physical and math-
ematical insights into the workings of geophysical fluid motions where rotation and stratification
play leading roles. Our goal in this chapter is to provide a taste of its continuously stratified
realization, offering a detailed derivation that builds from Chapters 43 and 44. We also sample
some of its physical and mathematical content.

chapter guide

In this chapter we extend to continuously stratified fluids the shallow water discussion of
quasi-geostrophy in Chapter 43. Continuously stratified quasi-geostrophy is not concerned
with the processes that affect stratification, but instead with the processes that slightly
perturb that stratification. We make use of stratified geophysical fluid dynamics from
Chapters 24 and 31, as well as potential vorticity from Chapter 41. This chapter is
essential for the study of Rossby waves and baroclinic instability in Chapter 62.
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1See Section 6.5 for a summary of elliptic partial differential equations, and Chapter 9 for solution methods
based on Green’s functions.

1283



45.1. LOOSE THREADS

45.4 Constraints on quasi-geostrophic evolution . . . . . . . . . . . . . . . . . 1292
45.4.1 A balance between geostrophic and ageostrophic processes . . . . 1292
45.4.2 Vertical motion and the ω-equation . . . . . . . . . . . . . . . . . 1293
45.4.3 Another derivation of the ω-equation . . . . . . . . . . . . . . . . 1294

45.5 Connecting to Ertel potential vorticity . . . . . . . . . . . . . . . . . . . 1295
45.5.1 Non-dimensionalizing the Ertel potential vorticity . . . . . . . . . 1295
45.5.2 Material conservation of Ertel PV to order Ro1 . . . . . . . . . . 1296

45.6 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
45.6.1 Concerning doubly-periodic QG models . . . . . . . . . . . . . . 1296
45.6.2 Buoyancy equation . . . . . . . . . . . . . . . . . . . . . . . . . . 1297
45.6.3 Top boundary condition . . . . . . . . . . . . . . . . . . . . . . . 1297
45.6.4 Bottom boundary condition . . . . . . . . . . . . . . . . . . . . . 1298

45.7 Potential vorticity with Dirac delta sheets . . . . . . . . . . . . . . . . . 1299
45.7.1 Transition between the interior and the boundaries . . . . . . . . 1300
45.7.2 Calculating the stretching term over the extended domain . . . . 1301
45.7.3 The extended potential vorticity . . . . . . . . . . . . . . . . . . 1301

45.8 Mathematical expressions of the theory . . . . . . . . . . . . . . . . . . . 1302
45.8.1 The Jacobian form of geostropic advection . . . . . . . . . . . . . 1302
45.8.2 The case of constant background buoyancy frequency . . . . . . . 1303
45.8.3 Potential vorticity induction and impermeability . . . . . . . . . 1303

45.9 Energetics for quasi-geostrophic flow . . . . . . . . . . . . . . . . . . . . 1305
45.9.1 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1305
45.9.2 Available potential energy . . . . . . . . . . . . . . . . . . . . . . 1306
45.9.3 Exchange of mechanical energy . . . . . . . . . . . . . . . . . . . 1306
45.9.4 Scaling APE and KE . . . . . . . . . . . . . . . . . . . . . . . . . 1307

45.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307

45.1 Loose threads
• Solution needed for Exercise 45.4.

45.2 Non-dimensional equations of quasi-geostrophy
In deriving the quasi-geostrophic potential vorticity equation, we proceed much like for the
single layer of shallow water fluid in Section 43.5. In particular, quasi-geostrophic scaling from
Section 43.5.1 is relevant for both the shallow water and for the continuously stratified fluid. We
employ an asymptotic expansion in the Rossby number and stop at the first nontrivial order,
which (as for the shallow water) is Ro1. For this purpose, recall the non-dimensional momentum
and continuity equations from Section 43.7.8

Ro

[
∂û

∂t̂
+ (û · ∇̂ẑ) û+ ŵ

∂û

∂ẑ

]
+ f̂ × û = −∇̂z φ̂ (45.1a)

∂φ̂

∂ẑ
= b̂ (45.1b)

∇̂ · v̂ = 0 (45.1c)

Ro

Bu

Db̂

Dt̂
+ ŵ = 0. (45.1d)

We expand all fields in an asymptotic series in Rossby number

û = û0 +Ro û1 +Ro2 û2 + . . . (45.2a)

v̂ = v̂0 +Ro v̂1 +Ro2 v̂2 + . . . (45.2b)
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ŵ = ŵ0 +Ro ŵ1 +Ro2 ŵ2 + . . . (45.2c)

b̂ = b̂0 +Ro b̂1 +Ro2 b̂2 + . . . (45.2d)

φ̂ = φ̂0 +Ro φ̂1 +Ro2 φ̂2 + . . . (45.2e)

along with the expansion (43.55) for the Coriolis parameter

f̂ = f̂0 +Ro β̂ ŷ, (45.3)

and where (equation (43.56))

β̂ ŷ =
β y

Ro fo
= T β y. (45.4)

As noted in Section 43.5.2, the velocity field is non-divergent at each order of Rossby number, so
that

∇ · v̂n = 0 ∀ n. (45.5)

The Burger number is order unity since the horizontal length scales of the flow considered
here are on the order of the deformation radius

Bu ∼ 1 =⇒ L ∼ Ld, (45.6)

where we introduced the internal deformation radius from Section 43.7.6

Ld(z) = H [N(z)/fo]. (45.7)

It is important to retain the depth dependence of the Burger number through its dependence on
the background stratification N2(z)

Bu(z) =

[
Ld

L

]2
= N2(z)

[
H

Lfo

]2
, (45.8)

which motivates the name Burger function for continuously stratified quasi-geostrophy. Impor-
tantly, the Burger function does not commute with the vertical derivative operator.

45.2.1 Zeroth order asymptotic equations

The zeroth order asymptotic equations are

f̂0 × û0 = −∇̂z φ̂0 (45.9a)

∂ẑφ̂0 = b̂0 (45.9b)

∇̂z · û0 + ∂ẑŵ0 = 0 (45.9c)

ŵ0 = 0. (45.9d)

The first equation represents f -plane geostrophy, which means that the horizontal velocity has
zero divergence

∇̂z · û0 = 0. (45.10)

Equation (45.9b) means the zeroth order buoyancy determines the zeroth order hydrostatic
pressure. Since the horizontal velocity has zero divergence, the continuity equation (45.9c) means
that the vertical velocity is depth independent

∂ẑŵ0 = 0. (45.11)
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If it vanishes somewhere, such as a solid horizontal bottom boundary, then it vanishes everywhere.
This is a manifestation of the Taylor-Proudman theorem (see Section 31.5.3). Indeed, a vanishing
ŵ0 is required by the zeroth-order buoyancy equation (45.9d) even if the bottom is not flat.
Hence, the non-dimensional velocity has a nonzero contribution only at order Ro1

ŵ = Ro ŵ1 +Ro2 ŵ2 + . . . , (45.12)

thus manifesting the vertical stiffening of fluid columns found in rotating fluids. Correspondingly,
the dimensionful vertical velocity has the asymptotic expansion

w =Wŵ =W Ro (ŵ1 +Ro ŵ2 + . . .), (45.13)

so that to leading to order Ro1

ŵ1 =
w

W Ro
. (45.14)

Since the zeroth-order horizontal velocity is non-divergent, we can introduce a geostrophic
streamfunction

û0 = −∂ŷψ̂0 and v̂0 = ∂x̂ψ̂0 and ζ̂0 = ∇̂2ψ̂0, (45.15)

where the zeroth-order streamfunction is the ratio of the zeroth order pressure to zeroth order
Coriolis parameter

ψ̂0 = φ̂0/f̂0. (45.16)

Note also that the zeroth-order system satisfies the thermal wind balance

f̂0 × ∂ẑû0 = −∇̂z b̂0. (45.17)

Finally, note that the zeroth order buoyancy is determined by the streamfunction through the
hydrostatic balance

b̂0 = ∂ẑφ̂0 = f̂0 ∂ẑψ̂0. (45.18)

45.2.2 First order asymptotic equations

For a prognostic equation we must consider equations at order Ro1

D0û0

Dt̂
+ f̂0 × û1 + β̂ ŷ ẑ × û0 = −∇̂zφ̂1 (45.19a)

∂ẑφ̂1 = b̂1 (45.19b)

∇̂z · û1 + ∂ẑŵ1 = 0 (45.19c)

1

Bu

D0b̂0

Dt̂
+ ŵ1 = 0. (45.19d)

The first order terms are often referred to as the ageostrophic components, though note that all
contributions higher than zeroth order constitute ageostrophic contributions.

At order Ro1, the material time derivative makes use only of the zeroth order horizontal
geostrophic velocity

D0

Dt̂
=

∂

∂t̂
+ û0 · ∇̂. (45.20)

To close this set of equations, we produce the vorticity equation from the momentum equation,
and then combine the vorticity equation and buoyancy equation to produce the quasi-geostrophic
potential vorticity equation. In Section 43.5, we performed the same procedure for deriving the
shallow water quasi-geostrophic equations.
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Taking the curl of the momentum equation (45.19a) eliminates the pressure gradient, ∇̂φ̂1,
thus producing the vorticity equation

∂t̂ζ̂0 + (û0 · ∇̂) (ζ̂0 + β̂ ŷ) = −f̂0 ∇̂z · û1. (45.21)

We make use of the continuity equation (45.19c) to eliminate the horizontal convergence

∂t̂ζ̂0 + (û0 · ∇̂) (ζ̂0 + β̂ ŷ) = f̂0 ∂ẑŵ1. (45.22)

The right hand side represents the contribution to vorticity evolution from stretching by the
ageostrophic vertical velocity acting in a rotating reference frame. We can eliminate the
ageostrophic vertical velocity through use of the buoyancy equation (45.19d). When doing so, it
is important to keep the depth dependence of the Burger function, Bu(z), according to equation
(45.8), with this depth dependence arising from the prescribed background stratification, N2(z).
The resulting vorticity equation is

∂t̂ζ̂0 + (û0 · ∇̂) (ζ̂0 + β̂ ŷ) = −f̂0
∂

∂ẑ

[
1

Bu

D0b̂0

Dt̂

]
. (45.23)

We now use the identity

∂

∂ẑ

[
1

Bu

D0b̂0

Dt̂

]
=

∂

∂ẑ

[
1

Bu

(
∂

∂t̂
+ û0 · ∇̂

)
b̂0

]
(45.24a)

=
D0

Dt̂

[
∂

∂ẑ

(
b̂0
Bu

)]
+

1

Bu

∂û0

∂ẑ
· ∇̂z b̂0 (45.24b)

=
D0

Dt̂

[
∂

∂ẑ

(
b̂0
Bu

)]
, (45.24c)

where we set
∂ẑû0 · ∇̂z b̂0 = 0 (45.25)

since the zeroth-order velocity maintains thermal wind balance (45.17). Bringing terms together
then leads to the material conservation equation for quasi-geostrophic potential vorticity

D0

Dt̂

[
ζ̂0 + β̂ ŷ + f̂0

∂

∂ẑ

(
b̂0
Bu

)]
= 0. (45.26)

45.3 Dimensionful equations of quasi-geostrophy
To expose physical elements to the continusously stratified quasi-geostrophic theory, we reintro-
duce physical dimensions as done for shallow water quasi-geostrophy in Section 43.6. For that
purpose, we write

u ≡ ug + uag = U (û0 +Ro û1) (45.27a)

w ≡ wag = RoW ŵ1 (45.27b)

b ≡ bg +Bag = B (̂b0 +Ro b̂1) (45.27c)

φ ≡ φg + φag = fo U L (φ̂0 +Ro φ̂1). (45.27d)

Reintroducing dimensions is straightforward but a bit tedious.
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45.3.1 Hydrostatic balance
Hydrostatic balance is maintained for terms at each Rossby number order, so that we have the
dimensional equations

∂zφg = bg and ∂zφag = Bag. (45.28)

45.3.2 Continuity equation
The three dimensional velocity is non-divergent at each order in Rossby number. The zeroth
order (geostrophic) flow is horizontally non-divergent so that

∇ · ug = 0, (45.29)

whereas the next order (ageostrophic) flow satisfies

∇ · vag = ∇ · uag + ∂zwag = 0. (45.30)

45.3.3 Geostrophic balance
The non-dimensional geostrophic balance for the zeroth order fields

f̂0 × û0 = −∇̂z φ̂0 (45.31)

takes on the dimensional form

ẑ × ug/U = −L∇h φg/(fo U L). (45.32)

Canceling factors leads to the expected form of f -plane geostrophy

fo ẑ × ug = −∇h φg. (45.33)

45.3.4 Material time derivative
For the material time derivative operator we write

D/Dt = ∂t + u · ∇+ w ∂z (45.34a)

= (1/T ) ∂t̂ + (U/L) û · ∇̂+ (W/H) ŵ ∂ẑ (45.34b)

= (1/T ) (∂t̂ + û · ∇̂+ ŵ ∂ẑ) (45.34c)

= (1/T ) (∂t̂ + û0 · ∇̂z) + (Ro/T ) (û0 · ∇̂z + ŵ1 ∂ẑ) (45.34d)

= ∂t + ug · ∇h + uag · ∇h + wag ∂z (45.34e)

≡ Dg/Dt+ uag · ∇h + wag∂z, (45.34f)

where time scales according to advection, T = L/U , vertical velocity scales according to
continuity, W = H U/L, and we introduced the geostrophic material time derivative operator

Dg/Dt ≡ ∂t + ug · ∇h. (45.35)

45.3.5 Buoyancy equation
The buoyancy equation requires a bit more work. For that purpose, split buoyancy into a depth
dependent static background and a deviation from the background

b = b̃(z) + b′(x, y, z, t), (45.36)
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with its vertical derivative
∂zb = db̃/dz + ∂zb

′ = N2 + ∂zb
′, (45.37)

where N2(z) is the squared buoyancy frequency for the prescribed background buoyancy field.
In this manner, the adiabatic buoyancy equation is

∂b′

∂t
+ u · ∇b′ + w (N2 + ∂zb

′) = 0. (45.38)

We non-dimensionalize this equation by making use of the following relations between the scales

B = fo U L/H W = H (U/L) Ro = U/(fo L) Bu = (N H)2/(fo L)
2, (45.39)

in which case the buoyancy equation takes the form

∂tb
′ + u · ∇b′ + w (N2 + ∂zb

′) =
B

T

∂b̂

∂t̂
+
U B

L
û · ∇̂z b̂+W ŵN2 +

W B

H
ŵ ∂ẑ b̂ = 0. (45.40)

We find it useful to divide by foN
2, so that

1

foN2

[
∂tb

′ + u · ∇b′ + w (N2 + ∂z b
′)
]
=
H Ro2

Bu

[
∂t̂b̂+ û · ∇̂b̂+ ŵ ∂ẑ b̂

]
+Ro ŵ = 0. (45.41)

The vertical velocity component, ŵ, is nonzero only at order Ro1, so the term Ro ŵ is order Ro2

(recall equation (45.27b)). For the material time derivative term, we drop the vertical velocity
term, ŵ ∂ẑ b̂, since it is order Ro1 smaller than the other terms in the material time operator. We
thus retain only the zeroth order buoyancy contribution, b̂0. Reintroducing physical dimensions
then leads to the dimensional form of the quasi-geostrophic buoyancy equation

(∂t + ug · ∇h) bg + wagN
2 =

Dgbg
Dt

+ wagN
2 = 0. (45.42)

This equation means that the geostrophic transport of the geostrophic buoyancy is affected by a
source due to the ageostrophic vertical advection of background buoyancy

Dgbg
Dt

= −wagN
2 with bg = fo ∂zψ. (45.43)

45.3.6 Vorticity equation
Reintroducing dimensions to the vorticity equation (45.22) yields2

∂t̂ζ̂0 + (û0 · ∇̂h) (ζ̂0 + β̂ ŷ)− f̂0 ∂ẑŵ1 = T 2 [∂tζ + ug · ∇h(ζ + β y)]− H

W Ro
∂zwag. (45.44)

The identity H/(W Ro) = fo T
2 leads to the order Ro1 vorticity equation

∂tζa + J(ψ, ζa) = fo ∂zwag, (45.45)

with the absolute vorticity given by the sum of the geostrophic relative vorticity plus the
planetary beta contribution

ζa = ζg + β y. (45.46)

Hence, the absolute geostrophic vorticity is advected by the geostrophic flow, and it has a
source (right hand side of equation (45.45)) due to vertical stretching by the ageostrophic flow.

2Recall from equation (45.27b) that to order Ro1 we have W ŵ = RoW ŵ1 = wag.
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Expanding the Jacobian and introducing the geostrophic velocity, ug = ẑ ×∇ψ, leads to the
geostrophic relative vorticity equation

(∂t + ug · ∇h) ζg = −β vg + fo ∂zwag. (45.47)

We thus see that the beta effect from the geostrophic flow, plus vertical stretching by the
ageostrophic flow, provide local sources for geostrophic relative vorticity.

45.3.7 Potential vorticity

From equation (45.26), we identify the non-dimensional quasi-geostrophic potential vorticity

q̂ = ζ̂0 + β̂ ŷ + f̂0
∂(̂b0/Bu)

∂ẑ
. (45.48)

Introducing dimensional quantities to the right hand side yields3

q̂ =
L

U
[ζg + β y] +

∂

∂z

[
H bg
B Bu

]
(45.49a)

= (1/(fo Ro) (ζg + β y) +
H

B

∂

∂z

[
bg
Bu

]
. (45.49b)

The scale for the fluctuating buoyancy is given by equation (43.160), B = fo U L/H, and the
inverse Burger function is given by equation (45.8), Bu−1 = [(Lfo)/(H N)]2, so that

q̂ = (1/(fo Ro) (ζg + β y) +
H2

fo U L

L2 f2o
H2

∂

∂z

[
bg
N2

]
(45.50a)

= (1/(fo Ro) (ζg + β y) + Ro−1 ∂z(bg/N
2). (45.50b)

Introducing the geostrophic streamfunction,

ug = ẑ ×∇hψ and ζ = ẑ · (∇× ug) = ∇2
h ψ and bg = fo ∂zψ, (45.51)

leads to

q ≡ fo Ro q̂ = β y + ζg +
∂

∂z

[
f2o
N2

∂ψ

∂z

]
. (45.52)

Just as for the shallow water case in Section 43.6.1, the potential vorticity (45.52) scales as
fo Ro. The order Ro scaling is expected since it is only at this order that we realize a prognostic
set of equations. We sometimes choose to add the constant fo to q, which has no effect on the
dynamics but reveals the beta plane planetary vorticity

q = fo + β y︸ ︷︷ ︸
planetary vorticity

+ ∇2
h ψ︸︷︷︸

relative vorticity

+
∂

∂z

[
f2o
N2

∂ψ

∂z

]
︸ ︷︷ ︸

stretching by f

. (45.53)

Evidently, there are three contributions to the quasi-geostrophic potential vorticity.

• planetary vorticity: The planetary vorticity contribution, fo +β y, arises from rotation
of the reference frame. As noted above, the β y term is the only dynamically relevant
contribution, so that we can equally well drop the fo contribution.

3Recall f̂0 = 1 and β̂ ŷ = T β y = (L/U)β y.
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• geostrophic relative vorticity: The vertical component of the geostrophic relative
vorticity, ζ = ẑ · (∇ × u) = ∇2

h ψ, acts to bring out the smaller scale features in the
streamfunction.

• vertical stretching: The final contribution arises from vertical stretching in the
presence of a rotating planet. Equation (45.22) helps to remind us why this term arises
from vortex stretching.

Material evolution of quasi-geostrophic potential vorticity follows the horizontal geostrophic
flow

(∂t + ug · ∇h) q = 0. (45.54)

Geostrophic material constancy of q represents a balance, following the geostrophic flow, of
time changes for the planetary vorticity, relative vorticity, and vertical stretching. This is a
remarkable property of quasi-geostrophic flows. It packs in a wealth of physical processes that
act to evolve the geostrophic flow while maintaining an exact geostrophic balance at each point
in space and time.

45.3.8 Velocity equation

The prognostic velocity equation arises from the first order asymptotic equation (45.19a)

D0û0

Dt̂
+ f̂0 × û1 + β̂ ŷ ẑ × û0 = −∇̂zφ̂1. (45.55)

Our skills with reintroducing dimensional quantities should be sufficient to write down the
dimensional velocity equation by inspection

(∂t + ug · ∇)ug + β y ẑ × ug + fo ẑ × uag = −∇h φag. (45.56)

We can also choose to add the geostrophic balanced flow that holds at order Ro0, fo ẑ×ug = −∇h φg,
so to have the equivalent equation

(∂t + ug · ∇)ug + β y ẑ × ug + fo ẑ × (ug + uag) = −∇h (φg + φag). (45.57)

Observe that from equation (45.27d) that

φag = fo U LRo φ̂1 = U2 φ̂1, (45.58)

so that the ageostrophic portion of the pressure scales according to pressure in a non-rotating
fluid as discussed in Section 29.2.3.

45.3.9 Concerning the ageostrophic state in quasi-geostrophy

Following the shallow water discussion in Section 43.6.6, we here expose an ambiguity (i.e.,
gauge freedom) associated with the ageostrophic pressure, buoyancy, and velocity within quasi-
geostrophy. This gauge freedom arises since the quasi-geostrophic potential vorticity equation
remains unchanged upon adding an arbitrary horizontally non-divergent velocity to uag, along
with an arbitrary gradient of a scalar to φag. The freedom to modify these ageostrophic fields
is constrained by taking the divergence of the velocity equation (45.56) to find (compare to
equation (43.108) for shallow water quasi-geostrophy)

∇2
h φag = 2 J(ug, vg) + β (y ζg − ug) + fo ζag, (45.59)
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where
ζag = ∂xvag − ∂yuag (45.60)

is the relative vorticity contained in the horizontal ageostrophic flow. The constraint (45.59)
means that adding a horizontally non-divergent velocity, ũ, to the ageostrophic velocity, uag,
requires a corresponding modification to the pressure via φ̃ added to φag, in which φ̃ satisfies
the Poisson equation

∇2
h φ̃ = fo ẑ · (∇× ũ). (45.61)

Given the gauge freedom, we follow Section 6.3 of Holton and Hakim (2013) by choosing
φag = 0 (and thus bag = 0) so that all ageostrophic effects live within the velocity, uag + ẑwag. In
this case, the quasi-geostrophic velocity equation (45.56) simplifies to

(∂t + ug · ∇)ug + β y ẑ × ug + fo ẑ × uag = 0. (45.62)

Evidently, the Coriolis acceleration, fo ẑ × uag, provides the only place that ageostrophic effects
couple to the geostrophic velocity equation.

45.4 Constraints on quasi-geostrophic evolution

How is it that quasi-geostrophic flow retains a geostrophically balanced state, fo ẑ ×ug = −∇hφg,
while allowing that state to evolve? The discussion thus far provides an operational means to
answer that question via time integration of the quasi-geostrophic potential vorticity equation.
Alternatively, let us consider the velocity equation and in so doing to expose a diagnostic balance
of geostrophic and ageostrophic flow processes, with this balance ensuring that geostrophy
is maintained. We derive this balance closely following that considered for shallow water
quasi-geostrophy in Section 43.6.7.4

45.4.1 A balance between geostrophic and ageostrophic processes

Geostrophic balance is maintained for an observer following a fluid particle moving with the
horizontal geostrophic velocity, so that

Dg

Dt
(fo ẑ × ug +∇hφg) = 0. (45.63)

Performing the material time derivative, and making use of equation (45.62) for the geostrophic
velocity and equation (45.43) for buoyancy, here written as

Dgug

Dt
= −(β y) ẑ × ug − fo ẑ × uag (45.64a)

Dgbg
Dt

= −wagN
2, (45.64b)

leads to the balance

fo β yug + f2o uag +
Dg(∇hφg)

Dt
= 0. (45.65)

We can derive a diagnostic balance (i.e., an equation without a time derivative) by taking the
vertical derivative of equation (45.65) and using the hydrostatic balance and the buoyancy

4Enforcing geostrophy even while the flow evolves is analogous to constraints arising from non-divergent flow
condition, ∇ · v = 0, in an evolving flow. As seen in Section 29.3, pressure in a Boussinesq ocean enforces flow
non-divergence at each point in space and time.
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equation. For that purpose we need

∂z[Dg(∇hφ)/Dt] = Dg(∇hbg)/Dt) + (∂zug · ∇h)∇hφg (45.66a)

= ∇h(Dgbg/Dt) +Q+ (∂zug · ∇h)∇hφg (45.66b)

= −∇h(N2wag) +Q+ (∂zug · ∇h)∇hφg, (45.66c)

where we introduced the vector arising from the coupling of horizontal shears in the geostrophic
flow with horizontal gradients in the geostrophic buoyancy

Q = −x̂ ∂xug · ∇hbg − ŷ ∂yug · ∇hbg. (45.67)

We can further simplify by use of thermal wind to write

Q = −x̂ ∂xug · (fo ẑ × ∂zug)− ŷ ∂yug · (fo ẑ × ∂zug) (45.68a)

= fo x̂ (−∂xu ∂zv + ∂xv ∂zu) + fo x̂ (−∂yu ∂zv + ∂yv ∂zu), (45.68b)

and geostrophy to write

(∂zug · ∇h)∇hφg = fo (∂zug · ∇h) (−vg x̂+ ug ŷ) (45.69a)

= fo x̂ (−∂xu ∂zv + ∂xv ∂zu) + fo x̂ (−∂yu ∂zv + ∂yv ∂zu) (45.69b)

= Q, (45.69c)

so that
∂z[Dg(∇hφ)/Dt] = 2Q. (45.70)

Bringing terms together leads to the diagnostic balance

fo β y ∂zug + 2Q︸ ︷︷ ︸
geostrophic

+ f2o ∂zuag −N2∇hwag︸ ︷︷ ︸
ageostrophic

= 0, (45.71)

where we noted that the buoyancy frequency is a function only of the vertical. Equation (45.71)
summarizes a wealth of geostrophic and ageostrophic processes that, when taken together,
maintain geostrophy and thermal wind for evolving quasi-geostrophic flows. Note that when
considered in isolation, each process acts to move the flow away from geostrophic balance (e.g.,
see Hoskins (1975) and Section 6.5 of Holton and Hakim (2013), who emphasize the nonlinear
geostrophic term, Q). It is only when all terms are considered together that they render an
evolving flow respecting geostrophy.

45.4.2 Vertical motion and the ω-equation

As we discovered in this chapter, for quasi-geostrophy the vertical component to the velocity
is non-zero only at first order in Rossby number, hence it is part of the ageostrophic flow. In
contrast, the zeroth order flow is horizontally non-divergent and geostrophically balanced. To
evolve the horizontal geostrophic flow it is not necessary to explicitly compute the ageostrophic
vertical velocity. However, there are cases where vertical ageostrophic velocity is of interest.
Since the vertical motion is relatively small, it is important to formulate the calculation of this
motion in a manner that avoids computing small differences between large numbers. Namely,
even if we knew the horizontal ageostrophic flow, vertically integrating the continuity equation,
∂zwag = −(∂xuag+∂yvag), is prone to errors since the horizontal convergence is typically the small
difference of relatively large numbers. We here derive a more suitable means to diagnose wag, with
the diagnostic equation known as the ω-equation. The name for this equation originates from
the atmospheric community where ω is the common symbol for mass transport across pressure
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surfaces (using pressure vertical coordinates rather than geopotential). Here, we make use of
the Boussinesq ocean equations so that the vertical velocity component is across geopoential
surfaces.

It turns out that we have done most of the work needed to derive an equation for wag as part
of our derivation of the balance (45.71). Namely, by simply taking horizontal the divergence of
(45.71) and noting that ∇ · ug = 0, we have

(f2o ∂zz +N2∇2
h )wag = (∇h + ẑ∂z) · (2Q+ ẑ fo β vg), (45.72)

which corresponds to the second form of the ω-equation first derived by Hoskins et al. (1978).
We identify the following convenient features of this ω-equation. First, the right hand side is
determined solely from knowledge of the geostrophic flow, which contrasts to the approach
from continuity. Second, the linear operator acting on wag is elliptic, so that wag is a smoothed
version of the geostrophic forcing on the right hand side of equation (45.72). Third, maps of the
vector field, Q+ ẑ fo β vg, provide insights into regions where wag is prone to have large values.
For example, where the divergence on the right hand side is positive, the vertical velocity is
negative.5

45.4.3 Another derivation of the ω-equation

One commonly finds an alternative derivation in the literature. Here, we write the dimensional
buoyancy equation (45.42) and vorticity equation (45.45) in the form

fo ∂tzψ + J(ψ, bg) +N2wag = 0 (45.73a)

∂t(∇2
h ψ) + J(ψ,∇2

zψ + β y)− fo ∂zwag = 0. (45.73b)

Taking the horizontal Laplacian of equation (45.73a) and subtracting it from fo times the vertical
derivative of equation (45.73b) allows us to cancel the time derivative and thus to render the
Boussinesq form of the quasi-geostrophic ω-equation

(N2∇2
h + f2o ∂zz)wag = fo ∂z[J(ψ, ζg + β y)]−∇2

h J(ψ, bg). (45.74)

The operator on the left hand side is a generalized Laplacian and all terms on the right hand side
are known from the geostrophic streamfunction, including the vorticity, ζg = ∇2

h ψ, and buoyancy,
bg = fo ∂zψ. This equation is thus in the form of a generalized Poisson equation, whose solution
renders an expression for the vertical velocity valid to order Ro1. Note that the right hand side
can be written as the convergence of a flux

fo ∂z[J(ψ, ζg + β y)]−∇2
h J(ψ, bg) = −∇h · [∇h J(ψ, bg)] + fo ∂z[J(ψ, ζg + β y)] (45.75a)

= −∇ ·G, (45.75b)

where the geostrophic forcing vector is given by

G = ∇hJ(ψ, bg)− fo ∂z[J(ψ, ζg + β y)] ẑ. (45.76)

It is a useful exercise to show that equations (45.74) and (45.72) are identical.

5Elliptic operators generally swap signs, which can be readily seen upon assuming a single Fourier mode
solution to wag.
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45.5 Connecting to Ertel potential vorticity

Following our treatment for the shallow water system in Section 43.6.4, we here determine how
quasi-geostrophic potential vorticity relates to the Ertel potential vorticity from Chapter 41. For
this purpose, consider the continuously stratified hydrostatic Boussinesq fluid and make use of
the Ertel potential vorticity derived in Exercise 41.1

Q = (ω + ẑ f) · ∇b = ∂u

∂z

∂b

∂y
− ∂v

∂z

∂b

∂x
+ (ζ + f)

∂b

∂z
. (45.77)

In a perfect fluid we have the material conservation

(∂t + u · ∇h + w ∂z)Q = 0. (45.78)

Our strategy in this section is to non-dimensionalize both Q and the material time operator,
and then to organize terms in equation (45.78) according to the Rossby number. We then show
that material conservation of Ertel potential vorticity, when expanded asymptotically to order
Ro1, leads to the geostrophic material conservation of quasi-geostrophic potential vorticity. The
continuous stratification makes the derivation more involved than for the shallow water potential
vorticity in Section 43.6.4, prompting us to expose the details.

45.5.1 Non-dimensionalizing the Ertel potential vorticity

As above for the buoyancy, we are led to write the Ertel potential vorticity in the form

Q− foN2

foN2
=

1

foN2

[
∂u

∂z

∂b′

∂y
− ∂v

∂z

∂b′

∂x

]
+

1

N2

∂b′

∂z
+
β y + ζ

fo

[
1 +

1

N2

∂b′

∂z

]
. (45.79)

with non-dimensionalization leading to

1

foN2

[
∂u

∂z

∂b′

∂y
− ∂v

∂z

∂b′

∂x

]
=

B U

foN2H L

[
∂û

∂ẑ

∂b̂

∂ŷ
− ∂v̂

∂ẑ

∂b̂

∂x̂

]
=

Ro2

Bu

[
∂û

∂ẑ

∂b̂

∂ŷ
− ∂v̂

∂ẑ

∂b̂

∂x̂

]
(45.80a)

1

N2

∂b′

∂z
=

B

H N2

∂b̂

∂ẑ
=

Ro

Bu

∂b̂

∂ẑ
(45.80b)

β y + ζ

fo
= Ro (β̂ ŷ + ζ̂). (45.80c)

The order Ro2 terms appearing in equation (45.80a) are dropped since they do not contribute
to the quasi-geostrophic potential vorticity, which involve terms only up to order Ro1. For the
order Ro1 term, we only retain the zeroth order buoyancy, b̂0 = bg/B, and likewise we just retain

the zeroth order relative vorticity, ζ̂0 = (L/U) ζg. Hence, the Ertel potential vorticity is given by

Q = N2 (fo + q∗) +O(Ro2) (45.81)

where q∗ is the order Ro1 term

q∗ = Ro fo

[
1

Bu

∂b̂0
∂ẑ

+ β̂ ŷ + ζ̂0

]
=

fo
N2

∂bg
∂z

+ β y + ζg. (45.82)
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45.5.2 Material conservation of Ertel PV to order Ro1

The material conservation of Ertel PV now takes the form

(∂t + ug · ∇h + wag ∂z) (foN
2 + q∗N

2) = fowag ∂zN
2 +N2Dgq∗/Dt = 0. (45.83a)

We dropped the wag ∂z contribution to the advection of q∗ since ageostrophic vertical advection
of q∗ is an order Ro2 term. To eliminate the vertical ageostrophic velocity we make use of the
buoyancy equation (45.42) so that

Dgq∗
Dt

+
wag

N2

∂N2

∂z
=

Dgq∗
Dt
− fo
N4

Dgbg
Dt

∂N2

∂z
= 0. (45.84)

Writing
∂

∂z

[
1

N2

]
= − 1

N4

∂N2

∂z
(45.85)

leads to
Dgq∗
Dt

+ fo

[
∂N−2

∂z

]
Dgbg
Dt

= 0. (45.86)

Since the geostrophic material time derivative operator only involves horizontal advection, we
can merge these two terms to render

Dgq∗
Dt

+ fo

[
∂N−2

∂z

]
Dgbg
Dt

=
Dg

Dt

[
q∗ + fo bg

(
∂N−2

∂z

)]
(45.87a)

=
Dg

Dt

[
β y + ζ +

fo
N2

(
∂bg
∂z

)
+ fo bg

(
∂N−2

∂z

)]
(45.87b)

=
Dg

Dt

[
β y + ζ + fo

∂

∂z

(
bg
N2

)]
(45.87c)

=
Dgq

Dt
(45.87d)

= 0. (45.87e)

In the penultimate step we introduced the quasi-geostrophic potential vorticity given by equation
(45.53)

q = β y + ζ + fo
∂

∂z

[
bg
N2

]
= q∗ + fo bg

∂N−2

∂z
. (45.88)

We have thus established how material conservation of Ertel potential vorticity, when expanded
asymptotically to order Ro1, leads to the geostrophic material conservation of quasi-geostrophic
potential vorticity.

45.6 Boundary conditions
We need boundary conditions on the geostrophic streamfunction, ψ, to invert the elliptic
quasi-geostrophic PV equation (45.53), with boundary conditions the focus of this section.

45.6.1 Concerning doubly-periodic QG models
For lateral boundaries, we may choose to set the normal component of the flow to zero for
the inviscid case, in which case ψ is a constant along material boundaries as discussed in
Section 21.4.2. More commonly (at least for idealized studies), we remove the lateral boundaries
altogether by assuming a doubly periodic domain. The value of the Coriolis parameter does
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not appear in the potential vorticity equation (45.54). Rather, it is only ∂yf = β that appears.
So even though the Coriolis parameter, f = fo + β y, is not meridionally periodic, we can still
consider a horizontally doubly-periodic domain in which there is periodicity in flow properties in
both the zonal and meridional directions.

Furthermore, we can study quasi-geostrophic flows in doubly periodic domains in the presence
of certain idealized background flows. Namely, for a prescribed depth-independent thermal wind
flow, the corresponding buoyancy that supports this flow plays no role in the quasi-geostrophic
potential vorticity. For example, if the buoyancy has the form

b = M2 y +N2 z︸ ︷︷ ︸
prescribed background

+ b′(x, y, z, t), (45.89)

with M and N constant frequencies, then the corresponding quasi-geostrophic potential vorticity
is independent ofM . In this manner, the background buoyancy, though not meridionally periodic,
prescribes a background thermal wind shear that is constant and so is trivially periodic.

45.6.2 Buoyancy equation
To develop the vertical boundary conditions on the streamfunction, consider the quasi-geostrophic
buoyancy equation (45.42)

Dgbg/Dt+ wagN
2 = (∂t + ug · ∇) bg + wagN

2 = 0, (45.90)

where the buoyancy is related to the geostrophic streamfunction via

bg = fo ∂zψ, (45.91)

which leads to the equivalent form of the buoyancy equation

(∂t + ug · ∇h) (fo ∂zψ) + wagN
2 = 0. (45.92)

We now consider how the buoyancy equation appears at the top and bottom boundaries.

45.6.3 Top boundary condition
Assuming the top boundary is a material surface, we are led to the kinematic boundary condition
(19.66)

w = (∂t + ug · ∇h) η. (45.93)

How does this vertical velocity compare to that associated with motion in the fluid interior? To
answer that question we assume an advective scaling for time derivatives so that the vertical
velocity at the free surface scales as

wsurf ∼ U η/L ∼ U p/(ρo g L) ∼ U2 fo/g, (45.94)

where L is the horizontal length scale, and we scaled the surface pressure gradient according to
the free surface gradient. A point in the fluid interior has a vertical velocity that scales according
to the buoyancy equation (45.90),

winterior ∼ U b/(N2 L) ∼ fo U2/(H N2), (45.95)

where H is the vertical scale over which the thermal wind shear is sizable, and which scales the
buoyancy frequency according to

N2 ∼ (g/ρo)∆ρ/H, (45.96)
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where ∆ρ≪ ρo is the scale for the density difference setting the size of the buoyancy frequency.
The ratio of the two vertical velocities is thus given by

wsurf/winterior = H N2/g = ∆ρ/ρo ≪ 1. (45.97)

Evidently, we can set the surface boundary condition to that of a rigid lid, in which wag = 0. In
this case, the top boundary condition reduces to geostrophic advection of boundary buoyancy

(∂t + ug · ∇h) (fo ∂zψ) = (∂t + ug · ∇h) bg = 0 at top boundary where wag = 0. (45.98)

That is, the geostrophic buoyancy at the surface is a material constant when advected by the
surface geostrophic flow.

45.6.4 Bottom boundary condition
With a nonzero slope in the bottom topography, ∇ηb ̸= 0, the bottom kinematic boundary
condition (Section 19.6.1) says that velocity is constrained so that

v · n̂ = 0 =⇒ w = u · ∇ηb, (45.99)

where n̂ = −∇(z− ηb)/|∇(z− ηb)| is the boundary’s outward normal. Expanding this kinematic
boundary condition leads to

wag = (ug + uag) · ∇ηb, (45.100)

which means there is vertical ageostrophic motion at the bottom so long as the horizontal motion
is not aligned with isobaths. To be clear on the implications of this boundary condition, it is
useful to examine the asymptotics by non-dimensionalizing6

ug = U û0 (45.101a)

wag =W Ro ŵ1 (45.101b)

uag = U Ro û1 (45.101c)

∇ηb = (B/L) ∇̂η̂b = (H Ro/L) ∇̂η̂b, (45.101d)

which brings the kinematic boundary condition (45.100) to

foH Ro2 (û0 +Ro û1) · ∇̂η̂b =W Ro ŵ1 =⇒ (û0 +Ro û1) · ∇̂η̂b = ŵ1. (45.102)

Asymptotic consistency implies that

û0 · ∇̂η̂b = ŵ1 =⇒ ug · ∇ηb = wag. (45.103)

Hence, for quasi-geostrophic flow, any projection of the horizontal geostrophic velocity in a
direction not aligned with isobaths leads to an ageostrophic vertical velocity at the bottom.

Use of the bottom kinematic boundary condition (45.103) in the buoyancy equation (45.92)
leads to the bottom boundary evolution of buoyancy

∂t(fo ∂zψ) + ug · ∇h
[
fo ∂zψ +N2 ηb

]
= 0 at z = ηb, (45.104)

which can be written in terms of the geostrophic buoyancy

∂tbg + ug · ∇h(bg +N2 ηb) = 0 at z = ηb, (45.105)

6The bottom topography slope is non-dimensionalized according to the shallow water discussion in Section
43.3.4.
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The boundary condition is evaluated at the horizontally averaged bottom positin, z = ηb, since
the more precise boundary location, z = ηb(x, y), is higher order in Rossby number. Since N2 ηb
is time independent, the boundary condition (45.105) can be written as a material conservation
statement for buoyancy at the bottom

(∂t + ug · ∇h)(bg +N2 ηb) =
Dg(bg +N2 ηb)

Dt
= 0 at z = ηb. (45.106)

When ηb is a constant, and since N2 is just a function of z, then the bottom boundary condition
becomes a statement about the material conservation of buoyancy along the bottom boundary

Dgbg
Dt

= 0 at z = ηb = 0, (45.107)

which is the bottom analog of the top boundary condition (45.98) that holds when making the
rigid lid approximation. The more general case of a nonzero bottom slope renders a source for
bottom buoyancy

Dgbg
Dt

= −N2 ug · ∇ηb = −N2wag at z = ηb. (45.108)

In this manner we see that a material evolution of bottom buoyancy is associated with vertical
ageostrophic flow at the bottom, and correspondingly to horizontal geostrophic flow that deviates
from the contours of constant topography.

Finally, since N2 is a function only of z, this boundary condition can be written in terms of
the stretching term appearing in the potential vorticity

Dg

Dt

[
fo bg
N2

]
= −fo ug · ∇ηb at z = ηb. (45.109)

Evidently, material evolution of vertical stretching is coupled to bottom geostrophic flow that
crosses lines of constant topography.

45.7 Potential vorticity with Dirac delta sheets
Based on the boundary conditions derived in Section 45.6, we know that quasi-geostrophic
theory is comprised of the material conservation of potential vorticity in the interior, along with
material evolution of buoyancy at the boundaries, with the material evolution determined by
the horizontal geostrophic velocity

Dgq

Dt
= 0 for ηb < z < 0 (45.110a)

Dgbg
Dt

= 0 for z = 0 (45.110b)

Dgbg
Dt

= −N2 ug · ∇ηb for z = ηb, (45.110c)

where the geostrophic velocity, buoyancy, material time derivative, and quasi-geostrophic potential
vorticity are written in terms of the geostrophic streamfunction

ug = ẑ ×∇ψ (45.111a)

bg = fo ∂zψ (45.111b)

Dg/Dt = ∂t + ug · ∇ (45.111c)

q = fo + β y +∇2
h ψ +

∂

∂z

[
f2o
N2

∂ψ

∂z

]
= fo + β y +∇2

h ψ +
∂

∂z

[
fo bg
N2

]
. (45.111d)
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Figure 45.1: Geometry for the transition layers associated with the Dirac delta sheets at the upper and lower
boundaries of the domain.

Studying the dynamics of boundary buoyancy constitutes the focus of surface quasi-geostrophy,
as exemplified by Held et al. (1995) and whose mathematical foundations were examined by
Yassin and Griffies (2022). In this section we focus on how to understand the transition from
the interior to the boundaries. We follow the method of Bretherton (1966), where he noted that
it can be conceptually convenient to bring the boundary conditions into the potential vorticity,
much like when studying Green’s functions for elliptic operators as in Chapter 9. In this manner,
the boundary and interior terms can be placed on equal footing and thus their contribution to
the potential vorticity directly compared.7

45.7.1 Transition between the interior and the boundaries

The transition from the interior to the boundary occurs over an infinitesimal region surrounding
each boundary. There is a corresponding jump in the buoyancy as it moves from the domain
interior to the boundaries. To help understand the nature of the jump it is useful to expand
the infinitesimal thickness into a tiny but finite layer whose thickness, ∆z = ϵ, is later taken to
vanish. For notational brevity introduce

S = bg/N
2, (45.112)

and, with reference to the geometry in Figure 45.1, the full domain extent of this function is
written

Sext(z) = S(ηb − ϵ)H(ηb − ϵ− z)︸ ︷︷ ︸
lower region

+S(z) [H(z − ηb − ϵ)−H(z + ϵ)]︸ ︷︷ ︸
interior region

+S(ϵ)H(z − ϵ),︸ ︷︷ ︸
upper region

(45.113)

where H is the Heaviside step function detailed in Section 7.5. Values within the outer edge of
the transition regions (i.e., S(ϵ) and S(ηb− ϵ)) are constructs whose values must be set consistent
with the boundary conditions (45.110b) and (45.110c). We furthermore choose these values to
be static, since we have no way to determine their evolution since they are outside the domain.
The upper boundary satisfies the homogeneous boundary condition

(∂t + ug · ∇)bg = 0, (45.114)

which allows us to set
bg(ϵ) = 0. (45.115)

7See also Section 5.4.3 of Vallis (2017) for general comments on this approach.
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Likewise, the lower boundary condition

(∂t + ug · ∇)bg = −N2 ug · ∇ηb, (45.116)

is consistent with the choice
S(ηb − ϵ) = −ηb. (45.117)

45.7.2 Calculating the stretching term over the extended domain

Since the derivative of a Heaviside step function yields a Dirac delta (Section 7.5), we have

∂zS
ext(z) = ∂zS(z) [H(z − ηb − ϵ)−H(z + ϵ)] + S(z) δ(z − ηb − ϵ)

− S(ηb − ϵ) δ(ηb − ϵ− z) + S(ϵ) δ(z − ϵ)− S(z) δ(z + ϵ), (45.118)

whose ϵ→ 0 limit is

∂zS
ext(z) = ∂zS(z) [H(z−ηb)−H(z)]+ [S(z)−S(ηb− ϵ)] δ(z−ηb)+ [S(ϵ)−S(z)] δ(z). (45.119)

Reintroducing the definition of S as per equation (45.112) yields the stretching term contribution
to the potential vorticity, now defined over the full vertical extent of the domain (i.e., the domain
interior and its boundaries)

∂z(fo bg/N
2)ext = ∂z(fo bg/N

2) [H(z − ηb)−H(z)]

+ δ(z − ηb)
[
fo bg
N2

]z=ηb+
z=ηb

−
+ δ(z)

[
fo bg
N2

]z=0+

z=0−
, (45.120)

where the square bracket terms measure the jump in the stretching term taking place across the
respective boundaries. The Heaviside term is nonzero only within the interior of the domain,
whereas the two Dirac delta terms fire at their respective boundaries.

45.7.3 The extended potential vorticity

Making use of the extended stretching term (45.120) for the potential vorticity allows us to
collapse the three equations (45.110a)-(45.110c) into the single equation valid over the domain
interior as well as the domain boundaries

Dgq
ext

Dt
= 0 for ηb ≤ z ≤ 0. (45.121)

Bringing the above results together leads to the extended potential vorticity8

qext = fo + β y +∇2
h ψ +

∂

∂z

[
fo bg
N2

]
︸ ︷︷ ︸

interior

+ δ(z)

[
fo bg
N2

]z=0+

z=0−
+ δ(z − ηb)

[
fo bg
N2

]z=ηb+
z=ηb

−
.︸ ︷︷ ︸

boundary contributions

(45.122)

Note that the Dirac deltas have dimensions of inverse length (see Section 7.3), thus making this
equation dimensionally consistent. We can make use of the transition region values (45.115) and

8We drop the Heaviside terms in equation (45.122) for brevity.
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(45.117) to evaluate the jump conditions[
fo bg
N2

]z=0+

z=0−
=

[
fo bg
N2

]
z=0

(45.123a)[
fo bg
N2

]z=ηb+
z=ηb

−
=

[
fo bg
N2

]
z=ηb

+ fo ηb, (45.123b)

in which case the extended potential vorticity is

qext = fo + β y +∇2
h ψ +

∂

∂z

[
fo bg
N2

]
︸ ︷︷ ︸

interior

+ δ(z) (fo bg/N
2) + fo δ(z − ηb) (bg/N2 + ηb).︸ ︷︷ ︸
boundary contributions

(45.124)

For some studies it is useful to ignore the buoyancy contribution at the two boundaries by setting
them to zero, in which case the potential vorticity is

qext = fo + β y +∇2
h ψ +

∂

∂z

[
fo bg
N2

]
︸ ︷︷ ︸

interior

+ fo ηb δ(z − ηb)︸ ︷︷ ︸
bottom topog

. (45.125)

Dropping the boundary buoyancy contributions allows one to focus on contributions from the
bottom topography and interior processes, in isolation from the boundary buoyancy.

45.8 Mathematical expressions of the theory
In this section we sample various mathematical expressions of quasi-geostrophic theory.

45.8.1 The Jacobian form of geostropic advection
The geostrophic velocity, as a horizontally non-divergent field, can be written in terms of the
quasi-geostrophic streamfunction

ug = ẑ ×∇ψ. (45.126)

We can thus write the following equivalent forms for the material time derivative of quasi-
geostrophic PV

Dq

Dt
= ∂tq + ug · ∇q (45.127a)

= ∂tq + (ẑ ×∇ψ) · ∇q (45.127b)

= ∂tq + (∇ψ ×∇q) · ẑ (45.127c)

= ∂tq + J(ψ, q). (45.127d)

The final equality introduced the Jacobian operator

J(ψ, q) = (∇ψ ×∇q) · ẑ, (45.128)

which is a notation commonly used in the geophysical fluids literature.9

For a perfect fluid, in which Dq/Dt = 0, a steady state (zero Eulerian time derivative) is
realized when

ug · ∇ q = (∇ψ ×∇q) · ẑ = J(ψ, q) = 0, (45.129)

9Recall that we also encountered the Jacobian form for horizontally non-divergent two-dimensional advection
in Section 38.2.4, as part of our study of the non-divergent barotropic flows.
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which means that the steady velocity is parallel to surfaces of constant q. We are ensured that
these equalities hold if the streamfunction is a function only of the potential vorticity

ψ = ψ(q) =⇒ (∇ψ ×∇q) · ẑ = J(ψ, q) = 0. (45.130)

As the steady state is of physical interest, this functional relation between streamfunction and
potential vorticity commonly arises in applications.

45.8.2 The case of constant background buoyancy frequency

Consider the quasi-geostrophic potential vorticity for the special case of a constant background
buoyancy frequency, N2 = constant, in which the relative potential vorticity (45.52) takes on
the form

q − β y = ∇2
h ψ +

∂

∂z

[
f2o
N2

∂ψ

∂z

]
(45.131a)

=
∂2ψ

∂x2
+
∂2ψ

∂y2
+
f2o
N2

∂2ψ

∂z2
(45.131b)

= [∂xx + ∂yy + ∂z̃z̃]ψ. (45.131c)

For the final equality we introduced the vertical coordinate

z = (f/N) z̃ ⇐⇒ z̃ = (N/f) z, (45.132)

where f/N is the Prandtl ratio introduced by equation 43.169. Since |N/f | >> 1 the stably
stratified flows considered in QG, z̃ is a stretched vertical coordinate so that the Laplacian
operator acting on ψ is anisotropic. The linear operator acting on ψ remains elliptic even in
the more general case of a depth dependent stratification, thus warranting the use of elliptical
solvers when performing the inversion numerically.

45.8.3 Potential vorticity induction and impermeability

Outside of boundaries, the potential vorticity equation is the sole prognostic equation required
to evolve the quasi-geostrophic flow. Consequently, one often ignores the quasi-geostrophic
velocity and buoyancy equations. Even so, we found it useful to consider the buoyancy equation
in Section 45.3.5 as part of connecting quasi-geostrophic potential vorticity to Ertel potential
vorticity. Likewise, there are occasions when it is useful to examine the velocity equation, with a
similar discussion provided in Section 43.6.6. In this section we directly connect the velocity
and buoyancy equations and then reveal their connection to the potential vorticity equation.

Combining the velocity and buoyancy equations

Consider the quasi-geostrophic velocity and buoyancy equations derived in Section 45.3

(∂t + ug · ∇)ug + ẑ × (β yug + fo uag) = −∇h φag + F (45.133a)

(∂t + ug · ∇h)bg + wagN
2 = ḃ (45.133b)

fo ẑ × ug +∇hφg = 0 (45.133c)

∇ · ug = ∂xug + ∂yvg = 0 (45.133d)

∇ · vag = ∇ · uag + ∂zwag = 0, (45.133e)
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where we added a non-conservative force per mass, F (e.g., friction, wind stress), and irreversible
buoyancy source, ḃ (e.g., diffusion, boundary fluxes). Taking −ẑ× on the velocity equation10

and multiplying the buoyancy equation by fo/N
2 leads to

(∂t + ug · ∇)(−ẑ × ug) + β yug + fo uag = ẑ ×∇h φag − ẑ × F (45.134a)

(∂t + ug · ∇h)(fo bg/N2) + fowag = fo ḃ/N
2. (45.134b)

Introduce the following vector fields

D ≡ −ẑ × ug + (fo/N
2) bg ẑ = ∇hψ + (fo/N)2 ∂zψ ẑ (45.135a)

R ≡ −ẑ × F + (fo/N
2) ḃ ẑ, (45.135b)

with D built from both the velocity and buoyancy fields and R built from the corresponding
non-conservative tendencies. These vectors allow us to combine the velocity and buoyancy
equations into a single vector equation

(∂t + ug · ∇)D + β yug + fo vag = ẑ ×∇h φag +R. (45.136)

Potential vorticity induction

The divergence of D yields the relative quasi-geostrophic potential vorticity

∇ ·D = q − (fo + β y), (45.137)

where we made use of the expression (45.53) for the potential vorticity. In analogy to Gauss’s
law of electromagnetism, we refer to D as the quasi-geostrophic potential vorticity induction
vector.11 Additionally, the potential vorticity equation can be written (see Exercise 45.3)

(∂t + ug · ∇) q = ∇ ·R, (45.138)

so that the quasi-geostrophic potential vorticity flux vector

Jq = ug q −R (45.139)

allows us to write the potential vorticity equation in the Eulerian flux-form

∂tq = −∇ · Jq. (45.140)

Kinematic PV flux and impermeability

Taking the Eulerian time derivative of the potential vorticity induction equation (45.137) renders

∂tq = ∂t(∇ ·D) = ∇ · (∂tD) ≡ −∇ · Jq-kin, (45.141)

where we introduced the kinematic form of the potential vorticity flux

Jq-kin ≡ −∂tD = Jq +∇×A, (45.142)

with A a gauge function. This equation is analogous to the kinematic Ertel PV flux discussed in
Section 42.2.2. We determine the explicit expression for the gauge function in Exercise 45.4.

10The operation −ẑ× acts to rotate by π/2 in the clockwise direction.
11This connection between potential vorticity dynamics and electromagnetism was pointed out by Schneider

et al. (2003) and further examined by Maddison and Marshall (2013).
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45.9 Energetics for quasi-geostrophic flow

Consider a quasi-geostrophic fluid configured with flat upper (rigid lid) and lower boundaries,
and assume the lateral boundaries are periodic or material solid boundaries. These restrictive
assumptions allow us to more readily study energetics within the fluid, sans the impacts from
nontrivial boundary effects. To study energetics we make use of the quasi-geostrophic buoyancy
equation (45.42) and relative vorticity equation (45.47)

(∂t + u · ∇) b = −wN2 (45.143a)

(∂t + u · ∇) ζ = −β v + fo ∂zw, (45.143b)

where all labels are dropped from the variables to reduce clutter, and where

D

Dt
= ∂t + u · ∇ b = fo ∂zψ u = −∂yψ v = ∂xψ ζ = ∇2

h ψ. (45.144)

45.9.1 Kinetic energy

The kinetic energy per mass for the total fluid domain is given by the integral

K =
1

2

ˆ
u · u dV =

1

2

ˆ
∇hψ · ∇hψ dV, (45.145)

and its time derivative is
dK

dt
=

ˆ
∇hψ · ∇h(∂tψ) dV. (45.146)

For the kinetic energy time derivative we noted that the fluid domain has a constant volume
to allow the time derivative to move inside the integral without introducing boundary terms.
Manipulation renders

dK

dt
=

ˆ
∇hψ · ∇h(∂tψ) dV (45.147a)

=

ˆ [
∇h · [ψ∇h(∂tψ)]− ψ ∂t(∇2

h ψ)
]
dV (45.147b)

= −
ˆ
ψ ∂tζ dV, (45.147c)

where we dropped the lateral boundary term and introduced relative vorticity. Use of the
vorticity equation (45.143b) yields

dK

dt
= −
ˆ
ψ ∂tζ dV =

ˆ
ψ [u · ∇hζ + β v − fo ∂zw] dV. (45.148)

The first and second terms vanish sinceˆ
ψ (u · ∇hζ + β v) dV =

ˆ
ψu · ∇h(ζ + f) dV (45.149a)

=

ˆ
ψ∇h · (u ζa) dV (45.149b)

=

ˆ
[∇h · (ψu ζa)−∇hψ · u ζa] dV = 0. (45.149c)

The final equality holds since the boundary term vanishes, and u · ∇hψ = 0 since ψ is the
streamfunction for the horizontal geostrophic flow. We are thus left with the expression for the
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kinetic energy evolution
dK

dt
= −fo

ˆ
ψ ∂zw dV. (45.150)

Since the top and bottom are assumed flat and rigid, the vertical velocity vanishes on these
boundaries so that

dK

dt
= −fo

ˆ
ψ ∂zw dV = −fo

ˆ
[∂z(wψ)− w ∂zψ] dV = fo

ˆ
w ∂zψ dV. (45.151)

Introducing the quasi-geostrophic buoyancy through b = fo ∂zψ leads to

dK

dt
=

ˆ
w bdV. (45.152)

Kinetic energy thus increases when vertical motion is positively correlated with buoyancy. For
example, upward motion (w > 0) of a positive buoyancy anomaly (relatively light water has
b > 0) increases kinetic energy, as does downward motion of a negative buoyancy anomaly. This
behavior is also reflected in the full fluid system discussed in Section 26.4.

45.9.2 Available potential energy

Available potential energy was introduced in Section 29.9 within the context of the Boussinesq
ocean. An approximate form of the APE is given by equation (29.236), which we here write as

Abouss ≈
1

2

ˆ
(b/N)2dV =

1

2

ˆ
[(fo/N) ∂zψ]

2 dV, (45.153)

where we set b = fo ∂ψ/∂z for the second equality. Taking a time derivative leads to

dA

dt
=

ˆ
(fo/N)2 ∂zψ ∂tzψ dV =

ˆ
(fo/N)2 ∂zψ

[
−wN2 −∇h · (u b)

]
dV, (45.154)

where we used the buoyancy equation (45.143a) for the second equality. The second term
vanishes sinceˆ

(fo/N)2 ∂zψ [∇h · (u b)] dV =

ˆ [
(fo/N)2 ∂zψ

]
u · ∇h (∂zψ) dV (45.155a)

=
1

2

ˆ
∇h ·

[
u ((fo/N) ∂zψ)

2
]
dV (45.155b)

= 0. (45.155c)

Consequently, the quasi-geostrophic APE has a time derivative given by

dA

dt
= −
ˆ
w fo ∂zψ dV = −

ˆ
w bdV, (45.156)

so that the APE evolves oppositely to the kinetic energy.

45.9.3 Exchange of mechanical energy

We refer to the term

buoyancy work =

ˆ
w fo ∂zψ dV =

ˆ
w bdV, (45.157)
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as the buoyancy work conversion term. It has the same form as that encountered for the
conversion between potential energy and kinetic energy in the unapproximated equations studied
in Section 26.4.

The evolution of kinetic energy involves the relative vorticity equation, whereas evolution
of the APE involves the buoyancy equation. However, their sum remains constant in time.
The reason for the exact exchange of energy is that, when the kinetic energy increases through
buoyancy work, the available potential energy decreases

d(K +A)

dt
= 0. (45.158)

This is a relatively simple mechanical energy budget equation reminscent of a classical point
particle discussed in Section 14.7. In particular, note the absence of a pressure work term that
appears in the mechanical energy budget for other fluids such as for the Euler equations (Section
26.4) and Boussinesq ocean (Sections 29.6 and 29.8). We anticipate the absence of pressure work
since knowledge of potential vorticity is sufficient to know all quasi-geostrophic dynamical fields,
and yet pressure plays no explicit role in potential vorticity evolution.

45.9.4 Scaling APE and KE

The scale for kinetic energy in a quasi-geostrophic flow is given by

K =
1

2

ˆ
(∇hψ · ∇hψ) dV ∼ L−2Ψ2 V (45.159)

and the scale for the APE is

A =
1

2

ˆ [
fo
N

∂ψ

∂z

]2
dV ∼ H−2 (fo/N)2Ψ2 V = L−2

d Ψ2 V, (45.160)

where we wrote Ψ for the streamfunction scale, V for the domain volume, and Ld = H (N/fo) is
the deformation radius (see equation (45.7)). Taking the ratio yields

K

A
∼
[
Ld

L

]2
=

[
H

L

]2 [N
fo

]2
= Bu. (45.161)

Hence, the Burger number is the ratio of the scale for quasi-geostrophic kinetic energy to
the scale for quasi-geostrophic available potential energy. A large Burger number means that
the horizontal scales of the flow are smaller than the deformation radius, in which case the
quasi-geostrophic dynamics is dominated by its kinetic energy. In contrast, for scales larger than
the deformation radius (not much larger, as then the flow would not satisfy quasi-geostrophic
scaling), the Burger number is less than unity, in which case the quasi-geostrophic dynamics is
dominated by available potential energy.

45.10 Exercises
exercise 45.1: A variety of potential vorticities
Give the mathematical expressions for dimensionful potential vorticity in the following fluid
models. Define all terms in the respective expressions. Give the physical dimensions and/or SI
units for the potential vorticity. Hint: the answers can be found somewhere in this book.
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(a) Ertel potential vorticity for compressible fluid in a rotating reference frame using potential
temperature as the tracer.

(b) Ertel potential vorticity for a Boussinesq ocean in a rotating reference frame using
Archimedean buoyancy as the tracer.

(c) Single shallow water layer on a beta plane

(d) Continuously stratified planetary geostrophy

(e) Continously stratified quasi-geostrophy on a beta plane

exercise 45.2: Quasi-geostrophic PV evolution with vertical friction
The first part of this exercise involves elements of the asymptotic method used for deriving
the quasi-geostrophic equations, only now with the advent of a non-zero friction. Use is made
to incorporate the non-dimensionalization detailed in Section 33.1, which provides a detailed
discussion of the Ekman number and Ekman layers. The second part of this exercise makes
use of the thermal wind balance to connect horizontal buoyancy transfer to the vertical viscous
transfer of horizontal momentum.

(a) Derive the material evolution equation for quasi-geostrophic potential vorticity in a
continuously stratified Boussinesq fluid in the presence of friction, F . Assume the Ekman
number is on the order of the Rossby number, so that the zeroth order asymptotic solution
satisfies the usual inviscid f -plane geostrophic balance. Friction only appears in the first
order equations.

(b) Assume friction arises just from vertical shears in the horizontal velocity, so that

F =
∂

∂z

[
ν
∂u

∂z

]
, (45.162)

where ν = ν(z) is a vertical eddy viscosity that is a function of depth (dimensions of
squared length per time). Also assume an approximate form of quasi-geostrophic potential
vorticity in which we drop relative vorticity (i.e., quasi-geostrophic potential vorticity is
dominated by planetary vorticity and stretching). Determine the form for the vertical eddy
viscosity so that the approximate form of quasi-geostrophic PV is laterally diffused via

Dqapprox

Dt
= A∇2

zq
approx, (45.163)

where A is a constant eddy diffusivity for the potential vorticity.

Hint: to leading order, the friction operator is a function just of the geostrophic velocity.

exercise 45.3: qgpv flux-form equation with non-conservative processes
Derive the quasi-geostrophic potential vorticity equation (45.138). Show all the relevant steps.
Hint: the key step requires showing that

∇ · [(ug·)D] = (ug·)∇ ·D. (45.164)

To do so, it is useful to express ug and bg in terms of the geostrophic streamfunction.

exercise 45.4: qgpv gauge function
Derive the gauge function, A, that connects the two forms of the quasi-geostrophic flux vector
as per equation (45.142).
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In this part of the book we add a new layer to the conceptual foundations of fluid mechanics,
and we do so by making use of Hamilton’s variational principle to develop the equations for
continuum motion. To appreciate the various aspects of Hamilton’s principle requires revisiting
a number of foundational topics and making use of distinct mathematical methods. Hamilton’s
principle is applicable to conservative physical systems, so that we only consider perfect fluids in
this part of the book (i.e., single-component fluids without diffusion, conduction, or friction).
Even so, Hamilton’s principle provides a satisfying means to unify across the variety of physical
content within perfect fluid mechanics. On a practical side, it offers a useful framework to
develop approximate theories. Namely, by developing approximations within the action, one is
ensured that the associated Euler-Lagrange equations satisfy corresponding conservation laws.
In a nutshell, this part of the book will appeal to those interested in understanding the whys of
fluid mechanics as a complement to the hows.

The continuum expression of Hamilton’s variational principle, and the associated continuum
Euler-Lagrange field equations, are the foundations for both classical and quantum field theory.
Among the most celebrated payoffs for developing the variational formalism, we are afforded
the origin story for differential conservation laws (e.g., linear momentum, angular momentum,
mechanical energy, potential vorticity) that is otherwise obscure using alternative approaches
(i.e., by inspired manipulations of the dynamical equations). It does so by directly connecting
continuous space-time symmetries of the action to differential conservation laws through use of
the celebrated Noether’s theorem (Noether , 1918; Noether and Tavel , 2018). We used Noether’s
theorem in our study of analytical particle mechanics in Chapter 12. Noether’s original work
concerned field theory, so our use of Noether’s theorem for continuum mechanics is directly
connected to her work.

Hamilton’s principle and Lagrangian kinematics

Many practitioners of fluid mechanics are neither aware of, nor concerned with, the use of
Hamilton’s variational principle for continuum mechanics. One reason for the intellectual distance
arises from success of the Eulerian description of fluid mechanics, in which there is no concern for
the flow map induced by the motion field, nor for the corresponding trajectories of fluid particles
(see Chapter 18). Rather, the Eulerian approach focuses on the fluid velocity as a classical field,
and the enumeration of forces acting on a fluid element that lead to accelerations via Newton’s
law. This approach offers a sufficient means to formulate the suite of fluid dynamical equations.
Even so, there is more to the story that is revealed through the paired use of Hamilton’s principle
and Noether’s theorem.

The absence of trajectories in Eulerian fluid mechanics distinguishes it from point particle
mechanics and, it turns out, makes Hamilton’s principle less transparent when formulated
using Eulerian kinematics. In particular, Eulerian kinematics introduces nuances to Hamilton’s
principle related to the need to employ constraint fields not encountered with Lagrangian
kinematics. These features of the Eulerian approach to Hamilton’s principle have, whether
fairly or unfairly, turned many practitioners away from Hamilton’s principle. The nature of an
Eulerian formulation of Hamilton’s principle was clarified by Salmon (1988), who provided a
systematic connection between Eulerian and Lagrangian formulations. Nonetheless, the direct
connection between Lagrangian fluid kinematics to the kinematics of point particles offers a
relatively straightforward extension (both conceptually and technically) of Hamilton’s principle
to fluid mechanics. It also more closely aligns to the methods used in continuum mechanics
and quantum field theory. It is for these reasons that we embrace Lagrangian kinematics in our
study of Hamilton’s principle in this part of the book.12

12It is notable that in solid mechanics, Hamilton’s principle is more routinely used (e.g., see Chapter 2 of Tromp
(2025a)), presumably since Lagrangian kinematics is more routinely used in solid mechanics. Those interested in
the Eulerian approach will find Chapter 8 of Salmon (1998) a valuable introduction.
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Harmonic oscillator versus the motion field

We start this part of the book in Chapter 46 by focusing on Hamilton’s principle for a
continuous scalar field, following approaches standard in the quantum field theory literature (e.g.,
Quigg (1983); Ryder (1985); Ramond (1990)). In this treatment, we establish the Euler-Lagrange
field equations by taking the continuum limit of a discrete version of Hamilton’s principle applied
to coupled simple harmonic oscillators. As such, we are afforded a pedagogical introduction
to Hamilton’s principle for a continuum that builds from the earlier work with particles in
Chapters 12 and 15. This approach then lends the conceptual picture of the continuous field as
representing small amplitude (linear) fluctuations relative to an equilibrium state.

In Chapter 47, we meld the classical field theory from Chapter 46 to the Lagrangian kinematics
of continuum matter from Chapters 18 and 19. Doing so offers a suitable framework to use
Hamilton’s principle for describing fluid flows. Notably, through the advent of the motion field,
φ(a, T ), appearing in Lagrangian kinematics, we appreciate that continuum mechanics is a
fundamentally nonlinear field theory and thus it is not generally amenable to the harmonic
oscillator paradigm that forms the foundation for much of classical and quantum field theory.13

That is, motion of continuum matter is not restricted to small fluctuations relative to an
equilibrated state. So to examine the gamut of fluid motions, in Chapter 47 we apply Hamilton’s
principle to the fluid motion field, φ. We thus develop a field theory for the motion field as it
appears in Lagrangian space-time. Even given this distinction between the scalar field theory
from Chapter 46 to the Lagrangian space-time of the motion field, it is remarkable that the
perfect fluid Euler-Lagrange equation (47.43a) is mathematically identical to equation (46.43)
formulated for the continuous scalar field.

Concerning local field theory

In our studies of continuum mechanics in general, or fluid mechanics in particular, we rely on
local fields to formulate the equations describing motion of continuous matter. Namely, all fields
(e.g., temperature, velocity, energy) depend locally on positions in Galilean space-time. The
use of fields and the corresponding local approach were discussed in Chapter 16 in the context
of the continuum approximation. Local field theories embody the inability for information to
transfer at speeds faster than light or, for our studies that ignore electromagnetism, for signals
to travel faster than acoustic waves. Furthermore, local field theories are ubiquitous in physics
in part since they offer a robust conceptual and operational foundation that is simpler than
non-local approaches.14 As noted on page 24 of Ramond (1990), local field theories are so
well trusted that they are commonly used for describing non-local phenomena. For our study
of fluid mechanics, we make use of both the Lagrangian and Eulerian reference frames. The
Eulerian approach considers fields that are local in the Eulerian x-space, whereas the Lagrangian
approach considers fields that are local in the material a-space.

These remarks about the relevance of local field theory might seem obvious, with action-
at-a-distance phenomena absent from any fundamental processes in classical physics. Even so,
there are approximate theories where we assume a wave speed to be infinite, thus transitioning
from a hyperbolic system to an elliptic system. The primary example occurs when assuming
a non-divergent fluid flow, as in the Boussinesq ocean. For this case, the pressure is purely
mechanical (i.e., it is not related to internal energy via a thermodynamic derivative), and it
solves an elliptic boundary value problem to enforce the non-divergence nature of the flow. That
is, for non-divergent flow, pressure is the Lagrange multiplier that ensure the constraint of
∇ · v = 0 is maintained at each point in space and time, with the acoustic wave speed assumed

13The study of linear waves in Part X is one area where the harmonic oscillator paradigm is suited for fluid
mechanics.

14Chapter 1 of Morse and Feshbach (1953) provides an insightful discussion of fields and their use in physics.
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infinite. In general, if encountering a non-local process in classical physics, we must inquire
about the corresponding unapproximated process in order to determine if the non-local theory
is a physically sensible approximation to a local theory. If not, then the non-local theory is not
a viable theory of classical continuum mechanics.
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Chapter 46

SCALAR FIELD THEORY IN GALILEAN SPACE-TIME

In this chapter we study classical scalar field theory in Galilean space-time from the perspective of
Hamilton’s principle of stationary action. We motivate this study by considering the continuum
limit of a system of coupled simple harmonic oscillators, which provides the canonical example
of how to extend Lagrangian particle mechanics to Lagrangian continuum mechanics. We then
develop the equations of motion within the continuum and make use of Noether’s theorem to
derive dynamical conservation laws connected to space-time symmetries.

chapter guide

This chapter relies on the formulation of Lagrangian mechanics and Hamilton’s principle
from Chapter 12 and 15. We also make use of general tensor formalism from Chapters 1
through 4. The use of general tensors here anticipates their use for the perfect fluid in
Chapter 47. This chapter serves as the foundations for applying Hamilton’s variational
principle for fluid mechanics in Chapter 47, for potential flow in Section 52.2.9, and various
topics in wave mechanics found in Part X.
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46.1. CONTINUUM LIMIT OF COUPLED HARMONIC OSCILLATORS

46.5.1 Distinctions beween Noether and Hamilton . . . . . . . . . . . . 1330
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46.1 Continuum limit of coupled harmonic oscillators
Further study of the discrete coupled oscillator system from Section 15.7 involves the introduction
of discrete normal modes and the examination of energy moving through discrete waves (e.g.,
see Section 24 of Fetter and Walecka (2003)). However, that analysis takes us somewhat outside
the main topic of this book. Instead, we here examine the continuum limit of the oscillator
system. The purpose of this study is to extend discrete Lagrangian mechanics and Hamilton’s
principle to the continuum, thus providing a direct connection to fluid mechanics and classical
field theory.

46.1.1 Continuum limit
We work in a classical physics universe, so that we have no concern for the quantum nature of
matter. As such, the continuum limit is here considered as a mere mathematical transition from
discrete classical matter to continuous classical matter. This approach is physically naive in the
face of the molecular and atomic nature of matter as described by quantum mechanics. Even so,
it provides a suitable mathematical framework for studying the classical mechanics of continuous
media, and as such it serves the needs of this book. See Chapter 16 for more discussion of the
physical basis for the continuum limit.

The continuum limit for the coupled harmonic oscillator system is realized by the following
(see Section 15.7 for notation):

∆→ dx equilibrium distance betwen particles becomes infinitesimal (46.1a)

N →∞ infinite number of particles (46.1b)

(N + 1)∆ = ℓ equilibrium length remains constant (46.1c)

m/∆ = σ mass per length (46.1d)

Γ∆ = τ compressive/expansive force (46.1e)

n∆ = x continuous coordinate for equilibrium position (46.1f)

ξn(t)→ ξ(x, t) displacement becomes function of space and time. (46.1g)

The displacement function, ξ(x, t), measures the displacement of an infinitesimal piece of matter
whose equilibrium position is x. As such, the coordinate x acts as a parameter that labels an
infinitesimal piece of matter whose equilibrium position is x and whose instantaneous position is
x+ ξ(x, t).1

We take the continuum limit starting from two different perspectives. First we focus on
the equation of motion (15.146) for the coupled oscillators, which is the topic of Section 46.1.2.
Alternatively, we take the continuum limit of the Lagrangian and then derive the corresponding
Euler-Lagrange equations, with this approach considered in Section 46.1.3. The second approach
is aligned with the approach in classical field theory used in later sections.

1The displacement field, ξ(x, t), is a one-dimensional version of the vector field, ξ(x, t), used for the generalized
Lagrangian mean of Section 70.2.
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46.1.2 Continuum limit and the wave equation

Introducing the notation from equations (46.1a)-(46.1g), yet without taking the continuum limit,
brings the coupled oscillator equation (15.146) into the form

ξ̈n =
Γ

m
(ξn+1 − 2 ξn + ξn−1) (46.2a)

=
Γ∆

m/∆

ξn+1 − 2 ξn + ξn−1

∆2
(46.2b)

=
τ

σ

[
ξn+1 − 2 ξn + ξn−1

∆2

]
. (46.2c)

To take the continuum limit, note that the finite difference on the right hand side approximates
the second order spatial derivative operator, so that in the continuum limit we recover the one
dimensional wave equation

(∂tt − c2 ∂xx) ξ = 0, (46.3)

with the wave speed given by
c = (τ/σ)1/2. (46.4)

We studied the mathematics of the wave equation (46.3) in Section 6.7 in the context of
hyperbolic partial differential equations. A general solution is given by

ξ(x, t) = A(x− c t) +B(x+ c t), (46.5)

where A and B are arbitrary smooth functions determined by the initial conditions and boundary
conditions. The solution A(x− c t) is a signal moving in the +x̂ direction, whereas B(x− c t) is
a signal moving in the −x̂ direction, both moving at speed c.

We have restricted attention to motion constrained to a line whereby the harmonic oscillators
render a series of alternative rarefactions and compressions that lead to wave-like motions along
that line. Upon taking the continuum limit, we find that each piece of the continuum oscillates
about its equilibrium position, again with the oscillations in a direction aligned with the waves.
Such motions are the defining characteristic of longitudinal waves. The longitudinal waves
resulting from the continuum limit of coupled harmonic oscillators offers a prototype for the
acoustic waves studied in Chapter 51.

46.1.3 Continuum limit of the Lagrangian

Rather than taking the continuum limit of the equation of motion, we here consider the continuum
limit of the Lagrangian and then derive the corresponding Euler-Lagrange equation of motion.
This approach accords with the methods of classical field theory and it will serve many purposes
in this book.

Recall the discrete Lagrangian given by equation (15.155)

L =

N+1∑
n=1

[
m

2
(ξ̇n)

2 − Γ

2
(ξn − ξn−1)

2

]
. (46.6)

The continuum limit from Section 46.1.2 brings the kinetic energy to

m

2

N+1∑
n=1

(ξ̇n)
2 =

σ

2

N+1∑
n=1

(ξ̇n)
2∆ −→ σ

2

ˆ ℓ

0
(∂tξ)

2 dx, (46.7)
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where we set m = σ∆ according to equation (46.1d), and made the correspondence

N+1∑
n=1

∆ −→
ˆ ℓ

0
dx. (46.8)

Similarly, the continuum limit of the potential energy yields

Γ

2

N+1∑
n=1

(ξn − ξn−1)
2 =

Γ∆

2

N+1∑
n=1

(ξn − ξn−1)
2

∆2
∆ −→ τ

2

ˆ ℓ

0
(∂xξ)

2 dx, (46.9)

where we set Γ∆ = τ according to equation (46.1e). As a result, the Lagrangian has the
continuum limit

L =
N+1∑
n=1

[
m

2
(ξ̇n)

2 − Γ

2
(ξn − ξn−1)

2

]
−→ 1

2

ˆ ℓ

0
[σ (∂tξ)

2 − τ (∂xξ)2] dx ≡
ˆ ℓ

0
L dx, (46.10)

where we defined the Lagrangian density

L = [σ (∂tξ)
2 − τ (∂xξ)2]/2. (46.11)

Now observe that

∂

∂t

∂L

∂(∂tξ)
+

∂

∂x

∂L

∂(∂xξ)
= σ ∂ttξ − τ ∂xxξ = σ (∂ttξ − c2 ∂xxξ) = 0. (46.12)

This result hints at a means to derive the Euler-Lagrange equation using a continuum version of
Hamilton’s principle, which is the topic of Section 46.2.

46.1.4 Further study
In transitioning from the discrete harmonic oscillators to the continuum field theory, we are
inspired by treatments from Fetter and Walecka (2003) (chapters 4, 6, and 8), chapter 12 of
Goldstein (1980), chapter 9 of José and Saletan (1998), and Chapter 2 of Soper (2008). Note
that some of these treatments (e.g., Chapter 4 of Fetter and Walecka (2003)) works through
the continuum limit of a string, which accords quite closely to the continuum limit of simple
harmonic oscillators considered here.

46.2 Hamilton’s principle and the Euler-Lagrange equations
The continuum limit considered in Section 46.1 suggests that we can study the mechanics of
continuous media using the methods of Lagrangian mechanics and Hamilton’s principle, and
that we can pursue this approach without concern for the discrete nature of matter. In this
section we explore the rudiments of the resulting field theory for scalar fields. For simplicity,
we focus here on the case of one space dimension, along with time. Generalizations to higher
space dimensions are straightforward, in which case the space-time domain, R, includes higher
dimensional region of space, R, along with a time interval.

46.2.1 The action for a continuous field
In Section 12.6 we applied Hamilton’s principle to the trajectories of discrete particles moving
through space, with the spatial position specified by generalized coordinates and the position
along a trajectory parameterized by time. Hamilton’s principle states that the physically realized
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trajectory is that trajectory that makes the action stationary. Here we postulate that Hamilton’s
principle for point particles can be extended to continuous matter whose mechanics is described
by space-time fields. Many steps in the derivation here are straightforward extensions of the
discrete particle discussion.

Consider a 1+1 dimensional field, ψ = ψ(x, t), that is a function of one Cartesian space
coordinate, x, and time, t. For example, ψ(x, t) can represent the displacement field, ξ(x, t),
introduced by the continuum limit of the oscillators studied in Section 46.1. In this manner, the
continuum extension of the discrete particle action defined by equation (12.63) is here given by
the space-time integral

S[tA, xA, tB, xB, ψ] =

ˆ tB

tA

Ldt =

ˆ tB

tA

[ˆ xB

xA

L(ψ, ∂tψ, ∂xψ, x, t) dx

]
dt, (46.13)

where L is the Lagrangian density2 and the physical system lives on a space domain, x ∈ [xA, xB],
and evolves over the time range, t ∈ [tA, tB]. We refer to this space-time domain as

R ≡ x ∈ [xA, xB]⊕ t ∈ [tA, tB], (46.14)

and its boundary is ∂R. On the left hand side of equation (46.13) we exposed the dependence of
the action on the space and time endpoints, as well as the function, ψ. We generally omit such
dependence for brevity in notation.

Note the presence of both space and time derivatives inside the action in equation (46.13),
as per the use of both space and time as independent variables for the field, ψ. Evidently,
the Lagrangian density, L, is a functional3 of the field, ψ, and its derivatives, ∂tψ and ∂xψ.
Since ψ is a function of (x, t), then the Lagrangian density, L, is an implicit function of (x, t)
through its dependence on ψ(x, t), ∂tψ(x, t), and ∂xψ(x, t). Furthermore, we allow for L to be
an explicit function of (x, t), which may arrive via other prescribed functions that contribute to
the Lagrangian (e.g., a space-time dependent background field through which waves propagate,
as studied in Chapter 50). In Section 46.3.1 we emphasize the importance of being mindful of
the variety of explicit and implicit dependencies of the Lagrangian density.

46.2.2 Functional variation of the field

In the action (46.13), it is the field, ψ(x, t), that is the continuum extension of the generalized
coordinates used in the discrete particle mechanics action (12.63). Correspondingly, it is the
field that is varied when varying the continuum action. Let ψ(x, t) be the physically realized
field and introduce a virtual variation around that field according to

ψ(x, t|ϵ) = ψ(x, t) + ϵ χ(x, t) = ψ(x, t) + δψ(x, t). (46.15)

The first equality introduced a non-dimensional parameter, ϵ, that scales the perturbation field,
χ, thus defining a one-parameter family of functions, ψ(x, t|ϵ). The second equality in equation
(46.15) introduced the δ notion commonly used for variations (see Section 12.6). We emphasize
that it is the field that is varied, so that the field parameters, (x, t), are the same across the
two equalities in equation (46.15). Consequently, the δ operator commutes with space and time
derivatives.

Figure 46.1 illustrates the field variation (46.15). There is a nonzero variation, δψ(x, t) =
ϵ χ(x, t), for space-time points that are not on the space-time boundary, (x, t) /∈ ∂R. In contrast,
the field is specified along ∂R to be the physically realized field, so that on the space-time

2We commonly refer to L as the “Lagrangian”, thus omitting the “density” qualifier.
3A functional is a “function of a function”.
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boundary there is no variation

δψ(x, t) = 0 ∀ (x, t) ∈ ∂R⇐⇒ ∂ψ(x, t|ϵ)
∂ϵ

= 0 ∀ (x, t) ∈ ∂R. (46.16)

<latexit sha1_base64="uJHOsvzECRoW4T5AjDVyYg+ogfI=">AAACMXicbVDLSgMxFE3qq46vVhcu3ASL4KrMiFSXRTcuK9gHtEPJpJk2NMkMSUYoQ3/Brf6HX9OduPUnzLSz0HYOXDiccy/33hPEnGnjugtY2tre2d0r7zsHh0fHJ5XqaUdHiSK0TSIeqV6ANeVM0rZhhtNerCgWAafdYPqY+d1XqjSL5IuZxdQXeCxZyAg2mTSINRtWam7dXQJtEi8nNZCjNazC88EoIomg0hCOte57bmz8FCvDCKdzZ5BoGmMyxWPat1RiQbWfLo+doyurjFAYKVvSoKX6dyLFQuuZCGynwGai171MLPSoZtIUOoEokvuJCe/9lMk4MVSS1WVhwpGJUBYVGjFFieEzSzBRzD6HyAQrTIwNtGC149govfXgNknnpu416o3n21rzIQ+1DC7AJbgGHrgDTfAEWqANCJiAN/AOPuAnXMAv+L1qLcF85gz8A/z5BagxqUI=</latexit>

 

<latexit sha1_base64="00FRTn2y9Gqh4XcrHe+uByiTRlM=">AAACLnicbVDLSsNAFJ3UV42vVhcu3AwWwVVJRKrLohuXLdgHtKFMpjft0MkkzEzEEvoFbvU//BrBhbj1M5y2WWibAxcO59zLvff4MWdKO86nVdjY3NreKe7ae/sHh0el8nFbRYmk0KIRj2TXJwo4E9DSTHPoxhJI6HPo+JP7ud95AqlYJB71NAYvJCPBAkaJNlLzeVCqOFVnAbxO3IxUUIbGoGyd9ocRTUIQmnKiVM91Yu2lRGpGOczsfqIgJnRCRtAzVJAQlJcuLp3hC6MMcRBJU0Ljhfp3IiWhUtPQN50h0WO16s3FXA8UEzrX8cM8uZfo4NZLmYgTDYIuLwsSjnWE5znhIZNANZ8aQqhk5jlMx0QSqk2aOatt20Tprga3TtpXVbdWrTWvK/W7LNQiOkPn6BK56AbV0QNqoBaiCNALekVv1rv1YX1Z38vWgpXNnKB/sH5+ARZIp/Q=</latexit>x

<latexit sha1_base64="Be90IPOfzFGXpY0ml5KglCkXn3k=">AAACLnicbVBNS8NAEN34WeNXqwcPXoJF8FQSkeqx6MVjC/YD2lA220m7dLMJuxOhhP4Cr/o//DWCB/Hqz3Db5qBtHww83pthZl6QCK7RdT+tjc2t7Z3dwp69f3B4dFwsnbR0nCoGTRaLWHUCqkFwCU3kKKCTKKBRIKAdjB9mfvsZlOaxfMJJAn5Eh5KHnFE0UgP7xbJbcedwVomXkzLJUe+XrLPeIGZpBBKZoFp3PTdBP6MKORMwtXuphoSyMR1C11BJI9B+Nr906lwaZeCEsTIl0ZmrfycyGmk9iQLTGVEc6WVvJq71QHOJa50gWid3Uwzv/IzLJEWQbHFZmAoHY2eWkzPgChiKiSGUKW6ec9iIKsrQpLlmtW2bKL3l4FZJ67riVSvVxk25dp+HWiDn5IJcEY/ckhp5JHXSJIwAeSGv5M16tz6sL+t70bph5TOn5B+sn18PIKfw</latexit>

t
<latexit sha1_base64="mYetTOVUNeyNmnVg5ChfF5nhXuA=">AAACMnicbVBNS8NAEN34WeNXqwcPXhaL4KkkItVj1YvHCqYttKFstpt26WYTdidCCf0NXvV/+Gf0Jl79EW7bHLTNg4HHezPMzAsSwTU4zoe1tr6xubVd2rF39/YPDsuVo5aOU0WZR2MRq05ANBNcMg84CNZJFCNRIFg7GN/P/PYzU5rH8gkmCfMjMpQ85JSAkTzoZ7fTfrnq1Jw58Cpxc1JFOZr9inXSG8Q0jZgEKojWXddJwM+IAk4Fm9q9VLOE0DEZsq6hkkRM+9n82ik+N8oAh7EyJQHP1b8TGYm0nkSB6YwIjPSyNxMLPaa5hEIniIrkbgrhjZ9xmaTAJF1cFqYCQ4xnWeEBV4yCmBhCqOLmOUxHRBEKJtGC1bZtonSXg1slrcuaW6/VH6+qjbs81BI6RWfoArnoGjXQA2oiD1HE0Qt6RW/Wu/VpfVnfi9Y1K585Rv9g/fwCghWpsA==</latexit>

tA
<latexit sha1_base64="anvyDJOc14DItHyFLAC8uGmcev0=">AAACMnicbVBNS8NAEN31s8avVg8evASL4KkkItVjqRePFUxbaEPZbDft0s0m7E6EEvobvOr/8M/oTbz6I9y2OWibBwOP92aYmRckgmtwnA+8sbm1vbNb2rP2Dw6PjsuVk7aOU0WZR2MRq25ANBNcMg84CNZNFCNRIFgnmNzP/c4zU5rH8gmmCfMjMpI85JSAkTwYZM3ZoFx1as4C9jpxc1JFOVqDCj7rD2OaRkwCFUTrnusk4GdEAaeCzax+qllC6ISMWM9QSSKm/Wxx7cy+NMrQDmNlSoK9UP9OZCTSehoFpjMiMNar3lws9JjmEgqdICqSeymEd37GZZICk3R5WZgKG2J7npU95IpREFNDCFXcPGfTMVGEgkm0YLVlmSjd1eDWSfu65tZr9cebaqOZh1pC5+gCXSEX3aIGekAt5CGKOHpBr+gNv+NP/IW/l60bOJ85Rf+Af34Bg+CpsQ==</latexit>

tB
<latexit sha1_base64="IwXKrRax2svR45F2/jOrf2f8x5I=">AAACOnicbVDLSsNAFJ3UV42vVhcu3ASLUEFKIlJdVt24rGAf0IYymU7aoZNJnLkRS+h3uNX/8EfcuhO3foDTNgttc+DC4Zx7ufceL+JMgW1/GLmV1bX1jfymubW9s7tXKO43VRhLQhsk5KFse1hRzgRtAANO25GkOPA4bXmj26nfeqJSsVA8wDiiboAHgvmMYNCS240UKz+fQS+5npz2CiW7Ys9gLRMnJSWUot4rGofdfkjigAogHCvVcewI3ARLYITTidmNFY0wGeEB7WgqcECVm8yunlgnWulbfih1CbBm6t+JBAdKjQNPdwYYhmrRm4qZHlVMQKbjBVlyJwb/yk2YiGKggswv82NuQWhNM7P6TFICfKwJJpLp5ywyxBIT0MlmrDZNHaWzGNwyaZ5XnGqlen9Rqt2koebRETpGZeSgS1RDd6iOGoigR/SCXtGb8W58Gl/G97w1Z6QzB+gfjJ9fcgSsnQ==</latexit>

 (x, tA)

<latexit sha1_base64="BAZ6B3Bp7+AypkyqCCuNmHFo1Fs=">AAACNnicbVDLSsNAFJ3UV42vVhcu3ASLUEFKIlJdFt24rGAf0oYymU7aoTOTMHMjltKvcKv/4a+4cSdu/QSnbRZac+DC4Zx7ufeeIOZMg+u+W7mV1bX1jfymvbW9s7tXKO43dZQoQhsk4pFqB1hTziRtAANO27GiWASctoLRzcxvPVKlWSTvYRxTX+CBZCEjGIz00I01Kz+dwWmvUHIr7hzOf+KlpIRS1HtF67Dbj0giqATCsdYdz43Bn2AFjHA6tbuJpjEmIzygHUMlFlT7k/nFU+fEKH0njJQpCc5c/T0xwULrsQhMp8Aw1MveTMz0qGYSMp1AZMmdBMIrf8JknACVZHFZmHAHImeWl9NnihLgY0MwUcw855AhVpiASTVjtW2bKL3l4P6T5nnFq1aqdxel2nUaah4doWNURh66RDV0i+qogQgS6Bm9oFfrzfqwPq2vRWvOSmcO0B9Y3z/zWKrd</latexit>

 (x, t)

<latexit sha1_base64="0OkH2n+l4CjtEyODWF1FJcQv1cg=">AAACV3icbZDLSgMxFIYz463WW6sLF26CRagoZUakuiy6cVnBqtApJZM51WAmMyRnxDL0FXwat/oefRpNL6C2PRD4+f5zkpM/TKUw6HlDx11aXlldK6wXNza3tndK5d17k2SaQ4snMtGPITMghYIWCpTwmGpgcSjhIXy5HvkPr6CNSNQd9lPoxOxJiZ7gDC3qlqrB+I5cQzSgQWpE9e0Uj+kJDSKQyH5Rt1Txat646Lzwp6JCptXslp39IEp4FoNCLpkxbd9LsZMzjYJLGBSDzEDK+At7graVisVgOvl4nQE9siSivUTbo5CO6d+JnMXG9OPQdsYMn82sN4ILPTBC4UInjBfhdoa9y04uVJohKD7ZrJdJigkdBUojoYGj7FvBuBb2c5Q/M8042tgXPF0s2ij92eDmxf1Zza/X6rfnlcbVNNQCOSCHpEp8ckEa5IY0SYtw8k4+yCf5cobOt7vqFiatrjOd2SP/yi3/ACDxtBc=</latexit>

 (x, t) + � (x, t)

<latexit sha1_base64="BZi1azysvV/Z7z1c+q6FgcDblq0=">AAACOnicbVDLSsNAFJ3UV42vVhcu3ASLUEFKIlJdlrpxWcE+oA1lMp20QyeTOHMjltDvcKv/4Y+4dSdu/QCnbRba5sCFwzn3cu89XsSZAtv+MHJr6xubW/ltc2d3b/+gUDxsqTCWhDZJyEPZ8bCinAnaBAacdiJJceBx2vbGtzO//USlYqF4gElE3QAPBfMZwaAltxcpVn6+gH5Sn573CyW7Ys9hrRInJSWUotEvGse9QUjigAogHCvVdewI3ARLYITTqdmLFY0wGeMh7WoqcECVm8yvnlpnWhlYfih1CbDm6t+JBAdKTQJPdwYYRmrZm4mZHlVMQKbjBVlyNwb/xk2YiGKggiwu82NuQWjNMrMGTFICfKIJJpLp5ywywhIT0MlmrDZNHaWzHNwqaV1WnGqlen9VqtXTUPPoBJ2iMnLQNaqhO9RATUTQI3pBr+jNeDc+jS/je9GaM9KZI/QPxs8vc9Csng==</latexit>

 (x, tB)

<latexit sha1_base64="LSQ5W8GI+ZoQ2y1NL6j5UaW4+mA=">AAACBnicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy6r2Ae0Q8mkmTY0yQxJRixD967d6je4E7f+hp/gX5i2g9jWA4HDOfdybk4Qc6aN6345uZXVtfWN/GZha3tnd6+4f9DQUaIIrZOIR6oVYE05k7RumOG0FSuKRcBpMxheT/zmA1WaRfLejGLqC9yXLGQEGyu1OiKIHtO7cbdYcsvuFGiZeBkpQYZat/jd6UUkEVQawrHWbc+NjZ9iZRjhdFzoJJrGmAxxn7YtlVhQ7afTe8foxCo9FEbKPmnQVP27kWKh9UgEdlJgM9CL3kT8z2snJrz0UybjxFBJZkFhwpGJ0OTzqMcUJYaPLMFEMXsrIgOsMDG2ormUQPwG2G68xSaWSeOs7FXKldvzUvUqaykPR3AMp+DBBVThBmpQBwIcnuEFXp0n5815dz5mozkn2zmEOTifP5/5mWM=</latexit>

R

<latexit sha1_base64="2uEgXjorw6vCXViRtihFFKyhuxE="></latexit>

R → x ↑ [xA, xB]↓ t ↑ [tA, tB]

<latexit sha1_base64="MKiSdIX+QmAxd7UELWHILdH9Zqg=">AAACPnicbVA9SwNBEN2LRuN31NJmNQhW4U4kWvrRWEYwKiQh7G3mkiV7H+zOicdxtb/GVlv/hn/ATmwt3ZyHmMSBXR7vzfBmnhtJodG236zS3Hx5YbGytLyyura+Ud3cutFhrDi0eChDdecyDVIE0EKBEu4iBcx3Jdy6o4uxfnsPSoswuMYkgq7PBoHwBGdoqF5196GXdnyGQ+2lHc2ViLD4MZFAz7KsV63ZdTsvOgucAtRIUc3eplXu9EMe+xAgl0zrtmNH2E2ZQsElZMudWEPE+IgNoG1gwHzQ3TS/JaP7hulTL1TmBUhz9u9EynytE981nfna09qY/E9rx+iddFMRRDFCwH+MvFhSDOk4GNoXCjjKxABmEjC7Uj5kinE08U24uP6/5nE0UACjX80E50zHNAtuDutOo964OqqdnhcRVsgO2SMHxCHH5JRckiZpEU4eyRN5Ji/Wq/VufVifP60lq5jZJhNlfX0DJSmvaw==</latexit>xA

<latexit sha1_base64="zxiyhLVrU2HE04Q0A/S1sQ41ELo=">AAACPnicbVA9SwNBEN2LRmP8ilrarAbBKtyJRMugjWUEYwJJCHubuWTJ3ge7c+JxpPbX2Grr3/AP2ImtpZt4iPkY2OXx3gxv5rmRFBpt+93Krazm19YLG8XNre2d3dLe/r0OY8WhwUMZqpbLNEgRQAMFSmhFCpjvSmi6o+uJ3nwApUUY3GESQddng0B4gjM0VK909NhLOz7DofbSjuZKRJj9mEigV+Nxr1S2K/a06CJwMlAmWdV7e1a+0w957EOAXDKt244dYTdlCgWXMC52Yg0R4yM2gLaBAfNBd9PpLWN6Ypg+9UJlXoB0yv6fSJmvdeK7pnO69rw2IZdp7Ri9y24qgihGCPivkRdLiiGdBEP7QgFHmRjATAJmV8qHTDGOJr4ZF9dfah5HAwUw+tNMcM58TIvg/qziVCvV2/Ny7SqLsEAOyTE5JQ65IDVyQ+qkQTh5Is/khbxab9aH9Wl9/bbmrGzmgMyU9f0DJuOvbA==</latexit>xB

Figure 46.1: Illustrating the variation of a field for use in Hamilton’s principle for continuous media. The field,
ψ(x, t), is specified along the space-time boundary of the domain, ∂R, where R is the space domain x ∈ [xA, xB]
plus a time domain t ∈ [tA, tB]. When not on ∂R, then there is a nonzero, δψ(x, t), whereas δψ = 0 on the
boundary, ∂R. This figure is inspired by Figure 25.3 of Fetter and Walecka (2003).

46.2.3 Variation of the action
Hamilton’s principles says that the physically realized field, ψ(x, t|ϵ = 0), makes the action
stationary, which is mathematically stated as

Hamilton’s principle =⇒
[
dS

dϵ

]
ϵ=0

=

[
d

dϵ

ˆ
R
L dx dt

]
ϵ=0

= 0. (46.17)

Making use of the δ shorthand leads to

Hamilton’s principle =⇒ δS = δ

[ˆ
R
L dx dt

]
= 0 with δ = [d/dϵ]ϵ=0 . (46.18)

In varying the action we only vary the field and its derivatives, with the space-time domain, R,
unchanged. Hence, the variation operator commutes with the space-time integral

δS =

ˆ
R
δL dx dt. (46.19)

Variation of the Lagrangian density is computed according to the chain rule

δL =

[
∂L

∂ψ

]
∂tψ,∂xψ

δψ +

[
∂L

∂(∂tψ)

]
ψ,∂xψ

δ(∂tψ) +

[
∂L

∂(∂xψ)

]
ψ,∂tψ

δ(∂xψ). (46.20)

We exposed subscripts to denote which terms are held fixed during the partial functional
derivative operation. This equation makes it clear that variation of the Lagrangian density
occurs at a fixed space-time point, which explains why there are no (∂L/∂t) δt nor (∂L/∂x) δx
terms. Correspondingly, under this variation we consider (x, t) as space-time parameters so that
the ∂x and ∂t operators acting on ψ commute with the variation operator

δL =
∂L

∂ψ
δψ +

∂L

∂(∂tψ)
∂t(δψ) +

∂L

∂(∂xψ)
∂x(δψ). (46.21)
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Further rearranging the space-time operators leads to the equivalent expression

δL =

[
∂L

∂ψ
− ∂

∂t

∂L

∂(∂tψ)
− ∂

∂x

∂L

∂(∂xψ)

]
δψ +

∂

∂t

[
∂L

∂(∂tψ)
δψ

]
+

∂

∂x

[
∂L

∂(∂xψ)
δψ

]
. (46.22)

46.2.4 Euler-Lagrange field equations
Plugging the result (46.22) into the action variation (46.19) leads to

δS =

ˆ
R
δψ

(
∂L

∂ψ
− ∂

∂t

∂L

∂(∂tψ)
− ∂

∂x

∂L

∂(∂xψ)

)
dx dt

+

ˆ
R

(
∂

∂t

[
∂L

∂(∂tψ)
δψ

]
+

∂

∂x

[
∂L

∂(∂xψ)
δψ

])
dx dt. (46.23)

As noted earlier, we are assuming the field variation vanishes on the space-time boundary, so
that δψ = 0 for points on ∂R. Doing so eliminates the second integral since both terms integrate
to boundary contributions. Furthermore, since δψ is an arbitary variation of the field within the
interior of the domain, a general satisfaction of Hamilton’s principle, δS = 0, only holds if the
integrand in the first integral vanishes for each space and time point, which thus leads to the
continuum Euler-Lagrange equations

δS = 0 =⇒ ∂L

∂ψ
− ∂

∂t

[
∂L

∂(∂tψ)

]
− ∂

∂x

[
∂L

∂(∂xψ)

]
= 0. (46.24)

We emphasize here an important practical point related to computation of the partial derivatives.
Namely, when performing the partial derivative on L with respect to ψ and its derivatives, ∂tψ
and ∂xψ, each of the other variables in the Lagrangian density are held fixed. However, when
performing the space and time partial derivatives, ∂x and ∂t, we only maintain the complement
space and time variable fixed, so that we need to employ the chain rule to extract all places
where ∂x and ∂t affect. We offer details in Section 46.3.1 on these points about computing the
partial derivatives.

46.2.5 Example Lagrangian densities
We have many opportunities in this book to use a Lagrangian density to derive the correspondingly
Euler-Lagrange equations. Here we provide a few examples that lead to wave equations.

Acoustic wave equation

As studied in Section 46.1, the Lagrangian density

L = [σ (∂tψ)
2 − τ (∂xψ)2]/2, (46.25)

with σ and τ constants, renders the wave equation as the Euler-Lagrange equation

(∂tt − c2 ∂xx)ψ = 0, (46.26)

where the wave speed is c =
√
τ/σ (equation (46.4)). Notice that the dimensions of L are energy

per length, which accords with this being a wave equation in a single spatial dimension. The
Lagrangian (46.25) and wave equation (46.26) also hold for the more general case of a tension
that is a function of time, τ = τ(t), and a mass density that is a function of space, σ = σ(x), in
which case the wave speed is a function of space and time

c2(x, t) = τ(t)/σ(x). (46.27)
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We derived the Lagrangian density (46.25) in Section 46.1 by taking the continuum limit of
coupled harmonic oscillators, where ψ(x, t) represents the x̂-displacement of a particle from its
equilibrium position, so that linear fluctuations are longitudinal waves (wave motion in the same
direction of the particle displacement). An analogous derivation leads to the same Lagrangian
density for a tight string, with ψ(x, t) now measuring the transverse displacements of the string
from its equilibrium position (see Section 25 in Fetter and Walecka (2003)), and with linear
oscillations leading to transverse waves.

Returning to the continuum harmonic oscillator, we note that it is directly related to the
study of acoustic waves in a fluid. We pursue this study in Chapter 51, thus encountering the
Lagrangian density

L = [c−2
s (∂tp

′)2 − (∇p′)2]/(2 ρe), (46.28)

where ρe is the mass density of the background fluid state, cs is the sound speed in the fluid, and
p′ is the perturbation pressure. In this case the Euler-Lagrange equation is the acoustic wave
equation

∂t[(ρe c
2
s )

−1 ∂tp
′]−∇ · (ρ−1

e ∇p′) = 0, (46.29)

which, in the special case of ρe and cs independent of space and time, gives the wave equation

(∂tt − c2s ∇2) p′ = 0. (46.30)

Note that the physical dimensions of the Lagrangian density (46.28) are not energy per volume,
so that the terms in the Lagrangian are thought of as pseudo-energy densities.

Sine-Gordon and Klein-Gordon wave equations

For another example, consider

L = [σ (∂tψ)
2 − τ (∂xψ)2]/2− σ Γ2 (1− cosψ), (46.31)

where ψ is here a non-dimensional field. The corresponding Euler-Lagrange equation is known
as the sine-Gordon equation

∂ttψ − c2 ∂xxψ + Γ2 sinψ = 0. (46.32)

As shown in Section 9.1.1 of José and Saletan (1998), the sine-Gordon equation is the continuum
limit of a coupled pendulum-spring system, with Γ proportional to the gravitational acceleration.
For small ψ, the sine-Gordon Lagrangian (46.31) and wave equation (46.32) reduce to the
Klein-Gordon Lagrangian and Klein-Gordon equation

L = [σ (∂tψ)
2 − τ (∂xψ)2]/2 + σ Γ2 ψ2 and (∂tt − c2 ∂xx + Γ2)ψ = 0. (46.33)

The Klein-Gordon equation forms the starting point for scalar quantum field theories (e.g.,
Ryder (1985)).

46.3 Operational aspects of Hamilton’s principle

We here summarize a number of points about the formalism that are particularly relevant when
performing the many operational steps with Hamilton’s principle.
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46.3.1 Care with the partial derivative operations
As noted in Section 46.2, the Lagrangian density, L, is a functional of the field, ψ, as well as its
space and time derivatives,

∂ψ(x, t)

∂t
=

[
∂ψ(x, t)

∂t

]
x

and
∂ψ(x, t)

∂x
=

[
∂ψ(x, t)

∂x

]
t

, (46.34)

where the subscripts on the right hand side of these equations indicate those variables held
fixed while performing the partial derivative. We typically do not need this extra adornment for
partial derivatives acting on functions of space and time. But the Lagrangian density is a rather
loaded object, and so it is important to clarify what is meant by its derivatives.

With ψ and its derivatives explicit functions of (x, t), then L is an implicit function of (x, t).
There are additional physical systems where the Lagrangian density picks up an explicit space
and time dependence, such as when waves move through a space and time dependent background
media (Section 50.5). Such added space and time dependence does not alter the derivation of the
Euler-Lagrange field equation, since in that derivation we only vary the field and its derivatives.
However, the distinction between implicit versus explicit functional dependence can easily lead
to confusion when performing partial derivative manipulations involving ∂t and ∂x operations,
such as when deriving the continuum conservation laws in Section 46.4. We thus find it useful
to here write these derivatives for the record.

The partial time derivative of L, computed at a fixed x position, is given by[
∂L

∂t

]
x

=

[
∂L

∂ψ

]
∂tψ,∂xψ

∂ψ

∂t
+

[
∂L

∂(∂tψ)

]
ψ,∂xψ

∂2ψ

∂t2
+

[
∂L

∂(∂xψ)

]
ψ,∂tψ

∂2ψ

∂x∂t

+

[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

. (46.35)

Exposing the subscripts on the L partial derivatives helps to distinguish the time derivative on
the left hand side from the time derivative appearing in the final term on the right hand side.
Namely, the (∂L/∂t)x on the left hand side only holds x fixed, whereas the (∂L/∂t)ψ,∂tψ,∂xψ,x
on the right hand side holds the full gamut, ψ, ∂tψ, ∂xψ, x, fixed while computing the time
derivative. Distinguishing these two derivatives is the primary point of confusion, so that for it
is commonly sufficient to abbreviate this equation with the more succinct expression

∂L

∂t
=
∂L

∂ψ

∂ψ

∂t
+

∂L

∂(∂tψ)

∂2ψ

∂t2
+

∂L

∂(∂xψ)

∂2ψ

∂x∂t
+

[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

. (46.36)

A similar expression holds for the partial space derivative computed at a fixed time,[
∂L

∂x

]
t

=

[
∂L

∂ψ

]
∂tψ,∂xψ

∂ψ

∂x
+

[
∂L

∂(∂tψ)

]
ψ,∂xψ

∂2ψ

∂t∂x
+

[
∂L

∂(∂xψ)

]
ψ,∂tψ

∂2ψ

∂x2

+

[
∂L

∂x

]
ψ,∂tψ,∂xψ,t

, (46.37)

which also has the succinct form4

∂L

∂x
=
∂L

∂ψ

∂ψ

∂x
+

∂L

∂(∂tψ)

∂2ψ

∂t∂x
+

∂L

∂(∂xψ)

∂2ψ

∂x2
+

[
∂L

∂x

]
ψ,∂tψ,∂xψ,t

. (46.38)

4Note that some authors (e.g., chapter 12 of Goldstein (1980)), write d/dt and d/dx for the left hand
side operators in equations (46.35) and (46.37), referring to these derivatives as “total time” and “total space”
derivatives. We do not follow that nomenclature here.
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46.3.2 Generalized spatial coordinates

As when studying discrete particle mechanics, we often find that Cartesian space coordinates
are less suited to symmetry of the physical configuration. This point is particularly relevant for
Chapter 47 when working with the Lagrangian space-time field theory relevant to fluids, in which
we coordinate lines are attached to fluid particles. We thus now allow for the spatial coordinates,
xa(a = 1, 2, 3), to be arbitrary general coordinates rather than restricted to Cartesian. To do so
requires results from general tensor analysis in Chapters 3 and 4. In particular, we need the
invariant volume element given by equation (4.60)

dV = g d3x, (46.39)

where g is the square root of the spatial metric tensor’s determinant as represented by the
arbitrary spatial coordinates (see Sections 4.5.2 and 4.5.3), and

d3x = dx1 dx2 dx3 (46.40)

is a shorthand for the spatial coordinate element. Note that g can generally be a function of
space and time.

We are thus led to a variation of the action5

δS =

ˆ
R
(δL) g d3x dt. (46.41)

Generalizing the Cartesian coordinate derivation requires us now to keep track of g, so that

ˆ
R
δψ

[
∂L

∂ψ
− 1

g

∂

∂t

[
g

∂L

∂(∂tψ)

]
− 1

g

∂

∂xa

[
g

∂L

∂(∂aψ)

]]
g d3x dt. (46.42)

Setting δS = 0 leads to the Euler-Lagrange equation

∂L

∂ψ
− 1

g

∂

∂t

[
g

∂L

∂(∂tψ)

]
− 1

g

∂

∂xa

[
g

∂L

∂(∂aψ)

]
= 0. (46.43)

From our discussion in Section 4.15, we see that the covariant divergence of a vector natually
appears in this formulation. Namely, from equation (4.134) we have the covariant divergence

∇a
[

∂L

∂(∂aψ)

]
=

1

g

∂

∂xa

[
g

∂L

∂(∂aψ)

]
, (46.44)

where ∇a is the covariant derivative operator. For the remainder of this chapter we make use of
general spatial coordinates since they are necessary for the study of fluids in Chapter 47 using
Lagrangian space-time.

46.3.3 Natural spatial boundary conditions

As seen in Section 46.2.4, the Euler-Lagrange field equations arise by setting the field variation,
δψ, to zero on both the space and times boundaries. This assumption is typical of many
treatments given that it offers a sensible generalization of the discrete case in Section 12.6,
in which the variation vanishes at the initial and final times. It is also relevant for the case
without boundaries, with all terms assumed to vanish at infinity. However, for geophysical fluid

5The variation (46.41) only varies the field, ψ, which means there is no variation of the space-time element,
g d3xdt. In Section 46.5 we allow for coordinates to be varied, in which case we must consider variations of
g d3x dt.
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mechanics the question of spatial boundary conditions is often of primary importance. We thus
investigate alternatives to setting δψ = 0 on the spatial boundaries.6

In particular, consider a situation where the fluid is bounded by a static material boundary,
∂R. All fields, whether the actual physical field or variations around this field, must satisfy
the relevant kinematic boundary conditions. In terms of the Lagrangian density, the natural
boundary condition is given by

n̂ · ∂L

∂(∇ψ) = n̂a
∂L

∂(∂aψ)
= 0 on ∂R, (46.45)

where n̂ is the outward normal along the spatial boundary, ∂R. The boundary condition (46.45)
means that there is no generalized forces acting on the physical field at the boundaries. If this
boundary condition is satisfied, then the Euler-Lagrange equation (46.24) follows even without
specifying how δψ behaves on the spatial boundaries.

What if the boundary is dynamical and thus feels forces, such as occurs in free boundary
problems? For example, the boundary could represent the material interface between the ocean
and atmosphere, in which forces are imparted at the boundary. In this case the boundary itself
is dynamical and so it too must be incorporated into Hamilton’s principle. This situation is
more subtle than when the boundary is static, and we explore an example in Section 52.2 when
studying potential flow in a homogeneous fluid layer with a dynamical free surface.

46.3.4 Galilean space-time notation

In certain places in the following, it proves useful to streamline the notation by making use of the
space-time tensor notation from Section 3.5.4. Here, we introduce the Greek index, α = 0, 1, 2, 3
with α = 0 corresponding to the time index and α = 1, 2, 3 for space. In this manner the
Euler-Lagrange field equation

∂L

∂ψ
− 1

g

∂

∂t

[
∂L

∂(∂tψ)

]
− 1

g

∂

∂xa

[
∂L

∂(∂aψ)

]
= 0, (46.46)

takes on the more compact form

∂L

∂ψ
− 1

g

∂

∂xα

[
∂L

∂(∂αψ)

]
= 0, (46.47)

or even more succinct by making use of the covariant space-time divergence

∂L

∂ψ
−∇α

[
∂L

∂(∂αψ)

]
= 0. (46.48)

Integrals over space and time take on the form

ˆ ˆ
R

g d3x dt =

ˆ
R
g d4x, (46.49)

so that the action is written

S =

ˆ
R
L(ψ, ∂αψ, x

α) g d4x. (46.50)

Additionally, for brevity we sometimes write x rather than xα when there is no need to expose
the coordinate labels.

In the study of continuum conservation laws from Noether’s theorem (Sections 46.4 and

6See Section 41 of Fetter and Walecka (2003) for similar considerations.
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46.5), we encounter continuity equations of the form

∇αJα = g−1 [∂t(g J
0) + ∂a(g J

a)] = 0, (46.51)

where Jα is a Galilean four-vector. Integration over the global spatial domain renders,

ˆ
R

∇αJα g d3x = 0, (46.52)

which for a time-independent domain yields the global conservation law

d

dt

ˆ
R

J0 g d3x = −
ˆ
∂R
Ja n̂a g dS. (46.53)

If the boundary integral vanishes then we have a global constant of integration, which corresponds
to a symmetry of the action.

46.3.5 Mechanical equivalence of Lagrangians
In Section 12.6.6 we noted that the mechanics of discrete particles is unchanged if the Lagrangian
for a particle system is modified by a total time derivative of a function of the generalized
coordinates. Analogously, the mechanics of a continuum field remains unchanged if the Lagrangian
density is modified by a space and/or time derivative of functions that have zero variation along
the boundaries. More specifically, consider the two Lagrangian densities and briefly return to
Cartesian coordinates in 1+1 dimensions

Lnew = Lold + ∂tΓ(ψ, ∂tψ, ∂xψ, x, t) + ∂xΣ(ψ, ∂tψ, ∂xψ, x, t), (46.54)

where Γ and Σ are arbitrary functions of the field, ψ, its derivatives, ∂tψ, ∂xψ, as well as the
space and time positions. To examine mechanical equivalance, consider a space-time domain
R = [xA, xB]⊕ [tA, tB], so that the action transforms into

Snew = Sold +

ˆ xB

xA

(Γ[ψ(tB), ∂tψ(tB), ∂xψ(tB), x, tB]− Γ[ψ(tA), ∂tψ(tA), ∂xψ(tA), x, tA]) dx

+

ˆ tB

tA

(Σ[ψ(xB), ∂tψ(xB), ∂xψ(xB), xB, t]− Σ[ψ(xA), ∂tψ(xA), ∂xψ(xA), xA, t]) dt. (46.55)

The added terms in the first integral are evaluated at the time boundaries, tA and tB, whereas
the second integral is evaluated at the space boundaries, xA and xB. So mechanical equivalence
depends arises if the field has zero variation along the space and time boundaries, in which case

δSnew = δSold, (46.56)

which then means that the associated Euler-Lagrange equation is unchanged.
A more general approach, allowing for arbitrary coordinates, is given by

Lnew = Lold +∇αJα, (46.57)

where ∇αJα is a Galilean space-time divergence of a four-vector, Jα. In this case the action
changes by

Snew = Sold +

ˆ
∂R
Jα n̂α dS, (46.58)

where we made use of the space-time form of the divergence theorem from Section 4.19, thus
rendering a boundary integral of the flux projected onto the space-time boundary. Mechanical
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equivalence thus depends on how Jα behaves along the space-time boundaries. Details depend on
specifics of the variation, in particular whether we are considering Hamilton’s principle to derive
the Euler-Lagrange equations, or whether we are probing symmetries of the dynamical system
to determine conservation laws. We further pursue these points when studying symmetries in
Sections 46.4 and 46.5, as well as in Section 52.2.9 when using Hamilton’s principle for potential
flow.

46.3.6 The absence of second or higher derivatives in the Lagrangian

It is notable that the Lagrangian in equation (46.13) is a functional of the field, ψ, and its
first derivatives, ∂αψ. We were originally motivated to consider just the field and its first
derivatives based on the continuum limit of coupled oscillators from Section 46.1, where the
discrete Lagrangian (46.6) only includes the displacement field and its first time derivative.
But when moving away from the discrete limit, we might wish to include higher derivatives
for continuum fields. Yet, as noted in Section 1.5 of Ramond (1990), higher derivatives in the
Lagrangian can lead to non-causal behavior in the corresponding Euler-Lagrange field equations,
with the Lorentz-Dirac equation of electrodynamics an example. Heading Ramond’s warning
motivates us to also restrict Lagrangians to have no second or higher order derivatives.

46.4 Space-time symmetry and stress-energy-momentum

An experiment conducted on a mechanically closed and isolated physical system does not care
about the origin of space or time. That is, an experiment conducted in London in the year
1900 yields the same results as when done in New York in the year 2000, assuming all relevant
conditions are the same. This observation can be formalized by deriving conservation laws that
arise from the absence of a dependence on the space-time origin. Operationally, we expose the
equations describing the physical system to a coordinate variation, δxα, that represents a bulk
shift of every point within the physical system. Noether’s theorem (Noether , 1918; Noether and
Tavel , 2018) provides the means to derive a corresponding conservation law.

In this section we derive conservation laws arising from symmetry in the space-time position.
These conservation laws are maintained by the physically realized field, ψ, that satisfy the
Euler-Lagrange equation. As noted in Section 12.9 when studying classical point particles,
to connect a symmetry to a conservation law it is sufficient to focus on the Lagrangian as it
encapsulates the mechanics. In this section we identify cyclic coordinates in the Lagrangian
density, with these coordinates then reflecting a symmetry of the physical system that leads
to a corresponding conservation law. We consider an alternative approach in Section 46.5 that
focuses on the action.

46.4.1 Time symmetry and the Hamiltonian density

Consider a physical system that respects time homogeneity. What does this symmetry imply
about the dynamical fields? To answer this question, return to the partial time derivative in
equation (46.36)

∂L

∂t
=
∂L

∂ψ

∂ψ

∂t
+

∂L

∂(∂αψ)

∂

∂xα
∂ψ

∂t
+

[
∂L

∂t

]
ψ,∂αψ,xa

. (46.59)

Now make use of the Euler-Lagrange equation (46.48) to have

∂L

∂ψ

∂ψ

∂t
= ∇α

[
∂L

∂(∂αψ)

]
∂ψ

∂t
= g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)

]
∂ψ

∂t
, (46.60)
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which then leads to

∂L

∂t
= g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)

∂ψ

∂t

]
+

[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

. (46.61)

We now assume spatial coordinates whose representation of the metric tensor is time-independent
so that

∂tg = 0. (46.62)

This assumption holds for Eulerian coordinates and for Lagrangian coordinates used in fluid
mechanics (with the time derivative taken holding the corresponding spatial coordinates fixed).7

With this assumption we have

∂

∂t

[
∂L

∂(∂tψ)

∂ψ

∂t
−L

]
+∇a

[
∂L

∂(∂aψ)

∂ψ

∂t

]
= −

[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

. (46.63)

Following the discrete case discussed in Section 12.10, introduce the generalized (or canonical)
momentum density, P, and the Hamiltonian density, H, along with the energy flux, F,

P ≡ ∂L

∂(∂tψ)
and H = P ∂tψ −L and Fa =

∂L

∂(∂aψ)

∂ψ

∂t
. (46.64)

These definitions bring equation (46.63) to the form of a budget equation for the Hamiltonian
density

∂tH+∇ ·F = −
[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

. (46.65)

Evidently, the Hamiltonian density at a point in space evolves according to the covariant
convergence of the flux, F, along with a source term due to any explicit time dependence of the
Lagrangian density.

When the Lagrangian density has no explicit time dependence, so that

L = L(ψ, ∂tψ, ∂aψ, x
a), (46.66)

then the budget equation (46.65) reduces to the Hamiltonian density continuity equation

∂tH+∇ ·F = 0. (46.67)

This equation is written in the form of a continuum conservation law, with such conservation
laws encountered throughout this book.8 Evidently, for the special case of a time independent
spatial domain, and with the flux, F, having zero area integrated normal projection at the
domain boundary, we are led to the conservation of the domain integrated Hamiltonian

dH

dt
= 0 with H =

ˆ
R

H dV =

ˆ
R

Hg d3x, (46.68)

where R is the spatial domain. This result constitutes an expression of Noether’s theorem arising
from time symmetry.

7The metric tensor is generally time dependent when represented using generalized vertical coordinates
considered in Part XII of this book. We return to this point in Part XII when formulating a Hamilton’s principle
with generalized vertical coordinates.

8See Section 26.12 for more discussion on such continuum conservation laws.
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46.4.2 Stress-energy-momentum tensor

The derivation in Section 46.4.1 can be generalized to yield a budget equation built from elements
of the stress-energy-momentum tensor. The space-time derivative of the Lagrangian density is
given by (again, being careful with partial derivatives as discussed in Section 46.3.1)

∂L

∂xβ
=
∂L

∂ψ

∂ψ

∂xβ
+

∂L

∂(∂αψ)

∂

∂xα
∂ψ

∂xβ
+

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

. (46.69)

Use of the Euler-Lagrange equation (46.48) leads to

∂L

∂xβ
= g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)

∂ψ

∂xβ

]
+

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

. (46.70)

Now assume the metric determinant is independent of coordinate xβ so that

∂g/∂xβ = 0, (46.71)

in which case we have

g−1 ∂

∂xα

[
−g δαβL + g

∂L

∂(∂αψ)

∂ψ

∂xβ

]
= −

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

. (46.72)

Introducing the stress-energy-momentum tensor

Tαβ = −δαβL +
∂L

∂(∂αψ)

∂ψ

∂xβ
, (46.73)

brings equation (46.72) to the form

g−1 ∂α(g T
α
β) = −

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

, (46.74)

For each value of β, this equation says that the four-divergence of Tαβ is determined by
the partial derivative of the Lagrangian with respect to xβ. Integrating over the global space
domain, and assuming the domain is time-independent, leads to

d

dt

ˆ
R

T 0
β g d

3x = −
ˆ
∂R
T aβ n̂a dS −

ˆ
R

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

g d3x, (46.75)

where we used the general coordinate version of the divergence theorem from Section 4.19. If
the Lagrangian is not an explicit function of xβ, and we have a vanishing boundary integral of
the flux, T aβ, projected onto the outward normal, then there is a global conserved quantity

d

dt

ˆ
R

T 0
β g d

3x = 0 ⇐= xβ is a cyclic coordinate. (46.76)

In the study of analytical mechanics in Section 12.10.1, we referred to xβ as a cyclic coordinate.
Cyclic coordinates arise from a symmetry of the physical system, and the coordinates used to
represent the system, along the direction defined by the cyclic coordinate. This symmetry then
leads to a conservation law, as we just showed. This result represents an example implication of
Noether’s theorem: any symmetry gives rise to a conservation law. We offer more on Noether’s
theorem in Section 46.5. Note that when β = 0, the budget equation (46.74) includes equation
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(46.65) for Hamiltonian density

H = T 0
0 = −L +

∂L

∂(∂tψ)

∂ψ

∂t
Hamiltonian density (46.77a)

Fa = T a0 =
∂L

∂(∂aψ)

∂ψ

∂t
Hamiltonian density flux, (46.77b)

and for β = b > 0 we define

T 0
b =

∂L

∂tψ

∂ψ

∂xb
momentum density (46.78a)

T ab = −L δab +
∂L

∂aψ

∂ψ

∂xb
stress tensor. (46.78b)

46.4.3 An auxiliary functional for deriving conservation laws

Hayes (1970) introduced an alternative method for computing conservation laws, with particular
application to the wave-action conservation law (see Section 50.5). In this method we introduce
the functional

E(ψ,Φ) =
∂L

∂(∂αψ)

∂Φ

∂xα
+
∂L

∂ψ
Φ (46.79a)

=
∂L

∂(∂αψ)

∂Φ

∂xα
+ g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)

]
Φ (46.79b)

= g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)
Φ

]
(46.79c)

= ∇α
[

∂L

∂(∂αψ)
Φ

]
, (46.79d)

where we used the Euler-Lagrange equation (46.48) for ψ, and where Φ(x, t) is an arbitrary
function yet to be specified. As a four-divergence, the functional, E, has a spatial domain integral
depending on the boundary conditions.

Separating the space and time derivative terms, and introducing the canonical momentum
from equation (46.64), leads to

E(ψ,Φ) = g−1 ∂t(gΦP) + g−1 ∂

∂xa

[
gΦ

∂L

∂(∂aψ)

]
. (46.80)

Now we specify Φ = ∂ψ/∂t to render

E = g−1

[
∂[g (H+L)]

∂t

]
x

+∇aFa =

[
∂L

∂t

]
x

−
[
∂L

∂t

]
ψ,∂tψ,∂xψ,x

, (46.81)

where Fa are components to the energy flux (46.64), we introduced the Hamiltonian density,
H, also given by equation (46.64), and made use of equation (46.61) to introduce the partial
time derivatives. If the metric is independent of time, then the [∂L/∂t]x term cancels on both
sides, which then renders the Hamiltonian continuity equation (46.65). We can likewise derive
the momentum conservation equations from Section 46.4.2 through setting Φ = ∂aψ. In Section
50.5 we introduce yet another choice useful for the study of waves.
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46.4.4 Summary of the cyclic coordinate method
A physical system has no dependence on cyclic coordinates, so there is an arbitrariness associated
with the value of the coordinate. This arbitrariness then leads to a corresponding differential
conservation law in the form of a continuity equation. We here summarize the cyclic coordinate
method used in this section to construct conservation laws. Generalizing the discussion of
mechanical equivalence from Section 46.3.5, we know that a space-time variation has no impact
on the physical system if the Lagrangian density changes only by a total divergence

δL = L[ψ(x′), ∂αψ(x
′), x′]−L[ψ(x), ∂αψ(x), x] = δxα ∂αL. (46.82)

If the Lagrangian has no explicit dependence on any of the space-time coordinates, xα, then

δL = δxα ∂αL = δxα
[
∂L

∂ψ

∂ψ

∂xα
+

∂L

∂(∂βψ)

∂

∂xβ
∂ψ

∂xα

]
. (46.83)

Thus far we have not used the Euler-Lagrange equations, so that equation (46.83) results solely
due to the absence of an explicit dependence of L on the space-time coordinates, xα. An
alternative approach to computing the variation is found by writing

δL =
∂L

∂ψ
δψ +

∂L

∂(∂αψ)
δ(∂αψ), (46.84)

where we again assumed L has no explicit dependence on any of the space-time coordinates, xα.
We now make use of the Euler-Lagrange equation (46.48) to bring equation (46.84) into the form

δL = g−1 ∂

∂xα

[
g

∂L

∂(∂αψ)
δψ

]
= g−1 δxβ

∂

∂xα

[
g

∂L

∂(∂αψ)

∂ψ

∂xβ

]
, (46.85)

where we made use of the variation of the field and its derivative

δψ = ψ(x′)− ψ(x) = δxβ ∂βψ(x) (46.86a)

δ(∂αψ) = ∂α[ψ(x
′)− ψ(x)] = δxβ ∂β∂αψ(x), (46.86b)

and remembered that δxβ is a constant. Setting δL from equation (46.83) equal to δL from
equation (46.85) leads to

δxβ g−1 ∂α(g T
α
β) = 0, (46.87)

where we introduced the stress-energy-momentum tensor from equation (46.73)

Tαβ = −δαβL +
∂L

∂(∂αψ)

∂ψ

∂xβ
. (46.88)

We have thus established four conservation laws (one for each value of β = 0, 1, 2, 3) that
correspond to the space-time shift symmetry

∇αTαβ = g−1 ∂α(g T
α
β) = 0. (46.89)

There is no conservation law for those coordinates that have an explicit appearance in the
Lagrangian. For example, if the Lagrangian has an explicit time dependence, such as when
considering astronomical tidal forcing on the ocean, then the total energy of the system (as
measured by the globally integrated Hamiltonian density) is not a constant. Instead, the system’s
energy is affected by the astronomical forces whose dynamics is described by another Lagrangian
density that sits outside of the ocean that serves to modify the gravitational force. That is, a
non-constant energy is generally a consequence of a physical system being mechanically open.
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Similarly, if the Lagrangian is a function of one of the spatial coordinates, then that indicates
the absence of spatial symmetry in that direction and so the absence of a global conservation
law.

46.5 Noether’s theorem and symmetries of the action
In Section 46.4 we derived dynamical conservation laws by identifying cyclic coordinates in
the Lagrangian density. Here we further our understanding of how symmetries give rise to
conservation laws by introducing a few more concepts and methods. Central to these concepts
is the notion of a transformation, and we are only concerned with smooth and continuous
transformations rather than discrete. To determine physical implications of a continuous trans-
formation, it is sufficient to examine how the action varies under an infinitesimal transformation,
which we refer to as a variation. This treatment is convenient since deriving the implications of
infinitesimal variations is simpler mathematically than finite transformations. In effect, we only
need to work to leading order in a Taylor expansion to deduce the differential conservation laws.

46.5.1 Distinctions beween Noether and Hamilton
Recall from Section 46.2 that we derived the Euler-Lagrange equation of motion by examining
how the action changes when confronted with a functional variation of the field, ψ → ψ + δψ,
with δψ vanishing along the time boundary. Setting to zero the corresponding variation of
the action, δS = 0, is the statement of Hamilton’s principle that leads to the Euler-Lagrange
equation (along with natural spatial boundary conditions) that are satisfied by the physically
realized dynamical system. The variations are never physically realized. Hamilton’s realized
that by probing these unphysical realizations renders a novel perspective (relative to Newton)
on the physically realized system.

To deduce conservation laws using Noether’s theorem requires a conceptual approach that
builds from that used for Hamilton’s principle. For Hamilton’s principle we postulate that
variation of the action vanishes when considering a variation in the field in the interior of the
space-time domain. For Noether’s theorem we work exclusively with the physical system that
satisfies the Euler-Lagrange equations that arise from invoking Hamilton’s principle. Noether’s
theorem then exposes the differential conservation laws arising from symmetries, as probed by
variations to the space-time, that leave the physically realized action unchanged (or mechanically
equivalent).

46.5.2 Active transformations
There are two complementary perspectives we take when considering a transformation (and its
infinitesimal version referred to as a variation): the active transformation (active variation) and
the passive transformation (passive variation). Active transformations arise from moving the
physical system through space-time, whereas a passive transformation modifies the space-time
coordinates while keeping the physical system unchanged. We here discuss active transformations
with Section 46.5.3 considering the passive.9 Notably, they lead to the same mathematical
result, and yet conceptually it can be useful to take one or the other perspective when studying
variations to physical systems.

Active transformations and Noether’s first theorem

Operationally, an active transformation arises from confronting the action with a variation of
the physical fields (to probe internal symmetries) and/or a variation of the space-time position

9Chapter 3 in José and Saletan (1998) provides a thorough discussion of active and passive transformations.
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of the system (to probe space-time symmetries). With these variations considered in their active
sense, we imagine the physical system to be transformed (e.g., moved or rotated) whereas the
space-time coordinate system used to describe the physical system remain unchanged. Moving
an experimental apparatus from one side of the laboratory to another is an example active
transformation, as is rotating the apparatus by some angle. Those active transformations that
leave the action unchanged are symmetries of the physical system that directly lead to differential
conservation laws. This connection between active symmetries and conservation laws constitutes
Noether’s first theorem.

Active transformations leave the coordinate system unchanged

As note above, the coordinate system used to describe the physical system is unchanged when
performing an active transformation. Instead, an active transformation results in the modification
to the space-time position of a point within the physical system

xα → x′α = xα + δxα, (46.90)

where δxα is a tiny coordinate variation so that the space-time point, x′, is very close to the
point, x. Since the coordinate lines remain fixed under an active transformation, we do not
introduce a new set of coordinates, which are typically expressed as xα in this book. Instead,
we kept the same coordinates, and wrote xα for the original space-time point and x′α for the
displaced space-time point.

Galilean space-time active transformations and Noether’s first theorem

The space-time symmetries we focus on are taken from Galilean space-time, which is relevant
for studies of geophysical fluid mechanics.10 In particular, we consider a uniform space-time
translation plus a rigid rotation. For a space and time coordinate translation, the new point has
a coordinate position relative to the original point according to the coordinate variation

δxα = hα, (46.91)

where hα is a constant coordinate variation that is scaled by a tiny non-dimensional number to
ensure that δxα is tiny. To investigate spatial rotations we examine the coordinate variation
determined by a small spatial rotation of the physical system as given by

δxa = Ra
b x

b and δx0 = 0. (46.92)

Here we introduced the anti-symmetric rotation matrix

Ra
b = ϵabcΩ

c, (46.93)

with Ω = Ω̂ |Ω| a vector that orients the rotation and with |Ω| ≪ 1 a tiny angle. Bringing both
the translation and rotation together into a single active variation leads to

x′α = xα + δxα = xα + hα +Rα
β x

β, (46.94)

where Rα
β = 0 if either α = 0 or β = 0.

10In other areas of physics, such as electrodynamics and quantum field theory, symmetries are examined within
the Lorentzian space-time of special relativity.
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Variations to the volume element under an active transformation

The spatial coordinate measure, d3x, remains unchanged since the coordinate lines are fixed
under an active transformation. However, since we are moving the physical system to a new
space-time position and/or modifying its spatial orientation, the spatial metric tensor is generally
modified. We here assume the metric is time independent, and consider the effects on the
volume element under an active transformation. The volume element appearing within the
action integral has a variation

δ(g d3x) = δ(g) d3x, (46.95)

so we must determine a variation of the square root of the metric tensor determinant, g. It is
a bit simpler to work with the determinant of the metric, g2, which is a function only of the
metric tensor elements, gab, so that

δg2 =
∂g2

∂gab
δgab = g2 gab δgab, (46.96)

where the second equality follows from equation (4.75) holding for determinants.11 We thus find
that an active transformation leads to the variation of the spatial volume element

δ(g d3x) = (g d3x) gab δgab/2⇐⇒ δ(dV ) = dV gab δgab/2. (46.97)

To determine the variation of the metric tensor components, we proceed much like in Section
18.8.8 where we determined the material evolution of the Cauchy-Green strain tensor, thus
resulting in12

gab δgab = 2 gab∇a(δxb) = 2∇b(δxb) = 2∇a(δxa), (46.98)

so that
δ(g d3x) = (g d3x)∇a(δxa)⇐⇒ δ(dV ) = dV ∇a(δxa). (46.99)

Evidently, under an active transformation, the relative variation of the volume element is deter-
mined by the covariant divergence of the coordinate variation, so that the active transformation
is volume perserving if the covariant divergence vanishes

∇a(δxa) = 0 =⇒ volume preserving active transformation. (46.100)

This result corresponds to that found using alternative methods in Chapters 18 and 19 when
studying how fluid flow divergence affects the volume of a fluid element (e.g., see equation
(19.18)). Indeed, we could have appealed to those earlier results to immediately write equation
(46.99). Furthermore, we know that one physical way to alter the volume of a fluid region is to
apply pressure work.

Variations to the mass element under an active transformation

In continuum mechanics we generally follow mass conserving parcels of matter. It is thus relevant
to determine if the mass changes under an active transformation, in which we investigate

δ(ρdV ) = ρ δ(dV ) + δρdV (46.101a)

= dV (ρ∇a(δxa) + δxa ∂aρ) (46.101b)

11In words, equation (46.96) says that the derivative of the determinant, with respect to one of its elements
(here gab), equals to the determinant times the component of the inverse matrix corresponding to the element
(here gab).

12A more general approach makes use of Lie derivatives to compute the variation of the metric along the
congruence of curves defined by the variation, δxα. Here, we largely appeal to the intuition of the result (46.99).
Section F.3 of Tromp (2025a) provides a lucid discussion of Lie derivatives.
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= dV (g−1 ρ ∂a(g δx
a) + δxa ∂aρ) (46.101c)

= dV ∇a(ρ δxa). (46.101d)

Evidently, the mass of a region of matter remains unchanged if the covariant divergence of the
density weighted variation vanishes

∇a(ρ δxa) = 0 =⇒ mass preserving active transformation. (46.102)

This sort of transformation requires the volume of the region to reduce while the density increases,
and vice versa, thus keeping the mass unchanged. Conversely, a nonzero covariant divergence,
∇a(ρ δxa) ̸= 0, is the signal of a modification to the mass of an infinitesimal region.

46.5.3 Passive transformations

A passive transformation keeps the physical system untouched while it alters its coordinate
representation. For example, the transformation between Cartesian coordinates and spherical
coordinates is passive, as is the transformation between Eulerian and Lagrangian coordinates.
Passive transformations have been discussed extensively in this book in the context of tensor
analysis, whereby tensors are considered objective geometric objects whose coordinate represen-
tations leave a tensor unchanged whereas the tensor’s representation is changed (see Chapters
1 through 4). Equations written in a manner that remain form invariant under coordinate
transformations are said to satisfy coordinate covariance. In the context of symmetry principles,
if we can find a continuous transformation of the coordinates that leaves the physical action
unchanged, then this passive transformation leads, through Noether’s second theorem, to a
local conservation law (sometimes referred to as a Bianchi identity). The particle relabeling
symmetry detailed in Section 47.7 is an example of a passive transformation applied to fluid
flow as represented using Lagrangian kinematics.

An infinitesimal passive transformation is a coordinate variation of the form

xα = δαα (x
α + δxα), (46.103)

which should be compared to the active variation in equation (46.90). The transformation matrix
arising from the coordinate variation (46.103) is given by

Λαβ = ∂xα/∂xβ = δαα [δ
α
β + ∂β(δx

α)], (46.104)

and its Jacobian determinant is, to leading order in variation, given by

det(Λαβ) ≈ 1 + ∂α(δx
α). (46.105)

Consequently, the space-time coordinate measure transforms according to

d4x = det(Λαβ) d
4x = [1 + ∂α(δx

α)] d4x =⇒ δ(d4x) = (∂α(δx
α) d4x. (46.106)

Assuming the metric tensor is time independent, we find that the spatial volume element
transforms as

δ(dV ) = δ(g d3x) = [g−1 δxa ∂ag+ ∂a(δx
a)] g d3x = (∇aδxa) dV. (46.107)

Hence, a volume conserving passive transformation arises from the same non-divergence condition
(46.100) holding for the active transformation. In a similar manner, we find that the mass
transforms under a passive transformation just as for the active transformation (46.101d), so
that the mass is unchanged if ∇a(ρ δxa) = 0.
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46.5.4 Total variation of the field

In Section 46.2.2 we defined the functional variation of the field, δψ. The functional variation
affects a change just to the function, with the space-time point unchanged

δψ(xα) = ψ′(xα)− ψ(xα), (46.108)

where each term is evaluated at the same space-time point using the coordinate, xα. This is the
sort of variation considered for Hamilton’s principle. Focusing here on active transformations,
we find it useful to define the total variation, which considers both a functional change as well
as a change to the space-time point, so that (dropping the α label on ψ(xα) for brevity)

∆ψ(x) ≡ ψ′(x′)− ψ(x) (46.109a)

= [ψ′(x′)− ψ(x′)] + [ψ(x′)− ψ(x)] (46.109b)

≈ δψ(x′) + δxα ∂αψ(x) (46.109c)

≈ δψ(x) + δxα ∂αψ(x). (46.109d)

For the final equality we set

δψ(x′) ≈ δ[ψ(x) + δxα ∂αψ(x)] = δψ(x) +O(δ2), (46.110)

with second order terms ignored. Evidently, to first order in δ, the total variation of the field is
given by

∆ψ(x) = (δ + δxα ∂α)ψ(x). (46.111)

The first term on the right hand side is the functional variation, δψ, and the second term is a
transport term that arises from translation and/or rotation of the coordinates, δxα ∂αψ. Note
that when we are just probing space-time symmetries, then ∆ψ = 0 so that δψ = −δxα ∂αψ.

46.5.5 Variation of the action under an active transformation

We here consider the variation of the action under an active transformation

δS = S′ − S =

ˆ
R
L[ψ′(x′), ∂αψ

′(x′), x′α] g′ d4x′ −
ˆ
R
L[ψ(x), ∂αψ(x), x

α] g d4x. (46.112)

Making use of equation (46.107) for the volume element renders, to first order in variation,

δS =

ˆ
R
[δ +∇α(δxα)]L[ψ(x), ∂αψ(x), x

α] g d4x. (46.113)

The chain rule yields the variation

δL +L∇α(δxα) =
∂L

∂ψ
δψ +

∂L

∂(∂αψ)
δ(∂αψ) +

∂L

∂xα
δxα + g−1L ∂α(δx

α) (46.114a)

=
∂L

∂ψ
δψ +

∂L

∂(∂αψ)
δ(∂αψ) +∇α(L δxα), (46.114b)

with the Euler-Lagrange equation (46.47) substituted in for ∂L/∂ψ rendering the very tidy
result

δL +L∇α(δxα) = ∇α
[

∂L

∂(∂αψ)
δψ +L δxα

]
. (46.115)
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Now introduce the total variation, ∆ψ, from equation (46.109d), and the stress-energy-momentum
tensor from equation (46.73) to find

δL +L∇α(δxα) = ∇α
[

∂L

∂(∂αψ)
∆ψ − Tαβ δxβ

]
, (46.116)

which then leads to the variation of the action under and active transformation

δS =

ˆ
R
[δ +∇α(δxα)]L d4x =

ˆ
R
∇αJα g d4x =

ˆ
∂R
Jα n̂α dS, (46.117)

where n̂α dS is the oriented area element on the space-time boundary, and we introduced the
space-time flux13

Jα ≡ ∂L

∂(∂αψ)
∆ψ − Tαβ δxβ. (46.118)

We conclude that if the total variation, ∆ψ, reflects a symmetry of the physical system, then the
action must have a zero variation, in which case we have the local conservation law (continuity
equation)

∇αJα = 0, (46.119)

where Jα is given by equation (46.118). This result constitutes Noether’s first theorem.

46.5.6 Angular momentum and space isotropy
In Section 46.4 we considered the space-time symmetry associated with the absence of dependence
on an origin, and we assumed the total field variation vanishes,

∆ψ = ψ′(x′)− ψ(x) = 0 =⇒ δψ = −δxα ∂αψ. (46.120)

In this case the conservation law reduces to a statement about the stress-energy-momentum
tensor (see Section 46.4.2). Namely, if there is no special space or time origin, then linear
momentum and mechanical energy are conserved. Here we display the angular momentum
conservation law arising from the absence of a dependence on the orientation of the spatial
coordinates. We also consider ∆ψ = 0, but specify the spatial variation according to the rotation
(46.93) so that the active variation is

δx0 = 0 and δxa = Ra
b x

b = ϵabcΩ
c xb, (46.121)

where Ωc are the components to a spatial vector whose magnitude, |Ω|, is small. The space-time
flux, Jα, from equation (46.118) thus has the components

−Jβ = T βα δx
α = T βa ϵ

a
bcΩ

c xb. (46.122)

At this point we assume Cartesian coordinates, so that the covariant derivative is a partial
derivative, and the four-convergence of the flux is

−∂βJβ = ∂βT
β
a ϵ

a
bcΩ

c xb + T βa ϵ
a
βcΩ

c. (46.123)

If the physical system has no concern for the origin of space, then we know from Section
46.4.4 that ∂βT

β
a = 0 for each of the a = 1, 2, 3 spatial coordinates. If the physical system

likewise has no concern for the orientation of space (i.e., it is spatially isotropic), then we must
have rotational symmetry. For that property to manifest in a conservation law requires the

13In the quantum field theory literature, Jα is referred to as a current, in analog to an electrical current. Here
we refer to it as a flux to correspond to the nomenclature in flud mechanics.
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stress-energy-momentum tensor to be symmetric so that

T βa ϵ
a
βc = 0⇐⇒ T βa = Ta

β = (T βa)
T. (46.124)

We encountered this same condition in Section 25.4 arising from similar considerations.14

46.5.7 Comments
The space-time symmetries considered in this section and Section 46.4 are generally broken
in realistic physical systems. For example, in Chapter 47 we study the motion of a perfect
fluid moving around a rotating and gravitating planet, with spatial symmetry reduced to axial
symmetry around the rotation axis (assuming a smooth planet). When considering motion of a
geophysical fluid on a realistic planet with non-smooth boundaries (i.e., mountains, land-sea
boundaries), we have no spatial symmetry and so no momentum conservation. Even so, by
examining the properties of closed fluid systems moving in spaces of particular symmetry, we
reveal the conservation laws forming the foundation for the physical theory. Doing so provides a
valuable conceptual and operational baseline for then examining how processes and boundary
conditions break symmetry.

We have thus far only considered space-time symmetries, so that we assumed the total field
variation vanishes,

∆ψ = ψ′(x′)− ψ(x) = 0 =⇒ δψ = −δxα ∂αψ, (46.125)

which means that the field is a scalar. But the formalism developed in this section also allows
for probing symmetries in the space of fields, in which ∆ψ ≠ 0. If the action remains unchanged
under a ∆ψ ̸= 0, then that reflects an internal symmetry that is not associated with space and
time symmetries. Such internal symmetries are the basis for gauge theories of particle physics,
as discussed in Quigg (1983), Ryder (1985), Ramond (1990), and many other texts.

46.5.8 Further study
The treatment of Noether’s theorem in this section was inspired by Chapter 2 of Quigg (1983),
Section E.1 of Wald (1984), Section 3.2 of Ryder (1985), Section 1.5 of Ramond (1990), and
Section 2.6 of Tromp (2025a).

14There are some Lagrangian densities that do not produce a symmetric stress-energy-momentum tensor when
evaluating equation (46.73). However, we can add a term, ∂λF

λα
β , to T

α
β without affecting the conservation law

(46.89), so long as Fλα
β = −Fαλ

β . This gauge degree of freedom allows us to always work with a symmetrized
stress-energy-momentum tensor. See Section E.1 of Wald (1984) or Section 3.2 of Ryder (1985) for more discussion
on this point, which is of particular relevance to general relativity.
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Chapter 47

HAMILTON’S PRINCIPLE FOR PERFECT FLUIDS

In this chapter we derive the momentum equation (Euler equation) for a single-component perfect
fluid using Hamilton’s variational principle rather than Newton’s laws. To do so, we couple the
field theory of Chapter 46 with the Lagrangian kinematics of the motion field, φ(a, T ), thus
deriving a field theory for φ in Lagrangian space-time. Hamilton’s principle is concerned with
conservative physical systems, such as a single component perfect fluid in a static gravitational
field with each fluid parcel only experiencing reversible processes (i.e., no diffusion, friction, or
conduction), which means that the fluid is contained within a materially and thermally closed
domain. The fluid parcels feel conservative body forces from gravity, as well as, in a rotating
terrestrial frame, the planetary Coriolis and planetary centrifugal forces are present. Interactions
between the parcels are limited to mechanical contact forces from pressure, with pressure forces
performing work on fluid parcels by modifying their volume (for non-Boussinesq fluids).

reader’s guide for this chapter
Mathematical elements of variational principles are presented in Chapter 10, along with a

suite of examples. We make use of arbitrary material coordinates (a-space), thus requiring
the general tensor analysis as detailed in Chapters 3 and 4. We use general Eulerian (x-space)
coordinates up to the point of deriving the variation of the internal energy, at which point we
assume Cartesian Eulerian coordinates. We make full use of the Lagrangian kinematics from
Chapters 17, 18, and 19, and require a rudimentary understanding of thermodynamics as
considered in Part IV. Development and use of Hamilton’s principle are provided in Chapters
12 and 15 for discrete systems and in Chapter 46 for continuous fields.

Salmon (1988) is the canonical reference for Hamilton’s principle in fluid mechanics (see
also Müller (1995), chapter 7 in Salmon (1998) and Badin and Crisciani (2018)). Soper (2008)
provides a treatment based on the Lorentz space-time of special relativity, though with some
non-relativistic limiting cases to connect with the Galiliean space-time of terrestrial motion.
Jezierski and Kijowski (1990) and Sieniutycz (1994) target a unification of thermodynamics
with continuum mechanics using variational methods. Our presentation makes use of general
tensor notation for working in Lagrangian space-time, and offers a particular emphasis on the
motion field, φ(a, T ), following from the treatment of continuum mechanics in Chapters 1
and 2 of Tromp (2025a).
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47.4.2 Gravitational potential energy . . . . . . . . . . . . . . . . . . . . 1342
47.4.3 Specific entropy is materially constant . . . . . . . . . . . . . . . 1343
47.4.4 Internal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343

47.5 Variation of the action and Euler-Lagrange equations . . . . . . . . . . . 1343
47.5.1 General expression for the Euler-Lagrange equation . . . . . . . . 1344
47.5.2 Variation of the kinetic energy . . . . . . . . . . . . . . . . . . . . 1346
47.5.3 Variation of the gravitational potential energy . . . . . . . . . . . 1347
47.5.4 Variation of the specific internal energy . . . . . . . . . . . . . . 1347
47.5.5 How the pressure gradient appears . . . . . . . . . . . . . . . . . 1348
47.5.6 The perfect fluid Euler-Lagrange equation . . . . . . . . . . . . . 1349
47.5.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350

47.6 Perfect fluid Hamiltonian continuity equation . . . . . . . . . . . . . . . 1350
47.6.1 Canonical momentum and Hamiltonian density . . . . . . . . . . 1350
47.6.2 Energy flux and the covariant flux divergence . . . . . . . . . . . 1351
47.6.3 Lagrangian and Eulerian Hamiltonian continuity equations . . . 1351

47.7 Particle relabeling symmetry and potential vorticity . . . . . . . . . . . . 1352
47.7.1 Passive transformation of Lagrangian space coordinates . . . . . 1352
47.7.2 Constraints from mass conservation . . . . . . . . . . . . . . . . . 1353
47.7.3 The motion field is a scalar . . . . . . . . . . . . . . . . . . . . . 1354
47.7.4 The specific internal energy is a scalar . . . . . . . . . . . . . . . 1355
47.7.5 Coordinate variation of the kinetic energy . . . . . . . . . . . . . 1355
47.7.6 Lagrangian expression for the potential vorticity . . . . . . . . . 1356
47.7.7 Eulerian expression for the potential vorticity . . . . . . . . . . . 1357
47.7.8 Global versus local conservation . . . . . . . . . . . . . . . . . . . 1358

47.1 Loose threads
• Referential flow and deviations from that flow

• Clean up notation and presenation, particularly in the particle relabeling Section 47.7.

• It would be nice not to need the Cartesian Eulerian assumption to compute the variation
of the internal energy. Is there a simple way to generalize?

47.2 Motion and velocity
We here summarize salient points concerning the motion field studied in Chapters 17 and 18.

47.2.1 The motion field, flow map, deformation matrix, and velocity

We conceive of fluid flow as the smooth movement through space of a matter continuum, with
this movement measured by the three-component motion field, φ. Mathematically, the motion
field provides the flow map that takes the matter continuum from its reference state (e.g., some
spatial configuration at time T = tR) to the state at time T > tR. Assuming x is the position of
a point in Euclidean space, the motion field provides a point transformation,

x = φ(a, T ) and t = T, (47.1)
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between the Eulerian (x-position space) reference frame to the Lagrangian (a-material space)
reference frame. The motion field enables a 1-to-1 and invertible mapping (a diffeomorphism)
between Eulerian and Lagrangian space-time. Transformation of tensors between Eulerian and
Lagrangian space is provided by the deformation matrix (Section 18.4), with components to this
matrix given by the partial derivatives

F iI =
∂φi

∂aI
= ∂Iφ

i, (47.2)

where lowercase indices are reserved for Eulerian space coordinates, xi, and upper case for
Lagrangian coordinates, aI . The components to the inverse of the deformation matrix are
written F I i, so that

F iJ F
J
j = δij and F I iF

i
J = δIJ . (47.3)

We also have use for the determinant of the transformation matrix (the Jacobian of transforma-
tion), which is written

det(F iI) =
∂φ

∂a
(47.4)

Evaluating the motion field for a particular value for the material coordinate, a, and allowing
time to progress, provides the space-time trajectory, X, of the fluid particle labeled by a

X(a, T ) = φ(a, T ). (47.5)

The velocity of a material fluid particle is determined by the material time derivative of the
motion

vL(a, T ) = ∂Tφ(a, T )⇐⇒ (vL)i = ∂Tφ
i. (47.6)

We include the L superscript to emphasize that vL is sampled on a fluid particle and so it is a
function of (a, T ). Consequently, we commonly refer to vL as the “Lagrangian velocity”. Even
so, we see below (equation (47.8)) another candidate for this same name that is more precise
from a tensor analysis perspective. The velocity vL has a dual Eulerian velocity, v(x, t), that is
equal to the Lagrangian velocity for the fluid particle that passes through x at time t

v(x, t) = vL(a, T ) for x = φ(a, T ) and t = T . (47.7)

This self-evident relation is reflected in all other properties of the continuum.

The Lagrangian velocity, vL(a, T ), and Eulerian velocity, v(x, t), are generally distinct
functions of their respective coordinates, thus prompting use of the distinct symbols, vL versus
v. For example, we might choose one of the material coordinates to be the specific entropy since
for a perfect fluid the specific entropy is constant on fluid particles. For this case it is clear
that vL(a, T ) and v(x, t) are distinct mathematical functions. Even so, as tensors, both vL and
v carry Eulerian space-time indices, (vL)i and vi. A representation of the velocity that carries
Lagrangian space-time indices is realized through use of the inverse transformation matrix,

vI = F I i (v
L)i. (47.8)

We encounter this tensorially Lagrangian representation of the velocity when studying the fluid
particle relabeling symmetry in Section 47.7.
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47.2.2 Including planetary rotation

As detailed in Section 13.6, the inertial frame representation for the velocity of a fluid particle
moving on the rotating planet is given by

vinertial = v +Ω× x, (47.9)

where v is the particle velocity relative to the rotating planet, Ω is the time-independent angular
velocity of the rotating planet, x is the position vector of the particle relative to an origin, and
Ω× x is the velocity arising from the rigid body rotation of the planetary reference frame. The
corresponding Eulerian velocity field for fluid motion on a rotating planet is thus given by

vinertial(x, t) = v(x, t) +Ω× x, (47.10)

and the Lagrangian velocity is

vL
inertial(a, T ) = ∂Tφ(a, T ) +Ω×φ(a, T ). (47.11)

As studied in Chapter 13, planetary rotation gives rise to the planetary Coriolis acceleration and
planetary centrifugal acceleration when describing motion in the rotating terrestrial reference
frame.

47.3 Mass, density, and specific volume

We here recall elements of fluid kinematics related to the mass and volume of infinitesimal
material fluid parcels, and for finite sized spatial material domains denoted by R. Since the
region is material, it is time independent when expressed in terms of Lagrangian coordinates,
R(a), whereas it is time dependent when expressed in terms of Eulerian coordinates, R(t).

47.3.1 Expressions for mass over a material region

From the discussion of mass conservation in Section 19.4.4, the mass over a material region can
be written in either the Eulerian or Lagrangian integral expressions

M =

ˆ
R(t)

ρ(x, t) gE(x) d3x =

ˆ
R(a)

ρL(a, T ) gL(a, T ) d3a. (47.12)

The first expression for mass makes use of arbitrary Eulerian coordinates and thus represents the
volume integral of mass density over the moving material region. The square root of the metric
determinant, gE(x), is independent of Eulerian time, by construction of Eulerian coordinates,
whereas the Lagrangian analog, gL(a, T ), is generally a function of the Lagrangian time. The
second expression for mass in equation (47.12) makes use of Lagrangian coordinates, with the
material coordinate element given by

d3a = da1 da2 da3, (47.13)

which has physical dimensions determined by those of the material coordinates, (a1, a2, a3). The
products gE(x) d3x and gL(a, T ) d3a have dimensions of volume (L3), so that they are expressions
for the same invariant volume element studied in Section 18.7

dV = gE(x) d3x = gL(a, T ) d3a. (47.14)
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This equation then leads to the identity (see equation (18.45)) for the Jacobian of transformation
between Eulerian and Lagrangian coordinates

∂x

∂a
=
∂φ

∂a
= det(F iI) =

gL

gE
. (47.15)

47.3.2 Constant mass fluid parcels

From Section 19.4.2, the mass of a fluid parcel remains constant when its center of mass follows
a fluid particle trajectory, so that

dM = ρL(a, T ) gL(a, T ) d3a (47.16)

is a material constant. The element, d3a, measures the material coordinate volume and it is fixed
within material space. Hence, mass conservation for material parcels means that ρL(a, T ) gL(a, T )
is independent of material time,

∂T [ρ
L(a, T ) gL(a, T )] = 0. (47.17)

We can thus set its value at any convenient time instance, which we choose as the T = tR
conditions and write

ρ̊L(a) g̊L(a) = ρL(a, T = tR) g
L(a, T = tR) = ρL(a, T ) gL(a, T ), (47.18)

with the corresponding mass of the material region

M =

ˆ
R(a)

ρ̊L(a) g̊L(a) d3a. (47.19)

Evidently, ρ̊L, g̊L, and d3a are each set at the initial time, and thus are unaltered when considering
the variation of trajectories when varying the action for Hamilton’s principle in Section 47.5.
They can be changed, however, when varying coordinates as per the discussion of particle
relabeling in Section 47.7.

47.3.3 Cartesian Eulerian for when varying internal energy

We need the specific volume for working with the internal energy in Section 47.4.4, which from
equations (47.18) and (47.15) yield

νL
s (a, T ) = 1/ρL(a, T ) =

gL(a, T )

ρ̊L(a) g̊L(a)
=

gE(x)

ρ̊L(a) g̊L(a)

∂φ(a, T )

∂a
. (47.20)

When varying the internal energy, we find it convenient to choose Cartesian coordinates for
describing Eulerian x-space. For this case we have gE = 1 so that

νL
s (a, T ) =

1

ρ̊L(a) g̊L(a)

∂φ(a, T )

∂a
⇐= Cartesian Eulerian coordinates with gE(x) = 1

(47.21a)

∂φ(a, T )

∂a
= gL(a, T ) ⇐= Cartesian Eulerian coordinates with gE(x) = 1.

(47.21b)
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47.3.4 Concerning mass-labeling/unimodular coordinates
The material time independence of ρ̊L g̊L motivate some authors to assume the material coordinates
are unimodular, which is also sometimes called mass-labeling. In this case, one sets

ρ̊L(a) g̊L(a) = 1 mass-labeling (or unimodular) a-space coordinates. (47.22)

These coordinates are used by, for example, Salmon (1988), Jezierski and Kijowski (1990), Müller
(1995), and Salmon (1998). Furthermore, for a-space mass-labeling coordinates and x-space
Cartesian coordinates, the specific volume from equation (47.21a) reduces to the Jacobian

νL
s (a, T ) =

∂φ(a, T )

∂a
Cartesian x-space and mass-labeling a-space. (47.23)

Although rather convenient for many purposes, we do not choose mass-labeling a-space
coordinates for the following reasons. First, doing so makes it awkward to use dimensional
analysis as a check on the equations.1 Second, it hides the fundamentally non-Cartesian nature
of material space coordinates by hiding g̊L. This concern is mild, since one can readily assume
the initial coordinate layout sets g̊L = 1. Third, we wish to maintain a connection between the
perfect fluid field theory of this chapter to the continuum mechanics of Tromp (2025a), as well as
the scalar field theory from Chapter 46, with unimodular coordinates obscuring that connection
since it absorbs the density factor into the coordinates.

47.4 Energetics and entropy
In this section we develop equations for domain integrated kinetic energy, gravitational potential
energy, and internal energy for a perfect fluid in a thermally and materially closed domain, R,
and as viewed from a rotating planetary reference frame.

47.4.1 Kinetic energy
Building on the two expressions for mass in equation (47.12) leads to the corresponding expressions
for the kinetic energy within the material domain, first written using Cartesian Eulerian
coordinates

EKE =
1

2

ˆ
R(t)

(v +Ω× x) · (v +Ω× x) ρ gE d3x, (47.24)

and with the equivalent expression using arbitrary Lagrangian coordinates

EKE =
1

2

ˆ
R(a)

(∂Tφ+Ω×φ) · (∂Tφ+Ω×φ) ρ̊L g̊L d3a. (47.25)

47.4.2 Gravitational potential energy
The gravitational potential, Φe, accounts for the potential energy per mass from the earth’s
gravity field (Section 13.10.2). As such, its domain integral measures the total gravitational
potential energy of the fluid

EGPE =

ˆ
R(t)

Φe(x, t) ρ g
E d3x =

ˆ
R(a)

Φe(φ, T ) ρ̊
L g̊L d3a. (47.26)

1Throughout this book we exploit the dimensional nature of physical quantities to enable the use of dimensional
analysis in debugging mathematical equations. Unimodular or mass-labeling coordinates make that process
difficult.
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For most applications in this book, we assume the gravitational potential is time independent,
which is required for a mechanically closed system as assumed here.2

47.4.3 Specific entropy is materially constant
As seen in Section 26.6.8, the specific entropy is materially constant for a perfect fluid. Conse-
quently, each fluid parcel has a specific entropy equal to the value at its initial condition

S(a, T ) = S(a, T = tA) = S̊(a). (47.27)

With the density satisfying equation (47.18), the constancy of specific entropy means that the
entropy content of a fluid parcel can be written

S(a, T ) ρL(a, T ) gL(a, T ) d3a = S̊(a) ρ̊L(a) g̊L(a) d3a. (47.28)

When applying Hamilton’s principle, the fluid particle trajectories are unaltered at their temporal
boundaries. Hence, any field that is independent of time, such as the the specific entropy, S̊(a),
has zero variation under changes to the fluid particle trajectories. However, when varying the
material coordinates, such as when studying particle relabeling in Section 47.7, then we find a
nonzero δS̊(a).

47.4.4 Internal energy
As encountered in the study of thermodynamics in Part IV of this book, as well as the thermo-
hydrodynamics in Chapter 26, internal energy is that portion of the total energy for a region of
the continuum that is not accounted for by the mechanical energy of macroscopic motion (kinetic
energy) nor the mechanical energy arising from being in an external force field (gravitational
potential energy). The fundamental thermodynamic relation (22.62) for a single component
fluid renders the natural functional dependency of specific internal energy (dimensions of energy
per mass, which equals squared length per squared time)

I = I(S, νs) = I(̊S(a), νs), (47.29)

with S the specific entropy and νs = 1/ρ the specific volume. We also made use of results
from Section 47.4.3 by setting S(a, T ) = S̊(a) since the specific entropy remains materially
constant. For the specific volume we make use of equation (47.21a), which assumes the Eulerian
coordinates are Cartesian. In turn, it is just the Jacobian, ∂φ(a, T )/∂a, portion of the specific
volume that is affected by variations in the trajectories. Bringing the above results together
renders the integrated internal energy for the material fluid domain

EIE =

ˆ
R(t)

I(x, t) ρ(x, t) gE(x) d3x =

ˆ
R(a)

I[̊S(a), νL
s (a, T )] ρ̊

L(a) g̊L(a) d3a. (47.30)

47.5 Variation of the action and Euler-Lagrange equations
The action for the perfect fluid is given by the space-time integral of the kinetic energy minus
the gravitational energy and minus the internal energy3

S\ =

ˆ tB

tA

ˆ
R(a)

[
1
2 (∂Tφ+Ω×φ) · (∂Tφ+Ω×φ)− Φe − I

]
ρ̊L g̊L d3a dT. (47.31)

2One exception concerns the study of a space-time dependent gravitational acceleration in Chapter 34.
3We write Saction for the action to distinguish it from the specific entropy, S. Also note that the lower time

bound for the action, tA, is not necessarily the same as the time bound, tR, used to define the base manifold.
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We here focus on the action written in terms of Lagrangian coordinates rather than the Eulerian
coordinates, with functional dependencies given by

φ(a, T ) and Φ(φ(a, T ), T ) and I(̊S(a), νL
s (a, T )). (47.32)

Making use of Lagrangian kinematics provides a direct link between Hamilton’s principle applied
here to continuum matter and Hamilton’s principle applied to the discrete particle systems in
Chapters 12 and 15. Namely, we here examine a variation of the continuum motion field (i.e.,
trajectories) that vanishes at the temporal bounds (just like we did for particle mechanics)

φ(a, T )→ φ(a, T ) + δφ(a, T ) with δφ(a, tA) = δφ(a, tB) = 0. (47.33)

Hamilton’s principle says that when varying the action by varying the motion, the physically
realized motion extremizes the action so that

Hamilton’s principle =⇒ δSaction = 0. (47.34)

Extremizing the action leads to the Euler-Lagrange equation satisfied by the Lagrangian. As
derived in this section, the Euler-Lagrange equation is a partial differential equation satisfied by
each component, φi, of the motion field. That is, we derive a Lagrangian space-time field theory
for the three component motion field, φ(a, T ).

We now summarize the operational task at hand to apply Hamilton’s principle to the action
(47.31). First, apply the variation operator, δ, to vary the motion field and compute the variation
of the action. The variation operator acts solely on the motion field via equation (47.33). Hence,
δ has no affect on space and time points, which means the variation operator commutes with
(a, T ) and its differential operators.4 We organize the varied integrand to isolate δφi, and we
do so via integrating by parts and setting δφi to zero on the temporal boundaries. Invoking
Hamilton’s principle renders the Euler-Lagrange differential equations and natural boundary
conditions on the material space boundaries.

47.5.1 General expression for the Euler-Lagrange equation

We here directly follow the procedure used for the scalar field theory in Section 46.2. Here
we have three fields for the three components to the motion field, with these fields living in
Lagrangian space time. Following the approach in Section 46.2, we find it convenient to write
the action (47.31) in the form

Saction =

ˆ tB

tA

ˆ
R(a)

L g̊L d3adT =⇒ δSaction =

ˆ tB

tA

ˆ
R(a)

(δL) g̊L d3a dT, (47.35)

where we defined the Lagrangian density (dimensions of energy per material coordinate volume,
d3a)

L[φ, ∂Tφ, ∂Iφ,a, T ] = ρ̊L

[
1
2 (∂Tφ+Ω×φ) · (∂Tφ+Ω×φ)− Φe − I(̊S, νL

s )
]
. (47.36)

Note that varying the trajectories has no affect on g̊L d3a since these terms are fixed at T = tR,
and the same holds for ρ̊L.

4This commutation property holds when applying δ to the action for Hamilton’s principle. However, as seen in
Section 46.5, δ affects a variation of the space-time points when developing conservation laws using the methods
of Noether’s theorem. We emphasized these distinct variations in Section 46.5.1.
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Use of the chain rule renders a variation of the Lagrangian density5

g̊L δL = g̊L ∂L

∂φi
δφi + g̊L ∂L

∂(∂Tφi)
δ(∂Tφ

i) + g̊L ∂L

∂(∂Iφi)
δ(∂Iφ

i), (47.37)

where the summation convention is followed for the motion field indices, so that repeated indices
are summed over their range, i = 1, 2, 3. Since the variation operator, δ, commutes with (a, T )
derivative operators, we can write the equivalent expression

g̊L δL = g̊L ∂L

∂φi
δφi + g̊L ∂L

∂(∂Tφi)
∂T (δφ

i) + g̊L ∂L

∂(∂Iφi)
∂I(δφ

i). (47.38)

We now bring the time and space derivative operators onto the full term and subtract the
remainder. Doing so for the time derivative leads to

g̊L ∂L

∂(∂Tφi)

∂(δφi)

∂T
=

∂

∂T

[
g̊L ∂L

∂(∂Tφi)
δφi

]
− ∂

∂T

[
g̊L ∂L

∂(∂Tφi)

]
δφi. (47.39)

When plugging this term into the action variation (47.35), the total time derivative on the right
hand side vanishes since we assume δφi vanishes at temporal boundaries as per equation (47.33).
Similar manipulations lead to the material space derivative expression

g̊L ∂L

∂(∂Iφi)

∂(δφi)

∂aI
=

∂

∂aI

[
g̊L ∂L

∂(∂Iφi)
δφi

]
− ∂

∂aI

[
g̊L ∂L

∂(∂Iφi)

]
δφi. (47.40)

When plugging this term into the action variation (47.35), the total space derivative term
vanishes if we assume the following natural boundary condition

∂L

∂(∂Iφi)
n̂I = 0 at material boundaries, (47.41)

where n̂I are components to the outward normal one-form along the material boundary. We
encountered a similar version of the natural boundary conditions in Section 46.3.3 when studying
Hamilton’s principle for a scalar field.

Bringing terms together leads to the variation of the action (47.35) taking the form

δSaction =

ˆ tB

tA

ˆ
R(a)

(
∂L

∂φi
− 1

g̊L

∂

∂T

[
g̊L ∂L

∂(∂Tφi)

]
− 1

g̊L

∂

∂aI

[
g̊L ∂L

∂(∂Iφi)

])
δφi g̊L d3adT,

(47.42)
Variation of the motion, δφi, is arbitrary everywhere except at the temporal boundaries. Setting
the variation of the action to zero as per Hamilton’s principle requires the Lagrangian density to
satisfy the Euler-Lagrange equation as well as the natural kinematic boundary condition, with
both satisfied by each of the i = 1, 2, 3 components of the motion field

∂L

∂φi
=

1

g̊L

∂

∂T

[
g̊L ∂L

∂(∂Tφi)

]
+

1

g̊L

∂

∂aI

[
g̊L ∂L

∂(∂Iφi)

]
(47.43a)

∂L

∂(∂Iφi)
n̂I = 0 at material boundaries. (47.43b)

The presence of 1/g̊L(a) on the outside of the derivatives, and g̊L(a) on the inside, allows us
to identify a covariant divergence (based on g̊L) on the right hand side of the Euler-Lagrange
equation (47.43a). The g̊L(a) term cancels for the time derivative term, since g̊L(a) is independent

5When integrating by parts, we must keep track of the metric tensor determinant, g̊L, since it is a function of
the material coordinates. We follow the approach in Section 46.3.2.
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of material time. However, it is an essential piece for the space derivative term given that
Lagrangian space coordinates are not Cartesian.

The Euler-Lagrange equation (47.43a) and boundary conditions (47.43b) are identical to
those derived in Section 46.2.4 when studying scalar field theory. The only operational difference
is that here we have i = 1, 2, 3 fields whereas there we had a single scalar field. We also note
that here the field theory is in Lagrangian space-time, (a, T ), rather than Eulerian space-time,
(x, t), and the dynamical field is the motion field, φ(a, T ). As noted earlier in this section, the
Lagrangian kinematic formulation of Hamilton’s principle is directly connected to the discrete
particle mechanics treatment of Hamilton’s principle. In particular, by tracking the fluid motion
field (i.e., fluid particle trajectories), we are afforded a straitghtforward means to constrain
variations to vanish at the temporal boundaries. An Eulerian formulation does not follow fluid
particles and requires Lagrange multipliers to constrain material coordinates to remain constant
along trajectories (see Section 3 of Salmon (1988) for details).

In the remainder of this section we derive the Euler-Lagrange equations for the perfect fluid
using the Lagrangian density (47.36). Rather than compute partial derivatives of the Lagrangian
density as per the Euler-Lagrange equation (47.43a), we find it slightly more pedagogical to
work directly from the action variation in equation (47.35).

47.5.2 Variation of the kinetic energy

Starting with the kinetic energy appearing in the Lagrangian density (47.36), we have

1
2 (∂Tφ+Ω×φ)·(∂Tφ+Ω×φ) = 1

2 ∂Tφ·∂Tφ+∂Tφ·(Ω×φ)+1
2 (Ω·Ω) (φ·φ)−1

2 (Ω·φ)2, (47.44)

which made use of the identity (1.73c). Use of the chain rule leads to the variation

δ [12 (∂Tφ+Ω×φ) · (∂Tφ+Ω×φ)]

= ∂T (δφ) · (∂Tφ+Ω×φ) + ∂Tφ · (Ω× δφ) + Ω2φ · δφ− (Ω ·φ) (Ω · δφ), (47.45)

which can be rearranged to

δ [12 (∂Tφ+Ω×φ) · (∂Tφ+Ω×φ)]

= ∂T [(∂Tφ+Ω×φ) · δφ]− [∂TTφ+ 2Ω× ∂Tφ− Ω2φ+ (Ω ·φ)Ω] · δφ. (47.46)

Since the variations, δφ, vanish at the initial and final times, as per equation (47.33), the total
time derivative in equation (47.46) drops out when integrated over time as part of the action.
We are thus left with the kinetic energy variation

1
2 δ

ˆ tB

tA

ˆ
R(a)

(∂Tφ+Ω×φ) · (∂Tφ+Ω×φ) ρ̊L g̊L d3adT

= −
ˆ tB

tA

ˆ
R(a)

[∂TTφ+ 2Ω× ∂Tφ+Ω× (Ω×φ)] · δφ ρ̊L g̊L d3a dT, (47.47)

where we used equation (1.71g) to write

Ω× (Ω×φ) = −Ω2φ+ (Ω ·φ)Ω. (47.48)

Variation of the kinetic energy in equation (47.47) reveals the material acceleration, ∂TTφ, plus
contributions from the planetary Coriolis and planetary centrifugal accelerations.
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47.5.3 Variation of the gravitational potential energy
The gravitational potential energy (47.26) depends on the motion field, so that its variation
follows from the chain rule

δΦe =
∂Φe

∂φi
δφi. (47.49)

We thus have variation of the gravitational potential energy

δ

ˆ tB

tA

ˆ
R(a)

Φe ρ̊
L g̊L d3a dT =

ˆ tB

tA

ˆ
R(a)

∂Φe

∂φi
δφi ρ̊L g̊L d3adT. (47.50)

47.5.4 Variation of the specific internal energy
As seen by equation (47.29), the specific internal energy is a function of the specific entropy and
specific volume

I = I[̊S(a), νL
s (a, T )], (47.51)

where S̊(a) is the specific entropy set by the initial conditions, and νL
s (a, T ) is related to the

Jacobian of transformation between the Eulerian and Lagrangian coordinates, as given by
equation (47.21a). It is through dependence on νL

s (a, T ) that the specific internal energy is a
function of ∂Iφ

i, so that variation of the internal energy portion of the action is

ˆ tB

tA

ˆ
R(a)

δI ρ̊L g̊L d3a dT =

ˆ tB

tA

ˆ
R(a)
−pL (δνL

s ) ρ̊
L g̊L d3a dT, (47.52)

where pL(a, T ) is the pressure written as a function of the Lagrangian space-time coordinates,
and it is related to the specific internal energy via the thermodynamic identity (22.64)

δI =

[
∂I

∂νs

]
S

δνL
s = −pL δνL

s . (47.53)

From equation (47.21a) we have

νL
s ρ̊

L g̊L = ∂φ/∂a = det(F iI) (47.54)

so that
ρ̊L g̊L δνL

s = δ(ρ̊L g̊L νL
s ) = δ(∂φ/∂a) = δ det(F iI). (47.55)

We thus need to determine how the Jacobian varies when changing trajectories.
Since the Jacobian is only a function of the deformation matrix elements, F iI = ∂Iφ

i, the
chain rule gives

δ det(F iI) =
∂ det(F iI)

∂F lL
δF lL =

∂ det(F iI)

∂F lL
∂L(δφ

l), (47.56)

where the second equality noted that the trajectory variation operator commutes with the
partial derivative operator. We now make use of the identity (4.75) to write the derivative of
the Jacobian with respect to an element of the transformation matrix

δ[det(F iI)] = det(F iI)F
L
l ∂L(δφ

l) = det(F iI) ∂l(δφ
l), (47.57)

where the final equality transformed from a Lagrangian partial derivative to an Eulerian partial
derivative via

FLl ∂L = ∂l. (47.58)

At the end of this chapter, we present an alternative derivation of equation (47.57) that does
not make use of the identity (4.75). That derivation is far more tedious than the one presented
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here, and yet it is presented for those wishing further exposure to index gymnastics.

Equation (47.57) says that the relative variation of the Jacobian determinant is directly
determined by the x-space divergence of the motion field’s variation. This result is analogous to
equation (18.148) that expresses the material time evolution of the Jacobian. We can understand
its kinematical content by observing that an x-space divergence of δφ leads to a variation in
the x-space volume of a fluid parcel, and thus to a variation in the Jacobian. Making use of the
variation (47.57) in equation (47.52) yields the internal energy variation

ˆ tB

tA

ˆ
R(a)

δI ρ̊L g̊L d3adT = −
ˆ tB

tA

ˆ
R(a)

pL
∂(δφi)

∂xi
∂φ

∂a
d3a dT. (47.59)

47.5.5 How the pressure gradient appears

We now present two related methods for for how the pressure gradient appears within the integral
(47.59).

Method I

Making use of the relations in Section 47.3 allows us to convert the right hand side of equation
(47.59) to Cartesian Eulerian coordinates so that

ˆ
R(a)

pL
∂(δφi)

∂xi
∂φ

∂a
d3a =

ˆ
R(t)

p
∂(δφi)

∂xi
d3x, (47.60)

with integration by parts yielding

ˆ
R(t)

p
∂(δφi)

∂xi
d3x =

ˆ
R(t)

∂(p δφi)

∂xi
d3x−

ˆ
R(t)

∂p

∂xi
δφi d3x. (47.61)

Assuming either zero mechanical forcing at the boundaries (e.g., free boundary with p = 0), or
assuming δφ · n̂ = 0 at the boundaries (i.e., rigid solid-earth boundary), allows us to drop the
boundary term. We are thus left with the internal energy variation

ˆ
R(a)

δI ρ̊L g̊L d3a =

ˆ
R(t)

1

ρ

∂p

∂xi
δφi ρ d3x =

ˆ
R(a)

1

ρL

∂pL

∂φi
δφi ρ̊L g̊L d3a, (47.62)

with the final equality converting back to Lagrangian coordinates and making use of equation
(47.18) for the density, ρ̊L g̊L.

Method II

Rather than convert to Cartesian Eulerian coordinates at the point done in equation (47.60), we
write

pL
∂(δφi)

∂xi
∂φ

∂a
= pL

∂(δφi)

∂aI
∂aI

∂xi
∂φ

∂a
=

∂

∂aI

[
pL δφi ∂a

I

∂xi
∂φ

∂a

]
− δφi ∂

∂aI

[
pL
∂aI

∂xi
∂φ

∂a

]
, (47.63)

where the first equality made use of the chain rule and the second equality used the product
rule. For the final term note that

∂

∂aI

[
F I i

∂φ

∂a

]
=

∂

∂aI

[
∂aI

∂xi
∂φ

∂a

]
= 0, (47.64)
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which follows from the determinant identity (4.73) in which

∂aI

∂xi
∂φ

∂a
=

1

2
ϵIJK ϵijk

∂φj

∂aJ
∂φk

∂aK
, (47.65)

thus yielding equation (47.64) through anti-symmetry of ϵIJK and symmetry of the second
partial derivatives ∂IK and ∂IJ . These results then bring equation (47.63) into the form

pL
∂(δφi)

∂xi
∂φ

∂a
=

∂

∂aI

[
pL δφi ∂a

I

∂xi
∂φ

∂a

]
− δφi ∂p

L

∂aI
∂aI

∂xi
∂φ

∂a
. (47.66)

When integrated over the material domain, the ∂I divergence term drops out due to the material
boundary conditions. We are thus led to

ˆ
R(a)

δI ρ̊L g̊L d3a =

ˆ
R(a)

∂pL

∂aI
∂aI

∂φi

∂φ

∂a
δφi d3a equations (47.59) and (47.66) (47.67a)

=

ˆ
R(a)

1

ρL

∂pL

∂xi
δφi ρ̊L g̊L d3a chain rule and equation (47.54), (47.67b)

which agrees with equation (47.62).

47.5.6 The perfect fluid Euler-Lagrange equation
Making use of the variation of the kinetic energy portion of the action (47.47), the gravitational
potential energy portion (47.50), and the internal energy portion (47.62), leads us to the variation
of the action under variations in the trajectories that are fixed at the temporal boundaries

δSaction = −
ˆ tB

tA

ˆ
R(a)

[
∂TTφ+ 2Ω× ∂Tφ+Ω× (Ω×φ) +

∂Φe

∂φ
+

1

ρL

∂pL

∂φ

]
· δφ ρ̊L g̊L d3a dT.

(47.68)
Hamilton’s principle says that the physically realized action is stationary under variations to the
motion, with that motion fixed at the temporal boundaries. Invoking this principle then leads
to the Euler-Lagrange equation

∂TTφ+ 2Ω× ∂Tφ = − 1

ρL

∂pL

∂φ
− ∂Φ

∂φ
⇐⇒ ∂Tv

L + 2Ω× vL = − 1

ρL

∂pL

∂φ
− ∂Φ

∂φ
, (47.69)

where we introduced the velocity in the rotating reference frame

vL = ∂Tφ, (47.70)

and the geopotential
Φ = Φe − (Ω×φ)2/2, (47.71)

which is the sum of the gravitational potential and the planetary centrifugal potential (see
Section 13.10.4).

The Euler-Lagrange equation (47.69) is written with spatial derivatives taken with respect to
the motion field, φ, and time derivatives with respect to Lagrangian time, T . Transforming this
equation to an Eulerian perspective leads to the rotating perfect fluid Euler equation derived
in Section 24.2.4. It is particularly notable that this transformation is rather trivial, simply
requiring a swap of the motion field for an Eulerian position, x. This transformation to the
Eulerian reference frame removes all remnants of the motion field from the equations. A key
reason for this rather simple result arises from the form of the internal energy, whose dependence
on trajectories arises only via the Jacobian, ∂φ/∂a. Different forms of the internal energy arise
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in other areas of continuum mechanics, thus making the translation to an Eulerian perspective
less convenient than found here for the perfect fluid.

47.5.7 Comments
Based on our experience with particle mechanics in Chapters 12 and 15, we expected to realize the
same equations using Hamilton’s principle as those found through Newton’s laws. Even so, it is a
remarkable result given the fundamentally distinct conceptual and operational perspectives. This
agreement offers further confidence that the theoretical construct of continuum mechanics has a
robust foundation beyond that afforded by the work of Euler and Cauchy in their applications
of Newton’s laws to the continuum.

47.6 Perfect fluid Hamiltonian continuity equation
As a means to illustrate the connection between symmetry and conservation within the perfect
fluid, note that the Lagrangian density in equation (47.36) has no explicit dependence on time[

∂L

∂T

]
φi,∂Tφi,∂Iφi,aI

= 0, (47.72)

where the subscripts on the derivative denote those terms that are held fixed in computing
the partial derivative. According to the discussion of Noether’s theorem in Sections 46.4 and
46.5, we know that the Hamiltonian density, H, satisfies the Lagrangian space-time continuity
equation (46.67)

∂TH+ ∇̊IFI = 0, (47.73)

where
∇̊IFI = (1/g̊L) ∂I(g̊

L FI) (47.74)

is the covariant divergence as defined by the geometry of the reference manifold at T = tR.

The canonical momentum, Hamiltonian density, and the energy flux are given in equation
(46.64) for the scalar field are generalized to the φi field theory of a perfect fluid

Pi ≡
∂L

∂(∂Tφi)
and H = Pi ∂Tφ

i −L and FI =
∂L

∂(∂Iφi)

∂φi

∂T
, (47.75)

where the implied summation over the i index is the only distinction from the scalar field in
considered in Section 46.4. We now determine an expression of this continuity equation for
the perfect fluid. Doing so provides useful experience with the variety of tensor manipulations
arising from this formalism.

47.6.1 Canonical momentum and Hamiltonian density
Making use of the perfect fluid Lagrangian density (47.36) renders the canonical momentum

Pj = ρ̊L [∂Tφ
i + (Ω×φ)i] δij , (47.76)

so that the Hamiltonian density is

H = ρ̊L [∂Tφ
i + (Ω×φ)i] δij ∂Tφ

j −L = ρ̊L (∂Tφ · ∂Tφ/2 + Φ + I), (47.77)

where we introduced the geopotential from equation (47.71). Evidently, the Hamiltonian density
is the sum of the kinetic energy plus geopotential plus internal energy.
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47.6.2 Energy flux and the covariant flux divergence

For the energy flux we need the derivative of the Lagrangian density with respect to the
deformation matrix components, F iI = ∂Iφ

i, which appear only within the specific internal
energy

∂L

∂F iI
= −ρ̊L ∂I

∂νs

∂νs
∂F iI

chain rule with I = I(̊S, νs) and S̊ = S̊(a) (47.78a)

= ρ̊L pL
∂νs
∂F iI

thermodynamic identity (47.53) (47.78b)

=
pL

g̊L

∂(ρ̊L g̊L νs))

∂F iI
∂(ρ̊L g̊L)/∂F iI = 0 (47.78c)

=
pL

g̊L

∂ det(F iI)

∂F iI
ρ̊L g̊L νs = det(F iI) from equation (47.54) (47.78d)

= (pL/g̊L) det(F iI)F
I
i determinant identity (4.75), (47.78e)

which yields the energy flux

FI =
∂L

∂F iI

∂φi

∂T
= (pL/g̊L) det(F iI)F

I
i ∂Tφ

i. (47.79)

Making use of equation (4.134) for the covariant divergence, we have the a-space covariant flux
divergence

∇̊I [det(F iI)F I i (pL/g̊L) ∂Tφ
i] = (1/g̊L) ∂I [det(F

i
I)F

I
i p

L ∂Tφ
i]. (47.80)

The identity (47.64) says that ∂I [det(F
i
I)F

I
i] = 0, so that the covariant flux divergence is

∇̊I [det(F iI)F I i (pL/g̊L) ∂Tφ
i] = (1/g̊L) det(F iI)F

I
i ∂I(p

L ∂Tφ
i). (47.81)

Finally, we convert the a-space derivative to an x-space derivative using the deformation matrix

F I i ∂I = ∂i, (47.82)

so that

∇̊I [det(F iI)F I i (pL/g̊L) ∂Tφ
i] = (1/g̊L) det(F iI) ∂i(p

L ∂Tφ
i) = ρ̊L νL

s ∂i(p
L ∂Tφ

i), (47.83)

where the second equality used the determinant identity (47.21a) that says det(F iI) = νL
s ρ̊

L g̊L.

47.6.3 Lagrangian and Eulerian Hamiltonian continuity equations

Bringing the pieces together leads the Hamiltonian density continuity equation (47.73) taking
the following perfect fluid expression

∂T [ρ̊L (∂Tφ · ∂Tφ/2 + Φ + I)] + ρ̊L νL
s ∂i(p

L ∂Tφ
i) = 0. (47.84)

The density ρ̊L = ρ̊L(a) cancels from both terms, so that

ρL ∂T (∂Tφ · ∂Tφ/2 + Φ + I) + ∂i(p
L ∂Tφ

i) = 0, (47.85)
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which has a corresponding Eulerian expression6

ρ
D(v · v/2 + Φ + I)

Dt
+∇ · (pv) = 0. (47.86)

This equation accords with the perfect fluid total energy budget equation (26.91) derived using
very different methods. This agreement lends further confidence to our use of Hamilton’s
principle with Lagrangian kinematics for the perfect fluid.

47.7 Particle relabeling symmetry and potential vorticity
In this chapter we are working with a Lagrangian space-time field theory for the perfect fluid
motion field, φ(a, T ). Hence, as just seen in Section 47.6 for the Hamiltonian density, space-time
symmetries leading to conservation laws in the perfect fluid arise from variations in the position
within the Lagrangian space-time. For the usual momentum conservation laws corresponding
to spatial symmetry, we take the material coordinates equal to the Cartesian coordinates at
some reference time. For a perfect geophysical fluid in motion around a rotating and gravitating
planet, we no longer have the full symmetry of empty space considered in Chapter 46. Instead,
we have axial symmetry around the planetary rotational axis. As a result, perfect planetary fluid
motion only realizes differential conservation laws for axial angular momentum conservation
along with the energy conservation of Section 47.6.

For momentum conservation, the active transformation (Section 46.5.2) is realized by shifting
the material spatial position of each fluid particle by the same constant, and for energy each
fluid particle has its material time shifted by the same constant. Here we examine whether
there is a nontrivial passive transformation that leaves the action invariant. Recall from our
discussion in Section 46.5.3, a passive transformation only affects a variation to the coordinate
representation of a physical system. Noether’s second theorem says that each passive symmetry
gives rise to a Bianchi identity that corresponds to a local conservation law. Here we consider
particle relabeling symmetry and the corresponding local (in a-space) conservation of potential
vorticity. Our presentation is inspired by Salmon (1988), Müller (1995), Padhye and Morrison
(1996), and Chapter 7 of Salmon (1998).

47.7.1 Passive transformation of Lagrangian space coordinates
Consider a time dependent coordinate transformation of the material spatial coordinates

a′ = a′(a, T ), (47.87)

with an infinitesimal version of this transformation

a′ = a+ δa(a, T ). (47.88)

In this manner, each fluid particle experiences a distinct variation of its material coordinate.
The transformation is passive (only affects coordinates) and so the fluid particle trajectories
are unchanged. We do not expect particle labels to affect our ability to describe the physically
realized trajectories, and this expectation is given the name particle relabeling symmetry (Salmon,
1988).

We consider a particular form of coordinate transformation that is assumed to vanish at the
material space and time bounds. Furthermore, we assume that the coordinate transformation
respects the constraint of mass conservation holding for each fluid parcel. As shown in Sections
46.5.2 and 46.5.3, a mass conserving transformation, δaI , as a zero density weighted covariant

6Recall we are assuming Cartesian coordinates for x-space.
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divergence. Since the material coordinates, aI , are set at the reference time, T = tR, the relevant
density at that time is ρ̊L = ρL(a, T = tR), as is the metric determinant, g̊L(a) = gL(a, T = tR.
Hence, the particular form of coordinate variation relevant to particle relabeling is given by

δa = 0 at material space-time boundaries and ∇̊I(ρ̊L δaI) = 0. (47.89)

Since δaI is time dependent, trajectories have their material coordinate modified at each point
that is not on the material space-time boundary, with the modification constrained by assuming
that the mass of each fluid parcel is invariant.

To deduce the conservation resulting from particle relabeling symmetry, and to expose the
key aspects of the derivation, it is sufficient to study flow in a non-rotating reference frame.
Generalization to a rotating reference frame is straightforward. We thus consider the following
perfect fluid action

S\ =

ˆ tB

tA

ˆ
R(a)

(
1
2 ∂Tφ · ∂Tφ− Φe − I

)
ρ̊L g̊L d3adT. (47.90)

47.7.2 Constraints from mass conservation

The spatial region where the fluid flows, R, is material and each fluid parcel is material.
Consequently, if particle relabeling is to render an equivalent description of the fluid, then the
measurement of mass must remain unchanged using the new set of coordinates. Globally, mass
conservation means that ˆ

R(a)
ρ̊L g̊L d3a =

ˆ
R′(a′)

ρ̊
′L g̊

′L d3a′, (47.91)

where R ′(a′) is the functional expression for the domain when written in terms of the varied
coordinates. Since the domain is not changed by the coordinate variation, we must have the
functional expression for the domain when using coordinates a′ equal to the functional expression
for the domain when using coordinates a, which is succinctly expressed as

R ′(a′) = R(a). (47.92)

Likewise, since the mass of a fluid parcel is unchanged we have

dM(a) = dM ′(a′) =⇒ ρ̊L(a) g̊L(a) d3a = ρ̊
′L(a′) g̊

′L(a′) d3a′. (47.93)

This result then means that the Jacobian of transformation between the two material coordinates
is given by the volume ratio

∂a′

∂a
=

ρ̊L(a) g̊L(a)

ρ̊′L(a′) g̊′L(a′)
, (47.94)

which is a familiar result from coordinate transformations discussed in Section 18.7.

Specific volume is invariant

Making use of equation (47.21a) for the specific volume along with the mass conservation identity
(47.94), we find

νL′
s (a

′, T ) =
1

ρ̊′L(a′) g̊′L(a′)

∂φ

∂a′
=

1

ρ̊L(a) g̊L(a)

∂a′

∂a

∂φ

∂a′
=

1

ρ̊L(a) g̊L(a)

∂φ

∂a
= νL

s (a, T ), (47.95)
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where the third equality made use of the chain rule identity (4.78) holding for determinants

∂a′

∂a

∂φ

∂a′
=
∂φ

∂a
. (47.96)

Evidently, so long as the coordinate transformation from a to a′ leaves the mass of a fluid parcel
unchanged as per equation (47.93), then it also leaves its specific volume unchanged as per
equation (47.95).

Zero covariant divergence of density weighted coordinate variation

So far we have only assumed the coordinate transformation is mass preserving. To determine
a differential expression of that property, we make use of the discussion in Section 46.5.3 for
infinitesimal coordinate transformations. Evidently, the mass conservation identity (47.93) means
that, to second order in variation, the density weighted coordinate variation has a zero covariant
divergence

∇̊I(ρ̊L δaI) = (1/g̊L) ∂I(g̊
L ρ̊L δaI) = 0. (47.97)

This constraint is satisfied by setting ρ̊L δa equal to the covariant curl of an arbitrary vector (see
equation (4.146) in Section 4.18)

ρ̊L δa = ˚curl(W )⇐⇒ ρ̊L δaI = ε̊IJK ∂JWK = (1/g̊L) ϵIJK ∂JWK , (47.98)

where
ε̊IJK = (1/g̊L) ϵIJK (47.99)

is the coordinate covariant Levi-Civita tensor discussed in Section 4.7.1, and W =W (a, T ) is
an arbitrary vector that parameterizates the coordinate variation.7

Summary from mass conservation

In summary, there are three conditions resulting from the constraint that mass remains invariant
when performing a variation of the Lagrangian space coordinates: (1) we only need to vary the
energy terms in the action, (2) the specific volume is invariant, and (3) the density weighted
coordinate variation is a total curl

δSaction =

ˆ tB

tA

ˆ
R(a)

δ
(
1
2 ∂Tφ · ∂Tφ− Φe − I

)
ρ̊L g̊L d3a dT (47.100a)

δνL
s = 0 (47.100b)

ρ̊L δa = curl(W ). (47.100c)

47.7.3 The motion field is a scalar

The gravitational potential is a function of the spatial position as determined by the motion field

Φe = Φe(φ), (47.101)

so that the gravitational potential has a functional dependence

Φe = Φe[φ(a, T )]. (47.102)

7Note that WK = gKLW
L, where gKL = F k

K F l
L gkl is the Lagrangian representation of the metric tensor

whereas gkl is the Eulerian representation. Choosing Cartesian Eulerian coordinates so that gkl = δkl means that
gKL is the Cauchy-Green strain tensor (18.41).
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For the coordinate variation (47.88) to keep the geopotential invariant requires the motion field
to satisfy8

φ′(a′, T ) = φ(a, T ). (47.103)

This equality means that the motion field, φ′(a′, T ), points to the same fluid particle as the motion
field, φ(a, T ). This condition is consistent with the concept of a passive transformation. From
the discussion in Section 1.5.1, we conclude that each component of the motion field transforms
as a scalar (zeroth order tensor) under the particle relabeling coordinate transformation, so that
the total variation (see Section 46.5.4) of each component vanishes

∆φ = φ′(a′, T )−φ(a, T ) = 0. (47.104)

47.7.4 The specific internal energy is a scalar
To retain the same specific internal energy, I, when affecting the passive variation requires I to
be a scalar under particle relabeling so that

I = I(̊S(a), νs) = I′(̊S′(a′), ν ′s). (47.105)

We already saw that mass conservation ensures that the specific volume remains a scalar under
particle relabeling as per equation (47.100b). In order for relabeling to keep the specific entropy
unchanged we must have

S̊′(a′) = S̊(a). (47.106)

To realize this symmetry requires the coordinate variation to be orthogonal to the a-space
gradient of the specific entropy

δaI ∂I S̊ = δa · ∇aS̊ = 0. (47.107)

Namely, the relabeling must remain on a constant specific entropy surface. This condition
reduces the coordinate variation to two degrees of freedom, and the constraint (47.107) can
be readily realized by setting one of the material coordinates equal to the specific entropy.
Alternatively, the constraint can be satisfied by writing the coordinate variation as

ρ̊L δa = ˚curl(W ) = ˚curl(A∇aS̊)⇐⇒ ρ̊L δaI = ε̊IJK ∂JWK = ε̊IJK ∂J(A∂K S̊). (47.108)

We have thus specified the particle relabeling variation up to an arbitrary function, A(a, T ).

47.7.5 Coordinate variation of the kinetic energy
The coordinate variation of the kinetic energy per mass is

δ(∂Tφ · ∂Tφ/2) = ∂Tφ · δ(∂Tφ), (47.109)

where the variation of the velocity is given by

δ(∂Tφ) =
∂φ′(a′, T )

∂T

∣∣∣∣
a′
− ∂φ(a, T )

∂T

∣∣∣∣
a

. (47.110)

Note the distinct time derivatives on the right hand side, as per the need to hold distinct space
coordinates fixed while computing the time derivatives. This derivative, to first order in variation,

8The geopotential arising in a rotating reference frame is the sum of the gravitational potential plus the
planetary centrifugal potential (see equation (47.69)) Φ(φ) = Φe(φ) − (Ω × φ)2/2. So if the motion field is a
scalar under the coordinate variation as per equation (47.103), then so is the geopotential.
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is given by

∂φ′(a′, T )

∂T

∣∣∣∣
a′

=
∂φ(a, T )

∂T

∣∣∣∣
a′

=
∂φ(a, T )

∂T

∣∣∣∣
a

+
∂aI

∂T

∣∣∣∣
a′

∂φ(a, T )

∂aI
, (47.111)

where the first equality follows from φ′(a′, T ) = φ(a, T ) as per equation (47.103), and the
second equality follows from the chain rule. Next, make use of the coordinate variation (47.88)
to write

∂aI

∂T

∣∣∣∣
a′

=
∂(a′I − δaI)

∂T

∣∣∣∣
a′

= − ∂(δaI)

∂T

∣∣∣∣
a′

= − ∂(δaI)

∂T

∣∣∣∣
a

, (47.112)

where the second equality follows since the time derivative is computed with a′ fixed, and the
third equality drops terms that are second order in the coordinate variation. This result thus
brings the velocity variation in equation (47.111) to

δ(∂Tφ) =
∂φ′(a′, T )

∂T

∣∣∣∣
a′
− ∂φ(a, T )

∂T

∣∣∣∣
a

= − ∂(δaI)

∂T

∣∣∣∣
a

∂φ

∂aI
, (47.113)

so that

δ(∂Tφ · ∂Tφ/2) = ∂Tφ · δ(∂Tφ) = −∂T (δaI) ∂Iφ · ∂Tφ = −∂T (δaI) vI , (47.114)

where every term is evaluated at the Lagrangian space-time point (a, T ), and where we introduced
the covariant expression for the Lagrangian velocity9

vI = ∂Iφ · ∂Tφ = F iI δij ∂Tφ
j = F iI v

L
i, (47.115)

with Eulerian coordinates assumed Cartesian so that δij (v
L)j = vLi.

47.7.6 Lagrangian expression for the potential vorticity

As this point, the action (47.90) has a variation given only through variations in the kinetic
energy as per equation (47.114)

δSaction = −
ˆ tB

tA

ˆ
R(a)

∂T (δa
I) vI ρ̊

L g̊L d3adT =

ˆ tB

tA

ˆ
R(a)

δaI (∂T vI) ρ̊
L g̊L d3a dT, (47.116)

where we assumed the coordinate variation vanishes at the temporal bounds

δaI = 0 for T = tA and T = tB. (47.117)

We next introduce equation (47.108) for the non-divergent coordinate variation, and use equation
(47.99) to relate the Levi-Civita tensor to the permutation symbol, so that

ρ̊L g̊L δaI = ϵIJK ∂JWK , (47.118)

which brings the action variation to

δSaction =

ˆ tB

tA

ˆ
R(a)

ϵIJK ∂JWK ∂T vI d
3adT. (47.119)

9Recall that equation (47.8) introduced the contravariant Lagrangian representation of the velocity, vI =
F I

i (v
L)i.
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Integrating by parts on the spatial derivative leads to

δSaction = −
ˆ tB

tA

ˆ
R(a)

ϵIJK WK ∂J∂T vI d
3adT, (47.120)

where we assumed the coordinate variation vanishes at the material boundaries

δaI = 0 for a ∈ ∂R(a). (47.121)

The time and space derivatives commute in equation (47.120), and the permutation symbol,
ϵIJK , and specific entropy, S̊, are both independent of material time so that (with WK = A∂K S̊)

δSaction = −
ˆ tB

tA

ˆ
R(a)

WK ∂T (ϵ
IJK ∂JvI) d

3a dT (47.122a)

= −
ˆ tB

tA

ˆ
R(a)

A∂T (∂K S̊ ϵIJK ∂JvI) d
3a dT. (47.122b)

= −
ˆ tB

tA

ˆ
R(a)

A∂T [(1/ρ̊
L) ∂K S̊ ε̊IJK ∂JvI ] ρ̊

L g̊L d3a dT. (47.122c)

At this point we assert that particle relabeling symmetry holds, so that the action has zero
variation.10 For a zero variation to be realized with an arbitrary A requires the material time
invariance of the Lagrangian expression of Ertel potential vorticity (Section 41.1)

Q ≡ ∇aS̊ · ˚curl(v)

ρ̊L
=
∂K S̊ ε̊IJK ∂JvI

ρ̊L
=
∂K S̊ ϵIJK ∂JvI

g̊L ρ̊L
. (47.123)

47.7.7 Eulerian expression for the potential vorticity

Transforming the Lagrangian expression (47.7) of the potential vorticity into its Eulerian form
offers useful experience with index gymnastics. First we transform the Lagrangian gradient
of the specific entropy into its Eulerian gradient using the chain rule with the transformation
matrix (47.2)

∂K S̊ = F kK ∂kS, (47.124)

where S = S(x, t) is the Eulerian expression for the specific entropy. Next, expand the Lagrangian
expression of the relative vorticity according to (recall the Eulerian coordinates are Cartesian)

ϵIJK ∂JvI = ϵIJK ∂J(F
i
I ∂Tφ

j δij) (47.125a)

= ϵIJK ∂J(∂Iφ
i ∂Tφ

j δij) (47.125b)

= ϵIJK ∂Iφ
i ∂T∂Jφ

j δij (47.125c)

= ϵIJK F iI ∂TF
j
J δij (47.125d)

= ϵIJK F iI F
m
J ∂mv

j δij , (47.125e)

where we used equation (18.108) to write the material time evolution of the transformation
matrix in terms of the Eulerian expression for the velocity gradient tensor

∂TF
j
J = FmJ ∂mv

j . (47.126)

10A vanishing action variation is here not a result of invoking Hamilton’s principle. Rather, it results from
insisting that particle relabeling symmetry holds.
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Now contract the relative vorticity (47.125e) with the gradient of the specific entropy

∂K S̊ ϵIJK ∂JvI = ∂kS ϵ
IJK F iI F

m
J F

k
K ∂mv

j δij . (47.127)

We can make this expression a bit more tidy through use of equation (4.71) for the determinant

∂K S̊ ϵIJK ∂JvI = ∂kS̊ ϵ
imk ∂φ

∂a
∂mv

j δij . (47.128)

Finally, using equation (47.21a) for the specific volume renders

∂K S̊ ϵIJK ∂JvI = ∂kS ϵ
ijk ∂j(δim v

m) = g̊L ρ̊L ∇xS · curl(v)
ρ

, (47.129)

which then leads us to the expected Eulerian expression for the potential vorticity, written
entirely in terms of Eulerian quantities

Q =
∇xS · curl(v)

ρ
. (47.130)

47.7.8 Global versus local conservation

Space-time symmetries leading to the conservation of momentum and energy lead to differential
conservation laws in the form of a continuity equation, such as equation (47.73) for the Hamil-
tonian density. A global spatial integration of the continuity equation leads to a constant of
the motion (e.g., the globally integrated energy) in cases where the normal component of the
corresponding fluxes vanish on the boundaries. Such differential conservation laws operationally
arise when an active variation leads to a mechanically equivalent action, such as discussed in
Section 46.4.4 for constant space-time shifts.

Rather than a mechanically equivalent Lagrangian, are there symmetries related to coordinate
transformations (passive variations) that lead to unaltered actions? If so, then the corresponding
Noether theorem conservation law does not appear as a continuity equation. Instead, it appears
as a property that is a temporal constant everywhere in Lagrangian space-time. That is, it
leads to a local conservation law rather than a global conservation law. As seen in this section,
the material time independence of potential vorticity is just that local conservation law for a
perfect fluid. That is, potential vorticity is constant for each point in the Lagrangian (material)
space-time.

A more tedious calculation of the Jacobian variation (47.57)

To derive the variation of the Jacobian in equation (47.57), we made use of the identity (4.75)
for the derivative of the Jacobian with respect to an element of the matrix. For fun, we here
derive equation (47.57) yet do not make use of equation (4.75). The calculation is more tedious
but it does serve to further our experience with index gymnastics, and is thus of use for those
wishing to garner practice.

The first step makes use of the product rule

δ

[
∂φm

∂aI
∂φn

∂aJ
∂φp

∂aK

]
=
∂(δφm)

∂aI
∂φn

∂aJ
∂φp

∂aK
+
∂(δφn)

∂aJ
∂φm

∂aI
∂φp

∂aK
+
∂(δφp)

∂aK
∂φm

∂aI
∂φn

∂aJ
. (47.131)

We now introduce x-space derivatives rather than sticking solely with a-space derivatives, and

page 1358 of 2158 geophysical fluid mechanics



47.7. PARTICLE RELABELING SYMMETRY AND POTENTIAL VORTICITY

for this purpose we make use of the chain rule to write11

∂(δφm)

∂aI
=
∂(δφm)

∂xq
∂φq

∂aI
,

∂(δφn)

∂aJ
=
∂(δφn)

∂xq
∂φq

∂aJ
,

∂(δφp)

∂aK
=
∂(δφp)

∂xq
∂φq

∂aK
, (47.132)

where the x-space derivatives of the variation, δφ, are computed at the point x = φ(a, T ).
Making use of equations (47.132) renders the variation

δ

[
∂φm

∂aI
∂φn

∂aJ
∂φp

∂aK

]
=
∂(δφm)

∂xq
∂φq

∂aI
∂φn

∂aJ
∂φp

∂aK
+
∂(δφn)

∂xq
∂φq

∂aJ
∂φm

∂aI
∂φp

∂aK
+
∂(δφp)

∂xq
∂φq

∂aK
∂φm

∂aI
∂φn

∂aJ
. (47.133)

Now reintroduce the permutation symbols to yield

δ

[
1

3!
ϵmnp ϵ

IJK ∂φm

∂aI
∂φn

∂aJ
∂φp

∂aK

]
=

1

3!
ϵmnp ϵ

IJK ∂(δφm)

∂xq

(
∂φq

∂aI
∂φn

∂aJ
∂φp

∂aK
− ∂φq

∂aJ
∂φn

∂aI
∂φp

∂aK
− ∂φq

∂aK
∂φp

∂aI
∂φn

∂aJ

)
, (47.134)

which can be simplified to
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. (47.135)

The right hand side vanishes unless m = q, which can be seen by expanding the terms. The case
with m = q = 1 is given by
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which can be simplified to
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The cases m = 2 and m = 3 lead to corresponding results, in which case we are led to
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=
∂(δφi)

∂xi
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(47.138b)

=
∂(δφi)

∂xi
∂φ

∂a
, (47.138c)

which is equation (47.57).

11At this point, it can be useful to be reminded of the notational conventions detailed in Section 18.4.
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Chapter 48

APPROXIMATE THEORIES FROM HAMILTON’S PRINCIPLE

In this chapter we derive some approximate theories for perfect fluids using Hamilton’s variational
principle.

reader’s guide for this chapter
This chapter is a direct follow-on from Chapter 47 that considered Hamilton’s principle

for a perfect fluid.

48.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361
48.2 Boussinesq ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1361

48.2.1 Unit Jacobian for non-divergent flow . . . . . . . . . . . . . . . . 1361
48.2.2 Boussinesq energetics . . . . . . . . . . . . . . . . . . . . . . . . . 1362
48.2.3 Action for the Boussinesq ocean . . . . . . . . . . . . . . . . . . . 1362
48.2.4 Boussinesq Euler-Lagrange equation . . . . . . . . . . . . . . . . 1363
48.2.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364

48.1 Loose threads
• Adiabatic Boussinesq in buoyancy coordinates

• Quasi-geostrophy

• Semi-geostrophy

• shallow water

48.2 Boussinesq ocean
We studied the Boussinesq ocean in Chapter 29, and here establish the Boussinesq equations
of motion via Hamilton’s principle. There are some novel conceptual and technical points to
raise here relative to the non-Boussinesq fluid considered in Chapter 47, thus warranting a full
discussion of the Boussinesq case.

48.2.1 Unit Jacobian for non-divergent flow
Following the approach earlier in this chapter, we use Cartesian Eulerian coordinates so that
x = φ(a, T ) provides the instantaneous Cartesian position of a fluid particle with material label,
a, and material time, T . Additionally, we here assume material coordinates are given by the
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Cartesian initial positions of fluid particles, in which case the Jacobian is unity at the initial
condition

a = x̊ =⇒ ∂φ

∂x̊
= 1 at T = t0. (48.1)

With this choice for the Eulerian and material coordinates, equation (18.77) means that the
Jacobian is the ratio of the present fluid parcel volume to the initial parcel volume

∂φ

∂x̊
=

d3x

d3x̊
. (48.2)

From our study in Chapter 21, we know that non-divergent flows keep the volume of fluid parcels
constant while following fluid particle trajectories, so that the Jacobian is a material constant

∂T (∂φ/∂x̊) = 0. (48.3)

A unit initial value as per equation (48.1) along material constancy means that the Jacobian
retains its unity value along each particle trajectory for all time

∂φ/∂x̊ = 1 ∀ T. (48.4)

48.2.2 Boussinesq energetics
As described in Section 29.1.8, the Boussinesq ocean does not respect the principle of equivalence,
since the mass used for the kinetic energy (inertial mass) is based on a constant reference
density, ρo, whereas the mass used for the gravitational potential energy (gravitational mass)
uses the in situ density, ρ. A constant reference density for kinetic energy means that the flow
is non-divergent, whereas the in situ density for potential energy allows for buoyancy to affect
motion via density gradients.

Now recall from Section 47.4.3 that the specific internal energy is a function of the specific
entropy and specific volume. For the perfect fluid the specific entropy is a material constant.
Equation (48.4) implies that the specific volume is also a material constant. Consequently, the
specific internal energy for the Boussinesq ocean is a material constant. Evidently, there is
a disconnect between between pressure and internal energy for the Boussinesq ocean. Stated
otherwise, we know that in the absence of flow divergence, there can be no pressure work on
a fluid parcel. Hence, pressure in the Boussinesq ocean has no thermodynamic connection to
internal energy. Pressure instead plays a purely mechanical role, which we see in Section 48.2.3
via its role as a Lagrange multiplier that constrains the flow to remain non-divergent. We already
described pressure as a constraint in Section 29.3, with the present discussion furthering that
understanding through Hamilton’s principle.

48.2.3 Action for the Boussinesq ocean
We follow the approach in Sections 13.11.3 and 15.5.2 by absorbing the centrifugal potential
into the geopotential, thus writing

Φ = g z. (48.5)

In this manner we are led to the action for a Boussinesq ocean (recall that a = x̊)

Saction =

ˆ Tfinal

Tinit

ˆ
R(x̊)

[
1
2 ∂Tφ · ∂Tφ+ ∂Tφ · (Ω×φ)

]
ρo d

3x̊ dT −
ˆ Tfinal

Tinit

ˆ
R(x̊)

Φ ρ̊d3x̊ dT

+

ˆ Tfinal

Tinit

ˆ
R(x̊)

p (∂φ/∂x̊− 1) d3x̊ dT, (48.6)
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where p is a Lagrange multiplier that plays the role of mechanical pressure. Notice that we
used the constant Boussinesq reference density, ρo, for computing the kinetic energy, whereas
the geopotential uses ρ̊. The use of distinct densities arises since the Boussinesq ocean does not
respect the principle of equivalance.

48.2.4 Boussinesq Euler-Lagrange equation

We now vary the Boussinesq action (48.6) by independently varying the trajectories as well as the
Lagrange multiplier, p. Varying the Lagrange multipler leads, as expected, to the non-divergence
constraint (48.4)

δpS
act = 0 =⇒ ∂φ/∂x̊ = 1. (48.7)

We now detail results from varying the trajectories.

Kinetic energy variation arising from variation of the trajectories

Following the steps in Section 47.5.2, only now with density set to the constant reference density,
ρo, leads to variation of the kinetic energy contribution to the action

δ

ˆ Tfinal

Tinit

ˆ
R(x̊)

[12 ∂Tφ · ∂Tφ+ ∂Tφ · (Ω×φ)] ρo d
3x̊ dT

= −
ˆ Tfinal

Tinit

ˆ
R(x̊)

[∂TTφ+ 2Ω× ∂Tφ] · δφ ρo d
3x̊ dT. (48.8)

Geopotential energy variation arising from variation of the trajectories

The chain rule leads to variation of the integrated geopotential

δ

ˆ
R(x̊)

Φ ρ̊ d3x̊ =

ˆ
R(x̊)

∂Φ

∂φi
δφi ρ̊d3x̊ =

ˆ
R(x̊)

∂Φ

∂φi
δφi ρL d3x̊, (48.9)

where the final equality made use of the identity (47.18) with a unit Jacobian

ρ̊ = ρL ∂φ/∂x̊ = ρL. (48.10)

Constraint variation arising from variation of the trajectories

Varying the trajectories leads to variation of the constraint

ˆ
R(x̊)

p δ(∂φ/∂x̊) d3x̊ =

ˆ
R(x̊)

p
∂(δφi)

∂xi
d3x̊ = −

ˆ
R(x̊)

∂p

∂xi
δφi d3x̊, (48.11)

where we used equation (47.138c) for the Jacobian variation in the presence of a unit Jacobian

δ

[
∂φ

∂x̊

]
=
∂(δφi)

∂xi
∂φ

∂x̊
=
∂(δφi)

∂xi
, (48.12)

and assumed zero mechanical forcing at the domain boundaries.
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The Euler-Lagrange equation for the Boussinesq ocean

Bringing terms together leads to the action variation under variation of the trajectories

δφS
act = −

ˆ Tfinal

Tinit

ˆ
R(x̊)

[∂TTφ+ 2Ω× ∂Tφ] · δφ ρo d
3x̊ dT

−
ˆ Tfinal

Tinit

ˆ
R(x̊)

∂Φ

∂φi
δφi ρL d3x̊ dT −

ˆ Tfinal

Tinit

ˆ
R(x̊)

∂p

∂xi
δφi d3x̊ dT. (48.13)

Setting the variation to zero leads to the Boussinesq Euler-Lagrange equations

∂Tv
L + 2Ω× vL = − 1

ρo

∂p

∂φ
− ρL

ρo

∂Φ

∂φ
, (48.14)

which agrees with the perfect fluid Boussinesq ocean equations derived in Section 29.1.7 using
Newtonian methods.

48.2.5 Comments
Absence of an equivalence principle for the Boussinesq ocean prompts a careful treatment of the
density factors. Furthermore, note how the pressure, here appearing as a Lagrange multiplier,
corresponds directly to the thermodynamic pressure for the non-Boussinesq fluid in Section 47.5.
That correspondence is not a coincidence, with the sign of the constraint as written in equation
(48.6) chosen to facilitate the agreement.
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Waves and the central role of a dispersion relation

In this part of the book, we study the mechanics of non-dissipative linear waves appearing in
geophysical fluids. This study of wave mechanics forms a key part of geophysical fluid mechanics
in part since so much of the observed geophysical flows manifest waves in one form or another.1

Waves in fluids manifest as fluctuations of fluid particles and associated fluid properties, with
the fluctuations possessing coherency in both space and time. Linear waves exist dynamically
due to a restoring force that provides the means for fluid particles to undergo simple harmonic
oscillations. Kinematically, linear waves arise when a symmetry is mildly broken, with coherent
fluctuations the collective response to the symmetry breaking. This wave mechanics forms a key
part of observed geophysical fluid phenomena.2

Linear waves have spatial and temporal properties that are closely linked. This linkage relates
the angular frequency, ω, which measures the temporal structure of a wave, to the wavevector,
k, which measures the spatial structure of a wave. The dispersion relation is the mathematical
equation that specifies the linkage between ω and k. Details of the dispersion relation are
determined by the physical forces that give rise to the wave, such as compressibility for acoustic
waves (Chapter 51), surface tension for capillary waves (Chapter 52), gravitational acceleration
for gravity waves (Chapters 52, 55, and 57), the Coriolis acceleration for inertial waves (Chapters
53 and 55) and differential rotation (beta effect) for planetary Rossby waves (Chapters 54 and
55).

Linear waves satisfy the superposition principle that is generally respected by linear physical
phenomena. As a result, interactions between linear waves are reversible, and consist of
constructive and destructive interferences.3 The superposition principle allows for the solution of
a linear wave equation to be constructed from constituent elementary pieces. Linear superposition
is the fundamental reason we can usefully examine properties of waves by examining the behavior
of a single traveling wave. We use this property of linearity when deriving the dispersion relation
for waves, and, in Part XI of this book, for determining stability properties.

Linearization to derive the wave equations

Derivation of a wave equation and corresponding dispersion relation requires us to linearize
the nonlinear governing equations of fluid motion. After deriving the linearized equations, we
study their salient properties to help understand the mechanics of their linear wave solutions
and dispersion relations. Each wave system has unique properties depending on the underlying
dynamical forces. Even so, many kinematical properties transcend details of the dynamics, with
kinematics forming the focus for Chapters 49 and 50.

Wave energy transport versus matter transport

The movement of fluid particles within a fluid is associated with the movement of matter,
including tracers, as well as other properties such as momentum, vorticity, enthalpy, entropy, etc.
Although waves can lead to a net transfer of matter, through a process known as Stokes drift,
the transfer of wave energy and momentum generally occurs without any net movement of fluid
particles, where “net movement” refers to a time average over a wave period (i.e., the phase
average from Section 8.1.2). As such, wave energy propagates at speeds that are unconstrained
by fluid particle speeds. Indeed, wave energy in linear waves is generally transmitted many times

1“Wave mechanics” sometimes refers to that part of quantum mechanics based on Schrödinger’s equation. We
are instead here concerned with waves that occur in classical geophysical fluids.

2“Wave mechanics” sometimes refers to that part of quantum mechanics based on Schrödinger’s equation. We
are instead here concerned with waves that occur in classical geophysical fluids.

3Some authors prefer to consider reversible interactions as the absence of any interaction, since one can exactly
distinguish individual linear waves through the Fourier decomposition of a wave field comprised of multiple waves.
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faster than matter. We thus conceive of waves as organized disturbances on a background fluid
state (sometimes called the base state or equilibrium state) that transmit energy from one part
of the media to another. The speed and direction of wave energy is determined by the dispersion
relation, thus making the dispersion relation a central feature of wave mechanics.

The scope of our study

The study of wave mechanics forms a central part of physics, engineering, and applied math-
ematics. We target the reader aiming to learn wave mechanics for the first time, while also
providing selected material for the experienced physicist interested in geophysical fluid wave
mechanics. For these purposes, we survey a suite of geophysical fluid waves and dive deep into
particular special topics to support understanding and to develop mathematical methods. To
help simplify the maths, we restrict attention to Cartesian waves (i.e., plane waves), leaving the
geophysically relevant topic of spherical waves for more specialized treatments. Our presentation
is not comprehensive. Instead, we aim to offer an intellectual platform for further study and
research. Insights and skills working with waves requires practice, and we get plenty from the
wide variety of geophysical fluid waves considered here.
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Chapter 49

PLANE WAVES AND WAVE PACKETS

Forces acting in a fluid determine the dispersion relation satisfied by linear waves, with the
dispersion relation connecting the wave angular frequency, ω, to the wavevector, k. We write
this relation in the functional form1

ω = ϖ(k), (49.1)

where ϖ is generally a nonlinear function of the wavevector. The dispersion relation couples
the space and time structure of a wave: once a wavevector is chosen then the angular frequency
is specified. In this chapter we develop the foundations for wave kinematics, which focuses on
wave properties arising from the existence of a dispersion relation yet is unconcerned with the
forces that determine this relation.

The wave function plays a fundamental role in describing waves. Example wave functions
include the velocity potential (acoustic and surface waves), the streamfunction (Rossby waves),
and free surface height (shallow water waves). All other dynamical fields can be generated from
the wave function, thus allowing us to focus on characterizing how the wave appears through
study of the wave function. The wave function has both an x-space (geographic/height space)
representation as well as a k-space (wavevector space) representation. These two representations
offer complementary characterizations of wave properties, with the transformation between these
representations provided by Fourier’s integral theorem from Section 8.3.1. One of the more
remarkable aspects of this complementarity arises through the uncertainty relation, which states
that it is not possible to simultaneously specify the position of a wave packet with arbitrary
precision in both x-space and k-space. That is, precision in one space corresponds to imprecision
in the other. We derive this uncertainty relation through the study of Gaussian wave packets.

reader’s guide to this chapter
We focus on plane waves in this chapter and so make use of Cartesian coordinates and

Cartesian tensors (Chapters 1 and 2). Furthermore, we assume familiarity with the use of
complex variables as well as Fourier transforms, both reviewed in Chapter 8. We restrict
attention to a homogeneous background/base state upon which waves are supported. A
homogeneous base state is rarely realized in geophysics, and yet it serves our pedagogical
needs prior to moving onto the more realistic, and mathematically complex, case of an
inhomogeneous base state in Chapter 50.

The presentation shares much with books and reviews covering topics in linear wave
mechanics, such as Bretherton (1971), chapter 3 of Acheson (1990), chapters 1 and 2 of
Pedlosky (2003), chapter 6 of Olbers et al. (2012), chapter 1 of Sutherland (2010), chapter 7
of Thorne and Blandford (2017), and chapter 6 of Vallis (2017). However, be mindful that
not all authors agree on the conventions followed here and as summarized in Section 49.2.

1For waves moving on a space and time dependent background, the dispersion relation picks up space and
time dependence. This topic is the focus of Chapter 50.
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49.1 Loose threads

• Figures

• More on wave packets and Green’s functions. Derive the Green’s function equation from
the packet equation plus the dispersion relation.
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49.2 Nomenclature and conventions
Many readers have encountered wave kinematics in prior studies. Yet some of the conventions
are not universal, so that it is useful to summarize salient points to expose the choices made in
this book.

49.2.1 Types of waves
Table 49.1 summarizes the various types of waves considered in this book. We mostly encounter
plane traveling waves, though also make use of standing waves (as for waves within a bounded
domain) and stationary waves (when a wave has only spatial periodicity and no time dependence).
The wave patterns in Table 49.1 can arise from any conceivable context, physical or otherwise
(e.g., the wave produced by spectators in a large sporting event). The specifics of a physical
system arises when enforcing that a wave function, Φ, satisfies a linear partial differential
equation, and it is through this equation that we derive the dispersion relation.

We wish to emphasize the above points in a bit more mundane manner. Namely, there are
many mathematical functions that give rise to oscillating patterns. However, these patterns
correspond to particular solutions to a physical system only when they satisfy a partial differential
equation such as equation (6.65). That is, there are more mathematial wave-like patterns than
there are physical waves. For example, consider the function

Φ(x, y, t) = A cos(kx x− ω t) cos(ω t) = (A/2) [cos(kx x− 2ω t) + cos(kxx)], (49.2)

where A is a constant amplitude. The second expression reveals the sum of a traveling plane
wave plus a stationary wave. It is notable that this function is not in the form of a Fourier
component that constitutes the wave patterns in Table 49.1. Rather, it is simply the sum of
two trigonometric functions having a particular space and time structure. Is this function a
particular solution to the classic wave equation with operator ∂tt − c2 ∂xx? A quick calculation
reveals that it is not a solution since

∂ttΦ = −2Aω2 cos(kx x− 2ω t) (49.3a)

∂xxΦ = −k2xΦ = −(k2xA/2)[cos(kx x− 2ω t) + cos(kxx)], (49.3b)

revealing that there is no way to relate ∂ttΦ and c2 ∂xxΦ at arbitrary space and time points. In
turn, this function is not a suitable wave function ansatz for deriving a dispersion relation.2

name space-time structure

monochromatic Re[Φ0 e
−iω t]

traveling Re[A(k) ei (k·x−ω t)]

standing Re[A(k) eik·x] cos(ωt)

stationary Re[A(k) eik·x]

Table 49.1: Summarizing the variety of waves encountered in this book, with distinctions based on their space-
time structure. The operator, Re, extracts the real part of its argument, so that, for example, Re[ei (k·x−ω t)] =
cos(k · x− ω t). The first three patterns are monochromatic, which means they oscillate coherently with a single
period, 2π/ω, where ω ≥ 0 is the angular frequency. However, note that Re[Φ0 e

−iω t] is monochromatic and yet
we cannot conclude whether it is a wave until we have further information about its spatial structure. Spatial
dependence is introduced in the form eik·x, where k is the wavevector that determines the direction of the wave
and its wavelength. For a plane wave in three-dimensional space, k · x = kx x+ ky y + kz z, whereas a plane wave
in two dimensions has wavevector k · x = kx x+ ky y. Standing waves do not travel in space but oscillate in place.
A stationary wave has an oscillatory spatial pattern but has no time dependence and so is static. The final three
waves are harmonic since they have a regular spatial pattern.

2See Section 49.5.5 for a discussion of wave ansatz.
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49.2.2 Types of dispersion relations

The dispersion relation (49.1) is the root of all wave properties since it links the space and time
structure of the wave. Some waves encountered in this book have a dispersion relation in the
slightly more restricted form

ω = ϖ(|k|), (49.4)

where |k| is the wavenumber. Evidently, these waves have their angular frequency independent of
the wave direction. Examples include acoustic waves (Chapter 51) and surface waves (Chapter
52). Inertial waves from Chapter 53 and internal gravity waves from Chapter 57 are the
complement, with their dispersion relation independent of the wavenumber yet dependent on
the wave direction,

ω = ϖ(k̂) with k̂ = k/|k|. (49.5)

Finally, the Rossby waves introduced in Chapters 54 and 55 have a dispersion relation that
depends on both the wavenumber and wave direction; i.e., on the wavevector, k.

49.2.3 Conventions for space-time description of waves

The suite of dispersion relations encountered in geophysical fluids motivates the following
conventions that form the basis for our space-time description of waves. Readers should be
aware that certain of these conventions are not universally followed in the literature.

• angular frequency: Following Bretherton (1971), the angular frequency of a stable
linear wave that results from the dispersion relation, ω = ϖ(k), is chosen as a non-negative
real number,

ω ≥ 0, (49.6)

so that the wave period, 2π/ω, is also a non-negative number and the wave advances
forward in time with the wave direction determined by the wavevector.

This convention is not universally followed in the literature. One reason to allow for a
negative angular frequency is that dispersion relations typically lead to quadratic equations
that have a positive and a negative root. For example, the one-dimensional acoustic wave
equation has

ω2(k) = c2s k
2, (49.7)

which has roots ω = ±cs|k| (cs is the acoustic wave speed; Section 51.5.1). When choosing
both roots, one interprets them as representing oppositely moving waves. Even so, we
follow a convention that always chooses the positive root, so that the wave direction is
determined by the wavevector (see next point) rather than the sign of the angular frequency.
Additionally, we are not generally interested in waves traveling backward in time, which is
sometimes used to interpret waves with ω < 0.

One encounters a negative angular frequency when conducting time-frequency Fourier
analysis in the complex plane, as in Section 8.4. In that context, the negative frequency
is not physical, but instead is a mathematical expedient that allows one to work with
a complex Fourier transform. There is nothing physical associated with the negative
frequency in this context, since one could equivalently work with real Fourier sine and
cosine transforms where the angular frequency is non-negative. See Section 8.4.1 for more
discussion. Furthermore, if using complex Fourier analysis, then switching the sign of
the angular frequency and the wavevector merely leads to the complex conjugate wave
function. Since the physical wave is real in classical physics, the complex conjugate wave
function is the same wave.
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• wave direction: The direction of a wave is specified by the wavevector, k (Section 49.5),
and its wavelength is 2π/|k|, where |k| ≥ 0 is the wavenumber.

• phase speed: The phase speed, Cp, is a non-negative number. It is not a vector so that
we do not consider components to the phase speed. Rather, we consider components to
the phase velocity vector, which is a vector whose direction is given by the wavevector and
whose non-negative magnitude, along with the angular frequency, determine the phase
speed (Section 49.5.2).

49.3 Two classes of linear waves
We distinguish two types of linear wave phenomena: non-dispersive waves and dispersive waves.
In this section we present a mathematical overview of these waves, offering examples of each
type of wave along with pointers to the physics and maths to come later.3

49.3.1 Non-dispersive waves
The canonical non-dispersive wave phenomena is described by “the” wave equation

(∂tt − c2∇2)Φ = 0, (49.8)

where Φ is a wave function (e.g., velocity potential, streamfunction, surface height), and c2 > 0
is the squared wave speed. As discussed in Section 6.7, this wave equation is hyperbolic and
its wave solutions all transmit signals with speed, c > 0, without distortion. That is, waves
satisfying equation (49.8) of arbitrary wavelengths travel at the same speed so that there is no
mixing across the spectrum of wavevectors. We find that for non-dispersive waves the angular
frequency divided by the wavenumber equals to a constant phase speed shared by all waves. The
acoustic waves of Chapter 51 and the shallow water gravity waves of Chapter 55 are example
non-dispersive waves considered in this book.

To expose some of the mathematical details, consider the wave equation (49.8) in one space
dimension and written in the factored form

(∂t − c ∂x) (∂t + c ∂x)Φ = 0. (49.9)

As discussed in Section 6.7, the solution to this hyperbolic partial differential equation takes the
form of two signals moving in opposite directions

Φ(x, t) = F (x− c t) +G(x+ c t), (49.10)

where the functions F and G are specified by boundary and initial conditions. Their respectiive
functional dependencies, x±c t, determine the propagation direction of the signal, with F (x−c t)
a signal propagating in the +x̂ direction whereas G(x+ c t) is a signal propagating in the −x̂
direction. A key point is that the signals all move with the same speed, with F and G arbitrary
functions that may be built from a single linear wave or any number of waves (including an
infinity of waves). Also note that the wave equation (49.9) has been factored into the product of
two linear operators, so that a simpler hyperbolic wave equation is either of the two first order
equations

(∂t ± c ∂x)Φ = 0. (49.11)

In other parts of this book this equation is referred to as the advection equation for a one-
dimensional signal with constant advection velocity (e.g., see Sections 69.3 and 69.4).

3Chapter 1 of Whitham (1974) provides a thorough mathematical introduction to the variety of linear and
nonlinear waves.
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It is common to be introduced to wave physics through solutions to the hyperbolic wave
equations (49.8) or (49.11). Correspondingly, much of our experience with waves is based on
the non-dispersive nature of these waves. For example, when listening to a symphony, we hear
the sounds from various instruments “in concert”. That is, the speed that the acoustic waves
propagate are independent of the wavelength. Indeed, imagine how difficult it would be for an
audience spread throughout a concert hall to equally appreciate a symphonic performance if
acoustic waves were dispersive!

49.3.2 Dispersive waves

Upon studying geophysical waves, we soon realize that non-dispersive waves are the exception
rather than the norm. That is, most waves in geophysical fluids are dispersive, with their
governing wave equations sometimes mathematically classified as hyperbolic though many are
not. A dispersive wave is one that admits solutions of the form

Φ(x, t) = A ei (k·x−ϖ t) = A eik·(x−k̂Cp t) (49.12)

where the speed of a surface with constant phase,

Cp = ϖ(k)/|k|, (49.13)

is a function of the wavevector. As such, the movement of the dispersive wave signal (i.e., the
phase velocity) depends on the wavelength of the wave. For example, if we prepare a packet of
dispersive waves with a particular shape in space, the evolution of the packet is characterized by
the dispersion of the packet.

Waves visible by eye on the surface of a pond or surface of the ocean offer a canonical example
of dispersive waves. As explored in Section 52.5.3, long surface gravity waves (which also have
low frequency) travel faster than short and high frequency surface gravity waves. Indeed, it is
this dispersion for surface gravity waves that surfers appreciate when assessing the suitability of
coastal surf conditions following an offshore storm.4

49.3.3 Comments about time derivatives

As noted when discussing the non-dispersive wave equation (49.9), the presence of two time
derivatives provides the means for two wave signals to arise from solutions to this equation, where
the waves move in opposite directions. This case occurs for acoustic waves, gravity waves, and
inertial waves. It manifests as a dispersion relation written for the squared angular frequency. In
contrast, when there is only one time derivative in the wave equation, then the dispersion relation
is written for the angular frequency rather than its square. Furthermore, the system chooses a
preferred direction for the wave signal, with the Rossby wave offering the canonical example of
such anisotropic waves. Rossby waves also offer a clear example of how the non-negative angular
frequency convention (Section 49.2.3) helps to understand the phase velocity.

49.4 Monochromatic patterns
A monochromatic pattern is a feature characterized by having all points maintain the same time
periodic motion with single angular frequency, ω. Hence, all points within a monochromatic
wave have the same angular frequency. The trigonometric functions, cos(ω t) and sin(ω t), both
exhibit time periodic behavior, which explains the factors of 2π appearing throughout wave

4See Butt et al. (2004) for a scientific view on surface ocean waves geared towards surfing.
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physics. As noted in Section 49.2.3, we choose the convention in which the angular frequency is
a non-negative number, ω ≥ 0, so that the period of the oscillation is 2π/ω.

It is often convenient to make use of the Euler identity

e−iω t = cos(ω t)− i sin(ω t), (49.14)

to thus write a time periodic wave function as5

Φ = Re[Φ0 e
−iω t], (49.15)

where Φ0 is a complex function further specified below, and Re[ ] is an operator that returns the
real part of its argument (see Section 8.1). For linear calculations we can safely omit the Re
operation until the end of the calculations. However, for products of wave fields, such as when
performing energetic analyses, more care is needed, with details given in Section 8.1.6

49.5 Free plane waves
Plane waves are characterized by a single wavevector and single angular frequency, with the
wave exhibiting symmetry in directions perpendicular to the propagation direction (hence the
“plane” in its name). Any linear wave, be it acoustic, gravity, Rossby, etc., can be decomposed
into a sum or integral of plane waves with a suite of frequencies and wavevectors, and with
modulation by an amplitude function.

The general form of a stationary plane wave function is given by

Φ0 = A(k) eik·x, (49.16)

where A(k) is a complex wave amplitude and k is the wavevector or wavenumber vector. The
wavevector has dimensions of inverse length and it characterizes the wavelength of the wave as
well as the spatial direction of the wave propagation (as per travelling plane waves in Section
49.5.1). The magnitude of the wavevector, |k|, is referred to as the wavenumber as it measures
2π times the number of waves per unit length (we further discuss this notion in Section 49.5.2).
We allow the wave amplitude, A(k), to be a function of wavevector so that different plane waves
can have distinct amplitudes. We also allow for A(k) to be complex so that different plane
waves can have their phases shifted relative to one another (we discuss phases in Section 49.5.1).

Given that the plane wave possesses symmetry in planes perpendicular to k, it is spatially
dependent only on the direction parallel to the wavevector,7

k = |k| k̂. (49.17)

We say that the plane wave function (49.16) is free since it exists throughout all of space and is
unaffected by boundaries. Furthermore, we are uninterested in how the plane wave was formed.
Indeed, since it is present throughout all of space, we imagine that the plane wave has existed
for all time. Clearly these notions are not physically realizable. Even so, the mathematical
simplicity of the plane wave, along with the superposition principle, affords it a central role in
the study of wave mechanics. Furthermore, through the construct of wave packets studied in
Sections 49.6 and 49.7, which are built via the superposition of plane waves, we can build wave

5The minus sign is motivated by convenience for when we consider a traveling wave and the phase velocity in
Section 49.5.2. See in particular Figure 49.1.

6As noted when developing the basics of Fourier analysis in Chapter 8, we use complex variables solely for
mathematical convenience, with all physical fields producing real numbers in this book.

7Caution: many authors write k̂ for the unit vertical direction, whereas in this book we write ẑ for the unit
vertical direction whereas k̂ is the direction of a wave.
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forms that are spatially and temporally localized and are thus physically realizable.

49.5.1 Traveling plane wave
Allowing for time to evolve renders the traveling monochromatic plane wave function

Φ = Re[Φ0 e
−iω t] = Re[A(k) ei (k·x−ω t)] = |A(k)|Re[ei (k·x−ω t+α)]. (49.18)

We here wrote complex wave amplitude according to a real amplitude and a phase shift

A(k) = |A(k)| eiα with tanα = Im[A(k)]/Re[A(k)]. (49.19)

The traveling plane wave phase function is given by

P = k · x− ω t+ α, (49.20)

so that
Φ = |A(k)|Re[eiP] = |A(k)| cosP. (49.21)

The traveling plane wave function, Φ, depends on the wavevector as well as the space and time
point. It is also a function of the angular frequency, ω. However, recall that for the study of
waves realized by a physical system, once the wavevector is known then the angular frequency is
specified through the dispersion relation (49.1).

The phase factor on the wave amplitude in equation (49.19) is generally a function of
wavevector, α = α(k). However, for most applications it is taken as a constant, in which case it
is referred to as the standard phase.

49.5.2 Characterizing the wave
Wave period

The wave function (49.18) for the traveling plane wave takes on the same value for all space and
time points with a phase, P, that is shifted by any integer multiple of 2π. By fixing a point in
space, the plane wave is identical for all times, tn, satisfying

ω tn = ω t+ 2π n = ω (t+ 2π n/ω). (49.22)

Hence, the wave period is given by

wave period = 2π/ω. (49.23)

Wavelength

By fixing time, we see that the plane wave is identical for all space points, xn, satisfying

k · xn = k · x+ 2π n = |k| (x · k̂ + 2π n/|k|), (49.24)

which allows us to identify 2π/|k| as the wavelength, which we write as8

Λ = 2π/|k| =⇒ k = 2π k̂/Λ. (49.25)

Figure 49.1 provides an example cosine wave in one-dimension, illustrating the wavelength and
traveling nature of the wave.

8We choose the uppercase, Λ, to denote wavelength rather than the more commonly used λ. We do so in
order to distinguish the wavelength, Λ, from the longitude, λ, that commonly appears in this book.
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Λ = 2π/|k|

A

A cos(k x)

x

Φ

A cos(k x− π/2) A cos(k x)

x

Φ

Figure 49.1: Top panel: a cosine wave, Φ = A cos(k x − ω t), along the x-axis at t = 0, with wavelength
Λ = 2π/|k|, wavevector k = k x̂, and real amplitude, A. Lower panel: two snapshots of a traveling cosine wave,
one shown at t = 0 as in the top panel, and another shown a quarter period later, at ω t = π/2. With k > 0 and
ω t > 0, as shown in this figure, a point with constant phase moves in the +x̂ direction. Correspondingly, as the
phase becomes more negative (as time increases), the wave form moves to the right, in the direction of the wave
propagation. If k < 0 then the phase propagates in the −x̂ direction.

Phase velocity and phase speed

When observing a traveling plane wave from a fixed point in space, one wavelength passes by
the point within a single wave period. We refer to the phase velocity, cp, as the velocity of a
point fixed on a phase surface and traveling in the direction of the wavevector. Its magnitude is
the phase speed, Cp, which is the speed that the phase moves in the direction of the wavevector,

cp = Cp k̂ = (ω/|k|) k̂ =⇒ Cp = cp · k̂ = (2π/|k|)/(2π/ω) = ω/|k| ≥ 0, (49.26)

which allows us to write the angular frequency as

ω = cp · k = Cp |k|. (49.27)

Figure 49.2 provides an illustration of the phase velocity and phase speed.

An equivalent means to understand the phase velocity is to consider the time derivative,
Dp/Dt, defined to measure time changes within the reference frame of a point on a constant
phase surface

DpP

Dt
≡ ∂t + cp · ∇, (49.28)

in which case
DpP

Dt
= (∂t + cp · ∇)(x · k − ω t) = cp · k − ω = 0. (49.29)
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We are thus led to the expression for the phase speed and angular frequency

Cp = k̂ ·
Dpx

Dt
and ω = cp · k = k · Dpx

Dt
. (49.30)

The wave phase time derivative (49.28) is directly analogous to the material time derivative,

D

Dt
= ∂t + v · ∇, (49.31)

defined in the reference frame following the velocity of a fluid particle (Section 17.4). Likewise,
in Section 50.3.2 we define the time derivative following the group velocity, cg, in which case cp
in equation (49.28) is replaced by cg.

Phase distance

We can define the phase speed in another manner by introducing the projection of the position
vector along the direction of the wavevector

Sk̂ ≡ k̂ · x, (49.32)

which we refer to as the phase distance. Note that Sk̂ can be positive or negative, depending on
the direction of the wavevector. The wavelength as defined by equation (49.24) takes on the
form

k · xn = k · x+ 2π n = |k| (Sk̂ + 2π n/|k|). (49.33)

As such, the phase speed is the change in the position of the constant phase lines in the direction
of the wavevector, so that

Cp =

[
∂Sk̂
∂t

]
P

= − ∂P/∂t

∂P/∂Sk̂
= ω/|k|. (49.34)

For this equation we made use of some basic mathematics of generalized surfaces as detailed in
Section 63.12.2. Finally, this notation allows us to write the phase function as

P = k · x− ω t+ α = |k| (Sk̂ − Cp t) + α. (49.35)

vphase = Cp k̂

Figure 49.2: A mesh plot of a plane wave with phase velocity, cp = Cp k̂ = (ω/|k|) k̂, pointing perpendicular to
surfaces of constant phase.

49.5.3 Wavenumber and factors of 2π
The magnitude of the wavevector, |k|, appears in many places in wave kinematics, such as in
the definition (49.25) of the wavelength. As a shorthand terminology, we refer to |k| as the
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wavenumber, with the wavenumber related to the wavelength via

|k| = 2π/Λ. (49.36)

The wavenumber measures 2π times the number of waves per unit length, so that the wavenumber
measures the spatial angular frequency of a wave. In some contexts it is useful to introduce the
reduced wavelength

λ– = Λ/2π, (49.37)

so that the wavenumber is given by the inverse reduced wavelength

|k| = λ–−1. (49.38)

Alternatively, it is sometimes convenient to work with the reduced wavenumber as introduced in
Section 8.3.7 when discussing Fourier transforms

k̄= |k|/2π. (49.39)

Hence, the reduced wavenumber is the inverse wavelength

k̄= 1/Λ (49.40)

so that k̄measures the number of waves per unit length.

In Section 8.3.7 we raised some issues about various conventions for placing 2π factors
in Fourier analysis. We further those concerns by noting that the 2π factor associated with
wavenumbers can be unclear in the literature. The ambiguity occurs when a particular length
scale, L, is considered, yet it is not specified whether the length scale refers to a wavelength, in
which case the corresponding wavenumber is |k| = 2π/L, or to a reduced wavelength, in which
case the corresponding wavenumber is |k| = 1/L. The bottomline is that care is necessary to
ensure the proper usage.

49.5.4 Superposition of plane waves
Through the principle of superposition respected by linear waves, realistic linear waves can be
decomposed into the sum or integral of modulated plane waves. Indeed, this decomposition
forms the mathematical basis for Fourier analysis detailed in Chapter 8. We here offer an
illustration of this decomposition by considering how two plane waves combine, and then how
three plane waves combine.

Consider the sum of two plane waves, each with same real amplitude of unity (in arbitrary
units), and with distinct (but close) wavevectors and angular frequencies

k± = k ±∆k and ω± = ω ±∆ω with |∆k|/|k| ≪ 1 and |∆ω/ω| ≪ 1. (49.41)

The resulting superposition of the two waves is given by

Re[ei (x·k+−t ω+) + ei (x·k−−t ω−)] = 2 cos(∆k · x−∆ω t) cos(k · x− ω t). (49.42)

The cos(∆k · x−∆ω t) factor acts as a low wavenumber and low frequency modulation of the
second factor, cos(k · x − ω t), which is much more rapidly varying in space and time. We
illustrate this superposition of two plane waves in Figure 49.3 for time t = 0. Adding a third
wave, also with unit amplitude, exp[i (k · x− ω t)], renders the superposition

Re[ei (x·k+−t ω+) + ei (x·k−t ω) + ei (x·k−−t ω−)] = 4 cos2[(∆k · x − ∆ω t)/2] cos(k · x − ω t).
(49.43)

CHAPTER 49. PLANE WAVES AND WAVE PACKETS page 1379 of 2158



49.6. FREE WAVE PACKETS

The third wave serves to double the amplitude through constructive interference, while also
broadening the width of the low amplitude destructive interference region. Additionally, the
modulation function, cos2[(∆k · x−∆ω t)/2], is rendered non-negative when adding the third
wave. We also illustrate this superposition in Figure 49.3.

Figure 49.3: Superposition of two plane waves (red lines; equation (49.42)) and three plane waves (black lines;
equation (49.43)), with all plane waves having equal real amplitudes and here shown for time t = 0. Notice how
in both cases, a high wavenumber wave (short wave) is modulated by a low wavenumber wave (long wave). The
units in this figure are arbitrary.

49.5.5 Wave ansatz

The principle of superposition allows us to study properties of a linear wave equation, in particular
the dispersion relation, by inserting a single plane wave into the wave equation. In this manner
we refer to the plane wave as an ansatz, which is a German word meaning “educated guess”.

49.5.6 Summary of kinematic wave properties

In Table 49.2, we summarize the variety of kinematic properties of waves. In this book we work
mostly with the angular frequency, ω, the wavevector, k, and the wavenumber, |k|. Even so, it
is useful to be versed in the alternative choices.

name math symbol dimensions math relation

period τperiod T τperiod = 2π/ω

angular frequency ω T−1 ω = 2π/τperiod
frequency f T−1 f = ω/2π = 1/τperiod
wavenumber |k| L−1 |k| = 2π/Λ

wavevector k L−1 k = |k| k̂
reduced wavevector k̄ L−1 k̄= k/2π

wavelength Λ L Λ = 2π/|k| = 1/|k̄|
reduced wavelength λ– L λ– = Λ/2π = 1/|k|

Table 49.2: Summarizing the variety of terms used to kinematically describe waves. In this book we mostly use
the angular frequency, ω ≥ 0, the wavevector, k, and the wavenumber, |k|.

49.6 Free wave packets
The modulation of waves in Figure 49.3 serve to organize waves into x-space regions known
as wave trains. A wave packet is a train of free waves that are organized into a localized (and
moving) region of x-space. Localization is enabled by a modulation function and the plane wave

page 1380 of 2158 geophysical fluid mechanics



49.6. FREE WAVE PACKETS

modes that are organized within the packet are known as carrier waves.9 Wave trains and wave
packets are generated by a wavemaker. For example, consider a wavemaker oscillating at a
known frequency, ω0. Ramping up the wavemaker amplitude for a period of time, and then
ramping it down towards zero, then produces a group of waves that are localized in time and
have angular frequency and wavenumber centered on ω0 and k0, where k0 is determined by the
dispersion relation given ω0. In the laboratory, the wavemaker might be an oscillating piston
placed in a tank of water, such as considered for acoustic waves in Section 51.8. In the natural
environment, a wavemaker might be a storm that passes over the ocean and generates surface
gravity waves, or an atmospheric convective event that generates atmospheric internal gravity
waves.

Mathematically, wave packets are described by complementary wave functions in k-space
and x-space. The k-space representation, A(k, t), is also called the amplitude function for the
x-space wave function, Φ(x, t). In the world of mathematical abstraction, we prepare wave
packets with a specified k-space initial condition, A(k, t = 0), that has a corresponding x-space
initial condition, Φ(x, t = 0), determined by the inverse Fourier transform. Upon initializing
the packets we study their evolution. Since the packets are constructed by linear plane waves,
their evolution is determined by the superposed and evolving constituent plane waves. What
distinguishes a packet of acoustic waves from a packet of gravity waves, for example, is the
dispersion relation, which is specific to the physics describing the particular waves.

49.6.1 Phase velocity, group velocity, and the dispersion relation
Examination of Figure 49.3 suggests that the velocity of a wave packet’s center is not directly
related to the phase velocity of the constituent plane waves. Rather, it is determined by motion of
the modulation function. For the one-dimensional examples of Figure 49.3, the packet motion is
determined by ∆ω/∆k. In this section we generalize this result to the group velocity determined
by10

cg = ∇kϖ(k). (49.44)

In this equation, we introduced the wave dispersion relation (49.1) that specifies how the
angular frequency is functionally connected to the wavevector. We see that the group velocity is
determined by the gradient of the dispersion relation in wavevector space, which prompted us to
expose a wavevector subscript on the gradient operator. As defined, the group velocity points in
the k-space direction of maximum increase for the angular frequency. Figure 49.4 illustrates two
dispersion relations for a one-dimensional wave.
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Cp = cg = !/|k|

Figure 49.4: Example dispersion relations for one-dimensional waves. Left panel: a non-dispersive wave has a
phase speed, Cp, that is a constant so that all waves, regardless their wavelength or angular frequency, move at
the same speed. Right panel: a dispersive wave, here shown for a wave whose phase speed increases as the wave
number increases, as does the group velocity.

9From an engineering perspective, the carrier wave carries the most useful information contained in the wave
packet signal, hence the name.

10Many dispersion relations are naturally written as ω2, in which case it is simpler to compute the group
velocity according to ∇kω

2 = 2ω cg.
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The dispersion relation for non-dispersive waves results in phase speeds that are independent
of the wavenumber so that

ϖ = Cp |k|, (49.45)

where Cp > 0 is the constant phase speed. Evidently, the angular frequency is identical for
all waves having the same wavenumber. That is, the angular frequency only cares about
the wavelength of the non-dispersive wave and not about its direction. Furthermore, we
see that the continuum of wavenumbers results in a continuum of angular frequencies, with
higher wavenumbers rendering higher angular frequencies. This behavior is familiar for both
electromagnetic and acoustic waves, which are both non-dispersive, in which waves of smaller
wavelength (higher wavenumber) have higher frequencies. We depict this sort of dispersion
relation in the left panel of Figure 49.4.

Dispersive waves are characterized by a dispersion relation with the phase speed a function
of the wavevector

ϖ = Cp(k) |k| > 0. (49.46)

Again, the phase speed and angular frequency are positive, but now we find the phase speed
depends on the wavenumber and possibly the wave direction. We provide an example for this
sort of dispersion relation in the right panel of Figure 49.4.

49.6.2 A continuum of traveling plane waves

Consider the superposition of a continuum of traveling plane waves given by the integral
expression for the wave function

Φ(x, t) =
1

(2π)3

ˆ
A(k) ei (k·x−ϖ(k) t) dk. (49.47)

The wave function, Φ(x, t), is constructed through combining a continuum of traveling plane
waves, with the amplitude function, A(k), determining which wavevectors contribute to the
packet and by how much they contribute. The integral in equation (49.47) is computed over all
the three-dimensional wavevector space (k-space). For example, a Cartesian representation of a
wavevector volume element is written

dk = dkx dky dkz, (49.48)

with the integration limits kx, ky, kz ∈ (−∞,∞), corresponding to waves traveling in all directions
and spanning all wavenumbers. Furthermore, the angular frequency in equation (49.47) is
specified by the dispersion relation,

ω = ϖ(k) ≥ 0, (49.49)

so that the wave function (49.47) is built from a continuum of wavevectors with corresponding
angular frequencies.

49.6.3 The wave function is real

For brevity we often drop the Re operator on the wave function (49.47). Even so, it is critical
to note that the wave function is real, which has implications for how we compute the k-space
amplitude function, A(k). For example, if the amplitude function is real11

A(k) = A(k) = A∗(k), (49.50)

11The star is the complex conjugate operator.
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then the wave function takes the form

Φ(x, t) =
1

(2π)3

ˆ
A(k) cos[k · x−ϖ(k) t] dk. (49.51)

However, there are cases where we need the extra phase degree of freedom afforded by a
complex amplitude function, in which case the real part of equation (49.47) leads to

Φ(x, t) = Re

[
1

(2π)3

ˆ
A(k) ei (k·x−ϖ(k) t) dk

]
(49.52a)

=
1

2 (2π)3

ˆ [
A(k) ei (k·x−ϖ(k) t) +A∗(k) e−i (k·x−ϖ(k) t)

]
dk. (49.52b)

Since the integral is over all of k-space, we can write

ˆ
A∗(k) e−i (k·x−ϖ(k) t) dk =

ˆ
A∗(−k) ei (k·x+ϖ(−k) t) dk, (49.53)

in which case the wavefunction takes the form

Φ(x, t) =
1

2 (2π)3

ˆ
eik·x [A(k) e−iϖ(k) t +A∗(−k) eiϖ(−k) t] dk, (49.54)

and its time tendency is

∂tΦ(x, t) =
i

2 (2π)3

ˆ
eik·x [−ϖ(k)A(k) e−iϖ(k) t +ϖ(−k)A∗(−k) eiϖ(−k) t] dk. (49.55)

49.6.4 Initializing the wave packet

We often consider wave packets in the context of initial value problems, whereby the packet
is initialized according to some process such as described at the start of this section. We are
concerned with freely moving wave packets, so that boundary conditions are not considered here.
Thus, we consider three possibilities: initializing the packet’s wave function, initializing its time
tendency, or initializing both the wave function and its time tendency. To describe these initial
conditions requires the use of complex k-space amplitudes. Setting t = 0 in equation (49.54) for
the wave function and equation (49.55) for the time tendency leads to

Φ0(x) ≡ Φ(x, 0) =
1

2 (2π)3

ˆ
eik·x [A(k) +A∗(−k)] dk (49.56a)

Φ̇0(x) ≡ ∂tΦ(x, 0) =
i

2 (2π)3

ˆ
eik·x [−ϖ(k)A(k) +ϖ(−k)A∗(−k)] dk. (49.56b)

Inverting the Fourier transform for the initial condition (49.56a) and the initial tendency (49.56b)
renders

A(k) +A∗(−k) = 2

ˆ
Φ0(x) e

−ik·x dx (49.57a)

−ϖ(k)A(k) +ϖ(−k)A∗(−k) = −2 i
ˆ

Φ̇0(x) e
−ik·x dx, (49.57b)

which then leads to the k-space amplitude

A(k) =
2

ϖ(k) +ϖ(−k)

ˆ
[ϖ(−k) Φ0(x) + i Φ̇0(x)] e

−ik·x dx (49.58a)
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A∗(−k) = 2

ϖ(k) +ϖ(−k)

ˆ
[ϖ(k) Φ0(x)− i Φ̇0(x)] e

−ik·x dx. (49.58b)

Notice that
A(k) = A∗(−k) if Φ̇0 = 0, (49.59)

which is referred to as conjugate symmetry when studying Fourier transforms in Section 8.3.2,
whereas

A(k) = −A∗(−k) if Φ0 = 0, (49.60)

which we refer to as conjugate anti-symmetry.

Now substitute the amplitude functions (49.58a) and (49.58b) into the wave function (49.55),
and rearrange to find

Φ(x, t) =
1

(2π)3

ˆ [ˆ
eik·(x−ξ) [ϖ(−k) e−iϖ(k) t +ϖ(k) eiϖ(−k) t]

ϖ(k) +ϖ(−k) dk

]
Φ0(ξ) dξ

+
i

(2π)3

ˆ [ˆ
eik·(x−ξ) [e−iϖ(k) t − eiϖ(−k) t]

ϖ(k) +ϖ(−k) dk

]
Φ̇0(ξ) dξ. (49.61)

This equation can be written as the convolution of the initial conditions with two kernel functions

Φ(x, t) =

ˆ
[Ġ(x− ξ, t) Φ0(ξ) +G(x− ξ, t) Φ̇0(ξ)] dξ, (49.62)

where the kernels are

G(x, t) ≡ i

(2π)3

ˆ
eik·x [e−iϖ(k) t − eiϖ(−k) t]

ϖ(k) +ϖ(−k) dk (49.63a)

Ġ(x, t) ≡ 1

(2π)3

ˆ
eik·x [ϖ(−k) e−iϖ(k) t +ϖ(k) eiϖ(−k) t]

ϖ(k) +ϖ(−k) dk. (49.63b)

In fact, the kernels are related by a time derivative, which can be seen by writing them in the
following form12

G(x, t) = − 2

(2π)3

ˆ
sin[k · x−ϖ(k) t]

ϖ(k) +ϖ(−k) dk (49.64a)

Ġ(x, t) =
2

(2π)3

ˆ
ϖ(k) cos[k · x−ϖ(k) t)]

ϖ(k) +ϖ(−k) dk = ∂tG(x, t). (49.64b)

Evidently, the kernels provide a wave mechanism to propagate information about the initial
conditions outward in space as time moves forward. In this manner, these functions are Green’s
functions such as those studied in Chapter 9. Indeed, the solution (49.64b) corresponds to
the Green’s function (9.232), which was derived for the initial-boundary value problem with
non-dispersive waves. Here, we are just concerned with the initial condition problem for free
wave packets where the waves can be either non-dispersive or dispersive. It is satisfying that
even dispersive waves allow us to write the wave packet evolution in terms of Green’s functions
as in equation (49.62).

49.6.5 The case of non-dispersive waves
To help further understand the nature of the wave packet equation (49.62), and to connect it to
the non-dispersive Green’s function (9.232), consider a packet of non-dispersive waves for t ≥ 0

12To derive equation (49.64b), recall that the integral is over all of k-space.
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and in one space dimension.13 For this case the dispersion relation takes the form

ϖ(k) = Cp |k| =⇒ k · x−ϖ(k) t = k x− Cp |k| t, (49.65)

where Cp > 0 is the constant phase speed. In this case we make use of the Dirac delta expression
(8.113) in the form

δ(x) =
1

2π

ˆ ∞

−∞
ei k x dk =

2

2π

ˆ ∞

0
cos(k x) dk, (49.66)

so that

Ġ(x, t) =
1

2π

ˆ ∞

−∞
cos(k x− Cp |k| t) dk (49.67a)

=
1

2π

ˆ 0

−∞
cos(k x+ Cp k t) dk +

1

2π

ˆ ∞

0
cos(k x− Cp k t) dk (49.67b)

=
1

2π

ˆ ∞

0
cos(k x+ Cp k t) dk +

1

2π

ˆ ∞

0
cos(k x− Cp k t) dk (49.67c)

= [δ(x+ Cp t) + δ(x− Cp t)]/2. (49.67d)

= δ(Cp t− |x|)/2. (49.67e)

Hence, Ġ is built from two Dirac delta wave fronts that move in opposite directions at speed Cp.
Its time integral leads to the Green’s function as a Heaviside step function (see Section 7.5)

G(x, t) = H(Cp t− |x|)/(2Cp). (49.68)

To within a constant factor, the Green’s function (49.68) is the causal free space Green’s function
(9.220a) derived for the one dimensional non-dispersive waves. Making use of these results in
the wave packet equation (49.64b) leads to

Φ(x, t) =
1

2

ˆ ∞

−∞
δ(Cp t− |x− ξ|) Φ0(ξ) dξ +

1

2Cp

ˆ ∞

−∞
H(Cp t− |x− ξ|) Φ̇0(ξ) dξ (49.69a)

= [Φ0(x− Cp t) + Φ0(x+ Cp t)]/2 +
1

2Cp

ˆ x+Cp t

x−Cp t
Φ̇0(ξ) dξ. (49.69b)

For the second equality we used

ˆ ∞

−∞
H(Cp t− |x− ξ|) Φ̇0(ξ) dξ =

ˆ ∞

−∞
H(Cp t− |y|) Φ̇0(x+ y) dy (49.70a)

=

ˆ Cp t

−Cp t
Φ̇0(x+ y) dy (49.70b)

=

ˆ x+Cp t

x−Cp t
Φ̇0(ξ) dξ. (49.70c)

Evidently, for non-dispersive waves the initial condition, Φ0(x), splits in half as two signals
that propagate without distortion in opposite directions, whereas the initial tendency, Φ̇0(x),
contributes via an integral over the domain of influence, which is given by the spatial region
[x− Cp t, x+ Cp t] (see Figure 6.3 for a discussion of the domain of influence).

13This case corresponds to the infinite string discussed in Section 7.8 of Stakgold (2000b). We also consider
packets of non-dispersive waves in Section 49.7.7, with a focus on Gaussian packets.
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49.6.6 Wave trains and wave packets

Consider a wave train initialized according to14

Φ0(x) = Re[a(ϵx) eik0·x] = a(ϵx) cos(k0 · x), (49.71)

where a is a real x-space modulation function and ϵ−1, is a length scale that is large relative to
the wavelength of the carrier wave; i.e., ϵ−1 ≪ |k0|. Figure 49.5 provides an example of such a
wave train. A further modulation of the x-space wave train into a wave packet can be realized
by an amplitude that sets Φ0(x) to zero (or exponentially close to zero) for length scales larger
than ϵ−1.
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Figure 49.5: Example of a wave train comprised of a modulated amplitude function, a(ϵx), acting on a carrier
wave, eik0·x. The modulation function has a scale ϵ−1, which is large relative to that of the wave length, 2π/|k0|,
so that 2π/ϵ≪ |k0|.

For either a wave train or wave packet to be dominated by a single carrier wave of wavenumber
k0, the k-space wave amplitude must vanish for wavevectors outside of an ϵ range of k0

|A(k)| ≈ 0 for |k − k0| > ϵ. (49.72)

As a result, evolution of the x-space wave packet (49.47) is dominated by the dispersion relation
centerd on k0, thus motivating a Taylor series

k · x−ϖ(k) t ≈ k · x−ϖ(k0) t− (ka − k0a) [∂ka + (1/2) (kb − k0b) ∂ka∂kb ]ϖ(k0) t (49.73a)

= k0 · x− ω0 t+ (k − k0) · [x− cg t− (t/2) (kb − k0b) ∂kbcg], (49.73b)

where we made use of the summation convention15 and introduced the angular frequency, ω0,
and group velocity, cg, as defined by the dispersion relation evaluated at k0

ω0 = ϖ(k0) and cg = ∇kϖ(k0). (49.74)

Plugging the Taylor expansion (49.73b) into the wave packet (49.47) renders

Φ(x, t) = ei (k0·x−ω0 t) 1

(2π)3

ˆ
A(k) ei (k−k0)·x̃ dk = ei (k0·x−ω0 t)M(x, t). (49.75)

In this equation we introduced the moving position determined by the group velocity and its

14Note that the real operator, Re, will henceforth be dropped for brevity.
15We use the Cartesian version of the summation convention so there is no distinction between upstairs and

downstairs indices.
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derivative

x̃ = x− cg t− (t/2) (kb − k0b) ∂kbcg ⇐⇒ x̃a = xa − t ∂ϖ
∂ka
− (t/2) (kb − k0b)

∂2ϖ

∂ka∂kb
. (49.76)

The evolving packet in equation (49.75) represents a traveling plane carrier wave, ei (k0·x−ω0 t),
with the integral term providing a moving modulation function

M(x, t) ≡ 1

(2π)3

ˆ
A(k) ei (k−k0)·x̃ dk. (49.77)

We follow this discussion in Section 49.7 by studying one-dimensional Gaussian wave packets,
where we explicitly compute the x-space modulation function, and find that it is peaked at a
point following the group velocity,

xpeak = x− cg t, (49.78)

whereas the term, ∂kjcg, appearing in equation (49.76) gives rise to a spread or dispersion of the
x-space packet.

49.6.7 PDE for the wave packet modulation function

To further an understanding of wave packet evolution, we derive the partial differential equation
satisfied by the modulation function. For this purpose, take the space and time derivatives of
M(x, t) from equation (49.77) to find

∂M

∂t
=
−i

(2π)3

ˆ
A(k) (ka − k0a) (∂kaϖ + (1/2) (kb − k0b) ∂kb∂kaϖ) ei (k−k0)·x̃ dk (49.79a)

∂M

∂xa
=

i

(2π)3

ˆ
A(k) (ka − k0a) ei (k−k0)·x̃ dk (49.79b)

∂2M

∂xa∂xb
= − 1

(2π)3

ˆ
A(k) (ka − k0a) (kb − k0b) ei (k−k0)·x̃ dk, (49.79c)

which then leads to

(∂t + cg · ∇)M =
i

2

∂2ϖ

∂ka∂kb

∂2M

∂xa∂xb
. (49.80)

The left hand side reveals the time evolution of the modulation function following the group
velocity, with the group velocity evaluated at the carrier wavevector, k0. The right hand side is
a phase shifted (by π/2) transport of the modulation function by the dispersion tensor, K, with
the dispersion tensor determined by the second derivative of the dispersion relation evaluated at
the carrier wavevector, k0

Kab =
∂2ϖ

∂ka∂kb

∣∣∣∣
k=k0

. (49.81)

The dispersion tensor is symmetric, as appropriate for a diffusion tensor (Chapter 69). However,
there is no guarantee that it is positive-definite. Hence, dispersion can both broaden (as for
diffusion) or sharpen (as for anti-diffusion) the wave packet.

It is important to emphasize that dispersion is distinct from dissipation. Indeed, dissipation
is absent from this chapter. Evidently, modification of the modulation function arises from the
dependence of the phase velocity on the wavevector, hence the name “dispersion.” Dispersion is
a property inherent in the waves and has nothing to do with dissipation.
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49.6.8 Wave packets of non-dispersive waves

Much of the “interesting” behavior of wave packets appears for dispersive waves. Indeed, as we
here show, packets of non-dispersive waves propagate their initial condition without modification,
thus retaining their initial structure. We can understand this result by recalling that all waves
comprising the packet move with the same phase velocity, so that the group and phase velocities
are identical and constant. Hence, the packet maintains its initial organization of its waves as
the packet evolves.

A vanishing dispersion tensor (49.81) is one signature that the wave packet moves coherently
and without modification. As a result, the packet modulation function remains constant following
the group velocity,

(∂t + cg · ∇)M = 0 non-dispersive waves. (49.82)

The modulation function is given by equation (49.77) with a constant phase velocity

M(x, t) =
1

(2π)3

ˆ
A(k) ei (k−k0)·(x−cg t) dk = M(x− cg t), (49.83)

which means that the wave packet (49.75) evolves according to

Φ(x, t) = ei (k0·x−ω0 t)M(x− cg t). (49.84)

Indeed, returning to the original form (49.75) of the wave packet we find that for non-dispersive
waves

Φ(x, t) = ei (k0·x−ω0 t) 1

(2π)3

ˆ
A(k) ei (k−k0)·(x−cg t) dk (49.85a)

=
1

(2π)3

ˆ
A(k) eik·(x−cg t) dk (49.85b)

= Φ0(x− cg t), (49.85c)

where we introduced the initial condition, Φ0, from equation (49.56a). Evidently, packets of
non-dispersive waves translate their initial condition without any alteration, with translation
determined by the group velocity as determined by the carrier wavevector, k0. We make this
result compatible with the one dimensional case found in equation (49.69b) by noting that here
we only focus on the carrier wavenumber, whereas for the one dimensional packet in equation
(49.69b) we considered both the carrier wavenumber, ko, and its opposite, −ko. However, for a
wave packet, we generally focus only on the group velocity determined by the carrier wave since
any other wavevectors outside the local neighborhood have an exponentially small amplitude.
We consider this result for the specific case of a Gaussian wave packet in Section 49.7.7, with
further comment in Section 49.7.9.

49.6.9 Wave function PDE implied by the dispersion relation

Typically when studying waves we start with a partial differential equation in space and time,
linearize this equation, and then insert a plane wave ansatz to determine a dispersion relation.
Here we follow in a manner analogous to that in Section 49.6.7 and seek the partial differential
equation satisfied by the wave function, now assuming knowledge of the dispersion relation as
might be provided by measurements of wave properties. The method is best illustrated by an
example, here taken as that for a planetary Rossby wave for the horizontally non-divergent
barotropic model (Section 54.3.4)

ϖ(k) = −β kx/|k|2, (49.86)
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where β = ∂yf ≥ 0 is the meridional derivative of the Coriolis parameter, and k = kx x̂+ ky ŷ is
a two-dimensional wavevector. Now build a wave function from such waves, where the wave
function is written as in equation (49.47)

Φ(x, t) =
1

(2π)3

ˆ
A(k) ei (k·x−ϖ t) dk =

1

(2π)3

ˆ
A(k) ei (k·x+t β kx/|k|

2) dk. (49.87)

What is the partial differential equation satisfied by this wave function?

To answer this question we proceed as in Section 49.6.7 for the modulation function by taking
partial derivatives in space and time, and noting that the integral for the wave function is over
k-space so that space and time derivatives commute with the integral. Hence, the Laplacian of
the wave function is given by

∇2Φ = − 1

(2π)3

ˆ
A(k) |k|2 ei (k·x−ϖ t) dk, (49.88)

and its time derivative is

∂t(∇2Φ) =
i

(2π)3

ˆ
A(k)ϖ |k|2 ei (k·x−ϖ t) dk (49.89a)

= − iβ

(2π)3

ˆ
A(k) kx e

i (k·x−ϖ t) dk (49.89b)

= −β ∂xΦ, (49.89c)

which then leads to the linear partial differential equation

∂t(∇2Φ) + β ∂xΦ = 0. (49.90)

As we see in Chapter 54, equation (49.90) is the linearized version of the vorticity equation
(54.29) with zero background flow, and solutions of this equation are planetary Rossby waves.
Consequently, equation (49.90) describes the evolution of a packet of planetary Rossby waves in
a two-dimensional non-divergent barotropic fluid.

49.6.10 Standing wave packets

The wave packet (49.47) can be written in the form

Φ(+)(x, t) =
1

(2π)3

ˆ
A(k) ei [k·x−ϖ(k) t] dk =

1

(2π)3

ˆ
A(k) ei |k|[Sk̂−Cp t] dk, (49.91)

where
Sk̂ = k̂ · x (49.92)

is the phase distance from equation (49.32), and Cp = ϖ(k)/|k| > 0 is the phase speed. As
noted in Section 49.6.1, the phase speed is a constant for non-dispersive waves, whereas for
dispersive waves it is a function of the wavevector, Cp = Cp(k). We introduce the + notation on
the packet (49.91) to distinguish from the oppositely traveling packet, Φ(−), defined according to

Φ(−)(x, t) =
1

(2π)3

ˆ
A(−k) e−i [k·x+ϖ(k) t] dk. (49.93)

If the amplitude function has even parity

A(−k) = A(k), (49.94)
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then Φ(−)(x, t) = Φ(+)(−x, t), in which case the sum of these two traveling packets is a standing
wave packet

Φ(−)(x, t) + Φ(+)(x, t) =
2

(2π)3

ˆ
A(k) e−iϖ(k) t cos(k · x) dk if A(−k) = A(k), (49.95)

and the initial condition is the inverse cosine transform of A(k)

Φ(−)(x, t = 0) + Φ(+)(x, t = 0) =
2

(2π)3

ˆ
A(k) cos(k · x) dk if A(−k) = A(k). (49.96)

Recall that to ensure the wave function is real, then the amplitude function must satisfy
conjugate symmetry via equation (49.94). Hence, with the further assumption of even parity
(49.94), then the amplitude function, A(k), is real, in which case we indeed see that Φ(−)(x, t =
0) + Φ(+)(x, t = 0) is a real function.

As seen in Section 49.7.5, we generally consider Gaussian packets that include modulated
traveling waves, so that such wave packets have amplitude functions that are not even functions of
the wavevector, A(−k) ̸= A(k). Even so, the present discussion identifies the general properties
satisfied by standing waves, which occur, for example, in bounded regions (e.g., see Section 52.8
for standing gravity waves in a closed basin).

49.7 Wave packets in one-dimension

In this section we study a variety of packets moving in one space dimension.16 Doing so provides
a pedagogical means to explicitly reveal some of the general ideas developed in Section 49.6. We
give particular attention to the Gaussian wave packet since it allows for analytic expressions
that serve pedagogical needs.17

49.7.1 The positive wave packet
For a packet built from plane waves traveling in the +x̂ direction, we write the wavevector as
k = k x̂ with wavenumber k ≥ 0 so that a positive-traveling packet takes the form

Φ(+)(x, t) =
1

2π

ˆ ∞

0
A(k) ei (k x−ϖ t) dk. (49.97)

49.7.2 The negative wave packet
A packet moving in the negative x̂ direction is built from plane waves with k = −k x̂, again
with wavenumber k ≥ 0, so that

Φ(−)(x, t) =
1

2π

ˆ ∞

0
A(−k) e−i [k x+ϖ t] dk. (49.98)

Observe that Φ(−)(x, t) can be written in the equivalent form

Φ(−)(x, t) =
1

2π

ˆ ∞

0
A(−k) e−i [k x+ϖ t] dk =

1

2π

ˆ 0

−∞
A(k) ei [k x−ϖ t] dk, (49.99a)

16Section 7.8 of Stakgold (2000b) provides a thorough discussion of one-dimensional waves, such as those
propagating on a string.

17As a wave packet in one-dimension, the wave function Φ has dimensions of its amplitude function, A, times
inverse length. In three dimensions, in contrast, the wave function has dimensions of A times inverse volume as
in equation (49.47).
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where we assumed that the dispersion relation has even parity

ϖ(k) = ϖ(−k) > 0. (49.100)

This assumption for the dispersion relation does not hold for all waves (e.g., Rossby waves).
When it does hold, it means that a wave traveling to the right with wavenumber k has the
same angular frequency as a wave traveling to the left with the same wavenumber. The equality
(49.99a) allows us to interpret integration over negative wavenumbers to represent a wave packet
traveling in a direction opposite to the sense suggested by the phase relation. That is, the phase
k x−ϖ t suggests a positive traveling packet, but the packet is actually a negative packet since
the integration extends over negative wavenumbers.

49.7.3 The positive-negative wave packet
The sum of the positive packet (49.97) and negative packet (49.99a) leads us to define the
positive-negative packet

Φ(+−)(x, t) = Φ(+)(x, t) + Φ(−)(x, t) =
1

2π

ˆ ∞

−∞
A(k) ei (k x−ϖ t) dk. (49.101)

49.7.4 The positive-positive wave packet
This final wave packet is designed to travel in a single direction, which defines the positive-positive
packet

Φ(++)(x, t) =
1

2π

ˆ ∞

−∞
A(k) ei k (x−Cp t) dk, (49.102)

where Cp = ϖ/|k| > 0 is the phase speed. It is revealing to decompose this packet as18

Φ(++)(x, t) =
1

2π

ˆ 0

−∞
A(k) ei k (x−ϖ t/|k|) dk +

1

2π

ˆ ∞

0
A(k) ei k (x−ϖ t/|k|) dk (49.103a)

=
1

2π

ˆ 0

−∞
A(k) ei (k x+ϖ t) dk +

1

2π

ˆ ∞

0
A(k) ei (k x−ϖ t) dk. (49.103b)

The second integral equals to Φ(+)(x, t), whereas the first is new. Again, both contributions to
Φ(++)(x, t) move in the +x̂ direction.

49.7.5 Initial uncertainty relation for a Gaussian packet

The initial condition for both Φ(+−) and Φ(++) are the same, which we write as

Φ0(x) = Φ(+−)(x, 0) = Φ(++)(x, 0) =
1

2π

ˆ ∞

−∞
A(k) ei k x dk. (49.104)

The specific case of a Gaussian wave packet offers insight into the physics while allowing for
analytically tractable expressions. Specifically, consider the k-space representation of a wave
packet with a Gaussian spread around a central wavevector, k0 = ko x̂. We choose the wave
amplitude as

A(k) = A e−σ(k−ko)
2
, (49.105)

where A > 0 is a real constant and σ > 0 has dimensions of squared length. If we choose
the central wavenumber to be positive, ko > 0, then the wave packet is dominated by plane

18In deriving equation (49.103b), it is important to remember that ϖ > 0 for all wavenumbers.
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waves moving in the +x̂ direction. Referring to the discussion in Section 49.6.10, note that
A(k) ̸= A(−k) when ko ̸= 0. As we will see, if ko = 0 then we have a Gaussian packet without
any modulated plane waves.

Width of the initial wave packet in k-space

The squared modulus of the k-space wave packet (49.105) provides a measure of the packet’s
intensity

|A(k)|2 = A2 e−2σ(k−ko)2 , (49.106)

with the intensity peaked at the wavenumber k = ko and declining to e−1 times the maximum for

k = ko ± (2σ)−1/2 =⇒ ∆ke-fold ≡ 2 (2σ)−1/2, (49.107)

where ∆ke-fold measures the k-space width of the wave packet. We say that the k-space width of
the packet is narrow band for σ large, in which the packet is concentrated around k = ko since
∆ke-fold → 0.

The initial wave packet in x-space

The inverse Fourier transform of the k-space wave function (49.105) leads to the initial condition
for the x-space wave function (49.104)

Φ0(x) =
A

2π

ˆ ∞

−∞
e−σ (k−ko)2 ei k x dk =

A ei ko x

2π

ˆ ∞

−∞
e−σ q

2
ei q x dq, (49.108)

with the corresponding initial conditions for the positive and negative wave packets

Φ(+)(x, 0) =
A

2π

ˆ ∞

0
e−σ (k−ko)2 ei k x dk =

A ei ko x

2π

ˆ ∞

−ko
e−σ q

2
ei q x dq (49.109a)

Φ(−)(x, 0) =
A

2π

ˆ 0

−∞
e−σ (k−ko)2 ei k x dk =

A ei ko x

2π

ˆ −ko

−∞
e−σ q

2
ei q x dq. (49.109b)

With the central wavenumber assumed positive, ko > 0, observe that the initial negative wave
packet, Φ(−)(x, 0), has an exponentially small amplitude since the integral in equation (49.109b)
never samples q = k − ko = 0. In contrast, Φ(+)(x, 0) samples q = 0 so that

Φ0(x) = Φ(+)(x, 0) + Φ(−)(x, 0) ≈ Φ(+)(x, 0). (49.110)

Although there is no exact closed form expression for the initial conditions, Φ(+)(x, 0) and
Φ(−)(x, 0), we can evaluate the integral for Φ0(x) in equation (49.108). First observe that

ˆ ∞

−∞
e−σ q

2
sin(q x) dq = 0, (49.111)

since the Gaussian is symmetric under q → −q, whereas sin(q x) switches sign. Hence, expanding
the imaginary exponential in equation (49.108) according to Euler’s identity leaves only the
cosine contribution, so that19

Φ0(x) =
A ei ko x

2π

ˆ ∞

−∞
e−σ q

2
cos(q x) dq =

A ei ko x

2π

√
π

σ
e−x

2/(4σ), (49.112)

where we made use of an integral table for the final equality (e.g., integral 679 of Beyer (1973)).

19The integral in equation (49.112) is also encountered in Section 8.5.3 when studying Fourier transforms.

page 1392 of 2158 geophysical fluid mechanics



49.7. WAVE PACKETS IN ONE-DIMENSION

Evidently, the initial wave packet, Φ0(x), in equation (49.112) consists of a single plane wave,
ei ko x, modulated by the Gaussian, e−x

2/(4σ). In this manner the plane wave, which is defined
for all space, has been localized in space by the Gaussian modulation function. In Figure 49.6
we illustrate a Gaussian wave packet of the form (49.112).

If we choose the central wavenumber to be zero, ko = 0, then the wavenumber amplitude
function has even parity, A(k) = A(−k). The wave function, Φ0(x), in equation (49.112)
reduces to just the Gaussian modulation function without a carrier wave, so that Figure 49.6
reduces to just the positive Gaussian modulation function. Hence, the ko = 0 limit results in
a Gaussian signal, constructed with a continuum of plane waves, yet without any modulated
carrier wave.

∆xe-fold

2π/|k0|
1/∆xe-fold

k0

Figure 49.6: Left panel: example of a Gaussian wave packet, Φ0(x), of the form given by the real part of
equation (49.112), with 2π/|ko| wavelength for the modulated carrier wave. From equation (49.113) we also show
∆xe-fold = 2 (2σ)1/2 ≫ 2π/|ko|, which determines the e-folding width of the squared modulus of the packet. The
plane wave, ei ko x, is referred to as the carrier wave. Right panel: the k-space Gaussian amplitude function
(49.105). Units are arbitrary in both panels.

The uncertainty relation

The squared modulus of the x-space wave function (49.112) is proportional to exp[−x2/(2σ)],
which has an e-folding width

∆xe-fold = 2 (2σ)1/2. (49.113)

This x-space wave function spread exactly complements its k-space spread (49.107), so that
their product is a constant

∆xe-fold ∆ke-fold = 4. (49.114)

The precise value of the constant is not important since it depends on the somewhat arbitrary
choices made for defining ∆x and ∆k. What is important is that if we narrow the wavenumber
band by increasing σ and thus making A(k) more sharply peaked, then we broaden the x-space
width of the wave function. That is, a narrow Gaussian wave packet in k-space leads to a broad
wave packet in x-space. The complement holds, whereby a narrow packet in x-space leads
to a broad packet in k-space. This tradeoff holds for general wave packets, whereby it is not
possible to have a narrow packet in both x-space and k-space. We refer to equation (49.114)
as an uncertainty relation. It is a fundamental feature of quantum wave mechanics, where it is
known as the Heisenberg uncertainty principle (e.g., Chapter 3 of Bohm (1951) or Chapter 2 of
Gasiorowicz (1974)). We also encountered this relation when studying the Fourier transform of
a Gaussian function in Section 8.5.3.
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49.7.6 Extreme examples of the uncertainty relation

The uncertainty relation is a bit odd on first encounter. Why is it impossible to know arbitrarily
precise information about both the k-space location and x-space location of a wave packet? The
answer fundamentally boils down to the dual relation between these two spaces. As a means to
further exemplify this relation, and thus to build understanding, we consider the most extreme
example of the uncertainty relation.20

First assume we know that the k-space wave function is a single plane wave with just one
wavevector, k = ko x̂. In this case the k-space amplitude function is

A(k) = a0 δ(k − ko), (49.115)

where a0 is a constant and δ is the Dirac delta discussed in Chapter 7. Note that δ(k − ko) has
physical dimensions of length and is normalized so that

ˆ ∞

−∞
δ(k − ko) dk = 1. (49.116)

The sifting property of the Dirac delta (Section 7.2) yields the x-space wave function

Φ0(x) =
a0
2π

ˆ ∞

−∞
δ(k − ko) e

i k x dk =
a0 e

i ko x

2π
. (49.117)

So although we know the precise k-space position, k = ko, we have zero information about the
wave function’s x-space position. That is, the wave function is a pure carrier wave without any
modulation function so that the wave function is equally present throughout all space.

We turn the table by assuming precise x-space information, in which case the modulation
function is a Dirac delta

Φ0(x) = ϕ0 δ(x− x0), (49.118)

where ϕ0 is a constant and δ(x− x0) is normalized so that

ˆ ∞

−∞
δ(x− x0) dx = 1. (49.119)

We say that the modulation function has exactly specified the spatial position of this packet. Yet
the price to pay for this precise x-space information is that there is zero information concerning
the k-space location since

A(k) = ϕ0

ˆ ∞

−∞
δ(x− x0) e−i k x dx = ϕ0 e

−i k x0 . (49.120)

That is, the carrier wave can be any plane wave with arbitrary wavenumber, k. So although we
know the precise x-space position, x = x0, we have zero information about the wave function’s
k-space position. That is, the wave function carries precise x-space information (delta modulated)
yet zero k-space information.

20For a similar example, see Section 8.5.1 where we discuss the Fourier transform of the Dirac delta.
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49.7.7 Evolution of a non-dispersive Gaussian wave packet

We now study the evolution of the x-space wave functions, Φ(+−)(x, t) and Φ(++)(x, t). Starting
with the positive-negative wave function, recall that it evolves according to equation (49.101)

Φ(+−)(x, t) =
1

2π

ˆ ∞

−∞
A(k) ei (k x−ϖ t) dk =

A

2π

ˆ ∞

−∞
e−σ (k−ko)2 ei [k x−ϖ(k) t] dk. (49.121)

This integral offers a complete space and time specification of Φ(+−)(x, t). Even so, it is useful
to massage the integral to garner insight into the physics of this evolving pattern. We do so in
this section for the case of non-dispersive waves, where we show that the x-space wave packet
propagates the initial wave packet without alteration. This result is expected since non-dispersive
waves are described by hyperbolic partial differential equations that translate initial patterns
without alteration (Section 49.3.1). Furthermore, we already proved this result for a general
packet of non-dispersive waves in Section 49.6.8. Even so, it is useful to expose the details in the
context of the one dimensional Gaussian packets. Doing so offers insights into certain features of
wave packets, and provides practice for the technically more challenging case of dispersive waves
in Section 49.7.8.

Evolution of a Gaussian Φ(+−)(x, t) packet of non-dispersive waves

As already encountered in this chapter, a non-dispersive wave is characterized by a dispersion
relation with a constant phase speed

ω = ϖ = Cp |k|. (49.122)

Such waves are said to be non-dispersive since waves with arbitrary wavenumber travel at the
same phase speed. The absolute value sign in the dispersion relation (49.122) means that the
relation has a continuous derivative only when k ≠ 0. In that manner, it is a linear dispersion
relation only when k ̸= 0. Care must be exercised to account for the sign swap when moving
across k = 0, with this movement corresponding to waves moving in opposite directions as seen
earlier in Section 49.6.5.

The x-space wave packet (49.121) propagates according to

Φ(+−)(x, t) =
A

2π

ˆ ∞

−∞
e−σ (k−ko)2 ei (k x−|k|Cp t) dk (49.123a)

=
A

2π

ˆ ∞

0
e−σ (k−ko)2 ei k (x−Cp t) dk +

A

2π

ˆ 0

−∞
e−σ (k−ko)2 ei k (x+Cp t) dk (49.123b)

=
A

2π

ˆ ∞

0
e−σ (k−ko)2 ei k (x−Cp t) dk +

A

2π

ˆ ∞

0
e−σ (k+ko)2 e−i k (x+Cp t) dk (49.123c)

= Φ(+)(x− Cp t, 0) + Φ(−)(x+ Cp t, 0), (49.123d)

where we made use of equations (49.109a) and (49.109b) for the Φ(+) and Φ(−) initial conditions.
Evidently, the x-space wave packet splits from its initial condition into positive and negative
propagating wave packets, and the packets move without altering their respective initial conditions.
However, as already discussed for the initial conditions leading up to equation (49.110), the
wave packets are not symmetric reflections of each other if ko ≠ 0. In fact, Φ(−) is exponentially
smaller than Φ(+) if ko > 0.
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Evolution of a Gaussian Φ(++)(x, t) packet of non-dispersive waves

Now consider evolution of the Φ(++) packet (49.102) built from non-dispersive waves. In this
case we can perform the integral to produce

Φ(++)(x, t) =
A

2π

ˆ ∞

−∞
e−σ (k−ko)2 ei k (x−Cp t) dk (49.124a)

=
A

2π
ei ko (x−Cp t) e−(x−Cp t)2/(4σ)

ˆ ∞

−∞
e−σ [q−i (x−Cp t)/(2σ)]2 dq (49.124b)

=
A ei ko (x−Cp t)

2π

√
π

σ
e−(x−Cp t)2/(4σ). (49.124c)

The second equality resulted from completing the square in the exponential, and the final equality
evaluated the integral using methods from complex analysis.21 Comparing the expression in
equation (49.124c) to the initial wave packet in equation (49.112) reveals that

Φ(++)(x, t) = Φ(++)(x− Cp t, 0) = Φ0(x− Cp t). (49.125)

As noted in Section 49.7.4, the initial condition for Φ(++)(x, t) is propagated in the positive
direction as a single coherent packet, which contrasts to the splitting found for the packet
Φ(+−)(x, t) in equation (49.123d).

49.7.8 Evolution of a dispersive Gaussian wave packet
Most geophysical waves are dispersive. As we see in the following, dispersive waves render
a spreading of the x-space wave packet as it evolves, along with a decay in its amplitude.
Furthermore, the packet moves at the group velocity, which, for dispersive waves, is distinct
from the phase velocity. To reveal these properties analytically, we here characterize evolution
of the Φ(+−) wave packet when constructed with dispersive waves, following steps taken for the
general case in Section 49.6.6. Though straightforward, the maths is more tedious than for the
non-dispersive packets from Section 49.7.7.

Taylor expanding the phase function

To examine the propagation of a dispersive wave packet, we Taylor expand the dispersion relation
around the central wavenumber, k = ko, and assume the packet is relatively narrow band in
wavevector space. With these assumptions we truncate the Taylor series at second order

ϖ(k) ≈ ϖ(ko) + (k − ko)

[
dϖ

dk

]
k=ko

+
(k − ko)

2

2

[
d2ϖ

dk2

]
k=ko

(49.126a)

≡ ω0 + (k − ko) cg + (k − ko)
2 µ. (49.126b)

We here introduced the one-dimensional group velocity evaluated at k = ko

cg = x̂ cg = x̂

[
dϖ

dk

]
k=ko

. (49.127)

Recall from its definition in equation (49.26) that the phase speed is positive by definition,
Cp > 0. In contrast, cg can be positive or negative, or even zero, depending on the slope of
the dispersion relation at k = ko. In equation (49.126b) we also introduced one-half the second

21More precisely, it makes use of the calculus of residues, with Section GI in Cohen-Tannoudji et al. (1977)
providing a discussion and Appendix A9 of Fetter and Walecka (2003) providing a tutorial for physicists.
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derivative of the dispersion relation (dimensions of L2/T )

µ =
1

2

[
d2ϖ

dk2

]
k=ko

. (49.128)

As shown below, a nonzero µ leads to an x-space modification of the wave packet shape, and
generally leading to a reduction in the packet’s amplitude (regardless the sign of µ).

Performing the integral

Making use of the Taylor expansion (49.126b) yields the approximate form of the phase function
appearing in the x-space wave packet (49.121)

k x−ϖ(k) t = (k − ko)x+ ko x− t [ω0 + cg (k − ko) + µ (k − ko)
2] (49.129a)

= (ko x− ω0 t) + (x− cg t) (k − ko)− t µ (k − ko)
2. (49.129b)

As a result, the x-space wave packet takes on the approximate form

Φ(+−)(x, t) ≈ A ei (ko x−ω0 t)

2π

ˆ ∞

−∞
e−(σ+iµ t) (k−ko)2+i (k−ko) (x−cg t) dk (49.130a)

=
A ei (ko x−ω0 t)

2π

ˆ ∞

−∞
e−(σ+iµ t) q2+i q (x−cg t) dq, (49.130b)

where the second equality made use of the same substitution, q = k − ko, used when evaluating
the integral for the initial value wave packet in Section 49.7.5. Introducing the shorthand

α = x− cg t and β = σ + iµ t, (49.131)

proves useful for completing the square in the integral exponential

−(σ + iµ t) q2 + i q (x− cg t) = −β [q − iα/(2β)]2 − α2/(4β), (49.132)

which brings the x-space wave packet (49.130b) to the form22

Φ(+−)(x, t) =
A ei (ko x−ω0 t) e−α

2/(4β)

2π

ˆ ∞

−∞
e−β [q−iα/(2β)]2 dq (49.133a)

=
A ei (ko x−ω0 t)

2π

√
π

β
e−α

2/(4β). (49.133b)

We next expose a complex exponential multiplied by a real exponential

Φ(+−)(x, t) =
A ei (ko x−ω0 t)

2
√
π

e−[(x−cg t)2/(4 (σ+iµ t))]

√
σ + iµ t

(49.134a)

=
A ei (ko x−ω0 t)

2
√
π

e
i
[

(x−cg t)2 µ t

4 (σ2+(µ t)2)

]
e
− (x−cg t)2 σ

4 (σ2+(µ t)2)

√
σ + iµ t

(49.134b)

=
A ei (ko x−ω0 t)

2
√
π

e
i
[

(x−cg t)2 µ t

4 (σ2+(µ t)2)
+φ/2

]
e
− (x−cg t)2 σ

4 (σ2+(µ t)2)

[σ2 + (µ t)2]1/4
, (49.134c)

where tanφ = −µ t/σ.
22The integral in equation (49.133b) is evaluated using complex analysis as discussed in Section GI of Cohen-

Tannoudji et al. (1977) as well as Section 54 and Appendix A9 of Fetter and Walecka (2003).
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Interpreting the wave packet

The phase factor in the x-space wave packet (49.134c)

P = (ko x− ω0 t) +
(x− cg t)2 µ t
4 (σ2 + (µ t)2)

+ φ/2, (49.135)

equals to that for a non-dispersive wave, ko x−ω0 t, plus a space and time dependent phase shift
that is nonzero for dispersive waves (µ ̸= 0). The phase shift simplifies for points following the
group velocity, x = cg t, and it is here that the Gaussian exponential is maximized

Φ(+−)(x = cg t, t) =
A ei (ko x−ω0 t+φ/2)

2
√
π [σ2 + (µ t)2]1/4

. (49.136)

Evidently, as the x-space wave packet moves with the group velocity (which can be either signed),
its amplitude declines according to |µ t|−1/2. The t−1/2 decay of the packet amplitude is also
found from the method of stationary phase for dispersive packets considered in Section 49.8.3.

Time dependent uncertainty relation

As for the k-space packet in Section (49.7.5), we consider the squared modulus of the x-space
packet (49.134c) as a measure of its intensity

|Φ(+−)(x, t)|2 = A2 e
− (x−cg t)2 σ

2 (σ2+(µ t)2)

4π [σ2 + (µ t)2]1/2
. (49.137)

The e-folding width of |Φ(x, t)|2 is revealed by setting the decaying exponential to unity, which
leads to

x = cg t± (2σ)1/2
[
1 + (µ t/σ)2

]1/2
=⇒ ∆xe-fold = 2 (2σ)1/2

[
1 + (µ t/σ)2

]1/2
. (49.138)

Multiplying by the time-independent k-space packet width (49.107) leads to the time dependent
uncertainty relation

∆xe-fold ∆ke-fold = 2 (2σ)1/2
[
1 + (µ t/σ)2

]1/2
2 (2σ)−1/2 = 4

[
1 + (µ t/σ)2

]1/2
. (49.139)

The time dependent uncertainty relation starts from its initial condition (49.114) at t = 0,
and then grows as t1/2. For non-dispersive waves (µ = 0), the uncertainty relation is time-
independent, which is expected since non-dispersive waves translate the initial packet without
changing the properties of the packet.

49.7.9 The non-dispersive limit of a dispersive packet
We set the spreading parameter, µ, to zero for for non-dispersive waves, in which case µ = 0 =⇒
φ = 0. In this limit the wave packet (49.134c) takes on the form

µ = 0 =⇒ Φ(+−)(x, t) =
A ei ko (x−cg t)

2π

√
π

σ
e−(x−cg t)2/(4σ). (49.140)

If we set cg = Cp then this result corresponds to equation (49.124c), which is the non-dispersive
form of the packet Φ(++)(x, t).

So why did the non-dispersive limit not reduce to equation (49.123d), which is the non-
dispersive form of Φ(+−)(x, t)? The reason is that when performing the Taylor series expansion
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for the dispersive packet, we only picked out the group velocity at the single wavenumber, k = ko.
Hence, we can only get one of the two packets comprising Φ(+−)(x, t) in equation (49.123d).
Namely, we ignore the exponentially small packet using the Taylor series approach. Furthermore,
note that cg can be positive or negative for dispersive waves (indeed, it can even be zero). In
contrast, Cp is the phase speed and that is always positive. So in the case of cg = −Cp < 0 then
equation (49.140) is a negative moving wave packet.

So in summary, the non-dispersive limit of a dispersive packet does not exactly correspond
to the purely non-dispersive packet due to a few subtleties. In particular, if one cares about the
exponentially small packet exposed with the non-dispersive analysis in Section 49.7.7, then it is
necessary to follow the approach taken in that section rather than taking the non-dispersive
limit of dispersive waves as considered here.

49.7.10 Comments and further study

The study of wave packets in this section revealed properties that appear throughout the study
of waves. First, there is the uncertainty relation, whereby a packet that is narrow banded in
wavevector space is broad banded in position space, and conversely. Second, dispersive wave
packets have a modulation function that is modified with time, thus producing a time dependent
uncertainty relation. Regardless the sign of the dispersion coefficient, µ (equation (49.128)), the
packet amplitude decays in time and the uncertainty grows. We see this behavior for generic
wave packets when studying the stationary phase method in Section 49.8. Third, the center of
the packet moves with the group velocity rather than phase velocity, with the two velocities
distinct for dispersive waves. We also encountered this property in Section 49.6.7 when studying
how the wave packet modulation function evolves. It will appear again in Chapter 50 when
studying how energy (or more generally the wave action) propagates with the wave field.

The study of wave packets and their evolution is a central concern of quantum mechanics.
Most books on the subject have a discussion of quantum wave packets at the level discussed
here. In particular, we made use in this section of Chapter 3 of Bohm (1951), Chapter 2 of
Gasiorowicz (1974), and Section GI of Cohen-Tannoudji et al. (1977). We also followed Section
54 of Fetter and Walecka (2003), who consider wave packets built from surface gravity waves.
However, it is notable that the distinctions we made here between positive and negative moving
packets in Section 49.7.7 are not considered by this literature.

49.8 Method of stationary phase
As shown in Section 49.6.8, a packet of non-dispersive waves holds its initial condition unchanged
as it propagates at the phase speed. This evolution is exact. Hence, we know everything about
a packet of non-dispersive waves for all time, given the phase velocity and the initial conditions.

The situation is more complicated for packets of dispersive waves, whose modulation function
changes its shape due to wave dispersion. We encountered such behavior when introducing wave
trains and wave packets in Section 49.6.6, as well as when studying Gaussian wave packets of
dispersive waves in Section 49.7. In the present section we study the long-time behavior for a
packet of dispersive waves using the method of stationary phase. From the Gaussian wave packet
study in Section 49.7.8, we expect the packet to decay according to t−1/2, as revealed by the
exact Gaussian packet results in Section 49.7. Here we show that this t−1/2 behavior is generic
for packets of dispersive waves.

For analytical simplicity we focus on a wave function in one space dimension, written as

Φ(x, t) =
1

2π

ˆ kb

ka

A(k) eih(k) t dk, (49.141)
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whereA(k) is the amplitude function, h(k) is a real phase function, and we focus on a wavenumber
interval k ∈ [ka, kb]. For example, with a plane wave we have

h(k) = k x/t−ϖ(k), (49.142)

where ϖ(k) is the dispersion relation. Note that for the integral in equation (49.141), x and
t are considered parameters, so we only expose the k dependence to the phase function, h(k).
Finally, with a focus on dispersive waves we assume

ϖ′′(k) ̸= 0. (49.143)

49.8.1 Riemann-Legesque lemma and center of the packet

As t → ∞, the wave packet’s integrand, A(k) eih(k) t, oscillates faster. Consequently, terms
in the integral cancel since the oscillations dominate any behavior of the amplitude (which is
assumed smooth). Indeed, the Riemann-Legesque lemma states that the integral has a zero limit
as t→∞, so long as the amplitude function is integrable and finite.

Contributions to the wave packet are maximized when two elements of the integrand align.
First we want to maximize the amplitude, which for a wave packet is assumed to be maximized
in a small interval surrounding a wavenumber, ko or ko. Next we want the phase function to be
in a small neighborhood of an extrema, which is where h′(k) = 0. Aligning this phase extrema
with the amplitude maximum means we want space-time locations where h′(ko) = 0. For a
packet built from plane waves, h′(ko) = 0 occurs at a specific space-time point determined by
the group velocity

h′(ko) = x/t− cg = 0 =⇒ x/t = cg, (49.144)

where
cg = cg(ko) = ϖ′(ko) (49.145)

is the group velocity for the packet as determined at the wavenumber, ko, where the amplitude
has its maximum. Evidently, the center of the wave packet (i.e., where the packet has its
maximum amplitude) is located at

xcenter = t cg, (49.146)

so that the center moves at the group velocity. This result for the packet center was previously
found using different approaches in Sections 49.6.6, 49.7.7, and 49.7.8.

In addition to wanting information about the packet center, it is useful to know about its
amplitude which, according to Riemann-Legesque, decays to zero as time increases. To get an
expression for the amplitude modulation requires some work, which is the topic of the remainder
of this section.

49.8.2 Wavenumber intervals with no phase extrema
Consider the case whereby the phase has no extrema within the chosen wavenumber interval,
k ∈ [ka, kb], so that h′(k) ̸= 0. This assumption allows us to use integration by parts in the form

ˆ kb

ka

v du = [u v]
∣∣kb
ka
−
ˆ kb

ka

udv, (49.147)

where
v = A/h′ and u = eih t/(i t), (49.148)

so that
v du = (A/h′) d[eih t/(i t)] = A eih t dk, (49.149)
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and
udv = [eih t/(i t)] d(A/h′). (49.150)

We can thus write the integral as

2πΦ =
1

i t

[
(A/h′) eih t

∣∣∣∣kb
ka

−
ˆ kb

ka

eih t d(g/h′)

]
∼ O(t−1). (49.151)

The key point is that the integral decays as t−1 for wavenumber intervals, k ∈ [ka, kb], where the
phase, h(k), has no extrema.

49.8.3 Wavenumber interval including a phase extrema

We expect that contributions from regions near an extrema decay slower in time, since near
those regions the phase does not oscillate so rapidly.23 In particular, as noted in Section 49.8.1,
we expect that the packet center follows a point in space determined by the group velocity. We
thus consider the case where the phase has an extrema at the wavenumber ko, which is now
included in the interval: ko ∈ [ka, kb], in which case we Taylor expand the phase

h(k) = h(ko)+h
′(ko) (k−ko)+(k−ko)

2 h′′(ko)/2+ ... = h(ko)+(k−ko)
2 h′′(ko)/2+ ..., (49.152)

where we set
h′(ko) = 0 (49.153)

since it is an extrema. We showed in Section 49.8.2 that wavenumber regions where there is no
extrema contribute terms of order O(t−1) to the integral. We now show that regions including
an extrema decay like O(t−1/2), thus allowing us to focus on the region surrounding the packet
center,

ko − 1/
√
2σ ≤ k ≤ ko + 1/

√
2σ. (49.154)

We introduced 1/
√
2σ as a measure of the packet width, such as used for the Gaussian packet in

equation (49.107). We thus have the integral

2πΦ = ei t h(ko)
ˆ ko+1/

√
2σ

ko−1/
√
2σ

A(k) ei t (k−ko)
2 h′′(ko)/2 dk +O(t−1). (49.155)

Changing variables to a shifted wavenumber ℓ = k − ko gives the expression

2πΦ = ei t h(ko)
ˆ 1/

√
2σ

−1/
√
2σ

A(ℓ+ ko) e
i t ℓ2 h′′(ko)/2 dℓ+O(t−1). (49.156)

One more change in variables to p = ℓ
√
t renders the integral

2πΦ = t−1/2 ei t h(ko)
ˆ 1/

√
2σ

−1/
√
2σ

A(p t−1/2 + ko) e
i p2 h′′(ko)/2 dp+O(t−1). (49.157)

We simplify the integrand by performing a Taylor expansion

A(p t−1/2 + ko) = A(p0) +O(t−1/2), (49.158)

23According to Section 11.3 of Whitham (1974), this insight is originally due to Lord Kelvin.
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so that, keeping only terms of order t−1/2, brings about the integral

2πΦ = t−1/2A(ko) e
i t h(ko)

ˆ √t/2σ
−
√
t/2σ

ei p
2 h′′(ko)/2 dp+O(t−1). (49.159)

For a dispersive packet with non-zero h′′(ko), the t→∞ limit allows us to extend the limit
on the integral (49.159) to infinity so that

2πΦ = t−1/2A(ko) e
i t h(ko)

ˆ ∞

−∞
ei p

2 h′′(ko)/2 dp+O(t−1). (49.160)

The integral is in the form of a Fresnal integral and it can be done using methods from complex
analysis to find ˆ ∞

−∞
ei p

2 h′′(ko)/2 dp =

√
2π

|h′′(ko)|
e± iπ/4, (49.161)

where the ± sign corresponds to the sign of h′′(ko). We thus have the stationary phase expression
for the wave function

Φ(x, t) =
A(ko) e

i t h(ko)±iπ/4

[2π t |h′′(ko)|]1/2
+O(t−1). (49.162)

As noted at the start of this section, a packet built from plane waves has

h(ko) t = ko x−ϖ(ko) t, (49.163)

so that the long-time behavior of the wave packet is given by

Φ(x, t) = A(ko) e
i (ko x−ϖ(ko) t) e±iπ/4

[2π t |ϖ′′(ko)|]1/2
+O(t−1). (49.164)

This wave function is built from a plane wave with wavenumber ko that is modulated by a
function whose amplitude is decaying according to t−1/2. The t−1/2 decay accords with the exact
solution of the dispersive Gaussian packet in Section 49.7.8. Furthermore, note how the strength
of the t−1/2 decay is affected by the size of |ϖ′′(ko)|.

As noted in Section 49.8.1, the packet is a maximum when sampled at the center, which is
given by (equation (49.146)) xcenter = cg t. At this point, the phase of the wave function (49.164)
takes the form

ko xcenter −ϖ(ko) t = ko cg t−ϖ(ko) t = ko (cg − cp) t, (49.165)

where we introduced the phase velocity for the carrier wave

cp = ϖ(ko)/ko. (49.166)

As a result, the wave function as evaluated at the packet center is given by

Φ(xcenter, t) = A(ko) e
i ko (cg−cp) t e±iπ/4

[2π t |ϖ′′(ko)|]1/2
+O(t−1). (49.167)

49.8.4 Comments and further study

If both the first and second derivatives vanish, h′(ko) = 0 and h′′(ko) = 0, then the same
procedure as used above must be pursued but to the next higher order in the Taylor series
expansion. Also if there are multiple extrema, then each will add a contribution of the form
given by equation (49.162).
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Variations on the derivation given in this section can be found in section 11.3 of Whitham
(1974), section 3.7 of Lighthill (1978), section 55 of Fetter and Walecka (2003) and section 1.C.2
of Cohen-Tannoudji et al. (1977).

49.9 Exercises

exercise 49.1: Parseval’s identity for wave packets
Consider the expression (49.47) for a wave function

Φ(x, t) =
1

(2π)3

ˆ
A(k) ei (k·x−ϖ t) dk. (49.168)

Prove the following expression of Parseval’s identity (Section 8.3.6)

ˆ
|∇Φ|2 dx =

1

(2π)3

ˆ
|k|2 |A(k)|2 dk. (49.169)

Notice that the right hand side is time-independent, so that the left hand side must be likewise.
Hint: make use of the following representation of the Dirac delta from Section 8.5.1

δ(k − q) = 1

(2π)3

ˆ
ei (k−q)·x dx. (49.170)

exercise 49.2: Square wave packet (exercise 2.1 of Gasiorowicz (1974))
Consider a wave packet in one space dimension with real k-space amplitude function

A(k) =

 0 k < −K
N −K < k < K
0 k > K,

(49.171)

where K > 0.

(a) Find the x-space wave function, which in one space dimension takes the form

Φ0(x) =
1

2π

ˆ ∞

−∞
A(k) ei k x dk. (49.172)

Hint: Φ0(x) is the inverse Fourier transform of A(k). The integral is simple to do.

(b) Find the value of N for which

ˆ ∞

−∞
|Φ0(x)|2 dx = 1. (49.173)

Hint: massage the integral until it looks like one found in a standard integral table.

(c) Relate the above choice for N to one that makes

ˆ ∞

−∞
|A(k)|2 dk = 1. (49.174)
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(d) Show that a reasonable definition for ∆x in part (a) yields the uncertainty relation

∆x∆k > 1. (49.175)

Hint: this uncertainty relation holds independently of K.

exercise 49.3: Inverse squared wave packet (exercise 2.2 of Gasiorowicz (1974))
Consider a wave packet in one space dimension with real k-space amplitude function

A(k) =
N

k2 + α2
(49.176)

with α > 0.

(a) Find the x-space wave function, which in one space dimension takes the form

Φ0(x) =
1

2π

ˆ ∞

−∞
A(k) ei k x dk (49.177)

Hint: Φ0(x) is the inverse Fourier transform of A(k). Massage the integral until it looks
like one found in a standard integral table.

(b) Show that a reasonable definition for ∆x in part (a) yields the uncertainty relation

∆x∆k > 1. (49.178)

Hint: this relation holds independently of α.

exercise 49.4: Wave function PDE derived from the dispersion relation
Follow the method from Section 49.6.9 to derive the partial differential equation satisfied by a
wave function, Φ(x, t), whose constituent waves satisfy the following dispersion relations, where
for each case k = kx x̂+ ky ŷ + kz ẑ a three-dimensional wavevector.

(a) ϖ2 = c2 |k|2, with c a constant with dimensions L T−1.

(b) ϖ2 = B2 k2z/|k|2, with B a constant with dimensions T−1.
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Chapter 50

WAVES IN A GENTLY VARYING BACKGROUND

We here study linear waves propagating through a prescribed gently varying (in space and time)
background environment, such as for waves moving through a stratified ocean or atmosphere, or
waves moving through a mean flow. We assume the relevance of space and time coherent wave
patterns so that we can consider a wave phase function. However, the wavevector and angular
frequency, as well as the wave amplitude, are here functions of space and time and as such we
cannot use traditional Fourier analysis. Instead, asymptotic methods are needed, and we develop
the leading order theory referred to in various contexts as ray theory, geometric optics, eikonal
approximation or the WKBJ approximation.1 Notably, we do not consider the back-reaction
effects of waves on the background state, which is the subject matter of waves and mean flow
interaction theory.

Given the more general background state, we must consider a wave ansatz that is more
general than the plane wave Fourier ansatz from Chapter 49. We refer to the new ansatz as
the WKBJ wave ansatz or equivalently the eikonal wave ansatz (the specific form is given by
equation (50.54)). Plugging in this wave ansatz to the wave equation then leads to a suite of
asymptotic equations that are used to build the wave function, ray equations, energy equation,
etc. In principle this approach is straightforward, yet in practice it is tedious and uninspired.
Whitham’s variational principle provides an alterative that is both elegant and powerful. In brief,
Whitham’s principle is based on Hamilton’s principle from classical continuum mechanics (Part
IX of this book), only now applied to the leading order (in WKBJ expansion) phase averaged
action. The resulting Euler-Lagrange equations render the dispersion relation and conservation
equations for an energy-momentum-stress tensor. As part of these conservation equations, we
encounter the wave action, which offers a generalization of wave energy, and the flux of wave
action is determined by the group velocity.

reader’s guide to this chapter
We assume familiarity with the material from Chapter 49, which considered wave kine-

matics for traveling plane waves on a static and homogeneous background state. We here
make use of Cartesian coordinates and Cartesian tensors (Chapters 1 and 2). The wave
energetics/action discussion makes use of Hamilton’s principle for a continuum from Part IX
of this book, in particular the material in Chapter 46. Much of the material here is inspired by
the review chapter from Bretherton (1971), as well as Bretherton and Garrett (1969), chapter
11 of Whitham (1974), Part 2 in the Epilogue of Lighthill (1978), Andrews and McIntyre
(1978b), chapter 9 of Olbers et al. (2012), and Tracy et al. (2014).

1WKBJ stands for Wentzel, Kramers, Brillouin, and Jeffreys, scientists who promoted the method in the
20th century for use in quantum mechanics. Often this method is referred to as WKB. In fact, the method was
developed in the 19th century by Liouville and Green.
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50.1 Loose threads
• Figures

• Adiabatic invariants as per Section 9.2 of Olbers et al. (2012) and Section 49 of Landau
and Lifshitz (1976). See also José and Saletan (1998).

50.2 General phase functions
Throughout Chapter 49 , the phase of the wave function takes the linear plane wave form given
by equation (49.20) (here written with zero phase shift)

P(x, t) = k · x− ω t = ka x
a − ω t, (50.1)

where the wavevector, k, and angular frequency, ω, are parameters of the wave that are
independent of space and time. The second equality made use of the summation convention, with
the wavevector components written with lower indices to accord with the upstairs spatial indices.
The relatively simple form (50.1) of the phase function is suited only for background states that
are homogeneous and static. In this chapter we consider a more general phase function that
allows us to study waves moving through a background state that is inhomogeneous and/or time
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dependent. The key restriction to our approach is that we retain the notion of a locally defined
wavevector and angular frequency, which are now considered to be functions of space and time

∇P ≡ k(x, t) and − ∂tP ≡ ω(x, t). (50.2)

These expressions tacitly assume that the base state fluid properties are changing slowly in space
and time relative to the wave phase, thus allowing us to generalize much of the wave kinematics
holding for homogeneous/static media while locally considering the waves to be planar. For this
assumption to hold, it is sufficient to make the following space and time scale separation, as
assumed throughout this chapter

|k| = |∇P| ≫ L−1 and ω = −∂tP≫ T−1, (50.3)

where L is a characteristic length scale defined by spatial variations in the background state,
and T is the corresponding time scale for changes in the background state. In terms of the local
measure of the wavelength, Λ = 2π/|k|, and period, 2π/ω, we have

Λ≪ 2π L and 2π/ω ≪ T. (50.4)

Values for L and T depend on details of the physical system defining the background state.
For example, in Section 50.5.2 we consider L and T for a stretched string with time dependent
tension and space dependent mass density, and in Section 51.9.5 we consider L for the case of
acoustic waves moving through a spatially inhomogenous yet static background.

50.2.1 Path independence of phase difference

Given that the wavevector is defined as the gradient of the phase as per equation (50.2), it must
satisfy the consistency condition

∇× k = ∇×∇P = 0. (50.5)

This property of the wavevector means that there are the same number of wave crests between
any two points in the fluid at any particular time instance, no matter what path is taken to
connect the two points. This property is trivially maintained by plane waves in a homogeneous
media since k is a space-time constant vector. To prove it holds for the more general phase
function, consider the difference in phase (at a fixed time) between points A and B within the
fluid (see Figure 50.1). Compute this phase difference via a path, C1, that goes from point A to
point B, and then via an alternative path, C2, that also goes from point A to point B

∆PC1 =

ˆ
C1

k · dx and ∆PC2 =

ˆ
C2

k · dx. (50.6)

The path C1 − C2 is a closed loop that is oriented in the counterclockwise direction. We can
thus make use of Stokes’ theorem to find

∆PC1 −∆PC2 =

‰
C1−C2

k · dx =

˛
(∇× k) · n̂dS = 0, (50.7)

which proves the path independence of the phase difference.
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C2

constant phase lines

Figure 50.1: This figure illustrates the conservation of wave crests embodied by equation (50.9). Here we consider
two paths in space, C1 and C2, that go from point A to point B. Both paths move across surfaces of constant
phase, illustrated by the dotted lines and shown for a particular time instance. As shown by equation (50.7), the
difference in phase computed along the two different paths is the same, and this property follows from ∇× k = 0
and Stokes’ theorem.

50.2.2 Conservation of wave crests
Because the mixed partial derivatives of the phase function commute, we have

∂ω

∂xa
= − ∂2P

∂t ∂xa
and

∂ka
∂t

=
∂2P

∂xa ∂t
, (50.8)

which leads to the vector equation
∂k

∂t
+∇ω = 0. (50.9)

This equation says that the time change in wavevector, ∂tk, is exactly compensated by the
spatial change in angular frequency, ∇ω. This self-consistency condition is referred to as the
conservation of wave crests. Motivation for this name follows since the wavenumber, |k|, is the
number of wave crests per unit length at a fixed time. Likewise, the angular frequency, ω, is the
number of wave crests passing a fixed location per unit time. Having their respective space and
time derivatives match is a self-consistency condition for a coherent wave pattern to exist.

As a further means to understand the balance equation (50.9), and the name “conservation
of wave crests”, consider an integral between two points fixed in space taken along a fixed path
in space, such as the path C1 in Figure 50.1. The time tendency of the phase difference is given
by

∂t(∆PC1) =
∂

∂t

ˆ
C1

k · dx =

ˆ
C1

∂tk · dx = −
ˆ
C1

∇ω · dx = ω(A)− ω(B). (50.10)

If the angular frequency is greater at point A than at point B, then that means that there is an
accumulation of wave crests entering the region at point A relative to those leaving at point B;
i.e., there is a convergence of wave crests between the two points. This convergence is associated
with an increase in the wavenumber between the two points.

50.2.3 Phase velocity and phase speed
Consider an observer moving on a smooth trajectory through space and time defined by a fixed
point on a constant phase surface, such as when the observer remains fixed on the crest of a
traveling wave.2 As such, we assume that the trajectory is aligned in the direction of ∇P, which

2Our formulation in this section emulates that used in Section 17.4 for the Lagrangian time derivative, which
is concerned with measuring fluid properties following a fluid particle. Here, we are following a wave as defined by
a surface of constant phase.
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is the local direction of the wave

k̂ ≡ ∇P/|∇P| ≡ k/|k|, (50.11)

with the local wavevector defined by equation (50.2).

To determine the velocity of the fixed-phase observer, consider an infinitesimal spatial
increment, δxphase, that occurs over a small time increment, δt. Assuming this space increment
follows the fixed-phase observer leads to the identity

P(x+ δxphase, t+ δt) = P(x, t). (50.12)

Truncating a Taylor series expansion of this identity leads to the differential equation satisfied
by the phase

(∂t + cp · ∇)P = 0, (50.13)

where we defined the phase velocity

cp = δxphase/δt. (50.14)

The partial differential equation (50.13) specifies cp · ∇P = cp · k in terms of the time derivative
of the phase

cp · k = cp · ∇P = −∂tP. (50.15)

Indeed, since the observer is assumed to move along the direction of the wavevector, k̂, then
cp · k̂ is the only component of the phase velocity. We thus write the phase velocity as in our
discussion of plane waves in Section 49.5.2

cp = (cp · k̂) k̂ ≡ Cp k̂, (50.16)

where Cp > 0 is the phase speed, which is the magnitude of the phase velocity. Figure 49.2
provides an illustration.

50.2.4 Angular frequency and wavelength
The time derivative, ∂tP, measures the time change of the phase at a fixed point in space, which
we use to define the local angular frequency of the wave as per equation (50.2)

ω = −∂tP. (50.17)

The differential equation (50.13) for the phase can thus be written in the equivalent manners

(∂t + cp · ∇)P = 0⇐⇒ ω = cp · k, (50.18)

which also leads to the relations

cp = Cp k̂ =
−∂tP
|∇P|

∇P
|∇P| , (50.19)

where Cp ≥ 0 is the phase speed. We likewise identify the wavelength

Λ = 2π/|k| =⇒ Cp = ωΛ/2π. (50.20)

Note that the relations (50.19) and (50.20) also hold for free plane waves moving through a
homogeneous media, as discussed in Section 49.5.

CHAPTER 50. WAVES IN A GENTLY VARYING BACKGROUND page 1409 of 2158



50.3. KINEMATICS OF RAYS

50.3 Kinematics of rays
Recall that when studying wave packets in Section 49.6, we found the group velocity to be
fundamental to the wave packet evolution. We show later in this chapter that the group velocity
defines the paths along which wave action (wave energy divided by wave angular frequency)
propagates. Such paths are referred to as rays. Given the prominence of rays, we find it useful
to develop evolution equations for wave properties along rays. We here start that process,
focusing on the wave phase, wavevector, and angular frequency. This material forms elements
to geometric optics, which is a subject commonly taught in introductory physics courses by
presenting a series of rules for how light reflects and refracts. In this section we derive those
rules in the form of partial differential equations following from basic principles.

50.3.1 Eikonal equation
The dispersion relation provides the local value of the angular frequency as a function of space,
time, and wavevector, where the wavevector itself is a function of space and time

ω = ϖ(x, t,k(x, t)) = ϖ(x, t,∇P). (50.21)

As such, the dispersion relation is an explicit function of (x, t), as well as a function of a function,
k = k(x, t), which makes ϖ also an implicit function of (x, t). This dependence is reminiscent
of the Lagrangian and Hamiltonian densities encountered in Chapter 46. Just like for the
Lagrangian density, it is crucial to account for this functional dependency when computing
space and time derivatives.3 A useful rule to remember is that the angular frequency, ω, is
a function of space and time, ω = ω(x, t) = −∂tP(x, t). Yet when connected to a dispersion
relation, ϖ(x, t,k(x, t)), which links a wavevector to an angular frequency, then we must treat
the dispersion relation as an explicit function of x, t, as well as an implicit function through the
wavevector dependence, k = k(x, t).

Recall from Section 50.2 that there is a relation between the wave phase, P, the local angular
frequency, ω = −∂tP, and the local wavevector, k = ∇P. Inserting these identities into the local
dispersion relation (50.21) leads to the eikonal equation, which is a nonlinear partial differential
equation for the phase4

∂tP+ϖ(x, t,∇P) = 0. (50.22)

This equation is formally the same as the Hamilton-Jacobi equation of classical mechanics, yet
with ϖ playing the role of the Hamiltonian (e.g., Marion and Thornton (1988) or Goldstein
(1980)). That analogy offers suggestions for how to make use of this equation. Note that on
Olbers et al. (2012) (see their page 168) write the eikonal equation in the alternative form

(∂tP)
2 = C2

p (∇P)2, (50.23)

which follows from the definition of the local phase speed in equation (50.19).

50.3.2 Rays are integral curves of the group velocity
A ray is an integral curve of the group velocity. Hence, the ray trajectory, X(t), follows a ray
and is determined by solving the ordinary differential equation

DrX

Dt
= cg. (50.24)

3In Section 46.3.1 we provide a detailed discussion of these derivatives, with that discussion suited to the
present discussion of geometric optics.

4As per page 362 of Thorne and Blandford (2017).

page 1410 of 2158 geophysical fluid mechanics



50.3. KINEMATICS OF RAYS

The time derivative, Dr/Dt, determines time changes when following a ray, and so it is defined
by this equation. Indeed, our specification of Dr/Dt and cg correspond precisely to how we
defined the trajectory of a fluid particle as the integral curve of the fluid velocity as per equation
(17.66a). Introducing the dispersion relation leads to

DrX

Dt
= cg = ∇kϖ(x, t,k). (50.25)

Writing this equation in component form

DrX
a

Dt
= cag =

[
∂ϖ(x, t,k)

∂ka

]
x,t

(50.26)

emphasizes that the derivative is computed while holding the space and time point fixed while
varying the wavevector.

50.3.3 Evolution of k along a ray

To determine the evolution of the wavevector and angular frequency along a ray, we start with
the following identity that holds for the phase function, P = P(x, t), merely since the partial
derivatives commute

∇(∂tP) = ∂t(∇P). (50.27)

The derivatives in this equation are taken with their complementary variables fixed, and this
point is important when inserting the dispersion relation. Indeed, before working through the
following manipulations it can be useful to reread Section 50.3.1 to be reminded of the various
functional relationships.

Exposing subscripts for clarity, we start from equation (50.27) to write

∂

∂t

]
x

[
∂P

∂xa

]
t

=

[
∂ka
∂t

]
x

equation (50.2) (50.28a)

= −
[
∂ω(x, t)

∂xa

]
t

equation (50.27) (50.28b)

= −
[
∂ϖ(x, t,k)

∂xa

]
t

equation (50.21) (50.28c)

= −
[
∂ϖ(x, t,k)

∂kb

]
x,t

[
∂kb
∂xa

]
t

−
[
∂ϖ(x, t,k)

∂xa

]
k,t

chain rule (50.28d)

= −cbg
[
∂kb
∂xa

]
t

−
[
∂ϖ(x, t,k)

∂xa

]
k,t

equation (50.25). (50.28e)

We can massage the first right hand side term in equation (50.28e) by commuting partial
derivatives

∂kb
∂xa

=
∂2P

∂xb ∂xa
=
∂ka
∂xb

, (50.29)

so that [
∂ka
∂t

]
x

= −(cg · ∇)ka −
[
∂ϖ(x, t,k)

∂xa

]
k,t

. (50.30)

Introducing the time derivative following a ray renders the wavevector evolution equation

Drka
Dt

= −
[
∂ϖ(x, t,k)

∂xa

]
k,t

. (50.31)
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Evidently, if the dispersion relation has no explicit dependence on xa, then the corresponding
component of the wavevector remains constant when following a ray. However, if there is a
dependence, then the wavevector evolves along the ray, with this evolution known as refraction.

50.3.4 Evolution of ω along a ray

Being a bit more streamlined than in Section 50.3.3, we compute the time derivative of the
angular frequency

−∂
2P

∂t2
=

[
∂ω

∂t

]
x

(50.32a)

=

[
∂ϖ

∂t

]
x

(50.32b)

=

[
∂ϖ

∂kb

]
x,t

[
∂kb
∂t

]
x

+

[
∂ϖ

∂t

]
x,k

(50.32c)

= −cbg
[
∂ω

∂xb

]
t

+

[
∂ϖ

∂t

]
x,k

, (50.32d)

where the final step used [
∂kb
∂t

]
x

=
∂2P

∂t ∂xb
=

∂

∂xb
∂P

∂t
= −

[
∂ω

∂xb

]
t

. (50.33)

We are thus lead to the evolution equation for the angular frequency along a ray

Drω

Dt
=

[
∂ϖ

∂t

]
x,k

. (50.34)

Evidently, if the dispersion relation has no explicit dependence on time, then the angular
frequency is a constant following a ray. For example, this is the situation when gravity waves
approach a beach, assuming the slope of the beach is static (considered in Section 52.7.1). For
this example, the angular frequency of gravity waves remains constant following a ray, whereas
the wavevector changes according to equation (50.31).

50.3.5 Changes in the phase following a ray

Considering the phase function to be a function of space and time, P(x, t), we compute its time
derivative along a ray according to

DrP/Dt = (∂t + cg · ∇)P = −ω + cg · k = k · (−cp + cg), (50.35)

where ω = −∂tP = cp · k, as per equations (50.17) and (50.18), and k = ∇xP as per equation
(50.2). Non-dispersive have a phase that remains unchanged when following a ray, which holds
so long as

k · cp = k · cg non-dispersive waves. (50.36)

Otherwise, for dispersive waves the phase changes according to the source term, k · (−cp + cg).
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50.3.6 Summary of the ray equations

We here summarize the evolution equations for wave properties derived thus far in this chapter,
with these equations constituting Hamilton’s equations for rays

DrX

Dt
= cg trajectory on a ray (50.37a)

DrP

Dt
= k · (−cp + cg)⇐⇒ ∂tP+ϖ(x, t,∇P) = 0 eikonal equation for phase (50.37b)

Drk

Dt
= −

[
∂ϖ

∂x

]
t,k

k evolution on a ray (50.37c)

Drω

Dt
=

[
∂ϖ

∂t

]
x,k

ω evolution on a ray (50.37d)

Dr

Dt
= ∂t + cg · ∇ time derivative on a ray (50.37e)

ω = −∂tP ω defined (50.37f)

k = ∇P k defined (50.37g)

∇× k = 0 k consistency condition (50.37h)

∂tk +∇ω = 0 conservation of wave crests. (50.37i)

Equation (50.37a) defines the rays as integral lines of the group velocity, cg. Equation (50.37b)
is the eikonal equation that connects the local angular frequency to the dispersion relation

ω = −∂tP = ϖ(x, t,∇P). (50.38)

Each of the evolution equations (50.37b)–(50.37d) is hyperbolic, which is notable since this
property holds even though the wave equation describing the evolution of the wave function is
not generally hyperbolic (particularly for dispersive waves).

By definition, the phase remains constant when following along a constant wave phase so
that

(∂t + cp · ∇)P = 0. (50.39)

However, for dispersive waves, equation (50.37b) indicates that the phase does not stay fixed
when following rays as defined by the group velocity. Hence, wave crests pass through a point
following the group velocity, such as a point fixed within a wave packet. Conversely, equations
(50.37c) and (50.37d) show that for dispersive waves, the wavevector and angular frequency are
not constant when following a constant wave phase. Instead, they remain fixed when following
the group velocity in media where the dispersion relation is independent of space and time. For
more general media, both the wavevector and angular frequency evolve even when following the
group velocity.

50.3.7 Comments and further study

Knowledge of the dispersion relation is sufficient to solve the ray equations (typically using
numerical methods), thus mapping the rays and paths of wave packets, and determining the
wavevector, angular frequency, and phase following a ray. This procedure works quite well to
describe waves moving through smoothly varying media, and is familiar from the rays of light
bending through water or glass. Failure of the method occurs when the background media no
longer satisfies the “gently varying” assumptions that are formalized in Section 50.5.3 for the
case of a stretched string. Breaking these assumptions often results in the intersection of rays
which, in many fluid applications, signals a nonlinear process such as a fluid instability and
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corresponding turbulent mixing. Chapter 11 of Whitham (1974), Chapters 3 and 4 of Bühler
(2014a), and the bulk of Tracy et al. (2014) provide more details and insights.

50.4 Hamilton’s principle and the Euler-Lagrange equation
The geometric optics discussion in Section 50.3 is largely kinematic, with the only piece of
dynamical information arising from the dispersion relation. To develop a theory for the energetics
of waves and wave packets moving through gently varying background states, we make use of
Hamilton’s principle, or more specifically Whitham’s variational principle applying to the phase
averaged equations. We pursue that study in Section 50.5, yet here first summarize salient points
from Lagrangian field theory from Chapter 46.

50.4.1 Stationary action⇐⇒ Euler-Lagrange equation
The action, S, for a continuous scalar field, ψ(x, t), is given by equation (46.13)

S =

ˆ
R
L(ψ, ∂tψ,∇ψ,x, t) g d3x dt, (50.40)

where R is a space-time domain, g is the square root of the metric tensor determinant, and L is
the Lagrangian density. The Lagrangian density is a functional of the field and its space-time
derivatives (i.e., L is a function of a function). There can also be additional explicit dependencies
on the space and time position, which occurs, in particular, for waves moving through a media
that is inhomogeneous in space and/or non-stationary in time, in which case L is an explicit
function of (x, t). Hamilton’s principle as stated by equation (46.18) says that variation of
the action is stationary (i.e., variation of the action vanishes) for the physically realized field.
Hamilton’s principle then leads to the Euler-Lagrange field equation (46.24)

∂L

∂ψ
− 1

g

∂

∂xα

[
g

∂L

∂(∂αψ)

]
= 0, (50.41)

where α = 0, 1, 2, 3 is the space-time label. In performing the partial derivative with respect to
ψ and its derivatives, ∂αψ, each of the other variables in the Lagrangian density are held fixed.
However, when performing the space and time partial derivatives, ∂α, we only maintain the
complement space and time variable fixed. This technical point is very important when taking
derivatives of the Lagrangian density (see Section Section 46.3.1), and it is directly analogous to
how we take derivatives of the dispersion relation in Section 50.3.

50.4.2 Hamiltonian density and energy of the continuum
In Section 46.4.1 we introduced the generalized momentum density, P, and the Hamiltonian
density,

P =
∂L

∂(∂tψ)
and H = P ∂tψ −L. (50.42)

We then showed that the Hamiltonian density satisfies the budget equation

∂tH+∇ ·F = −(∂L/∂t)ψ,∂αψ,x, (50.43)

where the time derivative on the right hand side is computed while fixing ψ, its space and time
derivatives, and the space position, x. Equation (50.43) also introduced the flux vector, F, with
components

Fa =
∂L

∂(∂aψ)

∂ψ

∂t
. (50.44)
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In those cases where the Lagrangian has no explicit time dependence, so that it has the functional
dependence

L = L(ψ, ∂tψ,∇ψ,x), (50.45)

then the Hamiltonian equation (50.43) becomes a conservation equation for energy that follows
from time symmetry and Noether’s theorem

∂tH+∇ ·F = 0. (50.46)

50.4.3 Stress-energy-momentum tensor
As detailed in Section 46.4, the energy equation (50.43) is but one piece of the equation satisfied
by the stress-energy-momentum tensor, Tαβ. This equation is given by equation (46.74)

∂αT
α
β = −

[
∂L

∂xβ

]
ψ,∂αψ,xα̸=β

. (50.47)

where the stress-energy-momentum tensor is

Tαβ = −δαβL +
∂L

∂αψ

∂ψ

∂xβ
. (50.48)

50.5 Whitham’s variational principle
The Euler-Lagrange field equation (50.41) and associated energy equation (50.43) provide the
foundation for the field theory of continuous classical matter. In this section we specialize the field
theory formalism for the purpose of describing waves and the movement of wave energy through
a prescribed background environment. Much of this formalism was proposed by Whitham (e.g.,
see Chapter 11 of Whitham (1974)), so that we refer to the method as Whitham’s variational
principle. In other treatments, such as Section 2.2 of Tracy et al. (2014), it is referred to as the
reduced variational principle.

We anticipated much of the material in this section when studying a pendulum with variable
length in Section 15.2. In that section we showed that the pendulum energy divided by its
frequency is an adiabatic invariant; i.e., it is nearly constant. In the present section we show that
the wave action is the corresponding adiabatic invariant for waves moving on a gently varying
background, with the wave action also equal to the energy (or Hamiltonian) divided by the
angular frequency.

50.5.1 Some motivation
One practical motivation for developing Whitham’s variational principle is to describe the
energetics of waves propagating on a non-homogeneous and non-stationary background, though
the formalism is also quite useful for homogeneous and stationary backgrounds, particularly
for dispersive waves. In the presence of a space dependent background properties, there are no
simple sinusoidal (plane) wave solutions. That is, Fourier methods are insufficient. Even so,
there are waves that are quite close to plane waves if the space and time scales for changes in the
background state are well separated from those describing the wave properties (frequency and
wavelength). This space-time scale separation constitutes a “gently varying” background state,
which in turn enables analytical progress. We introduced the scaling for this gentle background
at the start of Section 50.2, and follow up in Section 50.5.3 with more details.

Whitham’s method starts by inserting a wave ansatz into the Lagrangian density. Phase
averaging then produces the phase averaged Lagrangian and corresponding phase averaged action.
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We maintain only the leading order term in this phase average Lagrangian, and Whitham’s
variational principle then states that the physically realized wave produces a stationary wave
averaged action. There are two associated Euler-Lagrange fields, one arising from varying the
wave amplitude and the other from varying the wave phase.

50.5.2 The stretched string
Following Bretherton and Garrett (1969) and Bretherton (1971), we use a stretched string as a
case study for exploring Whitham variational method. In particular, recall from Section 46.2.5
the Lagrangian density for the stretched string whose tension5 is a function of time, τ = τ(t),
and whose mass density (mass per length) is a function of space, σ = σ(x), is given by

L = (1/2)[σ (∂tψ)
2 − τ (∂xψ)2], (50.49)

and whose Hamiltonian density (50.42) is

H = (1/2)[σ (∂tψ)
2 + τ (∂xψ)

2]. (50.50)

Note that ψ(x, t) measures transverse displacements of the string from its equilibrium position
at ψ = 0. We furthermore assume that there are no longitudinal waves along the string, thus
focusing exclusively on transverse motion.

The action for the stretched string is

S =

ˆ
L dx dt =

ˆ
(1/2) [σ (∂tψ)

2 − τ (∂xψ)2] dx dt, (50.51)

and the Euler-Lagrange equation resulting from Hamilton’s principle is the wave equation

δS =

ˆ
(δL) dx dt = 0⇐⇒ (∂tt − c2 ∂xx)ψ = 0, (50.52)

with the squared wave speed
c2(x, t) = τ(t)/σ(x). (50.53)

Because the wave speed is a function of space and time, we cannot use traditional Fourier
methods to find a wave solution. Hence, the mathematical goal of this section is to develop
methods for use when there are space and time variations of the background state, in particular
when such variations are “gentle”. In this case we are afforded the eikonal wave ansatz6

ψ(x, t) = A(x, t) cos[P(x, t)], (50.54)

where A > 0 is a space-time dependent real amplitude function, and P is the phase function
introduced in equation (50.2). We have more comments on this form for the wave ansatz in
Section 50.5.4. s

50.5.3 Space and time scale separation
To make analytical progress requires us to detail the space and time scale separation between
the linear waves and the background state, following from our introduction to this scaling at the
start of Section 50.2. Although we here focus on the string, the same sorts of assumptions must

5The dimensions of τ are force, M L T−2, but we refer to it as a tension since it is an internal force within the
string.

6The ansatz (50.54) is commonly used with the WKBJ asymptotic method, and so is sometimes referred to as
the WKBJ wave ansatz.
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be realized for other waves systems in order to make use of the methods of this section. For the
time scale, we assume that changes in the string tension occur over time sales that are much
longer than the period of the linear waves supported by the string, so that

|∂tτ/τ | ≪ |∂tP|/2π = ω/2π. (50.55)

Correspondingly, temporal changes in the angular frequency are assumed to be on the same
scale as temporal changes to the string tension

|∂tω/ω| ∼ |∂tτ/τ | =⇒ |∂tω| ≪ ω2/2π, or equivalently |∂ttP| ≪ (∂tP)
2/2π. (50.56)

Likewise, time changes to the wave amplitude are defined by the background state so that

|∂tA/A| ∼ |∂tτ/τ |. (50.57)

For the length scale, we assume spatial changes in the mass density occur over scales that are
large compared to the wavelength

|∂xσ/σ| ≪ |∂xP|/2π = |k|/2π, (50.58)

and that spatial changes to the wavenumber and wave amplitude are on the same scale as
changes to string mass density

|∂xk/k| ∼ |∂xσ/σ| =⇒ |∂xk| ≪ k2/2π or equivalently |∂xxP| ≪ (∂xP)
2/2π. (50.59)

Likewise, space changes to the wave amplitude are defined by the background state so that

|∂xA/A| ∼ |∂xσ/σ|. (50.60)

50.5.4 The leading order phase averaged action

The space and time scale separation from Section 50.5.3 motivate the wave ansatz (50.54). Note
that a more general ansatz might also consider a space-time dependent phase shift. We do not
consider a phase shift since we are concerned with leading order evolution of the wave amplitude,
and the extra phase degree of freedom is not directly tied to the amplitude. Furthermore, we
could have expanded the amplitude function into an asymptotic series. But again, we are only
interested in the leading order, with the ansatz (50.54) sufficient for that purpose.7

Leading order contribution to σ (∂tψ)
2

To determine the leading order terms contributing to the Lagrangian (50.49), we start with the
squared time tendency of the wave function

(∂tψ)
2 = (∂tA cosP)2 + (A∂tP sinP)2 − 2 (A∂tP ∂tA sinP cosP), (50.61)

which has a phase average

⟨σ (∂tψ)2⟩ = σ [(∂tA)
2 + (A∂tP)

2]/2. (50.62)

To compute the phase average we assumed that σ, ∂tA, and ∂tP = −ω are roughly constant
over the course of a 2π change in the phase, with this assumption following from the scaling in

7See Section 4 of Bretherton (1971) for more details of the phase shift and amplitude expansion.
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Section 50.5.3. Further use of the scaling in Section 50.5.3 leads to the leading order contribution

⟨σ (∂tψ)2⟩ ≈ σ (A∂tP)2/2 = σ A2 ω2/2. (50.63)

Leading order contribution to τ (∂xψ)
2

Proceeding just as above, the squared space derivative term in the Lagrangian (50.49) is given
by

(∂xψ)
2 = (∂xA cosP)2 + (A∂xP sinP)2 − 2 (A∂xP ∂xA sinP cosP), (50.64)

whose phase average is
⟨τ (∂xψ)2⟩ = τ [(∂xA)

2 + (A∂xP)
2]/2. (50.65)

To compute the phase average we assumed that τ , ∂xA, and ∂xP = k are roughly constant over
the course of a 2π change in the phase, with this assumption following from the scaling in Section
50.5.3. Further using the scaling in Section 50.5.3 we are led to the leading order contribution

⟨τ (∂xψ)2⟩ ≈ τ (A∂xP)2/2 = τ A2 k2/2. (50.66)

Leading order phase averaged action

The above discussion provides the leading order phase averaged action

⟨S⟩ = 1

4

ˆ
A2 (σ ω2 − τ k2) dx dt =

ˆ
⟨L⟩ dx dt. (50.67)

This phase averaged Lagrangian is directly analogous to the phase averaged Lagrangian (15.44)
for the pendulum whose length is slowly varying.

50.5.5 Whitham’s variational principle for the string

Whitham’s variational principle states that the phase averaged action, ⟨S⟩, is stationary when
ψ = A cosP is the physically realized wave function. To find the associated Euler-Lagrange
equations requires computing the variation of the action, which in turn requires varying the
wave function. Variations in the wave function arise from arbitrary smooth and independent
variations (with compact support) of the amplitude, A, and the phase, P. Hence, the phase
averaged action must be stationary with respect to independent variations in both A and P. As
we see in the following, the dispersion relation is the Euler-Lagrange equation resulting from
δA⟨S⟩ = 0, whereas wave action conservation results from δP⟨S⟩ = 0.

Vanishing variation with respect to A is equivalent to the dispersion relation

Variation of the phase averaged action (50.67) under variations in the wave amplitude is given
by

δA⟨S⟩ =
1

2

ˆ
(σ ω2 − τ k2)AδAdx dt, (50.68)

and with a zero variation leading to

δA⟨S⟩ = 0⇐⇒ ω2 = (σ/τ)2 k2 = c2 k2. (50.69)

Evidently, satisfying the dispersion relation is equivalent to a zero variation of the phase averaged
action with respect to the wave amplitude. Furthermore, since ⟨L⟩ is proportional to the squared
wave amplitude, then satisfying the dispersion relation (50.69) means that the phase averaged
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Lagrangian vanishes when evaluated with the physical solution,

⟨L⟩ = A2 (σ ω2 − τ k2)/4 = 0. (50.70)

Vanishing variation with respect to P

Variation of the phase averaged action (50.67) under variations in the wave phase function is
given by

δP⟨S⟩ =
1

2

ˆ
A2 (σ ω δω − τ k δk) dx dt = 1

2

ˆ
A2 [σ ∂tP δ(∂tP)− τ ∂xP δ(∂xP)] dx dt, (50.71)

with rearrangement giving

δP⟨S⟩ =
1

2

ˆ
A2
[
∂t(A

2 σ ∂tP δP)− ∂x(A2 τ ∂xP δP)
]
dx dt

− 1

2

ˆ
A2
[
∂t(A

2 σ ∂tP) δP− ∂x(A2 τ ∂xP) δP
]
dx dt. (50.72)

Assuming δP vanishes on the space-time boundaries, or that it has compact support in space
and time, eliminates the first integral to leave

δP⟨S⟩ = −
1

2

ˆ
A2
[
∂t(A

2 σ ∂tP)− ∂x(A2 τ ∂xP)
]
δP dx dt, (50.73)

with Whitham’s principle δP⟨S⟩ = 0 producing the conservation law

δP⟨S⟩ = 0 =⇒ ∂t(A
2 σ ω) + ∂x(A

2 τ k) = 0. (50.74)

Interpretation of this conservation law follows from the discussion in the remainder of this
Section.

50.5.6 Phase averaged Hamiltonian

Making use of the eikonal wave ansatz (50.54) renders the leading order phase averaged Hamil-
tonian (50.50)

⟨H⟩ = A2 (σ ω2 + τ k2)/4, (50.75)

with the dispersion relation (50.69) yielding

⟨H⟩ = A2 σ ω2/2 = A2 τ k2/2. (50.76)

We can use these expressions to write the conservation law (50.74) as

∂t(⟨H⟩/ω) + ∂x(⟨H⟩/k) = 0. (50.77)

This equation is nearly ready for interpretation, but it aided by the discussion in Section 50.5.7.

50.5.7 A general statement of Whitham’s variational principle

To help interpret the conservation law (50.77), it is useful to provide a generic expression of
Whitham’s variational principle, which we write as

δ

ˆ
⟨L⟩(A,ω, k;σ, τ) dx dt = δ

ˆ
⟨L⟩(A,−∂tP, ∂xP;σ, τ) dx dt =

ˆ
δ⟨L⟩ dx dt = 0. (50.78)
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The resulting Euler-Lagrange equations follow through variations of the wave amplitude, A, and
phase function, P.

Varying the wave amplitude and the dispersion relation

The Euler-Lagrange equation resulting from varying the amplitude is written (see equation
(50.41))

δS

δA
=
∂⟨L⟩
∂A

− ∂

∂t

[
∂⟨L⟩
∂(∂tA)

]
− ∂

∂x

[
∂⟨L⟩
∂(∂xA)

]
= 0. (50.79)

Notably, for linear waves the wave amplitude appears in ⟨L⟩ only via its square, A2, so that the
second and third terms in equation (50.79) vanish identically. As a result, the Euler-Lagrange
equation resulting from varying A is

∂⟨L⟩
∂A

= 0, (50.80)

which, as we saw for the stretched string in Section 50.5.5, is equivalaent to the dispersion
relation connecting the wave angular frequency to the wavevector. Another way to write the
dispersion relation is to note that the phase averaged Lagrangian for linear waves satisfies

A∂⟨L⟩/∂A = 2 ⟨L⟩, (50.81)

so that
⟨L⟩ = 0⇐⇒ dispersion relation. (50.82)

Varying the phase function, group velocity, and conservation of wave action

For linear waves, the phase function only appears in terms of its space and time derivatives, so
that ∂⟨L⟩/∂P = 0, in which case the Euler-Lagrange equation resulting from varying the phase
function is given by

δS

δP
=

∂

∂t

[
∂⟨L⟩
∂(∂tP)

]
+

∂

∂x

[
∂⟨L⟩
∂(∂xP)

]
= 0 =⇒ − ∂

∂t

[
∂⟨L⟩
∂ω

]
+

∂

∂x

[
∂⟨L⟩
∂k

]
= 0. (50.83)

We can write this conservation equation in a slightly different form by introducing the group
velocity. For this purpose, consider the implications for a zero variation of the phase averaged
Lagrangian (another way to state Whitham’s principle as in equation (50.78)) so that

0 = δ⟨L⟩ = ∂⟨L⟩
∂A

δA+
∂⟨L⟩
∂ω

δω +
∂⟨L⟩
∂k

δk =
∂⟨L⟩
∂ω

δω +
∂⟨L⟩
∂k

δk, (50.84)

where ∂⟨L⟩/∂A = 0 follows from equation (50.80). Rearrangement allows us to write the group
velocity in terms of derivatives of the phase averaged Lagrangian

cg = δω/δk = − ∂⟨L⟩/∂k
∂⟨L⟩/∂ω , (50.85)

so that the Euler-Lagrange equation (50.83) can be written in the form of a traditional conser-
vation law

∂tA+ ∂x(cg A) = 0, (50.86)

where we defined the wave action

A ≡ ∂⟨L⟩
∂ω

. (50.87)
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Note that for some applications it is more useful to write the wave action equation (50.86)
following the group velocity, so that

DrA

Dt
= −A ∂xcg. (50.88)

Hence, the wave action evolves following a ray when moving through regions where the group
velocity has a nonzero convergence.

50.5.8 Interpreting the string’s wave action conservation equation

For the string, we find
∂⟨L⟩/∂ω = A2 σ ω/2 = ⟨H⟩/ω = A, (50.89)

so that the wave action conservation law (50.87) can be written in terms of the Hamiltonian

∂t(⟨H⟩/ω) + ∂x(cg ⟨H⟩/ω) = 0, (50.90)

which accords with equation (50.77) given that the string is non-dispersive so that the group
velocity is cg = ω/k.

So in summary, the Euler-Lagrange equation arising from δP⟨S⟩ = 0 leads to the wave
action conservation law (50.90). This conservation law is associated with a symmetry of the
phase averaged Lagrangian; namely, it is has no explicit dependence on the phase so that
∂⟨L⟩/∂P = 0. Whereas mechanical energy satisfies a conservation law when the background
state is time-independent (i.e., the Lagrangian has no explicit time dependence), the wave action
satisfies a conservation law since the phase averaged Lagrangian has no explicit dependence on
the phase.

50.5.9 Comments

Although the presentation in this section used the relatively simple case of a stretched string,
the underlying theory holds for all linear waves. As such, we expand our understanding of the
theory when considering waves of more complexity in the following chapters. In particular, the
theory proves quite useful for organizing our thinking about group velocity and wave energetics,
particularly for dispersive waves whether on a stationary and homogeneous background or more
generally.

50.6 Variational methods for self-adjoint wave operators

Our use of variational methods for waves is concerned with the propagation of wave packets
through a gently varying and prescribed background state. We assume the packet is prepared
at some initial time and fully known at the final time, so that variations of the wave function
(as per Hamilton’s principle) are nonzero only at intermediate times. Likewise, we assume the
packet is specified at the spatial boundaries, so that its variation vanishes there as well. With
these assumptions, we here detail a variational method that makes use of the self-adjoint nature
of the wave operator. By exploiting the self-adjoint property, we can reformulate Whitham’s
variational principle from Section 50.5.
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50.6.1 Self-adjoint linear wave operators

Assuming Cartesian coordinates, the Euler-Lagrange equations for the acoustic and Klein-Gordon
wave equations from Section 46.2.5 can be written

δS

δψ
=
∂L

∂ψ
− ∂

∂xα

[
∂L

∂(∂αψ)

]
= D̂ψ = 0, (50.91)

where D̂ is the linear partial differential operator,

D̂ = −(∂tt − c2∇2 + Γ2), (50.92)

for the Klein-Gordon wave equation with constant c, and with Γ = 0 for the acoustic wave
equation. This result allows us to write the action for this, and other, linear non-dissipative
waves in the bilinear form

S =
1

2

ˆ
R
ψ (D̂ψ) d3x dt. (50.93)

Notably, this action vanishes identically when ψ is a solution to the wave equation, as per
equation (50.91), yet the action is non-zero for a general function.

50.6.2 Varying the action

Variation of the action (50.93) can be written

2 δS =

ˆ
R
(δψ) D̂ψ d3x dt+

ˆ
R
ψ (D̂δψ) d3x dt, (50.94)

with integration by parts bringing the second right hand side term into the form

ˆ
R
ψ (D̂δψ) d3x dt =

ˆ
R
δψ (D̂ψ) d3x dt

−
ˆ
R
∂t(ψ ∂tδψ − δψ ∂tψ) d3x dt+ c2

ˆ
R
δab∂b(ψ ∂aδψ − δψ ∂aψ) d3x dt. (50.95)

For Hamilton’s principle, we assume that δψ = 0 at the temporal endpoints, so that

ˆ
R
∂t(δψ ∂tψ) d

3x dt = 0. (50.96)

Likewise, the term ˆ
R
δab∂b(δψ ∂aψ) d

3x dt =

ˆ
R
∇ · (δψ∇ψ) d3x dt, (50.97)

vanishes if δψ = 0 on the spatial boundaries, or if the physically realized field satisfies the natural
boundary conditions

n̂ · ∇ψ = 0 for x ∈ ∂R. (50.98)

We are thus led to the variationˆ
R
ψ (D̂δψ) d3x dt =

ˆ
R
δψ (D̂ψ) d3x dt+

ˆ
R
[−∂t(ψ ∂tδψ) + c2 δab ∂b(ψ ∂aδψ)] d

3x dt. (50.99)

We can eliminate the remaining boundary terms as follows. The temporal boundary term
vanishes if we assume either ψ or δ(∂tψ) vanishes at temporal boundaries. We assume either of
these conditions holds. Likewise, the spatial boundary term vanishes if ψ or δ(∂aψ) vanishes at
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the spatial boundaries.8 Assuming the boundary conditions indeed vanish makes D̂ a self-adjoint
wave operator, thus bringing about the action variation

δS =

ˆ
R
(δψ) D̂ψ d3x dt, (50.100)

with Hamilton’s principle, δS = 0, again leading to the wave equation, D̂ψ = 0.

50.6.3 Comments on the method

The above presentation is a bit circular since we compute the wave operator, D̂, from the
Euler-Lagrange equation, and the Euler-Lagrange equation requires the Lagrangian density, L.
However, the discussion suggests a complementary means to connect the variational framework
of Hamilton’s principle to the study of linear waves. Namely, all we need is the linear self-adjoint
wave operator, D̂, rather than the Lagrangian density, L. This approach is useful particularly
for those cases where the Lagrangian is tricky to determine. For example, the Lagrangian for
Rossby waves requires the introduction of auxiliary fields (see page 293 of Olbers et al. (2012)).
So by writing the action in the form of equation (50.93), we directly connect the variational
framework to the study of linear waves via knowledge of the wave operator rather than the wave
Lagrangian. We offer examples throughout the chapters in this part of the book. One important
caveat is that the action for some wave systems cannot be written in the bilinear form (50.93),
such as the interface waves from Chapter 52, in which case distinct methods are needed (see
Section 52.2.9).

We also note the need to assume boundary conditions that ensure the wave operator is
self-adjoint. These boundary conditions are somewhat restrictive. Even so, they allow us to
focus on the form of the waves in the interior of the space-time domain, rather than be concerned
with initia-boundary conditions.

8In considering these boundary conditions when, recall that δ for Hamilton’s principle commutes with space
and time derivatives, as detailed in Section 46.2.2.
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Chapter 51

ACOUSTIC WAVES

In this chapter we study the physics of acoustic waves in fluids. When reaching the human ear
we interpret acoustic waves as sound, hence the synonymous term sound waves. The pressure
fluctuations associated with standard acoustic waves (those not damaging to the human ear) are
a tiny fraction of those arising from, say, a weather disturbance or an atmospheric gravity wave
(see Section 51.5.3 for details). Hence, acoustic waves play a negligible role in the geophysical
fluid flows forming the focus of this book. Nonetheless, the relative simplicity of acoustic waves,
and their ubiquitous presence in the natural environment, make them an ideal pedagogical
introduction to the somewhat more complex geophysical waves considered in later chapters. Here,
we study acoustic waves in a perfect compressible fluid where the only force arises from pressure,
thus ignoring gravity, Coriolis, and viscous friction. We derive the acoustic wave equation using
both Lagrangian and Eulerian viewpoints, and thereafter study various properties of acoustic
waves, including their energetics.

reader’s guide to this chapter
Development of the linear equations for acoustic waves relies on the momentum dynamics

from Chapter 24, and the acoustic energetics makes use of thermodynamics from Chapters 22,
23, and 26. Furthermore, we assume an understanding of wave kinematics from Chapter 49.
As a useful conceptual preface, see Sections 15.6 and 15.7 where we study simple harmonic
oscillators, as well as Section 46.1 where we take the continuum limit of the oscillators to
reveal the acoustic wave equation.

There are many treatments of acoustic waves in the literature, and we made use of Chapter
VIII in Landau and Lifshitz (1987), Chapter 9 in Fetter and Walecka (2003), Section 15.2
of Kundu et al. (2016), and Section 16.5 in Thorne and Blandford (2017). Additionally, the
second half of this video offers a pedagogical introduction to acoustic waves.
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51.1 Loose threads
• Need the solution to Exercise 51.3.

51.2 Conceptual introduction to acoustic waves

Physical processes giving rise to acoustic waves

Consider a static background fluid state that is in mechanical and thermodynamic equilibrium.
Acoustic waves involve four physical processes within this background state: (i) the density in a
compressible fluid changes according to flow divergences and convergences; (ii) density fluctuations
lead to pressure fluctuations; (iii) pressure fluctuations lead to fluid particle fluctuations; (iv) for
small amplitude fluctuations, fluid particle displacements exhibit space-time coherent oscillatory
motion known as linear acoustic waves. Small fluctuations correspond to a fluid particle speed
that is much smaller than the acoustic wave speed, with the ratio known as the Mach number (we
see this relation in Section 51.5.2). Hence, we are concerned only with small Mach number flow
in this chapter. As such, acoustic wave properties such as the wave momentum and wave energy
are transmitted at a much greater speed than the transport of properties arising from fluid
particle motion (e.g., enthalpy and mass transport). Furthermore, we find that fluid particles
feeling the passage of an acoustic wave oscillate in the direction of the wave, with the alignment
of the fluid velocity and wave direction characterizing longitudinal waves.

The alternating compression and rarefaction of fluid elements within an acoustic wave give
rise to alternating pressure work that affects the internal energy. For small Mach number flow,
acoustic waves can be assumed to be isentropic, so that the pressure work is reversible. We
make use of perfect fluid mechanics throughout this chapter, thus ignoring mixing and heating
so that fluid elements maintain constant specific entropy. Indeed, we generally assume the fluid
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has uniform specific entropy to further isolate the core physical features accounting for acoustic
waves.

Comments on compressible, incompressible, and the Boussinesq ocean

All real fluids are compressible and thus support acoustic waves. When compressibility is reduced
towards zero, so that the continuous media becomes more rigid, the acoustic wave speed increases.
Hence, we generally find acoustic waves travel faster through solids than liquids, and faster
through liquids than gases. Taking the mathematical limit of a fully incompressible fluid (where
the fluid density is uniform and constant) results in an infinite acoustic wave speed, in which
case acoustic waves are absent from incompressible fluid dynamics.

There are occasions where we study incompressible fluids in this book. For example, the
shallow water models in Part VI of this book are comprised of incompressible fluid layers
with three-dimensional motion, whereas the two-dimensional non-divergent barotropic model in
Chapter 38 considers just a two-dimensional velocity (zero vertical motion). The Boussinesq
ocean in Chapter 29 offers an important step towards a more realistic fluid. Namely, the
Boussinesq ocean is quasi-compressible since the Boussinesq velocity is non-divergent even
though the fluid density varies in space and time. The varying density in the Boussinesq ocean
gives rise to a divergent velocity that supports acoustic waves. Even so, we commonly ignore the
divergent velocity when working with the Boussinesq ocean since this velocity, and the associated
acoustic waves, never couple to the Boussineq ocean dynamics that are the concern of the theory.

51.3 Lagrangian perspective
Consider a continuum fluid system whose motion is constrained to one space dimension, x̂.
Assume that all fluid properties and flow properties are independent of the y and z directions.
We assume the only forces acting on fluid elements arise from pressure, so that gravity, elec-
tromagnetism, and friction are ignored. Furthermore, all fluid motion remains close to a static
background state, where the background state density and pressure are everywhere uniform with
values ρe and pe:

ρe = background state density and pe = background state pressure. (51.1)

Derivation of the equation for the acoustic waves proceeds in three steps. The first concerns
the equation for mass conservation; the second arises from momentum conservation; and the
third concerns the equation of state relating pressure, density, and specific entropy. Throughout
the derivation in this section, we make use of the Lagrangian displacement field, ξ(x, t), used in
Section 46.1 when taking the continuum limit of coupled harmonic oscillators. Recall that this
function measures the displacement, at time t, of a fluid element whose equilibrium position is x.
We here also introduce the density, ρ(x, t), as the density of a fluid element whose equilibrium
position is x, and we maintain the same interpretation for the pressure field, p(x, t).

51.3.1 Mass conservation
In Figure 51.1 we find two configurations for a fluid element, in which the first assumes the fluid
is in mechanical equilibrium with constant density, ρe, and mass per unit area

M/A = ρe δx, (51.2)

where A is the horizontal cross sectional area. The second configuration has been displaced by
ξ(x, t) a small amount so that the fluid element is out of mechanicial equilibrium. In this case its
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density, ρ(x, t), is found through mass conservation. Namely, the mass in the original rectangle
equals to that in the displaced rectangle

M/A = ρe δx (51.3a)

= ρ [x+ δx+ ξ(x+ δx, t+ δt)− x− ξ(x, t+ δt)] (51.3b)

= ρ [δx+ ξ(x+ δx, t+ δt)− ξ(x, t+ δt)] (51.3c)

= ρ δx

[
1 +

∂ξ(x∗, t)

∂x

]
(51.3d)

≈ ρ δx
[
1 +

∂ξ(x, t)

∂x

]
. (51.3e)

The penultimate equality made use of the mean value theorem from differential calculus, where
x∗ is a point between x and x+ δx, whereas the final step involves the approximation that arises
when taking the infinitesimal limit allowing us to evaluate ∂ξ/∂x at the position x. We are thus
led to the relation1

ρ(x, t) = ρe (1 + ∂ξ/∂x)−1 ≈ ρe (1− ∂ξ/∂x). (51.4)

This equation says that the density of a fluid element, ρ(x, t), whose equilibrium position is
x, differs from its equilibrium density, ρe, according to whether the fluid element is expanded
(∂ξ/∂x > 0) or contracted (∂ξ/∂x < 0).
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Figure 51.1: Schematic of a rectangular fluid element constrained to move just in the x̂ direction with uniform
properties in the ŷ and ẑ directions. The fluid element has a constant mass, M , and with density uniform within
the element. The equilibrium configuration in the left rectangle has a mass per unit area M/A = ρe δx, where A
is the fixed cross sectional area, and ρe is the equilibrium density. The right rectangle shows the fluid element at a
displaced non-equilibrium configuration where the density deviates from its equilibrium value. This density, ρ(x, t),
is the density of the displaced fluid element (specified by the displacement field ξ(x, t)) whose equilibrium position
is x. The mass of the fluid element is identical for both the equilibrium and non-equilibrium configurations, which
leads to ρ(x, t) = ρe (1+ ∂ξ/∂x)−1. This relation means, for example, if ∂ξ/∂x > 0 (fluid element expands relative
to equilibrium), then ρ(x) < ρe.

51.3.2 Momentum conservation

At equilibrium the fluid element experiences a pressure, pe, that is assumed to be spatially
uniform.2 If fluid elements are displaced in a manner that produces nonzero density perturbations,
then the pressure field is likewise modified, in which case fluid moves. Recall that we interpret
p(x, t) as the pressure acting on a fluid element whose equilibrium position is x. Hence, the net
pressure force per area acting on the displaced fluid element is given by the gradient

F press = [−p(x+ δx, t) + p(x, t)] x̂ ≈ −(∂p(x, t)/∂x) δx x̂. (51.5)

1By assuming small perturbations relative to the background state, we disallow the extreme case where
∂ξ/∂x = −1, in which the fluid becomes so rarefied (vanishing mass density) that we can no longer make use of
the continuum description (see Chapter 16 for more on the continuum approximation).

2Recall we are ignoring gravity, so there is no hydrostatic pressure that would give rise to a pressure gradient.
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The position of the fluid element is fully specified by the deviation function, ξ(x, t), so that the
acceleration is its second time derivative, ∂ttξ(x, t), in which case Newton’s equation of motion
is given by

∂

∂t

[
ρ
∂ξ

∂t

]
= −∂p

∂x
. (51.6)

51.3.3 Equation of state and acoustic wave equation
We now assume an equation of state whereby density is a function of pressure and specific
entropy3

ρ = ρ(p, S). (51.7)

Assuming the fluctuations occur with constant specific entropy, S, the equation of motion (51.6)
takes the form

∂

∂t

[
ρ
∂ξ

∂t

]
= −

[
∂p

∂ρ

]
S

∂ρ

∂x
. (51.8)

Use of the continuity equation (51.4) allows us to eliminate density in favor of the displacement
field

∂

∂t

[
ρ
∂ξ

∂t

]
=

ρe c
2
s

(1 + ∂ξ/∂x)2
∂2ξ

∂x2
, (51.9)

where we introduced the inverse squared speed

c−2
s =

[
∂ρ

∂p

]
S

, (51.10)

where cs is interpreted as the sound speed. We can linearize the acoustic equation (51.9)
by dropping all terms with the products of the displacement field and assuming density is
approximated by its equilibrium value, ρe, in which case we recover the acoustic wave equation

(∂tt − c2s ∂xx) ξ = 0. (51.11)

This equation says that the displacements of the fluid elements relative to their equilibrium
position satisfy the linear wave equation, and the displacements travel with the sound speed.

51.3.4 Sound speed
It is important to observe that the pressure derivative in the sound speed equation (51.10) is
computed with a fixed entropy, S. We are thus treating acoustic waves as reversible adiabatic
waves, which accords with our use of a perfect fluid throughout this chapter.4 This approach is
suitable for those cases where the speed of acoustic waves is much larger than the speed of fluid
particles, so that an acoustic wave moves through a fluid far faster than the time for enthalpy to
be transferred by fluid particles. In this case, acoustic waves are accurately treated as reversible
adiabatic waves.

In Section 23.4.8 we consider the sound speed in an ideal gas, in which

c2s = (p/ρ) (cp/cv) = T RM (cp/cv), (51.12)

where RM is the specific gas constant given by equation (23.49), cv is the specific heat capacity
holding specific volume fixed (equation (23.59)), and cp = cv +RM is the specific heat capacity
holding pressure fixed. For air we have cs ≈ 350 m s−1 for T = 300 K. We identify these waves as

3We study equations of state, including the ideal gas equation, in Chapters 23 and 30.
4Matter concentration is also held fixed when considering sound speeds in a fluid with multiple matter

constituents.

CHAPTER 51. ACOUSTIC WAVES page 1429 of 2158



51.4. EULERIAN PERSPECTIVE

acoustic (sound) waves due to the agreement of the wave speed (51.12) with the speed of sound
measured in the laboratory. Note that LaPlace discovered the relevance of the specific heats
ratio, cp/cv, in the expression (51.12) for the sound speed. This ratio arises when recognizing
acoustic waves to be constant entropy waves, whereas Newton incorrectly assumed they were
isothermal, in which case the specific heat ratio does not appear.

A more compressible media, such as the atmosphere, has a smaller sound speed (cs ≈
350 m s−1) than a less compressible media such as the ocean (cs ≈ 1500 m s−1). Indeed, the
sound speed is infinite when the media is fully incompressible, with the infinite speed a signature
that the hyperbolic wave system has converted to an elliptic system (see Chapter 6). We offer
further discussion of the sound speed in Sections 22.7.4 and 23.4.8 as part of our study of
thermodynamics.

The Mach number is the ratio of the fluid particle speed to the sound speed. If a fluid is
moving with Mach number greater than unity (supersonic), then there can be discontinuities
(shocks) that break the continuum approximation (Chapter 16). In this case, the continuous
fluid equations must be supplemented by other physical conditions such as those afforded by
molecular dynamics. We have no occasion to study supersonic flow in this book.

51.3.5 Comments and further study
The original calculation of sound speed computed the density derivative holding temperature
fixed rather than entropy. This mistake, originally made by Newton in his studies of sound, was
corrected by LaPlace by noting that acoustic waves more closely maintain adiabatic conditions,
which means they preserve specific entropy. It is perhaps a testament to the genius of Newton
that even his mistakes took decades to centuries to correct, and often only after being considered
in light of new areas of physics (e.g., thermodynamics) that were totally undeveloped during
Newton’s time.

Elements of this section were taken from Sections 2.1, 2.2, and 2.3 of Towne (1967) and
Section 47-3 in Volume I of Feynman et al. (1963). See also Section 1.2 of Lighthill (1978) for
more on the sound speed calculation.

51.4 Eulerian perspective
We here derive the acoustic wave equation using an Eulerian approach, thus offering a complement
to the Lagrangian treatment in Section 51.3. Furthermore, we no longer restrict motion to one
dimension, so that here the resulting acoustic waves travel in three space dimensions. We also
generalize the background state, here allowing for the background density and specific entropy
to be static functions of space.

51.4.1 Lagrangian wave equation
Consider a single component perfect fluid that does not feel gravity, Coriolis, or friction, so that
the only acceleration acting on a fluid element arises from pressure gradients

Dv

Dt
= −ρ−1∇p. (51.13)

This expression of the Euler equation is coupled to the mass continuity equation (19.16)

Dρ

Dt
= −ρ∇ · v, (51.14)

that reflects the material constancy of mass following a fluid element. Furthermore, density
and pressure are coupled through the equation of state (51.7), so that the density and pressure
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material time derivatives are related by

Dρ

Dt
=

[
∂ρ

∂p

]
S

Dp

Dt
+

[
∂ρ

∂S

]
p

DS

Dt
= c−2

s

Dp

Dt
, (51.15)

where we set DS/Dt = 0 due to the isentropic nature of the perfect fluid, and introduced the
squared sound speed

c−2
s =

[
∂ρ

∂p

]
S

. (51.16)

Combining the continuity equation (51.14) and the material time derivative of the equation
of state (51.15) renders

1

ρ c2s

Dp

Dt
+∇ · v = 0. (51.17)

We can relate the velocity divergence to pressure by taking D/Dt of this equation and then using
the Euler equation (51.13)

−D(∇ · v)
Dt

= −(∂t + vn∂n) (∂mv
m) (51.18a)

= −∇ · Dv
Dt

+ ∂mv
n ∂nv

m (51.18b)

= ∇ · (ρ−1∇p) + Smn S
n
m −RmnRnm. (51.18c)

In the final equality we introduced components to the strain rate tensor, S, and the rotation
tensor, R, both of which were introduced in Section 18.8 when studying the velocity gradient
tensor. Furthermore, note that the combination, Smn S

n
m − RmnRnm, also appears in the

elliptic pressure equation for the Boussinesq ocean in Section 29.3.4. Use of equation (51.18c)
along with D/Dt of equation (51.17) leads to the pressure equation

D

Dt

[
1

ρ c2s

Dp

Dt

]
−∇ · (ρ−1∇p) = Smn S

n
m −RmnRnm. (51.19)

The left hand side is a Lagrangian wave equation, which, when linearized, forms the more familiar
acoustic wave equation to be described below. Equation (51.19) describes pressure fluctuations
relative to the moving flow, with the nonlinear source on the right hand side arising from strain
and rotation within the fluid flow. In Exercise 51.2 we consider the special case of pressure
fluctuations when the background flow is a uniform constant.

The pressure equation (51.19) is nonlinear since pressure, density, and velocity are coupled.
We garner insight into certain of the physical processes captured by this equation by linearizing
around a static background state and examining small amplitude fluctuations, to which we now
turn our attention.

51.4.2 Inhomogeneous background state
In Section 51.3 we assumed the background state has zero velocity, uniform density, uniform
specific entropy, uniform pressure, and uniform sound speed. This trivial state is itself an exact
solution to the perfect fluid equations of motion, thus serving as a suitable state from which to
study linear fluctuations. Here we introduce a slightly less trivial background state that is also
an exact solution to the equations of motion.

We continue to assume a trivial solution of the Euler equation with vanishing velocity
(background v = 0) and spatially uniform pressure (pe constant). In this case, the continuity
equation (51.14) can be satisfied by a background density that is time independent yet spatially
inhomogeneous, ρe = ρe(x). This inhomogeneous density is consistent with the equation of state
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(51.7) if the specific entropy is itself inhomogeneous, Se = Se(x), in which case

ρ(x) = ρ[p = pe, S = Se(x)]. (51.20)

By allowing ρe and Se to be spatially dependent functions, we extend the applicability of the
resulting wave equation to the study of acoustic waves propagating in a static inhomogeneous
media. A geophysically relevant example concerns an ocean or atmosphere in exact hydrostatic
balance (Section 24.6), with vanishing flow yet density and specific entropy that are functions of
geopotential coordinate, z. Pierce (1990) considers the even more realistic case with a space
and time dependent background flow, and a correspondingly nonuniform pressure field, in which
case the acoustic wave equation is modified relative to that considered in this chapter.

51.4.3 Acoustic wave equation

We now linearize the Euler equation (51.13), along with the mass continuity equation in the
form of equation (51.17), and perform the linearization relative to a background state of zero
motion yet inhomogeneous density. We thus write pressure, density, and velocity as

p = pe + p′ and ρ = ρe(x) + ρ′ and v = 0 + v′, (51.21)

where the pressure and density perturbations are small relative to their background values
|p′| ≪ pe and |ρ′| ≪ ρe(x), and where the background density is generally a function of space. A
positive p′ arises from a local compression in the fluid, whereas a negative p′ is a local expansion
or rarefaction.

Wave equation with an inhomogeneous background state

Inserting the perturbations (51.21) into the Euler equation (51.13) leads to

(ρe + ρ′) ∂tv
′ + (ρe + ρ′) (v′ · ∇)v′ = −∇p′, (51.22)

and dropping all products of perturbation fields leads to the linearized Euler equation

ρe ∂tv
′ = −∇p′. (51.23)

Likewise, the linearized continuity equation (51.17) takes the form

∂tp
′ + ρe c

2
s ∇ · v′ = 0, (51.24)

where the squared sound speed is here determined by compressibility of the equilibrum state

c−2
s =

[(
∂ρ

∂p

)
S

]
p=pe

. (51.25)

Taking the divergence of the velocity equation (51.23) and making use of the continuity
equation (51.24) renders the acoustic wave equation for the anomalous pressure

1

ρe c2s

∂2p′

∂t2
−∇ · (ρ−1

e ∇p′) = 0. (51.26)

This linear wave equation compares to its fully nonlinear analog in equation (51.19). We can
perform analogous manipulations to determine the following wave equation satisfied by the
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velocity divergence

∂ttD
′ −∇ ·

[
ρ−1∇(ρ c2D′] = 0 with D′ = ∇ · v′. (51.27)

Finally, note that from the linearized Euler equation (51.23) that the density weighted velocity
fluctuation has a static curl

∂t[∇× (ρe v
′)] = 0. (51.28)

Wave equation with a homogeneous background state

Equation (51.26) for the pressure, equation (51.27) for the velocity divergence, and equation
(51.28) for the curl of the density weighted velocity constitute the suite of equations for acoustic
waves in a static yet inhomogeneous background state. In the remainder of this section we study
properties of the wave solutions to these equations, yet restricted to the homogeneous and static
background state with ρe a uniform constant and with the sound speed also uniform, in which
case we have the linear acoustic wave equations

(∂tt−c2s ∇2)p′ = 0 and (∂tt−c2s ∇2)D′ = 0 and ∂t(∇×v′) = 0 with D′ = ∇·v′. (51.29)

The more realistic, yet complex, case of waves propagating through an inhomogeneous background
state requires extra mathematical technology that we develop in Section 51.9.

51.4.4 The velocity potential and acoustic wave properties
The locally static curl (equation (51.29)) means that acoustic waves do not alter vorticity. Hence,
if the linear system is initialized with zero vorticity then it stays that way.

Velocity potential for acoustic waves

Assuming zero initial vorticity, as appropriate when considering fluctuations around a state of
rest, allows us to introduce a velocity potential (dimensions squared length per time), ψ, so that

v′ = −∇ψ. (51.30)

The velocity equation (51.23) thus implies

∇(p′ − ρe ∂tψ) = 0 =⇒ p′ = ρe (∂tψ +K), (51.31)

where K(t) is an arbitrary function of time that is independent of space. The velocity potential
is itself arbitrary up to a function of time. Hence, we can choose to work with a modified velocity
potential, Ψ, that absorbs the function K

Ψ = ψ +

ˆ t

K(t′) dt′, (51.32)

so that pressure is determined by the time derivative of Ψ and velocity is determined by the
gradient

p′ = ρe ∂tΨ and v′ = −∇Ψ. (51.33)

Note that the process of transforming from ψ to Ψ is referred to as a gauge transformation. The
same approach is used in Section 52.2.2 when studying surface waves.

Making use of the relation (51.33) in the linearized continuity equation (51.24) renders the
wave equation for the velocity potential

(∂tt − c2s ∇2)Ψ = 0. (51.34)
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Furthermore, we can take the gradient of this equation to find that each of the three velocity
components satisfies the acoustic wave equation

−(∂tt − c2s ∇2)∇Ψ = (∂tt − c2s ∇2)v′ = 0. (51.35)

Density fluctuations in an acoustic wave

We determine the density perturbation within an acoustic wave by linearizing the equation of
state (51.7) around the background state5

ρ = ρ(p, S) ≈ ρe + c−2
s (p− pe), (51.36)

so that
ρ′ = ρ− ρe = c−2

s p′ = ρe c
−2
s ∂tΨ. (51.37)

Taking the time derivative and using the wave equation (51.34) reveals the self-consistency of
this result with the linearized mass continuity equation (51.24)

∂tρ
′ = ρe c

−2
s ∂ttΨ = ρe∇2Ψ = −ρe∇ · v′. (51.38)

Temperature fluctuations in an acoustic wave

For an acoustic wave, a differential temperature increment arises just from changes to the
pressure while holding entropy fixed

dT =

[
∂T

∂p

]
S

dp. (51.39)

In Section 23.2 we referred to this temperature partial derivative is the adiabatic lapse rate.
Equation (23.26) provides a practical form of the lapse rate[

∂T

∂p

]
S

=
Te αT

ρe cp
, (51.40)

with Te the background temperature, cp the specific heat capacity (22.99), and αT the thermal
expansion coefficient (22.103) defined in terms of the in situ temperature (αT and cp are computed
for the background state). We thus have a fluctuation of temperature given by

T − Te = T ′ =
Te αT p

′

ρe cp
= (Te αT/cp) ∂tΨ. (51.41)

Hence, as an acoustic wave propagates it has an associated oscillation of the temperature field
due to oscillations in pressure.

51.5 Dispersion relation and flow properties
We now characterize physical properties of acoustic waves, focusing on the properties as realized
by a traveling acoustic plane wave in a homogeneous media (i.e., ρe is a uniform constant). These
properties are determined largely through the acoustic wave dispersion relation, which provides
a functional relation between the wave frequency and the wavevector. After determining the
dispersion relation, we derive the pressure, density, and velocity fluctuations in an acoustic wave.

5Recall that S is assumed constant for the background state, so that it plays a passive role in the Taylor
expansion (51.36).
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51.5.1 Dispersion relation
Not every traveling plane wave is a solution to the acoustic wave equation (51.34). Rather, the
wavevector and angular frequency must be related in a specific manner that is dependent on
physics of the particular wave. This relation is known as the dispersion relation. Plugging in the
traveling plane wave (49.18) into the acoustic wave equation (51.34) renders the acoustic wave
dispersion relation

(ω2 − c2s k2)Ψ = 0 =⇒ ω = cs |k| =⇒ Cp = ω/|k| = cs. (51.42)

Note that we only consider the positive sign for the angular frequency since ω ≥ 0 corresponds
to our convention for wave frequencies (Section 49.4). Traveling acoustic plane waves of a
given wavevector have their angular frequency specified by the dispersion relation (51.42). The
dispersion relation (51.42) reveals that the phase speed for acoustic waves, Cp, equals to the
sound speed, cs.

The sound speed is a function of the background fluid state; it is not a function of wave
properties such as the wavelength or wave frequency. Hence, all acoustic waves, regardless their
wavelength, travel at the same phase speed, Cp = cs. Correspondingly, we say that acoustic
waves are non-dispersive. This property accords with common experience, whereby the variety of
sound waves with different frequencies from, say, an orchestra are heard together since all sound
frequencies travel with the same speed. Furthermore, it is certainly possible for any particular
point in space to be comprised of multiple acoustic waves. Since each wave satisfies the wave
equation (51.34), and since the wave equation is linear, acoustic waves satisfy the principle of
superposition. That is, the sum of multiple traveling acoustic waves is also an acoustic wave that
satisfies the same wave equation with same speed, cs.

51.5.2 Flow properties for acoustic plane waves
We here establish expressions for flow fields, such as velocity, pressure, and density, in the
presence of an acoustic plane wave. We start with equation (51.33), which relates pressure and
velocity to derivatives of the velocity potential. Following our discussion of traveling plane wave
kinematics in Section 49.5.1, write the velocity potential for an acoustic plane wave as

Ψ(x, t) = ARe[ei (k·x−ω t+α)] = A cos(k · x− ω t+ α), (51.43)

which leads to the corresponding pressure fluctuation

p′ = ρe ∂tΨ = ρe Re[−iωΨ] = ρe ωA sin(k · x− ω t+ α). (51.44)

Hence, higher frequency acoustic plane waves have higher magnitude for their fluctuating pressure.
Likewise, the fluctuating velocity of fluid particles takes on the form

v′ = −∇Ψ = −Re[ikΨ] = Ak sin(k · x− ω t+ α). (51.45)

This relation means that fluid particles moving in an acoustic plane wave have their velocity
aligned with the wave direction

v′ × k = 0. (51.46)

Furthermore, this relation follows since the vorticity of the linear fluctuations vanish (Section
51.4.4). The alignment of particle velocity and wave vector is a defining feature of longitudinal
waves.6 It also means that the squared magnitude of the particle velocity equals to the squared

6We later encounter waves in non-divergent flows, ∇·v = 0, which are transverse waves whereby k ·v = 0. That
is, for transverse waves the fluid particle motion is perpendicular to the wave direction, whereas for longitudinal

CHAPTER 51. ACOUSTIC WAVES page 1435 of 2158



51.5. DISPERSION RELATION AND FLOW PROPERTIES

projection of this velocity onto the wave direction

|v′|2 = (v′ · k̂)2 = [A |k| sin(k · x− ω t+ α)]2. (51.47)

Finally, the fluctuating density within an acoustic wave is given by the linearized equation of
state (51.37), which takes the following form for an acoustic plane wave

ρ′ = c−2
s p′ = c−2

s ρe ωA sin(k · x− ω t+ α). (51.48)

Equations (51.44), (51.45), and (51.48) imply the following relations between the fluctuating
pressure, velocity, and density in an acoustic plane wave

ρe ω v
′ = p′ k =⇒ p′ = ρe cs v

′ · k̂ =⇒ ρ′ = ρe v
′ · k̂/cs. (51.49)

where we used the dispersion relation (51.42). These relations reveal that pressure, velocity, and
density fluctuations are in-phase; i.e., they have the same phase. The density fluctuation in
equation (51.49) reveals that its ratio with the background density equals to the ratio of the
fluid particle speed to the sound speed. This ratio is the Mach number, so that for an acoustic
plane wave we have

|p′|/(ρe c
2
s ) = |ρ′|/ρe = |v′ · k̂|/cs = Ma≪ 1. (51.50)

Hence, small Mach number corresponds to small density fluctuation relative to the background
density. We made use of this relation when introducing the Boussinesq ocean at the start of
Chapter 29.
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Figure 51.2: Example packet of acoustic waves, with the gray shaded lines denoting constant phase surfaces.
Acoustic waves are non-dispersive, so that the group and phase velocities are equal, cp = cg, and all acoustic
waves have phase speed given by the speed of sound, Cp = cs. The fluid particle motion is parallel to the phase
velocity according to equation (51.45), with such particle motion characterizing longitudinal waves.

51.5.3 Example acoustic pressure perturbations

We noted in the introduction to this chapter that acoustic waves, and their associated pressure
perturbations, play a negligible role in large-scale geophysical fluid flows, such as those associated
with atmospheric weather patterns. To support that contention, consider some common sounds
and examine their pressure perturbations. For that purpose, we make use of the decibel scale
(dB) for the sound pressure level (SPL)

SPL = 20 log10(|p′|/pref) =⇒ |p′| = pref 10
SPL/20. (51.51)

waves the particle motion is parallel to the wave direction.
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It is conventional to choose the reference pressure, pref, so that 0 dB is a quiet sound at the
threshold of human hearing, with

pref = 20× 10−6 Pa = 20 µPa (51.52)

serving as the international convention. Following equation (51.50), we can determine the
Mach number associated with a particular sound pressure level (assuming acoustic plane waves)
according to

Ma = |p′|/(ρe c
2
s ) = |p′|/[p (cp/cv)], (51.53)

where we made use of the ideal gas relation (23.70) for the sound speed

ρe c
2
s = p cp/cv. (51.54)

We evaluate the sound speed at the standard sea level atmospheric pressure, p = pstand =
101.325× 103 Pa, and assume the specific heat capacity ratio, cp/cv = 7/5, which holds for an
ideal diatomic gas, in which case

ρe c
2
s = pstand (cp/cv) = 140× 103 Pa. (51.55)

Table 51.1 tabulates the SPL, pressure perturbation, and Mach number for some common sounds.
We see that even extremely loud sounds, relative to human hearing, have very small Mach
numbers, thus justifying the use of linear acoustic wave dynamics for their description.

To gauge the size of these acoustic pressure fluctuations relative to typical atmospheric
pressure fluctuations, consider a middle latitude geostrophic wind, in which case equation (31.15)
gives

ρ f ẑ × ugeostrophic = −∇pgeostrophic =⇒ |p′geostrophic| ∼ ρ f U L, (51.56)

where U is the scale of the geostrophic wind speed, and L is the horizontal length scale over
which the winds vary. Taking f = 10−4 s−1, U = 10 m s−1, ρ = 1 kg m−3, and L = 106 m we
find a typical pressure fluctuation

|p′geostrophic| ≈ 103 Pa. (51.57)

This pressure fluctuation is on the order of that found inside of an automobile exhaust system
(see Table 51.1). However, the atmospheric fluctuation associated with this geostrophic wind
extends over thousands of kilometers, whereas the sound waves inside of an exhaust system
extend over a fraction of a meter. Hence, the energy contained in the atmospheric weather
pattern is many orders larger than that for even the loudest sounds extending over typical human
length scales. This example further emphasizes the irrelevance of acoustic waves for large-scale
geophysical fluid flows.

51.6 Energetics

We here specialize the energetic analysis from Section 26.7 and 26.9 to study the energetics of
an acoustic wave in a homogeneous background state. For an acoustic wave, the total energy
is the sum of the kinetic energy of the oscillating fluid particles, plus the changes to internal
energy of the fluid that arise from pressure work (recall we are ignoring gravity). We thus write
the total energy per mass, E, as the sum of the internal energy per mass, I, plus kinetic energy
per mass, K,

E = I+K. (51.58)
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sound SPL (dB) |p′| (Pa) |p′|/|p′geostrophic| Ma

soft whisper 30 6.3× 10−4 6.3× 10−7 4.5× 10−9

normal conversation 60 2× 10−2 2× 10−5 1.4× 10−7

noisy factory 90 0.63 6.3× 10−4 4.5× 10−6

rock concert 115 11 1.1× 10−2 8× 10−5

aircraft engine 130 63 6.3× 10−2 4.5× 10−4

automobile exhaust system 160 2× 103 2 1.4× 10−2

Table 51.1: Acoustic properties of common sounds, following Example 15.2 from Kundu et al. (2016). The first
column lists the sound, the second column the sound pressure level in dB, the third column the corresponding
pressure fluctuation in Pa, the fourth column the ratio of the pressure fluctuation to a pressure fluctuation
associated with a geostrophic atmospheric fluctuation, |p′geostrophic| ≈ 103 Pa (equation (51.57)), and the fifth
column the Mach number assuming standard atmospheric sea level pressure, pstand = 1.01× 105 Pa. Since the
Mach number is far smaller than unity even for the loudest sound, we are justified in using linear acoustic wave
theory to describe the propagation of these sounds.

The Eulerian form of the total energy equation is given by equation (26.102), which here takes
the form

∂(ρE)

∂t
+∇ · [ρv (I+K + p/ρ)] = 0, (51.59)

where I+ p/ρ is the enthalpy per mass (Section 22.6.4)

H = I+ p/ρ, (51.60)

and we set the thermal and chemical fluxes to zero as per a perfect fluid. In the remainder of
this section we specialize this energy equation to the case of linear acoustic wave fluctuations.

51.6.1 Expressions for the wave energies

To linearize terms in the energy equation (51.59) requires us to drop third order products of
fluctuating quantities while keeping second, first, and zeroth order terms. This procedure is
further supported by our ability to develop a self-consistent and closed energy budget for acoustic
waves.

Kinetic energy of an acoustic wave

Since velocity is a first order quantity, the kinetic energy per volume is

ρK = (ρe + ρ′)v′ · v′/2 ≈ ρe v
′ · v′/2. (51.61)

Internal (potential) energy of an acoustic wave

For the internal energy, recall from Section 22.6.2 that its natural functional dependence for a
single-component fluid is

I = I(S, ρ). (51.62)

Since entropy is held fixed in an acoustic wave, consider the following Taylor series approximation
for the internal energy per volume as computed around the background state

ρ I ≈ ρ Ie + (ρ− ρe)

[
∂(ρ I)

∂ρ

]
ρ=ρe

+
(ρ− ρe)

2

2

[
∂2(ρ I)

∂ρ2

]
ρ=ρe

. (51.63)
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The first partial derivative is given by

∂(ρ I)

∂ρ
= I+ ρ

∂I

∂ρ
= I+ p/ρ = H, (51.64)

where we used identity (22.64) in the penultimate step. The second partial derivative is thus
given by

∂2(ρ I)

∂ρ2
=
∂H

∂ρ
=
∂H

∂p

∂p

∂ρ
= c2s /ρ, (51.65)

where we used the identity (22.76) for the final step. We also used the equation of state (51.7)
to convert the density derivative to a pressure derivative in the penultimate step.

Bringing these results together leads to the approximate internal energy per volume

ρ I ≈ ρe Ie + ρ′He + (cs ρ
′)2/(2 ρe). (51.66)

The first term on the right hand side is a constant measuring the internal energy per volume
of the background state, and it has no relation to the acoustic wave. The second term is the
background enthalpy per mass times the fluctuating density. When integrating over the full
domain, the fluctuating density vanishes due to mass conservation. That is, we assume the mass
in the domain is the same in the background state as well as when there are acoustic waves, so
that ˆ

R

ρdV =

ˆ
R

ρe dV =⇒
ˆ
R

ρ′ dV = 0. (51.67)

Since the ρ′He term drops out from a domain volume integral, it is common to drop this term
when studying the energy density for an acoustic wave. However, we choose not to drop it at
this point in the discussion. Rather, we find in Section 51.6.3 that ρ′He naturally cancels from
the flux-form acoustic energy budget equation, at which point we can confidently conclude that
it has no significance to the energetic transfers within an acoustic wave. The third term in
equation (51.66), (cs ρ

′)2/(2 ρe), is a potential energy per volume in the acoustic wave that arises
from fluid compressibility.

Total energy per volume of an acoustic wave

We conclude that the total energy per volume, accurate to second order in fluctuating acoustic
wave fields, is given by

ρE = ρ′He + (ρe/2) [(cs ρ
′/ρe)

2 + v′ · v′]. (51.68)

As a final step, we make use of equations (51.33) and (51.37) to write the wave energy per
volume in terms of the velocity potential

ρE = ρ′He + (ρe/2) [(cs ρ
′/ρe)

2 + v′ · v′] = ρe

2 c2s

[
2He ∂tΨ+ (∂tΨ)2 + c2s ∇Ψ · ∇Ψ

]
. (51.69)

51.6.2 Equipartition of energy
Following our study of energy for a simple harmonic oscillator in Section 15.6.3, we here study
how energy in an acoustic wave is partitioned between kinetic energy and potential energy.
Recall that the simple harmonic oscillator equally partitions energy when time averaging over
an oscillation period; i.e., performing the phase average of Section 8.1.2. That result follows
from the virial theorem considered in Section 12.7.3. We here verify energy equipartition also
holds for acoustic waves.

As for the oscillator, we expect energy equipartition for acoustic waves, thus reflecting the
alternating exchange of energy between kinetic and potential. Mathematically, equipartition
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arises since the potential energy is a homogeneous function of degree two, with details of this
property discussed as part of the virial theorem from Section 12.7.3. Here, we show that energy
equipartition holds instantaneously for a monochromatic traveling acoustic wave. However, for a
general linear acoustic fluctuation, equipartition holds only when averaging over a wave period
plus integrating over the closed spatial domain.

Equipartition for a monochromatic traveling acoustic wave

For an acoustic plane wave, the energy density simplifies through use of equation (51.49) to
render

(cs ρ
′/ρe)

2 = (v′ · k̂)2 = v′ · v′, (51.70)

where the second equality holds since the fluid particle velocity within the plane wave is aligned
with the plane wave phase velocity. We thus find that the potential energy per volume and
kinetic energy per volume contribute an equal amount to the acoustic plane wave’s energy per
volume

ρE = ρ′He + (ρe/2) [(cs ρ
′/ρe)

2 + v′ · v′] = ρ′He + 2 ρe K. (51.71)

Equipartition for an arbitrary periodic linear fluctuation

The general expression (51.69) for the energy in a linear fluctuation does not render energy
equipartition at each point in space and time. Rather, being inspired by the oscillator in Section
15.6.3, we here show that a phase and space averaged energy does possess equipartition. For the
phase average we integrate the energy density over a single period, and doing so eliminates the
background enthalpy term, 2He ∂tΨ, thus leaving

ˆ 2π/ω

0
ρE dt =

ρe

2 c2s

ˆ 2π/ω

0

[
(∂tΨ)2 + c2s ∇Ψ · ∇Ψ

]
dt. (51.72)

Now integrate by parts and make use of the wave equation (51.34) to find

ˆ 2π/ω

0
ρE dt =

ρe

2 c2s

ˆ 2π/ω

0

[
−Ψ ∂ttΨ+ c2s ∇Ψ · ∇Ψ

]
dt (51.73a)

=
ρe

2

ˆ 2π/ω

0

[
−Ψ∇2Ψ+∇Ψ · ∇Ψ

]
dt (51.73b)

=
ρe

2

ˆ 2π/ω

0
[−∇ · (Ψ∇Ψ) + 2∇Ψ · ∇Ψ] dt. (51.73c)

We see that for an arbitrary linear and periodic fluctuation, energy equipartition is realized by
time integrating over a wave period and then integrating over a spatially closed or spatially
periodic domain

ˆ
R

[ˆ 2π/ω

0
ρE dt

]
dV = ρe

ˆ
R

[ˆ 2π/ω

0
∇Ψ · ∇Ψdt

]
dV = 2 ρe

ˆ
R

[ˆ 2π/ω

0
K dt

]
dV. (51.74)

This equation says that the phase and domain averaged flow contains an equal amount of kinetic
energy as internal energy. This result holds for any periodic acoustic fluctuation, and is not
specific to plane acoustic waves.
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51.6.3 Energy budget equation
Taking the partial time derivative of the energy per volume, (51.69), leads to

∂t(ρE) =
ρe

c2s

[
∂ttΨ(He + ∂tΨ) + c2s ∇Ψ · ∇∂tΨ

]
(51.75a)

= ρe

[
∇2Ψ(He + ∂tΨ) +∇Ψ · ∇∂tΨ

]
(51.75b)

= ρe∇ · [(He + ∂tΨ)∇Ψ] (51.75c)

= −ρe∇ · [v′ (He + p′/ρe)]. (51.75d)

We can thus write the acoustic energy equation in terms of the velocity potential

∂t
[
2He ∂tΨ+ (∂tΨ)2 + c2s ∇Ψ · ∇Ψ

]
= 2 c2s ∇ · [(He + ∂tΨ)∇Ψ]. (51.76)

The two He terms cancel identically through use of the wave equation (51.34), thus leaving the
acoustic energy equation, here written in two equivalent forms

(1/2) ∂t
[
(∂tΨ)2 + c2s ∇Ψ · ∇Ψ

]
= c2s ∇ · (∂tΨ∇Ψ) (51.77a)

(ρe/2) ∂t
[
(cs ρ

′/ρe)
2 + v′ · v′

]
= −∇ · (v′ p′). (51.77b)

The energy equation (51.77b) identifies v′ p′ as the energy flux for acoustic waves, whose
convergence affects a local time change to the wave energy per volume. In this manner we have
established the budget equations for acoustic energy, as summarized by7

∂t(ρe E) = −∇ · JE (51.78a)

E = [(cs ρ
′/ρe)

2 + v′ · v′]/2 = [c−2
s (∂tΨ)2 +∇Ψ · ∇Ψ]/2 (51.78b)

JE = v′ p′ = −ρe ∂tΨ∇Ψ. (51.78c)

Finally, for an acoustic plane wave, use of the relations (51.49) allows us to write the wave
energy flux in terms of the wave energy density

JE = v′ p′ = v′ (ρe cs v
′ · k̂) = cs ρe (v

′ · k̂)2 k̂ = cs ρe E k̂ = ρe E cp ⇐= plane wave. (51.79)

That is, for the acoustic plane wave, the flux of energy moves with the plane wave phase velocity.
For dispersive waves in later chapters, we find that the energy flux moves with the group velocity
rather than the phase velocity.

51.7 Wave momentum
The linear momentum in a fluid region, R, is given by (see Section 24.2.3)

P =

ˆ
R

ρv dV, (51.80)

so that the linear momentum of acoustic waves is given by

P =

ˆ
R

(ρe + ρ′)v′dV (51.81a)

= −ρe

ˆ
R

∇ΨdV +

ˆ
R

ρ′ v′ dV (51.81b)

7As shown following equation (51.76), the term ρ′ He plays no role in energy transformations. Hence, we drop
it from E in equation (51.78b).
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= −ρe

˛
∂R

Ψ n̂dV + c−2
s

ˆ
R

JE dV. (51.81c)

If the waves are localized to a finite region, such as in a wave packet rather than a plane wave,
then we can drop the boundary integral so long as the boundary of the domain extends outside
the region where the packet is located. In this case, the integrated energy flux equals to the
squared wave speed times the linear momentum

c2s P =

ˆ
R

p′ v′ dV =

ˆ
R

JE dV. (51.82)

51.8 Acoustic waves radiated from a piston

In this section we introduce the study of acoustic wave radiation, here for the specific case of a
circular piston in a flat wall (see Figure 51.3). In addition to exemplifying some of the physical
ideas presented earlier in the chapter, this section illustrates the use of the Green’s function
for the Helmholtz equation that we originally studied in Section 9.6.8. We do not pursue the
radiation problem to its entirety as doing so is quite an extensive exercise that is lucidly and
thoroughly presented in section 51 of Fetter and Walecka (2003). Instead, our goal is mostly to
illustrate the style of problems that can be solved using Green’s functions for acoustics.
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Figure 51.3: Illustrating the geometry of a piston radiating acoustic waves as studied in Section 51.8. The piston
is circular with radius r = a and situated within an infinite rigid wall along the z = 0 plane. We make use of
cylindrical-polar coordinates from Section 4.22, with origin at the center of the piston and vertical axis through
the origin. The piston oscillates along the vertical axis with a vertical position z(t) = ϵ a e−iω t, where ϵ ≪ 1
is small and ω is the angular frequency of the oscillations. The piston generates acoustic waves with angular
frequency ω in the surrounding fluid. We depict a single acoustic wavevector, k, making an angle, β, with respect
to the vertical axis, though note that waves are radiated throughout space. Given the assumed small amplitude of
the piston motion, we evaluate boundary conditions on the z = 0 plane, which is sufficiently accurate for linear
analysis. Our focus concerns waves within the region z > 0.

51.8.1 Setting up the physics problem

We are interested in properties of acoustic waves radiated in the z > 0 half-plane as depicted
in Figure 51.3. If the piston was at rest (ω = 0) at z = 0, then we would merely be studying
acoustic waves in the z > 0 half-plane as described by the boundary value problem for the
velocity potential

(∂tt − c2s ∇2)Ψ = 0 z > 0 (51.83a)

ẑ · ∇Ψ = 0 z = 0. (51.83b)

Indeed, if there is no wavemaker (i.e., no piston motion), then Ψ would be a space-time constant
and so there would be no waves.
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Now turn on the piston and write its vertical position as

z(t) =

[
ϵ a e−iω t r ≤ a

0 r > a,
(51.84)

where r is the radial distance from the vertical axis and ϵ ≪ 1 is a small positive and non-
dimensional number. The corresponding vertical velocity of the piston is

ż(t) =

[
−i ϵ a ω e−iω t r ≤ a

0 r > a.
(51.85)

We are thus led to the boundary value problem for the velocity potential

(∂tt − c2s ∇2)Ψ = 0 z > 0 (51.86a)

ẑ · ∇Ψ = 0 z = 0 and r > a (51.86b)

ẑ · ∇Ψ = i ϵ a ω e−iω t z = 0 and r ≤ a. (51.86c)

The time dependent boundary condition generates acoustic waves, and these waves manifest in
the velocity potential. We restrict attention to times long enough after the initial setup that
allows the wave field to be present throughout the fluid, in which case the velocity potential can
be written as a monochromatic field

Ψ(x, t) = Φ(x) e−iω t. (51.87)

We thus find that the time-independent portion of the velocity potential satisfies the Helmholtz
boundary value problem

[∇2 + (ω/cs)
2] Φ = 0 z > 0 (51.88a)

ẑ · ∇Φ = 0 z = 0, r > a (51.88b)

ẑ · ∇Φ = i ϵ a ω z = 0, r ≤ a. (51.88c)

51.8.2 Solution in terms of the Green’s function

Following our study in Chapter 9, we make use of a Green’s function to determine the velocity
potential resulting from the oscillating piston. In particular, introduce the Green’s function,
G(x|x0), that satisfies the Helmholtz equation with a Dirac source at x0 and a homogeneous
Neumann boundary condition

[∇2
x + (ω/cs)

2]G(x|x0) = −δ(x− x0) z > 0 (51.89a)

ẑ · ∇xG(x|x0) = 0 z = 0. (51.89b)

Multiplying the Green’s function equation (51.89a) by Φ(x) and integrating over z ≥ 0 leads to

−Φ(x0) =

ˆ
R

Φ(x)[∇2
x + (ω/cs)

2]G(x|x0) dVx, (51.90)

with integration by parts yielding

−Φ(x0) =

ˆ
R

[
∇x · (Φ∇xG−G∇xΦ) +G (∇2 + (ω/c)2) Φ

]
dVx. (51.91)
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Setting ∇2 + (ω/c)2)Φ = 0 as per the Helmholtz equation (51.88a), and use of the divergence
theorem, renders

−Φ(x0) =

ˆ
∂R
n̂ · (Φ∇xG−G∇xΦ) dS. (51.92)

There are two boundaries to consider. The first is at z = ∞, at which we assume the fields
vanishes so we can ignore this boundary. The second boundary is at z = 0, where n̂ = −ẑ and
the Neumann boundary conditions for G and Φ bring about the expression

−Φ(x0) =

ˆ a

0

ˆ 2π

0
G ẑ · ∇xΦ r dr dϑ, (51.93)

where ϑ is the polar angle. This is a very tidy result that says we merely need to determine the
Green’s function over the region of the piston, r ≤ a at z = 0, in order to determine the velocity
potential and hence the acoustic wave field for the z > 0 half-space.

51.8.3 Method of images for the Green’s function

We can make use of a special trick, known as the method of images, to determine the Green’s
function on the z ≥ 0 half-space. For this purpose, recall the free space Green’s function for the
Helmholtz equation from Section 9.6.8, which satisfies

[∇2 + (ω/c)2]G(x|x0) = −δ(x− x0), (51.94)

and takes the form

G(x|x0) =
ei |x−x0|ω/c

4π |x− x0|
. (51.95)

This Green’s function does not satisfy the Neumann boundary condition at z = 0. However, to
generate a Green’s function that does, introduce another Dirac delta point source, −δ(x− x0),
where the source is positioned at

x0 = x0 x̂+ y0 ŷ − z0 ẑ. (51.96)

This Dirac source is at a position in the z < 0 half-space reflected across the z = 0 plane from
the original source at x0. Notably, the new Dirac source never fires when the field point, x, is in
the upper, z > 0, half-space, just in the same manner that the original Dirac source, δ(x− x0),
never fires when the field point is in the z < 0 half space. Consequently, the Green’s function
resulting from these two Dirac sources satisfies the following equation set

[∇2 + (ω/c)2]G(x|x0) = −δ(x− x0) z > 0 (51.97a)

[∇2 + (ω/c)2]G(x|x0) = −δ(x− x0) z < 0 (51.97b)

ẑ · ∇G = 0 z = 0, (51.97c)

and it is given by the sum of the two free space Green’s functions,

G(x|x0) = G(x|x0) +G(x|x0) =
ei |x−x0|ω/c

4π |x− x0|
+

ei |x−x0|ω/c

4π |x− x0|
. (51.98)

The vanishing Neumann boundary condition (51.97c) results from taking the sum of the original
free space Green’s function and its image across the z = 0 plane, so that the vertical derivative
of the two Green’s functions cancel at z = 0. To verify this result, write

∂z[G(x|x0) +G(x|x0)] = ∂z[F (|x− x0|) + F (|x− |x0|)] (51.99a)
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= F ′(|x− x0|)
z − z0
|x− x0|

+ F ′(|x− x0|)
z − z0
|x− x0|

(51.99b)

= F ′(|x− x0|)
z − z0
|x− x0|

+ F ′(|x− x0|)
z + z0
|x− x0|

, (51.99c)

where F ′ is the derivative of the function. At z = 0, the two distances are equal so that

|x− x0| = |x− x0| and F ′(|x− x0|) = F ′(|x− x0|) at z = 0, (51.100)

which then yields the desired result

∂zG(x|x0) = 0 z = 0. (51.101)

Note that we are only interested in the boundary condition at z = 0 and the behavior of the
Green’s function in the half-space z > 0. We have no concern for what the Green’s function does
in the region z < 0. So placement of an image source in the lower half-space is merely a trick to
enable proper behavior in the z ≥ 0 region of interest. This “method of images” constructed
Green’s function is indeed somewhat magical, as it produces precisely what we need yet without
solving any new Green’s function equation. Hence, it is a very useful method to construct the
Green’s function for certain highly symmetric configurations such as given here. However, it
is not a general method, so we can only make use of it for certain very special cases. Even so,
we accept such gifts when they are available, here providing the Green’s function needed to
determine the velocity potential, Φ, as per equation (51.93).

51.8.4 Velocity potential
Making use of the Green’s function (51.98) within the expression (51.93) leads to the velocity
potential

−Φ(x0) =
i ϵ a ω

2π

ˆ a

0

ˆ 2π

0

ei |x−x0|ω/c

|x− x0|
r dr dϑ, (51.102)

where the integral is computed at z = 0 within the region r ≤ a of the piston, and where we
used the Neumann boundary condition (51.88c) for the velocity potential at z = 0. Making use
of the expression (51.87) for the velocity potential, Ψ, renders

Ψ(x0, t) = Φ(x0) e
−iω t = − i ϵ a ω

2π

ˆ a

0

ˆ 2π

0

ei (|x−x0|ω/c−ω t)

|x− x0|
r dr dϑ. (51.103)

The velocity potential is constructed by integrating outgoing spherical waves over the area of
the piston, with these waves having a strength that is proportional to the piston velocity. As
shown in section 51 of Fetter and Walecka (2003), further evaluation of this integral reveals that
the acoustic energy and power intensity display characteristic lobes as a function of the angle, β,
relative to the vertical axis (see Figure 51.3).

51.8.5 Further study
This section is based on section 51 of Fetter and Walecka (2003). Further study of acoustic
waves from a planar source can be found in section I.12 of Lighthill (1978).

51.9 Acoustic waves in a gently varying background
In Section 51.4.3 we developed the acoustic wave equations for linear waves propagating through
a static yet inhomogeneous background state with both ρe and cs functions of space. However,
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subsequent analysis of acoustic waves was restricted to homogeneous background state whereby
ρe and cs are taken to be space and time constants. In this section we extend the geometric
optics formalism from Section 50.3 to render equations for the propagation of acoustic wave
energy through a spatially inhomogeneous yet static background.8 We make use of the WKBJ
asymptotic method, which is a powerful approach for a variety of purposes.9 We also present
Whitham’s variational principle, which, as we show, offers a far more streamlined means to
deriving the leading order equations. Both the WKBJ and variational methods make use of the
eikonal wave ansatz (equation (51.124)) rather than a Fourier plane wave ansatz, with the more
general ansatz needed since Fourier methods are not suited to inhomogeneous backgrounds.

51.9.1 Scalar potential for density-weighted velocity
Return to the derivation of the acoustic wave equation in Sections 51.4.3 and 51.4.4, now
generalizing the velocity potential to include the spatially variable background density. Again,
the linearized Euler equation (51.23), its curl, and the linearized continuity equation (51.24) are
given by

∂t(ρe v
′) = −∇p′ and ∂t[∇× (ρe v

′)] = 0 and ∂tp
′ + ρe c

2
s ∇ · v′ = 0. (51.104)

Assuming a vanishing initial curl, ∇× (ρe v
′) = 0, as appropriate for a static initial condition,

allows us to focus on fluctuations that satisfy ∇× (ρe v
′) = 0 for all time. We are thus led to

introduce a scalar potential for the density-weighted velocity

ρe v
′ = −∇χ, (51.105)

with χ having dimensions of density times squared length per time (compare to the velocity
potential ψ in equation (51.30)). Use of χ in the linearized Euler equation (first of equation
(51.104)) leads to

∇(∂tχ− p′) = 0. (51.106)

Following the procedure from Section 51.4.4, we choose a gauge so that

p′ = ∂tχ. (51.107)

Using this expression for the pressure in the linearized continuity equation (third of equation
(51.104)) renders the wave equation for the velocity potential

1

ρe c2s

∂2χ

∂t2
−∇ · (ρ−1

e ∇χ) = 0. (51.108)

Once we have determined χ, then the pressure field is determined by taking the time derivative
in equation (51.107), and the velocity is determined by taking the gradient according to equation
(51.105).

51.9.2 Energetics
We studied the energetics of acoustic waves in Section 51.6. Here we provide a terse version
of that discussion starting from the wave equation (51.108) and deriving the corresponding

8Restricting to static background simplifies the maths. Also, it is sufficient for many applications since acoustic
waves are quite fast relative to the slower movement of fluid particles. Finally, as discussed by Pierce (1990), the
acoustic wave equation picks up extra terms when moving through a time evolving background state, and we are
only interested here in the familiar form of the acoustic wave equation.

9Chapter 10 of Bender and Orszag (1978) presents a thorough discussion of the WKBJ method from an
applied mathematical perspective.
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energy equation. Multiplying equation (51.108) by ∂tχ, and recalling that ρe and cs are time
independent, brings the first term to

[ρe c
2
s ]
−1 ∂tχ∂ttχ = [2 ρe c

2
s ]
−1 ∂t(∂tχ∂tχ), (51.109)

whereas the second term in equation (51.108) gives

−∂tχ∇ · (ρ−1
e ∇χ) = −∇ · (ρ−1

e ∂tχ∇χ) + ∂t(ρ
−1
e ∇χ · ∇χ)/2. (51.110)

We are thus led to the energy conservation law

(1/2) ∂t[(ρe c
2
s )

−1 (∂tχ)
2 + ρ−1

e (∇χ)2] = ∇ · (ρ−1
e ∂tχ∇χ), (51.111)

which can be equivalently written

(1/2) ∂t[(ρe c
2
s )

−1 (p′)2 + ρe v
′ · v′] = −∇ · (p′ v′), (51.112)

which compares directly to the energy equation (51.77a) derived for fluctuations around a
homogeneous background state.

51.9.3 Stress-energy-momentum tensor

As an aside, we here display the stress-energy-momentum tensor for acoustic waves, following
the field theory formalism from Section 50.4.3. The Lagrangian density for acoustic waves can
be written as

L = (2 ρe)
−1 [c−2

s (∂tχ)
2 − (∇χ)2], (51.113)

whose Euler-Lagrange field equation is the acoustic wave equation (51.108). The corresponding
generalized momentum, Hamiltonian density, and energy flux (equation (46.64)) are given by

P =
∂L

∂(∂tχ)
= (ρe c

2
s )

−1 ∂tχ = p′/(ρe c
2
s ) (51.114a)

H = P ∂tχ−L = (2 ρe)
−1 [c−2

s (∂tχ)
2 + (∇χ)2] = (1/2) [(ρe c

2
s )

−1 (p′)2 + ρe v
′ · v′] (51.114b)

F a =
∂L

∂(∂xaχ)

∂χ

∂t
= −ρ−1

e ∇χ∂tχ = v′ p′. (51.114c)

Since the Lagrangian has no explicit time dependence, the Hamiltonian satisfies a source-free
continuity equation, which is equivalent to the wave energy equation (51.111)

∂tH+∇ · F = 0. (51.115)

Likewise, for a background state that has no dependence on x = x1, the corresponding wave
momentum is conserved so that

∂tT
0
1 + ∂aT

a
1 = 0. (51.116)

Elements to the stress-energy-momentum tensor are generally given by equation (50.48) and
take on the following form for acoustic waves

T 0
1 = (ρe c

2
s )

−1 ∂tχ∂xχ (51.117a)

T 1
1 = −(2 ρe)

−1 [c−2
s (∂tχ)

2 − (∂xχ)
2 + (∂yχ)

2 + (∂zχ)
2] (51.117b)

T 2
1 = −(ρe)

−1 ∂yχ∂xχ (51.117c)

T 3
1 = −(ρe)

−1 ∂zχ∂xχ, (51.117d)
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which can be written in the equivalent form

T 0
1 = −p′ u′/c2s (51.118a)

T 1
1 = −[(ρe c

2
s )

−1 (p′)2 − ρe (u
′)2 + ρe (v

′)2 + ρe (w
′)2]/2 (51.118b)

T 2
1 = −ρe u

′ v′ (51.118c)

T 3
1 = −ρe u

′w′. (51.118d)

In Exercise 51.3 we verify that the budget equation (51.116) holds for the acoustic waves using
elements of the stress-energy-momentum tensor given by equations (51.118a)–(51.118d).

51.9.4 Alternative expression for the action

Following the observation in Sections 50.6 and 50.6, we write the action for acoustic waves in
the form

S =
1

2

ˆ
R

χ D̂χdV dt, (51.119)

where the acoustic linear operator, D̂, is given by

−D̂ = (ρe c
2
s )

−1 ∂tt −∇(ρ−1
e ) · ∇ − ρ−1

e ∇2. (51.120)

To verify the expression (51.119), perform an integration by parts to find

2S = −
ˆ
R
∂t[(ρe c

2
s )

−1 χ∂tχ] dV dt+

ˆ
R
∇ · (ρ−1

e
χ∇χ) dV dt+ 2

ˆ
R
L dV dt, (51.121)

where we introduced the Lagrangian density

L = (2 ρe)
−1 [c−2

s (∂tχ)
2 − (∇χ)2], (51.122)

from equation (51.113). Dropping boundary terms, which renders D̂ a self-adjoint wave operator,
leads to the traditional form of the action

S =

ˆ
R
L dV dt. (51.123)

51.9.5 Space and time scale separation

We are motivated by the hypothesis that waves moving through a gently varying inhomogeneous
background are locally close to the plane wave form realized for homogeneous background.
Asymptotic methods arising from this hypothesis were developed in Chapter 50, and here we
apply it to acoustic waves. Rather the traveling plane wave ansatz (49.18) used for homogeneous
media, we here consider the eikonal wave ansatz

χ(x, t) = Re[A(x, t) eiP(x,t)] = A(x, t) cos[P(x, t)], (51.124)

where A > 0 is the real amplitude and P is the phase introduced in Section 50.2. We assume
that spatial variations of the wave amplitude scale according to the length scale, L, introduced
by equation (50.3), so that

|∇A|/A ∼ L−1 ∼ |∇ρe|/ρe. (51.125)
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The complement assumption is that the phase function varies over a length scale that is much
smaller than L, so that the local wavenumber satisfies equation (50.3), here written as

|∇P| ≫ L−1 =⇒ 1/|∇P|
L

≪ 1. (51.126)

Combined with the definition (51.125), the WKBJ approximation considers a wave amplitude
and wave phase that satisfy

|∇A|/A≪ |∇P| = |k|. (51.127)

The same arguments hold for the time scale of the waves, so that

|∂tA|/A≪ |∂tP| = ω. (51.128)

In developing the WKBJ asymptotic equations from the eikonal wave ansatz, it can be useful
to scale the phase by a small non-dimensional parameter, ϵ, in which case

P = φ/ϵ where |∇A|/A ∼ |∇φ|, (51.129)

and equation (51.127) then takes on the form

|∇A|/A≪ |∇φ|/ϵ. (51.130)

An equivalent means to organize similarly scaled terms is to write the wave function (51.124) in
the form

χ = AeiP/σ, (51.131)

where σ = 1 is used to organize the terms, with this approach used in Section 51.9.6.

51.9.6 The WKBJ asymptotic solution
We now plug in the eikonal wave ansatz (51.131) to the wave equation (51.133) to develop
the WKBJ asymptotic equations that determine how the amplitude and phase evolve. The
manipulations are straightforward but somewhat tedious and uninspired. We expose sufficient
details to facilitate checking the maths.

Notation used for the WKBJ asymptotic expansion

In this subsection we find it useful to introduce the following notation

W = 1/(ρe c
2
s ) (51.132)

so that the wave equation (51.108) is written

W
∂2χ

∂t2
−∇ · (W c2s ∇χ) = 0. (51.133)

Likewise, the energy equation (51.111) takes on the form

(1/2) ∂t [W (∂tχ)
2 +W c2s (∇χ)2] = ∇ · (W c2s ∂tχ∇χ), (51.134)

so that the Hamiltonian density (i.e., the energy) and the energy flux are

H =W [(∂tχ)
2 + c2s (∇χ)2]/2 and F = −W c2s ∂tχ∇χ. (51.135)

W does not appear in the dispersion relation derived below, thus motivating its introduction.
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The derivatives

The derivatives are given by the following expressions, organized according to powers of σ:

e−iP/σ∇χ = (i/σ)A∇P+∇A (51.136a)

e−iP/σ∇2χ = −σ−2A (∇P)2 + (i/σ) (2∇A · ∇P+A∇2P) +∇2A (51.136b)

e−iP/σ ∂ttχ = −σ−2A (∂tP)
2 + (i/σ) (2 ∂tA∂tP+A∂ttP) + ∂ttA, (51.136c)

along with

e−iP/σ∇ · (W c2∇χ) =W c2s
[
−σ−2A (∇P)2 + (i/σ) (2∇A · ∇P+A∇2P) +∇2A

]
+∇(W c2s ) · [(i/σ)A∇P+∇A]. (51.137)

O(σ−2) terms

As for deriving the quasi-geostrophic equations in Part VIII of this book, when deriving
asymptotic equations we balance terms according to powers of the expansion parameter, with σ
the parameter for the present analysis. The O(σ−2) terms render

(∂tP)
2 = c2s ∇P · ∇P =⇒ ω2 = c2s |k|2. (51.138)

This local dispersion relation is the same as the dispersion relation (51.42) holding for acoustic
waves moving in a homogeneous media. Now, however, the angular frequency, wave speed, and
wavenumber are each functions of the spatial position. This result accords with our original
hypothesis that waves move through the inhomogeneous media with a local plane wave behavior.
It also accords with the assumptions built into the ray theory studied in Sections 50.2 and 50.3.

O(σ−1) terms

The O(σ−1) balance yields

W (2 ∂tA∂tP+A∂ttP) =W c2s (2∇A · ∇P+A∇2P) +A∇P · ∇(W c2s ), (51.139)

which can be rearranged to the form

(∂t + cp · ∇)A = − A

2W ω
[W ∂tω +∇ · (kW c2s )]. (51.140)

The left hand side is the time derivative of the amplitude computed by following the phase
velocity,

cp = cs k̂ = (ω/|k|) k̂. (51.141)

The right hand side of equation (51.140) is a source term that contributes to the amplitude
change following the phase velocity. Furthermore, since the acoustic waves are non-dispersive, in
which cp = cg, equation (51.140) can be written using the time derivative following a ray

−2ω

A

DrA

Dt
= ∂tω +∇ · (kW c2s )/W (51.142a)

= ∂tω + c2s ∇ · k + k · ∇c2s + c2s k · (∇W )/W. (51.142b)

Massaging the source terms

Terms on the right hand side of the amplitude equation (51.142b) provide sources for the wave
amplitude along a ray. We find it useful to rearrange these terms by using the following expression
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for the wavevector in an acoustic wave

k = cp |k|/cs = cp ω/c2s = cg ω/c
2
s , (51.143)

so that
∇ · k = (ω/c2s )∇ · cg + cg/c2s · ∇ω + ω cg · ∇c−2

s , (51.144)

thus leading to

∂tω + c2s ∇ · k + k · ∇c2s = (∂t + cg · ∇)ω + ω∇ · cg + ω c2s cg · ∇c−2
s + k · ∇c2s (51.145a)

=
Drω

Dt
+ ω∇ · cg, (51.145b)

where we used

ω c2s cg · ∇c−2
s = −2 (ω/cs)cg · ∇cs = −ω c−2

s (c2s k/ω) · ∇c2s = −k · ∇c2s . (51.146)

These results then lead to the amplitude equation

1

A

DrA

Dt
= − 1

2ω

Drω

Dt
−∇ · (cgW )/(2W ). (51.147)

The dispersion relation has no explicit time dependence given that the background state is
time independent. As a result, equation (50.34) from geometric optics means that the angular
frequency remains constant along a ray, so that Drω/Dt = 0. Even so, we retain this term since
it hints at the more general case holding for time dependent background states.

For the second term on the right hand side of equation (51.147) we set W−1 = ρe c
2
s from

equation (51.132) to have

−∇ · (cgW )/(2W ) = −(ρe c
2
s /2)∇ · (cg/ρe c

2
s ) = −∇ · cg/2 + cg · ∇(ρe c

2
s )/(2 ρe c

2
s ), (51.148)

so that equation (51.147) takes the form

2

A

DrA

Dt
+

1

ω

Drω

Dt
= −∇ · cg + cg · ∇(ρe c

2
s )/(ρe c

2
s ). (51.149)

Since ρe c
2
s is assumed to be time independent, we can write this equation as

2

A

DrA

Dt
+

1

ω

Drω

Dt
− Dr(ρe c

2
s )

Dt
= −∇ · cg, (51.150)

which combines to read

Dr[(A
2 ω)/(ρe c

2
s )]

Dt
= −(A2 ω)/(ρe c

2
s )∇ · cg, (51.151)

which can be written as the flux-form conservation equation

∂t[A
2 ω/(ρe c

2
s )] +∇ · [cgA2 ω/(ρe c

2
s )] = 0. (51.152)

In Section 51.9.7 we interpret this equation in terms of phase averaged energy and wave action.
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51.9.7 Phase averaged energy

We here compute the phase averaged Hamiltonian (energy) consistent with the assumed scaling
from Section 51.9.5. Working with the real expression (51.124) leads to

∂tχ = A [A−1 ∂tA cosP− ∂tP sinP] ≈ Aω sinP, (51.153)

where A−1 ∂tA≪ ω as per the assumed scaling (51.128), and ω = −∂tP as per equation (50.2).
Similarly, we compute the gradient as

∇χ = A [A−1∇A cosP−∇P sinP] ≈ −Ak sinP, (51.154)

which follows from the scaling (51.127) and k = ∇P from equation (50.2). We thus have the
expression for the Hamiltonian

H =
A2 sin2 P (ω2 + c2s |k|2)

2 ρe c2s
=
ω2A2 sin2 P

ρe c2s
, (51.155)

where we inserted the dispersion relation (51.138). Taking the phase average leads to

⟨H⟩ = ω2A2

2 ρe c2s
. (51.156)

Making use of the phase averaged energy (51.156) in the amplitude equation (51.152) leads to

∂t(⟨H⟩/ω) +∇ · (cg ⟨H⟩/ω) = 0. (51.157)

The quantity
A = ⟨H⟩/ω (51.158)

is the wave action that we studied in Section 50.5.

51.9.8 Whitham’s variational principle

We studied Whitham’s variational principle in Section 50.5, where we claimed that it offers a
more streamlined means to derive the leading order phase averaged equations than the WKBJ
method used in Sections 51.9.6 and 51.9.7. Taking the results from Section 50.5, we write the
phase averaged acoustic Lagrangian (51.113)

⟨L⟩ = (4 ρe)
−1A2 (c−2

s ω2 − |k|2). (51.159)

The dispersion relation arises from the Euler-Lagrange equation resulting from a variation of
the wave amplitude,

∂⟨L⟩/∂A = 0 =⇒ ω2 = c2s |k|2. (51.160)

Likewise, the Euler-Lagrange equation corresponding to varying the phase function yields the
wave action conservation equation

∂t(A) +∇ · (cg A) = 0, (51.161)

where cg = cs k̂ is the group velocity and the wave action is

A = ∂⟨L⟩/∂ω =
ωA2

2 ρe c2s
= ⟨H⟩/ω. (51.162)
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Evidently, we only needed the phase averaged Lagrangian to leading order when using Whitham’s
principle to derive both the dispersion relation and the wave action conservation equation. In
contrast, the WKBJ method required one order higher in the asymptotics when working with
the wave equation to derive wave action conservation, which required a relatively large amount
of manipulation.

The relative simplicity of Whitham’s variational principle, compared to the WKBJ method,
is reminscent of analytic mechanics versus Newtonian mechanics. As shown through a variety of
case studies in Chapter 15, analytical mechanics is far more powerful for the study of systems
that are generally quite tedious, if not unavailable, using Newtonian mechanics. The price to
pay is that analytical mechanics requires some relatively nontrivial theoretical work up front
to establish the framework. But once established, exposure of the underlying symmetries and
conservation laws is far more streamlined, if not trivial. Likewise, Whitham’s variational principle
requires some theoretical work up front to derive the framework (Section 50.5). The payoff is
that the variational framework is optimized for capturing the leading order physics of phase
averaged wave mechanics.

51.9.9 Further study
The WKBJ treatment here followed that given in Section 7.3 of Thorne and Blandford (2017).
However, we limited attention to the case of a static background state since we only developed
the physics for acoustic waves moving in a static inhomogenous background (Section 51.4.2).
Pierce (1990) considers the more general case with a space and time dependent background, in
which the acoustic wave equation contains further terms.

51.10 Exercises
exercise 51.1: Acoustic modes in rectangular cavity (problem 9.1 of Fetter and
Walecka (2003))
A rectangular cavity with dimensions x ∈ [0, Lx], y ∈ [0, Ly], and z ∈ [0, Lz] is bounded by
rigid material walls on all sides. The fluid is homogeneous within the cavity. Determine the
eigenfrequencies and eigenfunctions for the acoustic normal modes in this cavity.

Hint: this exercise requires solving the acoustic wave equation in a closed domain with
associated kinematic boundary conditions. The resulting acoustic modes are standing wave
modes rather than traveling waves, and the wavenumbers are quantized rather than continuous.
Note that standing wave modes can be thought of as the superposition of two oppositvely
traveling waves with identical stucture. For example, the sum of a right and left moving wave
with equal amplitude, wavenumber, and frequency is given by the standing wave pattern

A cos(k x− ω t) +A cos(k x+ ω t) = 2A cos(ω t) cos(k x). (51.163)

exercise 51.2: Pressure fluctuations relative to a uniform flow (problem 9.4 of
Fetter and Walecka (2003))
Consider a homogeneous and compressible fluid with uniform flow, v. Show that the pressure
fluctuations relative to this fluid flow state satisfy

(∂t + v · ∇)2 p− c2s ∇2p = 0. (51.164)

Hint: ths solution is a one-liner that results from linearizing equation (51.19) with a nonzero
background flow.
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exercise 51.3: Momentum budget for acoustic waves
Verify that the budget equation (51.116) holds for the acoustic waves, with elements of the
stress-energy-momentum tensor given by equations (51.118a)–(51.118d).
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Chapter 52

INTERFACIAL WAVES ON POTENTIAL FLOW

In this chapter we study interfacial waves, which are waves occuring at the interface between
two homogeneous (constant density) fluid layers. We limit the study to the case where the upper
layer has zero density, with this idealization motivated by the study of waves on the surface of
the ocean under a massless atmosphere, referred to here as surface waves. We are here concerned
with two restoring forces that affect small amplitude motion relative to a static equilibrium base
state. One force arises from gravitation in the presence of a density jump between the two fluid
layers; i.e., the buoyancy studied in Chapter 30. The other force arises from surface tension due
to molecular forces at the interface (see Section 25.11).

To help understand the basics of surface waves along the ocean’s free surface, consider a
water parcel that rises above its equilibrium level into an environment where it is heavier than
the surrounding atmosphere, in which case the water parcel experiences a downward buoyancy
force that returns it to its equilibrium level. However, this motion generally overshoots the
equilibrium level, at which point the parcel feels an upward buoyancy force. This up and down
motion results in the exchange between kinetic energy and potential energy for the parcel, with
the spatio-temporal organization of the oscillations constituting a surface gravity wave. A similar
picture holds for capillary waves that arise from surface tension acting as the restoring force.
By ignoring planetary rotation we tacitly focus on ocean surface waves whose lateral extent is
too short to be affected by the planetary Coriolis acceleration. That is, we are concerned with
surface waves and capillary waves that can be visually observed.

The interfacial waves studied in this chapter do not carry vorticity within the fluid interior,
thus enabling use of irrotational fluid mechanics. In this case, the fluid velocity can be written
as the gradient of a scalar potential, thus leading to the term potential flow. We also pursued
the methods of potential flow in Chapter 51 when studying acoustic waves. Yet here the surface
waves appear in a fluid with a strictly constant density, thus removing any acoustic modes and
rendering non-divergent flow. A flow that is both irrotational and non-divergent is described
by a scalar potential that satisfies Laplace’s equation (Section 6.5); i.e., the potential is a
harmonic function. Waves arise solely through the role of the boundary condition placed at the
interface. Furthermore, the waves propagate in the horizontal direction along the interface and
exponentially decay in the vertical, with a vertical decay scale directly related to the horizontal
wavenumber. Mathematically, this coupling of the horizontal and vertical length scales is a
direct result of the scalar potential satisfying Laplace’s equation.

Gravity waves along an interface are transverse in the horizontal direction, meaning fluid
particles move perpendicular to the wave. Furthermore, the waves do not propagate vertically
and they induce vertical particle motion whose amplitude exponentially vanishes with depth
in the ocean layer. Although the surface gravity waves we study in this chapter are linear, the
depth decay in their amplitude leads to a net drift of fluid particles and hence to the transport
of matter. This matter transport is known as Stokes drift, which plays an important role in the
transport of matter at the ocean surface. Stokes drift provides the canonical example of how
averaging at a fixed point in space (Eulerian average) yields distinct behaviors from averaging
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on a fixed fluid particle (Lagrangian average).1

reader’s guide to this chapter
We make use of dynamical ideas from Chapter 24, elements of the filtered equations from

Chapter 27, and salient features of wave kinematics from Chapter 49. The study of capillary
waves requires an understanding of surface tension in Section 25.11. We also use ideas from
partial differential equations introduced in Chapter 6. The mathematical description of Stokes
drift requires an understanding of Eulerian and Lagrangian kinematic descriptions from
Chapter 17. Generalizations of Stokes drift appear in Chapter 70 in our study of wave-mean
flow interactions, isopycnal averaging, and the corresponding eddy-induced tracer transport.
In this chapter we only consider waves at the upper surface of a single massive fluid layer,
whereas in Chapter 60 we extend this analysis to the case of two massive fluid layers as part of
a study of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Finally, note that Chapter
10 in Fetter and Walecka (2003) and chapter 13 Whitham (1974) work through a number of
examples, and in so doing they provide great practice in the mathematical physics of surface
waves.

We use Cartesian coordinates throughout this chapter.
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52.1 Loose threads
• Waves using Luke’s variational principle as per Miles (1977) and Milder (1977).

• When can we naively use Eulerian coordinates for Hamilton’s principle versus the intro-
duction of auxiliary fields? I believe potential flow is quite forgiving on these matters.

• Build on the following ideas. Much more to think about here.

Potential flow provides an example of a scalar field theory, which is distinctively less
complex than the vector field theory encountered when the flow is less constrained. In
particular, one need not worry about the Lagrangian approach, and can thus use Eulerian
coordinates naively, much as done in other areas of field theory.

52.2 Potential flow in a homogeneous fluid layer
Throughout this chapter we assume the fluid is inviscid with constant density and with a flow
that has zero vorticity.2 These assumptions greatly simplify the expression for the velocity field,
which is both non-divergent and irrotational. In this section we establish some general results
for a perfect homogeneous fluid with a velocity that is non-divergent and irrotational; i.e., for
potential flow.

We are concerned with a single layer of homogeneous fluid bounded below by a solid material
surface and above by a free material surface, and refer to this layer as an “ocean”. We depict the
flat bottom case in Figure 52.1, showing the material free upper ocean surface at z = η(x, y, t)

2A more general approach can be considered in which the flow is decomposed into a potential flow (irrotational)
and a vortical flow. However, for linear fluctuations these two flows are uncoupled. As we are unconcerned with
vortical flow in this chapter, we set the vorticity to zero and thus focus on the potential flow.
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Figure 52.1: A depiction of an “ocean” comprised of a homogeneous (i.e., constant density) fluid with an
upper free surface that is a moving material interface. The atmosphere applies a pressure to the ocean due
to its mass; however, that mass is assumed to be uniform and static so that it does not affect surface motion.
Linear fluctuations of the free surface exhibit gravity wave motion due to the restoring effects from a uniform
gravitational field, g = −g ẑ, as well as capillary waves due to surface tension. We here depict a single wave with
wavelength, Λ, with the wavevector parallel to the x̂ direction. We assume the fluid layer retains a fixed volume
so that the domain integral of the free surface is constant,

´
η dxdy = constant. This property follows from the

assumption that the free surface is material.

separating a homogeneous ocean from a homogeneous atmosphere. The mass of the atmosphere
is assumed to be horizontally uniform and static, even as its bottom boundary (the layer free
surface) undulates. This approximation treatment means that atmospheric pressure does not
contribute to motion of the ocean fluid layer. The ocean boundaries are material so that the mass
of the ocean (equal to the ocean volume times the constant density, ρ) is fixed. Consequently,
the domain integral of the free surface is constant,

ˆ
η dx dy =

ˆ
η dA = constant. (52.1)

52.2.1 Motivating the irrotational assumption

We are familiar with the non-divergent flow assumption, which is part of the Boussinesq ocean
studied in Chapter 29. However, we find it necessary to justify the assumption of irrotational
flow, which also appeared in Chapter 51 when studying acoustic waves, and yet is not the case for
most other geophysical waves encountered in this book. For this purpose, consider the equation
of motion for a perfect non-rotating homogeneous fluid in a gravity field

ρDv/Dt = −∇p− ρ∇Φ, (52.2)

where we assume the simple form of the geopotential (Section 13.10.4),

Φ = g z, (52.3)

with g the constant and uniform gravitational acceleration. As in our discussion of the Boussinesq
ocean in Section 29.1.1, we remove the static background pressure by writing

p = −g ρ z + pd = −ρΦ+ pd, (52.4)
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in which case the velocity equation (52.2) becomes

ρDv/Dt = −∇pd. (52.5)

When studying linear waves later in this chapter, this equation is linearized by dropping
self-advection so that

ρ ∂tv = −∇pd. (52.6)

The pressure gradient cannot impart any vorticity to the velocity time tendency since∇×∇pd = 0.
Evidently, if the velocity is initialized with zero vorticity, then the linearized equations of motion
retain that zero vorticity. We thus examine linear fluctuations around a zero vorticity rest state,
just as we did for the study of acoustic waves in Chapter 51.

This result offers motivation for studying properties of fluid flow with an irrotational velocity.
In the remainder of this section we establish some general results for a perfect homogeneous fluid
in non-rotating reference frame feeling a uniform gravity field and with an irrotational velocity.
These results hold for the full nonlinear equations of motion and will later be specialized to the
linear equations.

52.2.2 Harmonic scalar potential
A velocity field that has zero vorticity

ω = ∇× v = 0, (52.7)

can be written as the gradient of a scalar potential (see Section 2.3.2)3

v = −∇ψ. (52.8)

The scalar potential is unspecified up to an arbitrary function of time. The reason for this
arbitrariness is that ψ and ψ + F (t) yield the same velocity field, where F (t) is any spatially
constant function of time. We make use of this gauge degree of freedom in Section 52.2.3, just
like we did for acoustic waves in Section 51.4.4.

Since the fluid is assumed to have uniform density, mass conservation in the form of the
continuity equation (19.16) implies that the velocity field is non-divergent. Consequently, the
scalar potential satisfies Laplace’s equation (Section 2.3.3)

∇ · v = −∇ · ∇ψ = −∇2ψ = 0, (52.9)

in which we say that ψ is a harmonic function. We develop salient mathematical properties for
harmonic functions in Section 6.5.

Harmonic functions do not support spatial oscillations in all three directions since the sum of
the curvature in each direction (i.e., second partial derivatives) must vanish. Correspondingly, we
will find that the velocity potential supports traveling waves in the horizontal and exponentially
decaying in the vertical, with decay when moving away from the surface boundary. It is
remarkable that the wavenumber of the horizontally traveling waves also determines the vertical
decay scale. That is, the structure of the horizontal waves directly determines the vertical
structure.

52.2.3 Equation of motion and Bernoulli’s principle
To fully specify the scalar potential requires boundary conditions, which enter the development
via the equation of motion. The vector-invariant equation of motion (24.32) for a non-rotating,

3The minus sign in equation (52.8) is conventional.
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irrotational, inviscid, uniform density fluid is given by

∂tv = −∇(Φ +K + p/ρ), (52.10)

with
K = v · v/2 (52.11)

the kinetic energy per mass of a fluid element. Inserting the scalar potential, v = −∇ψ, brings
the equation of motion (52.10) to the form

∇ (Φ +K + p/ρ− ∂tψ) = 0. (52.12)

This equation means that everywhere in the fluid the dynamical fields satisfy

Φ +K + p/ρ− ∂tψ = C(t), (52.13)

for some arbitrary time dependent function, C(t). This equation is a particular expression of
Bernoulli’s theorem studied in Section 26.9.3.

We ascribe no physical significance to the arbitrary function, C(t), appearing in equation
(52.13). In fact, it can be completely removed by exploiting the gauge degree of freedom in the
scalar potential as noted following equation (52.8). We do so by introducing a modified scalar
potential

Ψ(x, t) = ψ(x, t) +

ˆ t

0
C(t′) dt′. (52.14)

Both ψ and Ψ lead to the same velocity vector

v = −∇ψ = −∇Ψ, (52.15)

and as such the two scalar potentials are physically indistinguishable. However, Ψ is more
convenient for our use since it absorbs the arbitrary time dependent function, C(t), thus rendering
the simpler expression for the equation of motion

∂tΨ = Φ+K + p/ρ. (52.16)

In this manner we have dispensed with the need to compute C(t) since it is sufficient to work
with Ψ. In the following, we refer to equation (52.16) as the Bernoulli equation of motion.

52.2.4 Concerning the pressure field

We here explore facets of the pressure field as decomposed into either its hydrostatic and
non-hydrostatic components, or its dynamically active and inactive components.

Two methods for decomposing pressure

In Section 52.2.1 we decomposed the pressure into its dynamically inactive component, −ρ g z,
and dynamically active component, pd. We can consider the alternative decomposition into
hydrostatic and non-hydrostatic pressure components. As we will see, the dynamically active
pressure is partly hydrostatic, due to motion of the free surface, and partly non-hydrostatic.
We also considered these two decompositions of pressure when discussing effective buoyancy in
Section 30.11, yet the discussion here is far simpler since the fluid has constant density.
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Hydrostatic and non-hydrostatic pressures

The Bernoulli equation of motion (52.16) yields the vertical derivative of pressure

∂zp = −ρ ∂zΦ+ ρ ∂z(∂tΨ−K) = ∂zph + ∂zpnh. (52.17)

We here identified two contributions to the pressure. The hydrostatic pressure satisfies

∂zph = −ρ ∂zΦ = −ρ g =⇒ ph = −ρ g (z − η) = −ρΦ+ ρ g η. (52.18)

This expression reveals that part of the hydrostatic pressure is the dynamically inactive pressure,
−ρΦ = −ρ g z, as discussed in Section 52.2.1, plus a dynamically active portion due to undulations
of the free surface. The non-hydrostatic pressure has a vertical derivative given by

∂zpnh = ρ ∂z(∂tΨ−K). (52.19)

Note that plugging in the hydrostatic pressure (52.18) into the Bernoulli equation of motion
(52.16) leads to

∂tΨ = K + g η + pnh/ρ, (52.20)

whose vertical derivative yields equation (52.19) (recall η = η(x, y, t) is depth independent).

Equation (52.19) indicates that depth variations in the kinetic energy and depth-time
variations in the velocity potential lead the pressure to deviate from locally hydrostatic. We do
not generally expect the flow to be hydrostatically balanced for two reasons: (i) the fluid layer has
a uniform density so there is no stratification to suppress vertical accelerations that contribute
to non-hydrostatic pressures; (ii) the fluid is nonrotating and so there is no vertical stiffening via
the Taylor-Proudman result (Section 31.5.3), with vertical stiffening acting to suppress vertical
accelerations that cause deviations from hydrostatic balance. Casual observations of surface
ocean waves also supports the nontrivial vertical accelerations present in surface gravity waves,
thus suggesting a key role for the non-hydrostatic pressure.

Comments on a hydrostatic shallow water layer

For the shallow water model we also consider a homogenous density layer. However, as emphasized
in Chapter 35, the hydrostatic balance is fundamental to shallow water dynamics. Indeed, in
Section 35.2 we see that the hydrostatic balance over a single homogeneous layer leads to
horizontal motion that is depth independent throughout the layer. Hence, ∂z(∂tΨ) = 0 and
the kinetic energy contained in the horizontal flow is depth independent, ∂z(u

2 + v2) = 0.
Furthermore, the vertical motion has a linear depth dependence across the shallow water layer
(Section 35.2.8) and its magnitude is far smaller than horizontal motions. Therfore, we can drop
all contributions to ∂zK for the shallow water layer, in which case equation (52.17) reduces to
the hydrostatic limit

∂zp = −ρ ∂zΦ = −ρ g hydrostatic (shallow water) limit. (52.21)

This limit is relevant when the horizontal scales of motion are far larger than the vertical:
L≫ H, in which case the flow is well approximated as hydrostatic.

So in summary, a homogeneous layer of fluid can have a depth dependence to its horizontal
flow, and that depth dependence is driven through non-hydrostatic pressure forces. In contrast,
hydrostatic pressure has a depth-independent horizontal gradient within a homogeneous layer

∂z(∇hph) = −g∇hρ = 0 homogeneous density layer. (52.22)

Consequently, a hydrostatic pressure cannot drive depth dependence to the horizontal velocity
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field in a homogeneous fluid.

52.2.5 Bernoulli equation of motion and boundary conditions

Decompositions of the pressure discussed in Sections 52.2.1 and 52.2.4 render the following
equivalent expressions for the Bernoulli equation of motion

∂tΨ = K + g z + p/ρ full pressure form (52.23a)

∂tΨ = K + pd/ρ dynamically active/inactive pressure split (52.23b)

∂tΨ = K + g η + pnh/ρ hydrostatic/non-hydrostatic pressure split. (52.23c)

With the velocity given by v = −∇Ψ, we take the gradient of equations (52.23a)-(52.23c) to
render the velocity equations

∂tv = −∇(K + g z + p/ρ) full pressure form (52.24a)

∂tv = −∇(K + pd/ρ) dynamically active/inactive pressure split (52.24b)

∂tv = −∇(K + g η + pnh/ρ) hydrostatic/non-hydrostatic pressure split. (52.24c)

A complete specification of the mathematical physics for this system requires the kinematic and
dynamic boundary conditions given by the following.

Kinematic free surface boundary condition

The free surface is a moving material interface, so that its kinematics are described by the surface
kinematic boundary condition (19.66) holding for a non-divergent flow at a material boundary

(∂t + u · ∇)η = w kinematic b.c. at z = η(x, y, t). (52.25)

When n̂ has a nonzero vertical component (always assumed to hold in this chapter), the surface
kinematic boundary condition can be written in the equivalent form

v · n̂ =
∂tη

|∇(z − η)| , (52.26)

where the outward normal is

n̂ =
∇(z − η)
|∇(z − η)| =

ẑ −∇η√
1 +∇η · ∇η . (52.27)

It is furthermore convenient to make use of the relation between the area elements on the free
surface given by equation (19.91)

dS = |∇(z − η)|dA with dA = dx dy, (52.28)

where dA is the horizontal projection of dS. Consequently, we are led to the expression of the
kinematic boundary condition

v · n̂dS = v · ∇(z − η) dA = ∂tη dA. (52.29)
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Dynamic free surface boundary condition

At the ocean free surface we assume zero atmospheric pressure,4 in which case the ocean pressure
must also vanish there. We are thus led to the following pressure boundary conditions

p = 0 and pd = g η ρ and pnh = 0 at z = η, (52.30)

each of which leads to the surface boundary condition for the velocity potential

∂tΨ = K + g η at z = η. (52.31)

Kinematic bottom boundary condition

The bottom is a rigid material surface so that the bottom kinematic boundary condition (Section
19.6.1) is the no-normal flow condition

n̂ · v = −∇Ψ · n̂ = 0 at z = ηb(x, y). (52.32)

When studying surface waves later in this chapter, we only consider the flat bottom (n̂ = −ẑ),
in which case w = 0 at the bottom

w = −∂zΨ = 0 at z = ηb = −H. (52.33)

Dynamic bottom boundary condition

To develop the pressure boundary condition at the bottom, recall that a static material bottom
has a static outward normal, n̂, so that

n̂ · ∂tv = ∂t(n̂ · v) = 0, (52.34)

which then brings equations (52.24a)-(52.24c) to the form

n̂ · ∇K = −n̂ · ∇(g z + p/ρ) (52.35a)

n̂ · ∇K = −n̂ · ∇pd/ρ (52.35b)

n̂ · ∇K = −n̂ · ∇(g η + pnh/ρ). (52.35c)

Specializing to the flat bottom with n̂ = −ẑ yields the bottom boundary conditions

∂zK = −g − ρ−1 ∂zp (52.36a)

∂zK = −ρ−1 ∂zpd (52.36b)

∂zK = −ρ−1 ∂zpnh, (52.36c)

where ∂zη = 0. In the linearized theory, ∂zK is far smaller than g or ρ−1 ∂zp, which means
that the balance in equation (52.36a) must be hydrostatic, ∂zp = −ρ g. This result then means
that the non-hydrostatic boundary condition is ∂zpnh = 0. Likewise, with p = −ρ g z + pd, and
∂zp = −ρ g at the bottom, we must have ∂zpnh = 0. These results are thus summarized as

∂zp = −g ρ and ∂zpd = 0 and ∂zpnh = 0 at z = ηb = −H. (52.37)

4In Section 52.3.2 we show that a uniform and constant atmospheric pressure plays no role in the physics of
concern here since the fluid density is itself a uniform constant.
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Comments on the need for two boundary conditions

Mathematically, the solution to Laplace’s equation requires only a single boundary condition
when posed in a domain with specified boundaries (e.g., see Section 6.5). For the current setup,
however, the free surface is a moving boundary, thus offering one more dynamical degree of
freedom that necessitates an extra boundary condition. Physically, there are two dynamical
fields that describe the fluid layer, the velocity potential, Ψ, and the free surface height, η.
Consequently, there are two boundary conditions that arise when specifying these fields: one
from kinematics (the boundary interfaces are material) and one from dynamics (forces on both
sides of the boundary interfaces must balance as per Newton’s third law).

52.2.6 Local energetic balances
Since the fluid has a constant density, the only energy arises from mechanical energy due to
motion (kinetic energy) plus the gravity field (gravitational potential energy)

E = K +Φ = v · v/2 + g z. (52.38)

The internal energy is a constant and so plays no role in the energetic analysis. Also, we ignore
dissipation and heat transfer so that energy is modified only through reversible processes. Local
energetic budget equations are readily computed by taking the scalar product of the velocity with
the velocity tendency. We consider here the three forms of the velocity equation (52.24a)-(52.23c)
and their corresponding energy equations.

Velocity equation with unsplit pressure

With ∂tv written in the form of equation (52.24a) we have

∂tK = −v · ∇(K +Φ+ p/ρ) = −∇ · [v (K +Φ+ p/ρ)], (52.39)

where we used ∇ · v = 0 for the second equality. Since the geopotential has a zero Eulerian time
derivative, the kinetic energy equation readily leads to the total mechanical energy equation

∂tE = −∇ · [v (E + p/ρ)] =⇒ ρDE/Dt = −∇ · (v p). (52.40)

Evidently, convergence of the pressure flux, v p, leads to a material time change in the total
energy.

Dynamically active/inactive pressure split

An equivalent form of the energy equation can be found by making use of the pressure split into
dynamically active and inactive components according to the velocity equation (52.24b), which
yields

∂tK = −∇ · [v (K + pd/ρ)] =⇒ ρDK/Dt = −∇ · (v pd). (52.41)

We here find that convergence of the dynamic pressure flux, v pd, leads to a material time change
in the kinetic energy.

Hydrostatic/non-hydrostatic pressure split

We now develop the energetics with the hydrostatic/non-hydrostatic pressure decomposition
(52.23c) to render

∂tK = −∇ · [v (K + g η + pnh/ρ)]. (52.42)
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This form only lends itself to a total energy budget written in the form

∂tE = −∇ · [v (E + p/ρ)] =⇒ ρDE/Dt = −∇ · [v (ph + pnh)]. (52.43)

52.2.7 Expressions for the globally integrated kinetic energy
The kinetic energy per mass can be written in terms of the scalar potential

2K = v · v = ∇Ψ · ∇Ψ = ∇ · (Ψ∇Ψ), (52.44)

where we used ∇2Ψ = 0 for the final equality. This divergence form of the kinetic energy means
that its global integral is fully determined by properties at the boundaries.

Domain integrated kinetic energy is just due to surface properties

Integration of the kinetic energy in the form of equation (52.44) over the full ocean domain, R,
leads to the total kinetic energy

EKE =

ˆ
R

ρK dV =
ρ

2

ˆ
R

∇ · (Ψ∇Ψ)dV =
ρ

2

ˆ
∂R

Ψ∇Ψ · n̂dS, (52.45)

where we made use of the divergence theorem. The ocean bottom is material so that the flow
satisfies the no-normal flow condition at each point along the bottom (Section 19.6.1)

v · n̂ = −∇Ψ · n̂ = 0, (52.46)

where n̂ is the outward normal on the rigid material boundaries. Lateral boundaries are either
periodic or rigid material walls. We thus find the remarkable result that the domain integrated
kinetic energy arises solely from properties integrated over the free surface

EKE =
ρ

2

ˆ
z=η

Ψ∇Ψ · n̂dS = −ρ
2

ˆ
z=η

Ψv · n̂dS. (52.47)

Evidently, contributions from interior motion play no role in the domain integrated kinetic
energy. Furthermore, the kinetic energy is a non-negative number, so that the right hand side of
equation (52.47) is non-negative although it is not obvious without noting that Ψ is a harmonic
function in the domain interior. That is, the nature of the kinetic energy is fundamentally related
to the harmonic nature of the velocity potential that allows the kinetic energy to be written as
the total divergence in equation (52.44). We encountered a similar feature of harmonic functions
in Section 6.5.2 when studying their mean-value property.

Gauge invariance of the domain integrated kinetic energy

The kinetic energy per mass, K = ∇Ψ · ∇Ψ/2, is manifestly gauge invariant since it remains
unchanged if Ψ is shifted by a spatial constant. This property also holds for the domain
integrated kinetic energy, (52.47), as follows from use of the divergence theorem and then the
non-divergence of the velocity field

ˆ
z=η

v · n̂dS =

ˆ
∂R
v · n̂dS =

ˆ
R

∇ · v dV = 0. (52.48)

Evidently, if the scalar potential is shifted by a function of time that is spatially independent,
then the globally integrated kinetic energy (52.47) remains unchanged and so is gauge invariant.
An alternative derivation makes use of the surface kinematic boundary condition (52.29) that
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leads to the identity

ˆ
z=η

v · n̂dS =

ˆ
∂tη dA = −

ˆ
∇ ·U dA = 0, (52.49)

where we set ∂tη = −∇ · U as per the free surface equation (21.81) holding for a volume
conserving fluid, with U =

´ η
−H u dz the depth integrated horizontal velocity.5

Kinetic energy in terms of time tendencies

We write yet another form for the domain integrated kinetic energy, which proves of use when
studying Hamilton’s principle in Section 52.2.9. For this purpose, make use of the free surface
kinematic boundary condition (52.29) to bring the kinetic energy equation (52.47) into the form

EKE = −ρ
2

ˆ
z=η

Ψv · n̂dS = −ρ
2

ˆ
z=η

Ψ ∂tη dA. (52.50)

Now reintroduce the vertical integral via Leibniz’s rule (Section 20.2.4) to write

ˆ
z=η

Ψ ∂tη dA =

ˆ [
∂

∂t

ˆ η

ηb

Ψdz

]
dA−

ˆ [ˆ η

ηb

∂tΨdz

]
dA. (52.51)

If the horizontal extent of the domain has a static extent, such as when the horizontal domain is
periodic or it is bounded by rigid vertical walls (e.g., see Figure 28.6), then the time derivative
commutes with the area integral so that equation (52.51) becomes

ˆ
z=η

Ψ ∂tη dA =
d

dt

[ˆ ˆ η

ηb

Ψdz dA

]
−
ˆ ˆ η

ηb

∂tΨdz dA =
d

dt

ˆ
ΨdV −

ˆ
∂tΨdV. (52.52)

We make use of this identity in the discussion of Hamilton’s principle in Section 52.2.9.

52.2.8 Kelvin’s minimum kinetic energy theorem
The domain integrated kinetic energy equation (52.47) points to the central role of boundary
conditions. We here expose a property of the kinetic energy associated with Kelvin’s minimum
kinetic energy theorem.

Basic formulation

Following Kelvin (as detailed in Section 45 of Lamb (1993)), consider a non-divergent flow, vtot,
built from the sum of an irrotational and non-divergent velocity field (i.e., potential flow), v,
plus a non-divergent and rotational flow, vr

vtot = v + vr with ∇ · v = ∇ · vr = 0 and ∇× vtot = ∇× vr. (52.53)

The domain integrated kinetic energy of this flow,

Etot
KE =

ρ

2

ˆ
R

vtot · vtot dV, (52.54)

has three terms

Etot
KE =

ρ

2

ˆ
R

v · v dV +
ρ

2

ˆ
R

vr · vr dV + ρ

ˆ
R

v · vr dV. (52.55)

5See also Exercise 21.10.
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The domain integrated kinetic energy for the irrotational flow equals to the boundary integral
from equation (52.47)

ρ

2

ˆ
R

v · v dV = −ρ
2

ˆ
∂R

Ψv · n̂dS. (52.56)

The cross-term also takes the form of a boundary integral

ˆ
R

v · vr dV = −
ˆ
R

∇Ψ · vr dV = −
ˆ
R

∇ · (Ψvr) dV = −
ˆ
∂R

Ψvr · n̂dS, (52.57)

so that the domain integrated kinetic energy is

Etot
KE =

ρ

2

ˆ
R

(vr · vr + v · v) dV − ρ
ˆ
∂R

Ψvr · n̂dS (52.58a)

=
ρ

2

ˆ
R

vr · vr dV −
ρ

2

ˆ
∂R

Ψ(v + 2vr) · n̂dS. (52.58b)

Kelvin’s minimum kinetic energy theorem

Consider the case where the flow is irrotational and so it satisfies the boundary conditions
appropriate for potential flow in a homogeneous fluid layer with a free surface

v · n̂ = 0 at solid bottom boundary, z = ηb(x, y) (52.59a)

v · n̂dS = ∂tη dA at free surface boundary, z = η(x, y, t). (52.59b)

The free surface condition (52.59b) arises from equation (52.26) as well as the area relation
in equation (52.28). Now add a rotational flow, and assume the rotational flow leaves the
potential flow’s boundary conditions (52.59a) and (52.59b) unaffected, which can be ensured if
the rotational flow satisfies the no-normal flow condition at all boundaries

vr · n̂ = 0 x ∈ ∂R. (52.60)

Kelvin’s minimum kinetic energy theorem follows from equation (52.58a) with vr · n̂ = 0, in
which case

Etot
KE =

ρ

2

ˆ
R

(v · v + vr · vr) dV, (52.61)

so that kinetic energy of the pure irrotational flow is less than that for the flow based on the
same irrotational flow plus a rotational perturbation. Evidently, the irrotational flow minimizes
the kinetic energy for the simply connected material domain.

In formulating the theorem (52.61), we considered the rotational component to the flow as a
perturbation to the original irrotational flow, with the perturbation not altering the boundary
conditions satisfied by the irrotational flow. In this manner, the rotational flow is akin to a
variation added to the irrotational flow in the sense used for Hamilton’s principle (e.g., Sections
46.2 and 52.2.9), in which variations do not touch boundary (or initial) conditions.

Material boundary condition for vr + v

Now consider the material boundary conditions at the bottom and surface to be satisfied by the
full flow

(v + vr) · n̂ = 0 at solid bottom boundary, z = ηb(x, y) (52.62a)

(v + vr) · n̂dS = ∂tη dA at free surface boundary, z = η(x, y, t), (52.62b)
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so that these boundary conditions couple the rotational and irrotational components. The kinetic
energy equation (52.58b) now takes the form

Etot
KE =

ρ

2

ˆ
R

vr · vr dV −
ρ

2

ˆ
z=η

Ψ ∂tη dA−
ρ

2

ˆ
∂R

Ψvr · n̂dS (52.63a)

=
ρ

2

ˆ
R

(vr · vr − v · v) dV − ρ
ˆ
z=η

Ψ ∂tη dA (52.63b)

For a rigid material upper boundary, so that ∂tη = 0, the domain integrated kinetic energy in
the irrotational flow is less than that in the rotational flow. Any further general statements are
unavailable for the case with a time dependent free surface. The absence of a general theorem can
be traced to coupling between the rotational and irrotational flow as realized via the boundary
conditions. This situation contrasts to the case of Kelvin’s minimum kinetic energy theorem,
where there we purposely disabled any coupling.

52.2.9 Hamilton’s principle and Luke’s variational principle

Following the discussion of classical field theory in Chapter 46, we here consider the Lagrangian
density functional and the corresponding equations of motion that follow from Hamilton’s
principle. The special nature of the dynamical free surface boundary condition prompts a
modified version of the action that allows for a treatment of both the interior potential flow and
the nonlinear surface boundary conditions. This modification is due to Luke (1967), prompting
the name Luke’s variational principle.6

Conventional form of the Lagrangian density

The Lagrangian density (dimensions of energy per unit volume) is the kinetic energy per volume
minus the gravitational potential energy per volume, which takes the following form for potential
flow of a homogeneous fluid layer

L = ρ (v · v/2− g z) = ρ (∇Ψ · ∇Ψ− g z)/2. (52.64)

The corresponding action is

S =

ˆ
R
L dV dt, (52.65)

where R is the space-time domain. Hamilton’s principle says that variation of the action vanishes
for the physically realized fields

δS =

ˆ
R
δL dV dt = 0, (52.66)

where the variation operator, δ, does not touch space or time and so it commutes with integrals
and derivatives (see Sections 46.2.2 and 46.2.3).

The puzzle we have, however, is that the free surface does not explicitly appear in the
Lagrangian (52.64). Rather, it only appears as a boundary in the action integral (52.66). That
is not a problem per se, but the problem is that varying the action using the Lagrangian (52.64)
fails to produce the dynamical boundary condition at the free surface. To resolve this puzzle we
follow Luke (1967) by transforming the action into a modified form that differs from the original
action by a time derivative which, as shown in Section 46.3.5, does not alter the mechanics.

6Elements of this section follow from Luke (1967), Section 13.2 of Whitham (1974), and Exercise 10.14 of
Fetter and Walecka (2003). See also Miles (1977) and Milder (1977).
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Furthermore, the appropriate action turns out to be, quite remarkably, the space-time integral
of the pressure.

Surface Lagrangian density

Before considering the approach of Luke (1967), observe that the Lagrangian density (52.64)
can be written

ρ−1

ˆ
R

L dV =

ˆ
R

(v · v/2− g z) dV = −1

2

ˆ
[Ψs ∂tη + g (η2 − η2b )] dA, (52.67)

where we made use of the kinematic boundary conditions (52.59a) and (52.59b), in which case
the action is

S = −ρ
2

ˆ
[Ψs ∂tη + g (η2 − η2b )] dAdt ≡

ˆ
Ls dAdt. (52.68)

In this equation we introduced the velocity potential evaluated at the free surface

Ψs = Ψ(x, y, z = η, t), (52.69)

and the surface Lagrangian density (dimensions of energy per unit area)

Ls = −ρ[Ψs ∂tη + g (η2 − η2b )]/2. (52.70)

This Lagrangian forms the starting point for Milder (1977).

Transforming the action into the integral of pressure

We transform the action through use of equation (52.52) for the kinetic energy, in which

ˆ [ˆ
∇Ψ · ∇ΨdV

]
dt = −

ˆ [ˆ
[Ψ ∂tη]z=η dA

]
dt (52.71a)

= −
ˆ [

∂

∂t

ˆ
ΨdV

]
dt+

ˆ
∂tΨdV dt. (52.71b)

As noted in deriving equation (52.52), we assumed here that the horizontal bounds for the
domain are static. For the more general case of sloping side boundaries (e.g., see Figure 28.6),
then we need to introduce yet another dynamical field, namely the moving horizontal bounds.
That added dynamical degree of freedom is not the focus here, so that we assume the domain
has static horizontal boundaries, thus allowing the time derivative to commute with the area
integral.

Use of equation (52.71b) brings the action to the form

S = −ρ
2

ˆ [
∂

∂t

ˆ
ΨdV

]
dt+ ρ

ˆ [
1

2

∂Ψ

∂t
− g z

]
dV dt. (52.72)

Following the discussion in Section 46.3.5, the first term on the right hand side is mechanically
irrelevant since it evaluates to the time bounds, during which the velocity potential has zero
variation. We can thus drop the first right hand side term in equation (52.72) to focus on the
modified action

Smod = ρ

ˆ [
1

2

∂Ψ

∂t
− g z

]
dV dt. (52.73)
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Making use again of equation (52.52) along with the mechanical equivalence (52.72) gives

SLuke = ρ

ˆ [
∂Ψ

∂t
− 1

2

∂Ψ

∂t
− g z

]
dV dt = ρ

ˆ [
∂Ψ

∂t
− 1

2
∇Ψ · ∇Ψ− g z

]
dV dt. (52.74)

Variation of the action with respect to η

Exposing the vertical integration limits on the action (52.74) yields

SLuke = ρ

ˆ ˆ ˆ η

ηb

[
∂Ψ

∂t
− 1

2
∇Ψ · ∇Ψ− g z

]
dz dAdt, (52.75)

so that the variation arising from δη is straightforward to compute. In so doing we find

δSLuke

δη
= 0 =⇒ ∂tΨ =

1

2
∇Ψ · ∇Ψ+ g η at z = η, (52.76)

which is the dynamic boundary condition (52.31).

Variation of the action with respect to Ψ

Variation of the action with respect to the velocity potential leads to

δΨS
Luke =

ρ

2

ˆ
∂t(δΨ)dV dt− ρ

ˆ
δΨ∇Ψ · n̂dS dt+ ρ

ˆ
∇2Ψ δΨdV dt, (52.77)

where we noted that δ(∂tΨ) = ∂t(δΨ), and integrated by parts to get the second and third terms
on the right hand side. For the time derivative term we write

ˆ
∂t(δΨ)dV =

ˆ [ˆ η

ηb

∂t(δΨ)dz

]
dA =

ˆ [
∂

∂t

ˆ η

ηb

δΨdz − ∂tη δΨs

]
dA, (52.78)

whereas the kinematic boundary conditions (equations (52.59a) and (52.59b)) bring the spatial
boundary term to

−
ˆ
δΨ∇Ψ · n̂dS =

ˆ
∂tη δΨs dA, (52.79)

thus leading to the action variation

δΨS
Luke =

ˆ
∇2Ψ δΨdV dt. (52.80)

The action variation vanishes so long as ∇2Ψ = 0 within the fluid domain. Bringing everything
together leads to the boundary value problem for the velocity potential and the free surface

∇2Ψ = 0 x ∈ R (52.81a)

n̂ · ∇Ψ = 0 x ∈ ∂R kinematic rigid condition (52.81b)

(∇η − ẑ) · ∇Ψ = ∂tη z = η kinematic free surface condition (52.81c)

∂tΨ =
1

2
∇Ψ · ∇Ψ+ g η z = η dynamic free surface condition. (52.81d)
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Comments

Remarkably, the Bernoulli equation of motion (52.16) means that the Lagrangian functional
appearing in the action (52.74) equals to the pressure

SLuke = ρ

ˆ [
∂Ψ

∂t
− 1

2
∇Ψ · ∇Ψ− g z

]
dV dt =

ˆ
p dV dt. (52.82)

Starting from this form of the action, Hamilton’s principle extremizes the space-time integral
of the pressure. Seliger and Whitham (1968) provide some discussion of pressure as the action
within the context of the Boussinesq approximation, where the same result holds.

A free surface certainly adds subtleties to the use of Hamilton’s principle. The presentation
given in this subsection proceeds in the opposite order to that given by Luke (1967) as well as
section 13.2 of Whitham (1974). Here, we started with the conventional form of the Lagrangian
(52.64) written as the difference between kinetic energy and potential energy, and then showed
how to transform the action into the pressure action integral (52.82) that captures the dynamical
boundary condition. In that transformation we made use of the kinematic boundary conditions
at both the static bottom boundary (equation (52.59a)) and the free surface (equation (52.59b)).
The alternative approach taken by Luke (1967) starts from the inspired guess of a pressure based
action integral (52.82), and shows that it indeed produces the proper dynamical equations so
long as the kinematic boundary conditions are satisfied. The present approach is thus offered as
a complement to that from Luke (1967) and Whitham (1974)

52.3 Linearized dynamics

We here develop the boundary value problem describing linear surface gravity wave motions of
the free surface, and characterize physical aspects of the waves. Surface tension is ignored so
that pressure is continuous across the free surface. In Section 52.10 we remove this assumption
by considering the pressure jump at the ocean surface due to surface tension, with this pressure
jump leading to capillary waves. The fundamental parameter measuring nonlinearity concerns
the ratio of the free surface undulation to the length of a wave disturbance. A small value for
this non-dimensional ratio allows us to confidently make use of the linear equations.

Note that we focus on the velocity potential in our analysis of linear surface gravity waves.
A directly analogous approach focuses on the dynamic pressure, pd, which is a harmonic function
for the linearized system (take the divergence of the linearized velocity equation (52.6)). Section
7.1 of Vallis (2017) takes the pressure approach. The two methods are equivalent, with the
velocity potential and pressure closely connected.

52.3.1 Linear relations between the velocity potential and pressure

The Bernoulli equations of motion (52.23a)-(52.23c) provide an expression for the time tendency
of the velocity potential. When linearizing the equations we drop the contribution from the
kinetic energy since it is second order in the velocity field.7 We are thus led to the linear relations

∂tΨ = g z + p/ρ = pd/ρ = g η + pnh/ρ. (52.83)

This equation provides the linearized relation between the velocity potential and the various
pressure fields.

7We do not drop kinetic energy when studying the energetics of linear waves. But here we are studying their
momentum, in which we linearize by dropping all second and higher order terms.
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52.3.2 Dynamic boundary condition at the free surface
The equation of motion (52.16) applies to any point within the fluid and at any time. In
particular, it applies at the free surface, z = η(x, y, t), where pressure equals to the atmospheric
pressure. As stated earlier, we assume that the atmospheric pressure is constant in space and
time so that

g η +K − ∂tΨ = −pa/ρ = constant. (52.84)

Without loss of generality we can set this constant to zero,8 thus leaving the boundary condition

g η +K − ∂tΨ = 0 linearized dynamic b.c. at z = η. (52.85)

We now linearize relative to a state of rest with η = 0, v = 0, and ∂tΨ = 0. Linear
fluctuations about this rest state have small velocities. Consequently, the kinetic energy, which
is second order in velocity, is small relative to the remaining terms and so we arrive at the
linearized dynamic boundary condition

g η = ∂tΨ linearized dynamic b.c. at z = η. (52.86)

This boundary condition directly connects the free surface to time tendencies of the velocity
potential. The free surface fluctuates upward when the velocity potential has a positive tendency,
and vice versa. Also note that we arrive at this boundary condition by making use of the pressure
boundary conditions (52.30) within equation (52.83).

52.3.3 Kinematic boundary conditions
The free surface is assumed to be a material interface, meaning that there is no matter transported
across this surface. Consequently, following the discussion of kinematic boundary conditions in
Section 19.6.2, we have

(∂t + u · ∇)η = w kinematic b.c. at z = η. (52.87)

Linearizing this boundary condition about the state of rest, and introducing the scalar potential,
leads to

∂tη = w = −∂zΨ linearized kinematic b.c. at z = η. (52.88)

This is yet another constraint that links the free surface to the velocity potential.

52.3.4 Summary of the linear equations
The boundary value problem for the velocity potential and free surface is given by

v = −∇Ψ velocity potential (52.89a)

∇2Ψ = 0 irrotational and non-divergent velocity for x ∈ ocean (52.89b)

∂tΨ = g η linearized dynamic b.c. at z = η (52.89c)

∂zΨ = −∂tη linearized kinematic b.c. at z = η (52.89d)

n̂ · ∇Ψ = 0 no-normal flow kinematic b.c. on rigid boundaries. (52.89e)

Equations (52.89a) and (52.89b) hold throughout the fluid whereas the remaining equations
hold only at the boundaries.

Although the equations (52.89b)-(52.89e) were derived through linearization, there is one
remaining nonlinearity that needs to be removed to enable a fully linear analytical treatment.

8Alternatively, can use a gauge transformation Ψ′ = Ψ− t (pa/ρ) to eliminate the constant.
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Namely, when combining the boundary conditions into a single equation we compute the time
derivative of equation (52.89c) according to

g
∂η

∂t
=

[
∂

∂t
+
∂η

∂t

∂

∂z

]
∂Ψ

∂t
, (52.90)

which follows since Ψ = Ψ(x, y, z = η(x, y, t), t) at the surface boundary. Combining with
equation (52.89d) renders [

∂

∂t
+
∂η

∂t

∂

∂z

]
∂Ψ

∂t
= −g ∂Ψ

∂z
. (52.91)

With w ≈ ∂η/∂t at the free surface, we identify (∂η/∂t) ∂z as a vertical advection operator. The
corresponding term (∂η/∂t) ∂ztΨ is nonlinear and second order in fluctuating fields. Hence, we
drop this term as part of the linearization process. An equivalent means to realize this linearization
is to evaluate the free surface boundary condition at z = 0 rather than at z = η(x, y, t). For
this approximation to be self-consistent requires the amplitude of free surface undulations to be
much smaller than the typical wavelengths of the fluctuations, in which case

|η|/Λ≪ 1, (52.92)

with this condition holding for the waves considered here.
In summary, the fully linearized equation set takes the form

v = −∇Ψ velocity potential (52.93a)

∇2Ψ = 0 irrotational and non-divergent velocity for x ∈ ocean (52.93b)

∂tΨ = g η linearized dynamic b.c. at z = 0 (52.93c)

∂zΨ = −∂tη linearized kinematic b.c. at z = 0 (52.93d)

n̂ · ∇Ψ = 0 no-normal flow kinematic b.c. on rigid boundaries. (52.93e)

Observe that these equations for surface gravity waves involve a harmonic scalar potential, Ψ,
defined throughout the full fluid domain (equation (52.93b)), whereas the time tendencies are
determined by the kinematic boundary condition (equation (52.93d)) and dynamic boundary
condition (equation (52.93c)). Mathematically, the free surface, η, lives on a two-dimensional
manifold of the surface interface, whereas the velocity potential, Ψ, lives on a three-dimensional
manifold defined by the ocean domain. The velocity potential and free surface are coupled
by the kinematic and dynamic boundary conditions, thus requiring the velocity potential to
be determined throughout the three-dimensional ocean domain even if we might only care
about fluctuations of the free surface. These features of surface gravity waves make them
inherently more complex, and rich, than surface fluctuations of a membrane9, or the volume
fluctuations of a compressible fluid leading to acoustic waves (Chapter 51). The surface gravity
wave system provides a canonical example of a surface boundary dynamical system, with surface
quasi-geostrophy another prominent geophysical example.10

52.4 Energetics for the linearized equations
We here specialize the energetic analysis from Section 52.2.6 to study the energetics of the
linearized equations in a manner analogous to the acoustic wave energetics considered in Section

9A drumhead provides the canonical example of a vibrating membrane. For determining waves moving on a
drumhead, we focus exclusively on the drumhead without also considering dynamics of the surrounding fluid. See
Chapter 8 of Fetter and Walecka (2003) for details.

10See Held et al. (1995) for a classic treatment of surface quasi-geostrophy. Yassin (2021) and Yassin and
Griffies (2022) provide further studies of surface quasi-geostrophy in the context of normal mode theory.
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51.6.

52.4.1 Domain integrated kinetic energy

The surface integral (52.50) for the domain integrated kinetic energy is computed at z = η(x, y, t).
For the linearized system, this integral is approximated at z = 0, so that the domain integrated
kinetic energy is

EKE = −ρ
2

ˆ
[Ψ ∂tη]z=0 dA =

ρ

2

ˆ
[Ψ ∂zΨ]z=0 dA = −ρ

2

ˆ
[Ψw]z=0 dA, (52.94)

where we made use of the kinematic boundary condition (52.93d).

52.4.2 Domain integrated potential and available potential energies

Measuring the zero of gravitational potential energy at z = −H (see Figure 52.1), yields the
domain integrated gravitational potential energy

g ρ

ˆ
z=0

[ˆ η

−H
z dz

]
dA =

g ρ

2

ˆ
(η2 −H2) dA. (52.95)

The available potential energy (see Sections 29.9 and 36.5.6) is the difference between the
gravitational potential energy and that contained in an ocean at rest with η = 0, so that

EAPE = g ρ

ˆ [ˆ η

−H
z dz

]
dA− g ρ

ˆ [ˆ 0

−H
z dz

]
dA =

g ρ

2

ˆ
η2 dA =

ρ

2 g

ˆ
(∂tΨ)2 dA, (52.96)

where the final step made use of the dynamic boundary condition (52.93c). Hence, a non-negative
available potential energy is associated with any undulation of the free surface, whether the
undulation is positive or negative.

In Section 36.5.6 we computed the available potential energy for a single layer of shallow
water fluid. In that discussion we chose to set z = 0 at the resting free surface (Figure 35.1),
whereas in the current discussion we chose z = 0 at the flat bottom (Figure 52.1). Even so,
the available potential energy (52.96) is identical to the shallow water case, which we see by
noting that the area average of η vanishes for the current choice in Figure 52.1 (due to volume
conservation)

η =
1

Aocn

ˆ
η dA = 0, (52.97)

where

Aocn =

ˆ
dA (52.98)

is the surface area of the ocean. We thus find

EAPE =
g ρ

2

ˆ
η2 dA =

g ρ

2

ˆ
(η − η)2 dA =

g ρ

2

ˆ
(η′)2 dA, (52.99)

which agrees with equation (36.131) derived for the shallow water layer. We expect the two
energies to agree since the gravitational energy depends only on the density and the position
within the gravity field; it has no concern for dynamical assumptions such as whether the fluid
motion is approximately hydrostatic (as for the shallow water model) or general (as considered
here).
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52.4.3 Equipartition for the phase averaged domain integrated energies

The expression (52.96) for the available potential energy can be written

EAPE =
ρ

2

ˆ
η ∂tΨdA =

ρ

2

ˆ
[−Ψ ∂tη + ∂t(ηΨ)] dA = EKE +

ρ

2

ˆ
∂t(ηΨ)dA, (52.100)

where we made use of equation (52.94) for the total kinetic energy. If the fields exhibit periodicity
in time, such as for a surface gravity wave field, then integration over an integer multiple of the
wave period results in an equipartition between the phase averaged available potential energy
and phase averaged kinetic energy

⟨EAPE⟩ = ⟨EKE⟩ with ⟨EAPE⟩ =
ω

2π

ˆ 2π/ω

0
EAPE dt, (52.101)

where 2π/ω is the wave period. We found a similar equipartition of energy in Section 51.6.2 for
acoustic waves.

52.4.4 Energetics for the depth integrated linear flow

We here study the mechanical energy contained in the fluid layer within the linear theory.
Notably, when computing the kinetic energy in the depth integrated flow, we only integrate to
z = 0 since going to z = η involves third order terms that are neglected in the linear theory.
Hence, the time derivative of the depth integrated kinetic energy per mass is

∂

∂t

ˆ 0

−H
K dz =

1

2

∂

∂t

ˆ 0

−H
∇Ψ · ∇Ψdz =

ˆ 0

−H
∇(∂tΨ) · ∇Ψdz, (52.102)

which follows since the integral bounds are static so that the time derivative commutes with the
integral. Note that we used the partial time derivative operator, ∂/∂t, as it is computed holding
the horizontal position fixed. We next make use of the harmonic nature of the velocity potential
(∇2Ψ = 0) to write

∂

∂t

ˆ 0

−H
K dz =

ˆ 0

−H
∇ · (∂tΨ∇Ψ)dz = [∂tΨ ∂zΨ]z=0 +∇h ·

ˆ 0

−H
∂tΨ∇hΨdz, (52.103)

where we used the bottom kinematic boundary condition, ∂zΨ = 0 at z = −H, and noted that
H is a constant (flat bottom) so that the horizontal derivative commutes with the integral. For
the boundary term we use the linearized dynamic boundary condition (52.93c) and linearized
kinematic boundary condition (52.93d) to yield

∂

∂t

ˆ 0

−H
K dz = −g η ∂tη +∇h ·

ˆ 0

−H
∂tΨ∇hΨdz. (52.104)

Observe that the boundary term is the time tendency of the depth integrated potential energy
per mass

ˆ η

−H
Φdz =

ˆ η

−H
g z dz = (g/2) (η2 −H2) =⇒ ∂

∂t

ˆ η

−H
g z dz = g η ∂tη. (52.105)

The potential energy in the column is computed by integrating all the way to the free surface,
even for the linear theory. That integration limit is needed since changes in the potential energy
over a column of constant density fluid arise solely through changes in the free surface. Bringing
the pieces together allows us to write the time derivative of the depth integrated mechanical
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energy per mass in the linear theory

∂

∂t

[
1

2

ˆ 0

−H
v · v dz +

ˆ η

−H
g z dz

]
= ∇h ·

ˆ 0

−H
∂tΨ∇hΨdz. (52.106)

Finally, set u = −∇hΨ, and use the linear theory identity, ∂tΨ = pd/ρ from equation (52.83),
thus leading to

∂

∂t

[ˆ 0

−H
ρK dz +

ˆ η

−H
ρΦdz

]
= −∇h ·

ˆ 0

−H
pd udz. (52.107)

Evidently, it is the horizontal convergence of the layer integrated flux of dynamical pressure, pd u,
that affects a time change to the layer integrated mechanical energy for the linear theory. That
is, the layer integrated mechanical energy has a time tendency due to work by the dynamical
pressure. Recall we saw the importance of pressure work in Section 52.2.6 when considering the
local energy balances for the fully nonlinear system. We also saw the importance of pressure
work for acoustic wave energetics in Section 51.6.3. Other wave systems we encounter in this
part of the book also have pressure work central to their energetics.

52.5 Traveling gravity waves in a flat domain
We now study a traveling plane wave solution to the equations (52.93b)-(52.93e) as posed in
a flat bottom domain such as illustrated in Figure 52.1. The waves are assumed to travel
horizontally, with the example in Figure 52.1 showing waves in the ±x̂ direction. There are no
lateral boundaries. The waves also contain a vertical profile that, as we shall see, exponentially
decays from the surface into the interior.

Besides providing an explicit realization of surface gravity waves, our analysis offers experience
with the separation of variables method for solving certain partial differential equations. In our
analysis, we are not interested in the most general wave solution. Instead, we aim to determine
a particular solution of sufficient generality to expose the underlying physics of the linear wave
fluctuations, and in particular to expose the exponential decay of the wave amplitude with depth.
Furthermore, given linearity, the superposition principle holds whereby the sum or integral of
particular solutions are also solutions.

52.5.1 Horizontally traveling plane wave
We seek a traveling plane wave solution with angular frequency, ω > 0, and horizontal wavevector
and wave direction

k = kx x̂+ ky ŷ and k̂ = k/|k|. (52.108)

For this purpose we assume the waves appear in the velocity potential in the shape of a cosine
modulated by a vertical structure function11

Ψ(x, y, z, t) = Ψ0 Γ(z) cos(k · x− ω t). (52.109)

Plugging this ansatz into Laplace’s equation, ∇2Ψ = 0, leads to the ordinary differential equation
satisfied by the non-dimensional vertical structure function

d2Γ

dz2
= |k|2 Γ −H ≤ z ≤ 0 (52.110a)

dΓ

dz
= 0 at z = −H, (52.110b)

11We could use complex exponentials for the traveling wave, as discussed in Chapter 49. We here work with
the real trigonometric functions to exemplify their use.
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Figure 52.2: Snapshot of surface gravity waves over deep water (|k|H ≫ 1, top panel) and shallow water
(|k|H ≪ 1, lower panel), with velocities computed according to equations (52.113a) and (52.113b). Shown here
are the horizontal and vertical components to the velocity at a particular time instance, with the horizontal
velocity in phase with the free surface undulations, and the vertical velocity π/2 out of phase. The horizontal axis
along the top designates values for k · x, with values of 0, π/2, π, 3π/2, 2π providing samples along the wave.

where the bottom boundary condition is required to satisfy the no-normal flow condition (52.93e).
We write the solution in the form

Ψ = Ψ0 cosh[|k| (z +H)] cos(k · x− ω t) (52.111a)

Ψ0 =
g η0/ω

cosh(|k|H)
, (52.111b)

so that the dynamic boundary condition (52.93c) renders the free surface height

η(x, t) = η0 sin(k · x− ω t). (52.112)

The corresponding fluid velocity field, v = −∇Ψ, is given by

u =
g η0 k̂

Cp

cosh[|k| (z +H)] sin(k · x− ω t)
cosh(|k|H)

(52.113a)

w = −g η0
Cp

sinh[|k| (z +H)] cos(k · x− ω t)
cosh(|k|H)

, (52.113b)

where the wave phase speed is given by

Cp = ω/|k| > 0. (52.114)

Figure 52.2 depicts the horizontal and vertical velocity in a snapshot of a deep water wave
(|k|H ≫ 1) and shallow water wave (|k|H ≪ 1). We emphasize the following properties of these
waves.

• The horizontal fluid particle velocity, u, is parallel to the horizontal wavevector, k. Hence,
the gravity waves are horizontally longitudinal.
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• The horizontal velocity is in phase with the free surface, η, whereas they are both π/2 out
of phase with the vertical velocity.

• The vertical velocity vanishes at the bottom, z = −H, as needed to satisfy the no-normal
flow boundary condition.

• The horizontal wave number, |k|, both determines the horizontal wavelength, 2π/|k|, as
well as the vertical decay scale, |k|. This coupling of the horizontal to the vertical is a
notable property of surface gravity waves.

• Letting time progress at a fixed space position reveals a clockwise progression of a fluid
particle, as can be imagined by letting Figure 52.2 evolve in time. Further details of fluid
particle trajectories are developed in Section 52.11 when studying Stokes drift.

• In the shallow water limit, |k|H ≪ 1, the horizontal velocity is depth independent. The
vertical velocity is a linear function of depth and it is a factor of |k|H times smaller in
magnitude than the horizontal velocity. We provide a focused study of such shallow water
gravity waves in Section 55.5.

52.5.2 Domain integrated mechanical energy of a traveling wave
The domain integrated kinetic energy (52.94) contained in a traveling surface gravity wave is

EKE = −ρ
2

ˆ
z=0

Ψ ∂tη dA (52.115a)

= (ρ/2)Ψ0 η0 ω cosh(|k|H)

ˆ
cos2(k · x− ω t) dA (52.115b)

= (ρ/2) g η20

ˆ
cos2(k · x− ω t) dA, (52.115c)

and likewise the domain integrated available potential energy (52.96) is

EAPE = (ρ/2) g η20

ˆ
sin2(k · x− ω t) dA, (52.116)

so that their sum is a space and time constant

EKE + EAPE = Aocn ρ g η
2
0/2, (52.117)

where Aocn is the total ocean area.12 We also see that the phase average of the domain integrated
kinetic energy and available potential energy manifest the equipartition property (52.101)

⟨EAPE⟩ = ⟨EKE⟩ = Aocn ρ g η
2
0/4. (52.118)

52.5.3 Dispersion relation
Combining the two z = 0 boundary conditions (52.93c) and (52.93d) yields

(∂tt + g ∂z)Ψ = 0 at z = 0. (52.119)

Substituting the traveling plane wave (52.111a) into this relation leads to the dispersion relation

ω2 = g |k| tanh(|k|H) =⇒ ω =
√
g |k| tanh(|k|H). (52.120)

12For the single traveling surface gravity wave to be a valid wave solution requires no lateral boundaries, in
which case the ocean area is formally infinite.
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Figure 52.3: The dispersion relation (52.120) for surface gravity waves, plotted here as ω/ω0 =√
|k|H tanh(|k|H) (dark thick curved line), where ω2

0 = g/H is the square of a fundamental frequency for
surface gravity waves. We also show the dispersion relation for non-dispersive shallow water waves, ω/ω0 = |k|H
(straight line), which holds for |k|H ≪ 1, and the dispersive deep-water gravity waves, ω/ω0 =

√
|k|H, which

holds for |k|H ≫ 1 (see Section 52.5.5).

The dispersion relation constrains those values available for the angular frequency, ω, and
wavenumber, |k|. That is, the surface gravity waves only exist if their frequency and wavenumber
are related according to the dispersion relation (52.120). We depict the dispersion relation in
Figure 52.3.

52.5.4 Alternative forms for the velocity potential and velocity

The dispersion relation (52.120) allows for a slight rewrite of the velocity potential (52.111a) and
velocity field (52.113a) and (52.113b), with these variety of forms appearing in the literature

η = η0 sin(k · x− ω t) (52.121a)

Ψ0 =
g η0

ω cosh(|k|H)
=

η0Cp

sinh(|k|H)
(52.121b)

Ψ =
g η0 cosh[|k| (z +H)] cos(k · x− ω t)

ω cosh(|k|H)
=
η0Cp cosh[|k| (z +H)] cos(k · x− ω t)

sinh(|k|H)
(52.121c)

u =
g η0 k̂

Cp

cosh[|k| (z +H)] sin(k · x− ω t)
cosh(|k|H)

=
η0 ω k̂ cosh[|k| (z +H)] sin(k · x− ω t)

sinh(|k|H)
(52.121d)

w = −g η0
Cp

sinh[|k| (z +H)] cos(k · x− ω t)
cosh(|k|H)

= −η0 ω sinh[|k| (z +H)] cos(k · x− ω t)
sinh(|k|H)

.

(52.121e)

52.5.5 Phase speed, group velocity, and angular frequency

We here characterize the phase speed, group velocity, and angular frequency for the surface
gravity waves, and introduce the limits for deep water and shallow water waves.

Phase speed

The phase speed for the surface gravity wave is given by

Cp = ω/|k| =
√
(g/|k|) tanh(|k|H). (52.122)
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We consider the two limits: |k|H ≫ 1 are known as shortwaves or deep water waves, and
|k|H ≪ 1 are known as longwaves or shallow water waves. In these two limits the phase speed
is given by

ω ≈
√
g |k| Cp ≈

√
g/|k| |k|H ≫ 1 shortwave/deep water (52.123a)

ω ≈ |k|
√
g H Cp ≈

√
g H |k|H ≪ 1 longwave/shallow water. (52.123b)

Observe that the shallow water gravity waves are non-dispersive since the phase speed is the
same for all wave numbers, Cp ≈

√
g H. In contrast, the deep water gravity waves are dispersive,

with the shorter (and higher frequency) waves having a slower phase speed than longer waves.
To further emphasize the point about deep water waves, write the squared phase speed for the
deep water waves as

C2
p =

g

|k| =
g2

ω2
=⇒ Cp = g/ω. (52.124)

Hence, so long as the deep water limit is maintained, higher frequency and shorter waves have
smaller phase speed than lower frequency and longer waves.

Group velocity

As shown in Section 49.6, the group velocity, cg = ∇kω, measures the direction and speed of a
group of waves (e.g., a wave train or wave packet), with the group velocity for surface gravity
waves given by

cg =
g k̂

2ω

[ |k|H + cosh(|k|H) sinh(|k|H)

cosh2(|k|H)

]
. (52.125)

The ratio of the group speed to the phase speed is given by

k̂ · cg
Cp

=
g |k|2 [|k|H + cosh(|k|H) sinh(|k|H)]

2ω2 cosh2(|k|H)
=

1

2

[
1 +

2 |k|H
sinh(2 |k|H)

]
. (52.126)

The shallow water limit, with |k|H ≪ 1, has phase speed and group speed equal, whereas
the deep water waves have group speed one-half the phase speed. More precisely, we find the
following limiting behaviors.

ω ≈
√
g |k| Cp ≈

√
g/|k| cg ≈ cp/2 |k|H ≫ 1 shortwave/deep water (52.127a)

ω ≈ |k|
√
g H Cp ≈

√
g H cg ≈ cp |k|H ≪ 1 longwave/shallow water. (52.127b)

For shallow water gravity waves, the group velocity equals to the phase velocity. In contrast,
for deep water gravity waves, the group velocity magnitude is one-half the phase speed. When
watching a packet of deep water gravity waves, we see the phase of the carrier waves appear at
the back of the packet and move forward at twice the speed of the packet, only to then disappear
at the front of the packet.

Angular frequency

The deep water limit, |k|H ≫ 1, and shallow water limit, |k|H ≪ 1, are set according to the
wavenumber. These limits lead to a distinct frequency for the two waves. To compute the ratio
of the corresponding angular frequencies, introduce two non-dimensional numbers according to

Γsw ≡ H |k|sw ≪ 1 and Γdw ≡ H |k|dw ≫ 1, (52.128)
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in which case
ω2

dw

ω2
sw

=
g |k|dw
|k|2sw c2grav

=
g H−1 Γdw

Γ2
swH

−2 g H
=

Γdw

Γ2
sw

≫ 1. (52.129)

We conclude that frequency of those short gravity waves whose extent is largely confined to
the upper ocean (deep water waves) is much higher than the long gravity waves that extend
throughout the water column (shallow water gravity waves). So although the shallow water
waves and deep water waves feel the same gravitational acceleration, the huge scale for the
shallow water waves leads to far lower frequency than for the deep water gravity waves.

52.5.6 Particle trajectories ignoring Stokes drift

Following the discussion in Section 17.7.1 of fluid particles and the motion of points within a
continuum, we here determine the trajectory of a fluid particle labeled by the material coordinate,
a, and do so by time integrating the ordinary differential equation (Section 17.3.1)

∂X(a, T )

∂T
= v[X(a, T ), T ], (52.130)

where T = t is the material time label. In Section 52.11 we study the fluid particle motion
within a surface gravity wave, noting that there is a net motion in the direction of the phase.
This Stokes drift arises from the distinction between averaging at a fixed point in space versus
averaging that follows a fluid particle. Here, we provide a step towards the Stokes drift discussion
by considering the leading order motion of fluid particles found by ignoring the distinction
between Eulerian and Lagrangian averaging. In effect, we time integrate equation (52.130) by
fixing the particle trajectory on the right hand side to the value it had at an arbitrary initial
time, T = t0. Using the horizontal velocity (52.121d) and vertical velocity (52.121e) we have
(now dropping the a label for brevity)

dXh

dT
=
η0 ω k̂ cosh[|k| (z0 +H)] sin(k · x0 − ω T )

sinh(|k|H)
(52.131a)

dZ

dT
= −η0 ω sinh[|k| (z0 +H)] cos(k · x0 − ω T )

sinh(|k|H)
, (52.131b)

which integrates to the horizontal and vertical trajectories

Xh = x0 +
η0 k̂ cosh[|k| (z0 +H)] cos(k · x0 − ω T )

sinh(|k|H)
(52.132a)

Z = z0 +
η0 sinh[|k| (z0 +H)] sin(k · x0 − ω T )

sinh(|k|H)
. (52.132b)

Eliminating the time dependence leads to the equation for an ellipse in the horizontal-vertical
plane

(Xh − x0)
2

cosh2[|k| (z0 +H)]
+

(Z − z0)2
sinh2[|k| (z0 +H)]

=
η20

sinh2(|k|H)
. (52.133)

In the deep water limit, with |k|H ≫ 1, the ellipse becomes circular and the radius exponentially
decreases with depth, with short waves (large k|) decaying over a shorter depth range. As a
result, deep water waves have nearly circular particle trajectories such as those shown in Figure
52.4. In the shallow water limit, with |k|H ≪ 1, the vertical motion reduces to zero so that
particles move horizontally. Furthermore, their horizontal excursions are independent of z, so
that particles throughout the full column move coherently by the same amount.
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Figure 52.4: Motion of fluid particles in deep water waves. Shown here is a snapshot of the wave, with fluid
particles denoted by black dots positioned at a point along their nearly circular orbits. The wavevector is directed
to the right so that particles exhibit a clockwise orbital motion as the wave moves. Correspondingly, by moving
ones eye to the left in this snapshot, then the series of fluid particles exhibit a clockwise rotation. As the horizontal
motion is larger on the top of the orbit than the bottom, there is a net particle drift in the direction of the
wave; this is Stokes drift discussed in Section 52.11. For these deep water waves, the particle motion becomes
exponentially small when moving away from the interface. In contrast, for shallow water gravity waves, the
particle orbits are elliptical and the horizontal major axis is depth independent whereas the vertical excursion
vanishes at the bottom. This figure is taken after Figure 50 of Lighthill (1978).

52.5.7 Depth integrated mechanical energy of a traveling plane wave
In Section 52.4.4 we derived general expressions for the layer integrated mechanical energy
budget. Here we specialize those results to the case of traveling plane surface gravity waves, and
limit our focus to the phase averaged quantities.

Available potential energy

The layer integrated potential energy (per horizontal area) is given by

g ρ

ˆ η

−H
z dz = (ρ g η20/2) sin

2(k · x− ω t)− ρ g H2/2. (52.134)

We are concerned with the potential energy relative to the constant term, −ρ g H2/2. That is,
we focus on the available potential energy of the waves rather than the potential energy (see
Section 52.5.2), in which we compute

g ρ

ˆ η

−H
z dz − g ρ

ˆ 0

−H
z dz = g ρ

ˆ η

0
z dz = (ρ g η20/2) sin

2(k · x− ω t). (52.135)

The phase average of the available potential energy (per horizontal area) is thus given by〈
g ρ

ˆ η

0
z dz

〉
= ρ g η20/4. (52.136)

Evidently, the phase averaged and layer integrated available potential energy is proportional to
the square of the amplitude of the free surface undulations, η20.

Kinetic energy

Making use of the expression (52.113a) for the horizontal wave velocity leads to the layer
integrated kinetic energy (per horizontal area) in the horizontal flow

ρ

2

ˆ 0

−H
u2 dz =

ρΨ2
0 |k|2
2

ˆ 0

−H
cosh2[|k| (z +H)] sin2(k · x− ω t) dz, (52.137)

which has the phase average〈
ρ

2

ˆ 0

−H
u2 dz

〉
=
ρΨ2

0 |k|2
4

ˆ 0

−H
cosh2[|k| (z +H)] dz. (52.138)
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52.5. TRAVELING GRAVITY WAVES IN A FLAT DOMAIN

Likewise, the phase averaged kinetic energy of the layer integrated vertical wave motion (52.113b)
is given by 〈

ρ

2

ˆ 0

−H
w2 dz

〉
=
ρΨ2

0 |k|2
4

ˆ 0

−H
sinh2[|k| (z +H)] dz. (52.139)

With cosh2 y + sinh2 y = cosh(2y), the phase average of the layer integrated kinetic energy per
area of the wave is〈

ρ

2

ˆ 0

−H
v2 dz

〉
=
ρΨ2

0 |k|2
4

ˆ 0

−H
cosh[2 |k| (z +H)] dz = (Ψ2

0 |k|/8) sinh(2 |k|H). (52.140)

Making use of the expression (52.111b) for Ψ0, as well as the dispersion relation (52.120) yields〈
ρ

2

ˆ 0

−H
v2 dz

〉
=
ρ g2 η20 |k|

8ω2

sinh(2 |k|H)

cosh2(|k|H)
= ρ g η20/4, (52.141)

which is identical to the phase averaged layer integrated available potential energy (52.136). We
thus find, again, the equipartition of the phase averaged kinetic and available potential energies,
here computed per horizontal area.

Energy flux vector

Now we determine the phase averaged horizontal flux of layer integrated mechanical energy. The
general expression is given by equations (52.106) and (52.107), and is here specialized to the
plane wave

ˆ 0

−H
pd u dz = −ρ

ˆ 0

−H
∂tΨ∇hΨdz (52.142a)

= (ρΨ2
0 kω) sin

2(k · x− ω t)
ˆ 0

−H
cosh2[|k| (z +H)] dz, (52.142b)

which has a phase average〈ˆ 0

−H
pd udz

〉
=
ρΨ2

0 kω

2

ˆ 0

−H
cosh2[k (z +H)] dz (52.143a)

=
ρΨ2

0 ω k̂

4
[|k|H + sinh(|k|H) cosh(|k|H)] (52.143b)

= (ρ g η20/2) cg, (52.143c)

where we used equation (52.125) for the group velocity and equation (52.111b) for Ψ0. We thus
see that the mechanical energy fluxed by the waves is, in the phase average and depth integral,
equal to the mechanical energy times the group velocity〈ˆ 0

−H
pd u dz

〉
= ρ cg

〈ˆ 0

−H
K dz +

ˆ η

0
Φdz

〉
. (52.144)

This connection between wave energy flux and the group velocity provides yet another reason
why the group velocity is more relevant to wave mechanics than the phase velocity.

Comments on group velocity and a single wave

The analysis in this subsection focused on energetics for a single wave with wavevector, k.
However, the group velocity is the wavevector space gradient of the dispersion relation, cg = ∇kϖ,
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52.6. QUALITATIVE FEATURES OF DEEP WATER WAVES

−g ̂zsteepening = dispersion ⟹ soliton

Figure 52.5: A soliton in the deep water limit results when the wave dispersion (long waves travel faster than
short waves) balances the nonlinear steepening. The result is a soliton, which has an exact analytic expression
following from the KdV equation (see Drazin and Johnson (1989)).

which tacitly considers more than a single wavevector. From our study of wavepackets in Section
49.6, we consider the packet to be localized in k-space around a single wavevector, so that we
can develop wave energetics by focusing on that single wave. When this wave forms the central
carrier wave for a packet, then the group velocity serves as the velocity of the packet and it
appears in the energy flux.

52.5.8 Further study

Further discussions of surface gravity waves, following that provided here, can be found in
Section 54 of Fetter and Walecka (2003), Lectures 3 and 4 of Pedlosky (2003), and Section 7.1
of Vallis (2017).

52.6 Qualitative features of deep water waves

The shortwave/deep water waves are notable for having shorter waves travel slower than longer
waves. In the event of a perturbation to the fluid, such as from a stone dropped into a pond or a
storm on a lake or the ocean, deep water waves are energized. The dispersion relation (52.123a)
means that longer waves spread away from the source faster than the shorter waves, leading to a
self-organization of the wavelengths and corresponding wave packets.

Now imagine a deep water wave packet that somehow steepens and takes on a nonlinear form.
Fourier decomposing this nonlinear wave into linear deep water modes requires more shortwave
modes in the steep region, whereas the less steep portion of the wave requires longer deep water
modes, which travel faster. If the nonlinear steepening on the wave face is exactly balanced
by the faster dispersion of the long waves near the wave base and backside, then the wave
pattern remains stable; it does not break. This balance of steepening and dispersion describes
the fundamental features of a soliton as depicted in Figure 52.5, with a soliton a nonlinear wave.

52.7 Shallow water waves approaching a shore
The shallow water limit is notable for the absence of wave dispersion; i.e., shallow water gravity
waves of all wavelengths travel at speed

√
g H. Tsunamis are the prototypical shallow water

waves. The shallow water dispersion relation also means that shallow water gravity waves slow
down when the ocean depth shoals, as when approaching a shoreline. Consequently, as waves
reach the shoreline there is a tendency to accumulate wave energy as the deeper waves pile up
behind the shallower waves. Furthermore, the steeper part of the wave, being part of a thicker
region of the fluid and thus a larger effective H, travels slightly faster than the wave trough. As
such, the steeper part of the wave overtakes the trough and, at some point, the assumptions of
linearity breakdown and the shallow water waves break on the beach as depicted in Figure 52.6.
In the remainder of this section, we provide some quantitative context for these remarks.
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52.7. SHALLOW WATER WAVES APPROACHING A SHORE

−g ̂z

Figure 52.6: Shallow water waves approaching a shoreline steepen and eventually break. We can infer this
behavior from the phase speed, Cp =

√
g H, whereby waves in deeper water move slightly faster than those in

shallower water, so that the wave energy accumulates near the shore. Furthermore, water on the steeper part of
the wave moves slightly faster than water in the trough, due to the difference in thickness of the water. This
process causes water on the steeper portion of the wave to travel slightly faster than in the trough, leading to
steepening of the waves. Nonlinearities eventually invalidate the assumptions made in deriving the linear waves.
Even so, the qualitative characterization based on the linear analysis allows for a useful heuristic understanding of
shallow water wave breaking on the beach. This video offers a pedagogical introduction to shallow water waves,
with the 12-minute mark describing “compression” waves, in which waves steepen due to differences in the layer
thickness, much like shallow water waves approaching a beach

52.7.1 Wavenumber changes
Consider the ray equations from Section 50.3 for a one-dimensional shallow water gravity wave
approaching a beach with k = k x̂ where k > 0. Let the resting depth be a function, H(x), that
decreases in the +x̂ direction, ∂xH < 0. Since the background state is time-independent (i.e.,
the resting depth is static), the angular frequency remains fixed while following along a ray, so
that13

Drϖ

Dt
= 0. (52.145)

With the local shallow water dispersion relation given by

ϖ(x) = k(x)
√
g H(x), (52.146)

we have
Drϖ

Dt
= 0 =⇒ 1

k

Drk

Dt
= − 1

2H

DrH

Dt
> 0. (52.147)

The inequality holds since the shoreline gets shallower as the ray approaches the beach. Con-
sequently, the wavenumber increases and the wavelength decreases for waves approaching the
shore.

52.7.2 Wave energy and wave action
What happens to the wave energy as a wave approaches the shore? Common experience suggests
that the wave energy increases since the amplitude increases when the wave moves into shallower
water. To see this effect analytically, consider the wave action equation introduced in Section
50.5. Recall that the wave action, A, equals to the phase averaged wave energy, ⟨H⟩, divided
by the angular frequency, ω. When following a ray, the wave action satisfies equation (50.88),
which here takes the form

1

A

DrA

Dt
= −∇ · cg. (52.148)

For the one-dimensional shallow water example considered here, the convergence of the group
velocity is

−∇ · cg = −∂xcg = −∂x(g H)1/2 = −(g H)1/2 ∂xH/(2H) > 0. (52.149)

Hence, the wave action increases along a ray moving towards a beach. Furthermore, as noted
earlier, a static background environment means that the angular frequency remains constant

13Standing on a pier looking at a periodic wave field approaching the beach should reveal that the angular
frequency is a constant even as the waves move into shallower water.
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@xH < 0

Figure 52.7: Depicting the refraction of shallow water gravity waves as a packet approaches the shoreline, thus
causing the phase velocity to bend more directly into the shore and lines of constant phase to become more
parallel to the shore. Refraction with the bottom shoaling (∂xH > 0) occurs by increasing kx (wave length on a
ray gets smaller approaching the shore) while keeping the angular frequency and ky constant along a ray. In this
manner, the angle, γ, reduces toward zero as the bottom shoals, simply through increasing kx as a wave packet
moves toward the shoreline. The dotted straight lines are lines of constant bottom depth, H(x) = constant.

along a ray. Consequently, the increase in wave action following a ray onto the beach occurs since
the phase averaged wave energy increases, which means that the wave amplitude is increasing.
Eventually the linear analysis fails when the nonlinear effects amplify with increasing wave
amplitude, as illustrated in Figure 52.6 where the waves eventually break. Even so, it is satisfying
that the linear theory provides a clear picture of its ultimate demise as nonlinear effects take
over.

52.7.3 Wave refraction

When distant from the shore, waves typically approach at an oblique angle, but, observations
readily verify, waves bend as they start to feel the bottom, so that their phase velocity is nearly
straight onto the shoreline upon reaching the beach. This bending of the wave phase lines is
known as refraction, and the amount of refraction is a function of the bottom slope and rules for
refraction are embodied in Snell’s law from optics.

To introduce the notion of shallow water gravity wave refraction, return to the ray equation
(50.37c), now with the wavevector two-dimensional,

k = x̂ kx + ŷ ky. (52.150)

If the bottom remains a function just of x, then the angular frequency remains constant along a
ray, as does ky. So writing the squared angular frequency as

ω2 = g H (k2x + k2y), (52.151)

it is only H and kx that change when following along a ray. As the ray approaches the shore,
H(x) gets smaller. So to keep the angular frequency constant along the ray requires kx to
increase, which is the same result as in Section 52.7.1. However, now the increase in kx means
that the wave phase velocity turns into the coast so that phase lines become more parallel as
the wave approaches the shore. Figure 52.7 illustrates the basic physics.
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52.8. STANDING GRAVITY WAVES IN A CLOSED BASIN

52.7.4 Further study

This video from Prof. A. Hogg provides a pedagogical introduction to shallow water wave
breaking along with deep water solitons, both as realized in a laboratory. Also, section 2.2 of
Johnson (1997) provides a thorough mathematical analysis of shallow water waves approaching
a shoreline.

52.8 Standing gravity waves in a closed basin

We now consider the surface gravity wave equations (52.93a)-(52.93e) for a closed rectangular
basin of constant depth and with horizontal dimensions x ∈ [0, Lx] and y ∈ [0, Ly]. As we
show, waves in a bounded domain are no longer traveling, but instead they are standing waves
that oscillate in place rather than travel. We can think of such standing wave modes as a
superposition of two oppositely traveling waves with the same frequency and wavenumber that
are locked in-phase in a manner that satisfies the boundary conditions. For example, the sum of
a right and left moving wave with equal amplitude, wavenumber, and frequency is given by the
standing pattern

A cos(k x− ω t) +A cos(−k x− ω t) = 2A cos(ω t) cos(k x). (52.152)

We encountered a similar situation in Exercise 51.1 when considering acoustic waves in a closed
rectangular cavity.

52.8.1 Solution for the standing waves

To satisfy the no-normal flow conditions at the four walls (equation (52.93e)) requires the
horizontal wave numbers to be quantized. Correspondingly, the waves are not traveling plane
waves since the flow is confined in a box. Rather, the solution is in the form of spatially standing
wave that oscillates in time

Ψ(x, y, z, t) = Ψ0 Γ(z) cos(km x) cos(ln y) cos(ω t), (52.153)

where the quantized wave numbers are

km = mπ/Lx and ln = nπ/Ly with m,n integers. (52.154)

The vertical structure function satisfies same differential equation as for the traveling waves in a
channel from Section 52.5,

d2Γ

dz2
= (k2m + l2n) Γ −H ≤ z ≤ 0 (52.155a)

dΓ

dz
= 0 at z = −H, (52.155b)

thus leading to the standing gravity wave solution

Ψ = Ψ0 cosh[Km,n (z +H)] cos(km x) cos(ln y) sin(ω t) (52.156a)

Ψ0 =
g η0/ωm,n

cosh(Km,nH)
(52.156b)

η = η0 cos(km x) cos(ln y) cos(ωm,n t) (52.156c)

u =
g η0 km
ωm,n

cosh[Km,n (z +H)]

cosh(Km,nH)
sin(km x) cos(ln y) sin(ωm,n t) (52.156d)
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52.9. WAVE PACKETS OF SURFACE GRAVITY WAVES

Figure 52.8: Flow in the (m,n) = (1, 0) seiche mode, with panels corresponding to an increment of ω1,0 t = π/4.
Note that there is no flow at times ω1,0 t = 0 and ω1,0 t = π. Units are arbitrary.

v =
g η0 ln
ωm,n

cosh[Km,n (z +H)]

cosh(Km,nH)
cos(km x) sin(ln y) sin(ωm,n t) (52.156e)

w = −g η0Km,n

ωm,n

sinh[Km,n (z +H)]

cosh(Km,nH)
cos(km x) cos(ln y) sin(ωm,n t) (52.156f)

K2
m,n = k2n + l2m. (52.156g)

As for the channel, we find the dispersion relation by substituting the standing wave solution
into the boundary condition equation (52.119), thus leading to the quantized angular frequencies

ω2
m,n = g Km,n tanh(Km,nH). (52.157)

52.8.2 Gravest seiche mode as an example

The standing wave solutions are commonly referred to as seiches, and they can be found in
enclosed lakes and ocean basins after strong and persistent winds. Winds, generally with large
scale variations, tend to force the lowest or gravest seiche mode. For example, assume the wind
blows in the zonal direction so that it excites the lowest zonal standing wave with frequency

ω2
1,0 = g K1,0 tanh(K1,0H) = (g π/Lx) tanh(πH/Lx), (52.158)

which has the shallow water limit (H/Lx → 0)

ω2
1,0 ≈ g H (π/Lx)

2. (52.159)

As the winds relax, the seiche mode oscillates according to the angular frequency ω2
1,0. We depict

such oscillations in Figure 52.8 over one-half a period.

52.8.3 Further study

More discussion of seiche modes can be found in Section 12.5 of Cushman-Roisin and Beckers
(2011), Section 1.6.4 of Brown (1999), and Chapter 10 of Neumann and Pierson (1966).

52.9 Wave packets of surface gravity waves

In this section we derive expressions for surface gravity wave packets moving over a flat bottom
domain, specializing the general approach considered in Section 49.6. It is sufficient to focus on
the free surface, though note that the free surface packets are associated with packets of the
velocity potential and velocity field, with amplitudes related by equations (52.121b)-(52.121e).
We apply the wave packet technology from Sections 49.6 and 49.7 to write a free surface wave
packet as

η(x, t) =
1

(2π)2

ˆ
A(k) ei [k·x−ϖ(k) t] dk. (52.160)
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In this equation, k is the horizontal wavevector, the wavevector integral extends over all of the
horizontal wavevector space, and the amplitude function, A(k), is generally complex and peaked
around a wavevector, k0. The surface gravity wave dispersion relation (52.120) specifies the
angular frequency, ω = ϖ(k), as a function of the wavevector. Since the surface gravity wave
dispersion relation is a function only of the wavevector magnitude, it satisfies

ϖ(k) = ϖ(−k) = ϖ(|k|). (52.161)

This property affects some simplification relative to the general discussion of wave packets in
Section 49.6.

52.9.1 Initializing the packet and dispensing with conjugate symmetry

To initialize the packet we consider the possiblity of initializing the free surface, η(x, t = 0),
and/or its time derivative, ∂tη(x, t = 0). As shown here, by allowing for either possibility we must
dispense with the conjugate symmetry property (8.67) otherwise assumed for the amplitudes of
wave packets in Sections 49.6 and 49.7.

Given that the free surface height, η, is a real field, we can write its packet as one-half the
sum of the real and imaginary parts of the integral (52.160) so that

η(x, t) =
1

2 (2π)2

ˆ [
A(k) ei [k·x−ϖ(k) t] +

(
A(k) ei [k·x−ϖ(k) t]

)∗]
dk (52.162a)

=
1

2 (2π)2

ˆ [
A(k) ei [k·x−ϖ(k) t] +A∗(k) e−i [k·x−ϖ(k) t]

]
dk (52.162b)

=
1

2 (2π)2

ˆ [
A(k) ei [k·x−ϖ(k) t] +A∗(−k) e−i [−k·x−ϖ(−k) t]

]
dk (52.162c)

=
1

2 (2π)2

ˆ
eik·x

[
A(k) e−iϖ(k) t +A∗(−k) eiϖ(k) t

]
dk, (52.162d)

where the second equality made use of the associative property (8.6b) of the complex conjugate
operation, and the final equality used the property (52.161) of the surface gravity wave dispersion
relation. We can compute the time derivative of the wave packet by differentiating equation
(52.162d) to have

∂tη(x, t) =
i

2 (2π)2

ˆ
ϖ(k) eik·x

[
−A(k) e−iϖ(k) t +A∗(−k) eiϖ(k) t

]
dk. (52.163)

It is now clear why we must dispense with the conjugate symmetry property (8.67), which says
that A∗(−k) = A(k). Namely, if conjugate symmetry holds, then ∂tη(x, t = 0) = 0. If we
instead choose conjugate anti-symmetry, whereby A∗(−k) = −A(k), then η(x, t = 0) = 0. So
to enable a nonzero initial free surface and/or a nonzero free surface time derivative requires an
amplitude function that does not satisfy conjugate symmetry. If one is physically motivated
to choose just one of these initial conditions, then either conjugate symmetry or conjugate
anti-symmetry is available. For the current analysis, we do not constrain the amplitudes. Even
so, η remains a real function given that it is written in equation (52.162a) as the sum of a
complex number plus its complex conjugate.
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52.9.2 Expressions for the amplitude function
Setting t = 0 in equation (52.160) for the free surface and equation (52.163) for its time derivative
leads to

η(x, 0) =
1

2 (2π)2

ˆ
eik·x [A(k) +A∗(−k)] dk (52.164a)

∂tη(x, 0) =
i

2 (2π)2

ˆ
ϖ(k) eik·x [−A(k) +A∗(−k)] dk. (52.164b)

Inverting these Fourier integral yields

[A(k) +A∗(−k)]/2 =

ˆ
η(x, 0) e−ik·x dx (52.165a)

iϖ(k) [−A(k) +A∗(−k)]/2 =

ˆ
∂tη(x, 0) e

−ik·x dx, (52.165b)

which then provide expressions for the amplitude functions in terms of the prescribed initial
conditions

A(k) =

ˆ
[η(x, 0) + (i/ϖ) ∂tη(x, 0)] e

−ik·x dx (52.166a)

A∗(−k) =
ˆ

[η(x, 0)− (i/ϖ) ∂tη(x, 0)] e
−ik·x dx. (52.166b)

Note that the x-integral extends over all of the horizontal x-space. As discussed in Section
52.9.1, we find that the amplitude function indeed does not satisfy conjugate symmetry

A(k) ̸= A∗(−k). (52.167)

52.9.3 Wave packet in terms of a propagator function
Making use of the amplitude functions (52.166a) and (52.166b) in the integral expansion (52.162d)
leads to the expression for the free surface height

η(x, t) =
1

2 (2π)2

ˆ ˆ
eik·(x−ξ)−iϖ t[η(ξ, 0) + (i/ϖ) ∂tη(ξ, 0)] dk dξ (52.168)

+
1

2 (2π)2

ˆ ˆ
eik·(x−ξ)+iϖ t[η(ξ, 0)− (i/ϖ) ∂tη(ξ, 0)] dk dξ. (52.169)

Rearrangement then renders the tidy expression

η(x, t) =

ˆ
[∂tG(x− ξ, t) η(ξ, 0) +G(x− ξ, t) ∂tη(ξ, 0)]dξ, (52.170)

where we introduced the propagator function and its time derivative

G(x, t) =
1

(2π)2

ˆ
eik·x

sin((ϖ(|k|) t)
(ϖ(|k|) dk and ∂tG(x, t) =

1

(2π)2

ˆ
eik·xcos(ϖ(|k|) t) dk.

(52.171)
As written, the function, G(x, t), and its time derivative encapsulate all the temporal behavior
of the wave packet, acting to propagate the initial conditions, η(ξ, 0) and ∂tη(ξ, 0), forward in
time. As noted in Section 49.6. equation (52.170) is quite elegant since G(x, t) is independent
of details of the initial conditions. In this manner it acts like a Green’s function (Chapter 9).
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52.9.4 Further study
Elements of this section follow from Section 55 of Fetter and Walecka (2003).

52.10 Capillary-gravity waves
As studied in Section 25.11, surface tension exists at the interface between two media, such as a
liquid and solid or liquid and gas. In this section we consider the effects from surface tension on
surface waves, with surface tension providing the means to realize capillary waves.

52.10.1 Pressure jump across the air-sea surface
As studied in Section 25.11, surface tension on an interface between two fluids leads to a pressure
jump across the interface. That is, the pressure on one side of the interface is different from the
pressure on the other side. The pressure jump is given by the Young-Laplace formula (25.149),
which when applied to the ocean free surface renders

pa − pocn = γ∇2η =⇒ pocn = pa − γ∇2η. (52.172)

In this equation, γ > 0 is the surface tension (dimensions of force per length = M T−2), pa is the
pressure on the atmospheric side of the free surface, and pocn is the pressure on the ocean side of
the free surface. To help remember signs for the pressure jump, note that the Young-Laplace
formula (52.172) says that pressure on the concave side of the interface is higher than on the
convex side. For example, if the free surface extends upward then pocn − pa > 0 since the ocean
is on the concave side and so it has the higher pressure. This result also follows since ∇2η < 0
for an upward extension, which leads to a local free surface maximum.14

52.10.2 Dynamic boundary condition with surface tension
We can continue to apply Bernoulli’s theorem even in the presence of surface tension to determine
the dynamic boundary condition. Hence, we proceed as in Section 52.3.2 to evaluate the Bernoulli
potential at the free surface. Now, however, it is important to specify which side of the free
surface we evaluate the Bernoulli potential. Being interested in ocean waves, we evaluate the
Bernoulli potential on the ocean side, in which case equation (52.84) takes on the form

g η +K − ∂tΨ = −pocn/ρ = −(pa − γ∇2η)/ρ, (52.173)

where the second equality follows from the Young-Laplace formula (52.172). We again assume the
atmospheric pressure is a given constant that can be trivially absorbed by a gauge transformation
(just like we did in Section 52.2.3 for surface gravity waves). We thus have the equation of
motion

∂tΨ = ρ−1 [g ρ− γ∇2] η +K. (52.174)

The surface tension term, −(γ/ρ)∇2η, is new relative to equation (52.84) holding for gravity
waves.

52.10.3 Dispersion relation for capillary-gravity waves
In Section 52.3.4 we detailed the steps needed to derive the linear equations (52.93b)-(52.93e) for
surface gravity waves. Those steps also hold for capillary-gravity waves, with the only difference

14The discussion in Section 25.11.4 considered bubbles, where the Young-Laplace formula shows that surface
tension causes pressure inside of a bubble (concave side) to be larger than outside the bubble.
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being a modification to the dynamic boundary condition arising from surface tension

∇2Ψ = 0 irrotational and non-divergent velocity (52.175a)

∂tΨ = ρ−1 [g ρ− γ∇2] η linearized dynamic b.c. at z = 0 (52.175b)

∂zΨ = −∂tη linearized kinematic b.c. at z = 0 (52.175c)

n̂ · ∇Ψ = 0 no-normal flow kinematic b.c. on rigid boundaries. (52.175d)

The analysis in Section 52.5.1 concerns the interior harmonic scalar potential as well as the
kinematic boundary condition. Both of these properties hold equivalently for surface gravity
waves and for capillary-gravity waves. Hence, we can write the scalar potential for capillary-
gravity waves as in equations (52.111a) and (52.111b), and the corresponding free surface as
equation (52.112). The dispersion relation is derived by using these expressions for Ψ and η in
the dynamic boundary condition (52.175b), with a few lines of algebra rendering

ω2 = g |k| (1 + Υ) tanh(|k|H) capillary-gravity waves, (52.176)

where we introduced the non-dimensional parameter

Υ = |k|2 γ/(g ρ). (52.177)

The capillary-gravity wave dispersion relation (52.176) generalizes the gravity wave dispersion
(52.120). The Υ parameter provides a regime boundary where capillary waves dominate (Υ≫ 1)
versus where gravity waves dominate (Υ≪ 1).

52.10.4 Deep water capillary-gravity waves

The hydrostatic limit is not relevant for capillary waves since capillary waves are generally very
small (as seen below) and thus do not satisfy hydrostatic scaling. Hence, we find it physically
most interesting to examine the limit of deep water capillary-gravity waves, in which case
|k|H →∞ so that the dispersion relation (52.176) simplifies to

ω2 = g |k| (1 + Υ) deep water capillary-gravity waves. (52.178)

Phase speed

The phase speed for deep water capillary-gravity waves is given by

Cp = ω/|k| =
√
(g/|k|) (1 + Υ) =

√
g/|k|+ γ |k|/ρ, (52.179)

which has the longwave and shortwave limits

Cp ≈ Cdwg
p for Υ≪ 1 and Cp ≈

√
γ |k|/ρ for Υ≫ 1, (52.180)

where we introduced the deep water gravity wave phase speed from equation (52.123a)

Cdwg
p =

√
g/|k|. (52.181)

At both extremes the phase speed is unbounded, with gravity waves dominant for longwaves
and capillary waves dominant for shortwaves.
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Group velocity

The transport of energy within a packet of capillary-gravity waves is determined by the group
velocity, cg = ∇kω, which takes the form

cg =
k̂Cdwg

p

2

1 + 3Υ

(1 + Υ)1/2
=
k̂

2

[
g γ

ρ

]1/4 1 + 3Υ√
Υ1/2 +Υ3/2

. (52.182)

The group velocity has the following shortwave and longwave limits

cg ≈ k̂Cdwg
p /2 for Υ≪ 1 and cg ≈

3

2
k̂

[ |k| γ
ρ

]1/2
for Υ≫ 1. (52.183)

As for the phase speed, we find that the group velocity is unbounded at both extremes, with
gravity waves dominant for longwaves and capillary waves dominant at shortwaves.

Wavelength of the minimum group velocity

As seen above, there is a continuum of wavelengths for capillary-gravity waves, with gravity
waves dominating for longwaves and capillary waves dominating for shortwaves. To delineate
between shortwaves and longwaves, we seek the wavenumber where the group velocity is a
minimum. To simplify the algebra, assume k = k x̂ so that we reach an extrema of the group
velocity when

dcg
dk

= 0 =⇒ 3Υ2
min + 6Υmin − 1 = 0, (52.184)

in which case

Υmin = 2/
√
3− 1 ≈ 0.1547 (52.185a)

kmin = (Υmin g ρ/γ)
1/2 ≈ 0.393 (g ρ/γ)1/2 (52.185b)

(cg)min ≈ 1.086 (g γ/ρ)1/4. (52.185c)

For an air-water interface we take γ = 0.072 N m−1 = 0.072 kg s−2, along with the water density
of ρ = 103 kg m−3 and gravitational acceleration g = 9.8 m s−2, thus leading to

kmin ≈ 145 m−1 (52.186a)

Λmin ≈ 4.3× 10−2 m (52.186b)

(cg)min ≈ 1.7× 10−1 m s−1. (52.186c)

Evidently, for wavelengths smaller than roughly 4 cm the surface tension effects are important in
their support of capillary waves. In contrast, larger wavelengths are dominated by gravity waves.

52.10.5 Comments and further study

As noted in Section 25.11.5, we can ignore the pressure jump induced by surface tension across
the air-sea interface if the radius of curvature of the air-sea interface is larger than a few
centimeters. Here, we also see that the boundary between gravity waves and capillary waves
occurs for wavelengths of a few centimeters. It is for these reasons that capillary waves, and
surface tension more generally, can be ignored when considering geophysical fluid motions with
scales larger than a few centimeters. Even so, we highlight the importance of surface tension
and capillary waves for the study of fundamental processes affecting air-sea exchanges of matter,
energy, and momentum.
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Much of the discussion in this section follows that in Section 54 of Fetter and Walecka (2003).
We again encounter surface tension effects in Section 60.2 when studying the Rayleigh-Taylor
instability in the presence of gravity and surface tension.

52.11 Particle trajectories and Stokes drift
We here consider the trajectories of fluid particles moving as part of a wave field, going to the
next order in asymptotics beyond the leading order results from Section 52.5.6. With a spatially
constant wave amplitude, a fluid particle periodically returns to its original position. However,
in the presence of wave inhomogeneities, such as the surface gravity waves considered in Sections
52.3 and 52.5, fluid particles oscillate between regions where the undulation in one direction
does not match that in the other direction. In effect, a fluid particle spends a bit more time in
the forward moving part of the wave crest than the backward moving part of the wave trough.
This asymmetry leads to a net drift of fluid particles in the direction of the wave. Figure 52.4
illustrates particle trajectories in a deep water wave for the case where the Stokes drift is ignored,
in which case the particles exhibit periodic orbits. In this section we focus on the Stokes drift,
in which case the particle orbits are nearly periodic, but not exactly, so that they do not return
to their initial point.

To describe fluid particle drift induced by waves requires us to distinguish between an
average computed at a fixed point in space (Eulerian mean), versus along a fixed fluid particle
(Lagrangian mean). Their difference defines the Stokes correction

Lagrangian mean = Eulerian mean + Stokes correction. (52.187)

When applied to the trajectory of fluid particles, the Stokes correction is referred to as the Stokes
drift. In linear waves, Stokes drift arises when the wave field has spatial inhomogeneities that
cause a particle to sample distinct portions of the wave that lead to a net, or rectified, transport.
For the examples considered in this section, where there are no boundaries, then the Eulerian
mean vanishes so that the Lagrangian mean particle position equals to the Stokes drift.

In this section we introduce the basic mathematics to support equation (52.187) when applied
to the fluid particle position within a plane wave. These ideas form part of the rudiments for
wave-mean flow interaction theory further studied in Chapter 70 and pursued in far more detail
by Bühler (2014a).

52.11.1 Formulation of Stokes drift
Consider a three-dimensional particle trajectory written in Cartesian coordinates,

X(a, t) = X(a, t) x̂+ Y (a, t) ŷ + Z(a, t) ẑ. (52.188)

In the analysis of waves, it is common to assume the material coordinate, a, is the initial position
of a fluid particle, which we here assume. As discussed in Section 17.7.1, the particle trajectory
is determined by time integrating the particle velocity

∂X(a, t)

∂t
= v[X(a, t), t] (52.189)

so that

X(a, t) =X(a, 0) +

ˆ t

0
v[X(a, t′), t′] dt′. (52.190)

This equation is a trivial result of time integrating the particle velocity. Nonetheless, it is useful
to express the content of this equation in words. It says that the position at time, t, of a fluid
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particle labelled by the material coordinate, a, is given by the initial position of the particle,
X(a, 0), plus the time integrated movement of the particle following the fluid flow.

Equation (52.190) provides the trajectory, but only by knowing the velocity following the
trajectory. To produce a result that is more readily computed analytically, we develop a Taylor
series computed relative to the initial position of the fluid particle. In this manner we make use
of the approximate expression for the particle velocity at time t

vn[X(a, t), t] ≈ vn[X(a, 0), t] +∇vn[X(a, 0), t] · [X(a, t)−X(a, 0)] (52.191a)

= vn[X(a, 0), t] +∇vn[X(a, 0), t] ·
ˆ t

0

dX(a, t′)

dt′
dt′ (52.191b)

= vn[X(a, 0), t] +∇vn[X(a, 0), t] ·
ˆ t

0
v[X(a, t′), t′] dt′, (52.191c)

where the Taylor series was truncated after terms linear in the particle displacement X(a, t)−
X(a, 0). We emphasize two points regarding equation (52.191c).

• The velocity, vn[X(a, 0), t], is the n’th component of the fluid velocity field evaluated
at the initial point of the fluid particle trajectory, X(a, 0), and at the time t. That is,
vn[X(a, 0), t] is the Eulerian velocity evaluated at the fixed Eulerian point, X(a, 0).

• What determines the accuracty of the Taylor series? A suitable non-dimensional expansion
coefficient for the Taylor expansion is the ratio of the particle displacement to the wave
length, L,

ϵ =
|X(a, t)−X(a, 0)|

L
. (52.192)

This ratio is small for the small amplitude waves considered here, whereby the particle
displacements are far smaller than the wavelength.

The integrand on the right hand side of equation (52.191c) is the Lagrangian velocity
integrated over the time interval. To within the same order of accuracy as maintained for
writing equation (52.191c), we can use the Eulerian velocity evaluated at the initial position,
thus rendering

vn[X(a, t), t] ≈ vn[X(a, 0), t] +∇vn[X(a, 0), t] ·
ˆ t

0
v[X(a, 0), t′] dt′, (52.193)

with rearrangement leading to

vn[X(a, t), t]− vn[X(a, 0), t] ≈ ∇vn[X(a, 0), t] ·
ˆ t

0
v[X(a, 0), t′] dt′. (52.194)

The left hand side is the difference between the velocity following a fluid particle (the Lagrangian
velocity for the moving fluid particle) from the velocity at the initial particle point (the Eulerian
velocity at the initial point of the trajectory). The right hand side terms are all evaluated at the
initial position, X(a, 0). Furthermore, the right hand side is non-zero where the velocity at the
initial position has a nonzero gradient (i.e., it is spatially inhomogeneous), with its inhomogeneity
projecting onto the time integrated velocity at that point. Equation (52.194) says that the
velocity following a fluid particle is modified from the velocity at its initial position if the particle
moves through an inhomogeneous velocity field.

Stokes drift of fluid particles is defined as the difference of the velocities in equation (52.194)
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when phased averaged, which we write as15

(v(S))n[X(a, 0), t] = ⟨vn[X(a, t), t]− vn[X(a, 0), t]⟩ (52.195a)

≈
〈
∇vn[X(a, 0), t] ·

ˆ t

0
v[X(a, 0), t′] dt′

〉
. (52.195b)

This expression holds for any arbitrary initial point in the fluid, so that we can write it in a
concise Eulerian form that dispenses with trajectories

(v(S))n(x, t) ≈
〈
∇vn(x, t) ·

ˆ t

0
v(x, t′) dt′

〉
. (52.196)

We can draw an analogy between Stokes drift and surfing. Namely, the more a fluid particle
samples larger amplitude variations in the velocity field (the gradient term), the further it drifts
(the integral term).

52.11.2 Particle trajectories in a homogeneous wave
The expression (52.196) for the Stokes drift is general and will be specialized in Section 52.11.4
for the case of surface gravity waves. Before doing so, in this section and in Section 52.11.3 we
determine particle trajectories for the traveling plane wave

dX

dt
= U sin(k x− ω t) (52.197a)

dZ

dt
= −U cos(k x− ω t). (52.197b)

We here set the wavevector to k = k x̂, so that it is purely zonal, let U > 0 be the speed of the
particle motion, and wrote X and Z for the Cartesian components of the particle trajectory. To
simplify the mathematics we perform the analysis in a frame moving with the waves so that the
phase k x− ω t can be replaced by −ω t, so that the particle trajectories satisfy

dX

dt
= −U sin(ω t) (52.198a)

dZ

dt
= −U cos(ω t). (52.198b)

Figure 52.4 shows a schematic of the particle trajectories appropriate for a deep water gravity
wave, with the trajectories resulting from equations (52.198a) and (52.198b) directly analogous.

We start by examining particle motion in the case with a constant wave amplitude, U = U0.
Particle trajectories in this case are clockwise in the x-z plane around a circle with radius U0/ω

X(t)−X0 = (U0/ω) [cos(ωt)− 1] (52.199a)

Z(t)− Z0 = −(U0/ω) sin(ωt), (52.199b)

where the initial position at time t = 0 is

X(t = t0) = x̂X0 + ẑ Z0, (52.200)

and the center of the circle is

Xcenter = [X0 − U0/ω] x̂+ Z0 ẑ. (52.201)

15We introduced the phase average in Section 8.1.2. It is realized by averaging over a 2π extent of the wave
phase. It can be performed via a time average over a period, a space average over a wavelength, or a combination.
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There is no Stokes drift since the particles return to their initial position each wave period.

52.11.3 Stokes drift from an inhomogeneous wave

Now consider the case of a vertically dependent wave amplitude, U = U(z). The canonical
example is where the wave amplitude decreases with depth, as for the surface gravity waves
from Section 52.5. In turn, we expect there to be a fluid particle drift in the zonal direction
introduced by the vertical wave inhomogeneity. This drift is a particular realization of Stokes
drift.

To compute the leading order expression for the Stokes drift, expand U in a Taylor series
about the initial position

U ≈ U0 + σ (Z − Z0) (52.202)

where the vertical shear, σ, has units of inverse time and is given by

σ =

[
dU

dZ

]
Z=Z0

. (52.203)

The Taylor series (52.202) is valid so long as the vertical trajectories maintain the inequality

|σ| |Z − Z0| ≪ U0, (52.204)

which says that the vertical shear is small

|σ| ≪ U0

|Z − Z0|
. (52.205)

We use the Taylor series expansion (52.202) to solve for the vertical trajectory as determined
by

d(Z − Z0)

dt
= −[U0 + σ (Z − Z0)] cos(ωt). (52.206)

Rearrangement leads to

ˆ Z

Z0

d(Z − Z0)

U0 + σ (Z − Z0)
= −

ˆ t

0
cos(ωt) dt. (52.207)

The left hand side integral can be computed by changing variables

Σ = U0 + σ (Z − Z0) =⇒ dΣ = σ d(Z − Z0), (52.208)

so that equation (52.207) becomes

ˆ Σ

U0

dΣ

Σ
= −σ

ˆ t

0
cos(ωt) dt. (52.209)

Performing the integrals and evaluating the end points renders

ln

[
1 +

σ

U0
(Z − Z0)

]
= −σ sin(ωt)

ω
, (52.210)

which yields the exponential solution

1 +
σ

U0
(Z − Z0) = e−(σ/ω) sin(ωt) =⇒ Z − Z0 =

U0

σ

[
−1 + e−(σ/ω) sin(ωt)

]
. (52.211)
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The vertical particle position is seen to oscillate around its initial position Z0.

We next consider the zonal particle position, in which case

d(X −X0)

dt
= −U0

[
1 +

σ

U0
(Z − Z0)

]
sin(ωt) = −U0 e

−(σ/ω) sin(ωt) sin(ωt), (52.212)

where we used equation (52.211) for the vertical trajectory. To make progress, we expand the
exponential assuming the ratio of inverse time scales, σ/ω, is small

|σ/ω| ≪ 1. (52.213)

In this limit, the vertical trajectory retains its unperturbed form (52.199b), and the zonal
trajectory satisfies

d(X −X0)

dt
≈ −U0 sin(ωt)

[
1− σ

ω
sin(ωt)

]
, (52.214)

where we dropped terms of order (σ/ω)2. We can understand the scaling in equation (52.213)
by noting that the period for the circular motion is given by

τcircle = 2π/ω. (52.215)

The inverse time, σ, introduces a time scale for the drift, defined according to

τdrift = 2π/|σ|. (52.216)

A small ratio |σ/ω| thus implies

|σ/ω| = τcircle/τdrift ≪ 1. (52.217)

Hence, we are solving for the zonal trajectory in the limit where the time scale for the circular
motion is small (i.e., fast oscillations around the circle) relative to the time scale for the drift
(i.e., slow drift).

Returning now to the approximate zonal trajectory equation (52.214) yields

d(X −X0)

dt
= −U0 sin(ωt)

[
1− σ

ω
sin(ωt)

]
(52.218a)

= −U0 sin(ωt) +
U0 σ

2ω
[1− cos(2ωt)], (52.218b)

which integrates to

X −X0 =

(
U0

ω

)[
cos(ω t)− 1− σ sin(2ω t)

4ω
+
σ t

2

]
(52.219a)

=

(
U0

ω

)
[cos(ω t)− 1]︸ ︷︷ ︸

homogeneous

+
U0 σ t

2ω︸ ︷︷ ︸
Stokes drift

− U0 σ sin(2ω t)

4ω2︸ ︷︷ ︸
higher harmonic

+ O(σ/ω)2. (52.219b)

The leading order term is the homogeneous motion given by equation (52.199a). The next term
is the Stokes drift, followed by a higher order harmonic and then further terms on the order of
(σ/ω)2. There is no vertical Stokes drift to this order in (σ/ω), so that the Stokes drift velocity
is given by [

X −X0

t

]drift
=
σ U0

2ω
x̂. (52.220)

The circular motion of the parcels is therefore deformed by the zonal Stokes drift. The drift
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Figure 52.9: Example trajectories of fluid particles undergoing Stokes drift. Particle motion is clockwise in
the x-z plane. For homogeneous waves, there is zero Stokes drift with circular trajectories given by equations
(52.199a) and (52.199b), as depicted here by the blue trajectory. There is a Stokes drift in the presence of vertical
derivative in the wave amplitude and thus in the particle velocity, with trajectories for this example given by
equation (52.211) for the vertical component and equation (52.219b) for the horizontal component. We set the
parameters as follows: T = 2π/ω = 60 s, U0 = 0.1 m s−1, and σ = ω/10 and exhibit trajectories over four minutes.

increases with larger wave amplitude (U0 large); with larger vertical shear (σ large); and with
longer period waves (ω small). Each of these wave properties affects the time that a fluid particle
samples the wave as it moves forward versus backward, thus determining the magnitude of the
Stokes drift. See Figure 52.9 for an illustration based on a particular choice for the dimensional
parameters.

52.11.4 Stokes drift for surface gravity waves

The velocity field for surface gravity waves, given by equations (52.113a) and (52.113b), is far
more complicated than the prototypical wave considered in Sections 52.11.2 and 52.11.3. For
that reason we make use of the general expression (52.196) to determine the Stokes drift velocity
for surface gravity waves in a flat channel, rather than directly integrate to determine the
trajectories. Hence, we need to compute terms in the following equations for surface gravity
waves

u(S)(x) ≈
〈
∇u(x, t) ·

ˆ t

0
v(x, t′) dt′

〉
(52.221a)

v(S)(x) ≈
〈
∇v(x, t) ·

ˆ t

0
v(x, t′) dt′

〉
(52.221b)

w(S)(x) ≈
〈
∇w(x, t) ·

ˆ t

0
v(x, t′) dt′

〉
. (52.221c)

The components to the velocity field for surface gravity waves are given by equations (52.113a)
and (52.113b), repeated here to be self-contained

u =
g η0 k̂

Cp

cosh[|k| (z +H)] sin(P)

cosh(|k|H)
(52.222a)

w = −g η0
Cp

sinh[|k| (z +H)] cos(P)

cosh(|k|H)
, (52.222b)
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and their spatial gradients are given by

∇u =
g η0 kx

[
k̂ cos(P) cosh[|k| (z +H)] + ẑ sin(P) sinh[|k| (z +H)]

]
Cp cosh(|k|H)

(52.223a)

∇v =
g η0 ky

[
k̂ cos(P) cosh[|k| (z +H)] + ẑ sin(P) sinh[|k| (z +H)]

]
Cp cosh(|k|H)

(52.223b)

∇w =
g η0 |k|

[
k̂ sin(P) sinh[|k| (z +H)]− ẑ cos(P) cosh[|k| (z +H)]

]
Cp cosh(|k|H)

, (52.223c)

where we introduced the phase
P = k · x− ω t (52.224)

to produce more tidy expressions, and recall that

k̂ = k/|k| = (x̂ kx + ŷ ky)/|k| (52.225)

is the wave direction in the horizontal plane. We also require the following time integrals

ˆ t

0
sin(k · x− ω t′) dt′ = ω−1 [cos(k · x− ω t)− cos(k · x)] (52.226a)

ˆ t

0
cos(k · x− ω t′) dt′ = −ω−1 [sin(k · x− ω t)− sin(k · x)]. (52.226b)

Use of these results in equations (52.221a)-(52.221c) leads to the horizontal Stokes drift velocity
for surface gravity waves in a flat bottom domain, here written in three equivalent manners
through use of the dispersion relation and the phase speed

v(S) =
k (g η0)

2 cosh[2|k| (z +H)]

2ω C2
p cosh

2(|k|H)
(52.227a)

=
kω η20 cosh[2 |k| (z +H)]

2 sinh2(|k|H)
(52.227b)

=
k̂Cp (|k| η0)2 cosh[2 |k| (z +H)]

2 sinh2(|k|H)
. (52.227c)

The purely horizontal nature of the Stokes drift agrees with that found for the prototypical wave
in Section 52.11.3.

The ratio of the Stokes speed at z = 0 to that at z = −H is given by

k̂ · v(S)(z = 0)

k̂ · v(S)(z = −H)
= cosh(2 |k|H). (52.228)

In the deep water limit, kH ≫ 1, this ratio is much greater than unity, indicating a nontrivial
vertical shear in the zonal Stokes velocity. In contrast, the ratio becomes unity in the shallow
water limit, |k|H ≪ 1, so that there is no vertical shear to the Stokes velocity. In this case the
Stokes speed takes on the depth-independent shallow water form

v(S) · k̂ ≈ (Cp/2) (η0/H)2 for |k|H ≪ 1, (52.229)

which has no dependence on the wavelength (other than |k|H ≪ 1). This speed is much smaller
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than the deep water Stokes speed at z = 0, which we can see by computing

k̂ · v(S)(z = 0) ≈ η20 g1/2 |k|3/2/4 for |k|H ≫ 1 (52.230a)

k̂ · v(S)(z = 0) ≈ (η0/H)2
√
g H for |k|H ≪ 1, (52.230b)

so that the ratio of the deep water to shallow water Stokes speed at z = 0 is

k̂ · v(S)dw(z = 0)

k̂ · v(S)sw(z = 0)
≈ |kH|3/2/4≫ 1. (52.231)

Since the phase average vanishes at a fixed point in space, the Eulerian mean vanishes so
that the Lagrangian mean in equation (52.187) is given by the Stokes drift. Hence, the presence
of Stokes drift indicates that there is a net movement of matter in the direction of the wave. In
particular, for the shallow water case there is a steady column of fluid moving in the direction of
the wave according to the Stokes drift expression (52.229). It is important to appreciate that
this example is on an unbounded domain. If the domain is bounded so that the phase averaged
center of mass for the fluid is fixed in space, then the Eulerian mean exactly compensates the
Stokes drift to render a zero Lagrangian mean motion.

52.11.5 Comments and further study
Is Stokes drift a nonlinear phenomena? In answering this question we note that Stokes drift
occurs with particle motion in linear waves, but the waves must be inhomogeneous such as
the surface gravity waves studied in this chapter. Nonlinearity appears in the form of the
particle-following (Lagrangian) average, as can be seen by the expression of Stokes drift given by
equation (52.196)

(v(S))n(x, t) ≈
〈
∇vn(x, t) ·

ˆ t

0
v(x, t′) dt′

〉
. (52.232)

The dot product of the velocity gradient with the time integrated velocity (to give the time
integrated position) is nonlinear. So although the waves are linear, the Lagrangian kinematics of
particle trajectories introduces nonlinearites.

Stokes drift occurs in many guises when studying the motion of fluid particles within wave
fields. We revisit elements of Stokes drift in Chapter 70 when studying the rudiments of eddy-
induced tracer transport. This video from Prof. Hogg at Australian National University provides
an overview of the discussion in this section along with some laboratory experiments to illustrate
Stokes drift. Section 10.1.1 of Bühler (2014a) discusses Stokes corrections in the context of
generalized Lagrangian mean.

52.12 Exercises
exercise 52.1: Uniqueness theorem for potential flow
Here we show that there is a unique potential flow that satisfies any given boundary condition.
For that purpose, assume there are two potential flows, v1 and v2, that satisfy the same boundary
conditions on ∂R. Show that v1 = v2 throughout the domain. Hint: consider the domain
integrated kinetic energy contained in the difference field, V = v1 − v2, and make use of the
results from Section 52.2.7.

exercise 52.2: Surface gravity waves on the video channel Veritasium
Veritasium is a science channel that has the following educational video on surface ocean waves.
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However, the host makes a few minor errors in this video. Discuss the errors.

exercise 52.3: Surface kinematic boundary condition
Show that for an irrotational and non-divergent flow, the surface kinematic boundary condition
(52.25) can be written

∂tη = −∇ · [(z − η)∇Ψ] at z = η. (52.233)

Hint: read Section 21.3.

exercise 52.4: Gauge invariance of kinetic energy
In Section 52.2.6 we argued that the gauge invariance of the globally integrated kinetic energy
follows from equation (52.49):

´
v · n̂dS = 0, which follows for the case where the free surface

is a material interface so that ∂tη = −∇ ·U . Discuss whether the kinetic energy remains gauge
invariant if the upper free surface is not material, so that ∂tη = −∇ ·U +Qm/ρ, where Qm ̸= 0 is
a mass flux crossing the free surface and with this mass flux having density equal to the constant
layer density, ρ.

Hint: to write v = −∇Ψ requires ∇× v = 0. Do we expect the flow to remain irrotational in
the presence of nonzero Qm when the density of Qm equals to that of the homogeneous domain?

exercise 52.5: Energetics of depth integrated flow in full nonlinear theory
In Section 52.4.4 we computed the energy budget for the depth integrated flow within the
linearized theory. Derive the mechanical energy equation for the full nonlinear theory integrated
over −H ≤ z ≤ η, thus providing the nonlinear analog to the energy equation (52.107) derived
for the linear theory. Do not assume the bottom is flat for the nonlinear theory. Confirm that
all terms missing from the energy budget (52.107) are third order or higher. Hint: make use of
results from Section 52.2.6.

exercise 52.6: Energetics of capillary-gravity waves
In Section 52.4.4 we derived equations for the energetics of depth integrated linearized flow in
absence of surface tension. Extend that discussion to include surface tension as discussed in
Section 52.10. Specifically, derive the equation for the time tendency of the depth integrated
sum of the kinetic plus gravitational potential energy. Interpret the extra term arising from
surface tension. Hint: start at a point in the derivation from Section 52.4.4 that is valid whether
surface tension is present or not. Thereafter, make use of the dynamic boundary condition that
includes surface tension.

exercise 52.7: Stokes drift for one-dimensional monochromatic wave
Consider a one-dimensional monochromatic longitudinal wave with velocity

u = u0 sin(k x− ω t), (52.234)

where u0 is the wave amplitude, k = 2π/Λ > 0 the wave number, Λ the wavelength, ω = 2π/T > 0
the angular frequency, T the wave period, and Cp = ω/k = Λ/T is the phase speed. A longitudinal
wave is one whose particle motions are parallel to the wave vector, which in this exercise are both
in the x̂ direction. Determine the wave period averaged Stokes velocity to first order accuracy
in the small parameter

ϵ = u0/Cp = u0 k/ω = u0 T/Λ, (52.235)

with this parameter the ratio of the wave amplitude to wave speed, or equivalently the ratio
of the length scale of particle displacements to the wavelength. Hint: make use of the general
result given by equation (52.196).
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Chapter 53

INERTIAL WAVES ON THE f -PLANE

Inertial waves are dispersive waves that arise from the Coriolis acceleration. Fluid particles
within inertial waves exhibit the anti-cyclonic inertial oscillations studied in Section 14.4. We
study inertial waves in an inviscid, homogeneous (constant density), f -plane fluid, and examine
traveling plane inertial waves in an unbounded domain as well as forced inertial waves in both
unbounded domains and vertically bounded domains. Inertial waves provide the mechanism for
vertical stiffness exhibited by the Taylor-Proudman effect (Section 31.5.3), and we discuss that
role in this chapter.

reader’s guide to this chapter
We assume a working knowledge of fluid mechanics in a rotational reference frame as

studied in Chapter 31. Our study of inertial waves was inspired by Section 9.2 of Davidson
(2015), who emphasizes the role of inertial waves in forming vertically stiff structures in rapidly
rotating turbulent flows, as well as Section 2.2 of Stern (1975), the Epilogue of Lighthill
(1978), and the concise review by Mory (1992). For a visualization of inertial waves, refer
to the 18 minute mark from the rotating tank experiments of Prof. Fultz, which illustrates
inertial oscillations within a bounded rotating homogeneous fluid. We again encounter inertial
waves in Section 57.9 when studying free inertia-gravity waves, in which case the limit of zero
buoyancy frequency reduces to the inertial waves of this chapter.a

aSome authors refer to Rossby waves as a type of inertial wave, since Rossby waves also owe their existence
to the Coriolis acceleration. However, we consider inertial waves to be those waves occuring on an f -plane,
where Rossby waves do not occur. We study Rossby waves in Chapters 54, 55, and 62.
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53.3.6 High frequency inertial waves with ω ≈ |f | . . . . . . . . . . . . . 1512
53.3.7 Low frequency inertial waves with ω ≈ 0 . . . . . . . . . . . . . . 1513

53.4 Radially symmetric high frequency inertial waves . . . . . . . . . . . . . 1514
53.4.1 Qualitative presentation . . . . . . . . . . . . . . . . . . . . . . . 1514
53.4.2 Radially symmetric inertial oscillations . . . . . . . . . . . . . . . 1514

53.5 Low frequency inertial waves and vertical stiffening . . . . . . . . . . . . 1515
53.5.1 Slowly oscillating disk . . . . . . . . . . . . . . . . . . . . . . . . 1516
53.5.2 Inertial waves from a moving sinusoidal boundary . . . . . . . . . 1517
53.5.3 Stationary wave solution . . . . . . . . . . . . . . . . . . . . . . . 1517
53.5.4 Vertically coherent motion . . . . . . . . . . . . . . . . . . . . . . 1518

53.1 Equations for a uniformly rotating homogeneous fluid
We study inertial motions in a homogeneous and unbounded inviscid fluid on an f -plane. To
start that study, we here formulate the nonlinear equations for the fluid motion and follow up in
Section 53.2 with the linearized equations. Recall that we also studied motion of surface waves
in a homogeneous fluid in Chapter 52. One key distinction is that here we are concerned with
motion away from any boundary, including a free surface. Additionally, we now work on the
f -plane.

53.1.1 Velocity equation
A homogeneous inviscid fluid on the f -plane is governed by the momentum equation

[∂t + (v · ∇)]v + 2Ω× v = −∇p/ρ− g ẑ, (53.1)

where g is the effective gravitational acceleration that arises from central gravity and planetary
centrifugal (Section 13.10.4), and

Ω = Ω ẑ = (f/2) ẑ (53.2)

is the constant angular frequency of the f -plane. Recall from Section 24.5 that the f -plane is
based on assuming a locally flat geopotential, in which case the centrifugal acceleration from
the rotating reference frame is incorporated into the effective gravitational acceleration. In this
manner, each point on the f -plane experiences the same effects from rotation of the reference
frame.

As when formulating the Boussinesq approximation in Section 29.1.1, we find it useful to
decompose pressure according to a static background hydrostatic pressure, plus a dynamical
pressure

p = p0 + ρφ where dp0/dz = −ρ g, (53.3)

with ρ the constant density and p0(z) the static background hydrostatic pressure that exactly
balances the fluid weight. This decomposition brings the momentum equation 53.1 to the form

[∂t + (v · ∇)]v + 2Ω× v = −∇φ (53.4)

There is no buoyancy since density is uniform (Chapter 30).

Furthermore, again since the density is uniform everywhere, and since we are ignoring all
boundaries, there can be no hydrostatic pressure induced either by gradients of the density nor
by gradients of the boundary1 As a result, the dynamical pressure is fully non-hydrostatic for
the system we are studying here.

1Recall that for surface waves in a homogeneous fluid layer, a hydrostatic pressure is generated through
undulations of the free ocean surface as given by equation (52.18).
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53.1.2 Vorticity equation

In addition to the velocity equation, we make use of the vorticity equation, whose nonlinear
form is derived from the vector invariant velocity equation (see Section 40.3.1)

∂tv + (2Ω+ ω)× v = −∇(φ+K), (53.5)

where we introduced the kinetic energy per mass and the relative vorticity

K = v · v/2 and ω = ∇× v. (53.6)

The vorticity equation (40.42) takes on the following form in this constant density inviscid fluid

[∂t + (v · ∇)]ωa = (ωa · ∇)v with ωa = 2Ω+ ω. (53.7)

Noting that Ω is independent of space and time allows us to write the relative vorticity equation

∂tω = [(2Ω+ ω) · ∇]v. (53.8)

53.1.3 Energy equations

Taking the scalar product of v with the velocity equation (53.1) yields the equation for the
kinetic energy per mass, K = v · v/2, and gravitational potential energy per mass, Φ = g z (i.e.,
the geopotential), and their sum (the mechanical energy per mass)

DK

Dt
= −v · ∇p/ρ− w g (53.9a)

DΦ

Dt
= w g (53.9b)

D(K +Φ)

Dt
= −v · ∇p/ρ. (53.9c)

Since the fluid density is uniform and constant, the gravitational potential energy decouples
from the kinetic energy through use of the pressure decomposition (53.3), thus leading to

DK

Dt
= −v · ∇φ = −∇ · (v φ). (53.10)

Hence, the kinetic energy is materially modified for flows where the velocity is misaligned with
constant dynamic pressure surfaces (e.g., kinetic energy increases when flow is down the pressure
gradients), or equivalently where there is a convergence of the dynamical pressure flux.

53.2 Linearized equations

We here formulate the linear equations for an inviscid homogeneous fluid moving on an f -plane,
with these equations providing the basis for the study of inertial waves.

53.2.1 Linearized velocity equation

We are interested in small amplitude fluctuations relative to a state of zero motion. Linearization
of the velocity equation (53.4) occurs by dropping the self-advection term, (v ·∇)v, thus leading
to

∂tv + 2Ω× v = −∇φ. (53.11)
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With Ω independent of time, we see that the velocity projected onto Ω satisfies

∂t(v ·Ω) = −Ω · ∇φ. (53.12)

Hence, if there is no pressure gradient along the direction of the rotation axis, then the velocity of
the linear flow in that direction remains constant in time. For rotation around the vertical axis,
Ω = Ω ẑ, and with no vertical dynamic pressure gradient, ∂zφ = 0, then the vertical velocity is
static, ∂tw = 0.

53.2.2 Forced oscillator equation for the velocity

Taking a time derivative on the velocity equation (53.11) and back-substituting the velocity
equation leads to

∂ttv + 4Ω2 v − 4Ω (v ·Ω) = 2Ω×∇φ− ∂t∇φ. (53.13)

Now decompose the velocity according to the orientation of the rotation vector

Ω̂ = Ω/|Ω| (53.14a)

v = v⊥ + v∥ (53.14b)

v⊥ = v − Ω̂ (Ω̂ · v) (53.14c)

v∥ = v − v⊥ = Ω̂ (Ω̂ · v), (53.14d)

which allows us to decompose equation (53.13) into an equation for the parallel velocity and one
for the perpendicular velocity

∂t[Ω̂ · (∂tv +∇φ)] = 0 (53.15a)

(∂tt + 4Ω2)v⊥ = 2 Ω̂×∇φ− ∂t[∇φ− Ω̂ (Ω̂ · ∇φ)]. (53.15b)

Equation (53.15a) says that the projection of ∂tv +∇φ onto the rotation axis remains constant
in time. With Ω̂ = ẑ then

∂t(∂tw + ∂zφ) = 0. (53.16)

Equation (53.15b) is a forced simple harmonic oscillator equation for motion in the plane
perpendicular to the rotation axis. The natural angular frequency is 2Ω and the forcing arises
from pressure gradients in the perpendicular plane. Again, with Ω̂ = ẑ, equation (53.15b)
becomes

(∂tt + 4Ω2)u = 2Ω ẑ ×∇φ− ∂t∇hφ. (53.17)

The appearance of an oscillator equation anticipates the simple harmonic oscillations of fluid
particles within a linear wave.

53.2.3 Forced oscillator equation for ∇h · u = −∂zw
We find it useful to determine expressions for the horizontal velocity divergence in the special
case of f = 2Ω = 2Ω ẑ, in which case equation (53.17) has the two components

(∂tt + f2)u = −f ∂yφ− ∂xtφ (53.18a)

(∂tt + f2) v = f ∂xφ− ∂ytφ. (53.18b)

Taking ∂x on the first equation and ∂y on the second, and then adding leads to

(∂tt + f2)∇h · u = −∇h(∂tφ)⇐⇒ (∂tt + f2) ∂zw = ∇h(∂tφ). (53.19)
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Evidently, if the vertical velocity is a linear function of z (as in the long wave limit), then the
pressure is independent of z, which in turn from equations (53.18a) and (53.18b) mean that
∂zu = 0. We make use of this property in Section 53.5.2 when discussing inertial waves forced
from a moving sinusoidal boundary.

53.2.4 Wave equation for the vertical velocity
Taking the vertical derivative of equation (53.19) and then using equation (53.16) renders the
wave equation for the vertical velocity in the case that Ω = ẑΩ

(∂tt∇2 + f2 ∂zz)w = 0. (53.20)

This equation provides the starting point for studies of inertial oscillations on an f -plane. In
Section 53.2.6 we derive a slightly more general form of this equation for an arbitrary oriented
rotation vector.

53.2.5 Linearized vorticity equation
Taking the curl of the linear velocity equation (53.11) eliminates the pressure gradient and yields
the linear vorticity equation

∂tω = 2 (Ω · ∇)v. (53.21)

To reach this result requires the identity (2.39h) for the curl of a cross product. We also assumed
Ω has no spatial dependence so that all of its derivatives vanish.

The linear vorticity equation (53.21) can also be derived by linearizing the nonlinear vorticity
equation (53.8) by dropping the contributions from nonlinear stretching and tilting, which are
processes we studied in Section 40.5. So the only source for vorticity in the linear theory arises
from stretching and tilting along the rotational axis. That is, from the derivative of velocity in a
direction aligned with the rotational axis. With Ω = ẑΩ, the vorticity evolves according to

∂tω = 2Ω ∂zv, (53.22)

in which case the horizontal vorticity components evolve according to vertical tilting whereas
the vertical component evolves according to vertical stretching2

∂t(x̂ · ω) = 2Ω ∂zu and ∂t(ŷ · ω) = 2Ω ∂zv and ∂t(ẑ · ω) = 2Ω ∂zw. (53.23)

Evidently, inertial waves carry a non-zero vorticity, and that vorticity is directly generated by
the rotation vector, Ω, in the presence of velocity gradients.

53.2.6 The inertial wave equation for general Ω
To develop a wave equation, we take a time derivative of the linear vorticity equation (53.21),
and make use of the linearized momentum equation (53.11), thus leading to

∂ttω = −2 (Ω · ∇) (2Ω× v +∇φ). (53.24)

To eliminate the pressure gradient we take another curl and again make use of the identity
(2.39h) to write

∇× ω = ∇× (∇× v) = ∇(∇ · v)−∇2v = −∇2v, (53.25)

where ∇·v = 0 since the fluid density is constant. We also make use of Cartesian tensor calculus
from Chapter 2, remembering that Ω and the permutation symbol are constants, to derive the

2We study vortex stretching and tilting in Section 40.5.3.
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identity

(∇× [(Ω · ∇) (Ω× v)])m = ϵmnp ∂n[Ω
s∂s (Ω× v)p] (53.26a)

= ϵmnp ∂n[Ω
s∂s ϵpqr Ω

q vr] (53.26b)

= ϵmnp ϵqrpΩ
sΩq ∂n∂sv

r (53.26c)

= (δmq δ
n
r − δmr δnq) ΩsΩq ∂n∂svr (53.26d)

= Ωs (Ωm ∂r ∂sv
r − Ωn ∂n ∂s v

m) (53.26e)

= −(Ω · ∇)2 vm, (53.26f)

where we made use of the ϵ-tensor identity (1.69) as well as ∇ · v = 0. We are thus led to
the wave equation for inertial waves, which is satisfied separately for each of the Cartesian
components of the velocity field

[∂tt∇2 + (2Ω · ∇)2]v = 0⇐⇒ ∂tt(∇× ω) = (2Ω · ∇)2 v. (53.27)

The vertical component of the first equation reduces to equation (53.20) when Ω = ẑΩ. The
second expression makes use of equation (53.25) that relates the curl of the vorticity to the
Laplacian of the velocity.

53.3 Plane inertial waves

In this section we study the physics of plane inertial waves moving in an unbounded domain.

53.3.1 Dispersion relation for inertial waves

The inertial wave equation (53.27) provides the starting point for developing mechanical properties
of inertial waves. To develop the dispersion relation we consider a traveling plane wave solution
of the form

v = ṽ ei (k·x−ω t) and φ = φ̃ ei (k·x−ω t), (53.28)

with three-dimensional wavevector and wave direction unit vector

k = x̂ kx + ŷ ky + ẑ kz and k̂ = (x̂ kx + ŷ ky + ẑ kz)/|k|. (53.29)

We introduced complex amplitudes, ṽ and φ̃, for the velocity and pressure. The angular frequency,
ω ≥ 0, is determined as a function of the wavevector according to the dispersion relation (53.31)
derived below.3 As we are considering free space waves (no boundaries), there is no preferred
length scale for the inertial waves.4 Furthermore, since the flow is non-divergent and the waves
have a three dimensional wavevector, the constraint ∇ · v = 0 means that the velocity of fluid
particles is perpendicular to the wavevector

∇ · v = 0 =⇒ v · k = 0. (53.30)

This orientation of wavevector and fluid velocity characterizes transverse waves, in which lines
of constant wave phase (e.g., wave crests and troughs) are everywhere perpendicular to k. We
illustrate this property of transverse waves in Figure 53.1.

Plugging the wave ansatz (53.28) into the inertial wave equation (53.27) leads to the dispersion

3Be careful to distinguish the angular frequency, ω, from the vorticity vector, ω.
4Inertial waves in a bounded domain will generally have quantized wavenumbers, as required by the boundary

conditions.
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k = kxx̂+ kyŷ + kzẑ

Figure 53.1: Illustrating the transverse nature of plane waves appearing in a homogeneous fluid with constant
density, whereby v · k = 0. The alternating solid-dotted lines depict lines of constant phase that differ by π/2
radians so that the velocity field switches sign between every π radians.

relation
ω2 = ϖ2(k) = (2Ω · k)2/|k|2 = (2Ω · k̂)2. (53.31)

As per our previous encounter with linear waves, we recognize that the disperson relation specifies
the inertial wave’s angular frequency, ω, once the wavevector is chosen.5 We illustrate the basics
of plane inertial waves in Figure 53.2.

The dispersion relation (53.31) means that the angular frequency of inertial waves is directly
proportional to the orientation of the wavevector relative to the rotation vector. Furthermore,
it is independent of the magnitude of the wave vector. One way to display these geometric
properties is to write

Ω · k̂ = |Ω| cosα = |Ω| sin γ with 0 ≤ α ≤ π and − π/2 ≤ γ ≤ π/2, (53.32)

where α is the angle between Ω and k, whereas γ is the complement angle. We mostly use α
in this chapter, though switch to γ when discussing internal gravity waves and inertia-gravity
waves in Chapter 57. The dispersion relation (53.31) thus takes on the particularly compact
form

ω2 = (2Ω cosα)2 = (2Ω sin γ)2. (53.33)

Sweeping through the possible orientation angles, α, reveals that the angular frequency (which
is a non-negative number) for free space inertial waves spans the continuum range

0 ≤ ω ≤ 2 |Ω|. (53.34)

Since the magnitude of the angular frequency is bounded above by 2 |Ω| = |f |, such waves are
referred to as sub-inertial.6

53.3.2 Interpreting the dispersion relation
Since inertial waves are transverse, v · k = 0 (Figure 53.2), fluid particle motion associated
with inertial waves is parallel to constant phase surfaces, and there is no particle motion in the
direction of the wave vector.7 Dynamical fields have the same geometric structure within a plane

5We write ω = ϖ(k) when aiming to distinguish the angular frequency, ω, from the function, ϖ, determining
the angular frequency.

6In Section 55.8.5 we find that shallow water waves in the presence of gravity and rotation have their angular
frequency bounded below by |f |, in which case these shallow water inertia-gravity waves are super-inertial.

7It is the oscillatory motion of the fluid particles in the transverse direction that constitutes motion of the
phase, thus constituting the traveling wave. A fluid particle moves in the direction of a phase surface. However,
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Figure 53.2: Illustrating the transverse nature of inertial waves, with their dispersion relation given by equation
(53.31), whereby ω2 = (2Ω · k̂)2. We show lines of constant phase separated by π/2 radians so that the fluid
particle velocity switches sign every alternative line. Evidently, the frequency of inertial waves is maximized when
the wavevector, k, is aligned with the rotation vector, Ω, in which the angles α = 0 and γ = π/2 . In contrast,
the angular frequency vanishes when the wavevector is orthogonal to Ω. The waves are transverse, v · k = 0,
so that fluid particle motion occurs within surfaces of constant phase. Maximum frequency waves with α = 0
correspond to fluid particle motion on planes orthogonal to the rotation vector, whereby the particles exhibit
pure inertial oscillations. Zero frequency waves (standing inertial waves) occur with α = π/2 and γ = 0, whereby
fluid particle motion is vertical. Vertical particle motion does not feel a Coriolis acceleration so that the wave
frequency vanishes in this case. The group velocity is parallel to the fluid particle velocity since, according to
equation (53.39), it satisfies cg · k = 0. Note that we make use of the angle α in this chapter, though switch to
γ = π/2− α when studying internal waves in Chapter 57.

wave, so that all fields are spatially constant along a phase surface. It follows that there is no
spatial pressure gradient force along a constant phase surface at any particular time instance.
Hence, fluid particles moving parallel to the phase surfaces feel the Coriolis acceleration arising
from the projection, k ·Ω, of the rotational vector along the wave vector.8

Recall that a particle moving in a rotating reference frame exhibits inertial oscillations
(Section 14.4) when the particle does not feel any pressure forces. Evidently, fluid particle motion
induced by inertial waves exhibits inertial oscillations in the phase plane orthogonal to the
wavevector. If the wavevector is aligned parallel to the rotation vector, then a fluid particle feels
the full extent of the Coriolis acceleration, whereby inertial oscillations have a squared angular
frequency (2Ω · k̂)2. This situation corresponds to a particle at either of the planetary poles.9

When the wavevector is mis-aligned from the rotation vector, then only that portion of the
rotation vector projected onto k̂ acts to produce inertial oscillations. Finally, if the wavevector
is perpendicular to the rotation vector, then the particle feels no Coriolis acceleration, just like a
particle on the equator feels no planetary Coriolis acceleration.

53.3.3 Group velocity

As seen from our discussion of wave packets in Section 49.6, the group velocity determines the
speed and direction of wave energy propagation within a packet, with the group velocity given

the particle does not remain on a fixed phase surface since the phase travels in the k̂ direction and yet particles
have v · k̂ = 0 since the waves are transverse.

8The argument here holds either in an Eulerian reference frame, in which case we ignore the nonlinear
self-advection contribution as per the linearized velocity equation (53.11), or in a Lagrangian reference frame,
in which we are following a material fluid particle. In either case, motion of a fluid particle in an inertial wave,
moving in a direction that parallels the constant phase surfaces, only feels the Coriolis acceleration; pressure
forces are zero.

9From Figure 53.2 we note that the angle α is the co-latitude, so to connect to the planetary Coriolis parameter
we set ϕ = π/2− α where ϕ is the latitude.
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by the wavevector gradient of the dispersion relation

cg = ∇kϖ = x̂
∂ϖ

∂kx
+ ŷ

∂ϖ

∂ky
+ ẑ

∂ϖ

∂kz
. (53.35)

Making use of the dispersion relation (53.31) renders

cg =
4 (Ω · k̂) [Ω− k̂ (Ω · k̂)]

ω |k| =
(Ω · k̂)
|Ω · k̂|

k̂ × (2Ω× k̂)
|k| (53.36)

where we made use of the vector identity (1.71g). Since

Ω · k̂ = ±|Ω · k̂| (53.37)

we can write the group velocity as

cg = ±
k̂ × (2Ω× k̂)

|k| . (53.38)

This expression leads to a particularly remarkable property of the group velocity for inertial
waves

k · cg = 0. (53.39)

Since the waves are transverse, k · v = 0, so that the group velocity is aligned with the fluid
particle velocity. The Coriolis acceleration acts perpendicular to the direction of a moving fluid
particle. That orientation manifests for inertial waves via k · cg = 0, so that inertial waves
carry energy (via the group velocity) in a direction parallel to wave crests (perpendicular to k),
which is aligned with fluid particle motion. A second property of the group velocity is found by
projecting it onto the direction of the rotational axis

cg ·Ω = ±2 [Ω2 k · k − (Ω · k)2]/|k|3 = ±2 [Ω2 − (ω/2)2]/|k| = ±2 (Ω2/|k|) sin2 α, (53.40)

where we made use of the expressions (53.31) and (53.33) for the dispersion relation.

53.3.4 Polarization relations for the velocity components
The velocity amplitude, ṽ, is generally a complex number, which allows for there to be a variety
of phase shifts between the velocity components. We here determine some general relations
beween these amplitudes by returning to the linear velocity equation (53.11) and inserting the
wave ansatz (53.28) to render

−iω ũ− f ṽ = −i kx φ̃ (53.41a)

−iω ṽ + f ũ = −i ky φ̃ (53.41b)

−iω w̃ = −i kz φ̃, (53.41c)

where we set 2Ω = f ẑ, so that the vertical and horizontal wavenumbers are related by

k2z = |k|2 cos2 α =⇒ k2z sin
2 α = (k2x + k2y) cos

2 α. (53.42)

Equations (53.41a), (53.41b), and (53.41c) define polarization relations that specify the relative
phases for the velocity components and pressure. We have the freedom to choose how to reference
the phases. In the following discussion of kinetic energy, we choose to measure phases relative to
the pressure amplitude, which means φ̃ is a real amplitude.
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53.3.5 Phase averaged kinetic energy

The phase averaged kinetic energy for a plane inertial wave is given by

⟨K⟩ = ⟨Re(v) · Re(v)⟩/2 = (|ũ|2 + |ṽ|2 + |w̃|2)/4, (53.43)

where we used equation (8.18) for the phase average of the square of a periodic function. To
derive the squared amplitudes, multiply the zonal and meridional velocity equations (53.41a)
and (53.41b) by iω, and then back-substitute

ũ (f2 − ω2) = −φ̃ (kx ω + iky f) (53.44a)

ṽ (f2 − ω2) = φ̃ (−ky ω + ikx f), (53.44b)

so that

|ũ|2 = φ̃2 (kx ω)
2 + (ky f)

2

(ω2 − f2)2 = φ̃2
(kx cosα)

2 + k2y

f2 sin4 α
(53.45a)

|ṽ|2 = φ̃2 (ky ω)
2 + (kx f)

2

(ω2 − f2)2 = φ̃2 (ky cosα)
2 + k2x

f2 sin4 α
, (53.45b)

where the second equalities made use of the dispersion relation

ω2 = f2 cos2 α. (53.46)

Likewise, equation (53.41c) renders the squared magnitude of the vertical velocity amplitude

|w̃|2 = φ̃2 k2z/ω
2. (53.47)

Adding equations (53.45a), (53.45b), and (53.47) then leads to

⟨K⟩
φ̃2

=
ω2 (k2x + k2y)(1 + cos2 α) + k2z f

2 sin4 α

4 f2 ω2 sin4 α
(53.48a)

=
f2 cos2 α (k2x + k2y)(1 + cos2 α) + k2z f

2 sin4 α

4 f4 cos2 α sin4 α
. (53.48b)

Use of equation (53.42) relating the horizontal and vertical wave numbers leads to

⟨K⟩ = φ̃2 k2z
2 f2 cos2 α sin2 α

=
φ̃2 (k2x + k2y)

2 f2 sin4 α
. (53.49)

Consider the two limiting cases of α = 0 and α = π/2, which we show are non-singular. A
vertical inertial wave, with k = ẑ kz, α = 0, and ω2 = f2, has zero vertical particle motion,
w̃ = 0, so that the pressure fluctuation vanishes, φ̃ = 0, according to equation (53.41c). As
discussed in Section 53.3.6, this case corresponds to free inertial oscillations in the horizontal
plane. The complement case of a horizontal inertial wave, with kz = 0, α = π/2, and ω = 0, has
vertical particle motion and is discussed in Section 53.3.7.

53.3.6 High frequency inertial waves with ω ≈ |f |

The dispersion relation (53.33) leads to a maximum angular frequency magnitude for a wavevector
aligned parallel or anti-parallel to the rotation axis,

k ×Ω = 0 =⇒ ω = 2 |Ω| = |f |. (53.50)
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Recall that inertial waves are transverse so that v · k = 0. This property, in combination with
k × Ω = 0, means that high frequency inertial waves have fluid particle motion in a plane
perpendicular to the rotation axis: v ·Ω = 0. With a vertical rotation vector, then the wavevector
only has a vertical component, k = kz ẑ. In this case, the plane waves propagate vertically
(kx = ky = 0) while fluid particle motion is restricted to the horizontal plane.

For inertial waves with ω = |f | > 0 and k = kz ẑ, the fluid velocity amplitude relations
(53.41a) and (53.41b) indicate that

ũ = i ṽ, (53.51)

so that the horizontal velocity of the wave is given by

u/ũ = x̂ ei(kzz−|f | t) + ŷ ei(kzz−|f | t−π/2), (53.52)

which is a vertically propagating plane wave. Taking the real part renders

u/ũ = x̂ cos(kzz − |f | t) + ŷ sin(kzz − |f | t). (53.53)

With kx = ky = 0 in the velocity equations (53.41a) and (53.41b), we see that there is no
coupling between the horizontal velocity components and pressure. Hence, the motion of fluid
particles reduces to inertial oscillations in the horizontal plane just as we studied for point
particle motion in Section 14.4, whereby fluid particle motion occurs with a balance between
Coriolis acceleration and centrifugal acceleration (see Figure 14.2). Furthermore, since there is
no dependence on the horizontal position (since kx = ky = 0), fluid particles move together in
a coherent oscillation within each horizontal plane while the wave propagates vertically. As a
check, we see that for a fixed vertical position, say z = 0, the velocity relation (53.53) for inertial
waves is identical to the velocity relation (14.15b) for particles undergoing inertial oscillations in
a circle with a constant radius

u/ũ = x̂ cos(|f | t)− ŷ sin(|f | t) for z = 0 and ω = |f |. (53.54)

In oceanography, inertial waves with ω ≈ |f | are referred to as near inertial waves, which
refers to their angular frequency being close to the Coriolis frequency. Since near inertial waves
have their wavevector oriented close to the rotation axis, equation (53.38) indicates that they
also have a vanishingly small group velocity.

53.3.7 Low frequency inertial waves with ω ≈ 0

Low frequency inertial waves occur when the wavevector is nearly perpendicular to the rotation
axis

Ω · k ≈ 0 =⇒ ω/Ω ≈ 0. (53.55)

Hence, the wave number parallel to the rotation axis is vanishingly small. For example, if the
rotation axis is vertical, then low frequency inertial waves have a vanishingly small vertical wave
number,

k2z ≪ k2x + k2y. (53.56)

Correspondingly, for the velocity vector in the form given by equation (53.28), Ω · k ≈ 0 means
that

(Ω · ∇)v = i(Ω · k)v ≈ 0. (53.57)

That is, the velocity vector for low frequency inertial waves is coherent in the direction aligned
with the rotation axis. Furthermore, when Ω ·k ≈ 0, the group velocity (53.40) has a magnitude

|cg| ≈ 2 |Ω|/|k|. (53.58)
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Evidently, low frequency inertial waves with long wavelength (small wavenumber |k|) quickly
transmit their energy along the direction of the rotation axis. We return to this property in
Section 53.5 when considering the Taylor-Proudman effect.

53.4 Radially symmetric high frequency inertial waves
To help further our understanding of inertial oscillations, consider a particularly simple case of
a coherent axially symmetric fluid ring within a horizontal f -plane as depicted in Figure 53.3.
Slightly perturb the ring by expanding its radius outward and then let the ring move freely.
What happens? We study the motion using angular momentum arguments as well as Coriolis
arguments, and assume zero pressure gradients throughout the discussion. As we show, the ring
oscillates at frequency ω = f and thus displays a canonical form of inertial oscillations.

53.4.1 Qualitative presentation
The outward radial perturbation gives the ring a larger moment of inertia computed relative to
the rotational axis. In Section 24.7, we studied a fluid ring looped around the planet. As in
that case, the constraint imposed by angular momentum conservation (computed relative to the
rotational axis) requires the ring to rotate anti-cyclonically (clockwise if Ω > 0) in response to a
perturbation that increases its radius.10 Equivalently, radially outward motion induces a Coriolis
acceleration that causes the ring to rotate clockwise (anti-cyclonic). In turn, as the ring rotates
anti-cyclonically, each fluid particle within the ring experiences a radial Coriolis acceleration
pointing towards the center of the ring (to the right of the particle motion). This Coriolis
acceleration halts the outward perturbation and returns the ring towards a smaller radius, with
the inward motion leading to a further Coriolis acceleration that causes the ring to rotate
cyclonically (again, to the right of the inward particle motion). The whole process oscillates
between radially outward and anti-cyclonic rotation, and radially inward and cyclonic rotation.
The oscillations of a fluid ring exhibit the basic mechanism of inertial waves propagating along
the rotational axis (k ×Ω = 0) with frequency f (Section 53.3.6).

53.4.2 Radially symmetric inertial oscillations
The thought experiment in Figure 53.3 can be mathematically described by writing the linearized
equation of motion using polar-coordinates from Section 4.22. We assume all fields are axially
symmetric around any point, and all motion is two-dimensional on a horizontal plane. We also
assume there is no horizontal dynamical pressure gradient acting on the fluid, so that motion
is purely inertial. Decomposing the velocity equation (53.4) into radial and angular directions
leads to

Dvr

Dt
− (f + ϑ̇) vϑ = 0 and

Dvϑ

Dt
+ (f + ϑ̇) vr = 0, (53.59)

where we introduced the polar components to the velocity

v = (v · r̂) r̂ + (v · ϑ̂) ϑ̂+ 0 ẑ, (53.60)

and the radial and azimuthal unit vectors

r̂ = x̂ cosϑ+ ŷ sinϑ and ϑ̂ = −x̂ sinϑ+ ŷ cosϑ. (53.61)

10In Figure 24.3 we studied the angular momentum of an axially symmetric ring of fluid around the planet.
Axial symmetry means there are no zonal pressure gradients so that axial angular momentum is materially
constant for the earth spanning fluid ring. Here we are making use of the same angular momentum constraint for
an axially symmetric ring of fluid in a rotating f -plane.
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Perturb ring 

to larger radius

Ring rotates anti-cyclonically to 

conserve angular momentum,

which then leads to an inward 

Coriolis force that opposes the 


outward perturbation.

Ring moves inward and 

rotates cyclonically, thus


initiating the opposite 

phase of the oscillation.
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Figure 53.3: Schematic of inertial oscillations of an axially symmetric ring of fluid in the horizontal plane in the
presence of rotation, Ω = Ω ẑ with Ω > 0, where the rotation axis extends through the ring center and out of the
page. The left panel shows the ring perturbed outward, with this perturbation increasing the ring’s moment of
inertia about the vertical axis running through the center of the ring. To conserve angular momentum the ring
must turn opposite to the sense of the rotating reference frame; that is, it rotates anti-cyclonically, as shown in
the middle panel. As it turns anti-cyclonically the ring generates a Coriolis acceleration that points inward (to the
right of the motion), thus causing the ring to oscillate back to a smaller radius (right panel), where the oscillation
turns around. The physics depicted in this figure, representing a three-way balance between linear acceleration,
Coriolis acceleration, and pressure gradient acceleration, is summarized by the linear velocity equation (53.11).

The presence of ϑ̇ along with the Coriolis parameter accounts for the centrifugal acceleration due
to the fluid motion (as distinct from the planetary centrifugal acceleration). This is a nonlinear
effect that is dropped in the linear analysis.

Linearizing the velocity equation (53.59) leads to

∂tv
r − f vϑ = 0 and ∂tv

ϑ + f vr = 0, (53.62)

which then renders a linear oscillator equation satisfied by each velocity component

(∂tt + f2) vr = 0 and (∂tt + f2) vϑ = 0. (53.63)

Assuming a monochromatic time dependence

vr = ṽre−iω t and vϑ = ṽϑe−iω t (53.64)

leads to the dispersion relation
ω2 = f2. (53.65)

The linear velocity equation (53.62) ensures that the velocity components are π/2 out of phase
with

ṽr = i ṽϑ = ṽϑ eiπ/2. (53.66)

The motion is thus a coherent oscillation of the fluid consisting of vascillations between
radial and angular motion whereby the Coriolis acceleration acts to turn the motion to the right
(assuming f > 0). There is no preferred length scale in the horizontal plane. Indeed, since the
flow is horizontally non-divergent (there is no vertical fluid particle motion so w̃ = 0), and due
to the assumed symmetry in the angular direction, there can be no radial dependence to the
motion. That is, the radial wavenumber is zero. However, there can be vertical propagation of
the waves, just as discussed in Section 53.3.6.

53.5 Low frequency inertial waves and vertical stiffening
We consider two more thought experiments focused on low frequency inertial waves and their
connection to the vertical stiffening that arises either from a small aspect ratio flow (as in shallow
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water theory) or in flow in a rapidly rotating reference frame (as in the Taylor-Proudman effect).
The first experiment is treated heuristically whereas we include some mathematical analysis for
the second one.

53.5.1 Slowly oscillating disk
Imagine a slowly oscillating disk that moves in a direction aligned with the axis of rotation,
such as depicted in Figure 53.4. If the oscillation frequency is much slower than the rotation
frequency, ωdisk ≪ |Ω|, then the disk generates low frequency inertial waves at the frequency of
the oscillating disk, ω = ωdisk. Following from our discussion in Section 53.3.7, we know that
the low frequency inertial waves have a wavevector oriented perpendicular to the rotation axis,
Ω · k = 0, as depicted in Figure 53.4. Since inertial waves have a group velocity that is itself
perpendicular to the wavevector, the low frequency inertial waves have a group velocity parallel
to the rotation axis: Ω× cg = 0.
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<latexit sha1_base64="64+VuDowgP9J3Mi7JDbb2R9/Mp8=">AAACGHicbZDLSgMxGIUz9VbrbdSN4CZYBFdlpoi6LLpxWcFeoDMMmTRtQ5PMkGTEYRgfxLVbfQZ34tadj+BbmLaz0LYHAodz/p/wf2HMqNKO822VVlbX1jfKm5Wt7Z3dPXv/oK2iRGLSwhGLZDdEijAqSEtTzUg3lgTxkJFOOL6Z9J0HIhWNxL1OY+JzNBR0QDHSJgrso8wLOcR5kHk8jB4zT1ORwmGeB3bVqTlTwUXjFqYKCjUD+8frRzjhRGjMkFI914m1nyGpKWYkr3iJIjHCYzQkPWMF4kT52fSCHJ6apA8HkTRPaDhN/25kiCuV8tBMcqRHar6bhEu7kC+Le4keXPkZFXGiicCz/wcJgzqCE0qwTyXBmqXGICypOQHiEZIIa8OyYti48yQWTbtecy9q9bvzauO6oFQGx+AEnAEXXIIGuAVN0AIYPIEX8ArerGfr3fqwPmejJavYOQT/ZH39AuegoII=</latexit>cg

<latexit sha1_base64="64+VuDowgP9J3Mi7JDbb2R9/Mp8=">AAACGHicbZDLSgMxGIUz9VbrbdSN4CZYBFdlpoi6LLpxWcFeoDMMmTRtQ5PMkGTEYRgfxLVbfQZ34tadj+BbmLaz0LYHAodz/p/wf2HMqNKO822VVlbX1jfKm5Wt7Z3dPXv/oK2iRGLSwhGLZDdEijAqSEtTzUg3lgTxkJFOOL6Z9J0HIhWNxL1OY+JzNBR0QDHSJgrso8wLOcR5kHk8jB4zT1ORwmGeB3bVqTlTwUXjFqYKCjUD+8frRzjhRGjMkFI914m1nyGpKWYkr3iJIjHCYzQkPWMF4kT52fSCHJ6apA8HkTRPaDhN/25kiCuV8tBMcqRHar6bhEu7kC+Le4keXPkZFXGiicCz/wcJgzqCE0qwTyXBmqXGICypOQHiEZIIa8OyYti48yQWTbtecy9q9bvzauO6oFQGx+AEnAEXXIIGuAVN0AIYPIEX8ArerGfr3fqwPmejJavYOQT/ZH39AuegoII=</latexit>cg

slowly oscillating disk

ph
as

e 
lin

es

wave packet

wave packet

<latexit sha1_base64="3hGDLE7lbK2UbtcPSNnhDBntnxM=">AAACNHicbVDLSgMxFE3qq46vVhcu3ASL4KrMiK9l0Y3LCvYB7VAyaaYNk2SGJCOUoR/hVv/DfxHciVu/wbSdhbZz4MLhnHu5954g4Uwb1/2ApbX1jc2t8razs7u3f1CpHrZ1nCpCWyTmseoGWFPOJG0ZZjjtJopiEXDaCaL7md95pkqzWD6ZSUJ9gUeShYxgY6VO1g8EiqaDSs2tu3OgVeLlpAZyNAdVeNwfxiQVVBrCsdY9z02Mn2FlGOF06vRTTRNMIjyiPUslFlT72fzeKTqzyhCFsbIlDZqrfycyLLSeiMB2CmzGetmbiYUe1UyaQicQRXIvNeGtnzGZpIZKsrgsTDkyMZqlhYZMUWL4xBJMFLPPITLGChNjMy1Y7Tg2Sm85uFXSvqh71/Wrx8ta4y4PtQxOwCk4Bx64AQ3wAJqgBQiIwAt4BW/wHX7CL/i9aC3BfOYI/AP8+QXyEKpl</latexit>

k
<latexit sha1_base64="3hGDLE7lbK2UbtcPSNnhDBntnxM=">AAACNHicbVDLSgMxFE3qq46vVhcu3ASL4KrMiK9l0Y3LCvYB7VAyaaYNk2SGJCOUoR/hVv/DfxHciVu/wbSdhbZz4MLhnHu5954g4Uwb1/2ApbX1jc2t8razs7u3f1CpHrZ1nCpCWyTmseoGWFPOJG0ZZjjtJopiEXDaCaL7md95pkqzWD6ZSUJ9gUeShYxgY6VO1g8EiqaDSs2tu3OgVeLlpAZyNAdVeNwfxiQVVBrCsdY9z02Mn2FlGOF06vRTTRNMIjyiPUslFlT72fzeKTqzyhCFsbIlDZqrfycyLLSeiMB2CmzGetmbiYUe1UyaQicQRXIvNeGtnzGZpIZKsrgsTDkyMZqlhYZMUWL4xBJMFLPPITLGChNjMy1Y7Tg2Sm85uFXSvqh71/Wrx8ta4y4PtQxOwCk4Bx64AQ3wAJqgBQiIwAt4BW/wHX7CL/i9aC3BfOYI/AP8+QXyEKpl</latexit>

k

<latexit sha1_base64="aE5337fze5Tsh0Iwi+M01TKdlss=">AAACWHicbZBNThtBEIXLQ8Dg8GPIIgs2rVhIsLFmEAksUbLJLiBhQPJYVk+7bFrun1F3DcIa+ww5DdtwDnKa9BgvCLiklp7eq1J1fVmupKc4fq5FKx9W1+rrG42Pm1vbO83dvWtvCyewI6yy7jbjHpU02CFJCm9zh1xnCm+y8Y8qv7lH56U1VzTJsaf5yMihFJyC1W8eTVOrccT7Zaoz+1CmJM2EDaQfz2ZTlirFpumvqmHab7bidjwv9l4kC9GCRV30d2uf04EVhUZDQnHvu0mcU6/kjqRQOGukhcecizEfYTdIwzX6Xjm/acYOgjNgQ+vCM8Tm7uuJkmvvJzoLnZrTnX+bVebSDL00tDTJ9DK7W9DwrFdKkxeERrz8bFgoRpZVRAMsh4JURY0LJ8NxTNxxxwUF7ktWNxoBZfIW3HtxfdxOvrW/Xp60zr8voK7DPnyBQ0jgFM7hJ1xABwT8hkf4A0+1vxFE9WjjpTWqLWY+wX8V7f0Dvdy1mg==</latexit>

|!disk| ⌧ |⌦|

Figure 53.4: Schematic of inertial waves generated by a slowly oscillating disk in a rotating homogeneous fluid.
The disk moves along the rotation axis (vertical axis) in small amplitude oscillations whose angular frequency is
much smaller than the rotational angular frequency, ωdisk ≪ |Ω|. The oscillating disk preferentially generates
inertial waves whose frequency is close to ωdisk; i.e., low frequency inertial waves as discussed in Section 53.3.7.
The phase lines and group velocity for these waves are parallel to the rotation axis, and the wavevector is
perpendicular to the rotation axis. We depict two wave packets that send energy vertically away from the disk,
with the long wave and low frequency waves having the highest magnitude for the group velocity. Since Ω · k = 0,
the fluid particle velocity associated with the inertial waves is constant in the direction along the rotation axis:
(Ω · ∇)v = Ω ∂zv = 0.

As seen by the equation (53.58) for the group velocity magnitude, information (i.e., energy)
concerning the oscillating disk is most rapidly transmitted by long wavelength low frequency
inertial waves. Such low frequency and long wavelength inertial waves generate fluid particle
motion that is independent of the position along the rotational axis since (Ω · ∇)v = 0. Hence,
the particle motion is parallel to the rotational axis, and this motion is coherent. We conclude
that inertial waves transmit information about stiffening along the rotation axis, thus providing
a mechanism for the Taylor-Proudman effect from Section 31.5.3 found when the flow is strictly
geostrophic.
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53.5.2 Inertial waves from a moving sinusoidal boundary11

We here provide a bit more substance to the previous discussion by exploring the steady linear
waves generated by a moving sinusoidal lower boundary, as depicted in Figure 53.5. In particular,
consider a horizontally unbounded region of homogeneous fluid on an f -plane that is bounded
above by a rigid lid at z = H and bounded below by a moving sinusoidal boundary with vertical
position

z = ηb(x, t) = h sin(q x− U q t) = h sin(q x− ωb t), (53.67)

where we introduced the frequency set by the moving boundary

ωb = U q > 0. (53.68)

The amplitude, h, of the lower boundary is assumed to be small compared to the wavenumber
of the boundary

h q ≪ 1, (53.69)

which ensures that movement of the boundary generates linear waves. Because the fluid is
homogeneous and on an f -plane, the undulating bottom boundary forces inertial waves. The
excited inertial waves have a horizontal wavenumber given by that of the topography, q, and
their vertical wavenumber is set according to the inertial wave equation (53.27). We also require
the top and bottom boundary conditions to derive an expression for the vertical velocity

w(z = 0) = ∂tηb = −hωb cos(q x− ωb t) and w(z = H) = 0. (53.70)

The bottom boundary condition results from linearizing the kinematic boundary condition,

∂tηb + u · ∇ηb = w =⇒ w(z = 0) ≈ ∂tηb. (53.71)
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ωb(x, t) = h sin(q x→ U q t)

Figure 53.5: Schematic for the study of inertial waves generated by a moving sinusoidal lower boundary at
z(x, t) = h0 sin(q x− ω0 t), with the frequency generated by the moving boundary given by ω0 = U q. The region
is filled with a homogenous fluid of density ρ and bounded above by a rigid lid at z = H.

53.5.3 Stationary wave solution

We examine waves after they have reached a steady state, and as such they are stationary. Given
the meridional symmetry, we are only concerned with inertial waves that have a zero meridional
wavenumber, ky = 0, so that

k = kx x̂+ kz ẑ = q x̂+ kz ẑ, (53.72)

11This thought experiment comes from Section 2.2 of Stern (1975).

CHAPTER 53. INERTIAL WAVES ON THE f -PLANE page 1517 of 2158



53.5. LOW FREQUENCY INERTIAL WAVES AND VERTICAL STIFFENING

where we set kx = q given the forcing from the lower boundary.

Since the horizontal domain is unbounded, we consider the horizontal fluid velocity arising
from a traveling plane wave

u(x, t) = ũ ei (k·x−ω t). (53.73)

Assuming the waves are indeed inertial with frequency, ωb, and horizontal wavenumber, q, the
dispersion relation (53.31) renders the corresponding vertical wavenumber

ω2
b =

f2 k2z
q2 + k2z

=⇒ k2z =
ω2

b q
2

f2 − ω2
b

. (53.74)

Evidently, there are two distinct regimes for the excited fluctuations: one that leads to exponential
decay away from the lower boundary, with these evanescent waves trapped next to the bottom.
The other excitation appears as inertial waves

ω2
b > f2 exponential decay away from lower boundary (53.75a)

ω2
b < f2 inertial waves are excited. (53.75b)

We only consider the case of sub-inertial forcing so that ω2
b < f2.

The structure of the vertical velocity associated this forced motion is determined by the
following boundary value problem

[∂tt∇2 + (2Ω · ∇)2]w = 0 (53.76a)

w(z = 0) = −hωb cos(q x− ωb t) (53.76b)

w(z = H) = 0. (53.76c)

To find a particular solution we take the ansatz

w(x, t) = w(0) Γ(z), (53.77)

with the non-dimensional structure function satisfying

d2Γ

dz2
+ k2z Γ = 0 for 0 < z < H with Γ(0) = 1 and Γ(H) = 0, (53.78)

which readily leads to the vertical fluid velocity

w(x, z, t) = w(0)
sin[kz(H − z)]

sin(kzH)
= −hωb cos(q x− ωb t)

sin[kz(H − z)]
sin(kzH)

. (53.79)

53.5.4 Vertically coherent motion

Consider the longwave limit in which

Γ(z) = lim
kzH→0

sin[kz(H − z)]
sin(kzH)

= (H − z)/H, (53.80)

so that the vertical velocity is a linear function of z

w(x, z, t) ≈ −hωb cos(q x− ωb t) (H − z)/H. (53.81)

As seen in equation (53.19), a linear vertical dependence to w means that the dynamic pressure
is independent of z. Correspondingly, equations (53.18a) and (53.18b) reveal that ∂zu = 0,
which means that horizontal fluid motion is vertically coherent. This motion corresponds to
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the shallow water fluid from Part VI of this book. It also corresponds to the Taylor-Proudman
effect discussed in Section 53.5.

To determine the non-dimensional scaling that leads to vertically coherent motion, return to
equation (53.78) for the vertical structure function and introduce the non-dimensional vertical
coordinate

ẑ = z/H, (53.82)

in which equation (53.78) becomes

d2Γ

dẑ2
+ (kzH)2 Γ = 0. (53.83)

The vertical structure of the vertical velocity is a linear function of ẑ in the limit that (kzH)2 → 0,
which means

(kzH)2 → 0 =⇒ (q H)2

(f/U q)2 − 1
→ 0. (53.84)

This limit can be realized if

q H ≪ 1 small aspect ratio (shallow water limit) (53.85a)

U q/f ≪ 1 small Rossby number (Taylor-Proudman limit). (53.85b)

Evidently, a small aspect ratio, with a Rossby number bounded away from unity, leads to
vertically coherent motion even if the fluid is not in a rotating reference frame. This motion
corresponds to that of shallow water fluid studied in Part VI of this book. As emphasized in
Section 35.2.10, the small aspect ratio shallow water fluid displays vertically coherent motion
due to the fluid being homogeneous and hydrostatic. Alternatively, we realize vertically coherent
columnar motion with a small Rossby number. This motion corresponds to the Taylor-Proudman
effect for rotating fluids. It is notable that vertically coherent motion becomes more restricted
(i.e., needs a smaller Rossby number) when the upper boundary moves far away, H →∞, thus
moving to the deep water limit.
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Chapter 54

BAROTROPIC VORTICITY WAVES

In this chapter we study vorticity waves, also called Rossby waves or vortical modes, which rely
on the presence of a gradient in the base state potential vorticity field. We examine a particularly
simple realization of Rossby waves as found in the inviscid two-dimensional non-divergent
barotropic model on an unbounded β-plane. This model supports two general kinds of vorticity
waves. One arises from the gradient of planetary vorticity (i.e., β-effect), which gives rise to
planetary Rossby waves. The second arises from gradients in the vorticity of the base flow. Edge
waves are a particularly simple kind of vorticity waves that arise from assuming a jump in the
background vorticity field.

reader’s guide to this chapter
We make extensive use of the horizontally non-divergent barotropic model from Chapter

38, as well as the wave kinematics from Chapter 49. Rossby waves are encountered again
when discussing shallow water waves in Chapter 55, and edge waves are encountered when
studying shear instability in Chapter 61 and baroclinic instability in Chapter 62.
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54.1. LOOSE THREADS

54.5.2 Rayleigh-Kuo equation . . . . . . . . . . . . . . . . . . . . . . . . 1540
54.5.3 The point jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541
54.5.4 Kinematic boundary condition at the interface . . . . . . . . . . 1542
54.5.5 Dynamic boundary condition at the interface . . . . . . . . . . . 1542
54.5.6 Edge wave dispersion relation . . . . . . . . . . . . . . . . . . . . 1543
54.5.7 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544

54.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544

54.1 Loose threads
• Hamilton/Whitham principle

• energetics

• Rossby wave particle velocity and trajectories

• Plot the dispersion relation for Rossby waves

• Rectification by Rossby waves that are radiated by a source; Section 5.4 of McWilliams
(2006).

• Work through the Green’s function problem as in Haidvogel and Rhines (1983) as well as
Bill Young’s Les Houches lectures.

• Stokes drift

• Rossby waves on a rotating planet as per continuum Lagrangian field theory

• Rossby wave packets in a non-constant background flow

54.2 A single plane wave in the non-divergent barotropic fluid
In this section we study properties of a single plane wave in an inviscid barotropic and horizontally
non-divergent fluid on an unbounded beta plane. We then follow in Section 54.3 with a study of
Rossby waves in this model.1 Recall that the barotropic and horizontally non-divergent model
was studied in Chapter 38, with the flow fully described by the vorticity equation

D(ζ + f)

Dt
= (∂t + u · ∇) (ζ + f) = 0, (54.1)

where the horizontal velocity is non-divergent and so can be written in terms of a streamfunction

∇ · u = 0 =⇒ u = ẑ ×∇ψ and ζ = ẑ · (∇× u) = ∇2ψ. (54.2)

As we show in this section, a single plane wave in this model exactly satisfies linear velocity
and vorticity equations, with such equations summarized in Table 54.1. Since there are no
nonlinear terms affecting the single plane wave, there is no need to linearize the equations
of motion when studying properties of this wave. We emphasize, however, that this distinct
property holds only for a single plane wave. In particular, the advection operator that vanishes
for a single wave is nonzero when the flow has more than a single plane wave. Indeed, the
nonlinear interactions between distinct wave modes provide the mechanism for the inverse
turbulent cascade in this model (e.g., see Chapter 11 of Vallis (2017)).

1The edge waves studied in Section 54.5 are not plane waves, and so they do not satisfy the special properties
described in this section.
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54.2. A SINGLE PLANE WAVE IN THE NON-DIVERGENT BAROTROPIC FLUID

name general relation single plane wave

streamfunction ψ ψ = A cosP

velocity u = ẑ ×∇ψ u = −(ẑ × k)A sinP

velocity tendency ∂tu = ẑ ×∇(∂tψ) ∂tu = ω (ẑ × k)ψ
non-divergence ∇ · u = 0 k · u = 0

relative vorticity ζ = ∇2ψ ζ = −|k|2 ψ
β-plane vorticity equation (∂t + u · ∇)ζ = −v β ∂tζ = −v β
pressure equation −∇ · (∇φ− f ∇ψ) = S2 −R2 −∇ · (∇φ− f ∇ψ) = 0

Coriolis acceleration −f ẑ × u = f ∇ψ −f Ak sinP
velocity equation ∂tu+ (f + ζ) ẑ × u = −∇(φ+K) ∂tu+ f ẑ × u = −∇φ
kinetic energy equation DK/Dt = −∇ · (uφ) ∂tK = −∇ · (uφ)

Table 54.1: Properties of the inviscid horizonally non-divergent barotropic model. The left column holds for a
general flow whereas the right column holds for a single plane wave, with P = k · x− ω t the phase function. S is
the strain rate tensor, with S2 = Smn S

mn. Likewise, R is the rotation tensor, with R2 = RmnR
mn. Both of

these tensors are introduced in Section 18.8. This table highlights the remarkable properties of the single plane
wave in the inviscid horizonally non-divergent barotropic model, in which the nonlinear terms in the velocity and
vorticity equation vanish identically.
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Figure 54.1: Illustrating the transverse nature of plane waves appearing in a horizontally non-divergent barotropic
model, whereby u · k = 0. The alternating solid-dotted lines depict lines of constant phase that differ by π/2
radians so that the velocity field switches sign between every π radians. Compare this figure to Figure 53.1, which
illustrates transverse plane waves in three dimensions.

54.2.1 Transverse plane waves
Consider a plane wave ansatz for the streamfunction

ψ(x, t) = A cos(k · x− ω t) with k = kx x̂+ ky ŷ and P = k · x− ω t, (54.3)

with A a constant amplitude. The velocity of fluid particles in the plane wave is thus given by

u = −A (ẑ × k) sin(k · x− ω t), (54.4)

which then leads to
k · u = 0. (54.5)

The horizontally propagating plane waves are transverse, as illustrated in Figure 54.1, which arises
since the flow is horizontally non-divergent. This property compares to the three dimensional
transverse inertial plane waves discussed in Section 53.3.1 and depicted in Figure 53.1.

54.2.2 Absence of inertial waves and gravity waves
Since there is no vertical motion in the two-dimensional non-divergent barotropic model, any
wavevector must be horizontal and thus perpendicular to the vertically oriented rotation vector.
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Hence, the inertial wave dispersion relation (53.31) only admits a zero frequency mode, which is
geostrophic balance. Furthermore, gravity waves are absent from this model since gravity waves
vanish with a flow that has zero horizontal divergence (see the discussion of shallow water gravity
waves in Section 55.5). We thus conclude that the two-dimensional non-divergent barotropic
model has neither inertial waves nor gravity waves.

As we will see, the only wave supported by this model occurs in the presence of a background
or base state vorticity gradient, such as from planetary vorticity or the vorticity of a mean
flow. In the absence of vorticity gradients, there are no linear waves in the two-dimensional
non-divergent barotropic model. Such is the case, for example, in non-rotating and homogeneous
two-dimensional flows, which are commonly used to study two-dimensional turbulence.

54.2.3 Zero advection for a single plane wave

Linearizing the equations of motion is a basic step in the development of a dispersion relation.
For the vorticity equation appropriate for Rossby waves, linearization means neglecting the
advection of relative vorticity. However, quite remarkably, there is no advection of relative
vorticity for a plane wave in the horizontally non-divergent barotropic model. That is, the
advection operator, u · ∇ζ, vanishes identically when u and ζ are built from a single plane wave.
To see this property, consider a traveling plane wave streamfunction

ψ(x, y, t) = A cos(k · x− ω t) =⇒ ζ = −|k|2 ψ and ∇ζ = −|k|2∇ψ, (54.6)

in which case we readily find

u · ∇ζ = (ẑ ×∇ψ) · (−|k|2∇ψ) = 0. (54.7)

Evidently, for this model the velocity of fluid particles in a plane wave are aligned parallel to
surfaces of constant relative vorticity of the wave. Equivalently, this model supports no nonlinear
self-interactions for a single plane wave.

54.2.4 Pressure equation for a single plane wave

Recall the discussion in Section 38.4 where we showed that pressure in the horizontally non-
divergent barotropic model satisfies the Poisson equation (38.84)

−∇ · (∇φ− f ∇ψ) = 2 [(∂xyψ)
2 − ∂xxψ ∂yyψ]. (54.8)

Making use of the traveling plane wave (54.6) readily reveals that the nonlinear source term
vanishes identically

(∂xyψ)
2 − ∂xxψ ∂yyψ = 0. (54.9)

Although the plane wave supports a nonzero strain rate tensor and a nonzero rotation tensor,
their respective squares cancel identically. As a result, the pressure source from a plane wave is
due only to the Coriolis acceleration

−∇ · (∇φ− f ∇ψ) = −∇ · (∇φ+ f ẑ × u) = 0. (54.10)

Consequently,
∇φ+ f ẑ × u = −ẑ ×∇λ, (54.11)

where λ(x, y, t) is a gauge function. In Section (54.2.5) we show that ∇λ = ∇(∂tψ).
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54.2.5 Velocity equation for a single plane wave
So what velocity equation does a single plane wave satisfy for the inviscid horizontally non-
divergent barotropic model? To answer that question we make use of the vector-invariant velocity
equation (38.5) written in the form

∂tu+ f ẑ × u+∇φ = −(∇K + ẑ × ζ u) with K = u · u/2. (54.12)

Introducing the streamfunction brings the right hand side terms into the form

∇K + ẑ × ζ u = x̂ (∂yψ ∂xyψ − ∂xψ ∂yyψ) + ŷ (∂xψ ∂xyψ − ∂yψ ∂xxψ) (54.13a)

= x̂ [ẑ · (∂y∇ψ ×∇ψ)] + ŷ [ẑ · (∂x∇ψ ×∇ψ)]. (54.13b)

We readily find that each of these nonlinear terms vanishes when the streamfunction is given by
the single plane wave function (54.3)

∂y∇ψ ×∇ψ = A2 ky(k × k) sin(k · x− ω t) cos(k · x− ω t) = 0 (54.14a)

∂x∇ψ ×∇ψ = A2 kx(k × k) sin(k · x− ω t) cos(k · x− ω t) = 0. (54.14b)

Evidently, a single plane wave in the horizontally non-divergent barotropic model exactly satisfies
the linear velocity equation

∂tu+ f ẑ × u = −∇φ. (54.15)

Comparing to the result from the pressure equation (54.11) reveals that ∇λ = ∇(∂tψ). Fur-
thermore, recall that we made no assumptions about f in arriving at equation (54.15), so that
f can be a function of latitude as per the β-plane. Indeed, f can be an arbitrary function of
space, f(x, y). Finally, equation (54.15) indicates that a stationary plane wave (ω = 0) is in
exact geostrophic balance. We further discuss this result in Section 54.2.6 when studying the
structure of a single plane wave.

54.2.6 Structure of a single plane wave

term P = 0 P = π/2 P = π P = 3π/2 P = 2π

u 0 −A (ẑ × k) 0 A (ẑ × k) 0

−f ẑ × u 0 −Af k 0 Af k 0

−∇φ Aω (ẑ × k) Af k −Aω (ẑ × k) −Af k Aω (ẑ × k)
∂tu Aω (ẑ × k) 0 −Aω (ẑ × k) 0 Aω (ẑ × k)

Table 54.2: Values for plane wave terms in the velocity equation as the phase, P = k · x− ω t, moves from 0
to 2π. The time tendency, ∂tu, is always perpendicular to the wavevector, which accords with the transverse
nature of the wave. Also note that the time tendency is π/2 out of phase with the velocity itself. When the time
tendency vanishes, then the pressure gradient and Coriolis accelerations are in geostrophic balance, with this
balance occuring every π radians.

In Table 54.1 we summarize the properties satisfied by a single plane wave in the horizon-
tally non-divergent barotropic model. In particular, note that the pressure gradient has been
decomposed into linearly independent directions parallel to the wave, k̂, and perpendicular to
the wave, ẑ × k̂

−∇φ = A [ω (ẑ × k) cosP+ f k sinP]. (54.16)

Table 54.2 considers the values for each term in the velocity equation as the phase moves
around the unit circle, and Figure 54.2 provides a schematic. Evidently, the transverse plane
waves oscillate between geostrophic balance, with ∂tu = 0, and pressure driven tendency, where
∂tu = −∇φ.

CHAPTER 54. BAROTROPIC VORTICITY WAVES page 1525 of 2158



54.2. A SINGLE PLANE WAVE IN THE NON-DIVERGENT BAROTROPIC FLUID

<latexit sha1_base64="SpPOOXMSzqfwWiHoGc075i9Rl1A=">AAACLnicbVDLSgNBEJzxGddXogcPXgaD4Cnsiq9j0IvHBMwDkiXMTnqTIbOzy8ysEEK+wKv+h18jeBCvfoaTZA+abEFDUdVNd1eQCK6N637itfWNza3two6zu7d/cFgsHTV1nCoGDRaLWLUDqkFwCQ3DjYB2ooBGgYBWMHqY+a1nUJrH8smME/AjOpA85IwaK9XdXrHsVtw5yCrxMlJGGWq9Ej7p9mOWRiANE1Trjucmxp9QZTgTMHW6qYaEshEdQMdSSSPQ/mR+6ZScW6VPwljZkobM1b8TExppPY4C2xlRM9TL3kzM9UBzaXKdIMqTO6kJ7/wJl0lqQLLFZWEqiInJLCfS5wqYEWNLKFPcPkfYkCrKjE0zZ7Xj2Ci95eBWSfOy4t1UrutX5ep9FmoBnaIzdIE8dIuq6BHVUAMxBOgFvaI3/I4/8Bf+XrSu4WzmGP0D/vkFlRenqw==</latexit>

0

<latexit sha1_base64="M02S8bRNu+C04fABY/OhO/3D10Q=">AAACMnicbVDLTgIxFG3xheMLdOHCTSMxcYUzxNeS6MYlJg6QwIR0Sgca2s6k7ZiQCd/gVv/Dn9GdcetHWGAWCpzkJifn3Jt77wkTzrRx3Q9YWFvf2Nwqbjs7u3v7B6XyYVPHqSLUJzGPVTvEmnImqW+Y4bSdKIpFyGkrHN1P/dYzVZrF8smMExoIPJAsYgQbK/ndhF3UeqWKW3VnQMvEy0kF5Gj0yvC4249JKqg0hGOtO56bmCDDyjDC6cTpppommIzwgHYslVhQHWSzayfozCp9FMXKljRopv6dyLDQeixC2ymwGepFbyqu9Khm0qx0QrFK7qQmug0yJpPUUEnml0UpRyZG06xQnylKDB9bgoli9jlEhlhhYmyiK1Y7jo3SWwxumTRrVe+6evV4Wanf5aEWwQk4BefAAzegDh5AA/iAAAZewCt4g+/wE37B73lrAeYzR+Af4M8vrjWpOQ==</latexit>

⇡/2

<latexit sha1_base64="WkXeu84Zh+GVXliX6AwKdylUHBw=">AAACMHicbVDLSgNBEJzxGddXogcPXhaD4Cnsiq9j0IvHiOYByRJmJ7PJkJnZZaZXCCGf4FX/w6/Rk3j1K5wke9BkCxqKqm66u8JEcAOe94lXVtfWNzYLW872zu7efrF00DBxqimr01jEuhUSwwRXrA4cBGslmhEZCtYMh3dTv/nMtOGxeoJRwgJJ+opHnBKw0mMn4d1i2at4M7jLxM9IGWWodUv4qNOLaSqZAiqIMW3fSyAYEw2cCjZxOqlhCaFD0mdtSxWRzATj2a0T99QqPTeKtS0F7kz9OzEm0piRDG2nJDAwi95UzPWY4QpynVDmye0UoptgzFWSAlN0flmUChdid5qU2+OaURAjSwjV3D7n0gHRhILNM2e149go/cXglknjvOJfVS4fLsrV2yzUAjpGJ+gM+egaVdE9qqE6oqiPXtAresPv+AN/4e956wrOZg7RP+CfX7OlqMQ=</latexit> ⇡

<latexit sha1_base64="UGZd218roNAo1eua06lsbuX88z4=">AAACM3icbVDLTgIxFG3xheMLdOHCTSMxcYUz+FwS3bjERB4JTEindKDSdiZtx4RM+Ae3+h9+jHFn3PoPFpiFAie5yck59+bee4KYM21c9wPmVlbX1jfym87W9s7uXqG439BRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN5N/OYzVZpF8tGMYuoL3JcsZAQbKzXOOzE7q3QLJbfsToEWiZeREshQ6xbhYacXkURQaQjHWrc9NzZ+ipVhhNOx00k0jTEZ4j5tWyqxoNpPp+eO0YlVeiiMlC1p0FT9O5FiofVIBLZTYDPQ895EXOpRzaRZ6gRimdxOTHjjp0zGiaGSzC4LE45MhCZhoR5TlBg+sgQTxexziAywwsTYSJesdhwbpTcf3CJpVMreVfny4aJUvc1CzYMjcAxOgQeuQRXcgxqoAwKewAt4BW/wHX7CL/g9a83BbOYA/AP8+QUvs6l2</latexit>

3⇡/
2

<latexit sha1_base64="EJKfN/4EwJdSq9uclKahq+oS0ys=">AAACMXicbVDLSgMxFE3qq46vVhcu3ASL4KrMFF/LohuXFewD2qFk0kwbmmSGJCOUwV9wq//h13Qnbv0JM+0stJ0DFw7n3Mu99wQxZ9q47hyWNja3tnfKu87e/sHhUaV63NFRoghtk4hHqhdgTTmTtG2Y4bQXK4pFwGk3mD5kfveFKs0i+WxmMfUFHksWMoJNJjUGMRtWam7dXQCtEy8nNZCjNazC08EoIomg0hCOte57bmz8FCvDCKevziDRNMZkise0b6nEgmo/XRz7ii6sMkJhpGxJgxbq34kUC61nIrCdApuJXvUysdCjmklT6ASiSO4nJrzzUybjxFBJlpeFCUcmQllUaMQUJYbPLMFEMfscIhOsMDE20ILVjmOj9FaDWyedRt27qV8/XdWa93moZXAGzsEl8MAtaIJH0AJtQMAEvIF38AE/4Rx+we9lawnmMyfgH+DPLzLsqQA=</latexit>

2⇡

<latexit sha1_base64="3hGDLE7lbK2UbtcPSNnhDBntnxM=">AAACNHicbVDLSgMxFE3qq46vVhcu3ASL4KrMiK9l0Y3LCvYB7VAyaaYNk2SGJCOUoR/hVv/DfxHciVu/wbSdhbZz4MLhnHu5954g4Uwb1/2ApbX1jc2t8razs7u3f1CpHrZ1nCpCWyTmseoGWFPOJG0ZZjjtJopiEXDaCaL7md95pkqzWD6ZSUJ9gUeShYxgY6VO1g8EiqaDSs2tu3OgVeLlpAZyNAdVeNwfxiQVVBrCsdY9z02Mn2FlGOF06vRTTRNMIjyiPUslFlT72fzeKTqzyhCFsbIlDZqrfycyLLSeiMB2CmzGetmbiYUe1UyaQicQRXIvNeGtnzGZpIZKsrgsTDkyMZqlhYZMUWL4xBJMFLPPITLGChNjMy1Y7Tg2Sm85uFXSvqh71/Wrx8ta4y4PtQxOwCk4Bx64AQ3wAJqgBQiIwAt4BW/wHX7CL/i9aC3BfOYI/AP8+QXyEKpl</latexit>

k

<latexit sha1_base64="HE1vH05RsuGOrLW+cEhH33FyUWg=">AAACSXicbVDLSgMxFM20Pur4anUh6CZYBFdlRnwti25cVrAP6JSSSVMbmmSG5I5Qh4Jf41b/wy/wM9yJK9N2Ftr2QODcc+7l5p4wFtyA5306ufzK6tp6YcPd3Nre2S2W9homSjRldRqJSLdCYpjgitWBg2CtWDMiQ8Ga4fB24jefmDY8Ug8willHkkfF+5wSsFK3eBgMCKRBKPHzGAfAJTN4Wg7H3WLZq3hT4EXiZ6SMMtS6Jecg6EU0kUwBFcSYtu/F0EmJBk4FG7tBYlhM6JA8sralithtnXR6xBifWKWH+5G2TwGeqn8nUiKNGcnQdkoCAzPvTcSlHjNcwVInlMvkdgL9607KVZwAU3T2s34iMER4EiHucc0oiJElhGpuj8N0QDShYINestp1bZT+fHCLpHFW8S8rF/fn5epNFmoBHaFjdIp8dIWq6A7VUB1R9IJe0Rt6dz6cL+fb+Zm15pxsZh/9Qy7/C1UQsWk=</latexit>
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Figure 54.2: Schematic of the terms appearing in a horizontally propagating plane wave in the horizontally
non-divergent barotropic model. We display terms as a function of the phase, P = (k · x − ω t), whose value
is shown for P = 0, π/2, π, 3π/2, 2π. The terms correspond to those given in Table 54.2. Note the oscillation
between geostrophic balance, with zero time tendency, with a phase where there is a downgradient acceleration
(i.e. ageostrophic motion). Also note that the pressure gradient rotates in a clockwise direction when the phase
increases.

54.2.7 Kinetic energy of a single plane wave

Taking the scalar product of the velocity with the velocity equation (54.12) leads to the kinetic
energy equation (38.10)

DK

Dt
= −∇ · (uφ). (54.17)

Likewise, taking the scalar product with the linear velocity equation (54.15) satisfied by the
single plane wave renders

∂tK = −∇ · (uφ). (54.18)

As for the velocity, we see that the kinetic energy of the plane wave experiences no advection.
Furthermore, making use of the wave ansatz (54.3) leads to the kinetic energy per mass within
a single plane wave

K = (A2 |k|2/2) sin2 P, (54.19)

thus indicating more energy in higher wavenumber waves. In contrast, the gravitational potential
energy is constant given that the fluid has a uniform density and rigid lid. Hence, as the kinetic
energy fluctuates within a wave, there is no exchance with potential energy. Instead, there is an
exchange with the external dynamical system that affects a rigid lid on the fluid.

The phase average of the kinetic energy (54.19) is

⟨K⟩ = A2 |k|2/4. (54.20)

Now consider the energy flux convergence, again as rendered by the single plane wave

−∇ · (uφ) = −u · ∇φ = ωA2|k|2 sinP cosP, (54.21)

where we made use of equation (54.16) for the pressure gradient. The phase average of this flux
convergence vanishes

⟨∇ · (uφ)⟩ = 0. (54.22)
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Evidently, the zero kinetic energy flux convergence arises since the plane wave is present
throughout space, so that there is no means to converge phase averaged wave energy to any
particular region. Only when there is a symmetry breaking, such as by modulating the plane
wave into a localized packet, will there be a nonzero phase average flux convergence.

54.3 Barotropic and non-divergent Rossby waves
In this section we build on the general properties of the plane wave as developed in Section 54.2.
The key new ingredient considered here is the dispersion relation that couples the wavevector to
the wave angular frequency. As we see, the fluctuations are organized into Rossby waves, which
are waves that carry a nonzero vorticity and are reliant on gradients in the background potential
vorticity field.

54.3.1 The vorticity mechanism for planetary Rossby waves

Before developing the detailed properties of Rossby waves, we discuss the underlying mechanism
for planetary Rossby waves. This discussion serves as both a motivation and guide for the
mathematics to follow. The foundational principle is that fluctuations constrained by material
conservation of potential vorticity organize into Rossby waves when they are presented with a
background potential vorticity gradient. The background potential vorticity gradient can arise
from the meridional gradient of the planetary vorticity (giving rise to planetary waves), gradients
in the vorticity of the base flow (e.g., edge waves), and, in more general models, buoyancy
gradients and topography gradients (topographic Rossby waves). Note that the seeds for these
arguments were planted in Section 38.5 when studying vorticity constraints on the flow for the
non-divergent barotropic model.

Westward phase propagation

In Figure 54.3 we display the essential physics of planetary Rossby waves as realized in the
horizontally non-divergent barotropic model. As described in the figure caption, the constraint
of absolute vorticity conservation for fluctuating fluid parcels, in the presence of β > 0, gives rise
to the westward phase propagation of the planetary Rossby wave. As we see in Section 54.5.6, a
pseudo-westward propagation arises for edge waves generated by vorticity jumps. This preferred
direction for propagation is a canonical property of vorticity waves, and it distinguishes these
waves from other waves whose phase propagation has no directional preference.

Vorticity and momentum arguments

The argument offered in Figure 54.3 does not consider forces. Rather, we make use of the
constraint imposed by materical conservation of absolute vorticity and infer the motion of fluid
parcels by noting how the relative vorticity anomaly induces flow of a particular orientation.
Rossby waves carry vorticity, so vorticity arguments offer the natural means to understand their
mechanism. Even so, a complementary approach to understanding Rossby waves considers the
forces acting in the wave, and as such is referred to as a momentum argument. This argument
is concerned with the nature of pressure fluctuations within the wave. We note in Section
54.2.5 that plane waves in an inviscid horizonally non-divergent barotropic model oscillate
between a state with exact geostrophic balance and a state with zero Coriolis acceleration so
that acceleration is down the pressure gradient.
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Figure 54.3: The westward phase propagation of a planetary Rossby wave arises from the presence of β > 0
and the constraint that absolute vorticity (ζa = f + ζ) is materially constant for a two-dimensional non-divergent
and inviscid barotropic flow. In this figure we consider a material curve within the fluid in either the northern
or southern hemispheres. The background flow is assumed to be static to allow us to focus on the role of the
planetary vorticity gradient as measured by β. The relative vorticity is assumed to vanish for points on the
straight constant latitude line, so that ζa = f must be maintained by any latitudinal perturbation. For a northward
perturbation relative to the latitude line, a fluid parcel finds itself at a latitude with Coriolis parameter more
positive than its original value (f → f +∆f > f , with absolute vorticity conservation requiring the parcel to
pick up a negative relative vorticity anomaly, ζ = −∆f < 0. The opposite occurs for a southward perturbation.
The counter-rotating secondary flow induced by the relative vorticity anomaly acts to move the wave pattern
westward, so that the solid wave pattern is, at a future time, moved to the dashed wave pattern. We depict that
the meridional motion induced by the wave as the pattern crosses the constant latitude line. In the absence of β,
the meridional movement of parcels does not render a change in the planetary vorticity since in this case f is a
constant. So for the f -plane there is no induced relative vorticity anomaly so there is no coherent movement of
the wave pattern. We thus see the central role of β ≠ 0 for planetary Rossby waves. We also see that the sign
of the Coriolis parameter is not relevant; it is only β > 0 that determines the westward wave motion in both
northern and southern hemispheres. A generic way to orient the phase is to note that when looking in the phase
direction, higher planetary vorticity is to the right, with this rule holding for Rossby waves arising from potential
vorticity gradients other than planetary β.

54.3.2 Flow relative to a zonal base state
We here examine wave fluctuations relative to a static base flow whose vorticity satisfies

ub · ∇(f + ζb) = 0, (54.23)

along with a corresponding velocity potential so that

ub = ẑ ×∇ψb and ζb = ∇2ψb. (54.24)

This base flow maintains a materially constant absolute vorticity, so that it is an exact static
solution to the equations of motion for the inviscid two-dimensional non-divergent barotropic
model, and thus serves as a suitable base flow to study wave fluctuations.2

We focus in this chapter on a static background zonal flow written in the form3

ub = x̂U(y) with ψb = −
ˆ y

ub(y
′) dy′ and ζb = −∂yub = ∂yyψb. (54.25)

As we show, the base flow with constant ub = U (and thus with ζb = 0) supports plane waves.
The study of wave fluctuations on general base states requires more general methods, such as
the asymptotics from Chapter 50. We encounter another case not admitting plane waves when
studying edge waves in Section 54.5. Although not admitting plane waves, the edge waves do
support interfacial waves similar to the surface waves in Chapter 52.

2Although we cannot generally determine an analytic expression for the base flow, we know that a pressure
can be found that accords with the flow configuration and the non-divergent nature of the flow (see Section 38.4).

3Recall that the streamfunction is arbitrary up to a constant (Section 21.4). It is for this reason that we have
no concern for the lower integration limit in equation (54.25).
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54.3.3 Equations for the fluctuating vorticity and streamfunction

In the presence of a base state flow, we write the vorticity, velocity, and streamfunction in the
form4

ζfull = ζ + ζb and ufull = u+ ub and ψfull = ψ + ψb, (54.26)

with the vorticity equation

[∂t + (u+ ub) · ∇](ζ + ζb + f) = 0. (54.27)

Again, from equation (54.23) we assume the static base state satisfies ub · ∇(f + ζb) = 0, which
means the vorticity equation (54.27) reduces to the equation for the fluctuating vorticity

∂tζ + (u+ ub) · ∇ζ + u · ∇(f + ζb) = 0. (54.28)

Introducing a streamfunction for the fluctuating flow, ζ = ∇2ψ, brings the vorticity equation
(54.28) into the form

∂t(∇2ψ) + ẑ · [∇ψ ×∇(∇2ψ + f +∇2ψb)] + ẑ · [∇ψb ×∇(∇2ψ)] = 0. (54.29)

As we show below, this equation supports traveling plane vorticity waves. It is notable that it has
only one time derivative, which contrasts to all the other wave equations we have encountered in
this book (e.g., equation (51.34) for acoustic waves, equation (52.119) for surface gravity waves,
and equation (53.27) for inertial waves). It leads to an asymmetric phase propagation of the
linear wave fluctuations.

54.3.4 Rossby wave dispersion relation

To develop a dispersion relation we substitute the plane wave ansatz (54.3) into the vorticity
equation (54.29). For the plane wave ansatz to lead to a self-consistent dispersion relation
requires the background vorticity field to be extremely simple. In particular, the background
velocity and background vorticity gradient must both be independent of space

∇f = constant and ub = U x̂ =⇒ ζb = 0, (54.30)

with the first assumption holding for the β plane. In general, these assumptions ensure that
the angular frequency for the plane wave is independent of space. In Section 54.5 we consider a
slightly less trivial background state that supports edge waves rather than plane waves.

Given our focus on plane waves, assume a domain without boundaries and consider a
horizontal traveling plane wave ansatz in the form of equation (54.6). Plugging this ansatz into
the vorticity equation (54.29), and recalling that u · ∇ζ = 0 for a plane wave as discussed in
Section 54.2.3, leads to

A sin(k · x− ω t)[−ω |k|2 + (k · ub) |k|2 − (ẑ × k) · ∇f ] = 0. (54.31)

This equation is generally satisfied only when the bracketed term vanishes, which gives the
dispersion relation that expresses the angular frequency as a function of the wavevector, the
base flow, and geophysical parameters

ϖ = k · ub︸ ︷︷ ︸
Doppler

+(k × ẑ) · ∇f/|k|2︸ ︷︷ ︸
planetary vorticity gradient

= kx (U − β/|k|2). (54.32)

4An alternative notation is to write ζ = ζ′ + ζb, where ζ
′ is the fluctuating vorticity. We choose the notation

in equation (54.26) to reduce the abundance of primes appearing in the equations.
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As noted at the end of Section 54.3.2, the Rossby wave dispersion relation (54.32) results from a
wave equation with only a single time derivative. We commented in Section 49.3.3 on such wave
equations as being notable for possessing a preferred direction for wave propagation, which we
see in Section 54.3.6 results in Rossby waves having a phase that moves westward.

Doppler shift from the base flow

The term
ϖDoppler ≡ k · ub = kx U (54.33)

provides a shift in the angular frequency relative to the case with zero base flow. If the wave
direction is aligned with the base flow, then ϖDoppler > 0, so that the angular frequency of
the wave is increased. In contrast, the wave frequency is decreased when the wave is directed
anti-parallel to the base flow. This frequency shift is referred to as a Doppler shift. A Doppler
shift is familiar from acoustic waves when, for example, the frequency of a train whistle received
by a stationary listener is higher when the train approaches and lower when it is moving away.

Rossby waves supported by a gradient in the planetary vorticity

The planetary beta effect leads to the term

ϖβ ≡ −(ẑ × k̂) · ∇f/|k| = −β kx/|k|2, (54.34)

which gives rise to the planetary wave or planetary Rossby wave. We see that planetary Rossby
waves rely on planetary curvature, in which case β ̸= 0. Equivalently, planetary Rossby waves
rely on a nonzero gradient in the planetary vorticity, ∇f = β ŷ, so that planetary Rossby waves
do not exist on an f -plane.

The dispersion relation (54.34) reveals that long planetary waves (small wavenumber) have
higher angular frequency than short planetary waves. The maximum angular frequency is given
by the Rossby wave with zero meridional wavenumber

ωβ-max = β/|kx|. (54.35)

This frequency corresponds to a purely zonal Rossby wave with no meridional structure. Corre-
spondingly, the transverse nature of the waves means that fluid particles are moving meridionally
in the presence of a zonal Rossby wave. Evidently, the frequency of the waves is directly related
to the degree to which fluid particles move through the background potential vorticity field,
with highest frequency for particles moving meridionally and zero frequency for particles moving
zonally.

We compute the ratio of the maximum angular frequency for a Rossby wave to the central
value of the Coriolis parameter, fo, used for the beta-plane approximation (Section 24.5)

ωβ-max/fo = β/|kx fo| = β Lx/|fo| ≪ 1. (54.36)

In this equation we set the zonal wavenumber equal to the inverse of a zonal length scale of the
flow, kx = 1/Lx. The ratio β Lx/|fo| is much less than unity so long as the β-plane approximation
is accurate.5 We thus see that the maximum angular frequency of the Rossby waves is much
smaller than the Coriolis frequency, thus making the planetary Rossby wave a sub-inertial wave.

5See Section 24.5.4 for more on the β-plane approximation.

page 1530 of 2158 geophysical fluid mechanics



54.3. BAROTROPIC AND NON-DIVERGENT ROSSBY WAVES

54.3.5 Extrinsic and intrinsic angular frequency

We here introduce some terminology sometimes applied to waves in the presence of a background
mean flow. For this purpose, consider again the dispersion relation, ϖ, given by equation (54.32).
This relation renders the angular frequency as measured by an observer stationary with respect
to the moving frame. As such, it is sometimes referred to as the ground-based frequency or the
extrinsic frequency

extrinsic frequency = ϖ = k · ub + (k × ẑ) · ∇f/|k|2 = kx (U − β/|k|2). (54.37)

The frequency measured by an observer moving with the background flow does not have a
Dopper contribution, motivating the name intrinsic frequency

intrinsic frequency = ϖ − k · ub = −β/|k|2. (54.38)

The intrinsic frequency is also sometimes referred to as the Doppler-shifted frequency, but that
name should perhaps more clearly be the “frequency with the Doppler shift removed”.

The above definitions for extrinsic and intrinsic angular frequencies accord with the conven-
tional definitions. However, it is notable than Section 6.2 of Sutherland (2010) offers the exact
opposite definitions. One should thus be mindful of these different naming conventions.

54.3.6 Concerning the westward phase velocity

The phase velocity, cp = (ω/|k|) k̂ (see equation (49.26)), takes on the following form for a
barotropic Rossby wave6

cp = k̂
[
k̂ ·ub−(ẑ× k̂) ·∇f/|k|2

]
= k̂

[
k̂ ·ub+ k̂ ·(ẑ×∇f)/|k|2

]
= k̂ (k̂ · x̂) (U−β /|k|2). (54.39)

The phase velocity arising from planetary beta

[cp]β = −β k̂ (x̂ · k̂)/|k|2 (54.40)

has a sign-definite zonal component[
cp · x̂

]
β
= −(x̂ · k̂)2/|k|2 = −k2x β/|k|4 < 0. (54.41)

We depict this property of the Rossby wave phase velocity in Figure 54.4. This westward phase
propagation holds for both hemispheres since β ≥ 0 over the globe. Furthermore, the westward
propagation is larger in magnitude at lower latitudes where β is larger, with a ratio given by[

cp(ϕ1) · x̂
]
β[

cp(ϕ2) · x̂
]
β

=
cosϕ1
cosϕ2

. (54.42)

For example, cp(ϕ1) · x̂ at 60◦ latitude is one-half that at the equator. Both the westward
phase propagation and the faster phase speed at lower latitudes are canonical features of
planetary Rossby waves. These properties are readily seen in large-scale flow patterns in both
the atmosphere and ocean.

6In this book, we eschew the notion of components to the phase speed since the phase speed is not a vector
and so it has no components. Rather, as discussed in Section 49.5.2, the phase speed is the magnitude of the
phase velocity, Cp = cp · k̂ = ω/|k| ≥ 0, with the phase velocity cp = Cp k̂.
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Figure 54.4: Illustrating the westward phase propagation of a planetary Rossby wave. In this case the westward
unit vector is ŵ = −x̂, and the phase velocity is projected in the westward direction,

[
cp · ŵ

]
β
> 0. We show

two possible wavevectors, k = kx x̂+ ky ŷ, with kx < 0 so the wavevector has a westward component, but the
meridional component can be either positive or negative.

Westward phase velocity implied by positive angular frequency

Another indication that Rossby waves have a westward phase propagation is to recall that the
angular frequency of a wave is positive (Section 49.2.3). This convention is maintained by noting
that the direction of the phase propagation is carried by the wavevector

k = x̂ kx + ŷ ky, (54.43)

rather than allowing the angular frequency to be negative.7 Planetary Rossby waves in two-
dimensional non-divergetnt barotropic flow have the dispersion relation (54.34)

ϖβ = −β kx/|k|2. (54.44)

The resulting angular frequency is positive if kx < 0, meaning that propagating planetary waves
have a westward component to the phase velocity.

The result (54.44) generalizes by considering the dispersion relation arising from a more
general background potential vorticity8

ϖbase+β ≡ −(ẑ × k̂) · ∇Qb/|k|, (54.45)

with non-negative values assured only for wavevectors oriented in the pseudo-westward direction
so that

(ẑ × k̂) · ∇Qb = −(ẑ ×∇Qb) · k̂ = −(k̂ · ŵ) |ẑ ×∇Qb| < 0, (54.46)

where we introduced the pseudo-westward unit vector

ŵ ≡ ẑ ×∇Qb

|ẑ ×∇Qb|
. (54.47)

Emphasizing the special nature of the westward phase velocity

The westward phase velocity is a very distinct feature of Rossby waves. As seen in Section 54.3.1,
it results from the constraint of material conservation of potential vorticity in the presence of a
background potential vorticity gradient. Other waves that we have studied, such as acoustic
waves (Chapter 51), surface waves (Chapter 52), and inertial waves (Chapter 53), support an
arbitrary orientation for their phase velocity. As a result, a source for these sorts of waves will

7Our use of a positive angular frequency is not universally maintained in the literature. For example, Pedlosky
(2003) considers ω < 0 for Rossby waves.

8For the angular frequency to be independent of spatial position (assumed for plane waves) requires ∇Qb to
be spatially independent. See discussion in Section 54.3.2 for more on the restrictions of the background flow
enabling plane waves.
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generate waves whose phases are oriented in directions constrained by details of the source rather
than by any intrinsic property of the waves. In contrast, an arbitrary source for Rossby waves
can only produce Rossby waves with a westward oriented phase. There are no Rossby waves
with an eastward phase propagation. In this manner, Rossby waves are anisotropic waves.

54.3.7 Stationary Rossby waves
Stationary Rossby waves have zero phase velocity, which occurs if the base flow satisfies

cp = 0 =⇒ k̂ · x̂ (U − β/|k|2) = 0. (54.48)

That is, the zonal portion of the Doppler shift exactly cancels the westward phase propagation
from planetary β

U = β/|k|2. (54.49)

The corresponding wavelength, Λ = 2π/|k|, is given by

Λstationary = 2π
√
U/β. (54.50)

For example, assuming an eastward base flow speed of U = 1 m s−1 (as in portions of the
Antarctic Circumpolar Current) at ϕ = 60◦S, where β = (2Ω/R) cosϕ ≈ 1.14× 10−11 m−1 s−1,
renders a stationary barotropic Rossby wavelenth of Λstationary ≈ 1860 km, whereas for the
atmosphere with ub · x̂ = 25 m s−1 we find Λstationary ≈ 9300 km. Evidently, at these large scales
the Rossby waves feel the Coriolis acceleration and thus properly earn the name planetary wave.

54.3.8 Group velocity
If Rossby waves were non-dispersive, then the westward phase velocity would introduce a puzzle:
how can all the wave energy propagate only in the westward direction? Since wave energy follows
the group velocity (Section 49.6), would there be an unbounded accumulation of Rossby wave
energy in the western side of a domain? In fact, this puzzle does not arise since Rossby waves
are dispersive, with their group velocity not constrained to be westward. We here introduce the
group velocity and then follow up in Sections 54.4.1 and 54.4.2 by focusing on the group and
phase velocities for planetary Rossby waves.

The Rossby wave group velocity, cg = ∇kϖ, is given by

cg = ub +
ẑ ×∇f − 2 k̂ [k̂ · (ẑ ×∇f)]

|k|2 = U x̂− β [x̂− 2 k̂ (k̂ · x̂)]
|k|2 . (54.51)

The presence of U ̸= 0 signals the bulk transport of a Rossby wave packet by the base flow. The
remaining terms can be related to the phase velocity (54.39) by projecting onto the wavevector
direction

(cg − cp) · k̂ = 2β x̂ · k̂/|k|2. (54.52)

Since wave dispersion is signaled by a difference between the phase velocity and group velocity,
equation (54.52) indicates that Rossby wave dispersion arises from a nonzero gradient in the
planetary vorticity, ∇Qb = ∇f = β ŷ, along with a nonzero projection of the wavevector onto
the westward direction.

54.4 Geometry of planetary Rossby waves
We here focus on some special properties of planetary Rossby waves revealed by studying the
geometry of the group velocity using a diagrammatic method developed by Longuet-Higgins
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(1964).

54.4.1 Group and phase velocities for planetary Rossby waves

We start by focusing on the relation between group and phase velocities for planetary Rossby
waves. The β contribution to the group velocity (54.51) is given by

[cg]β =
β [(k2x − k2y) x̂+ 2 kx ky ŷ]

|k|4 =⇒ [cg · cg]β = β2/|k|4. (54.53)

Recall the westward component of the phase velocity arising from planetary beta as discussed in
Section 54.3.6. In contrast, the zonal component to the group velocity

[cg · x̂]β =
β (k2x − k2y)
|k|4 = −[cp · x̂]β −

β k2y
|k|4 , (54.54)

can be directed in either direction. Note that to reach this equality we used equation (54.41) for
[cp · x̂]β.

Evidently, the group velocity (54.53) for planetary Rossby waves depends on the shape of
the wave as characterized by (k2x − k2y) x̂+ 2 kx ky ŷ. Consequently, the group velocity has the
following properties for its zonal component

[cg · x̂]β > 0 if k2x > k2y ⇒ eastward cg for short zonal planetary waves (54.55a)

[cg · x̂]β < 0 if k2x < k2y ⇒ westward cg for long zonal planetary waves (54.55b)

[(cg + cp) · x̂]β = 0 if ky = 0 ⇒ eastward cg for ky = 0 planetary waves. (54.55c)

Wave energy moves eastward in packets of zonally short (k2x > k2y) planetary Rossby waves,
whereas wave energy is westward in zonally long (k2x < k2y) planetary Rossby waves. That
is, zonally elongated Rossby waves have westward group velocity whereas zonally compressed
Rossby waves have eastward group velocity, where “elongated” and “compressed” are relative to
the meridional structure. Indeed, if ky = 0, in which case there is no meridional structure to the
wave, then Rossby waves of any zonal wavenumber have eastward group velocity, even while the
phase velocity is westward

[cg · x̂]β = −[cp · x̂]β > 0 if ky = 0. (54.56)

This property is consistent with the ratio

[cp · cp]β
[cg · cg]β

=
k2x
|k|2 = (k̂ · x̂)2, (54.57)

which then allows us to write the dispersion relation in the form

[ω2]β = |k|2 [cp · cp]β = k2x [cg · cg]β. (54.58)

54.4.2 Dispersion circle for planetary Rossby waves

Figure 54.5 illustrates the geometry of the phase and group velocity as realized for planetary
Rossby waves. We refer to this diagram as the dispersion circle, and it arises from noting that
the dispersion relation, ω = −β kx/|k|2, can be written as an equation for a circle in the (kx, ky)
plane

[kx + β/(2ω)]2 + k2y = [β/(2ω)]2. (54.59)
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<latexit sha1_base64="4G1IppEKzUsYzT/noD6rqWWT+20=">AAACOHicbVC7TsMwFHXKq4RXCwMDi0WFxFQlvMcKFsaC6ENKo8pxndaq7US2g1RF+QxW+A/+hI0NsfIFuG0GaHOkKx2dc6/uvSeIGVXacT6s0srq2vpGedPe2t7Z3atU99sqSiQmLRyxSHYDpAijgrQ01Yx0Y0kQDxjpBOO7qd95JlLRSDzpSUx8joaChhQjbSQv7QUcPmb99DzrV2pO3ZkBLhM3JzWQo9mvWoe9QYQTToTGDCnluU6s/RRJTTEjmd1LFIkRHqMh8QwViBPlp7ObM3hilAEMI2lKaDhT/06kiCs14YHp5EiP1KI3FQs9oqjQhU7Ai2Qv0eGNn1IRJ5oIPL8sTBjUEZwmBgdUEqzZxBCEJTXPQTxCEmFtci1YbdsmSncxuGXSPqu7V/XLh4ta4zYPtQyOwDE4BS64Bg1wD5qgBTCIwAt4BW/Wu/VpfVnf89aSlc8cgH+wfn4BJ9ur/g==</latexit>

R3

<latexit sha1_base64="11s3cJYagmhrqqJQx6kIIlqLPw0=">AAACOHicbVC7TsMwFLV5lvBqYWBgsaiQmKqE91jBwlgk+pDSqHJcp7VqO5HtIFVRPoMV/oM/YWNDrHwBbpsB2h7pSkfn3Kt77wkTzrRx3Q+4srq2vrFZ2nK2d3b39suVg5aOU0Vok8Q8Vp0Qa8qZpE3DDKedRFEsQk7b4eh+4refqdIslk9mnNBA4IFkESPYWMnPuqFAo7yXXeS9ctWtuVOgReIVpAoKNHoVeNTtxyQVVBrCsda+5yYmyLAyjHCaO91U0wSTER5Q31KJBdVBNr05R6dW6aMoVrakQVP170SGhdZjEdpOgc1Qz3sTcalHNZNmqROKZbKfmug2yJhMUkMlmV0WpRyZGE0SQ32mKDF8bAkmitnnEBlihYmxuS5Z7Tg2Sm8+uEXSOq9517Wrx8tq/a4ItQSOwQk4Ax64AXXwABqgCQiIwQt4BW/wHX7CL/g9a12Bxcwh+Af48wtVEqwX</latexit>

k3

<latexit sha1_base64="QC4bdIOaz61e5J6sVVNhtPVv9BE=">AAACOHicbVDLSsNAFJ34rPXV6sKFm8EiuCqJ1Mey6MZlBfuANJTJdNIOnUeYmQgl5DPc6n/4J+7ciVu/wGmbhbY5cOFwzr3ce08YM6qN6344a+sbm1vbpZ3y7t7+wWGletTRMlGYtLFkUvVCpAmjgrQNNYz0YkUQDxnphpP7md99JkpTKZ7MNCYBRyNBI4qRsZKf9kMOJ9kgbWSDSs2tu3PAVeLlpAZytAZV56Q/lDjhRBjMkNa+58YmSJEyFDOSlfuJJjHCEzQivqUCcaKDdH5zBs+tMoSRVLaEgXP170SKuNZTHtpOjsxYL3szsdAjmgpT6IS8SPYTE90GKRVxYojAi8uihEEj4SwxOKSKYMOmliCsqH0O4jFSCBuba8HqctlG6S0Ht0o6l3Xvun712Kg17/JQS+AUnIEL4IEb0AQPoAXaAAMJXsAreHPenU/ny/letK45+cwx+Afn5xdW3awY</latexit>

k4

<latexit sha1_base64="C3N5ntX3j0Ic1w1zpA8UdTwnhvA=">AAACOHicbVC7TsMwFHXKq4RXCwMDi0WFxFQlqDzGChbGguhDSqPKcZ3Wqu1EtoNURfkMVvgP/oSNDbHyBbhtBmhzpCsdnXOv7r0niBlV2nE+rNLa+sbmVnnb3tnd2z+oVA87KkokJm0csUj2AqQIo4K0NdWM9GJJEA8Y6QaTu5nffSZS0Ug86WlMfI5GgoYUI20kL+0HHD5mg7SRDSo1p+7MAVeJm5MayNEaVK3j/jDCCSdCY4aU8lwn1n6KpKaYkczuJ4rECE/QiHiGCsSJ8tP5zRk8M8oQhpE0JTScq38nUsSVmvLAdHKkx2rZm4mFHlFU6EIn4EWyl+jwxk+piBNNBF5cFiYM6gjOEoNDKgnWbGoIwpKa5yAeI4mwNrkWrLZtE6W7HNwq6VzU3av65UOj1rzNQy2DE3AKzoELrkET3IMWaAMMIvACXsGb9W59Wl/W96K1ZOUzR+AfrJ9fKaar/w==</latexit>

R4

<latexit sha1_base64="WOFhpkuSIMmyxeiCwp4W2RCOVQw="></latexit>

! = constant

<latexit sha1_base64="mg/jp9ZbSUDuuGpz1ZBRrwN8tGk=">AAACCXicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVJdFNy4r2FaYDiWTZtrQZDIkGbEM/QLXbvUb3Ilbv8JP8C9M20Fs64HA4Zx7OTcnTDjTxnW/nMLK6tr6RnGztLW9s7tX3j9oaZkqQptEcqnuQ6wpZzFtGmY4vU8UxSLktB0Oryd++4EqzWR8Z0YJDQTuxyxiBBsr+Z0BNlknFOhx3C1X3Ko7BVomXk4qkKPRLX93epKkgsaGcKy177mJCTKsDCOcjkudVNMEkyHuU9/SGAuqg2x68hidWKWHIqnsiw2aqn83Miy0HonQTgpsBnrRm4j/eX5qossgY3GSGhqTWVCUcmQkmvwf9ZiixPCRJZgoZm9FZIAVJsa2NJcSit8A24232MQyaZ1VvVq1dnteqV/lLRXhCI7hFDy4gDrcQAOaQEDCM7zAq/PkvDnvzsdstODkO4cwB+fzB6ehmnk=</latexit>

x̂

<latexit sha1_base64="st5C0/ftaTlBXKfKk8b7kehvhIk=">AAACCXicbVDLSgMxFM3UV62vqks3wSK4KjMi1WXRjcsK9gEzQ8mkmTY0jyHJCMPQL3DtVr/Bnbj1K/wE/8K0HcS2HggczrmXc3OihFFtXPfLKa2tb2xulbcrO7t7+wfVw6OOlqnCpI0lk6oXIU0YFaRtqGGklyiCeMRINxrfTv3uI1GaSvFgsoSEHA0FjSlGxkp+MEImDyIOs0m/WnPr7gxwlXgFqYECrX71OxhInHIiDGZIa99zExPmSBmKGZlUglSTBOExGhLfUoE40WE+O3kCz6wygLFU9gkDZ+rfjRxxrTMe2UmOzEgve1PxP89PTXwd5lQkqSECz4PilEEj4fT/cEAVwYZlliCsqL0V4hFSCBvb0kJKxH8DbDfechOrpHNR9xr1xv1lrXlTtFQGJ+AUnAMPXIEmuAMt0AYYSPAMXsCr8+S8Oe/Ox3y05BQ7x2ABzucPqT2aeg==</latexit>

ŷ

Figure 54.5: Dispersion circle for planetary Rossby waves, with this diagram orienting the group velocity
and phase velocity in wavevector space, (kx, ky). The angular frequency, ω, determines a particular dispersion
circle. We depict four example wavevectors, k = kx x̂+ ky ŷ, that orient the phase velocity, cp = k̂ω/|k|. Each
wavevector extends from the origin to a point on the dispersion circle perimeter, [kx + β/(2ω)]2 + k2y = [β/(2ω)]2,
with the circle having center at kcenter = −β/(2ω) x̂ and radius β/(2ω). Each wavevector has an associated group
velocity orientation vector, R = −k − β/(2ω) x̂, that points from the circle perimeter to the circle center. The
group velocity is westward for those wavevectors that intersect the circle perimeter within the gray-shaded region.
Such wavevectors characterize Rossby waves with zonal wavenumbers that are smaller than their meridional
wavenumbers; i.e., relatively long zonal Rossby waves. The group velocity has an eastward component for
wavevectors outside the gray region, with the lines k2x = k2y separating these regions where the group velocity is
eastward or westward. Such wavevectors characterize Rossby waves with zonal wavenumbers that are larger than
their meridional wavenumbers; i.e., relatively short zonal Rossby waves. The group velocity for wavevector k1 is
exactly southward; for k2 it is southeastward; for k3 it is exactly northward, and for k4 it is northwestward. This
figure is taken after Longuet-Higgins (1964).
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54.4. GEOMETRY OF PLANETARY ROSSBY WAVES

The center of the circle is at the wavevector

kcenter = −β/(2ω) x̂, (54.60)

and with a radius equal to β/(2ω). The circle has angular frequency, ω, acting as a parameter,
with lower frequency Rossby waves yielding larger circles. We further reveal the geometry of the
group velocity (54.53) by writing it in the form

[cg]β =
β [(k2x − k2y) x̂+ 2 kx ky ŷ]

|k|4 = −2ω
[
[kx + β/(2ω)] x̂+ ky ŷ

]
|k|2 . (54.61)

Furthermore, we introduce the group velocity orientation vector

R = −k − β/(2ω) x̂ = −[kx + β/(2ω)] x̂− ky ŷ with |R| = β/(2ω), (54.62)

so that the group velocity can be written in the rather tidy form

[cg]β = 2ωR/|k|2. (54.63)

Notice that R has magnitude equal to the radius of the circle. Furthermore, this vector points
from the circle perimeter to the circle center, as seen since R+ k = −β/(2ω) x̂ = kcenter.

The geometry depicted in Figure 54.5 partitions the group velocity according to the wavevector.
Again, the phase velocity always has a westward component, yet the group velocity can be
westward or eastward. Additionally, for each angular frequency there is one wave whose group
velocity is precisely northward and another that is southward. The squared magnitude of the
group velocity is given by equation (54.53)

[cg · cg]β = β2/|k|4, (54.64)

so that longer waves (smaller wavenumber) have higher group velocity magnitude.

54.4.3 Reflection of planetary Rossby waves

The diagrammatic method developed in Section 54.4.2 provides a basis to characterize the
reflection of Rossby wave packets from a smooth solid boundary. In the left panel of Figure 54.6
we depict a straight and smooth wall sloped with angle γ in the counter-clockwise direction
from the positive x-axis. An incident southwestward group velocity carries a Rossby wave
packet to the wall at an angle, θi, relative to the wall’s normal direction, n̂. We assume the
group velocity represents a packet whose central carrier Rossby wave has a wavevector ki, and
seek information about the reflected wave packet’s carrier wavevector, kr. Geometric optics
from Section 50.3 provides the foundation for the approach taken in the following, in which
we describe a diagrammatic approach for understanding how the wave packet reflects. Details
are summarized in the right panel of Figure 54.6. We assume that the waves reflect from the
boundary without dissipation (i.e., perfectly smooth and straight wall), so that reflection only
involves kinematic boundary conditions.

Kinematic boundary condition at the wall

The kinematic boundary condition along the wall requires the velocity of fluid particles in the
wave to have zero normal component at the wall, so that the the streamfunction must be constant
along the wall

u · n̂ = (ẑ ×∇ψ) · n̂ = (n̂× ẑ) · ∇ψ = −t̂ · ∇ψ = 0, (54.65)
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<latexit sha1_base64="scbxO2ooVTzKipjdSM0l+xcznd0=">AAACM3icbVDLSgNBEOzxGeMr0YMHL4tB8BR2xdcx6MVjBPOAZAmzk9lkzMzsMjMrhCX/4FX/w48Rb+LVf3CS7EGTLWgoqrrp7gpizrRx3Q+0srq2vrFZ2Cpu7+zu7ZfKB00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHd1G89U6VZJB/NOKa+wAPJQkawsVKzO8BC4F6p4lbdGZxl4mWkAhnqvTI66vYjkggqDeFY647nxsZPsTKMcDopdhNNY0xGeEA7lkosqPbT2bkT59QqfSeMlC1pnJn6dyLFQuuxCGynwGaoF72pmOtRzaTJdQKRJ3cSE974KZNxYqgk88vChDsmcqZhOX2mKDF8bAkmitnnHDLEChNjI81ZXSzaKL3F4JZJ87zqXVUvHy4qtdss1AIcwwmcgQfXUIN7qEMDCDzBC7zCG3pHn+gLfc9bV1A2cwj/gH5+AT0wqgw=</latexit>�
<latexit sha1_base64="bsFgK1LMxtALLvd2EvtmwdENRU0=">AAACQ3icbVDJSgNBEO2JW4xbXMCDl8YgRNA4I27HoBePEYwKmRB6OpWkSXfP0F0jxJB/8ar/4Uf4Dd7Eq2An5uCSBwWP96qoqhclUlj0/VcvMzU9MzuXnc8tLC4tr+RX125snBoOVR7L2NxFzIIUGqooUMJdYoCpSMJt1L0Y+rf3YKyI9TX2Eqgr1taiJThDJzXyG/thBMgOioc03KNhrKDNdhv5gl/yR6D/STAmBTJGpbHqbYbNmKcKNHLJrK0FfoL1PjMouIRBLkwtJIx3WRtqjmqmwNb7o/MHdMcpTdqKjSuNdKT+nOgzZW1PRa5TMezYv95QnOiBFRonOpGaJNdSbJ3V+0InKYLm35e1UkkxpsPwaFMY4Ch7jjBuhHuO8g4zjKOLeMLqXM5FGfwN7j+5OSwFJ6Xjq6NC+XwcapZskW1SJAE5JWVySSqkSjh5II/kiTx7L96b9+59fLdmvPHMOvkF7/MLf7Subg==</latexit>

��/(2!)

<latexit sha1_base64="WOFhpkuSIMmyxeiCwp4W2RCOVQw="></latexit>

! = constant

<latexit sha1_base64="ultH3idz/FhF9fBVI17GaQbvpxs=">AAACSHicbVDJSgNBEO2JW4xbogcRL41B8BRmxO0Y9OIxilkgE0JPpydp7O4ZumvEMAx+jVf9D//Av/Am3uwsB03yoODxXhVV9YJYcAOu++nklpZXVtfy64WNza3tnWJpt2GiRFNWp5GIdCsghgmuWB04CNaKNSMyEKwZPN6M/OYT04ZH6gGGMetI0lc85JSAlbrFg9QPJL7Puqkvg+g59YGrIe7zLOsWy27FHQPPE29KymiKWrfk7Pu9iCaSKaCCGNP23Bg6KdHAqWBZwU8Miwl9JH3WtlQRyUwnHf+Q4WOr9HAYaVsK8Fj9O5ESacxQBrZTEhiYWW8kLvSY4QoWOoFcJLcTCK86KVdxAkzRyWVhIjBEeJQg7nHNKIihJYRqbp/DdEA0oWBzXrC6ULBRerPBzZPGacW7qJzfnZWr19NQ8+gQHaET5KFLVEW3qIbqiKIX9Ire0Lvz4Xw5387PpDXnTGf20D/kcr+jcrGj</latexit>

Rgi

<latexit sha1_base64="/y5bxvLRikyDQ8irqol5Zuq+/4s=">AAACR3icbVDJSgNBEO2JWxy3RA8KXhqD4CnMiNsx6MVjBLNAJoSeTidp0t0zdNeIYRi/xqv+h5/gV3gTj3aWgyZ5UPB4r4qqemEsuAHP+3RyK6tr6xv5TXdre2d3r1Dcr5so0ZTVaCQi3QyJYYIrVgMOgjVjzYgMBWuEw7ux33hi2vBIPcIoZm1J+or3OCVgpU7hKA1CiYdZJw1kGD2nAXA1wjzLOoWSV/YmwIvEn5ESmqHaKTqHQTeiiWQKqCDGtHwvhnZKNHAqWOYGiWExoUPSZy1LFZHMtNPJCxk+tUoX9yJtSwGeqH8nUiKNGcnQdkoCAzPvjcWlHjNcwVInlMvkVgK9m3bKVZwAU3R6WS8RGCI8DhB3uWYUxMgSQjW3z2E6IJpQsDEvWe26Nkp/PrhFUj8v+1fly4eLUuV2FmoeHaMTdIZ8dI0q6B5VUQ1R9IJe0Rt6dz6cL+fb+Zm25pzZzAH6h5zzC+qxsUs=</latexit>

ki

<latexit sha1_base64="rpFudlhMvcSPHU0mBSe0o0XjwiY=">AAACRnicbVDLSgNBEOyN7/iKevDgZTAInsKu+DqKXjwqGBWyIcxOOmZwZnaZ6RXDsl/jVf/DX/AnvIlXJzEHHyloKKq66e5KMiUdheFbUJmanpmdm1+oLi4tr6zW1tavXZpbgU2RqtTeJtyhkgabJEnhbWaR60ThTXJ/NvRvHtA6mZorGmTY1vzOyJ4UnLzUqW3G1EfinSLWSfpYxCTNgNmy7NTqYSMcgf0n0ZjUYYyLzlqwGXdTkWs0JBR3rhWFGbULbkkKhWU1zh1mXNzzO2x5arhG1y5GH5Rsxytd1kutL0NspP6cKLh2bqAT36k59d1fbyhO9NBJQxOdRE+SWzn1jtuFNFlOaMT3Zb1cMUrZMD/WlRYFqYEnXFjpn2Oizy0X5FOesLpa9VFGf4P7T673GtFh4+Byv35yOg51HrZgG3YhgiM4gXO4gCYIKOEJnuEleA3eg4/g87u1EoxnNuAXKvAFY/6xDg==</latexit>

✓r

<latexit sha1_base64="/FTtCJqOHS00h8Duoexq0Cf67sQ=">AAACRnicbVDLSgNBEOyN7/iKevDgZTAInsKu+DqKXjwqGBWyIcxOOmZwZnaZ6RXDsl/jVf/DX/AnvIlXJzEHHyloKKq66e5KMiUdheFbUJmanpmdm1+oLi4tr6zW1tavXZpbgU2RqtTeJtyhkgabJEnhbWaR60ThTXJ/NvRvHtA6mZorGmTY1vzOyJ4UnLzUqW3G1EfinSLWSfpYxCTNgMmy7NTqYSMcgf0n0ZjUYYyLzlqwGXdTkWs0JBR3rhWFGbULbkkKhWU1zh1mXNzzO2x5arhG1y5GH5Rsxytd1kutL0NspP6cKLh2bqAT36k59d1fbyhO9NBJQxOdRE+SWzn1jtuFNFlOaMT3Zb1cMUrZMD/WlRYFqYEnXFjpn2Oizy0X5FOesLpa9VFGf4P7T673GtFh4+Byv35yOg51HrZgG3YhgiM4gXO4gCYIKOEJnuEleA3eg4/g87u1EoxnNuAXKvAFU9KxBQ==</latexit>

✓i

<latexit sha1_base64="wZYUwKT9f1gWR/KzcYLRijrIELU=">AAACSHicbVDJSgNBEO2JWxy3RA8iXhqD4CnMiNsx6MVjBLNAJoSeTidp0t0zdNeIYRj8Gq/6H/6Bf+FNvNlZDprkQcHjvSqq6oWx4AY879PJrayurW/kN92t7Z3dvUJxv26iRFNWo5GIdDMkhgmuWA04CNaMNSMyFKwRDu/GfuOJacMj9QijmLUl6Sve45SAlTqFozQIJaZZJw1kGD2nAXA1wn2eZZ1CySt7E+BF4s9ICc1Q7RSdw6Ab0UQyBVQQY1q+F0M7JRo4FSxzg8SwmNAh6bOWpYpIZtrp5IcMn1qli3uRtqUAT9S/EymRxoxkaDslgYGZ98biUo8ZrmCpE8plciuB3k075SpOgCk6vayXCAwRHieIu1wzCmJkCaGa2+cwHRBNKNicl6x2XRulPx/cIqmfl/2r8uXDRalyOws1j47RCTpDPrpGFXSPqqiGKHpBr+gNvTsfzpfz7fxMW3PObOYA/UMu9wvDH7G0</latexit>cgi

<latexit sha1_base64="HZc+W1/77cF78BfS6Pt6KVXQhfo=">AAACSHicbVDJSgNBEO2JWxy3RA8iXhqD4CnMiNsx6MVjBLNAJoSeTidp0t0zdNeIYRj8Gq/6H/6Bf+FNvNlZDprkQcHjvSqq6oWx4AY879PJrayurW/kN92t7Z3dvUJxv26iRFNWo5GIdDMkhgmuWA04CNaMNSMyFKwRDu/GfuOJacMj9QijmLUl6Sve45SAlTqFozQIJaZZJw1kGD2nAXA1wn2dZZ1CySt7E+BF4s9ICc1Q7RSdw6Ab0UQyBVQQY1q+F0M7JRo4FSxzg8SwmNAh6bOWpYpIZtrp5IcMn1qli3uRtqUAT9S/EymRxoxkaDslgYGZ98biUo8ZrmCpE8plciuB3k075SpOgCk6vayXCAwRHieIu1wzCmJkCaGa2+cwHRBNKNicl6x2XRulPx/cIqmfl/2r8uXDRalyOws1j47RCTpDPrpGFXSPqqiGKHpBr+gNvTsfzpfz7fxMW3PObOYA/UMu9wvTS7G9</latexit>cgr

<latexit sha1_base64="U6RoR8Me4SCtFwQ41dhnirC4/LU=">AAACOHicbVDJSgNBEO2JW4xbogcPXhqD4CnMiNsx6MVjBLPAzBB6Oj1Jk+6eobtGCEM+w6v+h3/izZt49QvsLAdN8qDg8V4VVfWiVHADrvvhFNbWNza3itulnd29/YNy5bBlkkxT1qSJSHQnIoYJrlgTOAjWSTUjMhKsHQ3vJ377mWnDE/UEo5SFkvQVjzklYCU/GBDIg0hiNe6Wq27NnQIvE29OqmiORrfiHAe9hGaSKaCCGON7bgphTjRwKti4FGSGpYQOSZ/5lioimQnz6c1jfGaVHo4TbUsBnqp/J3IijRnJyHZKAgOz6E3ElR4zXMFKJ5KrZD+D+DbMuUozYIrOLoszgSHBk8Rwj2tGQYwsIVRz+xymA6IJBZvritWlko3SWwxumbQuat517erxslq/m4daRCfoFJ0jD92gOnpADdREFCXoBb2iN+fd+XS+nO9Za8GZzxyhf3B+fgF1v6wp</latexit>

n̂

<latexit sha1_base64="UhKUPejpGc8qrFP/GDHXmR3QAFQ=">AAACOHicbVDJSgNBEO2JW4xbogcPXhqD4CnMiNsx6MVjBLPAzBB6Oj1Jk+6eobtGCEM+w6v+h3/izZt49QvsLAdN8qDg8V4VVfWiVHADrvvhFNbWNza3itulnd29/YNy5bBlkkxT1qSJSHQnIoYJrlgTOAjWSTUjMhKsHQ3vJ377mWnDE/UEo5SFkvQVjzklYCU/GBDIg0hiGHfLVbfmToGXiTcnVTRHo1txjoNeQjPJFFBBjPE9N4UwJxo4FWxcCjLDUkKHpM98SxWRzIT59OYxPrNKD8eJtqUAT9W/EzmRxoxkZDslgYFZ9CbiSo8ZrmClE8lVsp9BfBvmXKUZMEVnl8WZwJDgSWK4xzWjIEaWEKq5fQ7TAdGEgs11xepSyUbpLQa3TFoXNe+6dvV4Wa3fzUMtohN0is6Rh25QHT2gBmoiihL0gl7Rm/PufDpfzvesteDMZ47QPzg/v4CBrC8=</latexit>

t̂

<latexit sha1_base64="scbxO2ooVTzKipjdSM0l+xcznd0=">AAACM3icbVDLSgNBEOzxGeMr0YMHL4tB8BR2xdcx6MVjBPOAZAmzk9lkzMzsMjMrhCX/4FX/w48Rb+LVf3CS7EGTLWgoqrrp7gpizrRx3Q+0srq2vrFZ2Cpu7+zu7ZfKB00dJYrQBol4pNoB1pQzSRuGGU7bsaJYBJy2gtHd1G89U6VZJB/NOKa+wAPJQkawsVKzO8BC4F6p4lbdGZxl4mWkAhnqvTI66vYjkggqDeFY647nxsZPsTKMcDopdhNNY0xGeEA7lkosqPbT2bkT59QqfSeMlC1pnJn6dyLFQuuxCGynwGaoF72pmOtRzaTJdQKRJ3cSE974KZNxYqgk88vChDsmcqZhOX2mKDF8bAkmitnnHDLEChNjI81ZXSzaKL3F4JZJ87zqXVUvHy4qtdss1AIcwwmcgQfXUIN7qEMDCDzBC7zCG3pHn+gLfc9bV1A2cwj/gH5+AT0wqgw=</latexit>�
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Figure 54.6: Depicting the reflection of a Rossby wave packet from a solid wall. The left panel shows the wall
sloped at an angle, γ, relative to the positive x-axis. We orient the wall using both its tangential unit vector,
t̂ = ẑ × n̂ = x̂ cos γ + ŷ sin γ, as well as its unit normal, n̂ = x̂ sin γ − ŷ cos γ. The incident wave packet has
group velocity cgi directed to the southwest and reflected group velocity cgr directed to the northeast. The angle of
incidence equals to the angle of reflectance, θi = θr = θ, as required by the kinematic boundary condition (54.67).
The right panel shows the wave packet reflection using the dispersion diagram from Figure 54.5. Since the incident
and reflected wave have the same angular frequency, we can use the same circle for deriving the wavevectors. The
incident and reflected group velocities are oriented by the vectors Rgi (southwest) and Rgr (northeast) that point
from the perimeter to the center of the ω-circle. They both make an angle of θ with respect to the wall’s normal
direction, n̂. The incident and reflected wavevectors satisfy equation (54.72), which says (ki − kr) · t̂ = 0. This
relation provides the means to determine the reflected wavevector, kr using the diagrammatic method illustrated
here. Note that the right panel depicts the orientation of the western wall relative to the wavevectors and group
velocities in wavevector space. One should not interpret this depiction as somehow making the western wall
boundary into an eastern wall.

where we introduced the wall’s unit tangent vector

t̂ = ẑ × n̂ = x̂ cos γ + ŷ sin γ. (54.66)

The streamfunction can be any constant on the wall, which we take to be zero without loss of
generality

ψ(x = xwall, t) = 0, (54.67)

with xwall the coordinate for a point on the wall.

Relating incident and reflected wave properties

Write the velocity streamfunctions for the incident and reflected carrier waves as

ψi = Ai cos(ki · x− ωi t) and ψr = Ar cos(kr · x− ωr t), (54.68)

where Ai and Ar are the real wave amplitudes, ki and kr are the wavevectors, and ωi and ωr

are the angular frequencies. At any point in the fluid, the streamfunction is the sum of the
streamfunctions for the incident and reflected waves

ψ(x, t) = ψi(x, t) + ψr(x, t). (54.69)

Satisfaction of the boundary condition (54.67) requires

Ai cos(ki · xwall − ωi t) +Ar cos(kr · xwall − ωr t) = 0. (54.70)
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For this equality to hold at each point along the wall and for all time requires

ωi = ωr equal incident and reflected angular frequency (54.71a)

Ai = −Ar equal wave amplitudes but opposite sign (54.71b)

(ki − kr) · t̂ = 0 equal projection of wavevectors onto t̂. (54.71c)

The final equality means that there is an equal projection of the incident and reflected wavevectors
onto the wall’s tangential direction. It arises by writing the position for a point on the wall as

xwall = |xwall| t̂ =⇒ ki · t̂ = kr · t̂. (54.72)

Considering the wall to be an extreme case of a static inhomogeneous media, we can connect
these relations to the ray equations in Section 50.3.6. In that discussion we found that a wave
packet moving through a static but inhomogeneous media maintains a constant angular frequency
along a ray, whereas the wavevector changes.

Geometry of the reflection in wavevector space

Our considerations thus far have been generic, holding for any wave packet described by a
wave function such as the velocity streamfunction. To determine further details of the reflected
Rossby wavevector, return to the Rossby wave dispersion diagram in Figure 54.5, depicting the
reflection process in wavevector space. We only need one dispersion circle since both the incident
and reflected waves have the same angular frequency, as required by the kinematic boundary
condition (54.70).

To construct the dispersion diagram we start with the known incident group velocity, cgi,
which is assumed to be directed towards the southwest. Draw the corresponding group velocity
orientation vector, Rgi, from the circle perimeter to the center, also oriented in the same
southwesterly direction. From knowledge of Rgi, draw the incident carrier wavector, ki, extending
from the origin to where Rgi meets the perimeter. Next make use of the kinematic condition
(54.72) that allows us to compute the unique reflected carrier wavevector, kr, constructed by
setting kr · t̂ = ki · t̂. Finally, we can now compute the reflected group velocity orientation vector,
Rgr, which points to the center of the circle from the point where kr hits the circle perimeter. It
is through this construction that we find the incident and reflected group velocities make the
same angle with the wall normal:

θi = θr = θ. (54.73)

Reflections that satisfy this property are known as specular.

Features of the incident and reflected waves

Both the incident and reflected carrier wavevectors have a westward component, as required for
Rossby waves. However, the southwestward orientation of the incident group velocity is reflected
at the wall into a northeastward group velocity. The reflected wave packet, moving eastward,
has a larger zonal wavenumber than the incident wave packet:

|kr| > |ki|. (54.74)

This increase in wavenumber arises from an increase in zonal wavevector component, so that the
zonal wavelength of the waves within the reflected eastward wave packet are shorter than those
in the the incident wave packet. The larger wavenumber decreases the group velocity, so that
the northeastward reflected packet is slower than the southwestward incident packet. In a fluid
with dissipation, such as through viscosity (see Section 25.8), we expect smaller scale features to
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be dissipated more readily than larger scale features. Hence, the northeastward reflected wave
packet is expected to be dissipated more readily than the southwestward incident packet.

The reflection of westerly moving Rossby wave packets off a western boundary hold in their
converse for the reflection at easterly packets hitting an eastern wall. Namely, a slowly moving
easterly wave packet, which is comprised of short wavelength Rossby waves, is reflected off
the eastern wall as a faster moving westerly packet of longer wavelength Rossby waves. These
results have particular relevance to the ocean, such as through middle latitude western boundary
current intensification and the El Niño / Southern Oscillation phenomena in the tropics (see
Vallis (2017) for further discussion).

54.4.4 Further study
In addition to working through the geometry of planetary waves on a β-plane, Longuet-Higgins
(1964) studies planetary waves on a sphere, thus making use of spherical harmonics.

54.5 Edge waves
Edge waves are vorticity fluctuations that live on the interface separating two regions of different
background vorticity.9 As vorticity waves, the edge waves of this section share many features with
planetary Rossby waves studied in Section 54.3. Additionally, edge waves share features with
surface waves studied in Chapter 52, in that they travel along the interface while exponentially
decaying in the direction away from the interface.

54.5.1 Base state and the meridionally modulated wave ansatz
Following the decomposition (54.26) we write the relative vorticity as

ζfull = ζ + ζb (54.75)

where ζb is a static base state vorticity and ζ the vorticity fluctuating around the base state.
The absolute vorticity equation thus takes the form

D(ζ + ζb + f)/Dt = 0, (54.76)

in which we see that the base state vorticity, ζb, plays a role directly analogous to planetary
vorticity, f . This analog allows us to transfer concepts of planetary Rossby waves from Section
54.3 directly over to the edge waves of this section.

We are concerned with a base state comprised of a meridionally dependent zonal flow and
corresponding vorticity

ub = x̂ub(y) and ζb = ζb(y) = −∂yub. (54.77)

In particular, to generate edge waves we assume in Section 54.5.3 that the background vorticity
has a jump at y = y0. The vorticity equation (54.28) describing fluctuations relative to the
background flow (54.77) is given by

∂tζ + (u+ x̂ub) · ∇ζ + v (β + ∂yζb) = 0, (54.78)

which, when introducing the streamfunction ζ = ∇2ψ, leads to

∂t(∇2ψ) + ẑ · [∇ψ ×∇(∇2ψ)] + ub ∂x(∇2ψ) + ∂xψ (β + ∂yζb) = 0. (54.79)

9Sutherland (2010) in his section 2.6.2 refers to edge waves as Rayleigh waves.
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If we substitute the plane wave ansatz (54.3) into the vorticity equation (54.79), assuming
the angular frequency and wavevector are spatially independent, then we are led to

ω = kx ub −
kx (β + ∂yub)

|k|2 inconsistent equation. (54.80)

This equation looks like a straightforward generalization of the Rossby wave dispersion relation
(54.32). However, since the background flow, ub(y), has a meridional dependence, the plane
wave assumption that ω and k are spatial constants is, in fact, flawed. We conclude that the
vorticity equation (54.79) does not admit a plane wave solution when the background flow is not
a constant.

For the case of a background ub(y) that is gently varying, we can make use of the asymptotic
methods from Chapter 50. However, for the edge waves considered in this section we can make
progress with a somewhat simpler approach, in which we assume the streamfunction is a zonal
traveling wave modulated by a meridionally dependant amplitude

ψ(x, y, t) = ψ̃(y) cos(k x− ω t). (54.81)

We pursue this ansatz in the following.

54.5.2 Rayleigh-Kuo equation

The plane wave properties studied in Section 54.2 do not hold for the meridionally modulated
wave (54.81). Consequently, to derive a dispersion relation requires us to linearize the vorticity
equation (54.79), which takes the form

∂t(∇2ψ) + ub ∂x(∇2ψ) + ∂xψ (β + ∂yζb) = 0. (54.82)

Substituting the modulated wave ansatz (54.81) into the linearized vorticity equation (54.82)
gives

∂t(∇2ψ) = ω (−k2 + ∂yy)ψ̃ sin(k x− ω t) (54.83a)

ub ∂x(∇2ψ) = −ub k (−k2 + ∂yy)ψ̃ sin(k x− ω t) (54.83b)

∂xψ (β + ∂yζb) = −k (β + ∂yζb)ψ̃ sin(k x− ω t), (54.83c)

which then leads to the Rayleigh-Kuo equation for the meridional wave amplitude function10

(ub − c) (∂yy − k2) ψ̃ + (β − ∂yyub) ψ̃ = 0 with c = ω/k, (54.84)

which can also be written in the form

∂y[(ub − c) ∂yψ̃ − ψ̃ ∂yub] + [β − k2 (ub − c)] ψ̃ = 0. (54.85)

The Rayleigh-Kuo equation is fundamental to our study of barotropic shear instability in Chapter
61. For current purposes we use it to derive the dispersion relation for edge waves.

10Kuo extended the original Rayleigh equation to account for the β effect. In the absence of β we refer to just
the Rayleigh equation.
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u2 = x̂ [U + ⇣2 (y0 � y)]

Figure 54.7: A zonal point jet in the horizontal x-y plane with the jet maxima at y = y0. The velocity is linear
on both sides of the maxima and there is a finite jump in the vorticity at the maxima. Vorticity in the upper
region is given by ζ1 = −∂yu1 and in the lower region ζ2 = −∂yu2, with ζ1 > 0 and ζ2 < 0 depicted in this figure.
Oscillations of the material interface, y = y0 + η(x, t), are known as edge waves, which exist due to the jump in
the vorticity. The top half-plane is referred to as region 1 and the lower half-plane is region 2. Any surface with a
finite vorticity jump supports edge waves, with the symmetric point jet shown in this figure a prototypical case.

54.5.3 The point jet
Figure 54.7 illustrates the zonal flow characterizing a point jet, in which there is a linear velocity
profile on both sides of a maxima

ub = ub(y) x̂ with ub(y) = U + (y0 − y)
[
ζ1 for y > y0
ζ2 for y < y0,

(54.86)

where ζ1 and ζ2 are constants that measure the vorticity in the two half-planes

ζb = −∂yub =

[
ζ1 for y > y0
ζ2 for y < y0.

(54.87)

Because of the finite vorticity jump at y = y0, the meridional derivative of the vorticity is
proportional to the Dirac delta11

∂yζb(y = y0) = lim
ϵ→0

ζb(y = y0 + ϵ/2)− ζb(y = y0 − ϵ/2)
ϵ

= (ζ1 − ζ2) δ(y − y0). (54.88)

As a check on this expression, we take an integral across the interface to find

ˆ y0+ϵ/2

y0−ϵ/2
∂yζb dy = ζb(y0 + ϵ/2)− ζb(y0 − ϵ/2) = (ζ1 − ζ2)

ˆ y0+ϵ/2

y0−ϵ/2
δ(y − y0) dy. (54.89)

Finally, note that the point yet is zonally symmetric so that the base flow only has a nonzero
meridional pressure gradient

∇φb = ŷ ∂yφb. (54.90)

We study waves traveling on the material vorticity interface at y = y0 + η(x, t), and written
in the form

η(x, t) = η̃ cos(k x− ω t). (54.91)

To develop properties of the flow on each side of the interface requires us to develop the kinematic
and dynamic boundary conditions at the interface. Furthermore, the amplitude, η̃, is assumed to
be much smaller than the wavelength, thus allowing us to linearize the boundary conditions and
to evaluate the conditions at y = y0.

12 Note that we assume the interface undulation has the
same phase as the streamfunction (54.81), and this assumption will be seen to be self-consistent.

11See Chapter 7 for more on the Dirac delta. In particular, note that the Dirac delta, δ(y), has dimensions of
inverse length.

12We took the same approach for the surface gravity waves in Section 52.3.4.
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54.5.4 Kinematic boundary condition at the interface

The material nature of the interface means that the meridional velocity of a fluid particle at the
interface is given by13

v = Dη/Dt = (∂t + u ∂x)η ≈ (∂t + ub ∂x)η, (54.92)

where the approximation follows from linearization. This kinematic boundary condition holds
on both sides of the interface so that

(∂t + u1 ∂x)η = ∂xψ1 and (∂t + u2 ∂x)η = ∂xψ2. (54.93)

Applying this relation to the wave ansatz (54.91) for the interface, and the wave ansatz (54.81)
for the streamfunction as evaluated at y = y0, leads to

(u1 − c) η̃ = ψ̃1 and (u2 − c) η̃ = ψ̃2. (54.94)

Since u1(y0) = u2(y0) = U , the kinematic boundary condition says that the streamfunctions
match at the interface

ψ̃1 = ψ̃2 at y = y0. (54.95)

54.5.5 Dynamic boundary condition at the interface

For the dynamic boundary condition we assume there is no surface tension on the interface, in
which case pressure matches

φ1 = φ2 at y = y0. (54.96)

To make use of this boundary condition, consider the zonal velocity equation (38.1) with the
zonal flow decomposed as in equation (54.26)

∂t(u+ ub) + (u+ ub) · ∇(u+ ub)− f v = −∂xφ, (54.97)

which linearizes to

(∂t + ub ∂x)u+ v (∂yub − f) = −∂xφ =⇒ (∂t + ub ∂x) ∂yψ − ∂xψ (∂yub − f) = ∂xφ, (54.98)

where we set ∂xφb = 0 as per the assumed zonal symmetry of the background state in equation
(54.90). Consider an ansatz for the pressure in the same form as for the streamfunction

φ(x, y, t) = φ̃(y) cos(k x− ω t), (54.99)

which, along with the streamfunction ansatz (54.81), brings the velocity equation (54.98) to

[(ub − c) ∂y + (f − ∂yub)] ψ̃ = φ̃ at y = y0. (54.100)

Invoking continuity of pressure at the interface yields

[(U − c) ∂y + (f − ∂yu1)] ψ̃1 = [(U − c) ∂y + (f − ∂yu2)] ψ̃2 at y = y0. (54.101)

This dynamic boundary condition also follows from integrating the Rayleigh-Kuo equation
(54.85) across the interface and noting that [β − k2 (ub − c)] ψ̃ is continuous at the interface. We
can further simplify the dynamic boundary condition (54.101) by making use of the kinematic

13Equation (54.92) is the direct analog of the kinematic boundary condition developed in Section 19.6.2 for
vertical position of a material surface, z = η(x, y, t).

page 1542 of 2158 geophysical fluid mechanics



54.5. EDGE WAVES

region 2
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Figure 54.8: Depicting the pseudo-westward intrinsic phase propagation of an edge wave along a material surface
separating two regions of vorticity. Here the larger background relative vorticity is oriented to the north, ζb1 > ζb2,
so that the intrinsic phase velocity for the edge wave propagates to the west. We also show the point jet velocity
profile, whose relative vorticity jump supports the westward phase velocity of the edge wave. The variables, v
and ζ, are the anomalies relative to the unperturbed reference state, as per the decomposition equation (54.26).
The vorticity mechanism for the phase propagation is identical to that for planetary Rossby waves depicted
in Figure 54.3, where the background vorticity jump from the point jet serves the same role as the planetary
vorticity gradient. Consider a material line initially along y = y0 and whose relative vorticity equals to that of
the background point jet. A southward extension of this line leads to a local positive relative vorticity anomaly,
ζ′ > 0, since the particle moves into a region with lower background relative vorticity. This anomaly is depicted
by the counterclockwise induced secondary flow. Conversely, a northward extension leads to a local negative
vorticity anomaly and associated clockwise secondary flow. The anomalous meridional motion is depicted every π
radians, with maximal anomalies at wave nodes. The action of the coherent counter-rotating secondary vortices
leads to westward propagation of the phase. In general, the phase moves with the higher vorticity to the right,
which means that it moves from the convex side of the velocity profile towards the concave side.

boundary condition (54.95), ψ̃1 = ψ̃2 at y = y0. Doing so eliminates the Coriolis term and yields

(U − c) (∂yψ̃1 − ∂yψ̃2) = [∂yu1 − ∂yu2] ψ̃ at y = y0. (54.102)

54.5.6 Edge wave dispersion relation
Set β = 0 to focus on wave solutions arising just from the point jet, in which the Rayleigh-Kuo
equation (54.84) simplifies to

(ub − c) (∂yy − k2) ψ̃ − ∂yyub ψ̃ = 0. (54.103)

Evaluating this equation on the two sides of the interface, and assuming the base flow is distinct
from the phase velocity so that ub ̸= c, leads to

ψ̃ = ψ0

[
e−|k|(y−y0) for y > y0
e+|k|(y−y0) for y < y0.

(54.104)

As anticipated, the edge wave exponentially decays away from the interface. Just like the surface
waves in Chapter 52, the horizontal wave number, |k|, determines the exponential decay scale.

Using equation (54.104) in the dynamic boundary condition (54.102) yields the phase
velocity14

c = ω/k = U +
∂yu1 − ∂yu2

2 |k| = U︸︷︷︸
Doppler

−(ζ1 − ζ2)
2 |k| .︸ ︷︷ ︸

intrinsic

(54.105)

The background zonal flow, U , provides a Doppler shift to the phase velocity. The second piece
arises from the vorticity jump across the interface, and we refer to it as the intrinsic portion

14The phase of the edge wave only moves in the zonal direction, with c > 0 for a phase velocity in the +x̂
direction and c < 0 for a phase velocity in the −x̂ direction.
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Figure 54.9: Edge waves moving along a jump in the background vorticity field, with the background vorticity
equal to ζ1 north of the jump and ζ2 to the south. The phase velocity is oriented with the higher relative vorticity
to the right when facing in the direction of the phase velocity.

to the phase velocity. If the vorticity increases northward, so that ζ1 − ζ2 > 0, then c− U < 0,
thus signaling a westward phase velocity relative to the background flow. This behavior is
precisely that found for planetary Rossby waves, thus prompting some to refer to edge waves
as prototypical Rossby waves. In Figure 54.8, we summarize the vorticity mechanism for the
pseudo-westward phase velocity, with the mechanism identical to the planetary Rossby wave in
Figure 54.3. In general, the phase velocity for edge waves is directed so that the region of higher
vorticity is to the right when facing in the direction of the phase velocity, with this orientation
defining “pseudo-westward”. This terminology is taken from the truly westward phase velocity
corresponding to planetary waves, in which the larger planetary vorticity is to the north. Figure
54.9 provides a schematic for a curved vorticity jump line, whereby the edge waves propagate
along the jump, again with the phase in the pseudo-westward direction.

54.5.7 Further study
A similar treatment of edge waves can be found in Section 3.12 of Smyth and Carpenter (2019)
and Section 9.2.3 of Vallis (2017). As studied in Chapter 61, interactions between vorticity
waves can lead to shear instabilities, with such instabilities forming a fundamental feature of
unstable and turbulent geophysical flows.

54.6 Exercises
exercise 54.1: Rossby waves in a zonal channel
In Section 54.3 we examined the physics of Rossby waves on an unbounded β-plane. Here we
consider a zonal channel on a β-plane, with the channel unbounded in the zonal direction but
bounded meridionally. The meridional domain is given by ys ≤ y ≤ yn where yn − ys = L, and
with rigid material walls at the meridional boundaries. Everything else is just as in Section 54.3,
with a zonal and constant base flow, ub = U x̂.

(a) Write a single plane wave mode that travels in the zonal direction but is standing in
the meridional direction. Hint: the plane wave ansatz (54.6) should be modified so that
n̂ · (ẑ ×∇ψ) = 0 at the northern and southern walls. The boundary condition imposes a
constraint on the meridional wavenumber. What is the constraint?

(b) What is the dispersion relation for the Rossby waves in this channel?

Hint: recall our study of standing gravity wave modes in Section 52.8, with such modes
occuring when waves live in a bounded domain and thus can no longer travel freely. Instead, the
wave modes must fit inside of the domain in a manner that satisfies the boundary conditions.
We can think of such standing wave modes as a superposition of two oppositely traveling waves
with the same frequency and wavenumber that are locked in-phase in a manner that satisfies
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the boundary conditions. For example, the sum of a right and left moving wave with equal
amplitude, wavenumber, and frequency is given by the standing pattern

A cos(k x− ω t) +A cos(−k x− ω t) = 2A cos(ω t) cos(k x). (54.106)

exercise 54.2: Vortex mechanism for edge waves
Provide a sketch like Figure 54.8 but for edge waves in the case with ζ1 < ζ2. Hint: be sure to
orient the wave so that it moves from the convex side of the velocity profile towards the concave
side.
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Chapter 55

SHALLOW WATER WAVES

In this chapter we develop the basic theory for waves appearing in the shallow water fluid.
In the literature these waves are sometimes referred to as long waves since the shallow water
approximation applies when the horizontal length scale is much larger than the vertical, in
which case the horizontal wavelength is larger than the fluid depth. Our presentation focuses
on the case of a single shallow water layer, but we offer brief discussions of two-layer cases to
illustrate the generalizations to multiple layers. Notably, the algebraic tedium increases greatly
when adding layers. Hence, for theoretical analysis concerned with the role of stratification, it is
typically more fruitful to move to the continuous vertical stratification in Chapter 57, rather
than study waves in more than two stacked shallow water layers.

We first consider general features of both the nonlinear and then the linear shallow water
equations. For the linearized system, we develop a unified wave equation for the free surface.
The derivation of this equation is rather detailed and the resulting linear equation somewhat
complicated. Even so, it serves to unify across the full suite of linear shallow water waves on
a rotating β-plane, and offers insights into both the methods used to derive wave equations
and the scalings used to extract their core physical features. In unpacking this wave equation
we pursue a focused study of gravity waves, inertia-gravity waves, and Rossby waves. We also
consider the case of a Kelvin wave, which relies on a boundary in the presence of the Coriolis
parameter.

reader’s guide to this chapter
This chapter builds from the shallow water studies in Chapters 35 and 36, as well as other

waves chapters in this part of the book. In Chapter 56 we extend the study of shallow water
waves by considering a variety of case studies. The first half of this video offers a pedagogical
introduction to non-rotating shallow water waves.
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55.1 Loose threads

• Equatorial waves

• Energetics of Rossby waves as per Section 6.6 of Vallis (2017).

55.2 Shallow water equations

The shallow water equations of motion are given by the velocity equation (35.12) and thickness
equation (35.19), written here in their Eulerian form and with zero atmospheric pressure

∂tu+ (u · ∇)u+ f ẑ × u = −g∇η (55.1a)

∂th+∇ · (hu) = 0. (55.1b)
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In Section 55.3 we linearize these shallow water equations and study their properties in anticipa-
tion of later study of their wave fluctuations. Before doing so, however, we formulate a wave-like
equation that holds for the nonlinear shallow water model. Doing so anticipates certain features
of the linear equations while offering yet another view of the shallow water system beyond that
provided in Chapters 35 and 36. We pursued the analogous manipulations for acoustic waves in
Section 51.4.1.

55.2.1 Nonlinear wave equation
Consider the shallow water equations written using the material time derivative

Du/Dt+ f ẑ × u = −g∇η and Dh/Dt = −h∇ · u. (55.2)

Taking the material time derivative of the thickness equation, and then using the velocity
equation, yields

D

Dt

[
1

h

Dh

Dt

]
= −D(∇ · u)

Dt
(55.3a)

= −∇ · Du
Dt

+ ∂mu
n ∂nu

m (55.3b)

= −∇ · (−f ẑ × u− g∇η) + Smn Snm −Rm
nR

n
m, (55.3c)

where S is the strain rate tensor and R is the rotation tensor (both are discussed in Section
18.8). Rearrangement then leads to

D

Dt

[
1

h

Dh

Dt

]
− g∇2η = ∇ · (f ẑ × u) + Smn Snm −Rm

nR
n
m, (55.4)

which corresponds to equation (51.19) holding for the compressible fluid. We interpret this
equation as a generalized wave equation holding for movement following a shallow water fluid
column. The second order material time operator acts on the thickness to propagate signals
relative to the moving fluid. The linear terms, g∇2η and ∇ · (f ẑ × u), also appear in the
linearized equations and will be discussed later, whereas Smn S

n
m −Rm

nR
n
m is a nonlinear

source arising from gradients in the fluid velocity. We drop the nonlinear source when working
with the linearized equations, and likewise the material time derivative becomes a local time
derivative.

55.2.2 Another form of the nonlinear wave equation
To align more closely with the linear wave equation derived in Section (55.3), we consider
again the velocity and thickness equations in the form of equation (55.2) yet first determine
the evolution equation for the divergence of the thickness flux. For this purpose, multiply the
thickness equation by the velocity and the velocity equation by the thickness, and then add to
find

D(hu)/Dt = −f h ẑ × u− g h∇η − (hu)∇ · u. (55.5)

Divergence of the left hand side of this equation is given by

∇ · [D(hu)/Dt] = D[∇ · (hu)]/Dt+ (∂mu) · ∇(hum) = −D(∂th)/Dt+ (∂mu) · ∇(hum), (55.6)

where we used the thickness equation for the final equality. Combining with the divergence of
the right hand side of equation (55.5) yields

−D(∂th)/Dt+ ∂mu · ∇(hum) = −∇ · (f h ẑ × u)−∇ · (g h∇η)−∇ · (hu∇ · u), (55.7)
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with rearrangement leading to the nonlinear wave equation

D

Dt

∂η

∂t
−∇ · (g h∇η) = ∇ · (f h ẑ × u) + ∂mu · ∇(hum) +∇ · (hu∇ · u), (55.8)

where we noted that ∂th = ∂tη. This nonlinear equation corresponds directly to the linear
wave equation (55.31) derived below. It is this alternative form that readily offers a direct
decomposition of the various waves appearing in the shallow water fluid. Namely, in the linear
equations we drop the nonlinear sources on the the right hand side, and convert the material
time derivative to the local Eulerian time derivative.

55.2.3 Comments
This section stopped short of pursuing an analysis of nonlinear wave solutions. However, as in
the analogous discussion of the compressible fluid in Section 51.4.1, these manipulations signal
that wave-like equations are not restricted to linearized equations. Rather, they are basic to
the nonlinear equations, though with a more complex mathematical structure that generally
requires numerical or asymptotic methods to penetrate.

For the remainder of this chapter we focus on the linearized set of equations, thus enabling
the use of linear analysis methods. Even though much simpler than the nonlinear equations, we
uncover a rich and complex variety of linear wave phenomena within the shallow water model.

55.3 Linearized shallow water equations

In this section we linearize the shallow water velocity equation (55.1a) and thickness equation
(55.1b) in a manner that supports subsequent analysis of small amplitude fluctuations. In the
process we derive a linear wave equation for free surface undulations, with a number of source
terms that support the variety of waves studied in later sections. This wave equation is the
linearized version of the nonlinear shallow water equation (55.8).

55.3.1 Linearized thickness and velocity equations
We linearize the equations around a base state that is at rest and thus with a flat free surface.
Referring to Figure 35.1 leads to the expressions for the layer thickness

h(x, y, t) = [η + η′(x, y, t)]− [ηb + η′b(x, y)] = H + η′(x, y, t)− η′b(x, y), (55.9)

along with the corresponding velocity

u(x, y, t) = 0 + u′(x, y, t). (55.10)

The terms η and ηb are area means for the free surface and bottom topography, whereas η′ and
η′b are deviations from these means. We assume there are no boundary sources of volume so that
η is constant in time. The prime on the velocity in equation (55.10) acts as a reminder that it is
driven by gradients in the fluctuating free surface, η′.

We make the following assumptions about the terms comprising the layer thickness.

• The layer thickness is everywhere positive, h > 0, thus ensuring there is water at each
point in the layer at each time. We make this assumption since a vanishing layer thickness
represents a nontrivial change in the domain that requires the full nonlinear equations.

• A nonzero η′b allows for local variations in the bottom topography. We assume these
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variations are bounded by the mean thickness,

Hr ≡ H − η′b > 0, (55.11)

thus ensuring the resting thickness, Hr, is nonzero everywhere. This assumption does
not place strong constraints on η′b. In particular, we do not generally assume η′b is small
beyond assuming that Hr > 0. However, we do assume that η′b is small when studying the
quasi-geostrophic motion associated with Rossby waves in Sections 55.9.

• We assume the free surface undulations are much smaller than the resting thickness

|η′| ≪ Hr. (55.12)

This is the key assumption in the linearization process. It follows from our interest in
studying linear wave fluctuations of the free surface.

The above assumptions lead to the linearized version of the thickness equation (55.1b)

∂tη
′ +∇ · (Hr u

′) = 0. (55.13)

This equation says that a time tendency of the free surface is driven by the convergence of a
thickness flux, where the thickness is approximated by its resting value

h = H + η′ − η′b ≈ H − η′b = Hr. (55.14)

We conclude from equation (55.13) that free surface transients (i.e., waves) require a nonzero
horizontal convergence, −∇ · (Hr u

′) ̸= 0. It follows that waves in a flat bottom domain arise
only when there is a nonzero convergence in the horizontal flow, −∇ · u′ ̸= 0. Such horizontal
convergences are fundamental to the shallow water fluid, and provide the key distinction from
waves appearing in the horizontally non-divergent barotropic fluid from Chapter 54.

The linearized version of the shallow water velocity equation (55.1a) is

∂tu
′ + f ẑ × u′ = −g∇η′, (55.15)

which is reached by dropping the nonlinear advection, (u′ · ∇)u′. Advection is indeed smaller
than the other terms since velocity tendencies are driven by the assumed small amplitude
fluctuations in the free surface, thus making (u′ · ∇)u′ second order in small terms.

55.3.2 Energetics

We studied energetics of a single layer of shallow water fluid in Section 36.5. We here summarize
how the energetics appear for the linearized thickness equation (55.13) and velocity equation
(55.15). As per the norm with energetics of linearized systems (e.g., see the study of acoustic
energy in Section 51.6 and surface waves in Section 52.4), we work to second order accuracy in
fluctuating fields.

The gravitational potential energy per horizontal area is given by

Psw = g ρ

ˆ η

ηb

z dz = (g ρ/2) (η2 − η2b), (55.16)

and its time tendency is

∂tP
sw = g ρ (η + η′) ∂tη

′ ≈ −g ρ (η + η′)∇ · (Hr u
′). (55.17)
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Likewise, the kinetic energy per area is

Ksw =
ρ

2

ˆ η

ηb

u · u dz = (ρ/2)hu′ · u′ ≈ (ρ/2)Hr u
′ · u′, (55.18)

and its time tendency is

∂tK
sw = ρHr u

′ · ∂tu′ = −g ρHr u
′ · ∇η′ = −g ρHr u

′ · ∇(η + η′). (55.19)

The time tendency for the mechanical energy is thus given by

∂t(K
sw +Psw) = −g ρ∇ · [Hr (η + η′)u′]. (55.20)

This equation is a linearized version of the mechanical energy equation (36.119). Here, we only
have the transfer of energy due to the advection of pressure, whereas the nonlinear equations
also have the advection of kinetic energy and potential energy.

55.3.3 Potential vorticity
The shallow water potential vorticity (Section 39.3) is given by

Q =
f + ζ

h
=

f + ζ

H − η′b + η′
≈ Q′ (55.21)

where, to first order in primed quantities,

Q′ =
f + ζ ′

Hr

− f η′

H2
r

≈ f

H
+
H ζ ′ + f (η′b − η′)

H2
, (55.22)

with the approximation following from assuming |η′| ≪ Hr = H − η′b ≈ H. That is, we
assume both small amplitude free surface fluctuations, and small amplitude bottom topography
variations. Note that for the f -plane, the f/H term can be dropped since it is a constant. Use
of the linearized thickness equation (55.13) and linearized velocity equation (55.15), yields the
time tendency for the linearized potential vorticity (see Exercise 55.1)

∂tQ
′ + u′ · ∇(f/Hr) = 0. (55.23)

For a flat bottom f -plane domain, the linearized potential vorticity remains static at each point
in the fluid, ∂tQ

′ = 0. In contrast, nonzero gradients in f or Hr cause the linearized potential
vorticity to be modified through advection of f/Hr, with f/Hr the potential vorticity of the
background rest state. Hence, if f and/or Hr are spatially varying, solutions to the linear
equations, including waves, have an evolving potential vorticity.

55.3.4 Traveling plane wave ansatz and ∇ · v = 0

To derive the dispersion relation for the various shallow water waves, we consider the traveling
plane wave ansatz from Section 49.5, here written in the form

(u′, v′, η′) = (ũ, ṽ, η̃) ei(k·x−ω t), (55.24)

where the real part of the right hand side is assumed. The amplitudes (ũ, ṽ, η̃) are generally
complex numbers that are independent of space and time. Recall from Section 35.2 that the
horizontal velocity has no depth dependence in the shallow water layer, which follows from
making the hydrostatic approximation in the homogeneous fluid layer. Hence, a plane wave
solution to the shallow water wave equations must have a zero vertical component to the
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wavevector, kz = 0, so that
k = x̂ kx + ŷ ky. (55.25)

Evidently, the phase of shallow water plane waves (55.24) travels horizontally within a layer.

As a layer with a constant density, the fluid in the shallow water layer is incompressible so
that ∇ · v = 0. For plane waves moving in three-dimensions, this non-divergence constraint
means that the velocity of the plane waves satisfies, k · u + kz w = 0, (e.g., see our study of
inertial waves in Chapter 53). However, for the shallow water system we saw above that kz = 0,
which would then seem to imply that k ·u = 0. Yet shallow water waves do not satisfy k ·u = 0
since they are horizontally divergent.

The resolution of this quandary concerns the vertical velocity in a shallow water layer. Namely,
the vertical velocity component is diagnosed via the horizontal convergence, ∂zw = −∇ · u. The
depth independence of the horizontal velocity leads to a linear depth-dependence of the vertical
velocity component (equation (35.39))

∇ · u+ ∂zw = 0 =⇒ w(z) = w(ηb)− (z − ηb)∇ · u, (55.26)

which for the plane wave (55.24) leads to

w(z) = w(ηb)− i (z − ηb)k · ũ ei(k·x−ω t). (55.27)

The factor of i =
√
−1 out front means that the vertical velocity component is π/2 out of phase

with the horizontal velocity. Also note that |z − ηb| |k| ≤ H |k|. Since H |k| ≪ 1 for shallow
water flow, we see that the vertical velocity component has a much smaller magnitude than the
horizontal velocity.

55.4 Unified shallow water wave equation

In this section we combine the linearized thickness equation (55.13) and linearized velocity
equation (55.15) to render a unified wave equation for the free surface.1 We start by closely
following the steps taken for the nonlinear wave equation in Section 55.2.2. Yet we go much
further for the purpose of obtaining a linear equation with the free surface as the only prognostic
field. Although the unified wave equation is rather tedious, it does serve to unify the variety
of waves supported by the rotating shallow water system. Once deriving this wave equation
(equation (55.42)), we study its scaling for high frequency (ω2 > f2; super-inertial) and low
frequency (ω2 < f2; sub-inertial) wave motion. That discussion anticipates analysis pursued in
more depth in the remaining sections of this chaper.

55.4.1 Use of the divergence equation

We start by forming an equation for the evolution of the divergence of Hr u
′, which is found by

multiplying the linearized velocity equation (55.15) by Hr and then taking the divergence

∂t[∇ · (Hr u
′)] +∇ · (ẑ × f Hr u

′) = −∇ · (g Hr∇η′), (55.28)

where the divergence and time derivative commute. The thickness equation (55.13) can be used
to eliminate the divergence, in which case we are led to

∂ttη
′ −∇ · (g Hr∇η′) = −ẑ · [∇× (f Hr u

′)]. (55.29)

1Many of the manipulations in this section follow Lecture 14 of Pedlosky (2003).
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where we made use of the identity

∇ · (ẑ × f Hr u
′) = −ẑ · [∇× (f Hr u

′)]. (55.30)

The wave equation (55.29) is the linear analog of the nonlinear equation (55.8). We can expand
the cross product on the right hand side to identify the variety of physical processes supporting
shallow water waves

∂ttη
′ = ∇ · (g Hr∇η′)︸ ︷︷ ︸

gravity waves

−ẑ · (f Hr∇× u′)︸ ︷︷ ︸
inertial waves

−ẑ · (Hr∇f × u′)︸ ︷︷ ︸
planetary Rossby waves

−ẑ · (f ∇Hr × u′).︸ ︷︷ ︸
topographic Rossby waves

(55.31)

Although suggestive, it is useful to further manipulate this equation into one that involves a
single prognostic field, here chosen to be the free surface. In so doing we provide a unified
discussion of the dispersion relation for the various waves admitted by the shallow water model,
and allow for a seamless decomposition of these motions in terms of space and time scales.
We pursue the somewhat tedious manipulations in Section 55.4.2, but only after considering a
heuristic discussion of the physical processes in equation (55.31).

Non-rotating gravity waves

Without rotation (f = 0) yet with gravity (g ̸= 0), equation (55.31) reduces to the shallow water
gravity wave equation

∂ttη
′ −∇ · (g Hr∇η′) = 0. (55.32)

With a flat bottom, these waves are non-dispersive plane gravity waves, whereas the case with a
gently sloping bottom requires the WKBJ method developed in Section 51.9. These waves are
sometimes referred to as long gravity waves, in contrast to the shorter waves that occur in deep
water (see Section 52.6). We study shallow water gravity waves in Section 55.5.

Inertia-gravity waves

The wave equation
∂ttη

′ −∇ · (g Hr∇η′) = −f Hr ζ
′ (55.33)

describes dispersive inertia-gravity waves in a shallow water layer. The inertial portion of
the waves rely on both rotation (f ̸= 0) and vorticity (ζ ′ ≠ 0). In Chapter 53 we studied
inertial waves in a homogeneous fluid. The key difference here is that the shallow water fluid
is hydrostatic, which, as we will see, alters the dispersion relation relative to that derived for
the non-hydrostatic homogeneous fluid in Chapter 53. It furthermore motivates us to examine
inertial waves along with gravity waves since a hydrostatic fluid only arises in a gravity field.
Such inertia-gravity or Poincaré waves, as they appear in the shallow water fluid, are the topic
of Section 55.8

Planetary and topographic Rossby waves

The remaining two terms on the right hand side of equation (55.31) lead to waves supported by a
background vorticity gradient. The planetary Rossby waves rely on a nonzero planetary vorticity
gradient (i.e., the β effect), whereas topographic Rossby waves rely on a nonzero gradient in the
bottom topography. Both of these waves are dispersive, and both have frequencies lower than
inertia-gravity waves. As shown in Section 55.4.6, and as already detailed for the horizontally
non-divergent barotropic model in Section 54.3, the wave equation for Rossby waves has just
a single time derivative acting on the free surface. This situation contrasts to the two time
derivatives found for inertia-gravity waves and currently appearing in equation (55.31). Although
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shallow water Rossby waves rely on a nonzero ∇(Hr f) × u′, we postpone writing their wave
equation until working through some more technical details.

In Chapter 54 we studied many properties of Rossby waves in the horizontally non-divergent
barotropic fluid, with these waves also relying on a gradient in the background (potential)
vorticity. It is thus not surprising that shallow water Rossby waves share key physical properties
with Rossby waves in the non-divergent barotropic flow. We require more technical steps to
extract the physics within the shallow water model, and to expose their key distinction from
Rossby waves in the horizontally non-divergent barotropic model. Note also that the shallow
water model supports topographic Rossby waves. In contrast, no such waves appear in the
horizontally non-divergent barotropic model, since that flow is restricted to strictly move along
constant depth contours, with no cross isobath motion.

55.4.2 Use of the vorticity equation

We now return to the wave equation (55.31) and perform some further manipulations in a quest
to derive an equation that only has the free surface along with geophysical parameters. Start by
writing the divergence equation (55.29) in its form that extracts the β term

∂ttη
′ −∇ · (g Hr∇η′) = −f ẑ · [∇× (Hr u

′)] + β Hr u. (55.34)

Next work with ẑ · [∇ × (Hr u
′)], which is the vorticity of the thickness (resting thickness)

weighted velocity. To compute its time evolution, multiply the velocity equation (55.15) by Hr

and take the curl

∇× ∂t(Hr u
′) = −∇× (ẑ × f Hr u

′)− g∇Hr ×∇η′ (55.35a)

= −ẑ [∇ · (f Hr u)]− g∇Hr ×∇η′, (55.35b)

where the second equality made use of the identity

∇× (ẑ × f Hr u
′) = ẑ [∇ · (f Hr u)]. (55.36)

Now take the time derivative of the divergence equation (55.34) and use the vorticity equation
(55.35b) to find

∂t [∂ttη
′ −∇ · (g Hr∇η′)] = −f ẑ · [∇× ∂t(Hr u

′)] + β Hr ∂tu
′ (55.37a)

= f ∇ · (f Hr u) + f g ẑ · (∇Hr ×∇η′) + β Hr ∂tu
′ (55.37b)

= −f2 ∂tη′ + f g ẑ · (∇Hr ×∇η′) + β Hr (f v
′ + ∂tu

′). (55.37c)

Rearrangement leads to

∂t [L(η′)−∇ · (g Hr∇η′)] = f g ẑ · (∇Hr ×∇η′) + β Hr (f v
′ + ∂tu

′), (55.38)

where we introduced the linear time operator as a shorthand

L = ∂tt + f2. (55.39)

This operator commutes with time derivatives but commutes with space derivatives only for the
f -plane. For the case of β = 0, equation (55.38) only has the free surface height as a prognostic
field. Hence, this equation is suited to developing the dispersion relation for gravity waves and
inertial waves. Yet, as we show in the following, we need more work for sub-inertial Rossby
waves.
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55.4.3 The unified wave equation just with η′

The final step is to eliminate the term f v′ + ∂tu
′ from equation (55.38) in favor of terms

proportional to the free surface. The key step is to make use of the following identities derived
in Exercise 55.2

L(u′) = −g (∂xtη′ + f ∂yη
′) and L(v′) = −g (∂ytη′ − f ∂xη′). (55.40)

Acting with L on equation (55.38), and using the identities (55.40), yield

∂t
[
L[L(η′)−∇ · (g Hr∇η′)]

]
= f g ẑ · [∇Hr ×∇L(η′)] + β Hr f L(v′) + β Hr ∂tL(u′). (55.41)

Expanding the linear operator and rearranging leads to the desired unified equation

∂t
[
L[L(η′)−∇·(g Hr∇η′)]

]
= f g ẑ ·[∇Hr×∇L(η′)]+g β Hr (f

2 ∂xη
′−2 f ∂ytη′−∂xttη′). (55.42)

As shown in the following sections, this linear partial differential equation encapsulates the full
suite of linear wave processes active in a shallow water layer on a β-plane with topography.
However, it is not so simple to parse in its current form, thus motivating the examination of
limiting forms of this equation. In particular, we consider super-inertial waves (ω2 > f2) versus
sub-inertial waves (ω2 < f2). In both cases we assume horizontal length scales according to the
β-plane, along with small fluctuations of the topography.

55.4.4 Scaling for the β-plane with small topography
To help analyze the super-inertial and sub-interial wave motions contained in equation (55.42),
introduce the following length and time scales of the motions

L = horizontal scale and ω = angular frequency. (55.43)

We work under the assumptions of a β-plane approximation (see equation (24.50)) so that the
horizontal scales of motion satisfy

β L≪ |fo|, (55.44)

where we wrote the Coriolis parameter as f = fo+β y. We also assume the topography undulation,
η′b, is much smaller than the mean layer thickness,

η′b ≪ H. (55.45)

Both approximations (55.44) and (55.45) are familiar from the development of quasi-geostrophy
theory in Section 43.5.1. Finally, assume f > 0 as per the northern hemisphere, with occurances
of f changed to |f | for southern hemisphere results.

Introducing the above scales into the wave equation (55.42) leads to

∂tL
2(η′) ∼ ω (ω2 + f2)2 η′ (55.46a)

∂tL[∇ · (g Hr∇η′)] ∼ ω (ω2 + f2) (g Hr/L
2) η′ (55.46b)

f g∇Hr ×∇L(η′) ∼ (f g η′b/L
2) (ω2 + f2) η′ (55.46c)

g β Hr f
2 ∂xη

′ ∼ (g β Hr f
2/L) η′ (55.46d)

−2β g Hr f ∂ytη
′ ∼ (β gHr f ω/L) η

′ (55.46e)

β g Hr ∂xttη
′ ∼ β g Hr (ω

2/L) η′. (55.46f)

Next, we separately examine the super-inertial regime, ω2 > f2, and the sub-inertial regime,
ω2 < f2.
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55.4.5 Super-inertial wave equation
In this subsection we derive an approximate wave equation relevant for super-inertial motions
(ω2 > f2).

Super-inertial scaling for the LHS of equation (55.42)

From equations (55.46a) and (55.46b), the two terms on the left hand side of the wave equation
(55.42) scale as

LHS = ∂tL
2(η′)− ∂tL[∇ · (g Hr∇η′)] ∼ ω3 [ω2 + g Hr/L

2] η′. (55.47)

Assuming the horizontal length scale is given by the inverse wavenumber, L = |k|−1, yields

g Hr/L
2 ≈ c2grav |k|2 ≈ ω2 =⇒ L2 ∼ g Hr/ω

2. (55.48)

The first approximation follows from assuming η′b ≪ H so that g Hr ≈ g H = c2grav, and the
second approximation follows from assuming a non-rotating gravity wave dispersion relation.2

In essence, we are assuming the two terms in equation (55.47) scale the same, which holds so
long as the length scale of the super-inertial waves satisfies L2 ∼ g Hr/ω

2.

Ratio of RHS terms to the LHS

Now consider the magnitude for each term on the right hand side of the wave equation (55.42)
relative to the left hand side terms just found in equation (55.47). The ratio for terms in equation
(55.46c) satisfy

f g∇Hr ×∇L(η′)

LHS
∼ ω2 f g η′b/L

2

ω3 g Hr/L2
=
f η′b
ωHr

≪ 1, (55.49)

where the inequality follows from assuming that the bottom topography undulation is small
as per equation (55.45). The ratio for the remaining three terms (equations (55.46d), (55.46e),
and (55.46f)) are also much less than unity, with these inequalities following from the β-plane
approximation (55.44)

g β Hr f
2 ∂xη

′

LHS
∼ g β Hr f

2/L

ω3 g Hr/L2
= (β L/ω) (f/ω)2 < (β L/f) (f/ω)2 ≪ 1 (55.50a)

−2 f ∂ytη′
LHS

∼ β gHr f ω/L

ω3 g Hr/L2
= (β L/ω) (f/ω) < (β L/f) (f/ω)≪ 1 (55.50b)

β g Hr ∂xttη
′

LHS
∼ β g Hr (ω

2/L)

ω3 g Hr/L2
= (β L/ω) < (β L/f)≪ 1. (55.50c)

Inertia-gravity wave equation for super-inertial waves

We thus conclude that for super-inertial waves on a β-plane and with small amplitude topography,
then the two terms on the left hand side of equation (55.42) balance so that

∂tL
[
L(η′)−∇ · (g Hr∇η′)

]
≈ 0. (55.51)

This relation can be maintained by setting

(∂tt + f2o ) η
′ −∇ · (g Hr∇η′) = 0, (55.52)

2We derive the shallow water gravity wave dispersion relation in equation (55.80). Also, see the discussion of
long surface gravity waves in Section 52.5.3.
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which is the equation for inertia-gravity waves on an f -plane with small amplitude topography.
Note that we put f = fo in equation (55.52) since the β effect is most crucial for sub-inertial
wave motions as discussed in Section 55.4.6, rather than super-inertial motions. We study
non-rotating gravity waves in Section 55.5 and inertia-gravity waves in Section 55.8.

55.4.6 Sub-inertial wave equation

We here derive an equation relevant for sub-inertial wave motions (ω2 < f2). In fact, we further
restrict the motion to those that are very low frequency so that

ω/f ∼ β L/fo ∼ η′b/H ≪ 1. (55.53)

We also assume that the horizontal length scales are on the order of

L ∼ Ld = cgrav/f =
√
g H/f, (55.54)

which is known as the deformation radius for the shallow water layer, first introduced in Section
43.3.6 . This length scale appears throughout our discussion of rotating shallow water waves.

The assumed scalings (55.53) along with (55.54) are precisely those assumed for shallow
water quasi-geostrophy as detailed in Section 43.5. The corresponding sub-inertial waves are
referred to as planetary Rossby waves and topographic Rossby waves. We here derive the wave
equation for these waves, with further details of their dispersion relation provided in Section
55.9.

Sub-inertial scaling for the LHS of equation (55.42)

For the sub-inertial scalings (55.53), the linear operator is order L ∼ O(f2), so that the left
hand side of the wave equation (55.42) scales as

LHS = ∂tL
2(η′) + ∂tL[∇ · (g Hr∇η′)] ∼ ω f2 [f2 + g Hr/L

2] η′. (55.55)

As for the super-inertial waves in Section 55.4.5, we assume the two terms in the right expression
scale the same. To ensure that scaling holds, we focus on horizontal length scales satisfying

L2 ∼ g Hr/f
2 ∼ g H/f2 = c2grav/f

2 = L2
d . (55.56)

This assumption of deformation scale motions for sub-inertial waves can be compared to the
super-inertial length scale in equation (55.48). We find that super-inertial motions are generally
smaller than the deformation radius whereas sub-inertial motions are on the order or larger than
the deformation radius.

With the above scaling (55.56) for the horizontal length, the left hand side of the wave
equation (55.42) scales as

LHS ∼ (ω f gHr/L
2) η′. (55.57)

We will later replace f with fo in equation (55.57), with that replacement warranted by the
β-plane approximation, β L≪ fo. For now, we reduce clutter by just writing f .

Ratio of RHS terms to the LHS

Now consider the magnitude for each term on the right hand side of the wave equation (55.42)
relative to the left hand side terms just found in equation (55.57). The ratio for terms in equation
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(55.46c) is given by

f g∇Hr ×∇L(η′)

LHS
∼ f3 g η′b/L

2

ω f2 g Hr/L2
=
f η′b
ωHr

= O(1), (55.58)

with the final equality following from the assumed scales in equation (55.53). We also find that
the ratio for terms in equation (55.46d) is given by

g β Hr f
2 ∂xη

′

LHS
∼ g β Hr f

2/L

ω f2 g Hr/L2
= β L/ω = O(1), (55.59)

where we again made use of equation (55.53) for the final equality. In contrast to these order
unity ratios, the ratios involving terms in equations (55.46e) and (55.46f) are much less than
unity

−2 f ∂ytη′
LHS

∼ β g Hr f ω/L

ω f2 g Hr/L2
= β L/f ≪ 1 (55.60a)

β g Hr ∂xttη
′

LHS
∼ β g Hr (ω

2/L)

ω f2 g Hr/L2
= (β L/f) (ω/f)≪ 1. (55.60b)

The first inequality follows from the β-plane approximation (55.44), and the second follows also
from the β-plane approximation as well as the low frequency assumption, ω2 ≪ f2.

Shallow water planetary and topographic Rossby wave equation

The above scalings lead to the approximate wave equation for sub-inertial waves moving on a
β-plane with small amplitude bottom topography

∂t [f
2 η′ −∇ · (g H∇η′)] = f g ẑ · (∇Hr ×∇η′) + g H β ∂xη

′. (55.61)

Note that we set Hr = H everywhere except where it is differentiated, with this replacement
consistent with the assumed η′b ≪ H (equation (55.53)). A slightly more tidy version arises by
introducing the squared gravity wave speed c2grav = g H and the deformation radius, Ld = cgrav/f ,
so that

∂t [(L
−2
d −∇2) η′] = (f/H) ẑ · (∇Hr ×∇η′) + β ∂xη

′. (55.62)

The first term on the right hand side gives rise to topographic Rossby waves, whereas the second
term gives rise to planetary Rossby waves. It is notable that this equation has only a single time
derivative, which contrasts with the super-inertial wave equation (55.52).

Rossby waves are supported by potential vorticity gradients

We can write the right hand side of equation (55.62) in the following equivalent form

∂t [(L
−2
d −∇2) η′] = H ẑ · (∇η′ ×∇Qr). (55.63)

In this manner we see that both planetary Rossby waves and topographic Rossby waves are
supported by gradients in the resting fluid’s potential vorticity3

Qr = f/Hr. (55.64)

3When studying waves in the horizontally non-divergent barotropic fluid (Section 54.3), we also noted the
need for a background potential vorticity gradient to support Rossby wave modes.
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Equation (55.63) reveals that shallow water Rossby waves arise from a mis-alignment between
contours of constant resting state potential vorticity and contours of constant surface height.

The effective β vector

We offer one further expression for the Rossby wave equation

∂t [(L
−2
d −∇2) η′] = ẑ · (∇η′ × βeff), (55.65)

where we introduced the effective beta vector that combines the planetary vorticity gradient
with the topographic gradient

βeff = ∇f −Qr∇Hr = β ŷ −Qr∇Hr. (55.66)

Again, this form exhibits the parallel role of both planetary beta and topographic slopes in
supporting Rossby waves. Equation (55.65) says that shallow water Rossby waves arise from a
mis-alignment between the effective beta vector and free surface height gradients.

55.4.7 Comments on bottom topography

Throughout this section we allowed for the bottom topography, as defined by Hr = H − η′b
(equation (55.11)), to have arbitrary (x, y) spatial dependence. In the following sections we make
simplifications to the topography, thus facilitating the study of plane waves, planetary waves,
and topographically trapped waves. The study of waves with more general bottom topographies
requires the asymptotic methods from Chapter 50.

55.5 Shallow water gravity waves

In this section we study shallow water gravity waves in the absence of planetary rotation (f = 0).
We already encountered features of these waves in Chapter 52 when studying surface gravity
waves. Even so, it is useful to start from the shallow water equations to directly derive the
properties of the non-dispersive gravity waves. Additionally, we here do not introduce a velocity
potential as done for the surface gravity waves, even though the non-rotating shallow water
gravity waves are irrotational. We do not introduce the velocity potential since the other
waves studied in this chapter carry vorticity, thus making the velocity potential an incomplete
description for those cases.

55.5.1 Flat bottom gravity waves

Setting η′b = 0 in equation (55.32) yields the shallow water gravity wave equation holding for a
flat bottom domain

(∂tt − c2grav∇2) η′ = 0, (55.67)

where the gravity wave speed is determined by the two geophysical properties of the system

cgrav =
√
g H. (55.68)

To help emphasize a few key properties, we return to the linear thickness equation (55.13) and
linear velocity equation (55.15), now written with f = 0 and η′b = 0

∂tη
′ = −H∇ · u′ and ∂tu

′ = −g∇η′. (55.69)
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Taking the time derivative of the thickness equation and then using the velocity equation readily
yields the wave equation (55.67). Conversely, taking the horizontal divergence of the velocity
equation yields

∂t(∇ · u′) = −g∇2η′, (55.70)

so that time changes in the horizontal divergence are driven by curvature in the free surface.
Taking the time derivative of this equation, and using the thickness equation, reveals that the
horizontal divergence also satisfies the wave equation

(∂tt − c2grav∇2) (∇ · u′) = 0. (55.71)

Hence, both the free surface and the horizontal divergence travel as non-dispersive gravity waves
in the flat bottom non-rotating shallow water layer.

Finally, observe that the linearized potential vorticity equation (55.23), in the presence of
f = 0 and η′b = 0, means that the relative vorticity is static at each point in the fluid

∂tζ
′ = 0. (55.72)

Hence, these gravity wave fluctuations do not alter the flow vorticty. In particular, if the flow
starts with zero vorticity then shallow water gravity wave fluctuations retain the zero vorticity.

55.5.2 Structure of the gravity wave

Substituting the plane wave ansatz (55.24) into the linearized thickness and velocity equation
(55.69) allows us to connect the wave amplitudes for the free surface and velocity

ω ũ = g k η̃ =⇒ k × ũ = 0 and ω η̃ = H k · ũ. (55.73)

The identity k × ũ = 0 for the plane wave means that the fluid particle’s horizontal velocity is
oriented parallel to the horizontal wave vector, so that

ũ = k̂ (k̂ · ũ) with k̂ = k/|k|. (55.74)

This alignment of the horizontal velocity with the wavevector is a direct result of the irrotational
nature of the gravity waves, which was already noted when discussing the linearized vorticity
equation (55.72). Additionally, with a real wavevector and real angular frequency, the amplitude
relation ω ũ = g k η̃ also holds for the traveling plane wave velocity and free surface so that

ωu = g k η =⇒ k · u = g|k|2η/ω and u = k̂ (g/cgrav) η̃ cosP, (55.75)

where
P = k · x− ω t (55.76)

is the phase.

Alignment of the horizontal fluid particle velocity with the wavevector (equation (55.75))
indicates that motion in the shallow water gravity wave is horizontally longitudinal. However,
as noted in Section 55.3.4, a shallow water fluid has a nonzero vertical velocity component that
is a linear function of depth, as given by equations (55.26) and (55.27). The presence of vertical
motion within the wave means that the waves are not longitudinal in three dimensions. Rather,
a fluid particle moves horizontally in the direction of the wavevector but the particle also moves
vertically, thus tracing out an elliptical path in the vertical-horizontal plane.

To describe the vertical particle motion in the wave, make use of equation (55.27) for the
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vertical velocity and equation (55.75) for the horizontal velocity, thus leading to

w = −i (z − ηb)k · ũ ei(k·x−ω t) = (z − ηb) (g |k|2 η̃/ω) (−i cosP+ sinP), (55.77)

where we set w(ηb) = 0 for a flat bottom. Taking the real part renders the vertical velocity
within the shallow water gravity wave

w = (z − ηb) (g |k|2/ω) η̃ sinP = (z − ηb) |k| (g/cgrav) η̃ sinP (55.78)

The vertical velocity is π/2 out of phase with both the free surface and the horizontal velocity.
Furthermore, the ratio of the maximum magnitude for the vertical and horizontal velocities is
given by

|w|max

|u|max

= (z − ηb) |k|. (55.79)

Shallow water gravity waves are characterized by wavelengths that are long relative to the
fluid depth. Hence, even at the free upper surface, the ratio (55.79) is much less than unity. As
a result, the elliptical particle paths are longer in the horizontal direction than vertical direction.
Furthermore, since the horizontal motion is depth-independent, the elliptical particle trajectories
have the same excursion along the major axis (the horizontal axis) throughout the layer depth.
This behavior contrasts to the deepwater gravity waves studied in Chapter 52, whose amplitude
in all directions decreases with depth. In Figure 55.1, we depict the motion of fluid particles
with a shallow water gravity wave. In Section 52.11.4 we study the Stokes drift resulting from
the phase averaged particle motion in these waves.
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Figure 55.1: Illustrating motion within a shallow water gravity wave over a flat bottom, here depicted at a
fixed point in time with the phase velocity to the right. The horizontal arrows are the horizontal velocity as per
equation (55.75), and the vertical arrows are for the vertical velocity as per equation (55.78). The horizontal
and vertical velocity components are π/2 out of phase, so that the vertical velocity vanishes when the horizontal
velocity has maximum magnitude, and vice versa. This figure is a slightly simplified version of the lower panel in
Figure 52.2.

55.5.3 Dispersion relation

Substitution of the plane wave ansatz (55.24) into the wave equation (55.67) leads to

ω2 = g H |k|2 = c2grav|k|2. (55.80)

Taking the positive square root then leads to the shallow water gravity wave dispersion relation4

ω = |k| cgrav =⇒ Cp = ω/|k| = cgrav, (55.81)

4Recall that we always consider the angular frequency of waves to be non-negative (Section 49.2), hence we
only take the positive root for the dispersion relation (55.81).
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where we identified the phase speed as the gravity wave speed

Cp = cgrav =
√
g H. (55.82)

Each wavevector propagates at the same speed since the phase speed is only dependent on
geophysical parameters (gravitational acceleration and the resting layer thickness). Equivalently,
higher wavenumber waves have correspondingly higher frequency, and the relation between the
two is linear. We conclude that non-rotating shallow water gravity waves are non-dispersive.

55.5.4 Steady one-dimensional flow over an obstacle

Consider a steady one-dimensional inviscid flow of a single shallow water layer of fluid in a channel
with a varying bottom, z = ηb(x), such as depicted in Figure 55.2. This flow approximates that
in a straight canal as water moves over a weir. The thicker water upstream of the weir creates a
pressure gradient that speeds up the flow as it moves over the weir. Throughout the analysis we
assume the fluid has a positive layer thickness, h > 0, so that there is no region where the fluid
layer vanishes.
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Figure 55.2: One-dimensional flow of a shallow water fluid layer in a channel with an obstacle. This flow
approximates that for water flowing over a weir in a straight canal. If a fluid particle moves faster than the locally
defined gravity wave speed, u >

√
g h or Fr > 1, then the flow is said to undergo a hydraulic jump, which typically

occurs first at the peak of the weir with u =
√
g h or Fr = 1. Flow that is faster than the gravity wave speed

is said to be super-critical, whereas slower flow is sub-critical. We here depict sub-critical flow where the local
Froude number is everywhere less than unity, Fr < 1. The fluid is thicker upstream than downstream of the weir
as per equation (55.89), thus enabling a higher pressure upstream to create a pressure drop across the weir.

The steady, one-dimensional, non-rotating shallow water equations take the form

u ∂xu = −g ∂x(ηb + h) (55.83a)

u ∂xh+ h ∂xu = 0, (55.83b)

where we wrote the free surface height, η, as the sum of the bottom topography position plus
the layer thickness (see Figure 35.1)

η = ηb + h. (55.84)

The momentum equation can be written in the form of a mechanical energy equation

∂x(u
2/2 + g h) = −g ∂xηb. (55.85)

We see that the mechanical energy, u2/2 + g h, has spatial variations according to the variations
in the bottom topography. Otherwise, the mechanical energy is a spatial constant.

Writing the steady state thickness equation (55.83b) in the form

∂xu = −(u/h) ∂xh, (55.86)

CHAPTER 55. SHALLOW WATER WAVES page 1563 of 2158



55.6. GRAVITY WAVES IN TWO LAYERS

allows us to write the momentum equation (55.83a) as

(g − u2/h) ∂xh = −g ∂xηb. (55.87)

Introducing the local Froude number,

Fr = u/
√
g h, (55.88)

then leads to
(1− Fr2) ∂xh = −∂xηb. (55.89)

The bottom is flat in regions away from the weir, so that ∂xηb = 0, in which case the left
hand side of equation (55.89) must vanish. The left hand side vanishes if ∂xh = 0, in which the
free surface is flat, such as depicted for the region away from the weir in Figure 55.2. The left
hand side also vanishes if the Froude number is unity, Fr = 1. A unit Froude number means
that the particle velocity equals to the local gravity wave speed

u2 = g h. (55.90)

Flow moving at speeds less than the gravity wave speed is called sub-critical, such as flow
upstream of the weir. Flow whose speed equals the gravity wave speed is said to be under
hydraulic control, which commonly occurs near the peak of the weir in Figure 55.2. Flow that is
faster than the local gravity wave speed is said to be super-critical, with the steady assumptions
going into equation (55.89) breaking down for super-critical flow. Super-critical flow is found to
exhibit a hydraulic jump, which is an instability with flow seemingly overtaking itself since it
cannot “see” where it is going. The situation is akin to the sonic boom occuring in a compressible
fluid moving at speeds greater than the acoustic wave speed.

The discussion here is rather descriptive, with more analysis required to deductively support
the presentation, particularly for super-critical flow. Chapter 1 of Pratt and Whitehead (2008)
considers this topic in more detail. The remaining chapters in Pratt and Whitehead (2008) con-
sider planetary rotation, thus developing the subject of rotating hydraulics, which is particularly
important for describing geophysical flows moving over topographic slopes.

55.6 Gravity waves in two layers

When adding more shallow water layers, how much can we use from the single layer results?
To help answer that question, consider the linearized equations for two shallow water layers.
The equations can be generalized to multiple layers, though with increased algebraic complexity.
Indeed, even the two-layer case with rotation proves to be algebraically tedious, thus motivating
us to examine just the case of gravity waves without rotation. For more general depth dependence,
we find it simpler analytically to study the continuously stratified fluid in Chapter 57.

55.6.1 Linearized two-layer equations

We derived the equations for a stacked shallow water model in Section 35.4, and focused on two
layers in Section 35.4.1. With reference to Figure 35.6 for notation, write the layer thicknesses
in the form

h1 = H1 + h′1 = η1/2 − η3/2 = (η1/2 − η3/2) + (η′1/2 − η′3/2) (55.91a)

h2 = H2 + h′2 = η3/2 − ηb = (η3/2 − ηb) + (η′3/2 − η′b), (55.91b)
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where we introduced the resting layer thicknesses

H1 = η1/2 − η3/2 and H2 = η3/2 − ηb and H = H1 +H2, (55.92)

with the overbar representing the area mean, and with the half-integer labels representing
interface fields. This notation leads to the linearized version of the thickness equations (35.62a)
and (35.62b)

∂th
′
1 +H1∇ · u′

1 = 0 (55.93a)

∂th
′
2 +H2∇ · u′

2 = 0, (55.93b)

where u′
1 and u′

2 are the horizontal velocities in the two layers. Likewise, assuming a zero
atmospheric pressure leads to the linearized version of velocity equations (35.77a) and (35.77b)

∂tu
′
1 + f ẑ × u′

1 = −g∇η′1/2 (55.94a)

∂tu
′
2 + f ẑ × u′

2 = −g∇η′1/2 − gr

3/2∇η′3/2. (55.94b)

For the linearized equations, the only layer coupling occurs through undulations of the free
surface impacting on the pressure felt in the lower layer.

55.6.2 Gravity wave equations

We restrict further analysis to the case with zero Coriolis acceleration so that the layer equations
take the form

∂t(η
′
1/2 − η′3/2) +H1∇ · u′

1 = 0 and ∂tu
′
1 = −g∇η′1/2 (55.95a)

∂tη
′
3/2 +H2∇ · u′

2 = 0 and ∂tu
′
2 = −g∇η′1/2 − gr∇η′3/2, (55.95b)

where we introduced the reduced gravity for the interior layer interface

gr = gr

3/2 = g (ρ2 − ρ1)/ρ1. (55.96)

Taking time derivatives of the thickness equations and substituting the divergence of the velocity
equations leads to the matrix-vector equation[

(∂tt − g H1∇2) −∂tt
−g H2∇2 (∂tt − grH2∇2)

][
η′1/2
η′3/2

]
=

[
0
0

]
. (55.97)

This equation has non-trivial solutions if the determinant of the matrix vanishes, and we use
that property to derive the dispersion relation.

55.6.3 Dispersion relation

To derive the dispersion relation, consider the plane wave ansatz for the free surface undulation
in each layer

η′1/2 = η̃1/2 e
i (k·x−ω t) and η′3/2 = η̃3/2 e

i (k·x−ω t). (55.98)

Note that we assume each layer has the same wavevector and same angular frequency. However,
the amplitudes, η̃1/2 and η̃3/2, are generally complex so that the phase of the layers can differ.
The corresponding velocity for the two layers is given by

u′
1 = ũ1 e

i (k·x−ω t) and u′
2 = ũ2 e

i (k·x−ω t). (55.99)
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Plugging the wave ansatz (55.98) into equation (55.97) converts the differential operators to
algebraic expressions[

(−ω2 + g H1|k|2) ω2

g H2 |k|2 (−ω2 + grH2 |k|2)

] [
η̃1/2
η̃3/2

]
=

[
0
0

]
. (55.100)

Setting the determinant to zero leads to the quadratic equation in ω2

(ω2 − g H1 |k|2) (ω2 − grH2 |k|2)− g H2 |k|2 ω2 = 0. (55.101)

Solving for the squared phase speed (C2
p = ω2/|k|2) leads to

2ω2/|k|2 = (g H + grH2)±
√

(g H + grH2)2 − 4 g grH1H2. (55.102)

Introducing the small non-dimensional parameter,

ϵ = grH2/(g H) = grH2/c
2
grav ≪ 1, (55.103)

and expanding the dispersion relation (55.102) to expose the leading order behavior, yields the
squared phase speeds

C2
p ≈ c2grav = g H squared barotropic phase speed (55.104a)

C2
p ≈ c2grav grH1H2/(g H

2) = grH1H2/H squared baroclinic phase speed. (55.104b)

We motivate the names barotropic mode and baroclinic mode in the following, based on our study
of vorticity in Section 40.7.2 for a Boussinesq fluid. Note that the phase speed for the barotropic
mode is roughly given by the gravity wave speed for a single layer of fluid with resting thickness
H = H1 +H2. This speed is much greater than that for the baroclinic mode since gr ≪ g.
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Figure 55.3: Illustrating the interface displacements for a two-layer shallow water gravity wave as discussed in
Section 55.6.4. The left panel depicts a barotropic wave, where the undulations are both relatively small, in-phase,
and on the same order of magnitude. The right panel shows a baroclinic wave, where the undulations of the free
surface are small whereas those of the interior interface are much larger (order g/gr) and the two undulations are
π radians out of phase. For the baroclinic mode, recall that the same structure occurs for the reduced gravity
model shown in Figure 35.5.

55.6.4 Structure of a plane gravity wave
In this subsection we examine the structure of a plane gravity wave by relating the wave
amplitudes. To start, we relate interface height amplitudes by making use of equation (55.100)
to write

η̃1/2

η̃3/2
=

ω2

ω2 − g H1 |k|2
=
ω2 − grH2 |k|2
g H2 |k|2

. (55.105)
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Since the right hand side is real, so too is the ratio of the amplitudes. Hence, the interfaces
undulate either in phase or π radians out of phase. Correspondingly, we can, without loss of
generality, take the interface height amplitudes to be real.

We relate the velocity amplitude to the interface amplitude by evaluating the linearized
velocity equations (55.95a) and (55.95b) for plane waves, in which

ω ũ1 = k g η̃1/2 and ω ũ2 = k (g
r η̃1/2 + g η̃3/2). (55.106)

Since the interface height amplitudes are real, so too are the velocity amplitudes. Evidently, the
fluid particle velocity in each layer is aligned with the phase velocity, so that the gravity waves
are horizontally longitudinal. Correspondingly, the ratio of the velocity amplitudes is found by
taking the scalar product of equation (55.106) with the wavevector to find

ω ũ1 · k = |k|2 g η̃1/2 and ω ũ2 · k = |k|2 (gr + g H2/H) η̃1/2, (55.107)

whose ratio is
ũ1 · k
ũ2 · k

=
g η̃1/2

gr η̃1/2 + g η̃3/2
. (55.108)

Structure of the barotropic mode

For the barotropic mode we set ω2 ≈ g H |k|2 within equation (55.105) to render the amplitude
ratio

η̃1/2/η̃3/2 ≈ H/H2 > 1. (55.109)

This inteface height ratio then leads, through equation (55.108), to the velocity amplitude

ũ1 · k
ũ2 · k

≈ η̃1/2/η̃3/2 ≈ H/H2. (55.110)

Evidently, the two interfaces undulate in-phase and with the surface interface fluctuating more
than the interior interface. Likewise, the horizontal velocities move in-phase with the interface
heights, and with an amplitude ratio that concurs with the interface height ratio. We depict
this wave motion in the left panel of Figure 55.3.

Structure of the baroclinic wave mode

For the baroclinic mode, setting ω2 ≈ grH1H2 |k|2/H within equation (55.100) leads to the
amplitude ratio

η̃1/2/η̃3/2 ≈ −grH2/(g H). (55.111)

Hence, the two interfaces undulate oppositely (i.e., π radians out of phase) and with the amplitude
of the upper interface far less than the interior interface

|η̃1/2/η̃3/2| ≪ 1. (55.112)

That is, the free surface is nearly rigid relative to the interior interface, as depicted in the right
panel of Figure 55.3. For the velocity amplitude, we make use of equation (55.108) along with
the interface height amplitude ratio (55.111), so that

ũ1 · k
ũ2 · k

≈ −g
rH2

g H
, (55.113)

so that the velocities are π radians out of phase and their ratio is identical to that for the
interface heights.
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Evidently, the baroclinic mode consists of layer velocities and interface heights that oscillate
π radians out of phase, and with the velocity and surface height in the upper layer undulating
much less than in the interior layer. Indeed, to leading order the upper interface is rigid and the
corresponding flow stagnant. In contrast, the lower interface fluctuates as a gravity wave with
the squared phase speed, grH1H2/H. This wave speed is far less than the ≈ √g H speed of the
barotropic mode.

55.6.5 Energetic scaling for the waves

We here examine the relative amounts of phase averaged kinetic and available potential energies
contained in the waves. From Section 36.6.3, we write the linearized layer integrated kinetic
energy per area

K = (ρo/2) (H1 u
′
1 · u′

1 +H2 u
′
2 · u′

2), (55.114)

whose phase average is
⟨K⟩ = (ρo/4) (H1 |ũ1|2 +H2 |ũ2|2). (55.115)

Within the gravity wave, the velocity amplitudes are related to the interface amplitudes via
equation (55.106), so that the phase averaged kinetic energy per horizontal area is

⟨K⟩ = (ρo/4) (|k|/ω)2 [H1 (g η̃1/2)
2 +H2 (g

r η̃1/2 + g η̃3/2)
2]. (55.116)

For the available potential energy, we make use of the phase averaged version of equation (36.139)
to write the phase averaged available potential energy per area as

⟨A⟩ = (ρo/4) (g η̃
2
1/2 + gr η̃23/2). (55.117)

Scaling within a barotropic gravity wave

For the barotropic gravity wave, the interface height undulations are related by equation
(55.109). Hence, the phase averaged kinetic energy and available potential energy are given by
the approximate expressions

⟨K⟩ ≈
ρo η̃

2
1/2

4 g H
[H1 g

2 +H2 (g
r + g H2/H)2] (55.118a)

⟨A⟩ ≈ (ρo/4) η̃
2
1/2 (g + grH2

2/H
2), (55.118b)

and their ratio is
⟨K⟩
⟨A⟩ =

1

g H

H1H
2 g2 +H2 (g

rH + g H2)
2

g H2 + grH2
2

. (55.119)

This ratio is on the order of unity, with specific values determined by the layer thickness and
reduced gravity. Hence, for the barotropic wave there is roughly the same amount of energy
contained in the kinetic energy as in the available potential energy.

Scaling within a baroclinic gravity wave

For the baroclinic gravity wave, the interface height undulations are related by equation (55.111).
Hence, the phase averaged kinetic energy and available potential energy are given by the
approximate expressions

⟨K⟩ ≈
ρo η̃

2
1/2

4C2
p

(H1 g
2 +H2 [g

r − (g2H)/(grH2)]
2) ≈

ρo η̃
2
1/2

4C2
p

g2H2

(gr)2H2
(55.120)
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⟨A⟩ ≈ (ρo/4) η̃
2
1/2

g2H2

grH2
2

. (55.121)

Use of equation (55.104b) for the squared phase speed in the baroclinic mode leads to the energy
ratio

⟨K⟩
⟨A⟩ ≈

1

C2
p

g2H2

gr
=

g2H

(gr)2H1
≫ 1. (55.122)

This ratio is generally much larger than unity, indicating that the baroclinic gravity wave carries
far more kinetic energy than available potential energy.

Comparing the available potential energies between the waves

Making use of the above results leads to the ratio of the available potential energies contained in
the barotropic gravity wave and baroclinic gravity wave

⟨Abt⟩
⟨Abc⟩ ≈

grH2
2

g H2

(η̃21/2)
bt

(η̃21/2)
bc
≈ g H2

grH2
2

(η̃23/2)
bt

(η̃23/2)
bc
. (55.123)

The ratio thus depends on the assumed ratio of the undulations found in the two waves. In
general we expect that

(η̃21/2)
bt

(η̃21/2)
bc
≫ 1 and

(η̃23/2)
bt

(η̃23/2)
bc
≪ 1. (55.124)

Even so, we cannot make any general statements about the ratio of available potential energies
without further information. That is, we cannot a priori state that the barotropic wave requires
more or less available potential energy than the baroclinic wave. Whereas the baroclinic wave
involves large undulations of the interior interface, these undulations are coupled to the relatively
small reduced gravity (gr ≪ g), thus ameliorating the available potential energy cost. In contrast,
the barotropic wave involves a relatively small undulation of the interior interface and somewhat
larger free surface undulation (larger than for the baroclinic mode). The free surface motion is
coupled to the relatively large buoyancy through g ≫ gr, thus enhancing the potential energy
cost for the free surface undulation, making the barotropic wave available potential energy
comparable to that of the baroclinic wave.

55.6.6 The depth averaged velocity and the velocity difference
There are occasions in which it is useful to combine the layer velocity equations in a manner
that directly approximates the barotropic and baroclinic motions. For this purpose we introduce
the depth averaged velocity5

H u = H1 u
′
1 +H2 u

′
2, (55.125)

with H = H1 +H2, along with the layer deviations from the depth average

u1b = u′
1 − u and u2b = u′

2 − u. (55.126)

Making use of the linearized equations (55.94a) and (55.94b) (here returning to the case with
rotation) leads to the equations of motion (see Exercise 55.3)

∂tu+ f ẑ × u = −g∇η′1/2 − (H2 g
r/H)∇η′3/2 (55.127a)

∂tu1b + f ẑ × u1b = (grH2/H)∇η′3/2 (55.127b)

∂tu2b + f ẑ × u2b = −(grH1/H)∇η′3/2. (55.127c)

5We study vorticity of the depth averaged velocity for a continuous fluid in Section 40.9.7.
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Notice that the two deviation velocities, u1b and u2b, are independent of the free surface
fluctuations. Furthermore, a layer integration of these two velocities vanishes

H1 u1b +H2 u2b = 0, (55.128)

which is consistent with a vanishing integral for their equations of motion

H1(∂tu1b + f ẑ × u1b) +H2(∂tu2b + f ẑ × u2b) = 0. (55.129)

Finally, introduce the vertical shear velocity

us = u1 − u2 = u1b − u2b (55.130)

whose equation of motion is
∂tus + f ẑ × us = gr∇η′3/2. (55.131)

For the barotropic wave, whereby both layer interfaces undulate in phase and with a relatively
small amplitude (Figure 55.3), then the shear velocity is nearly zero since the pressure gradient,
gr∇η′3/2 in equation (55.131) is small for the barotropic wave. In contrast, the depth averaged

velocity described by equation (55.127a) is dominated by the larger (in magnitude) pressure
gradient arising from free surface height undulations, −g∇η′1/2. For the baroclinic wave, the
depth averaged velocity is far smaller in magnitude than found in the barotropic wave, and the
pressure gradient is dominated by interior interface undulations via gr∇η′3/2. These behaviors
motivate the oceanographic colloquial terminology whereby the depth averaged velocity is
referred to as the barotropic velocity and the shear velocity is referred to as the baroclinic velocity.

55.6.7 Comments

As noted at the start of this section, the addition of further layers greatly increases the algebraic
complexity of the analysis, thus motivating the use of numerical models for studies with N > 2
layers. One generally finds that each layer adds another wave mode, with N layers realizing
N modes (one barotropic mode and N − 1 baroclinic modes). We further the study of gravity
waves in Chapter 57 by studying internal gravity waves, with such waves corresponding here to
a continuum of baroclinic modes.

55.7 Kelvin waves

The Kelvin wave is a non-dispersive gravity wave. It arises from the combined presence of a
boundary and the Coriolis acceleration. The boundary considered here is a solid vertical wall.
Additionally, Kelvin waves occur along the equator, with the equator acting as a boundary due
to the change in sign of the Coriolis parameter, f .

55.7.1 Wave solutions with a southern boundary

To expose the key points about the shallow water Kelvin wave, it is sufficient to orient the
f -plane with a boundary at y = y0 and to consider flow in the region y > y0. The meridional
velocity component must vanish at y = y0 to satisfy the no-normal flow condition. We are
thus motivated to seek nontrivial solutions with v′ = 0 everywhere, in which case the linearized
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f -plane thickness and velocity equations are

∂tη
′ = −H ∂xu

′ (55.132a)

∂tu
′ = −g ∂xη′ (55.132b)

f u′ = −g ∂yη′. (55.132c)

It is notable that the meridional velocity equation (55.132c) expresses geostrophic balance
between the Coriolis acceleration, f u′, and meridional pressure gradient, −g ∂yη′.

Taking the time derivative of the zonal velocity equation (55.132b) and making use of the
free surface equation (55.132a) leads to the one-dimensional wave equation for the zonal velocity

(∂tt − c2grav ∂xx)u′ = 0, (55.133)

where
cgrav =

√
g H (55.134)

is the shallow water gravity wave speed. Likewise, a time derivative of the free surface equation
(55.132a) and substitution of zonal velocity equation (55.132b) recovers the same wave equation
satisfied by the free surface

(∂tt − c2grav ∂xx) η′ = 0. (55.135)

55.7.2 Kelvin wave solutions

In Section 6.7 we studied how to solve the wave equations (55.133) and (55.135), in which we
write the general solutions in the form

u′(x, y, t) = F1(x
L(t), y) + F2(x

R(t), y), (55.136a)

η′(x, y, t) = E1(x
L(t), y) + E2(x

R(t), y). (55.136b)

In these expressions, F1, E1, F2, E2 are functions of space that are specified by the initial
conditions, and

xL(t) = x+ cgrav t and xR(t) = x− cgrav t (55.137)

are points along the x-axis that, as time increases, move to the left and right, respectively, at
the gravity wave speed. Evidently, the wave signal transmits, without distortion, the F1 and
E1 patterns in the negative x̂-direction, and the F2 and E2 patterns propagate in the positive
x̂-direction.

The free surface height and zonal velocity are coupled via the equations of motion (55.132a)–
(55.132c), so that the functions F1, F2 are related to E1, E2. To determine this relation we use
the velocity equation (55.132b) along with the chain rule

∂F1

∂t
=
∂F1(x

L, y)

∂xL

dxL

dt
=
∂F1(x

L, y)

∂xL
cgrav (55.138a)

∂F2

∂t
=
∂F2(x

R, y)

∂xR

dxR

dt
= −∂F2(x

R, y)

∂xR
cgrav, (55.138b)

in which case

∂tu
′ = cgrav (∂F1/∂x

L − ∂F2/∂x
R) = −g ∂xη′ = −g (∂E1/∂x

L − ∂E2/∂x
R), (55.139)

so that
η′(x, y, t) = (cgrav/g)

[
−F1(x+ cgrav t, y) + F2(x− cgrav t, y)

]
. (55.140)

To determine the meridional dependence to the wave solutions requires the geostrophic
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balance (55.132c), with the free surface equation (55.140) and zonal velocity equation (55.136a)
leading to

∂yF1 = f F1/cgrav and ∂yF2 = −f F2/cgrav, (55.141)

whose solutions take the form

F1 = F (x+ cgrav t) e
(y−y0)/Ld and F2 = G(x− cgrav t) e−(y−y0)/Ld , (55.142)

where
Ld = cgrav/f (55.143)

is the shallow water deformation radius defined in equation (43.31) (and used in Section 55.4.6).
We also introduced the functions F and G, which are functions of a single space coordinate. To
ensure boundedness in the region y > y0, where the fluid is assumed to exist, we drop the F1

solution, thus leaving the free surface

η′ = (H/g)1/2 e−(y−y0)/Ld G(x− cgrav t), (55.144)

and the horizontal veloctiy components

u′ = e−(y−y0)/Ld G(x− cgrav t) and v′ = 0. (55.145)

For the vertical velocity component we return to equation (55.26) to write

w′(z) = w′(z = −H)− (z +H) ∂xu
′ (55.146a)

= w′(z = −H) +H−1 (z +H) ∂tη
′ (55.146b)

= w′(z = −H)− (z +H) e−(y−y0)/Ld
dG(xR)

dxR
, (55.146c)

where the second equality used the linearized thickness equation (55.132a), and the third equality
used the chain rule.
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z = ω→(x, y, t)

Figure 55.4: Illustrating free surface and zonal velocity for a northern hemisphere Kelvin wave with a solid
boundary on the south. The free surface exponentially decays away from the boundary with a decay scale set by
the deformation radius, Ld. With f > 0 the Kelvin wave propagates with the boundary on the right, so that for
this orientation the wave phase velocity is coming out of the page.

These non-dispersive gravity wave signals propagate in the positive x̂ direction, in which
case the boundary y = y0 is on the right. This orientation holds for any boundary orientation in
the northern hemisphere, whereby Kelvin waves propagate with the solid boundary on the right
when looking in the direction of wave phase velocity. For the southern hemisphere, Kelvin waves
propagate with the boundary to the left of the wave motion. Hence, Kelvin waves propagate
cyclonically around a closed basin. In Figure 55.4 we illustrate the free surface and velocity for
the Kelvin wave solution just derived.
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55.8 Inertia-gravity waves
In this section we set the Coriolis parameter, f , to a nonzero constant while retaining a flat
bottom and removing all side boundaries. We also retain a nonzero gravity, which is consistent
with the shallow water being in hydrostatic balance. The linearized thickness equation (55.13),
velocity equation (55.15), and potential vorticity equation (55.23) take the form

∂tη
′ = −H∇ · u′ (55.147a)

∂tu
′ + f ẑ × u′ = −g∇η′ (55.147b)

∂tQ
′ = 0, (55.147c)

where the linear flat bottom f -plane shallow water potential vorticity is given from equation
(55.22)

Q′ = ζ ′/H − f η′/H2, (55.148)

where we dropped the constant f since it plays no dynamical role.

55.8.1 Forced oscillator equation for horizontal velocity
Taking a time derivative of the horizontal velocity equation (55.147b), and then back-substituting
the velocity equation, leads to

(∂tt + f2)u′ = −g (∂t∇η′ − f ẑ ×∇η′). (55.149)

This equation for the horizontal velocity is in the form of a forced oscillator, with forcing from
gradients in the free surface. We make use of this equation when developing the mathematical
expressions for plane inertia-gravity waves in Section 55.8.9.

55.8.2 Free wave equation and potential vorticity
For the case of a flat bottom on an f -plane, we can write the wave equation (55.31) as

(∂tt − c2grav∇2)η′ = −H f ζ ′. (55.150)

This equation describes a forced shallow water gravity wave with forcing from relative vorticity
coupled to the Coriolis parameter. Recall that this coupling between Coriolis and relative
vorticity is fundamental to the inertial waves studied in Chapter 53. We can now use the
vorticity equation as in Section 55.4.2 to eliminate ζ ′ to reveal a free wave equation. Equivalently,
in equation (55.38) we set f to a constant and the bottom to be flat, thus leading to

∂t [∂ttη
′ + f2 η′ − c2grav∇2η′] = 0. (55.151)

The linear fluctuations described by this equation are known as shallow water inertia-gravity or
Poincaré waves. The name “inertia-gravity” is due to the presence of both the Coriolis frequency,
f , and gravitational acceleration, g, with both playing a role as restoring forces to support the
waves.

The wave equation (55.151) is in the form of a local conservation law where the term in
square brackets is static. We already know about another static field, namely the potential
vorticity, Q′, given by equation (55.148). We here show that the wave equation (55.151) is
indeed identical to the potential vorticity equation (55.147c). For this purpose, substitute the
expression (55.148) for the potential vorticity into the forced wave equation (55.150), which
readily yields

f H2Q′ = −(∂tt + f2 − c2grav∇2) η′. (55.152)
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We thus find that
∂tQ

′ = 0 =⇒ ∂t [∂ttη
′ + f2 η′ − c2grav∇2η′] = 0, (55.153)

so that the wave equation (55.151) for inertia-gravity waves is identical to the conservation
equation for linear shallow water potential vorticity. We saw a similar connection between
potential vorticity conservation and waves in our study of Rossby waves in Section 54.3 for the
horizontally non-divergent barotropic fluid, and will see the connection yet again for shallow
water Rossby waves in Section 55.9.

55.8.3 Dispersion relation

Substituting the wave ansatz (55.24) into equations (55.147a)-(55.147b) renders the homogeneous
matrix-vector equation  −iω −f i g kx

f −iω i g ky
iH kx iH ky −iω

 ũ
ṽ
η̃

 =

 0
0
0

 . (55.154)

This equation has a nontrivial solution only when the determinant of the matrix vanishes. The
real part of the determinant cancels exactly, thus leaving just the imaginary part. Setting the
imaginary part to zero yields the dispersion relation

ω
[
ω2 − f2 − g H |k|2

]
= 0. (55.155)

We can derive the same dispersion relation by substituting the wave ansatz into the wave
equation (55.153). There are three solutions to this cubic equation described in the following
subsections.

55.8.4 Zero frequency geostrophic mode

The zero frequency solution to the dispersion relation (55.155) corresponds to f -plane geostrophic
motion. Such motion is static so that the linearized continuity equation (55.147a) means that the
flow is horizontally non-divergent, ∇ ·u′ = 0. Furthermore, the geostrophic solution corresponds
to a static yet non-zero potential vorticity

f ẑ × u′ = −g∇η′ =⇒ (f/g)Q′ = (∇2 − L−2
d ) η′ ̸= 0, (55.156)

where we introduced the deformation radius, Ld = cgrav/f , from equation (55.54). Turning
equation (55.156) around, we see that if the potential vorticity is known, then the geostrophically
balanced free surface can be found by inverting the elliptic operator, ∇2 − L−2

d .

The static geostrophic mode with nonzero potential vorticity is decoupled, in the linear
theory, from the ageostrophic inertia-gravity wave whose potential vorticity is identically zero
and yet whose relative vorticity and free surface are time dependent. For this reason we can
separately study the two linear modes without concern for interactions.

55.8.5 Inertia-gravity wave modes

The ω ̸= 0 solution to the dispersion relation (55.155) satisfies the dispersion relation

ω2 = f2 (1 + L2
d |k|2). (55.157)
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Recall from Section 49.2 that we consider the angular frequency of waves to be non-negative.
Hence, we only take the positive root

ω = |f |
√
1 + L2

d |k|2, (55.158)

with Figure 55.5 depicting this relation.

The ω > 0 modes satisfying the dispersion relation (55.158) are inertia-gravity waves. These
waves have an angular frequency greater than or equal to the inertial frequency

ω ≥ |f |, (55.159)

and are thus said to be super-inertial waves.6 Furthermore, they carry zero potential vorticity
(equation (55.152))

f H2Q′ = −(∂tt + f2 − c2grav∇2) η′ = 0, (55.160)

where we verify this property holds for plane inertia-gravity waves in Exercise 55.5. With Q′ = 0,
equation (55.148) for the potential vorticity shows that the inertia-gravity waves carry a relative
vorticity given by

ζ ′ = f η′/H. (55.161)

Since |η′|/H ≪ 1, we see that the relative vorticity carried by shallow water inertia-gravity
waves is small relative to the planetary vorticity

|ζ ′| ≪ |f |. (55.162)

55.8.6 Group velocity

Taking the k-space gradient of the dispersion relation (55.158) leads to the group velocity for
the shallow water inertia-gravity waves

cg = ∇kϖ(k) =
c2grav k

ω
=
cp c

2
grav

|cp|2
=

cp
1 + (Ld |k|)−2

, (55.163)

where the phase velocity is cp = (ω/|k|) k̂. Evidently, the group velocity is parallel to the phase
velocity and the ratio of their magnitudes is given by

|cg|
|cp|

=
c2grav
|cp|2

=
1

1 + (Ld |k|)−2
. (55.164)

In the non-rotating case, where f = 0 so that L−2
d = (cgrav/f)

−2 = 0, the group and phase
velocities are equal, which we expect since the non-rotating shallow water gravity waves from
Section 55.5 are non-dispersive. The inertia-gravity waves approach the non-dispersive limit for
wavelengths much smaller than the deformation radius, in which the waves are too small to
feel the effects from the Coriolis acceleration (we further discuss the shortwave limit in Section
55.8.7). But for the general case with dispersion, the Coriolis acceleration causes the group
velocity to be smaller in magnitude than the phase velocity. Hence, the wave energy, which is
carried by the group velocity (see Section 55.8.10 on energetics), is more slowly transmitted
than the phase.

6The inertial waves considered in Chapter 53, which we studied in a homogeneous fluid, have their angular
frequency bounded by ω2 < f2. These are sub-inertial waves. They are again encountered in Section 57.9.1 as a
special case of a rotating internal gravity wave in the limit where the reference fluid state is homogeneous. They
are distinct from the shallow water inertial waves since the shallow water fluid is hydrostatic whereas the inertial
waves in Chapter 53 rely on non-hydrostatic pressure.
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Figure 55.5: Illustrating the dispersion relation for shallow water inertia-gravity waves. The red hyperbolic curve
is the dispersion relation (55.157), which asymptotes at high wavenumber (small wavelength) to the straight line
for the non-rotating case. The angular frequency, ω, is scaled by the magnitude of the Coriolis frequency, |f |, and
the horizontal wavenumber, |k|, is multiplied by the deformation radius Ld =

√
gH/f = cgrav/f . For small wave

numbers (|k|Ld ≪ 1 or Λ ≫ 2π Ld), the inertial-gravity wave frequency approaches the inertia frequency, f , with
this behavior seen at the minimum of the dispersion curve. We expect this result since waves large relative to the
deformation radius feel the Coriolis acceleration. At the opposite extreme of high wave numbers (Λ ≪ 2π Ld), the
wave frequency approaches the non-rotating gravity wave frequency, shown here by the linear dispersion relation
ω = |k|

√
g H = |k|cgrav. Waves small relative to the deformation radius do not feel the Coriolis acceleration and

thus converge to non-rotating gravity waves. Since all shallow water inertia-gravity waves satisfy ω2 ≥ f2, they
are said to be super-inertial waves; i.e., waves whose frequency is larger in magnitude than the inertial frequency.

55.8.7 Shortwave limit for inertia-gravity waves
The shortwave limit is in the regime where

|k|2 L2
d ≫ 1, (55.165)

so that the shortwave limit occurs when the wavelength is much shorter than the deformation
radius, in which case the waves do not feel the effects from the Coriolis acceleration. For
example, consider a middle latitude shallow water gravity wave in a layer with H = 103 m and
f = 10−4 s−1, in which case the shallow water deformation radius is Ld =

√
g H/f = 103 km.

Maintaining the constraint (55.165) means that the wavelength of the gravity wave, Λ = 2π/|k|,
must satisfy

Λ≪ 2π Ld. (55.166)

Within the shortwave limit, however, the wavelength cannot be too small since the flow
must retain the hydrostatic balance as per a shallow water model. As discussed in Section 27.2,
maintaining the hydrostatic balance means that the flow retains a small vertical to horizontal
aspect ratio. In terms of the wavenumber for gravity waves, the hydrostatic balance implies

|k|H ≪ 1 ⇐= hydrostatic balance. (55.167)

We conclude that the shortwave limit for shallow water gravity waves is given by the regime

L−1
d ≪ |k| ≪ H−1 ⇐⇒ 2πH ≪ Λ≪ 2π Ld. (55.168)
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Although considered short from the perspective of the shallow water model, these waves are
hydrostatic and thus considered long gravity waves from the perspective of the surface gravity
waves studied in Chapter 52.

Finally, for the shortwave limit, the dispersion relation (55.157) reduces to the dispersion
relation (55.81)

ω ≈ |k| cgrav. (55.169)

Such waves are only weakly affected by the Coriolis acceleration so that their dispersion relation
reduces to linear and non-dispersive gravity waves of Section 55.5.

55.8.8 Longwave limit for inertia-gravity waves
The longwave limit occurs when

|k|2 L2
d ≪ 1, (55.170)

so the waves are much longer than the deformation radius. In this limit the wave is strongly
affected by the Coriolis acceleration. Indeed, the wave dispersion relation becomes

ω2 = f2, (55.171)

in which fluid particles exhibit inertial oscillations (Sections 55.8.9 and 14.4).

55.8.9 Polarization relations for a plane inertia-gravity wave
As for the gravity waves in Section 55.5, we study the behavior of the traveling plane wave ansatz
(55.24). In contrast to the case with f = 0, here we require the complex nature of the wave
amplitudes (ũ, ṽ, η̃) in order to realize nontrivial inertia-gravity wave solutions. Such complex
amplitudes mean there are differences in phase between the velocity and free surface, with phase
differences arising from the Coriolis parameter.

Polarization relations for the wave

Substituting the traveling plane wave ansatz (55.24) into the forced oscillator equation (55.149)
leads to the amplitude relation

(−ω2 + f2) ũ = −g (ω k − i f ẑ × k) η̃. (55.172)

Without loss of generality, we assume the free surface amplitude, η̃, is real, which then leads to
the free surface height

η′ = η̃ cos(k · x− ω t), (55.173)

and the fluid velocity within a plane wave

u′ =
g |k| η̃
ω2 − f2

[
ω k̂ cos(k · x− ω t)︸ ︷︷ ︸
horizontally longitudinal

+ f (ẑ × k̂) sin(k · x− ω t)︸ ︷︷ ︸
horizontally transverse

]
(55.174a)

=
η̃

|k|H

[
ω k̂ cos(k · x− ω t)︸ ︷︷ ︸
horizontally longitudinal

+ f (ẑ × k̂) sin(k · x− ω t)︸ ︷︷ ︸
horizontally transverse

]
, (55.174b)

where the unit vector
k̂ = k/|k| (55.175)

points in the direction of the wave, and equation (55.174b) follows from use of the dispersion
relation (55.157) in equation (55.174a). The vanishing potential vorticity in these waves means
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that they carry a nonzero relative vorticity as given by equation (55.161), so that

ζ ′ = f η′/H = (f η̃/H) cos(k · x− ω t). (55.176)

Hence, in the northern hemisphere the relative vorticity is in-phase with the free surface, whereas
in the southern hemisphere it is π radians out of phase.

These mathematical expressions for the fields within a wave are sometimes referred to as
polarization relations. Observe that the horizontally transverse component of the velocity vector
is π/2 out of phase from the horizontally longitudinal component. Furthermore, the transverse
component corresponds to fluid particle motion that is perpendicular to the wavevector, in which
case we say that the transverse component is polarized perpendicular to the wavevector.

Drawing the polarization relations

To draw the free surface (55.173), vorticity (55.176), and velocity (55.174b) we assume that
f > 0 for the northern hemisphere, and recall that ω2 ≥ f2 since shallow water inertia-gravity
waves are super-inertial. We also find it convenient to write the velocity as

u′ |k|H
η̃ f

= (ω/f) k̂ cos(k · x− ω t) + (ẑ × k̂) sin(k · x− ω t). (55.177)

Consider a point fixed in space and let time progress so that the phase,

P = k · x− ω t, (55.178)

decreases. Consequently, the velocity vector rotates in a clockwise direction, forming an ellipse
with the major axis along the longitudinal direction, k̂, and minor axis along the transverse
direction, (ẑ × k̂). This motion corresponds to the inertial oscillations studied in Section 14.4
(where ω2 = f2). Now consider a fixed time and sample the velocity field in the direction of the
wave. In this case the phase increases as we move in the wave direction, so that the sampled
velocity progresses counter-clockwise around the ellipse. Figure 55.6 offers three depictions of
the wave field.

55.8.10 Energetics

In Section 55.3.2 we considered the general form of energy balances for the linearized shallow
water equations integrated over the shallow water layer. For the special case of a flat bottom
domain (with ηb = 0 for simplicity), these equations take the form

∂t(K
sw +Psw) = −g ρH∇ · [(η + η′)u′] (55.179a)

Psw = (ρ/2) g η2 (55.179b)

Ksw = (ρ/2)H u′ · u′. (55.179c)

Here we consider the energy carried by a plane inertia-gravity wave, and focus on the phase
averaged energetics. Note that since the waves are present throughout space (as per the plane
wave assumption), we do not expect to have energy accumulate in any particular region when
phase averaged. Instead, we expect the phase averaged energy to remain constant. So our
question then concerns how that energy is partitioned according to kinetic energy and potential
energy, and how the energy moves or is fluxed.
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f > 0

Figure 55.6: Illustrating the shallow water inertia gravity wave from three perspectives, with P = k · x− ω t
the phase and f > 0. The upper left panel shows the horizontal velocity vector at a fixed point in space as time
increases and so the phase decreases (becomes more negative). The resulting velocity vector rotates clockwise
and exhibits inertial oscillations. The upper right panel shows the horizontal velocity vector sampled along the
wave direction, k̂, at a fixed time from a plan (horizontal) view, in which case the phase increases moving in the
k̂ direction. The lower panel shows the horizontal velocity, relative vorticity, and free surface as viewed from a
vertical slice aligned with the wavevector direction. Note that the relative vorticity is the vertical component, ζ′,
so that the arrowed ellipses on the lower panel are in the horizontal plane.

Kinetic and potential energies contained in a plane wave

Writing the free surface as in equation (55.173) and the horizontal velocity as in equations
(55.174a) and (55.174b) leads to the potential energy and kinetic energy carried by the wave
field

Psw =
ρ g η̃2

2
cos2(k · x− ω t) (55.180a)

Ksw =
ρ η̃2

|k|2H2

[
ω2 cos2(k · x− ω t) + f2 sin2(k · x− ω t)

]
, (55.180b)

with a corresponding phase average given by

⟨Psw⟩ = ρ g η̃2

4
(55.181a)

⟨Ksw⟩ = ρ η̃2 (ω2 + f2)

2 |k|2H2
=
ρ g η̃2

4

ω2 + f2

ω2 − f2 . (55.181b)

Evidently, for non-rotating shallow water gravity waves, f = 0, there is an equipartition between
phase averaged potential and kinetic energy. However, for the general case with rotation, the
phase averaged kinetic energy is larger than the potential energy

⟨Ksw⟩
⟨Psw⟩ =

ω2 + f2

ω2 − f2 = 1 + 2 (Ld |k|)−2, (55.182)

with equipartition approached only for wave lengths smaller than the deformation radius (high
wave numbers).
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Mechanical energy and energy flux contained in a plane wave

The phase averaged mechanical energy contained in a plane wave is given by

⟨Psw⟩+ ⟨Ksw⟩ = ⟨Psw⟩
[
1 +

ω2

ω2 − f2
]
= 2 ⟨Psw⟩ |cp|

2

c2grav
=
ρ g η̃2

2

|cp|
|cg|

, (55.183)

where we made use of equation (55.164) for the ratio of the group velocity magnitude to the
phase velocity magnitude. For the flux of energy contained in the wave, we return to the energy
equation (55.179a) and only consider the phase averaged flux, which takes the form

g ρH ⟨η′ u′⟩ = g ρ η̃2 ω k

2 |k|2 =
g ρ η̃2 cp

2
=
g ρ η̃2 cg

2

|cp|
|cg|

= cg (⟨Psw⟩+ ⟨Ksw⟩). (55.184)

Hence, the phase averaged mechanical energy flux contained in the plane wave is given by the
group velocity times the phase averaged mechanical energy. This is a standard result that we
have seen before in the study of other linear waves.

55.9 Rossby waves
We now focus on the sub-inertial wave equation (55.62) derived in Section (55.4.6)

∂t [(L
−2
d −∇2) η′] = H ẑ · (∇η′ ×∇Qr), (55.185)

where
Qr = f/Hr (55.186)

is the potential vorticity in the resting fluid. Equation (55.185) describes shallow water Rossby
waves.

55.9.1 Dispersion relation
Making use of the plane wave ansatz (55.24) in the wave equation (55.185) readily leads to the
shallow water Rossby wave dispersion relation

ω =
H (k × ẑ) · ∇Qr

k2d + |k|2
(55.187)

For the angular frequency to be independent of space, ∇Qr must be spatially independent. We
can ensure this property by assuming a β-plane along with linear and gently varying topography

∇H−1
r = −H−2

r ∇Hr = H−2
r ∇η′b ≈ H−2∇η′b, (55.188)

where ∇η′b is spatially independent with linear topography. More general (but gently varying)
bottom topography requires the asymptotic methods from Chapter 50.

The dispersion relation (55.187) compares directly to equation (54.32) for Rossby waves in
the horizontally non-divergent barotropic model. The sole difference concerns the presence of
the deformation radius, Ld from equation (55.54), and its associated wavenumber

kd = L−1
d = f/cgrav, (55.189)

which is present in the shallow water dispersion relatio. This term is missing from the non-
divergent barotropic model since cgrav is formally infinite (there are no gravity waves in that
model), in which case L−2

d = k2d = 0.
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55.9.2 Connecting to quasi-geostrophic potential vorticity

When deriving the sub-inertial equations in Section 55.4.6, we noted that the assumptions
made in that derivation are identical to the assumptions made when deriving shallow water
quasi-geostrophy in Section 43.5. Indeed, the Rossby wave equation (55.185) is the linearized
equation for the material evolution of shallow water quasi-geostrophic potential vorticity. We see
this equality by recalling the discussion in Section (43.6.3), where we derived equation (43.90)

(fo/g)Dq/Dt = ∂t [(L
−2
d −∇2) η′]−H ẑ · (∇η′ ×∇Qr)− (g/fo) ẑ · [∇η′ ×∇(∇2η′)], (55.190)

where q is the quasi-geostrophic potential vorticity. For an inviscid fluid, Dq/Dt = 0, and for
small amplitude fluctuations the nonlinear term in equation (55.190) (final term on the right
hand side) is neglected. In this case we see that the linearized equation for material evolution of
quasi-geostrophic potential vorticity is identical to the Rossby wave equation (55.185).

The nonlinear term in equation (55.190) arises from the geostrophic advection of geostrophic
relative vorticity. Although it is small for small amplitude fluctuations, and thus commonly
dropped when deriving the dispersion relation, we note that it vanishes identically for a plane
wave. It does so in precisely the same way as it vanishes for the non-divergent barotropic vorticity
equation in Section 54.2.3. Namely, this result follows since for a plane wave,∇(∇2η′) = −|k|2∇η′,
so that it follows immediately that ∇η′ ×∇(∇2η′) = 0. Hence, a plane Rossby wave is an exact
solution to the shallow water quasi-geostrophic potential vorticity equation in an inviscid fluid.

55.9.3 Vorticity mechanism

In Section 54.3 we studied Rossby waves in the horizontally non-divergent barotropic model,
with a vorticity mechanism for the waves presented in Figure 54.3. This mechanism follows from
the material evolution of absolute vorticity in the horizontally non-divergent barotropic model.
The identical mechanism holds for the shallow water fluid yet with quasi-geostrophic potential
vorticity replacing absolute vorticity. Hence, all conceptual points from Figure 54.3 also hold for
the shallow water fluid.

55.9.4 Dispersion circle for planetary Rossby waves

In Section 54.4.2 we described a geometric method to help interpret the dispersion relation for
planetary Rossby waves in the horizontally non-divergent barotropic model. That method also
proved useful in Section 54.4.3 for describing the reflection of Rossby waves from a smooth and
flat wall. Here we extend the geometric method to shallow water planetary Rossby waves, in
which the dispersion relation is given by the β portion of the general dispersion relation (55.187)

ϖβ = − β kx
k2d + |k|2

. (55.191)

This equation compares to the β portion of the dispersion relation (54.32) holding for the
non-divergent barotropic model. Again, the sole distinction is that the shallow water Rossby
wave dispersion has a nonzero deformation wavenumber, kd ̸= 0.

Dispersion circle

Following the geometric approach from Section 54.4, we write the dispersion relation (55.191) as
the equation of a circle in wavevector space

(kx + β/2ω)2 + k2y = (β/2ω)2 − k2d . (55.192)
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As written, the angular frequency, ω, is a parameter for the circle whose center is

kcenter = −(β/2ω) x̂ (55.193)

and squared radius is (β/2ω)2 − k2d . The deformation wavenumber appearing on the right hand
side of the circle equation (55.192) places an upper bound on the angular frequency allowed for
propagating Rossby waves

ω ≤ ωmax = β/(2 kd) = β Ld/2. (55.194)

The shallow water model supports gravity waves that render kd ̸= 0, thus imposing an upper
bound on the shallow water Rossby wave angular frequency. In contrast, for the horizontally
non-divergent barotropic model, kd = 0 since there are no gravity waves, in which case there is
no maximum frequency for Rossby waves. Note that for the β-plane scaling used to derive the
Rossby waves,

ωmax/fo = β Ld/(2 fo)≪ 1, (55.195)

thus confirming that the shallow water Rossby waves are strictly sub-inertial.

Group velocity

The group velocity, cg = ∇kϖ, is given by

cg =
β [(k2x − k2y − k2d ) x̂+ 2 kx ky ŷ]

(|k|2 + k2d )2
= − 2ωR

|k|2 + k2d
, (55.196)

where we introduced the group velocity orientation vector

R = −k − β/(2ω) x̂ = −[kx + β/(2ω)] x̂− ky ŷ with |R|2 = (β/2ω)2 − k2d . (55.197)

As for the orientation vector (54.62) in the horizontally non-divergent barotropic model, the
vector R points from the perimeter of the dispersion circle to the center (its magnitude equals
to the radius of the circle). We thus conclude that the dispersion geometry for shallow water
planetary waves directly carries over from the horizontally non-divergent barotropic model
detailed in Section 54.4.2. We illustrate the dispersion geometry for shallow water Rossby waves
in Figure 55.7, with many details provided in the figure and its caption.

55.9.5 Comments
A more streamlined approach to deriving the Rossby wave dispersion relation starts directly
from the quasi-geostrophic potential vorticity equation. That approach makes use of the quasi-
geostrophic theory derived in in Section 43.5. Even so, the longer approach taken in the current
section benefits by exposing the direct connection to other shallow water waves through the
unified shallow water equation (55.42).

In Chapter 62 we study waves in a continuous quasi-geostrophic fluid, thus returning to some
of the material in this section while extending it to continuous stratification.

55.10 Exercises
exercise 55.1: Steps in deriving the linear PV equation
Fill in the mathematical details needed to derive the linearized potential vorticity equation
(55.23). Hint: form the linearized relative vorticity equation as an intermediate step.
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ŷ

Figure 55.7: Dispersion circle for shallow water planetary Rossby waves as depicted by a circle in wavevector
space, (kx, ky), parameterized by the angular frequency, ω. The center of the circle is at kcenter = −(β/2ω) x̂
and the squared radius is (β/2ω)2 − k2d . A positive radius requires the angular frequency to be less than the
maximum, ωmax = β/(2 kd). We depict four sample wavevectors, k = kx x̂+ ky ŷ, that orient the phase velocity,
cp = k̂ω/|k|. Each wavevector extends from the origin to a point on the circle. Each wavevector has an associated
group velocity orientation vector, R = −k − β/(2ω) x̂, that points from the circle perimeter to the circle center.
The group velocity is westward for those wavevectors that intersect the circle perimeter within the gray-shaded
region, which generally includes Rossby waves with low zonal wavenumbers. The group velocity is eastward for
wavevectors outside the gray region, with the lines (kx − kclosestx )2 = k2y separating these regions where the group
velocity is westward or eastward. In particular, the group velocity for wavevector k1 is southward; for k2 it is
southeastward; for k3 it is northward, and for k4 it is northwestward. This dispersion circle directly compares to
Figure 54.5 constructed for the horizontally non-divergent barotropic model, with the key difference being kd ̸= 0
for the shallow water so that the dispersion circle does not touch the origin at k = 0.

exercise 55.2: Steps in deriving equation (55.40)
Derive equation (55.40) from the linearized velocity equation (55.15).

exercise 55.3: Equations for barotropic and baroclinic velocities
Fill in the details for deriving the equations (55.127a)-(55.127c) for the depth averaged and
depth-deviation velocities.

exercise 55.4: Gravity waves on a constant reference flow
Consider a one-dimensional shallow water layer moving with a constant zonal speed, U > 0, over
a flat bottom and in a non-rotating reference frame. We here examine the linear gravity wave
disturbances on this constant background flow, thus generalizing the case from Section 55.5 for
gravity waves propagating on a stationary background.

(a) Determine a general expression for the free surface wave fluctuation. Hint: perform a
Galilean transformation (Section 17.5) to a reference frame moving with the constant
background flow.

(b) Determine a general expression for the zonal velocity wave fluctuation.

(c) Making use of the ideas from hydraulic control in Section 55.5.4, discuss the cases where
U < cgrav (subcritical flow), U > cgrav (supercritical flow), and U = cgrav (critical flow).

exercise 55.5: Vanishing potential vorticity for inertia-gravity waves
Verify that the linearized potential vorticity, H Q′ = ζ ′ − f η′/H, vanishes for the plane shallow
water inertia-gravity waves (f -plane) given by the polarization relations in Section 55.8.9.
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Chapter 56

SHALLOW WATER WAVES: CASE STUDIES

In this chapter we examine some case studies in shallow waves, thus furthering our study of
shallow water wave mechanics.

reader’s guide to this chapter
This chapter is a direct extension of the shallow water wave theory studied in Chapter 55.

56.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585
56.2 Waves excited by flow over topography . . . . . . . . . . . . . . . . . . . 1586

56.2.1 Linearized governing equations . . . . . . . . . . . . . . . . . . . 1586
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56.3.4 Adjustment on the f -plane . . . . . . . . . . . . . . . . . . . . . 1596
56.3.5 Concerning the deformation radius . . . . . . . . . . . . . . . . . 1598
56.3.6 Comments and further reading . . . . . . . . . . . . . . . . . . . 1598

56.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598

56.1 Loose threads

• WKBJ approximation for shallow water gravity waves so to compute the change in the
amplitude of the wave. Need to reinterpret the acoustic amplitude equation 50.37c for
shallow water.

• Salmon class notes Chapter 9 on shallow water waves induced by an earthquake: solving
the initial value problem.

• String function discussion from Tyler and Käse (2000) and Tyler and Käse (2001).

• non-Doppler for long Rossby waves as on page 14 of Liu’s notes.
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56.2. WAVES EXCITED BY FLOW OVER TOPOGRAPHY

56.2 Waves excited by flow over topography
Consider the f -plane flow of a single layer of shallow water fluid with a static and prescribed
reference flow, uR, and let this flow pass over a non-flat bottom with vertical position

ηb(x, y) = ηb + η′b(x, y). (56.1)

If the topographic amplitude is much smaller than the resting layer thickness, |η′b| ≪ H, then
the motion consists of linear waves, and with the principle of superposition allowing Fourier
analysis to construct the linear wave fields generated by arbitrary (small amplitude) topography.
Additionally, the linearized form of shallow water potential vorticity conservation constrains the
waves. Indeed, it provides the wave equation. This section works through many elements of
the kinematics and dynamics encountered in a variety of forced wave problems, here with the
special restrictions imposed by the vertically columnar motion of a shallow water layer.1

56.2.1 Linearized governing equations

Following the linearization process detailed in Section 55.3, here with a nonzero reference flow,
leads to the thickness and velocity decomposition

h = H + η′ − η′b = H + h′ and u = uR + u
′. (56.2)

The reference flow is assumed to be in geostrophic balance with a prescribed pressure gradient
generated by a static free surface,

fo ẑ × uR = −g∇ηR. (56.3)

Making use of equations (56.2) and (56.3) in the shallow water equations (55.1a) and (55.1b)
leads to the linearized governing equations

[∂t + γ + (uR · ∇)]u′ + f ẑ × u′ = −g∇η′ (56.4a)

(∂t + uR · ∇)h′ = −H∇ · u′. (56.4b)

The constant, γ ≥ 0, is the inverse time scale for a Rayleigh drag (Section 25.8.5). We include
Rayleigh drag since in many wave problems it is used to retain a finite solution in the presence
of resonances. Even so, we drop it when examining the structure of the waves generated in the
presence of flow over topography.

Taking the curl of the velocity equation (56.4a) and then making use of the thickness equation
(56.4b) leads to the linearized version of the potential vorticity equation

(∂t + uR · ∇)Q′ = −γ ζ ′/H, (56.5)

where ζ ′ = ∂xv
′ − ∂yu′ is the relative vorticity of the perturbation, and

Q′ = f/H + ζ ′/H − f h′/H2 (56.6)

is the linearized potential vorticity (equation (55.22)), with f/H a constant for the f -plane
examined here. Equation (56.5) reveals that the linearized potential vorticity locally evolves
according to dissipation from Rayleigh drag acting on the relative vorticity.

1The setup is analogous to that considered for inertial waves in Section 53.5.2, which considered inertial waves
generated in a resting flow forced by moving topography.
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56.2.2 Galilean transformation to the frame of the reference flow

The reference flow is constant in space and time, so that a Galilean transformation to the frame
moving with this flow acts to remove advection from the equations of motion (56.4a)-(56.4b).
For this purpose, consider the Galilean transformation

t = t and x = x− uR t. (56.7)

Following our discussion of Galilean transformations in Section 17.5, we know that the derivative
operators transform according to

∂t = ∂t + uR · ∇ and ∂x = ∂x and ∂y = ∂y, (56.8)

which then brings the linear equations (56.4a), (56.4b), and (56.5) to

(∂t + γ)u′ + f ẑ × u′ = −g∇η′ (56.9a)

∂th
′ = −H∇ · u′ (56.9b)

∂tQ
′ = −γ ζ ′/H. (56.9c)

Whereas the reference flow moves with the velocity uR relative to the topography, the topography
moves with a velocity −uR relative to the reference flow. Correspondingly, by moving to the
boosted frame of the reference flow, the topography, which is independent of the rest frame time,
t, is a function of time as measured in the boosted frame, t.

56.2.3 Forced wave equation and potential vorticity

To derive a wave equation, take ∂t of the thickness equation (56.9b) to render

∂tth
′ = −H∇ · ∂tu′. (56.10)

Replacing ∂tu
′ using the linearized velocity equation (56.9a) leads to the forced wave equation

∂t [(∂t + γ)h′]− c2grav∇2η′ = −f H ζ ′, (56.11)

where we introduced the squared shallow water gravity wave speed

c2grav = g H. (56.12)

Following the approach in Section 55.8.2, make use of the linearized potential vorticity, Q′

(equation (56.6)) to replace ζ ′, in which

f H2Q′ = −(∂tt + γ ∂t + f2)h′ + c2grav∇2η′, (56.13)

which agrees with equation (55.152) for the case with uR = 0, γ = 0, and η′b = 0. Equation
(56.13) brings the potential vorticity evolution equation (56.9c) to the form

∂t[(∂tt + γ ∂t + f2)h′ − c2grav∇2η′] = f H γ ζ ′, (56.14)

which can be rewritten to isolate a forced wave equation for η′

∂t[(∂tt + f2)η′ − c2grav∇2η′] = γ [f H ζ ′ − ∂tt(η′ − η′b)] + ∂t[(∂tt + f2)η′b]. (56.15)

In the absence of dissipation (γ = 0) and for a flat bottom (η′b = 0), this equation has solutions
given by the free inertia-gravity wave modes discussed in Section 55.8.
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For the remainder of this section we set γ = 0 to focus on responses of a non-dissipative flow
moving over small amplitude topography. In this case equation (56.15) simplifies to

∂t[(∂tt + f2)η′ − c2grav∇2η′] = ∂t[(∂tt + f2)η′b]. (56.16)

Furthermore, consistent with our treatment of free inertia-gravity waves in Section 55.8, we focus
on wave solutions with zero potential vorticity, which leads to the forced linear wave equation

(∂tt + f2)η′ − c2grav∇2η′ = (∂tt + f2)η′b. (56.17)

Finally, since the bottom topography is independent of time, t, the source on the right hand
side takes the form

(∂tt + f2)η′ − c2grav∇2η′ = [(uR · ∇)2 + f2]η′b. (56.18)

This is a forced linear wave equation for a shallow water layer moving in a uniform background
flow over topography.

56.2.4 Monochromatic topography
We consider bottom topography in the form of a monochromatic wave

η′b = ηo e
ikb·x = ηo e

ikb·(x+uR t) = ηo e
i(kb·x−ωR t), (56.19)

where ηo is a constant real amplitude, kb is the topography wavevector, and

ωR = −kb · uR > 0 (56.20)

is the angular frequency implied by the reference flow that moves over the topography. Since
the wave response is assumed to be linear, the response to more complex topography can be
built using Fourier analysis.2

The topography (56.19) is stationary in the rest frame, but it moves in the direction opposite
to the reference flow when viewed in the boosted frame. This direction swap is reflected in the
choice kb · uR < 0, which orients the topography wavevector, kb, according to the reference flow,
uR. For example, a zonal referential flow, uR = U x̂, with U > 0, has a topography wavevector
kb = −|kb| x̂, in which case the topography (56.19) takes the form

η′b = ηo e
−i|kb|x = ηo e

−i|kb| (x+U t). (56.21)

Evidently, a boosted frame observer rides along with the reference flow while the topography
moves as a plane wave in the −x̂ direction. Conversely, a rest frame observer sees static
topography with the reference flow moving in the +x̂ direction.

56.2.5 Stationary waves and causality
Before considering the non-stationary (or non-steady) wave response in Section 56.2.7, we deter-
mine the stationary response from a uniform flow moving over the monochromatic topography
(56.21). Notably, stationary flow (also steady flow) refers to stationary in the rest frame of the
topography, so that

∂t = 0 =⇒ ∂t = uR · ∇. (56.22)

In effect, we assume all transient (traveling) waves have propagated far away from the region of
interest, leaving just the stationary wave response to the forcing. For flow over topography, the

2We illustrate the Fourier analysis approach in Section 58.3 for stationary internal gravity waves generaged by
flow over a single mountain.
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forcing angular frequency is ωR = −uR · kb > 0, whereas this frequency might have a different
origin in other systems, such as the frequency of a piston in a laboratory experiment.

Causality and the non-negative forcing frequency

Stationary waves are generally simpler to mathematically determine than their transient cousins.
Furthermore, stationary waves are often of primary physical interest when concerned with long
term wave responses. However, there are subtleties related to causality that must be kept in
mind when studying stationary solutions. Namely, the stationary equations have time symmetry
merely because all fields are time independent (in the rest frame). However, stationary waves
result from equilibration of transients that arise from a particular forcing. For example, with
flow over topography the stationary wave solution knows about the direction of the reference
flow, thus respecting causality (e.g., waves are swept downstream not upstream). So although
there are no time derivatives in the stationary equations, we build in causality through specifying
the forcing frequency, ωR = −uR · kb > 0 (equation (56.20)). Our choice to insist on a positive
forcing angular frequency provides a robust means to maintain causality. It also accords with
our choice in this book to only consider non-negative angular frequencies (see Section 49.2.3).

Free surface and velocity for the stationary flow

We insert the topography Fourier mode (56.19) into the potential vorticity equation (56.16),
and take a plane wave ansatz for the free surface

η′ = η̃ ei(k·x−ω t), (56.23)

where ω is the angular frequency seen in the boosted reference frame. This substitution yields

ω (−ω2 + f2 + c2grav |k|2) η̃ ei(k·x−ω t) = ωR (−ω2
R + f2) ηo e

i(kb·x−ωR t). (56.24)

Since the fluctuations are assumed to be linear, we expect the reference flow over the topography
to excite linear waves. Furthermore, in the steady state we expect the wavevector and angular
frequency to be set by the flow and topography

ω2 = ω2
R = (kb · uR)

2 and |k|2 = |kb|2, (56.25)

in which case equation (56.24) yields the amplitude ratio

η̃

ηo
=

ω2
R − f2

ω2
R − f2 − c2grav |kb|2

, (56.26)

and the corresponding free surface wave form

η′ = η̃ eikb·x =
(ω2

R − f2) ηo eikb·x

ω2
R − f2 − c2grav |kb|2

=

[
ω2

R − f2
ω2

R − f2 − c2grav |kb|2
]
η′b, (56.27)

with an example given by Figure 56.1. Evidently, the stationary solution has a free surface and
bottom topography that are either in-phase (same sign) or π radians out of phase (opposite
sign), depending on properties of the reference flow, the topography, the gravity wave speed,
and the Coriolis parameter. The stationary velocity field can be found just like for the free
inertia-gravity waves in Section 55.8.9 through use of the linear velocity equation (56.9a) (with
the Rayleigh drag, γ = 0), in which

u′ = ũ eikb·x (56.28)
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with the complex amplitude

ũ =
g η̃ (−kb ωR − i f ẑ × kb)

ω2
R − f2

=
g ηo (−kb ωR − i f ẑ × kb)

ω2
R − f2 − c2grav |kb|2

. (56.29)

These waves are not the free inertia-gravity waves studied in Section 55.8 since ω2
R ̸= f2 (1 +

L2
d |kb|2). Rather, they are stationary waves forced by the motion of the shallow water fluid

over the sinusoidal topography. Even so, they share many properties with inertia-gravity waves,
including the polarization relation exhibited by equation (56.29), which directly compares to the
free inertia-gravity wave in equation (55.174b).
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Fr < 1

Figure 56.1: A shallow water fluid layer with reference flow that moves over a sinusoidal bottom topography for
the sub-critical case (Fr < 1) from equation (56.33) with f = 0. The stationary gravity waves have amplitude,
η̃ = −ηo Fr2/(1− Fr2), that is opposite to that of the topography. Note that the specification, kb · uR < 0, orients
the topography wavevector, kb, according to the reference flow, uR. This orientation ensures that the topography
observed in the boosted frame moves in the opposite direction to the reference flow as viewed in the rest frame. It
also builds in causality as discussed in Section 56.2.5.

Flow regimes and free surface deflections

To help understand the amplitude ratio (56.26), consider the special case of zonal reference flow
with uR = U x̂, so that the squared frequency is

ω2
R = U2 |kb|2. (56.30)

We also find it useful to introduce the Froude number, shallow water deformation radius, and
period of an inertial oscillation

Fr = U/cgrav and Ld = cgrav/f and Tinertial = 2π/f. (56.31)

We can thus write the amplitude ratio (56.26) in the equivalent forms

η̃

ηo
=

ω2
R − f2

ω2
R − f2 − c2grav |kb|2

=
U2 − f2 |kb|−2

U2 − f2 |kb|−2 − c2grav
=

Fr2 − (Ld |kb|)−2

Fr2 − (Ld |kb|)−2 − 1
, (56.32)

with the first a ratio of angular frequencies, the second a ratio of speeds, and the third a ratio of
non-dimensional numbers.

There are three regimes for the amplitude as determined by

η̃

ηo
=

 > 0 if ω2
R > f2 + c2grav |kb|2

< 0 if f2 < ω2
R < f2 + c2grav |kb|2

> 0 if ω2
R < f2,

(56.33)
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as well as their equivalent forms in terms of speeds and non-dimensional numbers. Actually,
it is simplest to start by considering the f = 0 case, in which there are just two regimes as
determined by [

η̃

ηo

]
non-rotating

=

[
> 0 if Fr > 1
< 0 if Fr < 1.

(56.34)

With Fr > 1, the free surface is in-phase with the topography, so that the free surface rises
when the bottom rises, and vice versa. As discussed in Section 55.5.4, the Fr > 1 flow is a
state of hydraulic control and is generally unstable (the fluid particle speed is greater than the
gravity wave speed, and the flow generally breaks down into turbulence). For the sub-critical
flow with Fr < 1, the free surface falls when the topography rises, and vice versa. Equation
(56.33) shows that the addition of a non-zero Coriolis parameter, and thus a finite deformation
radius and finite inertial oscillation period, introduces a third regime for in-phase free surface
and topography, while it modifies the sub-critical and super-critical regimes.

56.2.6 Free stationary inertia-gravity waves

Consider the special case of
ω2

R = (kb · uR)
2 = f2, (56.35)

in which case the topographic forcing vanishes on the right hand side of the potential vorticity
equation (56.24). This case allows for any free inertia-gravity wave to fit within the domain so
that

ω2 = f2 (1 + L2
d |k|2). (56.36)

That is, the free inertia-gravity wave can exist just as in the case of the flat bottom domain
examined in Section 55.8. Transforming the free surface back to the rest frame yields

η′ = η̃ ei(k·x−ω t) = η̃ ei[k·x−(k·uR+ω) t] = η̃ ei(k·x−ω t), (56.37)

where we related the boosted frame frequency, ω, according to the Doppler shift relative to the
rest frame frequency, ω,

ω = ω − uR · k. (56.38)

Furthermore note that the free surface amplitude is unconstrained since these waves are invisible
to the topography. We have thus identified a free wave solution, which arises for the special case
of topography and reference flow satisfying ω2

R = f2 > 0 so that ω2/f2 = 1 + (|k|Ld)
2, which is

the flat bottom frequency for free traveling inertia-gravity waves found in Section 55.8.

56.2.7 Non-stationary gravity wave adjustment

So far we have focused on the stationary waves that result after allowing for transient non-
stationary waves to propagate away from the area of interest (formally, to propagate out to
infinity). We here consider the case of non-stationary gravity waves (f = 0) generated by flow
over topography. We assume the free surface fluctuation, η′, is initially equal to the bottom
topography and to have a zero initial tendency. With a zonal reference flow (uR = U x̂) and
zonally dependent bottom topography, η′b = η′b(x), we are led to the initial value problem from
equation (56.18)

(∂tt − c2grav ∂xx)η′ = U2 ∂xxη
′
b (56.39a)

η′(x, t = 0) = η′b(x) (56.39b)

∂tη
′(x, t = 0) = 0. (56.39c)
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This is an initial value problem formulated using the boosted reference frame coordinates,
(x, t) = (x − U t, t) from Section 56.2.2. Additionally, as shallow water gravity waves are
non-dispersive, we can naively allow the bottom topography to be arbitrarily shaped.3

We do not expect the initial condition to remain fixed for all time. Rather, we expect the
flow (in the limit of linear behavior) to adjust through gravity waves that propagate in both
directions. Additionally, we expect this propagation to occur in the presence of the stationary
solution from Section 56.2.5. This expectation motivates the ansatz

η′(x, t) = η′stationary(x) + η′transient(x, t) =
Fr2

Fr2 − 1
η′b(x) + η′transient(x, t), (56.40)

where we wrote the stationary solution in terms of the rest frame coordinates, (x, t), which is
the frame where η′stationary is stationary. The transient solution embodies linear gravity waves
propagating in both directions, and it satisfies equation (56.39a) with zero forcing and with
initial conditions set according to equations (56.39b) and (56.39c)

(∂tt − c2grav ∂xx)η′transient = 0 (56.41a)

η′transient(x, t = 0) = −η′transient(x, t = 0) (56.41b)

∂tη
′
transient(x, t = 0) = 0. (56.41c)

The solution to the non-dispersive wave equation (56.41a) is given by the D’Alembert formula
from Section 6.7.1, which takes the form

η′transient = Aη′b(x− cgrav t) +B η′b(x+ cgrav t) (56.42a)

= Aη′b[x− t (U + cgrav)] +B η′b[x− t (U − cgrav)] (56.42b)

= Aη′b(x− c(+) t) +B η′b(x− c(−) t), (56.42c)

where
c(±) = U ± cgrav (56.43)

are the gravity wave speeds relative to the reference flow. The constants A and B are set
according to the initial conditions (56.41b) and (56.41c), which yields

η′(x, t) =
Fr2

Fr2 − 1
η′b(x) +

1

2

[
η′b(x− c(−) t)

1− Fr
+
η′b(x− c(+) t)

1 + Fr

]
. (56.44)

For subcritical flow, with U < cgrav, we have

subcritical =⇒ c(+) = U + cgrav > 0 and c(−) = U − cgrav < 0. (56.45)

Since |c(−)| < |c(+)|, we find the transient solution consists of a relatively fast rightward moving
signal, η′b(x−c(+) t)/[2 (1+Fr)], plus a relatively slow leftward moving signal, η′b(x−c(−) t)/[2 (1−
Fr)]. Since Fr < 1, the amplitude of the right moving signal is smaller than the left moving
signal according to the ratio 0 < (1− Fr)/(1 + Fr) < 1. The stationary solution has a negative
amplitude of relatively absolute value. We depict an example in the left panel of Figure 56.2 for
the case of a single Gaussian mountain with Fr = 1/4. We can make use of a Gaussian shaped
mountain rather than a single Fourier mode since the linear responses are non-dispersive gravity
waves that travel at the same speed. Hence, we can sum any number of non-dispersive gravity
wave modes to render the Gaussian shaped wave response that remains coherent.

3We consider dispersive internal gravity waves in Section 58.3, which requires Fourier analysis methods to
account for wave dispersion.
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Figure 56.2: Stacked profiles of the free surface height that depicts the transient linear gravity wave adjustment
of a shallow water layer flowing over a mountain, with the reference flow moving from left to right, uR = U x̂
with U > 0. Each line represents the free surface incremented in time (moving upward) by the amount
∆t = 20× 103 m/

√
1000 m 9.8 m s−2 ≈ 200 s. The left panel shows results for subcritical flow with Fr = 1/4, and

the right panel shows supercritical flow with Fr = 2, both according to the solution (56.44). The initial condition
for the free surface, η′(x, t = 0) = η′b(x), is shown as a thick black line. For the subcritical flow, the stationary
solution has a relatively small and negative amplitude, whereas for the supercritical flow the stationary solution
has a large a positive amplitude. The subcritical case reveals leftward and rightward moving gravity waves that
propagate away from the mountain, with the leftward wave having a relatively large amplitude and slow speed.
The supercritical case has both waves moving to the right, with the relatively small amplitude positive signal
moving much faster than the larger amplitude negative signal.

For supercritical flow, with U > cgrav, have

supercritical =⇒ c(+) = U + cgrav > 0 and c(−) = U − cgrav > 0. (56.46)

Since c(±) > 0, both signals move to the right. The slower signal, η′b(x − c(−) t)/[2 (1 − Fr)],
has a negative amplitude since Fr > 1, with this amplitude larger in absolute sense than the
faster signal, η′b(x− c(+) t)/[2 (1 + Fr)], whose amplitude is positive. Furthermore, the stationary
solution has a positive amplitude. We depict an example supercritical response in the right
panel of Figure 56.2 for the case of a single Gaussian mountain with Fr = 2.

It is notable that the potential energy of the stationary state for subcritical flow is less
than that of the initial condition, given the depressed free surface height, whereas the potential
energy of the supercritical flow’s stationary state is greater than the initial condition. We cannot
perform a closed energy budget since the reference flow is assumed to be fixed. Even so, we
understand the ability of the supercritical reference flow to lift the full column of shallow water
fluid up and over the mountain, given its relatively large source of kinetic energy. In contrast,
the subcritical reference flow insufficient kinetic energy to lift the free surface over the mountain.

56.2.8 Comments and further study
There is no vertical wave propagation in a shallow water layer (see Section 55.3.4). Hence,
the layer responds to movement of the reference flow over variable bottom topography by
conforming to the constraints from shallow water potential vorticity conservation. It is for this
reason that we focused on the linearized potential vorticity equation (56.9c). A further focus
on fluctuations with zero potential vorticity, Q′ = 0, leads to the wave equation (56.18), just
as for the free inertia-gravity waves in Section 55.8. In Section 58.2 we study the generation
of internal inertia-gravity waves by flow over topography. That study extends the work done
here for the shallow water fluid, and it reveals a richer phenomenology that is supported by
continuous stratification and non-hydrostatic pressure. Chapter 5 of Sutherland (2010) works
through a variety of examples for shallow water fluid layers moving over topography, including a
study of the initial value problem that we considered in Section 56.2.7.
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56.3 Geostrophic adjustment
The geostrophic balance presented in Sections 31.4 and 36.2 is very well maintained by the
observed large-scale atmosphere and ocean. Hence, geostrophy (and the associated thermal
wind) is a powerful diagnostic. In this section, we examine how a flow state that is initially
not in geostrophic balance evolves towards geostrophy. We thus study the dynamical processes
associated with the geostrophic adjustment problem. As we see, the adjustment occurs through
the propagation of linear inertia-gravity waves.

A single shallow water layer on a flat f -plane is sufficient to introduce the main physical ideas
of geostrophic adjustment. Furthermore, we focus on linear perturbations so that the governing
equations are those derived in Section 55.8 when studying inertia-gravity waves. The adjustment
consists of linear inertia-gravity waves that maintain a locally static potential vorticity (equation
(55.23)). For brevity in notation, we here drop all primes on the linear fluctuating terms.

56.3.1 Potential vorticity inversion
Before studying the geostrophic adjustment problem, we offer a few comments about potential
vorticity inversion, which generally refers to the process of determining the flow field given
information about the potential vorticity. In a shallow water layer, the potential vorticity is
given by

Q = h−1 (f + ζ) = h−1 (f + ∂xv − ∂yu). (56.47)

If we further assume the flow to be in geostrophic balance (Section 36.2), then

Q =
f

h
+

1

h

[
∂

∂x

(
g

f

∂η

∂x

)
+

∂

∂y

(
g

f

∂η

∂y

)]
. (56.48)

Assuming we know Q throughout the domain; assuming f and Q are uniformly of the same sign
within the domain; and assuming we know boundary conditions for η, then equation (56.48) is
a nonlinear elliptic boundary value problem (Section 6.5) for η. Nonlinearities come from the
h−1 = (η − ηb)−1 pre-factor, as well as the boundary conditions discussed below. Linearizing by
setting h−1 ≈ H−1 and simplifying the boundary conditions (see below) allows equation (56.48)
to be solved for η. This solution process is referred to as inverting the elliptic operator, so that
this particular inversion process is referred to as potential vorticity inversion.

General boundary conditions for η can be rather complex to handle mathematically. Namely,
in a domain with a sloping bottom, such as in Figure 35.1, the free surface deviation equals to
the bottom deviation, η = ηb, along the domain boundaries since the layer thickness vanishes
there. Furthermore, the horizontal position of the domain boundary is a function of time since
the layer moves up and down the sloping bottom. Vanishing layers and the associated moving
boundaries are intrinsically nonlinear; i.e., there is no way to linearize the process without
removing it altogether. Instead, to facilitate the use of linear physics requires us to assume
the layer thickness remains nonzero throughout the domain. Furthermore, we assume the layer
thickness deviates only a small amount from the layer averaged thickness: h/H ≈ 1. These
assumptions are made in the following discussion of geostrophic adjustment.

56.3.2 Posing the initial value problem
We solve for the t > 0 evolution of surface height and velocity by making use of the linearized
equations from Section 55.34

∂tu+ f ẑ × u = −g∇η (56.49a)

4Recall that to reduce notational clutter, we drop primes on the fluctuation variables in this section.
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∂tη +H∇ · u = 0 (56.49b)

ζ − f η/H = H Q(x, y). (56.49c)

Q(x, y) is the linearized potential vorticity that is static for the flat bottom f -plane and so
it is fully determined by the initial conditions (Section 55.3.3). To illustrate the geostrophic
adjustment in an analytically tractable manner, consider the following step initial conditions for
the surface height

η(x, t = 0) =

{
+ηo x < 0
−ηo x > 0,

(56.50)

which can be written
η(x, t = 0) = ηo [1− 2H(x)] = −ηo sgn(x), (56.51)

where the sign-function is given by

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0,

(56.52)

which can also be written in terms of the Heaviside step function

sgn(x) = 2H(x)− 1, (56.53)

where5

H(x) =


0 if x < 0
1/2 if x = 0
1 if x > 0.

(56.54)

The velocity is assumed to be zero initially

u(x, y, t = 0) = 0. (56.55)

Correspondingly, the initial relative vorticity vanishes so that the linearized potential vorticity
(equation (56.49c)) is

Q(x, y) =
fηo
H2

sgn(x). (56.56)

Since ∂Q/∂t = 0 (equation (55.23)), the potential vorticity (56.56) is maintained at each point
in space throughout the adjustment process. The velocity and surface height adjustment is thus
constrained to keep potential vorticity static. This rather basic point is key to determining
evolution of the velocity and surface height, and thus in determining the final (equilibrium) state
for these fields.

56.3.3 Adjustment with f = 0

In the absence of planetary rotation (f = 0), relative vorticity is constant at each grid point.
With a zero initial velocity, relative vorticity remains zero throughout the adjustment. The
adjustment is thus quite simple. Namely, it consists of linear gravity waves, which carry zero
relative vorticity (equation (55.72)). These gravity waves propagate away from the initial step,
converting the potential energy of the step into kinetic energy of waves that propagate to infinity.
As the linear gravity waves are non-dispersive, they carry the initial pulse out to infinity without
distortion in the wave form

η(x, t) = −ηo
2
[ sgn(x+ cgrav t) + sgn(x− cgrav t)] . (56.57)

5We discuss the Heaviside step function in Section 7.5.
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The meridional velocity remains zero, whereas the zonal velocity equation

∂tu = −g ∂xη, (56.58)

leads to
u(x, t) =

g ηo
2 cgrav

[ sgn(x+ cgrav t)− sgn(x− cgrav t)] . (56.59)

After the transient waves have passed, the steady solution is a flat surface height with zero
velocity. This steady solution is familiar from the case of a rock dropped into a still pond. After
dropping the rock into the pond, the surface gravity waves radiate outward from the rock and
are eventually damped upon reaching the shore. In equilibrium, the pond returns to a state of
rest with a flat surface height.6

56.3.4 Adjustment on the f -plane
On a rotating f -plane, the transient solution consists of the inertia-gravity waves studied
in Section 55.8, with these waves transmitting information about the initial surface height
perturbation out to infinity. After the transient waves have passed, we might guess that the
steady solution is either the trivial solution with flat surface height (as for the f = 0 case), or a
nontrivial solution that is in geostrophic balance

f ẑ × u = −g∇η and ∇ · u = 0 and Q = H−2 f ηo sgn(x). (56.60)

Conservation of potential vorticity chooses the geostrophic solution, so that a steady solution of
no-motion is not allowed by potential vorticity conservation. This is a profound distinction from
the adjustment with f = 0.

Computing the steady state

As the steady flow is geostrophic on an f -plane, we make use of the geostrophic streamfunction

ψ = g η/f. (56.61)

The steady state is written in terms of the streamfunction according to

u = −∂yψ and v = ∂xψ and ζ = ∇2ψ. (56.62)

Making use of these expressions for the linearized potential vorticity (56.49c) leads to the elliptic
partial differential equation for the streamfunction[

∇2 − L−2
d

]
ψ = H Q(x, y), (56.63)

where we introduced the shallow water deformation radius, Ld = cgrav/f , from equation (55.54).

The initial condition (56.51) has no y-dependence. Furthermore, there is nothing in the
adjustment process that breaks meridional symmetry. Hence, the steady state is a function only
of x, in which case the streamfunction satisfies the ordinary differential equation

d2ψ

dx2
− L−2

d ψ =
fηo
H

sgn(x). (56.64)

We solve this equation separately for x > 0 and x < 0 and match the function and its first
derivative at x = 0, and furthermore constrain the streamfunction to vanish at ±∞. The x > 0

6For most ponds, waves are better studied using deep water equations rather than shallow water equations;
see Section 52.3. Even so, the key physical points in this example are maintained.
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Figure 56.3: Depicting solutions to the linear geostrophic adjustment of a rotating shallow water layer on an
f -plane. The top panel shows the initial (step-function) surface height (56.51) and the steady state (exponential)
surface height (56.70). The second panel shows the static (step-function) potential vorticity (56.60). The third
panel shows the steady state (exponential) meridional velocity (56.71) comprised of a jet centered at x = 0. The
horizontal axis is scaled according to the shallow water deformation radius, Ld = f−1 √g H. This figure is adapted
from figure 3.10 of Vallis (2017).

streamfunction satisfies
d2ψ

dx2
− L−2

d ψ =
fηo
H
. (56.65)

The particular solution is

ψp = −L2
d H Q = −L2

d f ηo/H = −g ηo/f, (56.66)

and the homogeneous solution is

ψh = (g ηo/f) e
−x/Ld , (56.67)

so that
ψ = −g ηo

f

[
1− e−x/Ld

]
. (56.68)

The x < 0 solution is found similarly, so that the full solution is

ψ =
g ηo
f

{
−
(
1− e−x/Ld

)
x > 0(

1− ex/Ld
)

x < 0,
(56.69)

which means that the steady state surface height is

η = ηo

{
−
(
1− e−x/Ld

)
x > 0(

1− ex/Ld
)

x < 0.
(56.70)

Note that the streamfunction vanishes at x = 0 and has a first derivative of −ηo
√
gH/H. Since

the streamfunction only has a zonal dependence, the steady state velocity is purely meridional

u = 0 and v = − g ηo
f Ld

e−|x|/Ld . (56.71)

The steady state velocity thus consists of a jet that is perpendicular to the surface height front.
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56.3.5 Concerning the deformation radius
As illustrated in Figure 56.3, the steady state profiles for the surface height and velocity both
have an exponential decay, with decay length scale given by the deformation radius. The
deformation radius is this length scale over which a signal can propagate before being affected
or “deformed” by the Coriolis acceleration, thus motivating the name deformation radius. More
precisely, the deformation radius measures the horizontal length scale over which a wave can
propagate within the time |f |−1 (the inertial period is 2π/|f |), before feeling the effects of the
Coriolis acceleration, thus making

Ld |f | =
√
g H. (56.72)

In the f = 0 limit, the deformation radius is infinity and the steady solution returns to the
case considered in Section 56.3.3, whereby the steady state free surface is flat and there is no
flow. A key feature of the f ̸= 0 case is that some of the potential energy contained within the
initial perturbed free surface remains part of the steady state geostrophic flow. Conservation of
potential vorticity constrains the flow so that all the initial potential energy cannot be converted
to kinetic energy. Rather, the adjustment occurs only within a deformation radius distance from
the initial perturbation.

We can extend the ideas introduced in this single-layer adjustment to a two-layer system as
depicted in Figure 56.4, with the figure caption summarizing the physics. Again, adjustment
leads to geostrophic flow when the lateral extent of the flow reaches the deformation scale. In
this case, the deformation scale is much smaller than the single-layer fluid given that it is the
reduced gravity that determines the velocity scale rather than the gravity.7 The slower internal
wave speeds propagate the internal wave signal a shorter distance before feeling the effects from
Coriolis

Ld |f | =
√
grH ≪

√
g H. (56.73)

56.3.6 Comments and further reading
Our study of shallow water geostrophic adjustement shares some features with that of the gravity
wave adjustment to flow over topography as studied in Section 56.2.7. For the topographic
case we considered f = 0, whose linear gravity waves carry zero relative vorticity, whereas for
the geostrophic adjustment we allow for f ̸= 0, whose linear inertia-gravity waves carry zero
potential vorticity. Transients for both cases consist of linear waves carrying information out
to “infinity”, leaving behind a stationary flow. For the topographic case the stationary flow is
set according to the topography and the Froude number, whereas for the geostrophic case the
stationary flow is set according to the Coriolis acceleration and initial conditions.

Section 3.9 of Vallis (2017) presents a far more thorough discussion of this linear geostrophic
adjustment problem, including an elegant variational approach. Chapter 3 of Pratt and Whitehead
(2008) provide a thorough discussion for both linear and nonlinear geostrophic adjustment.

56.4 Exercises
exercise 56.1: Deformation radius
The deformation radius appears in many contexts within rotating fluid dynamics. Here, we
compute this length scale for selective geophysical flow regimes at 30◦N latitude, where f =
7.3× 10−5 s−1.

7Recall from Section 55.6 that we study gravity waves in two shallow water layers, where we indeed find the
reduced gravity determines the baroclinic phase speed.
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L ⇡ Ld

Figure 56.4: Two regions of uniform density fluid used to illustrate the adjustment under gravity acceleration
and Coriolis acceleration in the absence of mixing. Top panel: two fluid layers each have uniform density with
ρA > ρB and with the heavy fluid sitting between two regions of the lighter fluid, with the fluids separated by
a barrier. Lower panel: upon releasing the barrier, gravity causes the heavy fluid to slump under the lighter
fluid. This process halts when the lateral scale of the heavier fluid reaches the deformation scale, Ld =

√
grH/f ,

where
√
grH ≈ N H is the speed of the internal gravity wave signal appearing in a two-layer fluid. The adjusted

state reaches two-layer geostrophic balance as discussed in Section 36.2.2, whereby the difference in geostrophic
flow in the two layers is proportional to the slope of the interface between the layers. By extension, if the initial
region of heavy fluid had an initial lateral extent on the order of the deformation scale, then there will be minimal
change in the lateral extent after the barrier is removed since the Coriolis acceleration will balance the pressure
gradients to render a geostrophic flow. See Figure 15.4 of Cushman-Roisin and Beckers (2011) for more examples
of geostrophic adjustment.

(a) Compute the shallow water deformation radius for an ocean continental shelf of depth
500 m.

(b) Compute the shallow water deformation radius for the deep ocean with depth 5000 m.

(c) The deformation radius defined in this chapter is sometimes called the external deformation
radius as it makes use of the full depth of the fluid and the gravitational acceleration. In
contrast, the deformation radius defined in terms of internal layer thickness and reduced
gravity, gr, leads to the internal deformation radius. The internal deformation radius,
Lint

d =
√
gr h/f is the appropriate rotational length scale for density layers in the interior of

the ocean or isentropic layers in the interior of the atmosphere. Compute the deformation
radius for a density layer of thickness h = 200 m and reduced gravity of gr = g/1000.

exercise 56.2: Geostrophic adjustment (based on exercise 4.6 of Vallis (2019))
Consider the linear geostrophic adjustment problem on an f -plane with a single layer of shallow
water fluid over a flat bottom. Rather than assume an initial free surface profile, as we did in
Section 56.3, here we assume an initial meridional velocity profile given by

v(x, t = 0) = v0 sgn(x) = v0 (2H(x)− 1), (56.74)

where v0 > 0 is a constant, sgn is the sign-function (equation (56.52)), and H is the Heaviside
step function (equation (56.54)). The free surface is assumed to be initially flat.

(a) Show that the linearized potential vorticity, H Q′ = ζ ′ − f η′/H, is given by

H Q′(x) = 2 v0 δ(x), (56.75)
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where δ(x) is the Dirac delta with dimensions L−1.

(b) As we did in Section 56.3, solve for the geostrophic streamfunction ψ = g η/f .

(c) Discuss the geostrophically adjusted streamfunction and velocity, and draw a sketch of ψ
and v.

Here are some hints.

• We discuss properties of the Dirac delta in Chapter 7. However, to answer the first part of
this question it is sufficient to know that the derivative of the Heaviside step function (a
dimensionless step function) is the Dirac delta

δ(x) =
dH(x)

dx
, (56.76)

so that the Dirac delta has dimensions of inverse length.

• For the second part, note that the streamfunction is exponentially decaying on either side
of the x = 0 according to ψ = ψ0 e

−|x|/Ld , which then leads to a jump in the derivative
approaching the origin from each side. Carefully use equations (56.63) and (56.76) to
determine ψ0.
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Chapter 57

INTERNAL INERTIA-GRAVITY WAVES

In this chapter we continue the study of how gravity affects wave motion in geophysical fluids,
here focusing on gravity waves realized in a continuously stratified fluid. As part of anticipating
this discussion, recall Section 55.6 where we studied gravity waves in two shallow water layers and
decomposed the motion into two modes: the barotropic mode and baroclinic mode. When moving
to a continuously stratified fluid we encounter an infinity of baroclinic modes. These modes are
associated with motion of interior stratification surfaces, and have very little projection onto
motion of the upper free surface. Consequently, these waves are generally referred to as internal
gravity waves.

Although the shallow water system anticipated some features of gravity waves in a continuous
system, there are many properties revealed only when moving to continuous stratification. In
particular, the dispersion relation for internal gravity waves presents the peculiar feature of
having a group velocity that is perpendicular to the phase velocity. In fact, this property was
already encountered in Chapter 53 when studying inertial waves in a homogeneous fluid. We
here focus most attention on the case of internal gravity waves in a non-rotating reference frame.
Extending to the case of an f -plane is relatively straightforward and builds on the inertial wave
material from Chapter 53 as well as the shallow water inertia-gravity waves studied in Section
55.8.

reader’s guide to this chapter
We build on the prior wave mechanics chapters and assume familiarity with the equations

for a Boussinesq ocean in Chapter 29 and the concept of Archimedean buoyancy from Chapter
30. Chapter 58 continues our study of internal inertia-gravity waves by focusing on a variety
of geophysical mechanisms for the forcing of such waves.

Further resources for material in this chapter can be found in Lighthill (1978), Gill (1982),
Pedlosky (2003), Sutherland (2010), Cushman-Roisin and Beckers (2011), Kundu et al. (2016),
and Vallis (2017). The second half of this video offers some pedagogical visualizations of
stratified flow phenomena, and this video provides more visualizations from simulations and
laboratory tank experiments.
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57.1 Loose threads
• energetic balances for reflected waves.

• Is there a general means to determine cg · k = 0 without going through the process of
computing the group velocity? Why do some waves have this property but others do not?

• Vertical normal modes in Section 57.7 as per Lecture 9 of Pedlosky (2003) or Section 6.10
of Gill (1982).

57.2 Boussinesq ocean and its linearization
Throughout this chapter we work with the Boussinesq ocean equations in their inviscid/adiabatic
limit, and linearize the governing equations around a rest state in exact hydrostatic balance. In
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this section we review the governing equations from Chapter 29 and perform the linearization.

57.2.1 Boussinesq ocean equations

We make use of the governing equations for an adiabatic and inviscid Boussinesq ocean written
in the form (see Section 29.1.7)

ρo [∂tv + (v · ∇)v + 2Ω× v] = −∇p− ρ g ẑ inviscid velocity equation (57.1a)

∇ · v = 0 non-divergent flow (57.1b)

(∂t + v · ∇) ρ = 0 adiabatic density equation (57.1c)

ρ = −ρo αΘΘ linear equation of state. (57.1d)

The density field contains a nontrivial spatial structure

ρ = ρ(x, t), (57.2)

with the Boussinesq reference density, ρo, a constant, and we furthermore assume the thermal
expansion coefficient, αΘ, is a constant. Hence, the density and Conservative Temperature, Θ,
are linearly proportional, with the adiabatic density equation (57.1c) meaning that Conservative
Temperature is materially constant. The velocity field resolved by the Boussinesq ocean is
non-divergent so that it does not support acoustic waves.1 The inhomogeneous density field
couples to the gravity field to render a nonzero buoyancy that appears in the velocity equation
(57.1a). Buoyancy is the essential ingredient for the internal gravity waves studied in this chapter.
Finally, we make use of the Traditional Approximation (Section 27.1.3) and tangent plane
approximation (Section 24.5) with the planetary rotation approximated by

2Ω ≈ fo ẑ, (57.3)

where fo is the planetary vorticity set either to zero or a nonzero constant.

57.2.2 The prescribed reference state

We consider a three-component decomposition of density into a constant Boussinesq reference
density, ρo > 0, plus a prescribed static reference density, ρR(z) > 0, and a perturbation density,
ρ′(x, t),

ρ(x, t) = ρo + ρR(z) + ρ′(x, t). (57.4)

We assume the following inequalities hold

ρR ≪ ρo and |ρ′| ≪ ρR, (57.5)

with the first inequality following from the Boussinesq ocean approximation, and the second
inequality supporting linearization in Section 57.2.4. The buoyancy is decomposed according to
the density decomposition (57.4), so that

b = −g (ρ− ρo)/ρo = −g (ρR + ρ′)/ρo = bR + b′. (57.6)

Likewise, we decompose pressure so that

p = po(z) + pR(z) + p′(x, t), (57.7)

1See Section 51.2 for more on how we interpret the quasi-compressible properties of the Boussinesq ocean.
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where
dpo(z)/dz = −ρo g and dpR(z)/dz = −ρR(z) g, (57.8)

so that po and pR are both hydrostatic base state pressures given by

po(z) = −ρo g z and pR(z) = g

ˆ 0

z
ρR(z

′) dz′. (57.9)

The corresponding pressure and gravity contributions to the velocity equation (57.1a) take the
form

−∇p− ρ g ẑ = −ρo∇φ′ − ρ′ g ẑ = −ρo (∇φ′ − b′ ẑ), (57.10)

where we introduced the normalized dynamic pressure (with dimensions of squared velocity)

φ′ = p′/ρo. (57.11)

Introducing the reference state into the velocity equation (57.1a) and density equation (57.1c)
leads to

∂tv + (v · ∇)v + fo ẑ × v = −∇φ′ + b′ ẑ decomposed velocity equation (57.12a)

(∂t + v · ∇) b′ = −wN2
R decomposed buoyancy equation. (57.12b)

In the buoyancy equation we introduced the reference state’s squared buoyancy frequency

N2
R = − g

ρo

dρR

dz
. (57.13)

It is notable that the velocity equation (57.12a) is mathematically identical to the original
velocity equation (57.1a). However, the fluctuating buoyancy equation (57.12b) is distinct from
the original buoyancy equation (57.1c). Namely, the reference state squared buoyancy frequency
couples to the vertical velocity to provide a source, −wN2

R , for the material evolution of the
perturbation buoyancy.

57.2.3 Buoyancy frequency compared to surface gravity waves

As revealed in this chapter, the buoyancy frequency of the background state, NR, sets the time
scale for the internal gravity wave motions. To garner a sense for its scale, we compare this
frequency to that found for the deep water surface gravity waves studied in Section 52.5.5.
Making use of equation (52.123a) for deep water gravity waves leads to the ratio

N2
R

ω2
dww

=
N2

R

g |k|dww

=

∣∣∣∣ gρo dρR

dz

Λdww

2π g

∣∣∣∣ = ∣∣∣∣ ∆ρR

2π ρo

∣∣∣∣ . (57.14)

In the final step we took the deep water wave length, Λdww, as the vertical scale over which
to measure the vertical density difference, ∆ρR. Now the deep water wavelength is just a few
meters, which means that |∆ρR|≪ ρo. We conclude that the buoyancy frequency is much less
than the frequency of deep water surface gravity waves. We can understand this result by noting
that the gravitational restoring force acting on deep water surface waves is far stronger than the
reduced gravity acting on internal waves, so we expect the deep water waves to oscillate much
faster.

Now consider the same calculation for shallow water surface gravity waves by making use of
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the dispersion relaation (52.123b) to yield

N2
R

ω2
sww

=
N2

R

|k|2sww c
2
grav

=

∣∣∣∣ gρo dρR

dz

Λsww

2π |k|sww g H

∣∣∣∣ = ∣∣∣∣∆ρR

ρo

1

2π |k|swwH

∣∣∣∣ . (57.15)

In this case the density difference, ∆ρR, is computed over a vertical length scale equal to the
wavelength, Λsww. But since |k|swwH ≪ 1 for shallow water gravity waves, we take ∆ρR over the
full depth of the ocean. Even so, the density ratio remains small, ∆ρR/ρo ≪ 1. Yet now this
ratio is divided by the small number 2π |k|swwH = (2π)2H/Λsww ≪ 1. We thus find that the
internal gravity wave frequency can be on the order of the shallow water gravity wave frequency.
So although the shallow water waves feel the full gravitational acceleration, just like deep water
gravity waves, the huge scale for shallow water waves leads to far slower wave motion than the
deep water gravity waves. As a result, the frequency for shallow water waves is on the order of
that for internal waves.

57.2.4 Linearization around the background state of rest

The second of the density inequalities (57.5) implies the buoyancy inequality

|b′| ≪ bR. (57.16)

Evidently, fluctuations in the buoyancy field, which can be positive or negative, are far smaller
in magnitude than the reference state buoyancy. These small fluctuations in buoyancy lead to
correspondingly small fluctuations in dynamic pressure, φ′, and small fluctuations in the velocity,
v′. The linearized velocity equation (57.12a) and buoyancy equation (57.12b) are obtained by
dropping nonlinear product of fluctuating fields

∂tu
′ + fo ẑ × u′ = −∇hφ′ linearized horizontal velocity equation (57.17a)

∂tw
′ = −∂zφ′ + b′ linearized vertical-velocity equation (57.17b)

∂tb
′ = −w′N2

R linearized buoyancy equation (57.17c)

∇ · v′ = 0 continuity for velocity fluctuations. (57.17d)

The final equation expresses the non-divergent nature of the fluctuating velocity field.2 These
three linear equations are the linearized governing equations used in this chapter.

57.2.5 Energetics

We studied the energetics of the nonlinear equation set (57.1a)-(57.1d) in Section 29.6. We here
revisit that discussion and then derive energetics for the linearized equations (57.17a)-(57.17d).

Adiabatic inviscid Boussinesq ocean

The kinetic energy per volume and potential energy per volume in a Boussinesq ocean are given
by

ρo K = ρo v · v/2 and ρΦ = ρ g z, (57.18)

where we introduced the kinetic energy per mass and potential energy per mass (i.e., the
geopotential)

K = v · v/2 and Φ = g z. (57.19)

2The velocity has been decomposed into its background state flow, vR, which is assumed here to be zero, plus
a fluctuation around the background flow, v′. Since ∇ · v = 0 and vR = 0, we see that ∇ · v′ = 0.
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Material evolution of the kinetic energy is derived by making use of the velocity equation (57.1a),
in which

ρo DK/Dt = −∇ · (v p)− ρ g w. (57.20)

Material evolution of the potential energy per volume for an adiabatic Boussinesq ocean is given
by

D(ρΦ)/Dt = g ρw. (57.21)

We are thus led to the mechanical energy equation for the adiabatic and inviscid Boussinesq
ocean

ρo DK/Dt+ ρDΦ/Dt = −∇ · (v p), (57.22)

so that mechanical energy following a fluid element is modified by convergence of the pressure
flux. We thus identify v p as the flux of mechanical energy in the Boussinesq ocean.

Linearized adiabatic inviscid Boussinesq ocean

In the process of deriving the linearized equation set (57.17a)-(57.17d), we gave no attention to
the energetic balances. Hence, it is not a priori clear that a sensible energetic balance exists
for these linear equations. However, as we now show, there is indeed an energetic balance that
manifests a physically relevant exchange of mechanical energy between its kinetic and potential
forms. For the kinetic energy per mass, K′ = v′ · v′/2, use of the velocity equation (57.17a)
readily yields

∂tK
′ = −∇ · (v′ φ′) + w′ b′. (57.23)

The potential energy is a bit less straightforward. Namely, multiplying the linear buoyancy
equation (57.17c) by b′ readily finds

∂tA
′ = −w′ b′ with A′ = (b′/NR)

2/2. (57.24)

Recall the discussion in Section 29.9.4, where A is identified as a measure of the available
potential energy contained in small amplitude fluctuations of buoyancy surfaces.3 Evidently, the
linearized Boussinesq ocean has a mechanical energy budget given by

∂t(K
′ +A′) = −∇ · (v′ φ′). (57.25)

Hence, a time tendency for the sum of the kinetic energy plus the available potential energy is
driven by convergences in the dynamic pressure flux, v′ φ′.

57.3 Buoyancy oscillations
As a starting point to studying small amplitude flow features emerging from the linearized
Boussinesq ocean equations (57.17a)-(57.17d), consider Ω = 0 (flow in a non-rotating reference
frame), in which the buoyancy equation and vertical velocity equation are

∂tb
′ + w′N2

R = 0 and ∂tw
′ = −∂zφ′ + b′. (57.26)

The time derivative of the velocity equation and use of the buoyancy equation, along with the
complement operations, yield

(∂tt +N2
R )w

′ = −∂tzφ′ and (∂tt +N2
R ) b

′ = N2
R ∂zφ

′. (57.27)

3In Section 57.5.14 we offer a further interpretation of the available potential energy as it appears for an
internal gravity wave.
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Each of these equations describes a forced oscillator with angular frequency given by the buoyancy
frequency, NR. We determine the forcing by determining the pressure, which satisfies the Poisson
equation

−∇2φ′ = −∂zb′, (57.28)

along with boundary conditions specific to the domain. As studied in Sections 29.3 and 30.11,
this pressure equation results from taking the divergence of the velocity equation (57.17a) (with
Ω = 0) and using the continuity equation, ∇ · v′ = 0. In the absence of any vertical structure to
the buoyancy (i.e., ∂zb

′ = 0), the pressure satisfies Laplace’s equation, ∇2φ′ = 0, which renders
a zero pressure fluctuation in the absence of boundary effects.

57.3.1 Unforced buoyancy oscillations
Ignoring the pressure forcing in the forced oscillator equations (57.27) leads to free oscillations
for the buoyancy and vertical velocity

(∂tt +N2
R )w

′
free = 0 and (∂tt +N2

R )b
′
free = 0. (57.29)

Evidently, both the vertical velocity and the buoyancy exhibit simple harmonic oscillations with
angular frequency, NR. Such free oscillations occur when the pressure field has zero vertical
gradient, ∂zφ

′ = 0, in which case there is no resistance to free oscillations in the vertical.

By ignoring the pressure fluctuations, we are in effect ignoring the impact of the buoyancy
fluctuation on pressure. This approach is not dynamically self-consistent. However, it is a
common approach, sometimes referred to as the parcel method, whereby we consider the motion of
a test fluid element that is assumed to have no impact on the surrounding fluid.4 We considered
the pros and cons of this approach when studying Archimedean buoyancy in Section 30.4 and
effective buoyancy in Section 30.11.

As seen in Section 57.5.11, fluid particles exhibit free oscillations when they move in directions
that parallel the surfaces of constant phase for internal gravity waves if the phase surfaces are
not horizontal. On constant phase surfaces the pressure is spatially constant so that the only
force acting on the fluid particle arises from gravity in a vertically stratified fluid; i.e., buoyancy.
We return to this conceptual picture in Section 57.5.11 as it is fundamental to the forces acting
within an internal gravity wave.

57.3.2 The lack of oscillations with horizontal homogeneity
When discussing buoyancy oscillations one sometimes finds it convenient to consider a horizontally
homogenous fluid and conceive of the oscillations moving horizontal stratification surfaces up
and down. However, there are caveats to this conceptual picture that offer further hints at the
physics of gravity waves.

Horizontal homogeneity means that the horizontal pressure gradient vanishes, and thus the
horizontal velocity vanishes (remember we are assuming a non-rotating reference frame so that
Ω = 0). To maintain continuity for the Boussinesq ocean requires ∂zw

′ = 0, which means, with
zero horizontal motion, that w′ = 0 throughout the domain. It follows that for a Boussinesq
ocean there can be no buoyancy fluctuation with v′ = 0. Although this conclusion might be clear
enough, we step through the details to further support an undestanding of the linear equations.

A vanishing vertical velocity in the forced oscillator equation (57.27) means that the vertical
pressure gradient is time independent, ∂t(∂zφ

′) = 0. Furthermore, horizontal homogeneity for
the pressure equation (57.28) means that

∂z(∂zφ
′ − b′) = 0, (57.30)

4See Sections 17.2.5 and 30.4 for more on test fluid elements.
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so that ∂zφ
′ − b′ = B(t), where B is an arbitrary function of time. Taking a time derivative,

and using ∂t(∂zφ
′) = 0, leads to ∂tb

′ = −∂tB, which means that the buoyancy fluctuation is
vertically independent. A vertically independent buoyancy in the forced buoyancy oscillator
equation (57.27) means that N2

R ∂zφ
′ is also vertically independent, which can be satisfied if

∂zφ
′ = 0. But then w′ = 0 and ∂zφ

′ = 0 in the vertical velocity equation (57.29) then means
that b′ = 0. We are thus led to conclude that the horizontally homogeneous linear Boussinesq
system is dynamically consistent only with the trivial solution: v′ = 0 and b′ = 0. That is,
horizontal homogeneity means exact hydrostatic balance in which, for a Boussinesq fluid, there
is zero motion and zero buoyancy oscillations.5

As we see in the following sections, the study of internal gravity waves leads to fluctuations
that have both horizontal and vertical spatial variations, thus allowing for nontrivial wave
motions. Now a surface of constant phase for a plane wave has homogeneous flow properties, in
which case fluid particles exhibit free buoyant oscillations along these surfaces.6 Yet as seen in
the following, such buoyancy oscillations exist only if the phase surfaces are sloped relative to the
horizontal plane, thus allowing the background buoyancy to produce buoyancy oscillations along
the phase surfaces. No internal gravity waves occur if the phase surface is strictly horizontal,
with this result consistent with the above arguments. We further detail this physical picture in
Section 57.5.11.

57.4 The linear Boussinesq ocean with f = 0

We here study properties of the linearized Boussinesq equations (57.17a)-(57.17d) in a non-
rotating reference frame

∂tv
′ = −∇φ′ + b′ ẑ linearized Ω = 0 velocity equation (57.31a)

∂tb
′ = −w′N2

R linearized buoyancy equation (57.31b)

∇ · v′ = 0 continuity for velocity fluctuations. (57.31c)

57.4.1 Relative vorticity

Taking the curl of the velocity equation (57.31a) leads to the evolution equation for the relative
vorticity7

∂t(∇× v′) = ∇× b′ ẑ =⇒ ∂tω
′ = −ẑ ×∇b′. (57.32)

The right hand side is the baroclinicity vector (40.152) for a Boussinesq fluid. Hence, in the
linearized Boussinesq equations for a fluid in a non-rotating reference frame, relative vorticity
has a local time tendency driven by baroclinicity. In the absence of a buoyancy gradient, the
vorticity vector in the linear theory is static and remains zero if initialized to zero.

As noted in Section 40.7.2, baroclinicity in a Boussinesq fluid only affects vorticity in the

5A non-Boussinesq fluid can exhibit vertical motion even if the fluid has its density modified in a manner that
does not introduce horizontal density gradients. For example, a horizontally homogeneous heating in an ocean
with constant salinity will reduce the density and expand the water column, without introducing any horizontal
inhomogeneities. This expansion results from the divergent nature of the flow field in a non-Boussinesq fluid.
However, this expansion is not represented by a Boussinesq ocean. Namely, the Boussinesq ocean has a prognostic
flow field that is non-divergent, so that a uniform heating is not directly felt by the flow. In Section 72.7.6 we
discuss implications of this limitation of the Boussinesq ocean for the study of global mean sea level.

6This conclusion follows since internal gravity waves in a Boussinesq ocean are transverse waves, so that fluid
particles move along constant phase surfaces.

7Be careful to distinguish the relative vorticity vector, ω′ = ∇× v′, from the angular frequency, ω, of a plane
wave, and from the vertical component of the velocity vector, v = x̂u+ ŷ v + ẑw.
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horizontal directions, here seen for the linearized vorticity equation (57.32) since

ẑ · (ẑ ×∇b′) = 0. (57.33)

One interpretation of internal gravity waves is that they arise from oscillations of the baroclinicity
vector that leads to an oscillation of the horizontal components of the relative vorticity.8 Since
the vertical component to the vorticity is unaffected by baroclinicity, in the linear theory the
vertical vorticity is locally static

∂tζ
′ = 0 with ζ ′ = ẑ · (∇× v′). (57.34)

So if the flow starts with a zero vertical vorticity, then the linearized Boussinesq ocean maintains
ζ ′ = 0. In Section 55.5.1 we also found a static vertical component of relative vorticity holds for
the shallow water gravity waves in a non-rotating reference frame (see equation (55.72)).

57.4.2 Wave equation for the vertical velocity
In Section 57.3 we derived the forced harmonic oscillator equation (57.27) for the vertical velocity

(∂tt +N2
R )w

′ = −∂tzφ′. (57.35)

We find it useful to derive a wave equation solely in terms of w′, which is then used to derive
the dispersion relation for internal gravity waves. To eliminate pressure, start by taking the
horizontal divergence of the horizontal components to the velocity equation (57.31a)

∂t(∇h · u′) = −∇2
h φ

′, (57.36)

where we introduced the horizontal gradient operator and horizontal Laplacian operator

∇h = x̂ ∂x + ŷ ∂y and ∇2
h = ∇h · ∇h = ∂xx + ∂yy. (57.37)

Equation (57.36) says that time evolution of the horizonal velocity divergence is driven by
the negative horizontal Laplacian acting on the dynamic pressure. Since the full velocity is
non-divergent, ∇ · v′ = ∇h · u′ + ∂zw

′ = 0, equation (57.36) becomes an equation for the vertical
divergence of the vertical velocity

∂t(∂zw
′) = ∇2

h φ
′. (57.38)

Taking the horizontal Laplacian of the forced oscillator equation (57.35) (recall NR = NR(z))
yields

(∂tt +N2
R )∇2

h w
′ = −∂tz∇2

h φ
′, (57.39)

and then using equation (57.38) leads to the wave equation for the vertical velocity

(∂tt∇2 +N2
R ∇2

h )w
′ = 0. (57.40)

There is anisotropy in this equation due to the gravity force that distinguishes the vertical
direction from the horizontal. The anisotropy manifests by the fully three dimensional Laplacian,
∇2, in the first term in equation (57.40), whereas just the horizontal Laplacian, ∇2

h , appears in
the second term. We furthermore observe that the wave equation (57.40) shares features with
the wave equation (53.27) satisfied by the inertial waves in a homogeneous fluid in a constantly
rotating reference frame. Gravity, coupled to nonzero density gradients, breaks symmetry in the
Boussinesq ocean by introducing the buoyancy acceleration that then supports internal gravity
waves. Analogously, a rotating reference frame breaks symmetry of the homogeneous fluid by

8For example, see the 16 minute mark of this video from Prof. Long.
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introducing the Coriolis acceleration that then supports inertial waves.

57.4.3 Linearized boundary conditions

For much of this chapter, we study freely traveling internal inertia-gravity waves in the absence
of boundaries. However, we do have occasions to study waves within a bounded or semi-bounded
domain, in which case we need to apply boundary conditions. Hence, we here formulate the
linearized boundary conditions for these cases. To be specific, we orient the domain with z = 0
the vertical position of a resting upper free surface boundary, such as for a resting ocean domain.
However, when studying waves generated by bottom topography in Section 58.2, we place z = 0
at the position of a flat bottom domain.

Kinematic boundary conditions

Since the reference flow is assumed to vanish, the kinematic no-normal flow boundary condition
holds for the fluctuating flow

v′ · n̂ = 0 at solid boundaries. (57.41)

At a moving material boundary (Section 19.6.2), such as the ocean free surface at z = η(x, y, t),
the kinematic boundary condition (19.66)

(∂t + u · ∇)η = w′ at z = η (57.42)

is linearized to
∂tη = w′ at z = η. (57.43)

In fact, we must go one step further to fully linearize this boundary condition. The reason is that
w(η) is nonlinear, as seen by a Taylor expansion about the resting z = 0 free surface position

w′(z = η) ≈ w′(z = 0) + η ∂zw
′. (57.44)

The term, η ∂zw
′, and all higher order terms, are nonlinear and so are dropped for the linear

theory. We are thus led to the linearized surface kinematic boundary condition

∂tη = w′ at z = 0. (57.45)

We made use of this same boundary condition linearization in Section 52.3.4 when studying
linear surface gravity waves and surface capillary waves, in which we also evaluate boundary
terms at z = 0 rather than z = η.

Dynamic boundary condition for pressure

Following our treatment of stresses acting at an interface in Section 25.10, we make use of
Newton’s third law to set the pressure boundary condition at the free surface. Namely, pressure,
in the absence of surface tension (which we ignore here), is continuous across the free surface. We
find it useful to determine a boundary condition for the pressure written as the decomposition
(57.7)

p(x, t) = po(z) + pR(z) + p′(x, t) = −ρo g z + g

ˆ 0

z
ρR(z

′) dz′ + p′(x, t). (57.46)
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Assuming the atmospheric pressure applied on the free surface is a constant, which we take to
be zero without loss of generality, leads to

0 = −ρo g η + g

ˆ 0

η
ρR(z

′) dz′ + p′(x, y, z = η, t). (57.47)

Since the free surface height is small for linear waves, we Taylor expand the reference density
around z′ = 0 so that the integral becomes

ˆ 0

η
ρR(z

′) dz′ ≈
ˆ 0

η

[
ρR(0) + (dρR/dz)z=0 z

′]dz′ = −η ρR(0)− (η2/2) (dρR/dz)z=0. (57.48)

Dropping the term η2 since it is nonlinear then leads to the boundary condition for the dynamic
pressure evaluated at the free surface

φ′(x, y, z = η, t) = g η [ρo + ρR]/ρo at z = η. (57.49)

We fully linearize by evaluating the pressure at z = 0 and note that ρR ≪ ρo so that the boundary
condition becomes

φ′ = g η at z = 0. (57.50)

Evidently, the dynamic pressure at the ocean surface is determined by the free surface height.
This boundary condition is identical to that used for the surface gravity waves as derived in
Sections 52.3.2 and 52.3.3. Here, we needed to work a bit harder than for surface gravity waves.
The reason is that here the fluid is stratified whereas we studied surface gravity waves at the
surface of a homogeneous ocean that resulted in irrotational motion, and thus a rather simple
expression of Bernoulli’s theorem (Section 52.3).

Vertical velocity boundary condition

We further combine the pressure boundary condition (57.50) with the linearized surface kinematic
boundary condition (57.45) to eliminate the free surface in favor of the vertical velocity

∂tφ
′ = g w′ at z = 0. (57.51)

When studying vertical normal modes in an ocean domain in Section 57.7, we find it more
convenient to have a boundary condition just for the vertical velocity. To eliminate the pressure we
take the divergence of the horizontal velocity equation, ∂tu

′ = −∇hφ′, and use the non-divergence
condition on the velocity to yield

∂tzw
′ = ∇2

h φ
′. (57.52)

Taking another time derivative and evaluating the expression at z = 0 yields

∂ttzw
′ = ∇2

h ∂tφ
′ =⇒ ∂ttzw

′ = g∇2
h w

′ at z = 0, (57.53)

where we used the boundary condition (57.51) to eliminate pressure in favor of the vertical
velocity.

57.5 Free internal gravity waves with constant stratification
Thus far we have assumed that the reference state buoyancy frequency is a function of the
vertical direction. We now specialize to the case of a constant frequency, NR, in which case we
study free plane internal gravity waves. We return in Section 58.4 to the more realistic case of
vertically varying buoyancy frequency, NR(z), which requires the WKBJ approximation.
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57.5.1 Plane wave ansatz

To examine the physics of internal gravity waves in a fluid with constant buoyancy frequency,
we introduce a traveling plane wave ansatz for the velocity, dynamic pressure, and buoyancy

v′ = ṽ ei (k·x−ω t) and φ′ = φ̃ ei (k·x−ω t), and b′ = b̃ ei (k·x−ω t), (57.54)

where the amplitudes, ṽ, φ̃, and b̃, are generally complex numbers, and where we write the three
dimensional and horizontal wavevectors as

k = kx x̂+ ky ŷ + kz ẑ and kh = kx x̂+ ky ŷ. (57.55)

Substitution of the ansatz (57.54) into the linearized Boussinesq equations (57.31a)-(57.31c)
allows us to determine relations between the velocity, pressure, and buoyancy for a traveling
plane wave. These relations are referred to as polarization relations. Furthermore, as part of
developing polarization relations we derive the dispersion relation (Section 57.5.7) that connects
the wavevector, k, to the wave angular frequency, ω.

57.5.2 Transverse nature of internal gravity waves

The non-divergence condition holding for the Boussinesq ocean flow, ∇ · v′ = 0, means that
internal gravity waves are transverse, so that the velocity amplitude satisfies

k · ṽ = kh · ũ+ kz w̃ = 0. (57.56)

Consequently, fluid particles within a plane internal gravity wave move within the planes defined
by constant phase, and these planes are perpendicular to the wavevector. Recall from Chapter
53 that plane inertial waves are also transverse.

57.5.3 Relative vorticity

The relative vorticity vector satisfies equation (57.32), which for a plane wave takes on the form

ω k × ṽ = −i b̃ (ẑ × k) =⇒ k × (ω ṽ − i ẑ b̃) = 0. (57.57)

Evidently, the vector, ω ṽ − i ẑ b̃, is parallel to the wavevector. Taking the dot product of the
k-space relative vorticity equation (57.57) with ẑ leads to

ẑ · (k × ṽ) = 0, (57.58)

which is the k-space expression for a zero vertical component to the relative vorticity, ζ ′ = 0. This
constraint means that the plane waves maintain ζ ′ = 0 since the horizontal velocity amplitudes
are related by

kx ṽ = ky ũ. (57.59)

57.5.4 Amplitude of pressure fluctuations

Substitution of the plane wave ansatz into the pressure equation (57.28) renders

φ̃/b̃ = −i kz/|k|2. (57.60)

Hence, the pressure and buoyancy in the plane wave are π/2 radians out of phase. Observe that
the pressure amplitude vanishes for a horizontal wavevector, in which kz = 0. We expect this
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result for a free wave since vertical structure in the fluctuating buoyancy (i.e., kz ̸= 0) provides
the source for pressure fluctuations as per the pressure Poisson equation (57.28).

57.5.5 Vertical velocity component
For the vertical velocity component, make use of the forced oscillator equation (57.35) to render
a relation between the vertical velocity amplitude and amplitude of the dynamic pressure

w̃/φ̃ = − kz ω

N2
R − ω2

. (57.61)

We can also relate the vertical velocity amplitude to the buoyancy amplitude through use of the
pressure equation (57.60)

w̃/b̃ =
i k2z ω

|k|2 (N2
R − ω2)

. (57.62)

Evidently, the vertical velocity is either in phase or π radians out of phase with the pressure
(depending on the sign of kz), whereas the vertical velocity is π/2 out of phase with buoyancy.

57.5.6 Horizontal velocity
The horizontal portion of the velocity equation (57.31a) leads to the relation satisfied by the
plane wave

ω kh · ũ = φ̃ |kh|2 = −i b̃ kz |kh|2/|k|2, (57.63)

where we used the pressure equation (57.60) for the second equality. Equivalently, we can use
the transverse nature of the wave as per equation (57.56) to write

ω kh · ũ = −ω kz w̃ = − i k3z ω
2 b̃

|k|2 (N2
R − ω2)

, (57.64)

where we used equation (57.62) for the vertical velocity.

57.5.7 Dispersion relation
Equating equations (57.63) and (57.64) yields the dispersion relation for internal gravity waves

ω2 = |kh|2N2
R /|k|2 = N2

R cos2 γ =⇒ 0 ≤ ω ≤ NR. (57.65)

In the second equality we introduced the angle between the wavevector and the horizontal plane

cos γ = |kh|/|k|, (57.66)

with the geometry illustrated in Figure 57.1. An alternative means to write the dispersion
relation (57.65) is given by

N2
R − ω2

ω2
=

k2z
|kh|2

= tan2 γ. (57.67)

This expression makes it clear that internal gravity waves with maximum frequency, ω = NR,
correspond to a horizontal phase velocity, kz = 0 and γ = 0. Conversely, the angular frequency
goes to zero when γ = π/2 whereby the waves have a purely vertical phase velocity, kh = 0.

The dispersion relation (57.65) can be directly derived from the wave equation (57.40)
satisfied by the vertical velocity

(∂tt∇2 +N2
R ∇2

h )w
′ = 0 =⇒ ω2 |k|2 −N2

R |kh|2 = 0. (57.68)
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Furthermore, note that if we only extract the horizontal and time harmonic portion of w′, so
that

w′ =W (z) ei (kh·x−ω t), (57.69)

then the vertical structure function, W (z), satisfies the ordinary differential equation[
d2

dz2
+
|kh|2 (N2

R − ω2)

ω2

]
W = 0 =⇒

[
d2

dz2
+ k2z

]
W = 0. (57.70)

This equation is satisfied if W = ei kz z, which is what we use for the constant NR case now
being studied. However, in Section 58.4 we find that equation (57.70) is generalized for the case
with the background buoyancy frequency a function of the vertical, NR = NR(z), in which case
W ̸= ei kz z.

57.5.8 Concerning the upper limit on the frequency

The internal gravity wave dispersion relation (57.65) says that no internal gravity waves exist
with angular frequency greater than the buoyancy frequency of the background reference state,
ω ≤ NR. What happens if a stratified fluid is agitated at a frequency ωsource > NR? In this case,
fluid particles do not have time to exhibit buoyancy oscillations. Instead, the fluid particles
follow whatever displacements are forced on them by the external forcing, and with fluid particles
in phase with the forcing. No propagating internal gravity waves are formed, and any energy
imparted to the fluid stays local to the agitation. Indeed, with enough agitation the fluid becomes
a forced turbulent soup.9 For a mechanical analog, consider a forced linear pendulum where the
forcing frequency is greater than the pendulum’s natural frequency. In this case, the forcing
fails to generate a natural oscillation, but instead it causes an incoherent and non-periodic back
and forth motion of the pendulum.

57.5.9 Unpacking the dispersion relation

The angular frequency for an internal gravity wave only depends on the buoyancy frequency and
the cosine of the angle the wavevector makes with the horizontal plane, whereas it is independent
of the wavenumber, |k|, and thus of the wavelength, 2π/|k|. Furthermore, the angular frequency
possesses rotational (azimuthal) symmetry around the vertical direction. As such, the angular
frequency is the same along the surface of a cone for wavevectors extending out from the origin
along the ẑ axis in either direction. Figure 57.1 provides an illustration for the two cones
associated with a particular γ. The upper cone has kz > 0 and so waves on this code have an
upward phase velocity, whereas waves on the lower cone, with kz < 0, have a downward phase
velocity.

57.5.10 Group velocity

The dispersion relation (57.65) leads to the group velocity, cg = ∇kϖ(k), which for internal
gravity waves is given by

cg =
NR kz
|k|3 |kh|

(kz kh − |kh|2 ẑ). (57.71)

In this section we identify a number of properties satisfied by the group velocity and summarize
these properties in Figure 57.2.

9See Section 13.2 of Cushman-Roisin and Beckers (2011) for further discussion on this point.
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sin ω = kz/|k|

Figure 57.1: Left panel: A sample wavevector, k = kh + ẑ kz, for a plane internal gravity wave. The wave
is transverse so that the velocity of fluid particles is orthogonal to the wavevector, k · v′ = 0. The dispersion
relation, ω = NR cos γ, is independent of the wavenumber, |k|, but instead only depends on the cosine of the angle
made with the horizontal plane, cos γ = |kh|/|k|. Right panel: another depiction of the dispersion relation. The
angular frequency is the same for all wavevectors on the surface of an ω-cone extending from the origin along the
ẑ axis and with arbitrary magnitude. Correspondingly, with the phase velocity given by cp = k̂ (ω/|k|), higher
wavenumber waves along a particular ω-cone have slower phase speeds than lower wavenumber waves. Cones with
kz > 0 correspond to internal gravity waves with an upward phase velocity, and those with kz < 0 are downward.
The group velocity, cg = ∇kϖ(k), points in the k-space direction of steepest ascent for the angular frequency,
and so it is orthogonal to surfaces of constant ω. For internal gravity waves, the group velocity is orthogonal
to the phase velocity (cg · k̂ = 0), and the group velocity points towards the horizontal plane (i.e., smaller |γ|)
since that is the direction of increasing angular frequency. Hence, waves with an upward phase velocity have a
downward group velocity, and downward phase velocity waves have an upward group velocity. Evidently, internal
wave energy is directed away from the inside of the ω-cone and thus toward the horizontal plane.

Group velocity is orthogonal to the phase velocity

The internal wave group velocity (57.71) is orthogonal to the phase velocity

cg · cp = 0, (57.72)

where the phase velocity is
cp = (ω/|k|) k̂. (57.73)

Hence, the group velocity is aligned parallel to constant phase surfaces, as with motion of fluid
particles within an internal gravity wave. Recall that these properties also hold for inertial waves
discussed in Section 53.3.3.

We geometrically understand the orientation of the phase and group velocities as follows.
The phase velocity is aligned with the wavevector, k. All wavevectors emanating from the origin
that make an angle, γ, have the same angular frequency and so form points along a particular
ω-cone (Figure 57.1). Consequently, surfaces of constant angular frequency are parallel to all
these wavevectors. Now the group velocity, cg = ∇kϖ(k), points in the k-space direction of
steepest ascent for the angular frequency, so that the group velocity is normal to surfaces of
constant angular frequency. Hence, the group velocity points in a direction normal to the ω-cone,
and as such it is orthogonal to the phase velocity, cp · cg = 0.
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Figure 57.2: An example elliptical packet of internal gravity waves, with the packet moving down to the right
according to the group velocity, cg, whereas phase lines move upward to the right. The packet moves parallel to
the phase lines, with the phase velocity, cp, directed up and to the right.

The phase velocity and group velocity have opposing vertical components

The vertical component to the group velocity has the opposite sign of the vertical component to
the phase velocity, which is seen by

(cp · ẑ) (cg · ẑ) = −
ω kz
|k|2

NR kz |kh|
|k|3 = −ω

2 sin2 γ

|k|2 < 0. (57.74)

The phase velocity is directed away from the γ = 0 horizontal plane, whereas the group velocity
is directed toward the horizontal plane. This property is depicted in Figures 57.1 and 57.4.
Evidently, the internal gravity wave energy, which is fluxed in the direction of the group velocity,
is directed away from the inside of the ω-cone and towards the horizontal plane.

The group velocity magnitude

The squared magnitude of the group velocity is given by

cg · cg =
N2

R k
2
z

|k|4 =
N2

R sin2 γ

|k|2 where sin γ = kz/|k|. (57.75)

To help understand this expression it is useful to consider two extreme cases.

The group velocity vanishes when the wavevector is horizontal (kz = 0 and γ = 0). As a
result, no wave energy is propagated when the wavevector is horizontal.10 When the wavevector
is horizontal, all fluid particle motion in the wave is vertical, with fluid particles exhibiting
vertical buoyancy oscillations at the maximum allowable gravity wave frequency, ω = NR. So
even though the wave has energy when it has a horizontal phase velocity, the wave energy is not
propagated since cg = 0. Rather, the wave energy is stationary as fluid particles exhibit vertical
buoyancy oscillations.

At the opposite extreme, when the phase velocity is vertical, so that kh = 0 and γ = π/2,
the fluid particles move along a horizontal plane in an arbitrary horizontal direction. The group
velocity is also horizontal and takes the form

cg = (NR/|kz|) k̂h with kh = 0, (57.76)

where k̂h is any horizontal direction. The angular frequency (57.65) vanishes (ω = 0) so that the
wave is stationary; i.e., phase lines do not move when γ = π/2.

10In Section 57.5.14 we see that the mechanical energy flux of an internal gravity wave is proportional to the
group velocity, which is the case for any linear waves (see Chapter 50).
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Relating the dispersion relation for internal gravity waves and inertial waves

The internal gravity wave dispersion relation (57.65) shares features with that for inertial waves,
whose dispersion relation is given by equation (53.33), so that we have

ω2
igw = N2

R cos2 γ and ω2
inertial = f2 sin2 γ. (57.77)

Both dispersion relations are independent of the wavenumber, depending only on the wave’s
orientation. For the gravity wave, the vertical is a special direction since it is the direction of
the gravitational acceleration, whereas for the inertial wave, the horizontal direction is special
since is the direction of the Coriolis acceleration. Indeed, the switch from cos2 γ to sin2 γ arises
since gravitation acts in the vertical whereas the Coriolis acts in the horizontal.11 Both angular
frequencies have an upper bound, with inertial waves having angular frequencies no larger than
the Coriolis frequency, |f |, and internal gravity waves having angular frequencies no larger than
the buoyancy frequency, NR.

57.5.11 Force balance within an internal gravity wave
To help further understand the internal gravity wave dispersion relation (57.65), consider a test
fluid element that moves with the wave in the transverse direction; i.e., parallel to surfaces of
constant phase. As discussed in Section 17.2.5, a test fluid element is assumed to have zero
impact on the surrounding fluid, in particular it has no impact on the pressure. This assumption
is broken when considering real fluid elements, since all fluid elements affect the surrounding
fluid. However, the pressure is spatially constant along a constant phase direction. Hence, for a
particle displaced in this direction it only feels the change in buoyancy. So our critique of the
test fluid elements in Section 57.3.1 is tempered when considering motion along directions that
parallel phase surfaces. In the following, we refer to the test fluid element as a fluid particle
both for brevity and to accord with the literature.

Fluid particle displacement vector
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Figure 57.3: Depicting the displacement of a fluid particle along a direction transverse to a constant phase
surface for a plane internal gravity wave whose wavevector makes an angle γ with the horizontal. We write the
displacement vector as ξ(x, t) = δl t̂, with the local tangent vector, t̂, pointing in a transverse direction orthogonal
to the wavevector, k. The displacement of the fluid particle from point A to point B occurs over a distance, δl,
with a corresponding change in vertical position given by δz = δl cos γ.

As depicted in Figure 57.3, we measure a fluid particle’s position relative to its equilibrium
position through a displacement field,

ξ(x, t) = x̂ δx+ ŷ δy + ẑ δz. (57.78)

11We discuss the force balances for an internal gravity wave in Section 57.5.11 and then for an intertia-gravity
wave in Section 57.9.3.
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The displacement field vanishes when the fluid particle is at its equilibrium position, and it has
a time tendency that equals to the velocity of a fluid particle12

∂tξ(x, t) = v
′(x, t). (57.79)

Evidently, since the plane wave is transverse,

v′ · k = (∂tξ) · k = 0. (57.80)

If the fluid particle moves in the vertical, it moves through the background reference density
field, ρR(z). Referring to Figure 57.3, assume the fluid particle starts at point A with local
buoyancy equal to the reference buoyancy. As it rises an infinitesimal amount to point B, its
buoyancy referenced to the local environment is negative since it started from a denser level. As
such, the fluid particle wants to return to its deeper level. We can express the locally referenced
buoyancy anomaly felt at point B in terms of the particle displacement

b′ = −ξ · ∇bR = −δz (dbR/dz) = −δz N2
R . (57.81)

As a check on this expression, we find that if δz > 0, so that the fluid particle rises, then the
buoyancy anomaly is negative, b′ < 0, since it started from a deeper level where the density is
larger. Hence, there is a buoyant acceleration back to the deeper level. Also observe that the
time derivative of equation (57.81) leads to

∂tb
′ = −w′N2

R , (57.82)

which is the linearized buoyancy equation (57.17c).

Equation of motion

We now make use of the result (57.81) in the equation of motion (57.31a). More precisely, we
project that equation onto the transverse direction, t̂. This direction is fixed in time for a plane
wave so that we have

∂t(t̂ · v′) = t̂ · (−∇φ′ + b′ ẑ). (57.83)

As noted above, there is no spatial gradient of flow properties along a constant phase surface.
Hence, the tangential component of the pressure gradient vanishes

t̂ · ∇φ′ = 0, (57.84)

which means pressure has no affect on fluid particles moving in the direction transverse to the
wavevector. We write δl for the displacement along the phase surface, so that

t̂ · v′ = ∂t(δl), (57.85)

which brings the equation of motion (57.83) to the form

∂tt(δl)− ẑ · t̂ b′ = 0. (57.86)

12We make use of a one dimensional displacement field in Section 51.3 when considering acoustic waves using a
Lagrangian perspective. We also make use of fluid particle displacement vectors when studying the generalized
Lagrangian mean in Section 70.2, as well as for tracer kinematics in Section 70.3. The present discussion is
heuristic and skims over details explored in these other sections. We can afford some degree of informality since
all perturbations here are small.
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Noting that ẑ · t̂ = cos γ and making use of equation (57.81) for the buoyancy anomaly leads to

∂tt(δl) + cos γ N2
R δz = 0. (57.87)

Finally, we set δz = δl cos γ to render the simple harmonic oscillator equation for displacements
along the constant phase line

(∂tt +N2
R cos2 γ) δl = 0. (57.88)

The angular frequency of the oscillations, NR cos γ, is precisely that arising from the internal
gravity wave dispersion relation (57.65).

Summary of the physical picture for internal gravity waves

The above analysis suggests the following physical picture for internal gravity waves. Namely,
the waves consist of fluid particle motion in directions that parallel the constant phase surfaces,
which accords with the property of all transverse waves. As the particles move along the
transverse direction, t̂, they sample the background buoyancy field and thus experience buoyancy
accelerations that act to return the particle to its neutral buoyancy position. The buoyancy force
acting on the particles only depends on the angle of the phase lines relative to the horizontal.
Oscillatory motion arises from over-shooting the neutral buoyancy position, with the oscillations
having an angular frequency, NR cos γ. The oscillations have their maximum angular frequency
when the angle, γ = 0, which arises since the particles are moving vertically and thus fully
sampling the background buoyancy field. In contrast, there are no oscillations when the particles
move along a horizontal phase surface (γ = π/2 so that k̂ = ẑ) since horizontal surfaces sample
the same background buoyancy. The vanishing of oscillations with γ = π/2 accords with our
discussion in Section 57.3.2. The force balance dependence on the angle, γ, explains the geometry
of the ω-cones in Figure 57.1, which, in turn, explains why the group velocity is perpendicular
to the phase velocity.

We emphasize that although the fluid particles are moving in a direction that parallels the
constant phase surfaces, they are not moving with those surfaces. Rather, the fluid particles are
oscillating in the transverse direction, and it is their oscillation that gives rise to the wave itself
and thus to the movement of the phase surfaces through the fluid.

57.5.12 Forced internal gravity wave packets

A further remark about the dispersion relation written as in equation (57.67) concerns the
case where we know the frequency of the wave and the buoyancy frequency, in which case the
angle γ is specified. For example, consider a local source (say an oscillating disk) with angular
frequency, ωsource, moving with a small amplitude in a stratified fluid with ωsource < NR. This
source preferentially forces internal waves of angular frequency ω = ωsource. Consequently, the left
hand side of the dispersion relation (57.67) is specified.

Gravity wave packets extend outward from the oscillating source and define the group velocity
direction (not the phase velocity direction). Consequently, the group velocity extends outward
from the source at an angle π/2−γ from the horizontal. The reason the source defines the group
velocity is that energy is input to the wave field by the oscillating source, and the wave energy
propagates along the group velocity direction with the wave packets (we discuss internal gravity
wave energy in Section 57.5.14). The phase velocity is directed perpendicular to the group
velocity and it makes an angle γ with the horizontal. Hence, as the source angular frequency
approaches the buoyancy frequency, γ approaches zero so that the group velocity “cross” pattern
steepens toward the vertical axis. Figure 57.4 provides a schematic of the experiment along with
links to videos illustrating the remarkable wave patterns in a laboratory setting as well as a
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numerical simulation.13
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Figure 57.4: A small amplitude oscillating source in a stratified fluid with angular frequency, ωsource < NR. If the
source has small amplitude then it generates linear internal gravity waves with ω = ωsource. These waves radiate
wave packets with group velocity, cg, away from the source and with an angle, π/2− γ, from the horizontal. The
angle, γ, is determined by the dispersion relation through tan2 γ = (N2

R − ω2
source)/ω

2
source. The group velocity is

parallel to lines of constant phase and perpendicular to the phase velocity so that cp · cg = 0. Furthermore, the
phase and group velocities are oriented so that (cg · ẑ) (cp · ẑ) < 0, so that if the group velocity is directed upward
then the phase velocity is directed downward, and vice versa. As the source angular frequency approaches the
buoyancy frequency, γ approaches zero so that the group velocity “cross” pattern steepens toward the vertical
axis. The pattern is sometimes referred to as St. Andrew’s cross. This video and this video, both from the
geophysical fluids laboratory at The Australian National University, as well as this video from Prof. Rhines’ lab at
the University of Washington, illustrate the phenomena in a laboratory settings, whereas this animation from Prof.
Durran’s website at the University of Washington illustrates the phenomena in a numerical simulation. Sutherland
(2010) in his Chapter 5 works through the boundary value problems arising from both an oscillating cylinder and
a sphere, thus illustrating the analytical methods available to solve for the generated internal gravity wave fields.

Internal gravity waves have an angular frequency that is bounded above by the buoyancy
frequency: 0 ≤ ω ≤ NR. There are no internal gravity waves with frequency larger than the
buoyancy frequency of the background reference state. This limit exists since internal gravity
waves are coherent patterns of buoyancy oscillations, with the angular frequency of that oscillation
taken from the background stratification (see Section 57.5.11 for more on this perspective).

57.5.13 Polarization relations and structure of a plane wave

We now piece together the polarization relations to provide expressions for the velocity, pressure,
and buoyancy within a wave. We first express all fields in terms of the buoyancy amplitude, b̃,
and then in terms of the pressure amplitude, φ̃. These amplitudes are related via the pressure
equation from Section 57.5.4, whereby

φ̃/b̃ = −i kz/|k|2 = −i sin γ/|k|. (57.89)

Neither is more fundamental, and yet one amplitude might be more readily available than the
other so it is useful to provide both expressions.

13It is notable that this video from Prof. Rhines’ lab shows both a St. Andrew’s cross, which is well described
by linear theory, as well as horizontal phase lines indicative of γ = π/2 vertical phase propagation and horizontal
group propagation. Paraphrasing from an email discussion with Prof. Rhines, the horizontal phase lines are in
part the result of mixing (a nonlinear process) at the oscillating circular cylinder, which affects the background
buoyancy frequency enough to alter the linear waves a bit. This mixing causes a diffusive drift away from the
source that excites low frequency internal waves, which move rapidly ahead of the turbulently mixed fluid.
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57.5. FREE INTERNAL GRAVITY WAVES WITH CONSTANT STRATIFICATION

Vertical velocity component

The dispersion relation in the form of equation (57.67) brings the vertical velocity expressions
(57.61) and (57.62) into the tidy forms

w̃/φ̃ = − kz ω

N2
R − ω2

= −|kh|2
ω kz

(57.90a)

w̃/b̃ =
i k2z ω

|k|2 (N2
R − ω2)

=
i |kh|2
ω |k|2 =

i cos γ

NR

. (57.90b)

Notice how the vertical velocity and pressure are in phase (or π out of phase), whereas the
vertical velocity and buoyancy are π/2 out of phase.

Horizontal velocity

For the horizontal velocity we use the transverse nature of the wave (Section 57.5.2) to relate
the horizontal components to the vertical

kh · ũ = −kz w̃, (57.91)

as well as the zero vertical component of the relative vorticity (Section 57.5.3) so that

kx ṽ = ky ũ. (57.92)

These two relations, along with the vertical velocity amplitude equations (57.90a) and (57.90b),
lead to

ũ = − i b̃kh sin γ

NR |kh|
. (57.93)

As for the vertical velocity, we here find that the horizontal velocity is π/2 out of phase with the
buoyancy.

Wave solutions in terms of the buoyancy amplitude

Bringing the previous results together allows us to express the solutions for the velocity, pressure,
and buoyancy within a freely propagating internal gravity wave. The solutions in terms of a real
buoyancy amplitude, b̃, are given by

b′ = b̃ cos(k · x− ω t) (57.94a)

φ′ =
b̃ sin γ

|k| sin(k · x− ω t) (57.94b)

u′ =
b̃kh sin γ

NR |kh|
sin(k · x− ω t) (57.94c)

w′ = − b̃ cos γ
NR

sin(k · x− ω t) (57.94d)

v′ =
cg b̃ |k|2
N2

R kz
sin(k · x− ω t). (57.94e)

Equation (57.94e) for v′ made use of equation (57.71) for the group velocity, thus exposing the
parallel nature of the particle velocity and group velocity for plane internal gravity waves. Note
that the buoyancy is π/2 out of phase with the pressure along with the three components of the
velocity.
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Wave solutions in terms of the pressure amplitude

An alternative suite of wave solutions arises when assuming a real pressure amplitude, φ̃, which
leads to

φ′ = φ̃ cos(k · x− ω t) (57.95a)

b′ = − φ̃ |k|
2

kz
sin(k · x− ω t) (57.95b)

u′ =
φ̃kh

ω
cos(k · x− ω t) (57.95c)

w′ = − φ̃ |kh|2
ω kz

cos(k · x− ω t) (57.95d)

v′ =
cg φ̃ |k|4
N2

R k2z
cos(k · x− ω t). (57.95e)

57.5.14 Energetics of a plane internal gravity wave
In Section 57.2.5 we derived the energetics for the linearized Boussinesq ocean equations and
were led to the energy equation (57.25)

∂t(K
′ +A′) = −∇ · (v′ φ′) with K′ = v′ · v′/2 and A′ = (b′/NR)

2/2, (57.96)

where K′ is the kinetic energy per mass of the linear fluctuation, and A′ is the corresponding
available potential energy per mass. We only consider energetics of a plane internal wave. This
idealized physical system has rather trivial energetics since for a plane wave there is no spatial
convergence of the phase averaged energy flux, which means that the phase averaged energy is
fixed in time. Even so, it is useful to work through the maths to gain practice in developing the
phase averaged energy relations.

Interpreting the available potential energy

We saw in Section 57.2.5 that A′ = (b′/NR)
2/2 measures the available potential energy per mass

arising from the small amplitude buoyancy fluctuation. When those fluctuations are part of a
plane wave we can introduce the fluid particle displacement as in equation (57.81), in which

A′ = (b′/NR)
2/2 = (δz NR)

2/2. (57.97)

This expression is identical to the potential energy (15.131) that we encountered for a point
mass connected to a spring, where here the spring constant per mass equals to N2

R .

Mechanical energy in the wave field

Assuming the small amplitude fluctuations are given by the wave relations (57.95a)-(57.95d)
leads to

K′ =
φ̃2 |k|4
2N2

R k2z
cos2(k · x− ω t) (57.98a)

A′ =
φ̃2 |k|4
2N2

R k2z
sin2(k · x− ω t), (57.98b)

so that

K′ +A′ =
φ̃2 |k|4
2N2

R k2z
=
φ̃2 |kh|2 |k|2

2ω2 k2z
. (57.99)
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It is notable that the wave’s mechanical energy, K′ +A′, is independent of the space and time
position. Furthermore, the phase averaged kinetic energy equals to that of the available potential
energy

⟨K′⟩ = ⟨A′⟩, (57.100)

which manifests equipartition for the wave field.14 We can relate the total mechanical energy to
the phase average of the squared vertical velocity through use of equation (57.95d), which yields

K′ +A′ = ⟨w′w′⟩ |k|2/|kh|2 = ⟨w′w′⟩/ cos2 γ. (57.101)

Note that the first expression in equation (57.99) indicates that for vertical waves, where γ = π/2,
the sum K′ +A′ is non-singular since (w′)2 vanishes. More precisely, we set kh = 0 in equation
(57.99) and find that a vertical phase velocity wave has mechanical energy

K′ +A′ =
φ̃2 k2z
2N2

R

if kh = 0. (57.102)

Energy flux and group velocity

The flux of mechanical energy can be written as

v′ φ′ =
φ̃2 cos2(k · x− ω t)

kz ω
(kz kh − ẑ |kh|2) =

cg φ̃
2|k|4 cos2(k · x− ω t)

N2
R k2z

, (57.103)

where we used equation (57.71) for the group velocity. Taking the phase average then leads to

⟨v′ φ′⟩ = cg φ̃
2|k|4

2N2
R k2z

= cg (K
′ +A′). (57.104)

We thus confirm that the phase averaged flux of mechanical energy contained in an internal
gravity wave equals to the group velocity times the total mechanical energy. This result accords
with both the group velocity and the particle velocity being parallel to lines of constant phase
and hence perpendicular to the wavevector

cg · k = v′ · k = 0. (57.105)

Energetics in terms of buoyancy amplitude

The above energetics made use of the polarization relations (57.95a)-(57.95e), written in terms
of the pressure amplitude, φ̃. Here we briefly expose the results making use of equations
(57.94a)-(57.94e), in which we write the fields in terms of the buoyancy amplitude, b̃. For this
purpose we write for the kinetic energy

K′ =
cg · cg b̃2 |k|4

2N4
R k2z

sin2(k · x− ω t) = b̃2

2N2
R

sin2(k · x− ω t), (57.106)

where we used equation (57.75) for cg · cg. The corresponding available potential energy is

A′ = (b′/NR)
2/2 =

b̃2

2N2
R

cos2(k · x− ω t), (57.107)

14See Section 12.7.3 for the underlying reason for the equipartition of energy within linear waves, which is
related to the virial theorem of classical mechanics.
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so that the total mechanical energy is

K′ +A′ =
b̃2

2N2
R

, (57.108)

and the phase averaged energy flux is

⟨v′ φ′⟩ = cg b̃
2

2N2
R

= cg (K
′ +A′). (57.109)

57.6 Reflection of gravity waves
In Section 54.4.3 we studied the reflection of planetary Rossby wave packets from a smooth solid
surface. That approach made use of some methods from geometric optics, in which we assume
the waves reflect from the boundary without dissipation. Consequently, we only need to invoke
the kinematic boundary condition to derive relations between incident and reflected waves. Here
we pursue a similar study for internal gravity waves. Rossby waves (and many other waves such
as acoustic waves and electromagnetic waves) exhibit specular reflection, whereby the angle
the incident wave packet makes with the surface is preserved upon reflection. In contrast, the
dispersion relation for internal gravity waves leads to a distinctly non-specular property. Namely,
the angle the wave makes with the horizontal plane remains unchanged, rather than the angle
the wave makes with the surface of reflection. Correspondingly, we encounter a particularly
striking ability for the internal gravity wave, hitting the plane surface at a critical angle, to have
an unbounded (infinite) wavenumber upon reflection.

57.6.1 Reflection conditions
Consider a packet of internal gravity waves with group velocity, cgi, that is incident on a plane
solid boundary, with the boundary making an angle, β, with the horizontal (see Figure 57.5).
Let the carrier wave in the wave packet have an angular frequency, ωi, and wavevector, ki, with
cgi · ki = 0. Since the velocity of fluid particles is parallel to the group velocity for internal waves,
we write the velocity of fluid particles in the carrier wave as

v′i = cgiAi cos(ki · x− ωi t), (57.110)

with the amplitude,
Ai = Ai(ki) (57.111)

a shorthand for the amplitudes in either equation (57.94e) or (57.95e). As such, Ai is a function
of the incident wavevector, ki, and the buoyancy frequency, NR. The same considerations hold
for the velocity of fluid particles in the reflected wave, so that

v′r = cgrAr cos(kr · x− ωr t), (57.112)

with Ar = Ar(kr), kr, and ωr, the amplitude, wavevector, and angular frequency of the velocity
of the reflected wave.

Now consider a steady state situation in which there are both incident and reflected waves,
so that the fluid velocity at any given point in the fluid is given by the sum15

v′ = v′i + v
′
r . (57.113)

15Recall that steady state does not mean static. Here, we assume steady state in the sense that the incident
and reflected waves are fully established, so that our concern is not with the initial value problem. Instead, we are
concerned with the boundary value problem.
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The no-normal flow boundary condition at a solid boundary couples the incident and reflected
wave properties, in which case

v′ · n̂ = (v′i + v
′
r) · n̂ = 0 at x = xw. (57.114)

In these equations, n̂ is the outward normal on the solid boundary and xw = |xw| t̂ is a point on
the boundary with t̂ the unit vector pointing tangent to the boundary so that n̂ · t̂ = 0.

As for Rossby wave reflection considered in Section 54.4.3, the boundary condition (57.114)
leads to the reflection conditions for the angular frequency and wavevectors

ωi = ωr and (ki − kr) · t̂ = 0. (57.115)

These conditions hold so long as the velocity amplitude and the group velocity satisfy

Ai cgi · n̂ = −Ar cgr · n̂. (57.116)

57.6.2 Specializing to internal gravity waves

The wavevector condition in equation (57.115) means that there is an equal projection onto
the tangent direction of the incident and reflected wavevectors. This same condition holds for
other waves, such as we found when studying Rossby wave reflection in Section 54.4.3 and as
found for inertial waves in Exercise 57.1. Even so, the angular frequency condition, ωi = ωr,
when coupled to the internal gravity wave dispersion relation (57.65), leads to non-specular
wave reflection. The reason is that specification of the angular frequency and the background
buoyancy frequency fixes the angle of the gravity wave relative to the horizontal plane. Hence,
the angle that a reflected internal gravity wave makes relative to the solid boundary is generally
different from the angle made by the incident wave. To prove this result requires trigonometry
based on the boundary conditions (57.115), with details provided in Figure 57.5.

Non-specular nature of internal gravity wave reflection

For internal gravity waves, the frequency condition in equation (57.115) means that the angle
the wavevector makes with the horizontal, γ, remains unchanged upon reflection

ωi = ωr = NR cos γ. (57.117)

This relation holds no matter what angle, β, the solid wall makes with the horizontal. This
identity is depicted in Figure 57.5, where the angle αi, which is the angle the incident packet
makes with the horizontal, equals to the reflected angle, αr. It follows that the angle that the
wave packet makes relative to the solid surface is different for the incident and reflected waves.
This property is referred to as non-specular. For the example of Figure 57.5, the reflected wave
is more nearly parallel to the solid boundary than the incident wave. Reversing the sense for the
wave packet provides an example of a reflected packet that is less aligned with the boundary
than the incident packet.

Basic identities for internal gravity wave reflection

The frequency identity (57.117), the wavevector relation (57.115), along with some basic vector
and trigonometric analysis, lead to the following identities

t̂ = ĥ cosβ + ẑ sinβ (57.118a)

k̂i = ĥ cos γ + ẑ sin γ (57.118b)
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Figure 57.5: Depicting the reflection of an internal gravity wave packet as viewed within the geometrical optics
approximation. Here the packet reflects from a planar inclined solid boundary that makes an angle, β, with the
horizontal direction, ĥ. The downward incident wave packet has a group velocity, cgi, and an upward carrier
wavevector, ki, with cgi · ki = 0. The incident group velocity makes an angle, αi = π/2− γ, with the horizontal,
whereas ki makes an angle, γ, with the horizontal. The upward reflected wave packet has group velocity, cgr,
and a downward carrier wavevector, kr, with cgr · kr = 0. The angular frequency of the incident carrier wave is
the same as the reflected wave, ωi = ωr = ω = NR cos γ, which then means that kr makes an angle, γ, with the
horizontal. Consequently, the reflected group velocity makes an angle αr = π/2 − γ, which is the same as the
incident wave, αr = αi. The projection of the incident wavevector onto the surface tangent direction equals to
that of the reflected wavevector, ki · t̂ = kr · t̂, which means that |ki| cos(γ − β) = |kr| cos(γ + β), or equivalently,
|ki| sin(α + β) = |kr| sin(α − β). For this example, the reflected wave has a larger wavenumber, |kr|, than the
incident wave, |ki|, since α − β is smaller than α + β. Indeed, for a packet with incident group velocity angle
equal to the boundary angle, α = β, then the reflected wave has an infinite wavenumber, which is an indication
that the linear theory breaks down. To the right of the schematic we list the basic relations between the incident
and reflected waves.

k̂r = ĥ cos γ − ẑ sin γ (57.118c)

k̂i · t̂ = cos γ cosβ + sin γ sinβ = cos(γ − β) = sin(α+ β) (57.118d)

k̂r · t̂ = cos γ cosβ − sin γ sinβ = cos(γ + β) = sin(α− β), (57.118e)

where ĥ is a unit vector in the horizontal. With these results we find that the wavevector
boundary condition, ki · t̂ = kr · t̂, (equation (57.115)) leads to the equivalent relations

|ki| cos(γ − β) = |kr| cos(γ + β) (57.119a)

|ki| sin(α+ β) = |kr| sin(α− β). (57.119b)

Critical reflection of internal gravity waves

The identity (57.119b) makes it clear that a most remarkable result holds when the incident
packet hits the boundary at an angle that equals to the solid wall angle, α = β. In this case the
reflected wavenumber, |kr|, is unbounded, which means that the reflected waves have arbitrarily
small wavelength. In a real fluid such small wavelength waves will eventually feel the impacts
from viscous dissipation (e.g., Section 25.8), and/or they will break. In either case, such critical
reflection of internal gravity waves provides an important mechanism for the transfer of energy
from large to small scales, with the small scale features more prone to dissipative mixing.

57.6.3 Comments and further reading
Figure 57.5 provides an example where the reflected wave has a higher wavenumber than the
incident wave. We can reverse all vectors to provide an example where a reflected wave has
a smaller wavenumber than the incident wave. However, in a real fluid the reflections are not
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generally reversible since higher wavenumber waves are more subject to irreversible mixing,
either through viscous dissipation or breaking. These, and other, wave-induced ocean mixing
processes are reviewed in MacKinnon et al. (2013), MacKinnon et al. (2017), and Buijsman
et al. (2019).

57.7 Vertical normal modes
We here look for gravity waves in an ocean domain that is bounded below by a flat bottom at
z = −H and free surface at z = η. Since the bottom is flat we assume the waves are traveling
only in the horizontal, in which we consider an ansatz of the form

w′ =W (z) ei (kx x+ky y−ω t). (57.120)

Plugging this ansatz into the wave equation (57.40) for the vertical velocity leads to the eigenvalue
problem for the vertical structure function[

d2

dz2
+
|kh|2 (N2

R − ω2)

ω2

]
W = 0 −H < z < 0 (57.121a)

W = 0 at z = −H (57.121b)

ω2dW/dz = g |kh|2W at z = 0, (57.121c)

where we used the flat bottom kinematic boundary condition at z = −H, and the upper ocean
boundary condition (57.53) for equation (57.121c).

INCOMPLETE.

57.8 Linear Boussinesq ocean on an f -plane
We here establish some general properties of the linear Boussinesq ocean on an f -plane as
described by equations (57.17a)-(57.17d)

∂tu
′ + f ẑ × u′ = −∇hφ′ horizontal velocity equation (57.122a)

∂tw
′ = −∂zφ′ + b′ vertical velocity equation (57.122b)

∂tb
′ = −w′N2

R buoyancy equation (57.122c)

∇ · v′ = 0 continuity equation. (57.122d)

Since we are only concerned with f -plane motion, Rossby waves are not included in the physical
system. As we see, the discussion reveals many forced oscillator equations satisfied by the linear
fields, thus providing insight into the workings of the inertia-gravity waves discussed in Section
57.9. These oscillator equations also prove of use when developing the polarization relations for
the plane inertia-gravity wave in Section 57.9.5.

57.8.1 Forced oscillator equation for horizontal velocity
Taking the time derivative of the horizontal velocity equation (57.122a) and back-substituting
in the horizontal velocity tendency leads to

(∂tt + f2)u′ = f ẑ ×∇hφ′ − ∂t(∇hφ′). (57.123)

This equation takes the form of a forced harmonic oscillator with natural angular frequency, f ,
and with forcing from the horizontal pressure gradient. Evidently, if we know the horizontal
pressure gradient then that is sufficient to determine the horizontal velocity. Note that this is
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the same forced oscillator equation as (53.17) found for inertial oscillations in a homogeneous
fluid.

57.8.2 Vertical component to the relative vorticity
Evolution of the vertical component to the relative vorticity is derived by taking the curl of the
horizontal velocity equation (57.122a) and projecting onto the vertical, in which we find

∂tζ
′ = f ∂zw

′. (57.124)

Hence, relative vorticity evolves when there is vertical stretching in the presence of planetary
rotation. This property accords with the more general understanding of vortex mechanics studied
in Section 40.7.3. It also reduces to the f = 0 case, in which ζ ′ is static since f = 0 (Section
57.4.1). Finally, we can derive a forced oscillator equation for relative vorticity by taking the
curl of the velocity equation (57.123) to find

(∂tt + f2) ζ ′ = f ∇2
h φ

′. (57.125)

Evidently, the relative vorticity exhibits forced inertial oscillations, with the forcing proportional
to the horizontal Laplacian of the pressure field as weighted by the Coriolis parameter.

57.8.3 Forced oscillator and free wave equations for vertical velocity
Taking the divergence of the horizontal velocity equation (57.122a), and then using the continuity
equation (57.122d), leads to

∂t(∇h · u′)− f ζ ′ = −∇2
h φ

′ =⇒ ∂tzw
′ + f ζ ′ = ∇2

h φ
′. (57.126)

Now taking a time derivative and using the relative vorticity stretching equation (57.124) leads
to the forced inertial oscillator equation for the vertical derivative of the vertical velocity

(∂tt + f2)∂zw
′ = ∂t∇2

h φ
′. (57.127)

This equation says that when the horizontal flow has a nonzero divergence in the presence of
rotation, then it experiences a forced inertial oscillation. Notice that if the pressure is constant
in the horizontal direction, then the inertial oscillations are unforced.

We can derive another forced oscillator equation, this one for w′. To do so, take the time
derivative of the vertical velocity equation (57.122b) and then use the linearized buoyancy
equation (57.122c), which yields the forced buoyancy oscillator equation

∂ttw
′ = −∂tzφ′ + ∂tb

′ =⇒ (∂tt +N2
R )w

′ = −∂tzφ′. (57.128)

We already encountered this equation in Section (57.3) when studying buoyancy oscillations. It
says that vertical motion in the presence of a buoyancy field leads to forced buoyancy oscillations.
Furthermore, if the pressure is constant in the vertical then the buoyancy oscillations are
unforced.

Just like in the case of a non-rotating reference frame in Section 57.4.2, we can derive a
free wave equation for w′ by taking the vertical derivative of equation (57.127), the horizontal
Laplacian of equation (57.128), and then adding to cancel the pressure contribution

(∂tt∇2 +N2
R ∇2

h + f2 ∂zz)w
′ = 0. (57.129)

This is the fundamental wave equation for internal inertia-gravity waves. The build-up to this
equation offers signatures of the forces acting within these waves. Namely, ∂zw

′ exhibits forced
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inertial oscillations with natural angular frequency f (equation (57.127)). Such oscillations are
associated, through continuity, with horizontally diverging flow that feels the Coriolis acceleration.
Likewise, w′ exhibits forced buoyancy oscillations with natural angular frequency NR (equation
(57.128)). These oscillations are associated with vertical motion that feels the effects from the
background vertical stratification and associated buoyancy. By eliminating the pressure forcing
the two complementary modes of oscillation, we reveal a free wave equation for w′. The free wave
equation exposes the roles for Coriolis and buoyancy accelerations, yet hides the intermediate
role of pressure accelerations that force the oscillations.

57.8.4 Forced oscillator equation for buoyancy

Since the flow is non-divergent at each time instant, we know that

∇ · ∂tv′ = ∂t∇ · v′ = 0. (57.130)

Hence, taking the divergence of the horizontal velocity equation (57.122a) and adding to the
vertical derivative of the vertical velocity equation (57.122b) leads to the pressure equation

−∇2φ′ = −(f ζ ′ + ∂zb
′). (57.131)

Evidently, a source for the dynamic pressure arises from vertical buoyancy gradients along with
relative vorticity. We characterized the phyics of these sources in Section 29.3.4 when studying
the pressure equation in a Boussinesq ocean.

Taking the time derivative of the pressure equation (57.131) and using the stretching relative
vorticity equation (57.124) leads to

f2 ∂zw
′ = ∂t(∇2φ′ − ∂zb′). (57.132)

One more time derivative and use of the vertical velocity equation (57.122b) yields the forced
inertial oscillator equation for the vertical derivative of buoyancy

(∂tt + f2) ∂zb
′ = (∂tt∇2 + f2 ∂zz)φ

′. (57.133)

57.8.5 An equation for pressure

We now consider an equation for pressure that is based on taking the time derivative of the
forced inertial oscillator equation (57.133) for ∂zb

′. Focusing on the left hand side we find

∂t[(∂tt + f2) ∂zb
′] = ∂z[(∂tt + f2) ∂tb

′] swap ∂z and ∂t (57.134a)

= −∂z[(∂tt + f2)w′N2
R ] equation (57.122c) (57.134b)

= −∂zN2
R (∂tt + f2)w′ −N2

R (∂tt + f2) ∂zw
′ product rule (57.134c)

= −∂zN2
R (∂tt + f2)w′ −N2

R ∂t∇2
h φ

′ equation (57.127) (57.134d)

Combining with the time derivative on the right hand side of equation (57.133) leads to the
pressure equation

∂t[(∂tt∇2 + f2 ∂zz +N2
R ∇2

h )φ
′] = −∂zN2

R (∂tt + f2)w′. (57.135)

In the special case of a constant background stratification we find

∂t[(∂tt∇2 + f2 ∂zz +N2
R ∇2

h )φ
′] = 0 if ∂zNR = 0, (57.136)
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which is nearly the same as the free wave equation (57.129) for w′.16

57.8.6 Potential vorticity
Although inertia-gravity waves modify relative vorticity, we here show they retain the linearized
potential vorticity unchanged. For this purpose, use the relative vorticity equation (57.124) and
the buoyancy equation (57.122c) to find17

∂t[ζ
′ + f ∂z(b

′/N2
R )] = 0 =⇒ ∂tQ

′ = 0 with Q′ = ζ ′ + f ∂z(b
′/N2

R ). (57.137)

Hence, an inertia-gravity wave does not alter the potential vorticity, at least to linear order.
This means that any vortical portion of the flow (i.e., flow with Q′ ̸= 0), such as a background
static geostrophic flow, can exist without either the waves or the background flow affecting one
another. Furthermore, we observe that the linearized potential vorticity (57.137) accords with
the relative vorticity and buoyancy contribution to the quasi-geostrophic potential vorticity
(45.53). In the present case, however, we are concerned with the f -plane rather than the β-plane
considered for quasi-geostrophy. Another difference is that the potential vorticity (57.137) is
locally static, ∂tQ

′ = 0, whereas the quasi-geostrophic potential vorticity remains constant when
following the geostrophic flow.

Potential vorticity and layer thickness

For yet another way to interpret the linear potential vorticity (57.137), write the buoyancy
fluctuation in terms of the particle displacement as in equation (57.81)

δz = −b′/N2
R , (57.138)

which brings the linearized potential vorticity to the form

Q′ = ζ ′ + f ∂z(b
′/N2

R ) = ζ ′ − f ∂z(δz). (57.139)

Since Q′ is a static field, the presence of ∂z(δz) leads in a rotating reference frame to a compen-
sating relative vorticity. In an internal gravity wave, δz measures the periodic compression and
expansion of the vertical distance between constant buoyancy surfaces. This layer interpretation
of potential vorticity accords with our understanding of potential vorticity from shallow water
theory in Section 39.3, as well as potential vorticity in isopycnal/buoyancy coordinate models in
Section 66.3.

Connection to pressure and buoyancy

The various harmonic oscillator equations established thus far in this section are not satisfied by
Q′ since it is a static field. However, we can derive an expression for Q′ in terms of pressure and
buoyancy through the following manipulations

(∂tt + f2)Q′ = f2Q′ (57.140a)

= (∂tt + f2)[ζ ′ + f ∂z(b
′/N2

R )] (57.140b)

= f ∇2
h φ

′ +N−2
R (∂tt∇2 + f2 ∂zz)φ

′ + ∂z(N
−2
R ) (∂tt + f2) b′, (57.140c)

16See Lecture 11 in Pedlosky (2003) for connection between the pressure equation (57.136) to the potential
vorticity equation in the case of constant NR.

17Note that in this chapter we define potential vorticity with dimensions of inverse time, T−1, as for the
continuously stratified quasi-geostrophic potential vorticity in Section 45.3.7. In contrast, in our study of shallow
water waves in Chapter 55, we defined Q′ in Section 55.3.3 to have dimensions of L−1 T−1.
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where equation (57.140a) follows since ∂tQ
′ = 0, equation (57.140b) used the definition of Q′

from equation (57.137), and equation (57.140c) used the forced harmonic oscillator equations
(57.125) and (57.127). Multiplying by N2

R leads to

f N2
R Q

′ = (∂tt∇2 +N2
R ∇2

h + f2 ∂zz)φ
′ +N2

R ∂z(N
−2
R ) (∂tt + f2) b′. (57.141)

Decomposing vortical and divergent motions for constant vertical stratification

In the special case of a constant NR, we see that the potential vorticity can be written entirely
in terms of the pressure

f N2
R Q

′ = (∂tt∇2 +N2
R ∇2

h + f2 ∂zz)φ
′ if ∂zNR = 0. (57.142)

Evidently, for constant background stratification the static nature of the potential vorticity is
equivalent to the wave equation (57.136)

∂tQ
′ = 0 =⇒ ∂t[(∂tt∇2 +N2

R ∇2
h + f2 ∂zz)φ

′] = 0 if ∂zNR = 0. (57.143)

We found the same connection between the potential vorticity equation and the wave equation
in Section 55.8.2 when studying shallow water inertia-gravity waves (see equation (55.153)).
As for the shallow water, we conclude that for the case of constant stratification the vortical
motions associated with f -plane geostrophy (hence with zero vertical velocity) are decoupled
from the divergent motions associated with inertia-gravity waves. Hence, we can describe the
fluid motion by a static potential vorticity whose non-zero value is set by f -plane geostrophic
(vortical) flow, plus a zero potential vorticity flow arising from inertia-gravity waves. In the
linear theory, and for constant vertical stratification, there is no exchange of potential vorticity
between the vortical flow and divergent waves. As a practical matter, one often has knowledge of
the static potential vorticity arising from the geostrophic motion. We can obtain the associated
geostrophic pressure field from inverting the elliptic operator in equation (57.142).

57.9 Free inertia-gravity waves

In this section we study the free inertia-gravity waves that arise under small amplitude fluctuations
in a continuously stratified fluid on an f -plane. To enable plane wave solutions we assume the
stratification is constant.

57.9.1 Dispersion relation

Returning to the wave equation (57.129) for w′

(∂tt∇2 +N2
R ∇2

h + f2 ∂zz)w
′ = 0, (57.144)

we take the plane wave ansatz
w′ = w̃ ei (k·x−ω t) (57.145)

which readily leads to the dispersion relation

ϖ2(k) =
N2

R |kh|2 + f2 k2z
|k|2 . (57.146)

Just like the case of internal gravity waves studied in Section 57.5, the dispersion relation is only
a function of the wave direction. To manifest this property we introduce the angle, γ, between

CHAPTER 57. INTERNAL INERTIA-GRAVITY WAVES page 1631 of 2158



57.9. FREE INERTIA-GRAVITY WAVES

the wavevector and the horizontal plane

ϖ2(k) = N2
R cos2 γ + f2 sin2 γ = (N2

R − f2) cos2 γ + f2 = N2
R − (N2

R − f2) sin2 γ. (57.147)

The dispersion relation reduces to that for internal gravity waves when f = 0 given as by
equation (57.65).

57.9.2 Near-inertial waves

In stably stratified geophysical fluids we typically find the squared buoyancy frequency is larger
than the squared Coriolis frequency, N2

R > f2. In this case the plane inertia-gravity wave angular
frequency is bounded by

f2 ≤ ω2 ≤ N2
R when N2

R > f2. (57.148)

Indeed, in many cases we have f2 ≪ N2
R . Even so, there are weakly stratified regions with

N2
R < f2, in which case the opposite frequency range holds whereby N2

R ≤ ω2 ≤ f2. In the limit
with NR = 0, then the inertia-gravity waves reduce to the inertial waves studied in Chapter 53,
which are waves appearing for motion on the f -plane within a fluid with homogeneous density
(NR = 0).

Inertia-gravity waves typically have horizontal scales much larger than vertical, in which case
|kh|2 ≪ k2z . As discussed in Exercise 57.2, such waves satisfy hydrostatic scaling in which

vertical scales in the waves

horizontal scales in the waves
=
|kh|
|kz|
≪ 1⇐= hydrostatic motion. (57.149)

The reason for this anisotropy in the waves is related to the processes forcing the waves. In
particular, for the ocean the forcing by winds occurs with large horizontal patterns characteristic
of the atmosphere. With |kh|2 ≪ k2z , the phase velocity for the waves is nearly vertical so that
γ ≈ π/2. We thus find that the dominant forcing frequency for inertia-gravity waves is near that
of the Coriolis frequency

ω2 = f2 + (N2
R − f2) cos2 γ ≳ f2. (57.150)

Such waves are referred to as near-inertial waves.

57.9.3 Force balance in an inertia-gravity wave

In Section 57.5.11 we studied the buoyancy forces acting on a fluid particle that moves transverse
to the constant phase surfaces in a gravity wave. We pursue the same analysis here with the
added feature of the Coriolis acceleration. This analysis offers a force balance interpretation of
the dispersion relation (57.147).

For a phase surface that has a nonzero slope in the vertical, the displaced fluid particle
moving parallel to the phase surface feels the effects from buoyancy forces. Likewise, when
including the Coriolis acceleration on an f -plane, a horizontal displacement of a fluid particle
induces a Coriolis acceleration. Given the nature of the Coriolis acceleration, the particle turns
in the horizontal. Hence, a fluid particle moving in the direction of contant phase surfaces feels
the effects of the buoyant acceleration when it moves vertically plus the Coriolis acceleration
when it moves horizontally. For small amplitude motion, these forces give rise to simple harmonic
oscillator motion, and they represent the essential features of an an inertia-gravity wave. We
here detail the mechanics of this motion.

page 1632 of 2158 geophysical fluid mechanics



57.9. FREE INERTIA-GRAVITY WAVES

Particle displacements and Coriolis acceleration

Following the approach in Section 57.5.11, we make use of the fluid particle displacement field,
ξ(x, t), whose time derivative yields the velocity of the fluid particle in a small amplitude wave

∂tξ(x, t) = v
′(x, t). (57.151)

To understand the role of the Coriolis acceleration, consider an inertial particle that satisfies the
equation of motion

∂tv
′ + f ẑ × v′ = 0 =⇒ ∂t (∂tξ + f ẑ × ξ) = 0. (57.152)

Hence, in terms of particle displacements, the inertial particle satisfies

∂tξ + f ẑ × ξ = constant, (57.153)

with the constant determined by initial conditions, which can be set to zero without loss of
generality. Evidently, an inertial particle in a rotating reference frame, displaced in a direction
perpendicular to the rotation axis (horizontal direction here), induces a time tendency for motion
in the orthogonal horizontal direction

∂tξ = −f ẑ × ξ. (57.154)

Particle displacements with buoyancy and Coriolis

The linearized equation of motion that includes the effects from pressure, Coriolis, and buoyancy,
is given by

∂tv
′ + f ẑ × v′ = −∇φ′ + b′ ẑ. (57.155)

Focusing on a fluid particle in the presence of a transverse wave, we project the equation of
motion onto the transverse direction, t̂, with this direction static for a plane wave. Doing so
eliminates the pressure gradient since it is constant along a surface of constant phase, so that
fluid particle motion in the transverse direction satisfies

∂t(t̂ · v′) + f t̂ · (ẑ × v′) = b′ t̂ · ẑ. (57.156)

Introducing the particle displacement yields

t̂ · v′ = ∂t(t̂ · ξ) = ∂tδl (57.157a)

b′ t̂ · ẑ = −N2
R δz cos γ = −N2

R δl cos
2 γ, (57.157b)

with the buoyancy expression in equation (57.157b) following from equation (57.81) derived
when studying internal gravity waves (f = 0). For the Coriolis acceleration we make use of
equation (57.154) to write

f t̂ · (ẑ × v′) = f v′ · (t̂× ẑ) (57.158a)

= f ∂tξ · (t̂× ẑ) (57.158b)

= −f2 (ẑ × ξ) · (t̂× ẑ) (57.158c)

= f2 δl sin2 γ, (57.158d)

where we used the vector identity (1.73c) and set ẑ · t̂ = sin γ.

Bringing the above results together leads to the equation of motion for particle displacements

(∂tt +N2
R cos2 γ + f2 sin2 γ) δl = 0. (57.159)
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This is an equation for a simple harmonic oscillator with angular frequency

ω2 = N2
R cos2 γ + f2 sin2 γ, (57.160)

which is the dispersion relation derived in Section 57.9.1 through use of the plane wave ansatz.
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Figure 57.6: An extension of Figure 57.3 to now allow for a fluid particle to feel accelerations from both buoyancy
and Coriolis as it moves in the direction transverse to the plane waves. The wavevector makes an angle, γ, with
the horizontal. We show a view in the x-z plane with the particle displacement vector, ξ(x, t) = δl t̂. The local
transverse unit vector, t̂, points in a direction that is orthogonal to the wavevector, k. The displacement of
the fluid particle from point A and point B occurs over a distance, δl, with a corresponding change in vertical
position given by δz = δl cos γ and horizontal position changes by δx = −δl sin γ. This displacement causes the
fluid particle to experience accelerations from both buoyancy and Coriolis.

57.9.4 Group velocity
The wavevector gradient of the dispersion relation (57.160) yields the group velocity for inertia-
gravity waves

cg =
(N2

R − f2) kz
|k|4 ω (kz kh − |kh|2 ẑ). (57.161)

As for internal gravity waves in equation (57.71), we find that the group velocity is perpendicular
to the phase velocity (cp = k̂ω/|k|)

cg · cp = 0. (57.162)

We also find that

(cg · ẑ) (cp · ẑ) = −
(N2

R − f2) k2z |kh|2
|k|4 ω , (57.163)

so that

(cg · ẑ) (cp · ẑ) < 0 if f2 < N2
R (57.164a)

(cg · ẑ) (cp · ẑ) > 0 if f2 > N2
R . (57.164b)

The usual case for the atmosphere and ocean finds f2 < N2
R , so that if the group velocity is

upward then the phase velocity is downward, and vice versa. However, if f2 > N2
R , as for inertial

waves where NR = 0 (Chapter 53, Exercise 57.1), or more generally for inertia-gravity waves in
very weak vertical stratification, then the group and phase velocities have the same orientation
with respect to the vertical.

57.9.5 Polarization relations for a plane wave
We now make use of the plane wave ansatz (57.54) to derive the polarization relations that
determine the structure of a plane wave. For this purpose we make use of the various forced
harmonic oscillator equations from Section 57.8 to express the velocity and buoyancy in terms
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of a real pressure amplitude, φ̃, where pressure is assumed to take the form

φ′ = φ̃ cos(k · x− ω t). (57.165)

We also make use of the dispersion relation (57.147) to write the polarization relations in a
variety of forms. In the limit with f = 0, each of the expressions below reduce to the gravity
wave polarization relations (57.90a)-(57.90b) derived in Section 57.5.13.

Buoyancy

Buoyancy satisfies the forced oscillator equation (57.133), which for a plane wave takes the form

(−ω2 + f2) i kz b̃ = (ω2 |k|2 − f2 k2z) φ̃. (57.166)

Various forms of the dispersion relation given in Section 57.9.1 lead to the identities

ω2 |k|2 − f2 k2z = N2
R |kh|2 (57.167a)

ω2 − f2 = (N2
R − f2) |kh|2/|k|2 = (N2

R − ω2) |kh|2/k2z (57.167b)

so that the ratio of amplitudes can be written in the equivalent manners

b̃/φ̃ =
i (ω2 |k|2 − f2 k2z)
kz (ω2 − f2) =

iN2
R |kh|2

kz (ω2 − f2) =
iN2

R |k|2
kz (N2

R − f2)
=

iN2
R kz

N2
R − ω2

, (57.168)

which means that the real buoyancy wave is given by

b′/φ̃ = −N
2
R |kh|2 sin(k · x− ω t)

kz (ω2 − f2) = −N
2
R kz sin(k · x− ω t)

N2
R − ω2

. (57.169)

Vertical velocity component

From Section 57.8.3 we know that the vertical velocity satisfies the two forced oscillator equations
(57.127) and (57.128)

(∂tt + f2)∂zw
′ = ∂t∇2

h φ
′ and (∂tt +N2

R )w
′ = −∂tzφ′. (57.170)

For a plane wave these equations lead to

w̃/φ̃ = − ω |kh|2
kz (ω2 − f2) = − ω kz

N2
R − ω2

= − ω |k|2
kz (N2

R − f2)
, (57.171)

so that the real wave takes on the form

w′/φ̃ = −ω |kh|2 cos(k · x− ω t)
kz (ω2 − f2) = −ω kz cos(k · x− ω t)

N2
R − ω2

= −ω |k|
2 cos(k · x− ω t)
kz (N2

R − f2)
. (57.172)

Horizontal velocity

Equation (57.123) for the horizontal velocity leads to the relation for the plane wave amplitude

ũ/φ̃ =
ω kh − i f (ẑ × kh)

ω2 − f2 , (57.173)
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so that the real plane wave polarization relation is given by

u/φ̃ =
ω kh cos(k · x− ω t) + f (ẑ × kh) sin(k · x− ω t)

ω2 − f2 , (57.174)

which compares directly to the shallow water polarization relation (55.174a).

57.9.6 Energetics of a plane inertia-gravity wave

We here extend the energetic analysis of plane internal gravity waves in Section 57.5.14 to the
case of plane inertia-gravity waves, making use of the polarization relations from Section 57.9.5.
Each of the expressions found here reduce to the internal gravity waves case when taking f = 0.

Instantaneous energetics

The plane inertia-gravity wave has squared velocity components

u′ · u′/φ̃2 =
ω2 |kh|2 cos2(k · x− ω t) + f2 |kh|2 sin2(k · x− ω t)

(ω2 − f2)2 (57.175a)

(w′)2/φ̃2 =
ω2 |kh|4 cos2(k · x− ω t)

k2z (ω
2 − f2)2 , (57.175b)

so that the wave’s kinetic energy is

K′ =
φ̃2 |kh|2

2 (ω2 − f2)2
[
ω2 (1 + |kh|2/k2z) cos2(k · x− ω t) + f2 sin2(k · x− ω t)

]
, (57.176)

which can be written in the more tidy form through use of the dispersion relation (57.147)

K′ =
φ̃2 |kh|2[f2 + (N2

R cot2 γ) cos2(k · x− ω t)]
2 (ω2 − f2)2 , (57.177)

where we set
cot γ = |kh|/kz. (57.178)

Likewise, the available potential energy is given by

A′ =
φ̃2 (|kh|2N2

R cot2 γ) sin2(k · x− ω t)
2 (ω2 − f2)2 . (57.179)

Taking the sum leads to the total mechanical energy in a plane inertia-gravity wave

K′ +A′ =
φ̃2 |kh|2 (f2 k2z +N2

R |kh|2)
2 k2z (ω

2 − f2)2 (57.180)

Time independence of mechanical energy for the plane inertia-gravity wave accords with the
result (57.99) for the plane internal gravity wave.

Phase averaged energetics

Taking the phase averages on the kinetic energy and available potential energy leads to

⟨K′⟩ = φ̃2 |kh|2 (ω2 |k|2 + f2 k2z)

4 k2z (ω
2 − f2)2 and ⟨A′⟩ = φ̃2N2

R |kh|4
4 k2z (ω

2 − f2)2 , (57.181)
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whose sum is

⟨K′ +A′⟩ = φ̃2 |kh|2 (ω2 |k|2 + f2 k2z +N2
R k

2
h )

4 k2z (ω
2 − f2)2 =

φ̃2 |kh|2 (f2 k2z +N2
R k

2
h )

2 k2z (ω
2 − f2)2 (57.182)

and ratio is
⟨K′⟩
⟨A′⟩ = 1 + 2 (f/NR)

2 tan2 γ =
ω2 |k|2 + f2 k2z

N2
R |kh|2

. (57.183)

It is notable that the ratio is bounded below by unity, so that the kinetic energy is never less
than the available potential energy. The ratio is unity when the phase velocity is horizontal
(γ = 0), in which fluid particles have vertical trajectories and thus exhibit purely vertical
buoyancy oscillations. This equipartition of kinetic and available potential energies (again,
holding withγ = 0) was found for the internal gravity wave in Section 57.5.14. When the phase
velocity is vertical, so that γ = π/2, the plane waves have no available potential energy since the
fluid particles are exhibiting horizontal inertial oscillations and do not sample the background
buoyancy field.

Phase averaged mechanical energy flux

The phase averaged mechanical energy flux is given by

⟨v′ φ′⟩
φ̃2

=
ω (kz kh − ẑ |kh|2)
2 kz (ω2 − f2) (57.184a)

=
ω2 |k|4 cg

2 k2z (N
2
R − f2) (ω2 − f2) (57.184b)

=
cg |kh|2 (f2 k2z +N2

R |kh|2)
2 k2z (ω

2 − f2)2 , (57.184c)

where we made use of the inertia-gravity wave group velocity (57.161). Now the phase averaged
mechanical energy is given by equation (57.182), so that the plane inertia-gravity waves exhibit
the group velocity property also found for internal gravity waves in equation (57.104)

⟨v′ φ′⟩ = cg (K′ +A′). (57.185)

That is, a plane inertia-gravity wave has a phase averaged mechanical energy flux equal to the
group velocity times the phase averaged mechanical energy.

57.9.7 Comments
The inertial waves studied in Chapter 53 are the NR = 0 limit of inertia-gravity waves studied
in the present section. It is notable that in the presence of any nonzero vertical stratification,
the squared angular frequency of propagating inertia-waves is super-inertial, ω2 ≥ f2, whereas
when NR = 0 the waves are sub-inertial, ω2 ≤ f2. If an inertial wave from an unstratified region,
with ω2 ≤ f2, encounters stratification, then this low frequency wave cannot propagate into the
stratified region.

57.10 Exercises
exercise 57.1: Reflection conditions for inertial waves
Inertial waves studied in Chapter 53 are the N2 = 0 limit of inertia-gravity waves from Section
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57.9. Emulating the analysis in Section 57.6.2 for internal gravity waves, determine the reflection
conditions for packets of plane inertial waves. Figure 57.5 is drawn for internal gravity waves.
Redraw this figure for inertial waves.

exercise 57.2: Inertia-gravity waves in a hydrostatic fluid
Throughout this chapter we studied inertia-gravity waves as they appear in a non-hydrostatic
flow that satisfies the linear Boussineseq equations (57.17a)-(57.17d). However, inertia-gravity
waves also exist in flows maintaining an approximate hydrostatic balance, and in this exercise
we derive their dispersion relation and discuss the relation to the non-hydrostatic waves. Hint:
see Section 57.9.2 as well as page 280 of Vallis (2017).

(a) Write the hydrostatic version of the linear Boussinesq equations (57.17a)-(57.17d).

(b) Following the methods from Section 57.9, derive the free wave equation satisfied by the
vertical velocity, w′, in a hydrostatic flow. That is, derive the hydrostatic version of
equation (57.129). Show all steps.

(c) Derive the dispersion relation for inertia-gravity waves in a hydrostatic flow with a constant
reference buoyancy frequency, NR.

(d) Start from the dispersion relation for inertia-gravity waves in a non-hydrostatic flow.
Discuss the maths and physics of the length scale limiting process that results in the
dispersion relation for inertia-gravity waves in a hydrostatic flow.

(e) What does the hydrostatic limit say about the angular frequency of inertia-gravity waves
relative to non-hydrostatic inertia-gravity waves?
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Chapter 58

INTERNAL GRAVITY WAVES: CASE STUDIES

In this chapter we consider some case studies that help further our understanding of internal
gravity waves as they appear in geophysical fluids. Sections 58.2 and 58.3 consider the generation
of internal gravity waves via flow over topography, thus giving rise to mountain waves. Mountain
waves arise when stratified fluid flows over topography in both the atmosphere (hence their
name) and the ocean. We limit the analysis to stationary waves, which are time independent in
the rest frame. Doing so allows us to avoid some of the more mathematical questions of transient
adjustment. Even so, the discussion exposes us to some mathematical methods commonly
used to study waves. It also deepens our understanding of gravity wave mechanics within a
geophysical context.

Section 58.4 examines gravity waves within a gently varying stratification, making use of the
ray theory presented in Chapter 50.

reader’s guide to this chapter
This chapter is a natural extension of material studied in Chapter 57. Further resources for

this chapter can be found in Lighthill (1978), Pedlosky (2003), Sutherland (2010), Cushman-
Roisin and Beckers (2011), Kundu et al. (2016), Vallis (2017), and Buijsman et al. (2019). The
second half of this video offers some pedagogical visualizations of stratified flow phenomena,
and this video provides more visualizations from simulations and laboratory tank experiments.
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58.1. LOOSE THREADS

58.4.5 Wave packets within a wave guide . . . . . . . . . . . . . . . . . 1658
58.4.6 Comments and further study . . . . . . . . . . . . . . . . . . . . 1659

58.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659

58.1 Loose threads

• Work through the examples Legg notes, as well as material from Vallis (2017).

• Expand the ray theory in Section 58.4. Follow elements from Chapter 6 of Sutherland
(2010).

58.2 Gravity waves from a sinusoidal mountain range
Following the discussion for inertial waves in Section 53.5.2, and for shallow water inertia-gravity
waves in Section 56.2, we here consider a prescribed and fixed constant horizontal reference
(background) flow on a stratified f -plane that moves over small amplitude topography (e.g.,
mountains) in an otherwise unbounded domain. The flow over a non-flat bottom provides a
forcing of vertical motion as imposed by the bottom kinematic boundary condition, with a
vertically moving fluid parcel sampling the continuously stratified reference buoyancy. As such,
flow over topography in a continuously stratified fluid serves as a forcing for internal inertia-
gravity waves. Those waves that propagate do so both vertically and horizontally throughout
the domain. The horizontal wavenumber of the waves is set by the horizontal wavenumber of
the topography. The angular frequency of stationary waves is fully determined by the Doppler
shift from the moving reference flow, which is set by the wavevector of the topography and
the flow speed. The vertical wavenumber of stationary waves is determined by the dispersion
relation. As for surface gravity waves in Chapter 52, waves with high horizontal wavenumber
are exponentially trapped near the mountains, whereas waves with lower horizontal wavenumber
propagate vertically. The transition between evanescence and propagation is set by the ratio of
the reference stratification to the reference flow.

The mountain waves studied in this section represent a rich area of geophysical fluid
mechanics of primary importance for waves and mixing in the ocean and atmosphere. For the
ocean, barotropic (depth independent) tidal motions offers an important source for the reference
flow, with barotropic tidal motions generating internal waves that are referred to as internal
tides. Our goal is to introduce some of the richness of this geophysical system by mathematically
formulating the generation of linear internal waves and studying their properties. For simplicity,
we focus on the stationary waves that arise from a fully developed wave field.1 Some of the
formulation in this section is analogous to that of the shallow water in Section 56.2, yet with
two key distinctions. First, the fluid here is continuously stratified, and second, the flow is
non-hydrostatic. Both of these properties support a rich wave field that is not constrained by
the columnar motion found in hydrostatic shallow water layers.

58.2.1 Linearized equations with constant reference flow

Figure 58.1 depicts the physical system studied in this section, in which we consider a reference
flow whose velocity is given by

v = uR + v
′, (58.1)

1Recall from Section 49.2 that stationary waves have no time dependence in the rest frame. We here encounter
stationary waves as the steady solution to the propagating internal gravity wave equations. The initial value
problem requires more mathematical machinery beyond our scope.
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where uR is a prescribed space-time constant horizontal reference flow, and v′ is the space-time
dependent flow relative to this reference. Furthermore, we assume that the steady reference flow
is in geostrophic balance with a prescribed reference pressure field

fo ẑ × uR = −∇φR. (58.2)

Alternatively, for the case with fo = 0, we simply assume the reference flow is down the prescribed
gradient of the reference pressure. In either case we have no concern for how the reference
pressure field is maintained, only that it supports the steady reference flow.
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w→ = uR ·→ω→b

Figure 58.1: Schematic of a constant reference flow, uR, moving over small amplitude monochromatic bottom
topography, z = ηb + η′b(x, y) = 0 + ηo e

kb·x, where we assume ηb = 0, and with ηo a real amplitude, and kb a
horizontal wavevector. We choose to orient the topography wavevector so that uR · kb < 0, which is based on
noting that the reference flow, uR, when viewed in the rest frame, is equivalent to topography moving in the
direction opposite to uR when viewed in the boosted frame. We assume the topography has a small amplitude in
the sense that ηo |kb| ≪ 1, thus ensuring that the generated waves are linear. There is no upper boundary nor
side boundary, so waves generated by flow over the bottom are free to propagate horizonally and vertically. At
the bottom, the full flow must satisfy the kinematic boundary condition, w = u · ∇ηb. Linearizing this boundary
condition brings about its evaluation at z = ηb = 0 rather than at z = ηb(x, y). Additionally, with η′b of small
amplitude, the linearized bottom boundary condition is w′ = uR · ∇η′b = i (uR · kb) η

′
b at z = 0.

Following the steps in Section 57.2, we decompose the density and pressure according to

ρ(x, t) = ρo + ρR(x) + ρ′(x, t), (58.3)

where the reference density, ρR, is a function of all three spatial coordinates, and where we
consider two static pressures, po and pR, that are in hydrostatic balance with their corresponding
densities

dpo
dz

= −ρo g and
∂pR
∂z

= −ρR g. (58.4)

Inserting this density and pressure decomposition in the Boussinesq equations (57.1a)-(57.1d),
and then linearizing, leads to the linearized governing equations

(∂t + uR · ∇)u′ + fo ẑ × u′ = −∇hφ′ linear horizontal velocity equation (58.5a)

(∂t + uR · ∇)w′ = −∂zφ′ + b′ linear vertical velocity equation (58.5b)

(∂t + uR · ∇)b′ = −w′N2
R linear buoyancy equation (58.5c)

∇ · v′ = 0 continuity for velocity fluctuations, (58.5d)

which reduce to equations (57.17a)-(57.17d) when uR = 0.

58.2.2 Bottom topography and bottom boundary condition

As for the shallow water case studied in Section 56.2 (in particular, see Section 56.2.4), we consider
the domain to be bounded from below with monochromatic bottom topography undulations
given by

η′b(x, y) = ηoe
ikb·x, (58.6)
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such as depicted in Figure 58.1. In this expression, ηo is the real and constant amplitude of the
topography and kb is a horizontal wave number that specifies the direction and wavelength of
the topography. Linearity of the waves generated by the topography is ensured by assuming

ηo |kb| ≪ 1, (58.7)

so that the amplitude of the topography is small on the length scale set by the topography’s
wavelength.

We orient the topography’s wavevector, kb, to be opposite that of the reference flow, so that

ωR = −uR · kb ≥ 0, (58.8)

where ωR is an angular frequency of the bottom boundary forcing induced by the flow over the
topography. As discussed in Section 56.2.5 when studying shallow water waves generated by
topography, the sign for the inequality (58.8) reflects the fact that topography is stationary in
the rest frame but it moves in the direction opposite to the reference flow when viewed in the
frame following the reference flow. This inequality can be considered a causality condition and
it is central to the phase functions encountered in the following.2

The no-flow bottom kinematic boundary condition for the full nonlinear flow takes the form
(Section 19.6.1)

w = u · ∇ηb at z = ηb(x, y). (58.9)

Inserting the velocity decomposition (58.1) and the bottom topography,

z = ηb + η′b(x, y), (58.10)

leads to
w′ = (u′ + uR) · ∇(ηb + η′b) = (u′ + uR) · ∇η′b ≈ uR · ∇η′b at z = 0, (58.11)

where the approximation arises from dropping the relatively small term, u′ · ∇η′b.

58.2.3 Galilean transformation to the moving flow’s reference frame
Following the shallow water case from Section 56.2.2, we transform to the moving frame of the
constant reference flow by introducing the boosted (moving reference frame) coordinates

t = t and x = x− uR t and v = v − uR. (58.12)

Observers in the rest frame see the topography at rest and the reference flow moving with
velocity, uR. In contrast, observers in the boosted reference frame see the topography moving
with velocity −uR whereas the reference flow is at rest. Since the flow is constant in space and
time, the two observers are inertial, so the transformation between the two reference frames is
Galilean (Section 17.5). Following the discussion in Section 17.5, the Galilean transformation
(58.12) leads to the transformed differential operators

∂t = ∂t + uR · ∇ and ∇ = ∇, (58.13)

and the corresponding transformation of the linearized governing equations (58.5a)-(58.5d)

∂tu
′ + fo ẑ × u′ = −∇hφ′ (58.14a)

2We are considering the steady state flow where one generally has time symmetry. However, keeping in mind
the transient situation where time symmetry is broken, we here break time symmetry through acknowledging
a directionality to the reference flow (left to right) and by insisting that the forcing angular frequency, ωR, is
positive.
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∂tw
′ = −∂zφ′ + b′ (58.14b)

∂tb
′ = −w′N2

R (58.14c)

∇ · v′ = 0. (58.14d)

Notice how transformation to the moving frame removed advection by the reference flow from
the horizontal velocity equation.

58.2.4 Free space dispersion relation with moving reference flow

Before considering the case of a lower boundary, we here establish some basic results for waves
moving in a uniform flow in free space. For that purpose, note that equations (58.14a)-(58.14d)
are mathematically identical to the linear equations (57.17a)-(57.17d) that apply to the case of
zero reference flow, only here with the time derivative computed in the boosted reference frame,
∂t, rather than the rest frame time derivative, ∂t. Consequently, when assuming a constant
reference state buoyancy frequency, the equation for the vertical velocity in the boosted reference
frame is given by equation (57.144) with boosted coordinates

(∂tt∇
2
+N2

R ∇2
h + f2 ∂zz)w

′ = 0. (58.15)

In the absence of any boundaries, the phase function for linear waves is written3

k · x− ω t = k · (x+ uR t)− ω t = k · x− (ω − uR · k) t = k · x− ω t, (58.16)

where the final equality introduced4

ω = ω − uR · k, (58.17)

which relates the angular frequency in the boosted frame, ω, to that in the rest frame, ω. The
frequency shift, −uR ·k, is known as the Doppler shift, which vanishes when the phase is directed
orthogonal to the reference flow, uR ·k = 0. Furthermore, the boosted frame’s angular frequency,
ω, vanishes for waves whose Doppler shift satisfies ω = uR · k. For these waves, the boosted
reference frame rides along a fixed wave and so there is no propagation within this reference
frame.

Critical levels

Plugging the free wave ansatz,
w′ = w̃ ei (k·x−ω t), (58.18)

into the vertical velocity equation (58.15) leads to the dispersion relation

ω2 = (ω − uR · k)2 = N2
R cos2 γ + f2o sin2 γ = [(NR kh)

2 + (fo kz)
2]/|k|2. (58.19)

This is a straightforward extension of the frequency from the rest frame value, ω, to the moving
frame.

3Throughout this book we are working with particle and wave speeds that are far smaller than the speed of
light, thus enabling the use of Galilean space-time rather than Lorentz space-time. Hence, we do not encounter
the special relativistic effects from length contraction, and so there are no changes to the wavelength when moving
to the Galilean boosted reference frame. Consequently, movement to the Galilean boosted reference frame leaves
the wavevector, k, unchanged.

4We introduced the same angular frequency relation in equation (56.38) for shallow water waves generated by
flow over topography.
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Wave energy propagates according to the group velocity, which we compute from the
wavevector gradient

∇kω
2 = 2ω∇kω = 2ω (∇kω − uR) = 2ω (cg − uR), (58.20)

where cg = ∇kω is the group velocity (57.161) as measured in the rest frame, and cg − uR is
that in the moving frame. Computing ∇kω

2 yields

cg − uR =
(N2

R − f2) kz
ω |k|4 (kz kh − |kh|2 ẑ). (58.21)

It is particularly revealing to consider gravity waves with fo = 0, in which we find the vertical
component to the group velocity

ẑ · cg = −(ω − uR · k) kz/|k|2. (58.22)

The group velocity slows down, and halts, as the wave frequency approaches uR · k. Although
derived here for a constant reference flow, this equation holds to leading order for gently varying
reference flows using WKBJ methods as in Section 58.4. In such cases we can find the vertical
component of the group velocity vanish at certain critical levels, which are levels where waves
can deposit their energy to the mean flow.

58.2.5 Wavenumbers for stationary inertial-gravity waves

Now consider the case of a monochromatic bottom (mountains) as depicted in Figure 58.1, with
bottom topography of the form

η′b = ηo e
ikb·x = ηo e

i (kb·x−ωR t). (58.23)

The topography is static in the rest frame, whereas it is a traveling plane wave in the boosted
frame with angular frequency ωR = −uR · kb ≥ 0 given from equation (58.8). In the presence of
topography, the waves are not free in all three directions. Rather, they must satisfy the bottom
boundary condition (58.11), which takes on the following form for a monochromatic mountain
range

w′(z = 0) = uR · ∇η′b = i (uR · kb) η
′
b = −iωR η

′
b. (58.24)

For waves that are stationary in the rest frame (ω = 0 so that ω = ωR), we satisfy the boundary
condition (58.24) by setting the vertical velocity to

w′ = −iωR ηo e
i (kb·x+kz z−ωR t) = −iωR ηo e

i (kb·x+kz z), (58.25)

which has a real part given by

w′ = ωR ηo sin(kb · x+ kz z). (58.26)

Notably, the horizontal wavevector is set by the topography,

kh = kb. (58.27)

With constant NR, we can use the stationary form of the dispersion relation (58.19),

ω2 = ω2
R = (uR · k)2 = N2

R cos2 γ + f2o sin2 γ = [(NR |kh|)2 + (fo kz)
2]/|k|2, (58.28)

to find the squared vertical wavenumber for the stationary inertia-gravity waves (again, kh = kb
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via equation (58.27))

k2z =
|kb|2 (N2

R − ω2
R)

ω2
R − f2o

, (58.29)

with the vertical wavenumber either real or imaginary according to

k2z =

 < 0 if ω2
R < f2o

> 0 if f2o < ω2
R < N2

R

< 0 if ω2
R > N2

R .
(58.30)

The cases with k2z < 0 lead to stationary waves that are oscillating in the horizontal yet
exponentially trapped in the vertical, much like the surface gravity waves studied in Chapter 52
or the edge waves studied in 54.5. In contrast, with k2z > 0 there are stationary waves extending
throughout the vertical. The regime of vertically extended stationary waves is given by

2π/NR < Λb/U < 2π/fo, (58.31)

where
Λb = 2π/|kb| (58.32)

is the topography’s wavelength. In the atmosphere, typical values for the reference state are
NR = 10−2 s−1, U = 10 m s−1, and fo = 10−4 s−1, in which case there are vertically extended
inertia-gravity waves for mountains having wavelengths within the range

2π U/NR < Λb < 2π U/fo =⇒ 2π × 103 m < Λb < 2π × 105 m. (58.33)

For the deep ocean we take NR = 10−3 s−1, U = 10−1 m s−1 (barotropic tidal speeds), and
fo = 10−4 s−1, so that there are vertically extended stationary inertia-gravity waves for undersea
mountains having wavelengths within the range

2π × 102 m < Λb < 2π × 103 m. (58.34)

These numbers are only meant to give an impression of the approximate scales of mountain
forcing that generate vertically extended internal inertia-gravity waves. One key point is the
roughly one order smaller scales for the ocean relative to the atmosphere.

58.2.6 Stationary mountain waves with f 2
o < ω2

R < N2
R

For f2o < ω2
R < N2

R , we have stationary inertia-gravity waves with k2z > 0 according to equation
(58.29). As the reference flow interacts with the mountains at the lower boundary, internal
inertia-gravity waves propagate energy upwards according to the group velocity. As seen in
Section 57.5.10, an upward group velocity means a downward phase velocity, so that we take the
negative root from equation (58.29)

kz = −|kb|
√
N2

R − ω2
R

ω2
R − f2o

= −|kz| < 0, (58.35)

which renders the stationary vertical velocity in the wave5

w′ = −iωR ηo e
i (kb·x−|kz | z). (58.36)

5In equation (58.35), and elsewhere in this chapter, we find it useful to introduce the absolute value around a
wavenumber in order to clearly expose the sign of the wavenumber. Doing so can greatly help in capturing the
proper phase relations for the waves.
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For the specific case of zonal reference flow, uR = U x̂ with U > 0, we have kb = −|kb| x̂, so that

ωR = −uR · kb = U |kb| =⇒ w′ = −iU |kb| ηo e−i (|kb|x+|kz | z), (58.37)

which has real part

w′ = w̃ sin(|kb|x+ |kz| z) = −U |kb| ηo sin(|kb|x+ |kz| z), (58.38)

where we defined the vertical velocity amplitude

w̃ = −U |kb| ηo. (58.39)

Evidently, the vertical velocity amplitude is directly related to the reference flow magnitude, the
topography wavenumber, and the topography amplitude.

To determine polarization relations for the other fields, we can return to those derived earlier
for the free waves in Section 58.2.4, specializing to the case with ω = ωR. Alternatively, we can
set ∂t = 0 in the linear governing equations (58.5a)-(58.5d). This work is considered in Exercise
58.1 and follows a method similar to that taken for stationary mountain gravity waves in Section
58.2.7.

58.2.7 Stationary mountain waves with 0 < ω2
R < N2

R

We now specialize to fo = 0, such as appropriate for mountain waves that are small enough
laterally to not feel the impacts from Coriolis. Also, continue to assume a zonal reference flow,
uR = U x̂ with U > 0 and kb = −|kb| x̂. The vertical velocity is still given by equation (58.38)

w′ = −U |kb| ηo sin(|kb|x+ |kz| z), (58.40)

yet here with the angular frequency for stationary waves given by

ωR = NR |kb|/|k| = U |kb| =⇒ U = NR/|k|, (58.41)

and the vertical wavenumber corresponding to an upward directed group velocity

kz = −|kb|
√

(NR/ωR)2 − 1 = −
√

(NR/U)2 − |kb|2 < 0. (58.42)

As discussed in Exercise 58.2, the frequency ratio,

Fr(|kb|) =
ωR

NR

=
U |kb|
NR

, (58.43)

can be considered a wavenumber dependent Froude number. Inserting this Froude number into
equation (58.42) yields

kz = −|kb|
√
Fr−2 − 1, (58.44)

so that the Froude number distinguishes vertically propagating stationary gravity waves (Fr < 1)
from vertically evanescent waves (Fr > 1).

Lines of constant phase

For the vertical propagating waves (Fr < 1), the vertical velocity (58.40) is constant along phase
lines that satisfy

|kb|x+ |kz| z = constant. (58.45)
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These phase lines have a slope
dz

dx
= −|kb|/|kz|, (58.46)

which indicates that the phase lines slope up to the left such as depicted in Figure 58.2. Evidently,
the phase lines tilt into the reference flow.

Polarization relations

The polarization relations for the stationary waves are determined by the steady linear governing
equations (58.5a)-(58.5d) with fo = 0 and ∂t = 0

(uR · ∇)u′ = −∇hφ′ steady linearized horizontal velocity equation (58.47a)

(uR · ∇)w′ = −∂zφ′ + b′ steady linearized vertical velocity equation (58.47b)

(uR · ∇)b′ = −w′N2
R steady linearized buoyancy equation (58.47c)

∇ · v′ = 0 continuity for velocity fluctuations. (58.47d)

All motion is in the x-z plane, so that the continuity equation (58.47d) gives the zonal velocity

u′ = −(|kz|/|kb|)w′ =⇒ u′
dz

dx
= w′ and u′ = U |kz| ηo sin(|kb|x+ |kz| z), (58.48)

where we used the slope relation (58.46). The steady buoyancy equation (58.47c) yields

U ∂xb
′ = N2

R U |kb| ηo sin(|kb|x+ |kz| z) =⇒ b′ = −ηoN2
R cos(|kb|x+ |kz| z). (58.49)

Likewise, the steady horizontal velocity equation (58.47a) gives the wave pressure

φ′ = −U u′ = −ηo |kz|U2 sin(|kb|x+ |kz| z). (58.50)
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Figure 58.2: Stationary mountain gravity waves generated by an eastward reference flow, uR = U x̂, over
monochromatic topography. We set the parameters according to ocean values, with ηo = 30 m, U = 0.1 m s−1,
NR = 10−3 s−1, and Λb = 2π × 200 m, so that ωR/NR = 0.5. Top left panel: contours of the buoyancy
field, b = bR + b′, with bR = N2

R z and b′ = −ηoN2
R cos(|kb|x + |kz| z) from equation (58.49). Top right panel:

perturbation pressure field, φ′ = −U u′ = U w′ |kz|/|kb|, from equation (58.50). Lower left panel: the vertical
velocity anomaly, w′ = −U |kb| ηo sin(|kb|x+ |kz| z) from equation (58.40). Lower right panel: the zonal velocity
anomaly, u′ = −|kz|/|kb|w′ from equation (58.48). The color scale is set to highlight just the sign of the field.
The phase shift, whereby high pressures are on the windward side of the mountains and low pressures on the lee
side, leads to a topographic pressure form stress acting on the fluid according to equation (58.51).
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Wave induced topographic form stress

In Figure 58.2 we illustrate the buoyancy, pressure, vertical velocity, and zonal velocity within
a stationary gravity wave for a particular set of parameters. Note the phase lines that are
tilted into the mean flow with the positive pressure perturbation on the upwind side of the
mountains. This orientation is reflective of the general discussion surrounding Figure 28.8 when
studying pressure form stress acting between the fluid and the solid lower boundary. From that
discussion we know that a positive pressure anomaly on the upwind side of a mountain renders
an eastward form stress from the fluid to the solid, and a corresponding (through Newton’s third
law) westward topographic form stress directed from the solid to the fluid.

From the discussion in Section 28.2.2, we write the topographic form stress acting on the
fluid as −p∇ηb. The pressure is evaluated at the solid-fluid boundary for the nonlinear case,
whereas for linear waves we evaluate the topographic form stress at z = 0, with a phase average
yielding

⟨−φ′ ∂xηb⟩ = −U2 η2o |kb| |kz|/2. (58.51)

This westward topographic form stress acts from the solid onto the fluid, with a corresponding
eastward form stress of the same magnitude from the fluid to the solid. The stress is directly
related to the square of the reference flow speed and the square of the topography amplitude. It is
also linearly related to the vertical wavenumber of the gravity wave and the vertical wavenumber
of the topography. Since the stress is directed contrary to the reference flow direction, it is
commonly referred to as a mountain drag.

Wave energy flux

From Section 57.5.14 we know that the energy flux carried by a gravity wave is given by v′ φ′.
For stationary mountain waves in the x-z plane we have

v′ φ′ = −(x̂u′ + ẑw′)U u′ =
U w′w′ |kz|
|kb|2

(−|kz| x̂+ |kb| ẑ). (58.52)

Now the group velocity for internal gravity waves is given by equation (57.71), which takes on
the following form for the forced stationary waves

cg =
NR kz
|k|3 |kb|

(kz kb − |kb|2 ẑ) (58.53a)

=
NR |kz|
|k|3 (−|kz| x̂+ |kb| ẑ) (58.53b)

=
U |kz|
|k|2 (−|kz| x̂+ |kb| ẑ), (58.53c)

where the second equality set kb = −|kb| x̂ and kz = −|kz| < 0, and the third equality set
U = NR/|k| from equation (58.41). Next, we make use of equation (57.101) to write the
mechanical energy within the stationary internal gravity wave

K′ +A′ = ⟨w′w′⟩ |k|2/|kb|2 = 1
2 η

2
o U

2 |k|2 = 1
2 η

2
o N

2
R , (58.54)

which then brings the phase averaged energy flux to the standard form holding for a linear wave

⟨v′ φ′⟩ = cg (K′ +A′). (58.55)
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58.2.8 Trapped mountain waves with ωR > NR

For the case with mountain forcing at a frequency greater than buoyancy frequency, ωR > NR,
the vertical wavenumber becomes imaginary

kz = i
√
|kb|2 − (NR/U)2 = i |kz|, (58.56)

which yields a wave solution that is exponentially decaying away from the mountains (see
equation (58.36) and remember that kb = −|kb| x̂ and ωR = U |kb| > 0)

w′ = −iωR ηo e
ikb·x−|kz | z Re−→ −U |kb| ηo sin(|kb|x) e−|kz | z. (58.57)

We refer to these fluctuations as vertically evanescent or vertically trapped gravity waves. The
corresponding zonal velocity, buoyancy, and pressure fields are

u′ = U |kz| ηo cos(|kb|x) e−|kz | z (58.58a)

b′ = −ηoN2
R cos(|kb|x) e−|kz | z (58.58b)

φ′ = −U2 |kz| ηo cos(|kb|x) e−|kz | z. (58.58c)

Zero energy propagation and zero topographic form stress

Since the vertical velocity (58.57) and pressure (58.58c) are π/2 radians out of phase, vertically
trapped waves generate no vertical propagation of phase averaged wave energy

⟨w′ φ′⟩ = 0. (58.59)

Likewise, there is no topographic form stress since there is no phase shift between the topography
and the pressure

⟨φ′ ∂xηb⟩ = 0. (58.60)

Limit where ωR ≫ NR

The case of ωR ≫ NR corresponds to large topographic frequency and/or small buoyancy frequency.
In this limit the vertical wavenumber has a magnitude |kz| ≈ |kb| so that NR drops out from
the system. This case corresponds to the surface gravity waves studied in Chapter 52 where
stratification was completely ignored. In that case, as well as here, the exponential trapping is
determined by the horizontal wavenumber, |kb|. Furthermore, in the case with vertical length
scales, H, such that |kz|H ≈ |kb|H ≪ 1, then the vertical velocity becomes a linear function of
z. This case corresponds to the shallow water inertia-gravity waves studied in Section 56.2

Comments on exponential trapping

As discussed in Section 57.5.8, forcing a stratified fluid at a frequency greater than the buoyancy
frequency does not lead to propagating internal gravity waves. For the case of mountain gravity
waves, we see that exponential trapping arises when the topographic forcing has a frequency,
ωR, greater than the maximum frequency of the buoyancy oscillations, NR. In this case, motion
induced by the forcing is too fast for fluid particles to exhibit buoyancy oscillations. The result
is fluid particles largely following whatever displacements are imposed on them by the external
forcing, with exponential damping when moving away from the forcing and with fluid particles
in phase with the forcing. In this case, no propagating internal gravity waves are formed, and
energy imparted to the fluid stays local to the topographic forcing.
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Figure 58.3: Stationary trapped mountain gravity waves generated by an eastward reference flow, uR = U x̂,
over monochromatic topography. We set the parameters according to ocean values, with ηo = 30 m, U =
0.1 m s−1, NR = 10−3 s−1, and Λb = 2π × 75 m (we used the larger wavelength of Λb = 2π × 200 m in
Figure 58.2), so that ωR/NR = 4/3. These waves are exponentially trapped near the topography with e-folding
scale |kz|−1 = 1/

√
(NR/U)2 − |kb|2 ≈ 110 m. Left panel: contours of the buoyancy field, b = bR + b′, with

bR = N2
R z and b′ = −ηoN2

R cos(|kb|x) e−|kz | z from equation (58.58c). Right panel: perturbation pressure field,
φ′ = −U2 |kb| ηo cos(|kb|x) e−|kz | z from equation (58.58c). Note how the pressure is anomously high over the
valleys (solid contours with φ′ > 0) and low over the crests (dashed contours with φ′ < 0). We chose the horizontal
extent to be the same as in Figure 58.2, thus emphasizing how the smaller scale topography in this figure can lead
to exponentially trapped waves, whereas the larger scale topography in Figure 58.2 allows for vertical propagation.
Since there is no phase shift with height for the vertically trapped waves, there is no topographic form stress,
which we see in equation (58.60).

58.2.9 Comments on the phenomenology
Gravity waves are ubiquitous in the ocean and atmosphere, with flow over topography one of the
key means for generating such waves. As seen in this section, the flow speed, U > 0, and mountain
wavenumber, |kb|, together define the angular frequency for the forcing, ωR = U |kb| > 0. This
forcing generates propagating gravity waves if ωR < NR, or evanescent (trapped) gravity waves if
ωR > NR. That is, fast flow and/or high wavenumber mountains produce gravity waves that are
trapped next to the mountain, whereas slower flow or lower wavenumber mountains generate
gravity waves that propagate vertically.

Consider the case of an atmosphere with NR = 10−2 s−1 and U = 10 m s−1. Propagating
gravity waves are generated for mountains with a horizontal wavelength (|kb| = 2π/Λ) larger
than Λ = 2π× 103 m. For the deep ocean, with NR = 10−3 m and U = 10−2 m s−1, propagating
gravity waves are generated for abyssal mountains with wavelengths larger than Λ = 2π× 101 m.
These numbers suggest that all topographic features larger than a minimal scale will generate
gravity waves. However, there is an upper bound on the scale imposed by the Coriolis parameter.
Namely, for large enough scales the flow feels the Coriolis acceleration, thus requiring us to recall
from Section 57.9.1 that propagating inertia-gravity waves have a dispersion relation (57.147)

ω2 = N2
R cos2 γ + f2 sin2 γ =⇒ f2 < ω2 < N2

R , (58.61)

where we here assume the Coriolis frequency is less than the buoyancy frequency. Hence,
the condition for an upper bound on the forcing frequency, set by the buoyancy frequency, is
coupled to a lower bound set by the Coriolis frequency. For the atmosphere at middle latitudes
with |f | = 10−4 s−1, we find 2π × 103 m < Λ < 2π × 105 m, whereas the ocean requires
2π × 101 m < Λ < 2π × 102 m.

58.3 Gravity waves from a Lorentzian mountain
In this section we examine stationary mountain waves resulting from constant zonal flow,
uR = U x̂, moving over arbitrary (x-dependent) topography. This analysis extends our study
of waves emanating from flow over monochromatic topography considered in Section 58.2. To
handle arbitrary topography, we make use of Fourier analysis from Chapter 8 by exploiting the
zonal symmetry of the reference flow and geometry. For pedagogy, we find it especially useful to
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carefully step through the formulation, with a particular realization given by a mountain in the
shape of a Lorentzian function.

58.3.1 Mathematical formulation using Fourier methods

Following our discussion in Section 8.3, we here introduce the Fourier transform and inverse
Fourier transform for the bottom topography, velocity, buoyancy, and pressure. Furthermore,
from our discussion of causality in Section 56.2.5, and with the reference flow uR = U x̂ with
U > 0, we build in causality by only considering kx ≤ 0, so that the forcing frequency is
non-negative

ωR = −uR · kb = −U kx ≥ 0 =⇒ kx ≤ 0. (58.62)

These considerations lead to the Fourier transform pairs

η̂b(kx) =

ˆ ∞

−∞
η′b(x) e

−i kx x dx η′(x) =
1

2π

ˆ 0

−∞
η̂b(kx) e

i kx x dkx (58.63a)

û(kx, z) =

ˆ ∞

−∞
u′(x, z) e−i kx x dx u′(x, z) =

1

2π

ˆ 0

−∞
û(kx, z) e

i kx x dkx (58.63b)

ŵ(kx, z) =

ˆ ∞

−∞
w′(x, z) e−i kx x dx w′(x, z) =

1

2π

ˆ 0

−∞
ŵ(kx, z) e

i kx x dkx (58.63c)

b̂(kx, z) =

ˆ ∞

−∞
b′(x, z) e−i kx x dx b′(x, z) =

1

2π

ˆ 0

−∞
b̂(kx, z) e

i kx x dkx (58.63d)

φ̂(kx, z) =

ˆ ∞

−∞
φ′(x, z) e−i kx x dx φ′(x, z) =

1

2π

ˆ 0

−∞
φ̂(kx, z) e

i kx x dkx, (58.63e)

where we only perform the x direction Fourier transform since the domain has a lower boundary
and so is not symmetric in z. The hatted Fourier transform fields have an extra length dimension
relative to their x-space partners.

Now write the stationary linear equations (58.47a)-(58.47d) using the reference flow, uR = U x̂,

U ∂xu
′ = −∂xφ′ (58.64a)

U ∂xw
′ = −∂zφ′ + b′ (58.64b)

U ∂xb
′ = −w′N2

R (58.64c)

∂xu
′ + ∂zw

′ = 0, (58.64d)

where we set v′ = 0 and ∂y = 0. Operating on these equations with
´∞
−∞ e−i kx x, and assuming

all boundary terms vanish, brings about the Fourier space equations

U û = −φ̂ (58.65a)

i kx U ŵ = −∂zφ̂+ b̂ (58.65b)

i kx U b̂ = −ŵ N2
R (58.65c)

i kx û+ ∂zŵ = 0, (58.65d)

along with the Fourier space version of the linearized bottom boundary condition (58.11)

ŵ(kz, z = 0) = i kx U η̂(kx). (58.66)

CHAPTER 58. INTERNAL GRAVITY WAVES: CASE STUDIES page 1651 of 2158



58.3. GRAVITY WAVES FROM A LORENTZIAN MOUNTAIN

58.3.2 Wave solution in (kx, z)-space

To satisfy the bottom kinematic boundary condition (58.66), we follow the approach from Section
58.2.5 used for the monochromatic topography by writing

ŵ = i kx U η̂b e
i kz z. (58.67)

The vertical wavenumber is determined through use of the stationary gravity wave dispersion
relation as in Section 58.2.7

kz = −
√
(NR/U)2 − k2x. (58.68)

The negative sign ensures that kz < 0 for long horizontal waves with kx < NR/U , thus ensuring
that gravity wave energy, which follows the group velocity, propagates vertically upward (away
from the mountains), thus satisfying causality. The Fourier space continuity equation (58.65d)
leads to the zonal velocity Fourier transform

û = −i kz U η̂b ei kz z, (58.69)

which, with the pressure equation (58.65a), leads to

φ̂ = i kz U
2 η̂b e

i kz z. (58.70)

Finally, we make use of the buoyancy equation (58.65c) to find

b̂ =
i ŵ N2

R

U kx
= −N2

R η̂b e
i kz z. (58.71)

58.3.3 Wave solution in (x, z)-space

Making use of the inverse Fourier transforms from equations (58.63a)-(58.63e) renders the
(x, z)-space expressions

η′(x) =
1

2π

ˆ 0

−∞
η̂b e

i kx x dkx (58.72a)

u′(x, z) =
−iU
2π

ˆ 0

−∞
kz η̂b e

i (kx x+kz z) dkx (58.72b)

w′(x, z) =
iU

2π

ˆ 0

−∞
kx η̂b e

i (kx x+kz z) dkx (58.72c)

b′(x, z) =
−N2

R

2π

ˆ 0

−∞
η̂b e

i (kx x+kz z) dkx (58.72d)

φ′(x, z) =
iU2

2π

ˆ 0

−∞
kz η̂b e

i (kx x+kz z) dkx. (58.72e)

Again, the vertical wavenumber is given by equation (58.68), in terms of the horizontal wavenum-
ber and the prescribed background stratification and reference flow speed. Evidently, stationary
gravity waves with relatively low horizontal wavenumber (k2x < (NR/U)

2) are vertically propa-
gating (k2z > 0), whereas higher horizontal wavenumber waves are exponentially trapped next to
the mountains (k2z < 0).
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58.3.4 Lorentzian topography

Consider the case of topography given by the Lorentzian form

η′b(x) =
ηo ℓ

2

x2 + ℓ2
=

ηo
1 + (x/ℓ)2

, (58.73)

where ℓ > 0 is a length scale and ηo > 0 is an amplitude. The Fourier transform of the Lorentzian
topography is given by

η̂b(kx) = π ηo ℓ e
−|kx| ℓ. (58.74)

When ℓ→ 0, the topography sharpens in x-space whereas the kx-space distribution broadens,
with the high |kx| waves exponentially trapped near the mountain (k2z < 0). Conversely, when
ℓ→∞, the topography flattens in x-space whereas the kx-space distribution sharpens around
kx = 0, with such long horizontal waves vertically propagating (k2z > 0).

Pressure in vertically propagating stationary waves

Getting the signs correct for the inverse Fourier transform can be a bit tricky, so let us work
through the case of pressure with some care. First consider the case of vertically propagating
stationary waves so that

k2z > 0 and kz = −
√
(NR/U)2 − k2x < 0, (58.75)

in which the pressure equation (58.72e) takes the form

φ′
prop(x, z) =

iU2

2π

ˆ 0

−∞
kz(kx) η̂b(kx) e

i (kx x+kz z) dkx (58.76a)

=
iU2

2π

ˆ ∞

0
kz(−kx) η̂b(−kx) ei (−kx x+kz z) dkx (58.76b)

=
iU2

2π

ˆ ∞

0
kz(kx) η̂b(kx) e

i (−kx x+kz z) dkx, (58.76c)

where the final step noted that kz is an even function of kx, as is η̂b(kx) for the Lorentzian
topography according to equation (58.74). Next make use of causality with kz = −|kz| < 0, so
that

φ′
prop(x, z) = −

iU2

2π

ˆ ∞

0
|kz| η̂b e−i (kx x+|kz | z) dkx. (58.77)

Assuming the Fourier transform of the topography is real (as for the Lorentzian in equation
(58.74)), and taking the real part of the pressure field, renders the vertically propagating pressure

φ′
prop(x, z) = −

U2

2π

ˆ ∞

0
|kz| η̂b sin(|kx|x+ |kz| z) dkx, (58.78)

which accords with equation (58.50) found for a monochromatic topography. Finally, we insert
the Fourier transform (58.74) to have

φ′
prop(x, z) = −

U2 ηo ℓ

2

ˆ NR/U

0
|kz| e−|kx| ℓ sin(|kx|x+ |kz| z) dkx, (58.79)

where we cutoff the upper limit in recognition that |kx < NR/U for vertically propagating waves.
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Pressure in vertically trapped waves

With an imaginary vertical wavenumber,

k2z < 0 and kz = i
√
k2x − (NR/U)2 = i |kz|, (58.80)

the pressure equation (58.72e) takes the form

φ′
trap(x, z) = −

U2

2π

ˆ 0

−∞
|kz(kx)| η̂b(kx) ei kx x−|kz | z dkx (58.81a)

= −U
2

2π

ˆ ∞

0
|kz(−kx)| η̂b(−kx) e−i kx x−|kz | z dkx (58.81b)

= −U
2

2π

ˆ ∞

0
|kz(kx)| η̂b(kx) cos(kx x) e−|kz | z dkx, (58.81c)

where the final step took the real part and made use of |kz(−kx)| = |kz(kx)|, as well as
η̂b(−kx) = η̂b(kx) and its reality. This expression for the trapped pressure accords with equation
(58.58c) for the case of monochromatic topography. Making use of the Fourier transform (58.74)
renders

φ′
trap(x, z) = −

U2 ηo ℓ

2

ˆ ∞

NR/U
|kz| cos(kx x) e−|kz | z dkx, (58.82)

where we set the lower limit to NR/U in recognition that the waves are trapped with |kx| > NR/U .

Summary expression for the pressure field

Bringing the two pieces together yields the pressure field

φ′(x, z) = −U
2 ηo ℓ

2

ˆ NR/U

0
|kz| e−|kx| ℓ sin(|kx|x+ |kz| z) dkx

− U2 ηo ℓ

2

ˆ ∞

NR/U
|kz| cos(kx x) e−|kz | z dkx. (58.83)

We provide two examples in Figure 58.4, one with a relatively sharp mountain and one that
is broader. Note that the sharp mountain exhibits oscillatory features on the lee side of the
mountain, which are referred to as lee waves.

58.4 Gravity waves in gently varying stratification
In Section 57.5 and 57.6 we assumed a constant background buoyancy frequency, NR, thus
enabling us to study plane internal gravity waves. However, for geophysical fluids it is common
for reference state stratification to be a function of the vertical, NR(z). Indeed, such vertical
dependence was considered in Sections 57.2, 57.3, and 57.4 when studying properties of the
linear Boussinesq equations before specializing to plane waves in Sections 57.5 and 57.6. In this
section we make use of the WKBJ approximation also used for acoustic waves in Section 51.9
(see Chapter 50 for a more general discussion), here using it to study internal gravity waves in the
presence of NR(z). Our fundamental assumption is that the background reference density, which
is static, displays vertical variations over a vertical scale that is much larger than the vertical
wavelength of the gravity waves. This scale separation is essential to use WKBJ methods.

We can anticipate the basic results of this analysis by noting that if a propagating internal
gravity wave, with frequency ω < NR, moves into a region where ω > NR, then it can no longer
propagate. Instead, it becomes an exponentially damped or evanescent wave. In this case, the
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Figure 58.4: Stationary gravity waves over a Lorentzian mountain as seen in the pressure field, and as generated
with buoyancy frequency, N = 0.005 s−1, reference flow speed U = 1 m s−1 (flow from left to right), and topographic
amplitude, ηo = 100 m. The left panel makes use of the Lorentzian mountain (58.73) with ℓ = U/N = 200 m,
whereas the right panel uses ℓ = 10U/N = 2000 m. Dotted contours depict negative pressure anomalies (such
as those adjacent to the mountain) and solid contours are positive anomalies. The pressure field resulting from
the relatively sharp mountain (left panel) exhibits oscillatory features on the lee side of the mountain, which are
referred to as lee waves. These solutions were generated using a trapezoidal numerical integration to compute the
integrals in equation (58.83).

propagating wave can reflect back to regions where propagation is available. Alternatively, if the
region of evanescence is narrow, then the wave can tunnel through such regions.

58.4.1 The two length scale assumption

We introduced the WKBJ formalism in Section 51.9 for acoustic waves moving in a fluid with a
spatially dependent equilibrium density. For internal gravity waves we consider the somewhat
simpler case with vertical variations in the background density stratification, rather than the
fully three dimensional variations considered for acoustic waves. We thus introduce the length
scale for vertical variations in the stably stratified background density field

L ≡ |∂zρR/ρR|−1 = (ρoN
2
R /(g ρR))

−1. (58.84)

We assume that the internal gravity waves have a phase that has a vertical wavevector component
that is a function of vertical position, kz = kz(z), which satisfies the following scaling

L≫ |kz|−1 =⇒ |kz| ≫ ρoN
2
R /(g ρR). (58.85)

This assumption means that we are concerned with a vertical length scale of the waves, as
measured by |kz(z)|−1, that is much smaller than the length scale, L. Furthermore, we assume
that the vertical variations of k−1

z occur over the length scale L, so that∣∣dk−1
z /dz

∣∣ = |kz L|−1 ≪ 1. (58.86)

In addition to having kz now a function of vertical, we allow the wave amplitude to slowly
vary with z. Writing A(z) for that amplitude we assume, as for kz(z), that

|dA/dz| = |A/L|, (58.87)

which implies that
|A−1 d2A/dz2| = L−2 ≪ k2z . (58.88)
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58.4.2 The wave equation with the WKBJ ansatz

The wave equation (57.40) for the vertical velocity holds for NR(z), so we focus our WKBJ
analysis on that equation, rewritten here in the form

(∂tt∇2 +N2
R ∇2

h )w
′ = ∂tt∂zzw

′ + (∂tt +N2
R )∇2

h w
′ = 0. (58.89)

Recall the plane wave ansatz (57.54) assumed for constant background density, which for the
vertical velocity is given by

w′(x, t) = w̃ ei (k·x−ω t) = (w̃ ei kz z) ei (kx x+ky y−ω t) for constant NR. (58.90)

For the case with NR(z) we generalize this ansatz to the form

w′(x, t) = A(z) ei (kx x+ky y+σ(z)−ω t) for vertically varying NR(z), (58.91)

with the real amplitude, A(z), and real phase, σ(z), each of which are to be determined. For the
ansatz (58.91), we took a horizontal wavevector, kh = kx x̂+ ky ŷ, and angular frequency, ω, just
as for the constant NR waves. This form is motivated by the geometric optics results in Section
50.3. Namely, when following a ray, a wavevector component is constant if the background
structure is constant in its corresponding direction, and the angular frequency is constant if the
background state is time independent. Given that the only spatial dependence of the background
state is in the vertical, it is only the vertical wavenumber that has a vertical dependence.

Making use of the WKBJ wave ansatz (58.91) in the wave equation (58.89) leads to the
following expressions

∂zzw
′/w′ = A−1 ∂zzA− (dσ/dz)2 + i [d2σ/dz2 + 2A−1 (dσ/dz) (dA/dz)] (58.92a)

∇2
h w

′/w′ = −|kh|2 (58.92b)

∂ttw
′/w′ = −ω2, (58.92c)

which brings the wave equation (58.89) to the form[
∂zz + k2z(z)

]
w′ = 0, (58.93)

where we defined

k2z(z) =
|kh|2 (N2

R (z)− ω2)

ω2
. (58.94)

This expression for kz(z) is identical to the case with a constant NR (see equation (57.67)), only
now it holds with NR(z) a function of vertical position. Equation (58.93) generalizes equation
(57.70) that holds when NR is a spatial constant.

58.4.3 WKBJ solution for the vertical velocity

Making use of equation (58.92a) for ∂zzw
′ in equation (58.94), and setting the real and imaginary

parts to zero, leads to

k2z − (dσ/dz)2 = A−1 d2A/dz2 (58.95a)

d2σ/dz2 + 2A−1 (dσ/dz) (dA/dz) = 0. (58.95b)
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Recall the amplitude scaling (58.88), which says that A−1 d2A/dz2 ≪ k2z . Equation (58.95a)
thus leads to the vertical phase function

dσ/dz = kz =⇒ σ(z) =

ˆ z

z0

kz(z
′) dz′. (58.96)

The vertical position, z0, is generally ignored since it results only in an overall shift in the phase.
Equation (58.95b) can be written in the form of a total derivative

d

dz

[
A

(
dσ

dz

)1/2
]
= 0, (58.97)

which means that the wave amplitude is related to the vertical wavenumber via

A ∝ (dσ/dz)−1/2 = |kz|−1/2. (58.98)

Bringing the pieces together leads to the WKBJ solution for the vertical velocity component

w′(x, t) = C |kz|−1/2 ei (kx x+ky y+σ(z)−ω t). (58.99)

Assuming the constant C is real leads to

w′(x, t) = C |kz|−1/2 cos(kx x+ ky y + σ(z)− ω t) (58.100a)

kz(z) = (|kh|/ω)
√
N2

R (z)− ω2 (58.100b)

σ(z) =

ˆ z

kz(z
′) dz′ (58.100c)

ω = NR(z) cos γ(z) (58.100d)

C [=] L1/2/T. (58.100e)

In equation (58.100b) for the vertical component to the wavevector, we exposed its z dependence
along with that for the buoyancy frequency, NR(z). However, recall that the angular frequency,
ω, and the horizontal wavevector, kh, are both spatially independent. Consequently, equation
(58.100d) means that the angle, γ(z), changes as the buoyancy frequency changes in order to
keep NR(z) cos γ(z) constant, with this property an essential feature of the wave guides discussed
in Section 58.4.5. Furthermore, note that the vertical wavenumber, kz, becomes imaginary
in regions where ω2 > N2

R (z). So if a propagating wave enters such a region of relatively low
vertical stratification, then it becomes evanescent, which means that the wave exponentially
decays when moving into the region. This behavior is exemplified by the wave guide discussed
in Section 58.4.5.

58.4.4 Structure of an internal gravity wave

The WKBJ expressions (58.100a)-(58.100e) are sufficient to construct the full structure of an
internal gravity wave moving through a region with non-constant background stratification. To
do so requires making use of the linear relations from Section 57.4 in a manner similar to what
we did in Section 57.5 for plane waves with NR constant. We start with equation (57.17c) that
relates buoyancy and vertical velocity via

∂tb
′ = −w′N2

R . (58.101)
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Time integrating the vertical velocity in equation (58.100a) leads to the buoyancy field

b′ = iC N2
R /(ω |kz|1/2) ei (kh·x+σ(z)−ω t), (58.102)

where
kh · x = kx x+ ky y. (58.103)

For the horizontal velocity we use the non-divergence condition, ∇ · v′ = 0 (Section 57.5.2), as
well as the vanishing vertical component to the relative vorticity, ∂xv

′ = ∂yu
′ (Section 57.5.3),

to find

u′ = − C kh

|2 kz|1/2 |kh|2
[
(k−1
z ∂zkz) sin(kh · x+ σ(z)− ω t) + 2 kz cos(kh · x+ σ(z)− ω t)

]
. (58.104)

58.4.5 Wave packets within a wave guide
We here highlight a particularly special property of internal gravity waves moving in a region
with vertically varying stratification. This property results from having the angular frequency
remain constant within the dispersion relation (58.100d). Again, the constancy of the angular
frequency follows from our discussion of geometric optics in Section 50.3, with the angular
frequency of a wave a space-time constant if the base state is static. For the angular frequency
to remain constant within a varying NR(z) requires the phase angle, γ(z), to compensate. For
example, if a wave packet moves from a region of large vertical stratification to a region with
small stratification, then γ(z) must get smaller in magnitude so to keep ω constant. At some
point if NR(z) continues to get smaller then γ(z) will vanish, γ = 0, which means that the waves
only have a vertical wavenumber. So what happens beyond that point?

To answer this question recall equation (57.71) for the group velocity, which can be written
in the form

cg =
NR kz
|k|3 |kh|

(kz kh − |kh|2 ẑ) =
NR kz
|k|2 (k̂h sin γ − ẑ cos γ), (58.105)

where k̂h = kh/|kh| is the unit vector pointing in the direction of the horizontal wavector. As the
wave becomes horizontal to compensate for the reduced NR(z), the group velocity vanishes, which
we already noted by equation (57.75) for the group velocity magnitude. Yet the second form of
equation (58.105) reveals that the horizontal component to the group velocity vanishes before
the vertical component. Hence, as the wave packet approaches the region of weak stratification
its ray forms a vertical cusp as the packet stalls. Since the packet cannot propagate into a region
with ω2 > N2

R , which is a region of evanescence, then the wave reflects back into the region
where ω2 < N2

R . If the propagation region with ω2 < N2
R sits between two regions with weak

stratification with ω2 > N2
R , then the bounded relatively high stratification region forms a wave

guide for the internal gravity waves. We depict an idealized example of a wave guide in Figure
58.5.

We can compute an analytic expression for the wave packet ray (i.e., its trajectory) as it
rises to a turning level, at z = zt, defined as the level where NR(z = zt) = ω. We do so by taking
a Taylor series for the squared buoyancy frequency for points close to the turning level

N2
R (z) ≈ N2

R (zt)+ (dNR/dz) (z− zt) = ω2− |dNR/dz| (z− zt) = ω2+ |dNR/dz| (zt− z), (58.106)

where we note that N2
R is a decreasing function as z increases towards zt, which means that

dN2
R /dz = −|dN2

R /dz|. Assuming the packet is moving in the x-z plane, we obtain the ray
equation from the group velocity (58.105) and the dispersion relation (58.100b)

dz

dx
= −|kh|

kz
= − ω√

N2
R − ω2

= − ω√
|dN2

R /dz| (zt − z)
. (58.107)
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We integrate along the ray as the packet moves from a point (x, z) to the turning level at (xt, zt)
(see Figure 58.5), which yields the expression for the ray trajectory

(zt − z)3/2 =
(3ω/2) (xt − x)√
|dN2

R /dz|
=⇒ zt − z =

[
(3ω/2) (xt − x)√
|dN2

R /dz|

]2/3
. (58.108)
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Figure 58.5: A waveguide for internal gravity waves, here depicted by two low stratification regions (N2
R ≈ 0)

bounding a higher stratification region (N2
R > 0). The density profile on the right provides an idealized realization

of such a guide. The levels where NR = ω are referred to as turning levels. We depict sample rays approaching and
leaving the turning levels, with the rays computed from the group velocity and dispersion relation. For example,
a ray approaching the upper turning is computed from (x, t) to (xt, zt), with the cusp-like trajectory given by
equation (58.108).

58.4.6 Comments and further study
See Lecture 9 of Pedlosky (2003) or Section 7.5 of Vallis (2017) for similar presentations. Note
that there remains ongoing research to understand details of what happens to internal gravity
waves when they reach a turning level. For an ocean application, concerning how gravity waves
interact with the upper ocean boundary layer, see Shakespeare et al. (2021).

58.5 Exercises
exercise 58.1: Polarization relations for stationary inertia-gravity waves on a
mean flow
Following the discussion in Section 58.2.6, determine the polarization relations for stationary
inertia-gravity waves in the presence of a constant reference flow, uR = U x̂ and with ωR =
−uR · kb > 0. Assume f2o < ω2

R < N2
R so that the waves extend throughout the vertical. Write

expressions for u′, v′, w′, b′, and φ′ in terms of the vertical velocity amplitude, w̃, as given by
equation (58.39). Confirm that setting fo = 0 reduces the intertia-gravity results to the gravity
wave case derived in Section 58.2.7.

exercise 58.2: Mountain gravity wave Froude number based on frequencies
Consider the non-dimensional Froude number for forced mountain gravity waves (fo = 0)

Fr =
|uR · kb|
NR

=
ωR

NR

, (58.109)
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which is the ratio of the forcing frequency (from flow over the monochromatic mountains) to the
buoyancy frequency.

(a) Write the squared vertical wavenumber (58.42) for mountain gravity waves in terms of Fr.

(b) Write Fr as the ratio of two time scales. Provide an interpretation for why mountain
waves are vertically trapped when one of those time scales is greater than the other, and
vertically propagating for the alternative.

Hint: see Section 5.4.2 of Sutherland (2010) for a discussion of this non-dimensional number.
The second part of this exercise is mostly meant to be answered in words.

exercise 58.3: Mechanical energy of a trapped mountain gravity wave
We studied the energetics of propagating mountain gravity waves in Section 58.2.7. Here we
consider the energetics of trapped mountain waves.

(a) Compute the mechanical energy for the trapped mountain gravity waves from Section
58.2.8.

(b) Compute the phase averaged mechanical energy.

(c) Evaluate the phase averaged mechanical energy at the ground (approximated by z = 0 in
the linear theory), and compare this energy to the phase averaged mechanical energy in a
propagating mountain wave.
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Part X of this book is concerned with small amplitude wave fluctuations that move on the
background of a prescribed exact solution to the fluid equations. For example, in studying
acoustic waves in Chapter 51, the background state is static and uniform, whereas when studying
internal gravity waves in Chapter 57, the background is static yet stably stratified according to
gravity. In each of these cases, the background state is stable to small perturbations so that the
wave fluctuations do not lead to waves of growing amplitude. In Part XI of the book we examine
conditions required to ensure stability of background flow states, or conversely, what properties
of the background state are necessary (and sometimes sufficient) to support instabilities.

What enables an instability?

As noted in Section 2 of the authoritative book by Drazin and Reid (2004), flow instabilities
occur when a disturbance leads to the disequilibrium of forces within the fluid, and with this
disequilibrium enabling the disturbance to grow. We explore numerous mechanisms for the
growth of disturbances that manifest positive feedbacks energized by the background state.
Examples include the kinetic energy that supports shear instability, the potential energy that
supports baroclinic instability, and the angular momentum that supports centrifugal instability.
A central goal of instability theory is to develop a physical understanding and mathematical
recipe to determine what constitutes an unstable flow state. Furthermore, a flow state might be
unstable, but not all disturbances “tickle” the instability. This situation motivates the study of
conditions required of the disturbance for it to manifest the instability.

We focus on mechanisms that lead to a variety of geophysical flow instabilities, and in so doing
develop associated mathematical analysis methods. Instabilities are the norm for geophysical
flows rather than the exception, and they play a fundamental role in establishing properties of
planetary circulations in both the atmosphere and ocean. Furthermore, most of the instabilities
occuring in geophysical fluids are primarily understood in the absence of viscous dissipation,
thus prompting us to focus exclusively on the inviscid equations.

Distinguishing two classes of flow instabilities

We distinguish two general classes of fluid flow instabilities: local (or parcel) instabilities and
global (or wave) instabilities. Local/parcel instabilities afford a local necessary and sufficient
condition to determine whether the background flow state is unstable. For example, in the study
of gravitational instability (in the absence of surface tension), we can measure the local squared
buoyancy frequency: if N2 < 0 then the fluid is gravitationally unstable at the location where
N2 < 0. The study of symmetric instabilities in Chapter 59 explores a broader class of local
instabilities, in which angular momentum and potential vorticity are central to determining
stability conditions. Stability conditions are generally derived by considering an imagined
displacement of a fluid parcel within the environment of the prescribed background state. If
the forces acting on the parcel lead to furthering the displacement, then that signals a positive
feedback indicating that the background state is unstable. The result of such local instabilities is
a catastrophic breakdown of the background state without concern for any special space and/or
time scale for the breakdown.

Global/wave instabilities arise from the interference of waves that lead to mutually construc-
tive positive feedbacks, thus constituting the wave resonance interpretation of such instabilities.
The stability analysis is generally referred to as the method of normal modes. We do not seek the
most general solution to the linearized equations. Instead we ask if a single wave can go unstable,
and if so then what properties of such waves enable the instability to manifest? Determining
properties of the unstable waves (e.g., the most unstable wavelength, wave velocity, and the
growth rate) requires solving an eigenvalue problem where boundary conditions often play a
fundamental role. Shear instabilities of Chapter 61 and baroclinic instabilities of Chapter 62
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are canonical examples of this sort of instability. Operationally, the means to reveal a global
instability is similar to that used to study linear waves in Part X of this book. Namely, we
determine a dispersion relation for small amplitude fluctuations, only now allowing the possibility
of the wave frequency or wavevector to be complex. Temporally unstable waves occur with a
complex wave frequency and real wavevector, whereas spatial instabilities arise with real wave
frequency and complex wavevector. Finally, observe that local instabilities can be considered
wave instabilities in which all waves are unstable.

Flow instabilities lead to a stable end state

Flow instabilities are energized by the background state and, through the process of creating
the instability and allowing it to grow to a nonlinear stage, act to eliminate the source for
the instability. For example, the catastrophic vertical motion of a gravitationally unstable
fluid column serves to remove the potential energy source of the instability, with the resulting
equilibrium state gravitationally stable. In geophysical fluids, there are external forces (ultimately
arising from solar heating, geothermal heating, or astronomical tides) that return the background
state to an unstable condition, thus allowing for the fluid to undergo a multitude of successive
instabilities. Through such successive instabilities, or further secondary instabilities that feed off
the primary instability, the fluid generally evolves into an extremely complex state of linear and
nonlinear waves, instabilities, and turbulence. The resulting fluid flow is comprised of a wide
suite of space and time scales whose mathematical description requires methods from statistics
and stochastics. We do not pursue the study of wave turbulence or fully developed turbulence
in this book, but do appreciate that instabilities are the central means for geophysical fluids to
transition into a turbulent state. Hence, understanding the mechanisms for flow instabilities
offers insights into the nature of the associated turbulence.

We do not examine the effects of instabilities on the background state

Throughout this study, we do not examine evolution of the prescribed background state. Ignoring
changes to the background state is a sensible assumption when studying the motion of stable
linear waves, whose amplitudes remain bounded and so offer only a tiny perturbation to the
background state. However, for unstable flows, the assumption of a fixed background proves
untenable when fluctuations become large enough to engage flow nonlinearities and thus to
nontrivially impact the background state. It is for this reason that our analysis focuses exclusively
on the early stages of an instability, whereby small amplitude assumptions allow for a focus on
linear mechanisms leading to growth of a disturbance, rather than enable the rich complexities
of interactions (some stable and some unstable) between the disturbance and an evolving
background state.

Seek out visualizations of flow instabilities to help develop understanding

This video from Prof. Mollo-Christensen provides an insightful introduction to the topic of fluid
mechanical instabilities. This and many other videos from laboratory studies and numerical
simulations offer useful, if not essential, visual impressions to complement the somewhat intricate
mathematical analysis in this part of the book.
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Chapter 59

SYMMETRIC FLOWS

In this chapter we study the stability of fluid flows exhibiting either axial symmetry (e.g., rotating
fluid column) or spatial symmetry in one horizontal direction (e.g., f -plane geostrophic fronts).
This analysis supports the study of frontal features in geophysical fluids, where a front is a
region of strong buoyancy gradients that leads to a jet-like geostrophic flow. Because of the
assumed symmetry in the base flow state and the perturbation, the instabilities in this chapter
are generically referred to as symmetric instabilities. However, the terminology is not universal,
with flavors of symmetric instability often referred to as centrifugal, inertial, and symmetric.

We make use of three methods for stability analysis in this chapter. One consists of an
energetic approach due to Rayleigh (energetic stability analysis); one is Lagrangian and considers
force balances acting on a test fluid parcel (parcel stability analysis); and one is Eulerian and
considers wave perturbations (modal stability analysis). For the instabilities considered in this
chapter, each method leads to the same stability condition, which is here measured by local
properties of the flow so that we refer to the method as local stability analysis. As part of the
analysis we make use of material invariants, such as angular momentum, potential momentum,
buoyancy, and potential vorticity. We restrict attention to the f -plane since that allows us to
make use of potential momentum as a material invariant. It is notable that the flows considered in
this chapter generally exhibit secondary overturning circulations, with such circulations studied
here using the rudiments of semi-geostrophy.

Energetic and parcel methods probe the base state flow by perturbing test fluid parcels. A
test parcel is assumed to have no impact on the flow state itself, meaning that the pressure field
remains unchanged even as the parcel is moved. In effect, the test fluid parcel stability analysis
makes the tacit assumption that pressure responses to a perturbation can be neglected for the
purpose of detecting an unstable flow state. Ignoring the impacts on pressure is consistent with
the notion of a test fluid element introduced in Section 17.2.5.1 However, we questioned that
approach when studying buoyancy in Section 30.11, where we computed the pressure response to
the perturbation and found that the response has an important impact on the effective buoyancy
felt by a finite fluid region. Acknowledging this limitation motivates us to complement the
parcel approach with an Eulerian linear stability analysis using plane waves. This approach is
dynamically consistent, and yet it works within the limitations of the linearized equations.

reader’s guide for this chapter
We make use of the shallow water system from Chapters 35 and 36, in particular the

study of angular momentum in Section 36.8 (see also Section 27.5). We also assume an
understanding of geostrophic flow as studied in Chapter 31, as well as the continuously
stratified Boussinesq ocean from Chapter 29.

Gravitational instability is the canonical local instability and it is signaled by N2 < 0.

1Since the concern here is with perfect fluids, the test fluid element from Section 17.2.5 is the same as a test
fluid parcel.
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However, we do not consider gravitational instability in this chapter, with this instability
introduced in Chapter 30 when studying buoyancy, and Chapter 60 when studying the
Rayleigh-Taylor instability.
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59.1. LOOSE THREADS

59.1 Loose threads
• Work through symmetric instability in two shallow water layers. Does it work? Do we
need to have mixing of the layers?

• Write the full oscillator equation for (59.75), including ∆x and ∆z motion.

• Energy analysis for each instability as per Chapter 8 of Smyth and Carpenter (2019), who
use a modal approach and linearize the equations. Include energetics of gravitational
instability.

• Maximum growth rate for symmetric instability in chapter 8 of Smyth and Carpenter
(2019).

• Include more in Section 59.9.7 concerning stable and unstable symmetric fronts.

• More closely connect the ageostrophic overturning from Section 59.9 to symmetric instability.
Make the case that the overturning is either stable or unstable, with the unstable form
leading to symmetric instability.

• More about the growth of the squared buoyancy gradient in equation (59.170). Can that
equation be written in a more revealing manner?

• Pursue the coordinate transformation from Hoskins (1975), in which case the discussion of
semi-geostrophy could form a separate chapter.

• What is the potential vorticity for the linearized perturbations in Section 59.8?

59.2 Instabilities in this chapter
The instabilities studied in this chapter are termed local since they are detected through a local
condition that yields a necessary and sufficient condition for instability. The physical features of
the flow instabilities considered here are quite similar, thus making it convenient to study them
together. For centrifugal and horizontal inertial instabilities, we develop the stability conditions
using both energetic and parcel analysis methods. For symmetric instability we use the parcel
and modal methods.

59.2.1 Summary of the instabilities studied in this chapter
Before diving into the details, we here offer a summary of the instabilities studied in this chapter.

Centrifugal instability of cyclostrophic balanced flow

Consider an equilibrium flow state under inviscid cyclostrophic balance. As studied in Section
32.5, cyclostrophic balance arises when pressure and centrifugal accelerations are balanced, with
centrifugal accelerations arising from curvature in the fluid particle trajectory. The angular
momentum is materially invariant when the equilibrium state is rotationally symmetric, as in an
ideal circular vortex or a rotating circular tank (Section 36.8). Flow stability can be probed by
horizontally displacing a rotationally symmetric circular ring of fluid parcels, with each parcel
retaining its original angular momentum. If the parcels are displaced to a position where pressure
and centrifugal accelerations further support the displacement, then the base state is unstable
to centrifugal instability.
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Horizontal inertial instability of f -plane geostrophic flow

Consider an equilibrium flow state in a barotropic fluid under inviscid geostrophic balance on an
f -plane, whereby pressure and Coriolis accelerations are balanced (Chapter 31). The potential
momentum is materially invariant when the equilibrium state is symmetric in a horizontal
direction, as in a zonally or meridionally symmetric f -plane front. Flow stability is probed by
horizontally displacing a symmetric line of fluid parcels, with each parcel retaining its original
potential momentum. If the parcels are displaced to a position where pressure and Coriolis
accelerations further support the displacement, then the base state is unstable to horizontal
inertial instability.

Isentropic inertial instability (symmetric instability) for f -plane flow

Consider an equilibrium flow state under inviscid f -plane geostrophic balance in a baroclinic fluid.
Potential momentum in the direction of the front as well as buoyancy are materially invariant
when the base state is symmetric in a horizontal direction. Flow stability of the base flow is
probed by isentropically displacing a symmetric line of fluid parcels, with each parcel retaining
its original potential momentum and buoyancy. If the parcels are displaced to a position where
pressure and Coriolis accelerations further support the displacement, then the base state is
unstable to isentropic inertial instability, which we call symmetric instability.

59.2.2 Nature of the base state and the perturbations
For the study of centrifugal instability, we make use of the shallow water model from Chapters
35 and 36, whereas we consider the continuously stratified Boussinesq ocean (Chapter 29) for
the horizontal and isentropic inertial instabilities. When the fluid is continuosly stratified
and inviscid, all motion occurs along isentropes. However, when probing for centrifugal or
horizontal inertial instabilities using parcel arguments, we examine stability to perturbations
along geopotential surfaces. Such horizontal displacements generally cross isentropic surfaces
in a baroclinic fluid. The isentropic inertial instability analysis in Section 59.6 maintains the
adiabatic nature of displacements when probing for instabilities. Even so, these perturbations do
not maintain a materially invariant potential vorticity. So what is it about these perturbations
that makes them relevant to stability analysis?

The stability thought experiment using test fluid parcels assumes the parcels maintain their
materially invariant property (e.g., buoyancy, angular momentum, potential momentum) as they
probe stability of the surrounding fluid flow. That is the nature of the test parcels, as they
do not directly interact with nor alter the surrounding fluid environment. Local flow stability
is examined by having test parcels cross surfaces of constant materially invariant properties.
For example, gravitational stability is probed by test parcels moving across buoyancy surfaces
(Section 30.6). Likewise, entering the wedge of instability for symmetrically unstable flow requires
a test parcel to leave its constant buoyancy and constant potential momentum surfaces (Section
59.6).

59.2.3 Comments
Section 7.1 of Holton and Hakim (2013) distinguishes between parcel and wave instabilities.
Analogously, Cushman-Roisin and Beckers (2011) use the terms local and global. Canonical
examples of global instabilities are Kelvin-Helmholtz and baroclinic. We are not concerned with
those instabilities in this chapter. Rather, the three instabilities considered here are examples of
parcel or local instabilities.

Because of the rather close similarities between centrifugal and inertial instability, the
oceanographic literature often uses the term centrifugal instability when referring to the inertial
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instability considered here (e.g., see Thomas et al. (2013) and McWilliams (2016)). However,
we do not follow that usage since the inertial instability in this chapter is not associated with
centrifugal accelerations. Rather, inertial instability is associated with Coriolis accelerations.
We choose to follow the terminology of the atmospheric literature as detailed in the texts by
Holton and Hakim (2013) and Markowski and Richardson (2010), which also follows the fluid
mechanics terminology used by Drazin and Reid (1981). So in brief, we use the term centrifugal
instability for an axisymmetric base state in cyclostrophic balance, and inertial instability for a
two-dimensional base state in geostrophic balance.

59.3 Centrifugal instability of cyclostrophic flow
Consider flow of a single shallow water fluid layer in a rotating cylindrical tank with rotation
about its vertical axis.2 Throughout this analysis we assume all flow features maintain rotational
symmetry (Figure 59.1). Hence, all dynamical fields are a spatial function only of the radial
distance from the rotational axis (axisymmetric). We are interested in questions concerning flow
stability as a function of the radial distribution of the angular momentum per mass, lz(r). In
particular, we examine stability of cyclostrophically balanced flow, defined by flow whose radial
acceleration vanishes so that the radial pressure gradient balances the centrifugal acceleration
(Section 32.5). Furthermore, we examine stability under perturbations that also maintain axial
symmetry. We find that such cyclostrophic flow is stable to rotationally symmetric perturbations
so long as the squared angular momentum increases radially outward. This system provides a
pedagogical introduction to the stability of rotating vortices in the ocean and atmosphere, and
it establishes analysis methods we later use for inertial and symmetric instabilities arising in
two-dimensional frontal regions. The stability condition for angular momentum is reflected in
observed stable vortices in both the atmosphere and ocean.
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Figure 59.1: Rotating tank of shallow water fluid used to discuss centrifugal instability. We make use of cylindrical-
polar coordinates from Section 4.22 to describe the flow. All flow features are assumed to be rotationally symmetric,
including both the cyclostrophic balanced state and perturbations relative to the balanced state.

The centrifugal instability described here does not rely on baroclinic structure. Rather, it
arises from the imbalances between centrifugal and pressure forces along a geopotential surface.3

By using the shallow water fluid to study this instability, we directly connect to Section 36.8,

2The same ideas can be formulated for rotating Couette flow, in which fluid is placed between two rotating
cylinders. We prefer the shallow water tank since it is a system considered elsewhere in this book as a laboratory
model for rotating fluid mechanics.

3One may conceive of centrifugal instability in a baroclinic flow where parcel displacements maintain their
angular momentum and buoyancy. That analysis would lead to isentropic centrifugal instability, which is directly
analogous to the isentropic inertial instability discussed in Section 59.6. See Buckingham et al. (2021) for a
discussion of this system.
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where we studied angular momentum in a rotating tank of shallow water fluid.

59.3.1 Equations of motion

We studied the angular momentum of this rotating shallow water system in Section 36.8, where
we made use of a rotating reference frame and polar coordinates (r, ϑ) (Section 4.22) measured
in the rotating frame. Here, r is the radial position from the rotational axis and ϑ is the
azimuthal angle measured counter-clockwise from the rotating x-axis. We furthermore derived
the acceleration in cylindrical-polar coordinates in Exercise 13.3. Making use of those results
allows us to write down the horizontal components to the inviscid velocity equation as well as
the thickness equation

Dvr/Dt = −g ∂rη + r−3 (lz)2 (59.1a)

Dlz/Dt = −g ∂ϑη (59.1b)

r ∂tη = −∂r(h r vr)− ∂ϑ(h vϑ). (59.1c)

In these equations, h is the layer thickness and η is the free surface height for the shallow water
layer (see Figure 35.1). The radial and azimuthal velocity components are given by

vr = Dr/Dt and vϑ = rDϑ/Dt, (59.2)

and the angular momentum per mass computed about the rotation axis (the z-axis) is

lz = ẑ · [r × (u+Urigid)] = r (vϑ + rΩ). (59.3)

Material evolution of the radial velocity (equation (59.1a)) is affected by the radial pressure
gradient plus centrifugal acceleration, whereas the material evolution of angular momentum
(equation (59.1b)) is affected by angular gradients in the pressure field as realized by angular
gradients in the free surface.

We consider equilibrium states where the radial acceleration vanishes. Such states are said
to be in cyclostrophic balance, whereby the radial pressure gradient balances the centrifugal
acceleration

Dvr/Dt = 0 =⇒ g ∂rη = (vϑ + rΩ)2/r = r−3 (lz)2 cyclostrophic balance. (59.4)

Is cyclostrophically balanced flow stable? To answer this question we examine the more restricted
problem of stability of rotational symmetric flow, and with perturbations also assumed to be
rotationally symmetric. Rotational symmetry also means that all flow fields are a function only
of the radial direction. As such, angular momentum is materially constant

∂ϑη = 0 =⇒ Dlz/Dt = 0. (59.5)

This constraint on the flow plays a fundamental role in the stability analysis.

59.3.2 Elements of angular momentum

Consider a spinning top in a gravitational field, in which conservation of angular momentum
(holding in the absence of friction) keeps the top upright. Yet in the presence of friction, the
angular momentum is dissipated so that the top eventually falls. There is an analog with a
rotating fluid. Namely, we find that a state of zero angular momentum leads to centrifugal
instability. To develop this result we study basic properties for angular momentum in the
rotating tank.
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Rigid-body motion

A fluid in rigid-body motion has vϑ = 0 and angular momentum per mass

lzrigid-body = r2Ω. (59.6)

Evidently, the magnitude of the angular momentum increases as the square of the radial distance.
In the following we find it more convenient to use the square of the angular momentum (as it
appears in the radial velocity equation (59.1a)), which also increases radially for the rigid-body
motion

d[lz(r)]2

dr
= 4 r3Ω2 > 0. (59.7)

We will find that flow is centrifugally unstable if the square of its angular momentum is a
decreasing function of its radial distance. Such unstable configurations adjust through centrifugal
instability towards a configuration with squared angular momentum that increases radially. The
instability is termed “centrifugal” since it is the centrifugal acceleration that “throws outward”
the fluid if its squared angular momentum decreases radially, thus bringing the fluid back into
a stable state. More precisely, a flow where the angular momentum decreases outward has
pressure gradients that cannot balance the centrifugal acceleration from the outward movement
of angular momentum conserving fluid parcels.

Zero angular momentum flow

Consider a non-rotating tank with zero flow, so that the angular momentum is zero. In a perfect
fluid the angular momentum of each fluid parcel remains zero, even if we start the tank rotating.
That is, for a perfect fluid with zero angular momentum, the tank simply rotates but the fluid
remains at rest in the inertial reference frame. To generate non-zero angular momentum for the
fluid requires friction between the rotating tank and fluid. After sufficient time, friction transfers
angular momentum from the tank walls throughout the fluid, thus leading to a steady state flow
in rigid-body motion. Upon reaching the steady rigid-body flow, there are no strains in the fluid
and thus no viscous stresses to impart friction (Section 25.8).

In a flow with zero angular momentum, the relative angular velocity is given by

lz = 0 =⇒ vϑ = −rΩ, (59.8)

so that the flow is anti-cyclonic (i.e., directed counter to the tank’s rotation). Furthermore, the
zero angular momentum flow has the relative vorticity

lz = 0 =⇒ ζ =
1

r

d(r vϑ)

dr
= −2Ω. (59.9)

That is, the relative vorticity is anti-cyclonic with a Rossby number

lz = 0 =⇒ Ro = ζ/(2Ω) = −1. (59.10)

As we show in the following, the lz = 0 flow is the onset point for centrifugal instability. Again,
we conceive of this flow as analogous to a rotating top that falls over (goes unstable) when its
angular momentum vanishes.

Establishing zero angular momentum flow

It is relatively simple to establish rigid-body motion of a fluid in a tank; all it takes is sufficient
time for transients to relax and friction to fully transfer momentum from the tank walls
throughout the fluid. For the complement task, consider a rigid-body flow that is subjected to
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an irreversible force that brings the fluid to zero angular momentum. The question we ask in
our stability analysis is not concerned with details of how such forces arise. Instead, we are
interested in what happens to the flow when it reaches zero angular momentum.

59.3.3 Energetic stability analysis
As first introduced by Rayleigh, we consider a thought experiment in which two adjacent equal
mass circular fluid rings are swapped, one originating from radial position r = r1 and the other
at r = r2 = r1 +∆r (see Figure 59.2). Furthermore, assume that the radial velocity vanishes
so that the kinetic energy of the rings is due only to their rotational motion. If swapping the
rings decreases the kinetic energy in the base state, then the released kinetic energy can be
used to fuel an instability.4 In this case we say that the flow is centrifugally unstable, with
this name used since it is the centrifugal acceleration from the circular parcel trajectory that
promotes the instability. In general, any curved flow will be exposed to centrifugal instability if
swapping parcels reduces the kinetic energy of the base state while maintaining constant angular
momentum.
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Figure 59.2: Illustrating Rayleigh’s energetic method for centrifugal instability. The initial configuration
defines two rings of fluid at radii r1 and r2 = r1 +∆r, as shown in the left panel, with the two rings having a
combined kinetic energy per mass 2Einit = [lz(r1)/r1]

2 + [lz(r2)/r2]
2. Swapping the two rings while maintaining

a constant angular momentum (and assuming nothing else changes) leads to the swapped kinetic energy per
mass, 2Eswap = [lz(r1)/r2]

2 + [lz(r2)/r1]
2. If Eswap − Einit < 0 then energy is released upon the swap and the

rotationally symmetric flow is centrifugally unstable. Energy is released upon swapping fluid rings if the angular
momentum condition (59.15) is satisfied: d[lz(r)]2/dr < 0.

With no radial flow, kinetic energy only arises from angular motion so that a ring of mass
δm = ρ δV and radius r1 has kinetic energy

E(r1) = (δm/2) [vϑ(r1) + r1Ω]
2 = (δm/2) [lz(r1)/r1]

2. (59.11)

The initial kinetic energy for the two rings is thus given by the sum

Einit = (δm/2)
(
[lz(r1)/r1]

2 + [lz(r2)/r2]
2
)
. (59.12)

The equilibrium state and the perturbation each maintain rotational symmetry. Hence, when
swapping their radial positions, the rings each maintain their respective angular momentum.
But by changing radial positions their kinetic energy changes, thus leading to the kinetic energy
of the swapped state

Eswap = (δm/2)
(
[lz(r1)/r2]

2 + [lz(r2)/r1]
2
)
. (59.13)

The difference in energy is given by

Eswap − Einit = (δm/2)
(
[lz(r2)]

2 − [lz(r1)]
2
)(
r−2
1 − r−2

2

)
. (59.14)

4Gravitational potential energy plays no role here, as we are swapping fluid rings at the same vertical position.
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Since r2 = r1 +∆r > r1, we have a release of kinetic energy (Eswap − Einit < 0) if the squared
angular momentum decreases upon moving outward

d[lz(r)]2

dr
= 2 lz(r)

dlz(r)

dr
< 0 =⇒ necessary + sufficient for centrifugally unstable flow.

(59.15)
Recall from equation (59.7) that the angular momentum of rigid-body flow is an increasing
function of radius. Hence, the instability condition (59.15) signals a distinctively non-rigid-body
angular momentum configuration. We can consider a thought experiment in which a stable flow
(one where d[lz(r)]2/dr > 0) is somehow forced towards a centrifugually unstable state with
d[lz(r)]2/dr < 0. A vanishing angular momentum at a particular radius, lz = 0, is a sufficient
condition to ensure d[lz(r)]2/dr = 0 at that radius. Evidently, if the angular momentum of the
cyclostrophic flow is reduced toward zero, the fluid will go centrifugally unstable upon reaching
just below zero angular momentum.

59.3.4 Instability condition in terms of absolute vorticity
The angular momentum condition (59.15) is the traditional way to write the necessary and
sufficient condition for centrifugal instability. However, to anticipate the role of vorticity found
in the case of inertial and symmetric instability, we rewrite the stability condition (59.15) in
terms of absolute vorticity. For this purpose, introduce the vertical component of the relative
vorticity,

ζ =
1

r

d(r vϑ)

dr
, (59.16)

and thus write the angular velocity as the radial integral of the radius weighted vorticity

vϑ =
1

r

ˆ r

0
r′ ζ(r′) dr′. (59.17)

This result allows us to write the angular momentum (59.3) in terms of the absolute vorticity

lz = Ω r2 +

ˆ r

0
r′ ζ(r′) dr′ =

ˆ r

0
r′ (ζ(r′) + 2Ω) dr′ =

ˆ r

0
r′ ζa(r

′) dr′. (59.18)

This equation allows us to write the stability condition (59.15) in the form

d[lz(r)]2

dr
= 2 lz

dlz(r)

dr
= 2 r ζa(r)

ˆ r

0
r′ ζa(r

′) dr′ < 0 =⇒ centrifugally unstable. (59.19)

For d[lz(r)]2/dr < 0 at a particular radius, r, and thus for the cyclostrophic flow to be unstable,
requires the absolute vorticity at that radius to have the opposite sign to the integral of the
radius weighted absolute vorticity from the origin to r. Since r ≥ 0, a necessary condition for the
instability is for the absolute vorticity to have a sign change somewhere within the region 0 ≤ r.

59.3.5 Parcel stability analysis
As a complement to the energetic stability analysis of Section 59.3.3, we here study the force
balance in the radial momentum equation. This analysis shows that an unstable angular
momentum profile corresponds to a situation where the outward centrifugal acceleration is
stronger than the radially inward pressure gradient acceleration, thus allowing for the fluid
parcel to be “thrown” outward.

We again assume rotational symmetry so that the angular momentum is a material invariant,
and assume the base state is in cyclostrophic balance. As such, the radial momentum equation

CHAPTER 59. SYMMETRIC FLOWS page 1673 of 2158



59.3. CENTRIFUGAL INSTABILITY OF CYCLOSTROPHIC FLOW

(59.1a) leads to
0 = −g ∂rη + r−3 (lz)2, (59.20)

with the overline denoting the cyclostrophic base state. Subtracting this equilibrium flow from
the full momentum equation (59.1a) leads to an equation for radial acceleration of perturbations
about the equilibrium state

Dvr

Dt
= −g ∂η

′

∂r
+ r−3

[
(lz)2 − (lz)2

]
, (59.21)

where
η′ = η − η (59.22)

is the perturbation surface height. We focus now on the difference in squared angular momentum,
with questions about the perturbation pressure gradient, −g ∂η′/∂r, falling outside the parcel
method of stability analysis.

Probing stability by perturbing the radius of a circular fluid ring

Consider a perturbation realized by moving a constant mass circular fluid ring outward from its
initial equilibrium state at radius r to a radius r+∆r. During expansion of the ring, its angular
momentum remains constant due to the rotational symmetry, so that

(lz)2(r +∆r) = (lz)2(r) = (lz)2(r), (59.23)

where the second equality holds since we are starting the ring from its cyclostrophic initial
condition (59.20). To determine the radial acceleration at r +∆r appearing on the right hand
side of the radial velocity equation (59.21), we compute

(lz)2(r +∆r)− (lz)2(r +∆r) = (lz)2(r)− (lz)2(r +∆r) ≈ −∆r d(l
z)2(r)

dr
, (59.24)

so that the equation (59.21) evaluated at r +∆r is

Dvr

Dt
= −g ∂η

′

∂r
− ∆r

(r +∆r)3
d(lz)2(r)

dr
. (59.25)

We thus see that if the squared angular momentum decreases upon moving the ring to a larger
radius, then the second right hand side term in equation (59.25) provides a positive radial
acceleration, thus supporting the initial outward perturbation. Ignoring the possibility for the
perturbation pressure gradient, −g∂η′/∂r, to counter-act the acceleration, we are left with the
same instability condition (59.15) derived using energetic arguments.

Describing the instability mechanism

When the fluid is in cyclostrophic balance, the radial pressure gradient acceleration (which
is pointing radially inward) balances the centrifugal acceleration (which is pointing radially
outward) as per equation (59.20). When a constant mass fluid ring is perturbed outward, from
r to r +∆r, it carries its angular momentum, lz(r), to the new location. This displaced ring is
generally not in cyclostrophic balance with the pressure gradient at the new position. That is,
the centrifugal acceleration of the displaced ring does not equal the pressure gradient of the new
position

(r +∆r)−3 [lz(r)]2︸ ︷︷ ︸
centrifugal of displaced ring

̸= g
∂η(r +∆r)

∂r︸ ︷︷ ︸
pressure gradient at r + ∆r

(59.26)
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If the centrifugal acceleration of the displaced ring is greater than the local pressure gradient
acceleration, then the ring will continue to move outward. That is, the outward centrifugal
acceleration at the new location is greater than the inward pressure gradient so that the fluid ring
is flung further outward. This process characterizes a centrifugally unstable state, and it occurs
if the squared angular momentum decreases when moving radially outward, as per equation
(59.15). Conversely, if the local pressure gradient is greater than the centrifugal acceleration
of the dispaced ring, then the ring returns to its original radius and exhibits stable centrifugal
oscillations.

Centrifugal oscillations

Ignoring the perturbation pressure gradient, and introducing a squared centrifugal angular
frequency,

σ2(r) ≡ 1

(r +∆r)3
d(lz)2(r)

dr
, (59.27)

leads to the free oscillator equation for the fluctuation of a fluid ring from its equilibrium radial
position

D2∆r

Dt2
+ σ2∆r = 0, (59.28)

where ur = D(∆r)/Dt is the radial velocity of a fluid parcel relative to its equilibrium radial
position. For stable cases with σ2 > 0, the ring exhibits harmonic centrifugal oscillations around
the equilibrium radius with period 2π/σ. In contrast, for the unstable case with σ2 < 0, then
∆r grows exponentially.

59.3.6 Stability condition in terms of the surface height
The equilibrium angular momentum and free surface height are related by the cyclostrophic
balance (59.20). So rather than focusing on the angular momentum, we can develop an equivalent
stability condition in terms of radial derivatives of the free surface height. For this purpose,
write the difference in angular momentum

(lz)2(r)− (lz)2(r +∆r) = g [r3 dη(r)/dr − (r +∆r)3 dη(r +∆r)/dr], (59.29)

and then perform a Taylor series

F (r +∆r) ≡ (r +∆r)3 dη(r +∆r)/dr (59.30a)

≈ F (r) + ∆r dF (r)/dr (59.30b)

= r3 dη(r)/dr +∆r d[r3 dη/dr]/dr, (59.30c)

which renders

(lz)2(r)− (lz)2(r +∆r) ≈ −g∆r d

dr

[
r3

dη

dr

]
. (59.31)

The radial momentum equation (59.25) thus takes the form

Dvr

Dt
= −g ∂η

′

∂r
− g∆r

(r +∆r)3
d

dr

[
r3

dη

dr

]
. (59.32)

We are thus led to the instability condition written in terms of the surface height in the
cyclostrophically balanced base state

d

dr

[
r3

dη

dr

]
< 0 =⇒ centrifugally unstable. (59.33)
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Figure 59.3: Example free surface heights for a shallow water layer in a rotating tank. The left panel exhibits a
free surface height that is stable to centrifugal instability, whereas the right is unstable, with stability determined
by the condition (59.33). The stable configuration approximates the parabolic profile that is realized for a
rigid-body flow as in equation (59.35). The unstable profile has its layer thickness decrease with increasing radius,
so that the radial pressure gradient acceleration cannot balance the centrifugal acceleration.

A particular example of a centrifugally unstable free surface configuration is the decreasing
function

η = η0 − a rb =⇒
[
r3

dη

dr

]
= −a b (2 + b) rb+1, (59.34)

with η0 the free surface height at the origin, b a dimensionless constant, and a having dimensions
so that a rb has dimensions of length. Furthermore, we require with a b > 0, and b > −2. Recall
that the free surface is parabolic when the fluid is in rigid-body motion, as given by equation
(27.103)

η = η0 +Ω2 r2/(2 ge) =⇒
[
r3

dη

dr

]
= 4Ω2 r3/ge > 0, (59.35)

which is stable.

59.3.7 Comments and further study
Chapter 3 of Drazin and Reid (1981) is the canonical reference for centrifugal instability,
where they provide a stability analysis including both axisymmetric and non-axisymmetric
perturbations. In our treatment, we also made use of the parcel arguments from Section 3.2 of
Markowski and Richardson (2010). Furthermore, Markowski and Richardson (2010) comment
on the perturbation pressure gradient in equation (59.25), emphasizing that parcel stability
arguments generally ignore changes to the pressure gradient. Stated otherwise, a parcel analysis
concerns the equilibrium angular momentum profile and its contribution to movement away
from equilibrium. It is not concerned with back reaction from pressure perturbations associated
with movement of parcels or fluid rings. A fuller treatment generally requires analysis beyond
the parcel framework. Section 11.6 of Kundu et al. (2016) presents centrifugal instability in the
context of viscous Couette flow, which is the flow of fluid between two rotating co-axial cylinders.

For a laboratory realization of centrifugal instability, see this video from the UCLA spin
lab. The laboratory technique spins up a fluid to rigid-body motion in a tank, and then quickly
reduces the rotation rate to induce d[lz(r)]2/dr < 0. The instability manifests as roll vorticies
aligned along the tank wall, with the character of the vorticies a function of d[lz(r)]2/dr and
other parameters.

59.4 Potential momentum on the f -plane
A front is a region of enhanced lateral gradients in the buoyancy field (baroclinic front) or sea
level (shallow water front). These fronts generally have corresponding currents (jets) arising
from geostrophic balance (when off-equator). Figure 59.4 illustrates a baroclinic front that
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is symmetric in the zonal direction so that the buoyancy field is only a function of latitude,
depth, and time, b = b(y, z, t). We likewise assume that all other fields possess zonal symmetry,
including pressure and velocity. Fronts can generally be oriented in any direction. Furthermore,
there is rotational symmetry on the f -plane so that we can orient the horizontal coordinate
axes as desired. In later sections we study the stability of fronts. Here, we establish some basic
properties of potential momentum, which proves central to the stability analysis.
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Figure 59.4: Example of a zonally symmetric baroclinic frontal region, showing iso-buoyancy surfaces with
b = b(y, z, t). With ∂b/∂y < 0 as drawn, the corresponding zonal thermal wind shear, f ∂ug/∂z = −∂b/∂y > 0, is
eastward for a northern hemisphere front; i.e., stronger eastward flow with increasing height (see Section 31.4.3).

59.4.1 Linear momentum and potential momentum

The horizontal linear momentum per mass for a perfect Boussinesq ocean on an f -plane evolves
according to (see Section 29.1.6)

Du

Dt
+ f ẑ × u = −∇hφ. (59.36)

Since f is a constant, this equation can be written

DM

Dt
= −∇hφ, (59.37)

where we introduced the potential momentum per mass

M ≡ u+ f ẑ × x = (u− f y) x̂+ (v + f x) ŷ, (59.38)

and noted that v = Dx/Dt. Notably, the potential momentum remains materially invariant in
directions where the horizontal pressure gradient vanishes. We described the potential momentum
for a point particle in Section 14.3, and here make use of it to study the stability of certain
f -plane fluid flows.

Materially constant zonal potential momentum

For the zonally aligned buoyancy front illustrated in Figure 59.4, we assume all fields are
independent of the zonal direction so that

∂xφ = 0. (59.39)
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A vanishing zonal pressure gradient means that the zonal potential momentum per mass is a
material invariant

DMx/Dt = 0 where Mx ≡ u− f y. (59.40)

This material invariance greatly constrains the flow. For example, consider a fluid parcel at an
initial latitude y0 with zonal velocity u0. Movement of the parcel to a new latitude leads to the
equality

u0 − fy0 = u1 − f y1, (59.41)

so that the zonal velocity at the new latitude is given by

u1 = u0 − f(y0 − y1). (59.42)

Motivating the name potential momentum

Although absolute momentum or geostrophic momentum are more commonly used in the literature,
we prefer the term potential momentum as motivated by the same reasoning used for potential
temperature (Section 23.3), potential density (Section 30.3.4), and potential vorticity (Section
39.3.2). Namely, the zonal potential momentum identifies that amount of zonal linear momentum
per mass (i.e., the velocity) that a parcel would acquire if moved from an arbitrary latitude y1,
to a reference latitude, y0. More specifically, inverting equation (59.42) we see that

u0 =Mx(y1) + fy0. (59.43)

Hence, the quantity Mx(y1) is the extra zonal momentum per mass available at the reference
latitude, y0, upon moving a parcel from y1 to y0. We thus see that the potential momentum is
a material invariant in the way that potential temperature is for a perfect fluid. Furthermore,
as seen in Section 59.5, meridional gradients of Mx measure the inertial stability of a flow
configuration in a manner directly analogous to how vertical gradients of potential temperature
(or buoyancy) measure gravitational stability.

Meridional potential momentum

There are occasions when a front exhibits meridional symmetry, in which case the perfect
Boussinesq equations take the form

Du/Dt = fv − ∂xφ (59.44a)

Dv/Dt = −fu. (59.44b)

In this case the meridional potential momentum is materially invariant

DMy/Dt = 0 where My ≡ v + fx. (59.45)

59.4.2 Zonal potential momentum on a β-plane

The f -plane is rotationally invariant about the rotational axis. Correspondingly, we can write
the momentum equation in the form (59.37), thus exposing the potential momentum. Material
invariance for potential momentum holds along the symmetry direction of an arbitrarily oriented
symmetric front.

The β-plane is not rotationally invariant. Rather, it only maintains symmetry along lines
of constant latitude (zonal directions). Consequently, only zonally oriented symmetric fronts
maintain material invariance of zonal potential momentum. To see this property, write the zonal
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momentum equation in the form

∂tu+ v ∂yu+ w ∂zu− f v = 0, (59.46)

where we assumed zonal symmetry (∂x = 0). Now write the Coriolis parameter in the form

Γ = fo y + β y2/2 =⇒ f = dΓ/dy, (59.47)

so that the zonal momentum equation takes the form

∂t(u− Γ) + v ∂y(u− Γ) + w ∂z(u− Γ) = 0. (59.48)

Evidently, Mx = u− Γ is materially invariant for this zonally symmetric front.

59.4.3 Further reading

See Section 14.4 for more discussion of potential momentum as it concerns a point particle. The
term absolute momentum follows the arguments given on page 51 of Markowski and Richardson
(2010).

59.5 Horizontal inertial instability of geostrophic fronts

We now examine stability of an f -plane geostrophically balanced front for an inviscid Boussinesq
fluid. The analysis of centrifugal instability in Section 59.3 is closely followed, with rotational
symmetry replaced by along-front symmetry and angular momentum replaced by potential
momentum. We consider both the Rayleigh energetic stability analysis and the parcel analysis.
Furthermore, the perturbations maintain symmetry in the along-front direction, so perturbations
consist of a horizontally displaced row of parcels oriented along the front. Stability to more
general perturbations, such as those that are not symmetric along the front, is not addressed
here.

The results of our analysis are rotationally invariant since the f -plane is rotationally invariant.
Hence, we choose to orient the coordinate system based on convenience whereby the x-axis is the
along front axis and the y-axis is across the front (as in Figure 59.4). Furthermore, their relative
orientation is chosen in the usual righthand sense, so that x̂× ŷ = ẑ, where ẑ is anti-parallel to
gravity.

Although we make use of a continuously stratified Boussinesq fluid, the inertial instability
considered in this section is not associated with baroclinicity. Rather, as for the centrifugal case
in Section 59.3, it is associated with stability of an equilibrium state to horizontal displacements
along geopotential surfaces. In a continuously stratified adiabatic fluid, horizontal displacements
generally cross isentropic surfaces and so comprise irreversible perturbations. So long as the
associated mixing of momentum is negligible, we can still make use of material invariance of
potential momentum. We return to this point when studying isentropic inertial (symmetric)
instability in Section 59.6, in which perturbations are along sloped buoyancy surfaces rather
than geopotential surfaces.

59.5.1 Equations of motion relative to the geostrophic equilibrium state

The horizontal momentum equation for an inviscid Boussinesq fluid on an f -plane is given by
(see Section 29.1)

Du/Dt+ f ẑ × u = −∇hφ. (59.49)
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In the presence of along-front symmetry, an exact solution to the horizontal momentum equation
is given by along-front geostrophic flow and zero flow across the front

ug = −f−1 ∂yφ and v = 0 and ∂xφ = 0. (59.50)

We examine the stability of this exact equilibrium base state5 to perturbations aligned with the
front. To study evolution of the perturbations relative to the base state, subtract the base state
solution from the full momentum equation (59.49) to render

Du/Dt = f v (59.51a)

Dv/Dt = f (ug − u). (59.51b)

We continue to assume along-front symmetry in the perturbation so that there is no along-front
pressure gradient (∂xφ = 0) in equation (59.51a). Equation (59.51b) says that across-front
accelerations are determined by deviations from geostrophy of the along-front velocity, and
equation (59.51a) says that along-front accelerations are determined by the Coriolis acceleration
arising from a non-zero across-front velocity.

Following the treatment of potential momentum in Section 14.3, we write the along-front mo-
mentum equation (59.51a) as the material time derivative of the along-front potential momentum
per mass

Mx = u− fy, (59.52)

bringing the suite of perturbation equations to

DMx/Dt = 0 (59.53a)

Dv/Dt = f(ug − u). (59.53b)

Material invariance of the along-front potential momentum plays a fundamental role in the
stability analysis, analogous to the role of angular momentum for centrifugal instability in
Section 59.3. Finally, we can write the equations in terms of just Mx and v via

DMx/Dt = 0 (59.54a)

Dv/Dt = f(Mx
g −Mx). (59.54b)

59.5.2 Stability analysis based on energetic arguments

We follow the energetic arguments given in Section 59.3.3 for centrifugal instability of cyclostrophic
flow. Here, we ask whether the along-front geostrophic flow is stable to a swap of two along-front
oriented rows that have the same geopotential. If the swap releases kinetic energy from the base
state, then the base state flow is inertially unstable to an along-front symmetric perturbation.
In that case, perturbations spontaneously initiate inertial instability to affect a return to an
inertially stable state.

Instability condition

The kinetic energy per mass for the along-front geostrophic flow is given by

E = u2g/2 = (Mx
g + fy)2/2, (59.55)

5It is useful to confirm that ug = −f−1 ∂yφ and v = 0 are indeed exact solutions to equation (59.49).
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where we replaced the geostrophic velocity with the geostrophic potential momentum through
equation (59.52)

Mx
g = ug − f y. (59.56)

The kinetic energy per mass contained in two equal mass parcels at distinct meridional cross-front
positions, y = y1, and

y2 = y1 + (y2 − y1) = y1 +∆y, (59.57)

is given by
Einit = [Mx

g (y1) + fy1]
2/2 + [Mx

g (y2) + fy2]
2/2. (59.58)

Swapping the parcels and making use of the invariance of potential momentum leads to the
kinetic energy in the swapped state

Eswap = [Mx
g (y1) + f y2]

2/2 + [Mx
g (y2) + f y1]

2/2. (59.59)

A bit of algebra leads to the difference in kinetic energy between the two states

Eswap − Einit = −f (y2 − y1) [Mx
g (y2)−Mx

g (y1)] = −f ∆y∆Mx
g . (59.60)

Now compute a Taylor series of the potential momentum, Mx
g (y2), relative to the across-front

position, y = y1,

Mx
g (y2) ≈Mx

g (y1) + (y2 − y1)
dMx

g

dy

∣∣∣∣
y=y1

, (59.61)

which then leads to the energy difference

Eswap − Einit = −f (∆y)2
dMx

g

dy
(59.62a)

= −f (∆y)2 (∂yug − f) (59.62b)

= f (∆y)2 (ζg + f), (59.62c)

where
ζg = −∂yug (59.63)

is the vertical component to the geostrophic relative vorticity for the symmetric base state.
Evidently, kinetic energy is released upon swapping the two rows if the following condition is
satisfied

−f ∂yMx
g = f (ζg + f) < 0 =⇒ inertial instability. (59.64)

The second instability condition says that the base state is unstable if the absolute geostrophic
vorticity, ζg + f , has an opposite sign to the planetary vorticity. This stability condition has a
natural generalization to the case of symmetric instability considered in Sections 59.6 and 59.8.

Interpreting the instability condition

The first instability condition in equation (59.64) arises if the cross-front gradient of the
geostrophic potential momentum has the same sign as the Coriolis parameter. To help understand
this condition we examine the inertial stability of a base state with zero flow. Zero flow in a
rotating reference frame corresponds to rigid-body motion with potential momentum Mx

g = −fy.
For this base state, the inertial stability condition (59.64) is given by

−f (∂Mx
g /∂y) = f2 > 0, (59.65)
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thus signaling the rigid-body flow is inertially stable. By contrast, we infer that an inertially
unstable base state is rendered unstable by having an along-front flow that overcomes the
stabilizing contribution to potential momentum from planetary rotation. This situation is
directly analogous to the centrifugal instability studied in Section 59.3.

Summarizing the conditions for inertial instability

The instability condition (59.64) takes the following form for the northern and southern hemi-
spheres. Again, the x-axis is oriented along the front and y-axis is across the front with x̂× ŷ = ẑ
and Mx

g = ug − f y

northern hemisphere (f > 0): ∂yM
x
g > 0 ζg < −|f | ∂yug > +|f | (59.66a)

southern hemisphere (f < 0): ∂yM
x
g < 0 ζg > +|f | ∂yug < −|f |. (59.66b)

In both hemispheres, instability arises when the relative geostrophic vorticity is anti-cyclonic and
larger in magnitude than the cyclonic vorticity from planetary rotation. Under such conditions,
inertial instability allows the flow to readjust toward a state of less extreme relative vorticity,
thus returning the flow to a state with absolute vorticity dominated by planetary vorticity.
Equivalently, inertial instability arises for flows where ∂Mx

g /∂y > 0 in the northern hemisphere
and ∂Mx

g /∂y < 0 in the southern hemisphere, so that potential momentum of the geostrophic
base state increases poleward.

59.5.3 Stability analysis based on parcel arguments
Following the analysis for centrifugal instability in Section 59.3.5, we here consider a parcel
stability analysis to provide a force-balance interpretation of the inertial instability. For this
purpose, return to the perturbation equations (59.53a) and (59.53b), again with the equilibrium
base state of along-front geostrophic balance with zero motion in the across-front direction

f ug = −∂yφ. (59.67)

We examine the stability of this geostrophic base state with respect to along-front perturbations
of fluid parcels. For this purpose, imagine moving a row of fluid parcels from position y to a
new position, y +∆y. As per the usual assumption of a parcel analysis, this move is assumed
to have no impact on the surrounding fluid environment, including the pressure field.6 In
general, the displaced row of fluid parcels will not be in geostrophic balance at the new position,
thus providing for a non-zero acceleration in the across-front direction. If the acceleration is
directed back to the original position, then the base state is stable and displaced parcels exhibit
inertial oscillations in the x-y plane. In contrast, the base state is inertially unstable if the net
acceleration acts to further the initial displacement. Note that while the fluid parcels are moved
meridionally, they will be displaced zonally due to the Coriolis acceleration. However, we focus
attention on the meridional motion to determine whether the parcel accelerates further away
from its initial latitude or returns. We illustrate facets of the stable and unstable situations in
Figures 59.5 and 59.6, with details of these figures explained in the remainder of this section.

Mathematical formulation

Equation (59.53b) for the across-front motion is given by

Dv/Dt = f (ug − u). (59.68)

6With this assumption, the pressure field remains in geostrophic balance with the unperturbed background
geostrophic flow.
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Figure 59.5: Schematics of an inertially stable (left panel) and inertially unstable (right panel) geostrophic base
flow in the northern hemisphere. One of the red vectors is for the geostrophic velocity, ug(y), and the second for
the velocity at a displaced position udisp(y +∆y). The displaced velocity is determined by conservation of zonal
potential momentum, udisp(y+∆y) = ug(y) + f ∆y, from equation (59.71). In the unperturbed flow, the eastward
geostrophic velocity is generated by a northward pressure gradient acceleration that balances a southward Coriolis
acceleration. The base state pressure gradient remains unchanged even as the fluid parcels are perturbed, with
this assumption basic to the parcel method of stability analysis. At the displaced position we also show the
base state velocity at the displaced position, u(y +∆y) = ug(y) + ∂yu(y)∆y = ug(y)− ζg(y)∆y. The difference
between the displaced velocity and the base state velocity is udisp(y+∆y)− u(y+∆y) = (f + ζg)∆y. For the left
panels, the flow has positive relative vorticity so that ζg + f > 0 and the flow is inertially stable. In this case, the
displaced parcel has a southward Coriolis acceleration larger than the local Coriolis, thus returning the row of fluid
parcels back towards its initial latitude. For the right panel, the flow has negative relative geostrophic vorticity,
and that vorticity is strong enough so that the absolute geostrophic vorticity is negative, ζg + f < 0, in which case
the flow is inertially unstable. In this case, the displaced parcel has a southward Coriolis acceleration smaller than
the local Coriolis. Hence, the northward pressure gradient is strong enough to keep the parcel moving northward,
away from its initial position, thus signaling a base state that is inertially unstable.

This equation holds everywhere, in particular at the displaced cross-front position, y + ∆y.
At this position, the right hand side has u(y + ∆y), which is the along-front velocity of the
displaced parcel at the new position. Likewise, ug(y +∆y) is the geostrophic velocity at y +∆y
of the prescribed background flow. According to equation (59.67), the geostrophic velocity,
ug(y+∆y), determines a Coriolis acceleration at the displaced position, y+∆y, with this Coriolis
acceleration balanced by the cross-front pressure gradient, also evaluated at y +∆y.

To determine the sign of the cross-front acceleration in equation (59.68) acting on the
displaced parcel at y + ∆y, we make use of the material invariance of along-front potential
momentum. This invariance means that each fluid parcel carries its potential momentum from
the original position.7 For example, the potential momentum of a fluid parcel initially at position
y has the value given by the geostrophic base state at that latitude

Mx(y) =Mx
g (y) = ug(y)− f y. (59.69)

Material invariance means that the parcel retains this potential momentum as it moves to the
new position, y + ∆y. In turn, invariance of along-front potential momentum allows us to
determine the along-front velocity of the parcel at the displaced position in terms of ug(y) (recall
the procedure leading to equation (59.42))

Mx(y +∆y) = u(y +∆y)− f (y +∆y) (59.70a)

=Mx(y) (59.70b)

= ug(y)− f y, (59.70c)

which leads to
u(y +∆y) = ug(y) + f ∆y. (59.71)

7We offer a cautionary remark about notation. Namely, f is a constant so that f y is f times the latitude
position y, and likewise for f (y +∆y). In contrast, the zonal velocity, u, is a function of y, so that u(y) and
u(y +∆y) represent the zonal velocity evaluated at the latitude positions y and y +∆y, respectively.
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The cross-front acceleration (59.68) at the new latitude position thus takes the form

Dv(y +∆y)

Dt
= f [ug(y +∆y)− u(y +∆y)] (59.72a)

= f [ug(y +∆y)− ug(y)− f ∆y] (59.72b)

≈ f∆y
[
∂ug

∂y
− f

]
(59.72c)

= −f ∆y (ζg + f). (59.72d)

The initial displacement grows,
1

∆y

Dv(y +∆y)

Dt
> 0, (59.73)

if the following instability condition holds

f (ζg + f) < 0 =⇒ inertially unstable, (59.74)

which is the same instability condition as found via the energetic arguments in Section 59.5.2.

Oscillations or exponential growth?

Let y be the arbitrary initial meridional position for a fluid parcel, and ∆y the meridional
position relative to y. The equation of motion (59.72d) can be written in terms of the relative
position so that

d2∆y

dt2
+ f (ζg + f)∆y = 0. (59.75)

If f (ζg + f) < 0 then ∆y has an exponentially growing (and decaying) solution, thus indicating
instability. For the alternative case with f (ζg + f) > 0 we expect to find inertial-like oscillations.

A quick derivation of the instability condition

The displaced parcel at y+∆y has zonal velocity u(y+∆y) = ug(y)+f ∆y according to equation
(59.71), which follows from the material conservation of zonal potential momentum. The velocity
of the background geostrophic flow at y+∆y is given by the Taylor series approximation relative
to the flow at y (keeping terms up to first order):

ug(y +∆y) ≈ ug(y) + ∆y ∂yug(y) = ug(y)−∆y ζg(g). (59.76)

The difference between these two zonal velocities is

ug(y +∆y)− u(y +∆y) = −(f + ζg)∆y, (59.77)

which recovers the inertial stability condition derived above.

Summary of the parcel argument

As summarized in Figures 59.5 and 59.6, at the initial location in the base state, a parcel under
geostrophic balance has its Coriolis acceleration balanced by its pressure acceleration. However,
the displaced parcel generally will not be in geostrophic balance at the new location, in which
case its Coriolis acceleration does not balance the local pressure gradient. The parcel approach
determines a stability condition based on whether the imbalance leads to an acceleration back
towards its initial position (stable inertial oscillations) or further away (inertial instability). For
the unstable case, the Coriolis acceleration of the displaced parcel at its new location cannot
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PGF(B) > Cor(B)

Figure 59.6: Further depiction of inertially stable geostrophic flow (left panel) and unstable geostrophic flow
(right panel), complementing features presented in Figure 59.5. Here we show a fluid parcel starting at point
A and displaced to point B, with the curved motion due to the zonal Coriolis acceleration that acts when the
parcel is displaced in the meridional direction (f > 0). For the inertially stable case, the pressure gradient
acceleration acting on the displaced parcel at point B is weaker than the parcel’s Coriolis acceleration, so that the
parcel exhibits stable inertial oscillations in the x-y plane. For the inertially ustable case, the pressure gradient
acceleration acting on the parcel at point B is stronger than the parcel’s Coriolis acceleration, so that the parcel
continues to move further away and thus exhibits inertial instability.

match the local pressure gradient, thus causing the parcel to be thrust away from its initial
latitude.

Along-front symmetry of both the base state and the perturbation ensures material invariance
of along-front potential momentum. This invariance provides an explicit expression for the
acceleration felt by the displaced parcel, thus determining a condition on stability of the base
state to such symmetric perturbations. The method of analysis is directly analogous to that
applied to the rotating tank of fluid in Section 59.3 for centrifugal instability, as well as for a
vertical column of fluid in Section 30.4 for gravitational stability. We follow this procedure again
in Section 59.6 for studying symmetric instability.

59.6 Symmetric instability and the f Q < 0 criteria
In this section we examine stability of a geostrophically balanced baroclinic front on an f -plane.
We continue to assume the front is gravitationally stable (N2 > 0) and that it exhibits along-front
symmetry so that the along-front potential momentum is a material invariant (Figure 59.4).
Different from the inertial instability case in Section 59.5, we here assume the fluid to be adiabatic
so that Archimedean buoyancy is a second materially invariant property. We investigate stability
of a geostrophically balanced along-front flow using the parcel method and make use of buoyancy
as the vertical coordinate. We follow up this analysis in Section 59.8 with an Eulerian modal
analysis. Both approaches reveal the fundamental importance of potential vorticity as a signature
of symmetric instability. More precisely, the product, f Q, if negative, indicates a symmetrically
unstable front.

59.6.1 Equations using buoyancy as the vertical coordinate
Given the adiabatic nature of the fluid, and the role of baroclinicity, we are motivated to use
buoyancy as the vertical coordinate for a Boussinesq fluid as detailed in Section 66.2. That
is, we consider symmetric displacements of parcels along a constant buoyancy surface. By
construction, this displacement is neutral to gravitational instability since it occurs along a
constant buoyancy surface. However, a displaced parcel could still find itself in an unstable
position depending on the potential momentum of the local environment relative to the buoyancy
surfaces. The analysis proceeds just like for the horizontal inertial instability of Section 59.5.3,
yet with the displacements here being isentropic (constant buoyancy) rather than horizontal
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(constant geopotential). We are thus motivated to refer to the ensuing instability as isentropic
inertial instability, though note that it is more commonly referred to as symmetric instability.

With buoyancy as the vertical coordinate, the horizontal momentum equation is8

Du/Dt+ f ẑ × u = −∇hbM (59.78)

where ∇hb is a horizontal gradient computed along constant buoyancy surfaces. Furthermore,

M = φ− b z (59.79)

is the Montomery potential that contributes an acceleration via9

−∇hbM = −∇hbφ+ b∇hbz. (59.80)

The first term arises from pressure gradients and the second from geopotential gradients, both
computed along constant buoyancy surfaces. In the presence of along-front symmetry, an exact
solution to the horizontal momentum equation is given by along-front geostrophic flow and zero
cross-front flow

ug = −
1

f ρo

[
∂M

∂y

]
b

and v = 0 and

[
∂M

∂x

]
b

= 0. (59.81)

We examine stability of this base state to perturbations that are symmetric in the along-front
direction. Subtracting the exact equilibrium solution from the full momentum equation (59.49)
leads to

Du/Dt = fv and Dv/Dt = f(ug − u), (59.82)

where we assume along-front symmetry thus allowing us to drop the along-front gradient of
the Montgomery potential. Following the treatment in Sections 14.3 and 59.5.1, we write the
along-front momentum equation as the material time derivative of the along-front potential
momentum per mass, Mx = u− fy (equation (59.52)), thus bringing the perturbation equations
to

DMx/Dt = 0 and Dv/Dt = f (Mx
g −M). (59.83)

59.6.2 Parcel stability analysis

We follow the parcel analysis used for inertial instability in Section 59.5.3, starting with an
equilibrium base state of along-front geostrophic balance with zero meridional motion and then
examine the stability of this state to symmetric perturbations of fluid parcels along a constant
buoyancy surface. For this purpose, imagine moving a row of fluid parcels from cross-front
position y to position y+∆y while maintaining a fixed buoyancy and fixed potential momentum.
Furthermore, assume the displacement has no impact on the base state, which is the typical
assumption of the parcel approach to stabilty analysis. In general, the displaced row of parcels
will not be in geostrophic balance at the new position, thus providing for a non-zero cross-front
acceleration at that displaced position. The sign of that acceleration determines stability of the
flow to the symmetric perturbation.

At the new cross-front position, the meridional acceleration acting on the displaced parcels

8In Part XII of this book, we develop the mathematical and physical details for generalized vertical coordinates,
such as buoyancy or isopycnal coordinates. In particular, the essential features of the ∇hb gradient operator are
provided in Figure 63.4. For purposes of the present chapter, one merely needs to know that ∇hb provides a
measure of the property gradients computed along constant buoyancy surfaces, and yet with ∇hb still having only
horizontal components: ∇hb = x̂ (∂/∂x)b + ŷ (∂/∂y)b, where the b subscript means that the derivative is computed
while holding b constant.

9Be careful to distinguish the Montgomery potential, M , in equation (59.79) from the zonal potential
momentum, Mx, in equation (59.40).
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is given by10

Dv(y +∆y)

Dt
= f [Mx

g (y +∆y)−Mx(y +∆y)], (59.84)

where Mx(y +∆y) is the potential momentum at y +∆y, and Mx
g (y +∆y) is the geostrophic

potential momentum at y+∆y. To determine the sign of the acceleration acting on the displaced
parcel, we make use of the material invariance of along-front potential momentum,

Mx(y +∆y) =Mx(y) =Mx
g (y), (59.85)

so that the meridional acceleration is

Dv(y +∆y)

Dt
= f

[
∂Mx

g

∂y

]
b

∆y. (59.86)

Evidently, if ∆y > 0 then the displacement is unstable if

f

[
∂Mx

g

∂y

]
b

> 0 =⇒ symmetrically unstable geostrophic state. (59.87)

We can write this condition in terms of the absolute geostrophic vorticity by noting that[
∂Mx

g

∂y

]
b

=

[
∂ug

∂y

]
b

− f = −(ζ̃g + f), (59.88)

where ζ̃g is the relative vorticity of the geostrophic flow computed on buoyancy surfaces (see
Section 66.2)

ζ̃g =

[
∂vg
∂x

]
b

−
[
∂ug

∂y

]
b

, (59.89)

with vg = 0 for this zonal geostrophic front. Evidently, we have arrived at the alternative
expression of a symmetrically unstable geostrophic base flow

f (f + ζ̃g) < 0 =⇒ symmetrically unstable geostrophic state. (59.90)

Finally, we can introduce the Boussinesq Ertel potential vorticity in the form11

Q = (ω + f ẑ) · ∇b = (ζ̃ + f)N2, (59.91)

with N2 = ∂zb > 0 the squared buoyancy frequency for gravitationally stable flows. Bringing
these results together leads to the equivalent expressions of the necessary and sufficient conditions
for a geostrophic base flow to be symmetrically unstable

f

[
∂Mx

g

∂y

]
b

> 0 (59.92a)

f (ζ̃g + f) < 0 (59.92b)

f Qg < 0. (59.92c)

10We only expose the meridional coordinate dependence in equation (59.84), but note that the velocity and
potential momentum are also a function of the vertical position and time.

11We derive equation (59.91) when studying potential vorticity in the Boussinesq ocean using buoyancy
coordinates; see equation (66.38).
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59.6.3 Geometric perspective on the instability condition

The instability condition (59.92b) is a direct translation of the inertial instability condition
(59.74), swapping horizontal displacements with displacements along buoyancy surfaces. Likewise,
the instability condition (59.92a) is directly analogous to the inertial instability condition (59.64),
only here with displacement along a buoyancy surface rather than a geopotential. In the northern
hemisphere, if one moves in the +ŷ direction on a constant buoyancy surface and encounters
increasing values for the potential momentum, then the base state flow is symmetrically unstable.
Conversely in the southern hemisphere, if one moves in −ŷ direction on a constant buoyancy
surface and encounters increasing values for the potential momentum, then the base state flow is
symmetrically unstable. We illustrate this situation in Figure 59.7.
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<latexit sha1_base64="rLkQEfJEiTbmqtDLfHjP2sHbIrA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CRBLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vZXVtfWNzcJWcXtnd2+/dHDYsDozjNeZltq0Imq5FIrXUaDkrdRwmkSSN6Ph7dRvPnFjhVYPOEp5mNC+ErFgFJ3UiMk18Um3VPYr/gxkmQQ5KUOOWrf01elpliVcIZPU2nbgpxiOqUHBJJ8UO5nlKWVD2udtRxVNuA3Hs2sn5NQpPRJr40ohmam/J8Y0sXaURK4zoTiwi95U/M9rZxhfhWOh0gy5YvNFcSYJajJ9nfSE4QzlyBHKjHC3EjaghjJ0ARVdCMHiy8ukcV4J/Epwf1Gu3uRxFOAYTuAMAriEKtxBDerA4BGe4RXePO29eO/ex7x1xctnjuAPvM8fv3eN6g==</latexit><latexit sha1_base64="rLkQEfJEiTbmqtDLfHjP2sHbIrA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CRBLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vZXVtfWNzcJWcXtnd2+/dHDYsDozjNeZltq0Imq5FIrXUaDkrdRwmkSSN6Ph7dRvPnFjhVYPOEp5mNC+ErFgFJ3UiMk18Um3VPYr/gxkmQQ5KUOOWrf01elpliVcIZPU2nbgpxiOqUHBJJ8UO5nlKWVD2udtRxVNuA3Hs2sn5NQpPRJr40ohmam/J8Y0sXaURK4zoTiwi95U/M9rZxhfhWOh0gy5YvNFcSYJajJ9nfSE4QzlyBHKjHC3EjaghjJ0ARVdCMHiy8ukcV4J/Epwf1Gu3uRxFOAYTuAMAriEKtxBDerA4BGe4RXePO29eO/ex7x1xctnjuAPvM8fv3eN6g==</latexit><latexit sha1_base64="rLkQEfJEiTbmqtDLfHjP2sHbIrA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CRBLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vZXVtfWNzcJWcXtnd2+/dHDYsDozjNeZltq0Imq5FIrXUaDkrdRwmkSSN6Ph7dRvPnFjhVYPOEp5mNC+ErFgFJ3UiMk18Um3VPYr/gxkmQQ5KUOOWrf01elpliVcIZPU2nbgpxiOqUHBJJ8UO5nlKWVD2udtRxVNuA3Hs2sn5NQpPRJr40ohmam/J8Y0sXaURK4zoTiwi95U/M9rZxhfhWOh0gy5YvNFcSYJajJ9nfSE4QzlyBHKjHC3EjaghjJ0ARVdCMHiy8ukcV4J/Epwf1Gu3uRxFOAYTuAMAriEKtxBDerA4BGe4RXePO29eO/ex7x1xctnjuAPvM8fv3eN6g==</latexit><latexit sha1_base64="rLkQEfJEiTbmqtDLfHjP2sHbIrA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9CRBLx4jmAckS5idzCZjZmeWmV4hhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlEph0fe/vZXVtfWNzcJWcXtnd2+/dHDYsDozjNeZltq0Imq5FIrXUaDkrdRwmkSSN6Ph7dRvPnFjhVYPOEp5mNC+ErFgFJ3UiMk18Um3VPYr/gxkmQQ5KUOOWrf01elpliVcIZPU2nbgpxiOqUHBJJ8UO5nlKWVD2udtRxVNuA3Hs2sn5NQpPRJr40ohmam/J8Y0sXaURK4zoTiwi95U/M9rZxhfhWOh0gy5YvNFcSYJajJ9nfSE4QzlyBHKjHC3EjaghjJ0ARVdCMHiy8ukcV4J/Epwf1Gu3uRxFOAYTuAMAriEKtxBDerA4BGe4RXePO29eO/ex7x1xctnjuAPvM8fv3eN6g==</latexit>

f < 0
<latexit sha1_base64="3460Ccp9ERxc8ncbQt5Z5BQGoZY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHohePFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDfz20+oNE/ko5mkGMR0KHnEGTVW8iNyQ9x+tebW3TnIKvEKUoMCzX71qzdIWBajNExQrbuem5ogp8pwJnBa6WUaU8rGdIhdSyWNUQf5/NgpObPKgESJsiUNmau/J3Iaaz2JQ9sZUzPSy95M/M/rZia6DnIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadiQ/CWX14lrYu659a9h8ta47aIowwncArn4MEVNOAemuADAw7P8ApvjnRenHfnY9FacoqZY/gD5/MHZeuNvg==</latexit><latexit sha1_base64="3460Ccp9ERxc8ncbQt5Z5BQGoZY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHohePFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDfz20+oNE/ko5mkGMR0KHnEGTVW8iNyQ9x+tebW3TnIKvEKUoMCzX71qzdIWBajNExQrbuem5ogp8pwJnBa6WUaU8rGdIhdSyWNUQf5/NgpObPKgESJsiUNmau/J3Iaaz2JQ9sZUzPSy95M/M/rZia6DnIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadiQ/CWX14lrYu659a9h8ta47aIowwncArn4MEVNOAemuADAw7P8ApvjnRenHfnY9FacoqZY/gD5/MHZeuNvg==</latexit><latexit sha1_base64="3460Ccp9ERxc8ncbQt5Z5BQGoZY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHohePFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDfz20+oNE/ko5mkGMR0KHnEGTVW8iNyQ9x+tebW3TnIKvEKUoMCzX71qzdIWBajNExQrbuem5ogp8pwJnBa6WUaU8rGdIhdSyWNUQf5/NgpObPKgESJsiUNmau/J3Iaaz2JQ9sZUzPSy95M/M/rZia6DnIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadiQ/CWX14lrYu659a9h8ta47aIowwncArn4MEVNOAemuADAw7P8ApvjnRenHfnY9FacoqZY/gD5/MHZeuNvg==</latexit><latexit sha1_base64="3460Ccp9ERxc8ncbQt5Z5BQGoZY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0IOHohePFUxbaEPZbCft0s0m7G6EEvobvHhQxKs/yJv/xm2bg7Y+GHi8N8PMvDAVXBvX/XZKa+sbm1vl7crO7t7+QfXwqKWTTDH0WSIS1QmpRsEl+oYbgZ1UIY1Dge1wfDfz20+oNE/ko5mkGMR0KHnEGTVW8iNyQ9x+tebW3TnIKvEKUoMCzX71qzdIWBajNExQrbuem5ogp8pwJnBa6WUaU8rGdIhdSyWNUQf5/NgpObPKgESJsiUNmau/J3Iaaz2JQ9sZUzPSy95M/M/rZia6DnIu08ygZItFUSaIScjsczLgCpkRE0soU9zeStiIKsqMzadiQ/CWX14lrYu659a9h8ta47aIowwncArn4MEVNOAemuADAw7P8ApvjnRenHfnY9FacoqZY/gD5/MHZeuNvg==</latexit>

y
<latexit sha1_base64="SRr+1DRB/p/KyO30X/cNNP8vphA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7EyGU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKweMUu4H9GREqFgFK30kFUG1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boL+lGoUTPJZpZ8anlA2oSPes1TRiBt/Or90Rs6sMiRhrG0pJHP198SURsZkUWA7I4pjs+zl4n9eL8Xw2p8KlaTIFVssClNJMCb522QoNGcoM0so08LeStiYasrQhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AHFGNEQ==</latexit><latexit sha1_base64="SRr+1DRB/p/KyO30X/cNNP8vphA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7EyGU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKweMUu4H9GREqFgFK30kFUG1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boL+lGoUTPJZpZ8anlA2oSPes1TRiBt/Or90Rs6sMiRhrG0pJHP198SURsZkUWA7I4pjs+zl4n9eL8Xw2p8KlaTIFVssClNJMCb522QoNGcoM0so08LeStiYasrQhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AHFGNEQ==</latexit><latexit sha1_base64="SRr+1DRB/p/KyO30X/cNNP8vphA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7EyGU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKweMUu4H9GREqFgFK30kFUG1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boL+lGoUTPJZpZ8anlA2oSPes1TRiBt/Or90Rs6sMiRhrG0pJHP198SURsZkUWA7I4pjs+zl4n9eL8Xw2p8KlaTIFVssClNJMCb522QoNGcoM0so08LeStiYasrQhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AHFGNEQ==</latexit><latexit sha1_base64="SRr+1DRB/p/KyO30X/cNNP8vphA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cq9gPaUDbbTbt0swm7EyGU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKweMUu4H9GREqFgFK30kFUG1Zpbd+cgq8QrSA0KNAfVr/4wZmnEFTJJjel5boL+lGoUTPJZpZ8anlA2oSPes1TRiBt/Or90Rs6sMiRhrG0pJHP198SURsZkUWA7I4pjs+zl4n9eL8Xw2p8KlaTIFVssClNJMCb522QoNGcoM0so08LeStiYasrQhpOH4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMQniGV3hzJs6L8+58LFpLTjFzDH/gfP4AHFGNEQ==</latexit>

z
<latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit><latexit sha1_base64="HDzXchlsPlmuEyZZ/9zFJ+iVC6I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N0IN/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB6UGM/g==</latexit>

<latexit sha1_base64="H5QVc06OThRNd9HocyVNKlEpxiY=">AAACFnicbVDLSsNAFJ34rPUVFdy4GSyCq5KIVJdFN26ECvYBbSyT6aQdOjMJMxMxxPyHa7f6De7ErVs/wb9w2gaxrQcuHM65l3M5fsSo0o7zZS0sLi2vrBbWiusbm1vb9s5uQ4WxxKSOQxbKlo8UYVSQuqaakVYkCeI+I01/eDnym/dEKhqKW51ExOOoL2hAMdJG6tr71920w/3wIe1oKhLYz7K71M26dskpO2PAeeLmpARy1Lr2d6cX4pgToTFDSrVdJ9JeiqSmmJGs2IkViRAeoj5pGyoQJ8pLx/9n8MgoPRiE0ozQcKz+vUgRVyrhvtnkSA/UrDcS//PasQ7OvZSKKNZE4ElQEDOoQzgqA/aoJFizxBCEJTW/QjxAEmFtKptK8flvgOnGnW1injROym6lXLk5LVUv8pYK4AAcgmPggjNQBVegBuoAg0fwDF7Aq/VkvVnv1sdkdcHKb/bAFKzPH0lPn6A=</latexit>

M1
g

<latexit sha1_base64="bg0arNC0z8b3ziOTIgSJZ+B5fDM=">AAACFnicbVDJSgNBFOyJW4xbVPDipTEInsJMkOgx6MWLEMEskMTQ0+lJmvQydPeIwzj/4dmrfoM38erVT/Av7CyISSx4UFS9Rz3KDxnVxnW/nMzS8srqWnY9t7G5tb2T392raxkpTGpYMqmaPtKEUUFqhhpGmqEiiPuMNPzh5chv3BOlqRS3Jg5Jh6O+oAHFyFipmz+47iZt7suHpG2oiGE/Te+SUtrNF9yiOwZcJN6UFMAU1W7+u92TOOJEGMyQ1i3PDU0nQcpQzEiaa0eahAgPUZ+0LBWIE91Jxv+n8NgqPRhIZUcYOFb/XiSIax1z325yZAZ63huJ/3mtyATnnYSKMDJE4ElQEDFoJByVAXtUEWxYbAnCitpfIR4ghbCxlc2k+Pw3wHbjzTexSOqlolculm9OC5WLaUtZcAiOwAnwwBmogCtQBTWAwSN4Bi/g1Xly3px352OymnGmN/tgBs7nD0rrn6E=</latexit>

M2
g

<latexit sha1_base64="pWIEXf6Bv2IAcPbzuyc9DpAcrlg=">AAACC3icbVDLSsNAFL2pr1pfVZduBovgqiQi1ZUU3bisaB/QxjKZTtuhk0mcmQgh5BNcu9VvcCdu/Qg/wb9w2gaxrQcuHM65l3M5XsiZ0rb9ZeWWlldW1/LrhY3Nre2d4u5eQwWRJLROAh7IlocV5UzQumaa01YoKfY9Tpve6GrsNx+pVCwQdzoOqevjgWB9RrA2knvbTbz0PolTdIHsbrFkl+0J0CJxMlKCDLVu8bvTC0jkU6EJx0q1HTvUboKlZoTTtNCJFA0xGeEBbRsqsE+Vm0yeTtGRUXqoH0gzQqOJ+vciwb5Sse+ZTR/roZr3xuJ/XjvS/XM3YSKMNBVkGtSPONIBGjeAekxSonlsCCaSmV8RGWKJiTY9zaR4/m+A6caZb2KRNE7KTqVcuTktVS+zlvJwAIdwDA6cQRWuoQZ1IPAAz/ACr9aT9Wa9Wx/T1ZyV3ezDDKzPH1AgmsI=</latexit>

Sy
b > 0

b1
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Figure 59.7: Example geostrophically balanced flow configurations that are symmetrically unstable; i.e., inertially
unstable to a perturbation with symmetry along the front. We show example buoyancy surfaces and potential
momentum surfaces for the southern hemisphere (left) and northern hemisphere (right). The instability conditions
(59.99a) and (59.99b) are indicated on the respective panels. In both cases, surfaces of constant buoyancy are
more steeply sloped than constant potential momentum surfaces. The x coordinate measures distance in the
along-front direction and y measures distance in the cross-front direction, oriented so that x̂× ŷ = ẑ where ẑ is
anti-parallel to gravity (x̂ is out of the page). A means to quickly judge whether a flow is symmetrically unstable
is to note that the wedge of instability region between buoyancy and potential momentum surfaces provides a
source of available potential energy. Symmetric instability can feed off the potential energy only when buoyancy
surfaces are more steeply sloped than potential momentum surfaces.

As another way to write the instability condition (59.92a), make use of the expression (63.78b)
to transform the derivative on buoyancy surfaces back to geopotential coordinates[

∂Mx
g

∂y

]
b

=

[
∂Mx

g

∂y

]
z

− ∂b/∂y

∂b/∂z

∂Mx
g

∂z
(59.93a)

= (∂b/∂z)−1
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∂y

∂b

∂z
− ∂Mx

g

∂z

∂b

∂y

]
(59.93b)

= −N−2 x̂ · (∇b×∇Mx
g ). (59.93c)

Similarly, we have [
∂b

∂y

]
Mx

g

= (∂Mx
g /∂z)

−1

[
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∂Mx
g

∂z
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∂Mx
g
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]
(59.94a)

= (∂Mx
g /∂z)

−1 x̂ · (∇b×∇Mx
g ), (59.94b)

which then leads to
(∂b/∂y)Mx

g

∂b/∂z
= −(∂Mx

g /∂y)b

∂Mx
g /∂z

. (59.95)
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Furthermore, with Mx
g = ug − f y we have

∂zM
x
g = ∂zug = −f−1 (∂b/∂y)z, (59.96)

so that
Syb (∂b/∂y)Mx

g
= −f (∂Mx

g /∂y)b, (59.97)

where we introduced the slope of the meridional buoyancy surface

Syb ≡ −
∂b/∂y

∂b/∂z
. (59.98)

Use of the identity (59.97) in the instability condition (59.92a) leads to the equivalent expressions
of a symmetrically unstable geostrophically balances state

f

[
∂Mx

g

∂y

]
b

= −Syb
[
∂b
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Mx

g

> 0 =⇒ symmetrically unstable (59.99a)

f N2
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g

∂y

]
b

=

[
∂b

∂y

]
z

[
∂b

∂y

]
Mx

g

> 0 =⇒ symmetrically unstable. (59.99b)

Consider a configuration with buoyancy slopes rising to the north, so that the meridional
buoyancy slope is positive, Syb > 0. Equation (59.99a) says that if the buoyancy decreases
moving in the +ŷ direction while moving along constant potential momentum surfaces, then
the flow is symmetrically unstable. Equivalently, equation (59.99b) says that if buoyancy has
a meridional derivative of the same sign on both a constant z surface and a constant Mx

g

surface, then the flow is symmetrically unstable. In Figure 59.7 we depict various properties of
symmetrically unstable configurations.

59.7 Symmetric instability and the wedge of instability

We here formulate the stability of a symmetric front using geopotential vertical coordinate
equations, thus serving as a complement to the analysis in Section 59.6 based on buoyancy as the
vertical coordinate. Furthermore, we here focus on perturbations that lead to an instability if
presented with a base flow state that is unstable. More precisely, we consider zonally symmetric
perturbations (i.e., a row of fluid parcels) that carry buoyancy and zonal potential momentum
from the initial position into a new position. The question is whether the displaced row of fluid
parcels feels a net force that sends it back to where it came (stable perturbation), or if the
force sends it further away (unstable perturbation). Through this analysis we show that flow
configurations with buoyancy and potential momentum surfaces oriented as in Figure 59.7 admit
unstable perturbations that probe the wedge of instability (see Figure 59.8). The existence of
such perturbations is a signature of a symmetrically unstable background flow state.

59.7.1 Formulation of the basic equations

Take the inviscid Boussinesq equation (30.91b) as a starting point, here written as

DMx/Dt = 0 and Dv/Dt = f (Mx
g −Mx) and Dw/Dt = −∂zφ+ b. (59.100)

The base state is assumed to be in geostrophic and hydrostatic balance, in which

base flow state⇐⇒ Dv/Dt = 0 and Mx =Mx
g and ∂zφ = b g. (59.101)
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To examine stability of this base state, displace a row of fluid parcels from its original y-z
position, (yA, zA), to a new position,

yB = yA +∆y and zB = zA +∆z, (59.102)

such as depicted in Figure 59.8. Notably, the buoyancy and potential momentum at point
(yB, zB) are distinct from those at (yA, zA). Importantly, the displacement materially preserves
the buoyancy and potential momentum of the displaced row of parcels, so that

bparcel = b(A) and Mx
parcel =Mx(A) =Mx

g (A). (59.103)

At the displaced position, the row of parcels finds itself in a local environment where it feels a
nonzero acceleration. Does this acceleration act to further the displacement (unstable perturba-
tion) or return the row of parcels to its original position (stable perturbation)?
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Figure 59.8: Illustrating the parcel argument for symmetric instability, whereby we displace a zonally (x̂ points out
of the page) symmetric row of parcels from A to B while retaining their buoyancy, b(A), and potential momentum,
Mx(A) =Mx

g (A). We also depict the slope of the displacement, tan θ = ∆z/∆y, the slope of the buoyancy surface,
Sy
b = (∆z/∆y)b = f ∂zug/N

2, and slope of the potential momentum surface, Sy
Mx

g
= (∆y/∆z)Mx

g
= (ζg + f)/∂zug.

When the buoyancy surface is sloped more steeply than the potential momentum surface, then that base state
flow is subject to symmetrically unstable perturbations, with the unstable perturbations extending into the gray
wedge of instability.

59.7.2 Assessing stability of the perturbation

To answer the above stability question, write the acceleration for the parcel displaced from point
A to point B in the form

Dvparcel

Dt
= f [Mx

g (B)−Mx
parcel] ŷ + [bparcel − ∂zφ(B)] ẑ (59.104a)

= f [Mx
g (B)−Mx

parcel] ŷ + [bparcel − b(B)] ẑ, (59.104b)

where Mx
g and ∂zφ are taken from the base state at point B, and for the second equality we

set the base state vertical pressure gradient equal to the buoyancy according to the hydrostatic
balance, ∂zφ(B) = b(B). We are interested in whether this displacement leads to an acceleration
of the parcel further in the direction of the displacement, beyond point B, in which case the
base state is symmetrically unstable, otherwise it is stable.

To determine stability conditions, use material invariance of the potential momentum and
buoyancy in the form of equation (59.103), thus leading to the parcel acceleration

Dvparcel

Dt
= f [Mx

g (B)−Mx
g (A)] ŷ + [b(A)− b(B)] ẑ. (59.105)
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For orientation, let the unit vector in the direction of the displacement be written

ŝ = ŷ cos θ + ẑ sin θ = ŷ (∆y/∆s) + ẑ (∆z/∆s), (59.106)

where θ is the angle of the displacement with respect to the horizontal plane, and

∆s =
√
(∆y)2 + (∆z)2, (59.107)

is the distance of the displacement (see Figure 59.8). Taking the ŝ projection of the parcel
acceleration (59.105) leads to

ŝ · Dvparcel

Dt
= f [Mx

g (B)−Mx
g (A)] cos θ − [b(B)− b(A)] sin θ. (59.108)

Now expand the terms on the right hand side in a Taylor series, expressing values at point B in
terms of those at point A, so that (keeping terms up to first order)

b(B)− b(A) = ∂yb∆y + ∂zb∆z = ∆y (∂yb+ ∂zb tan θ) (59.109a)

Mx
g (B)−Mx

g (A) = ∂yM
x
g ∆y + ∂zM

x
g ∆z = ∆y (∂yM

x
g + ∂zM

x
g tan θ), (59.109b)

with terms on the right hand side evaluated at point A. These expansions bring the equation of
motion (59.108) to

ŝ · Dvparcel

Dt
= f ∆y (∂yM

x
g + ∂zM

x
g tan θ) cos θ −∆y (∂yb+ ∂zb tan θ) sin θ. (59.110)

For a northward and upward perturbation as depicted in Figure 59.8, the symmetric perturbation
is unstable if the right hand side of equation (59.110) is positive, which requires

f (∂yM
x
g + ∂zM

x
g tan θ) cos θ > (∂yb+N2 tan θ) sin θ, (59.111)

which can be written in terms of the slope of the buoyancy surface, Syb , the slope of the potential
momentum surface, SyMx

g
, and the slope of the perturbation, tan θ

f ∂zM
x
g (tan θ − SyMx

g
) > ∂zb (tan θ − Syb ). (59.112)

Finally, we make use of thermal wind

f ∂zM
x
g = f ∂zug = −∂yb, (59.113)

so that the inequality (59.112) is

Syb (tan θ − S
y
Mx

g
) > tan θ − Syb . (59.114)

We now assume the following properties of the base state

Syb > 0 and SyMx
g
> 0 and tan θ > 0, (59.115)

which correspond to the base state configuration in Figure 59.8. The inequality (59.114) yields
the following condition for symmetric instability (as signaled by an acceleration in the direction
of the displacement)

SyMx
g
< tan θ < Syb . (59.116)

This slope condition means that a symmetric perturbation that falls within the wedge of
instability in Figure 59.8 initiates a symmetric unstability. Conversely, perturbations that fall
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outside of the wedge do not initiate a symmetric instability.

59.7.3 Symmetrically unstable while inertially and gravitationally stable
An alternative means to write the parcel acceleration equation (59.110) is given by

ŝ · Dvparcel

Dt
= ∆y cos θ [−f (f + ζg)−N2 tan2 θ + 2 f ∂zug tan θ], (59.117)

where we used ∂yM
x
g = −(f + ζg) and ∂zb = N2. The assumptions (59.115) are equivalent to (it

is useful to prove this)
f (f + ζg) > 0 and N2 > 0, (59.118)

which means the base state flow is stable to horizontal inertial instability and to gravitational
instability. We thus find from equation (59.117) that the perturbation is unstable if

2 f ∂zug tan θ > f (f + ζg) +N2 tan2 θ. (59.119)

This instability condition is equivalent to the purely geometric form given by equation (59.116).

59.8 Symmetric instability and linear modal analysis
We now consider symmetric instability following the linear stability analysis of Hoskins (1974).
This approach recovers the same stability condition as for the parcel method in Section 59.6.
However, linear stability analysis offers added insights concerning the central role of Ertel
potential vorticity and it provides further details of the instability. The mathematical analysis
here also offers useful practice for the study of baroclinic instability in Chapter 62.

59.8.1 Geostrophic base state and the perturbation equations
Our goal is to examine the stability of a zonally symmetric geostrophic front to zonally symmetric
perturbations. Whereas the base state for the study of gravity waves has zero baroclinicity, here
we consider a geostrophic front with meridional (across-front) baroclinicity. Rather than the
buoyancy coordinates used for the parcel stability analusis in Section 59.6.1, we here make use
of geopotential vertical coordinates and linearize the Boussinesq ocean equations. The starting
point for this development is the f -plane version of the perfect Boussinesq ocean equations from
Section 29.1.6

∂tv + (v · ∇)v + f ẑ × v = −∇φ+ b ẑ (59.120a)

∂tb+ v · ∇b = 0. (59.120b)

Equations for the geostrophic base state

The equations describing the zonal geostrophic and hydrostatic base state are given by

f ug = −∂yφg zonal flow in geostrophic balance (59.121a)

∂zφg = bg hydrostatic balance (59.121b)

f ∂zug = −∂ybg thermal wind of zonal flow (59.121c)

ζg = −∂yug relative vorticity. (59.121d)

The pressure field, φg(y, z), has a meridional derivative that supports the zonal geostrophic flow,
ug(y, z), and which is in hydrostatic balance with the base state buoyancy, bg(y, z). Combining
geostrophy with the hydrostatic balance leads to the thermal wind shear in equation (59.121c).
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Due to zonal symmetry, the only contribution to the relative vorticity comes from the meridional
shear of the zonal geostrophic flow, ζg = −∂yug. Ertel potential vorticity (Chapter 41) of the
base state proves to be central to the stability conditions

Qg = (ωg + f ẑ) · ∇bg = N2 (f + ζg)− f (∂zug)
2, (59.122)

where we made use of the thermal wind equation (59.121c) as well as the relative vorticity for
the zonal geostrophic background flow

ωg = ∇× x̂ug = ŷ ∂zug − ẑ ∂yug = −ŷ f−1∂ybg + ẑ ζg. (59.123)

Linearized perturbation equations

To develop perturbation equations, we decompose the flow into the geostrophic base state plus
a perturbation. The perturbation is time dependent and ageostrophic, and, importantly, is
assumed to retain the zonal symmetry of the base state

v(y, z, t) = v′(y, z, t) + x̂ug(y, z) (59.124a)

φ(y, z, t) = φ′(y, z, t) + φg(y, z) (59.124b)

b(y, z, t) = b′(y, z, t) + bg(y, z). (59.124c)

The linearized version of the velocity equation (59.120a) and buoyancy equation (59.120b) take
the form

∂tu
′ = v′ (f − ∂yug)− w′ ∂zug zonal velocity (59.125a)

∂tv
′ = −f u′ − ∂yφ′ meridional velocity (59.125b)

∂tw
′ = −∂zφ′ + b′ vertical velocity (59.125c)

∂tb
′ = −(v′ ∂ybg + w′ ∂zbg) buoyancy (59.125d)

∂yv
′ + ∂zw

′ = 0 continuity. (59.125e)

Observe that the zonal velocity evolves according to the Coriolis acceleration plus the convergence
of the advective flux of the base state geostrophic velocity

−v′ ∂yug − w′ ∂zug = −∇ · (v′ ug). (59.126)

Likewise, the buoyancy evolves according to the convergence of the advective flux of the base
state buoyancy

−(v′ ∂ybg + w′ ∂zbg) = −∇ · (v′ bg). (59.127)

In both cases, the advection velocity arises from the non-divergent anomalous flow, v′, with
zonal symmetry meaning there is no contribution to the flux convergences from the anomalous
zonal velocity, u′.

59.8.2 Inertia-vorticity oscillator equations

As in our study of buoyancy oscillations in Section 57.3 and inertia-gravity oscillations in Section
57.8, we here develop forced oscillator equations for the zonal and meridional velocity components.
To do so, take a time derivative of the zonal velocity equation (59.125a) and then substitute the
meridional velocity equation (59.125b) to find the zonal velocity oscillator equation

[∂tt + f (f + ζg)]u
′ = −(f + ζg) ∂yφ

′ + ∂zug (∂zφ
′ − b′). (59.128)
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Similar manipulations lead to the forced oscillator equation for the meridional velocity

[∂tt + f (f + ζg)] v
′ = f w′ ∂zug − ∂tyφ′. (59.129)

The forcing functions on the right hand side of both equations (59.128) and (59.129) are generally
nonzero. However, in their absence both the zonal and meridional velocity components satisfy a
free oscillator equation with squared natural angular frequency, f (f + ζg). We refer to these as
inertia-vorticity oscillations given the dual role of the Coriolis and vorticity for determining the
oscillations. The motion is oscillatory if f (f + ζg) > 0, whereas it is exponentially growing if
f (f + ζg) < 0. This stability condition for the oscillators is consistent with that found for the
parcel stability analysis leading to equation (59.92a). To develop more insight into the nature of
the instability for f (f + ζg) < 0, we next develop an equation for the overturning streamfunction
in the meridional-vertical plane.

59.8.3 Ageostrophic overturning circulation streamfunction

The continuity equation (59.125e) means that the meridional-vertical circulation is non-divergent
so that we can introduce a streamfunction for the perturbation flow

v′ = −x̂×∇ψ =⇒ v′ = ∂zψ and w′ = −∂yψ. (59.130)

The perturbed fields are ageostrophic and are sometimes referred to as the ageostrophic sec-
ondary circulation, with this circulation described by the ageostrophic overturning circulation
streamfunction, ψ. Based on the oscillator equations (59.128) and (59.129), we anticipate that
the overturning circulation is unstable for f (f + ζg) < 0.

Zonal vorticity equation

Taking the z derivative of the meridional velocity equation (59.125b) and the y derivative of the
vertical velocity equation (59.125c), and then subtracting, leads to the equation for the zonal
component of the vorticity12

∂t(∂yw
′ − ∂zv′)− f ∂zu′ = ∂yb

′, (59.131)

which takes on the form using the overturning streamfunction

∂t(∂yy + ∂zz)ψ = −f ∂zu′ − ∂yb′. (59.132)

Further assumptions for the base state flow

To enable the next steps of the derivation, which makes use of a plane wave ansatz in Section
59.8.4, we make use of the following assumptions about the base state:

ζg = −∂yug constant relative vorticity (59.133a)

f ∂zug = −∂ybg constant thermal wind shear (59.133b)

N2 = ∂zbg constant buoyancy frequency. (59.133c)

These assumptions are restrictive, and yet the resulting instabiliity calculation provides great
insights into base state flow configurations that are more general.

12The zonal component of the perturbation vorticity is given by x̂ · (∇× v′) = ∂yw
′ − ∂zv

′ = −(∂yy + ∂zz)ψ.
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Eliminating the zonal velocity and the buoyancy

We can eliminate the perturbation zonal velocity, u′, and the perturbation buoyancy, b′, from
the vorticity equation (59.132) by taking another time derivative. Upon doing so we make use
of the zonal velocity equation (59.125a) and the buoyancy equation (59.125d), and make use of
the assumptions (59.133a)-(59.133c) for the base state:

−∂tt(∂yy + ∂zz)ψ = f ∂ztu
′ + ∂ytb

′ (59.134a)

= f ∂z[v
′ (f + ζg)− w′ ∂zug]− ∂y(v′ ∂ybg + w′ ∂zbg) (59.134b)

= f ∂zzψ (f + ζg)− 2 ∂yzψ ∂ybg + ∂yyψ ∂zbg (59.134c)

= [f (f + ζg) ∂zz + 2 f ∂zug ∂yz +N2 ∂yy]ψ. (59.134d)

Rearrangement leads to the equation for the ageostrophic overturning circulation streamfunction

[∂tt(∂yy + ∂zz) + f (f + ζg) ∂zz + 2 f ∂zug ∂yz +N2 ∂yy]ψ = 0. (59.135)

59.8.4 Dispersion relation for meridional-vertical plane waves

Equation (59.135) is a constant coefficient partial differential equation for the overturning
streamfunction. We examine its properties by considering a plane wave ansatz just as for our
study of linear waves in Part X of this book. Since the flow is non-divergent, the plane waves are
transverse. Furthermore, we continue to assume zonal symmetry with the perturbations, so that
the waves have no x dependence. We thus consider waves propagating in the meridional-vertical
plane, in which case we take the plane wave ansatz

ψ(y, z, t) = ψ̃ ei (ky y+kz z−ω t), (59.136)

with Figure 59.9 depicting the wave geometry. Plugging this ansatz into the streamfunction
equation (59.135) leads to the dispersion relation

ω2 =
f (f + ζg) k

2
z + 2 f ∂zug ky kz +N2 k2y

k2y + k2z
(59.137a)

= f (f + ζg) cos
2 α+ 2 f ∂zug sinα cosα+N2 sin2 α (59.137b)

= cos2 α [f (f + ζg) + 2 f ∂zug tanα+N2 tan2 α]. (59.137c)

Note that the convention for symmetric instability is to use the angle, α, that the particle
trajectories make with the vertical, whereas for our study of internal gravity waves (Section
57.5) and inertia-gravity waves (Section 57.9), we used the angle γ = π/2− α that the phase
velocity makes with the horizontal. Either way, we see that the dispersion relation (59.137c)
depends only on the wave direction along with the prescribed rotation and properties of the
background flow. This “orientation-only” character of the dispersion relation is also shared by
the dispersion relation for internal gravity waves (equation (57.65)) and inertia-gravity waves
(equation (57.147)). Indeed, for the case with zero baroclinicity, in which ug = 0, then the
dispersion relation (59.137c) reduces to that for inertia-gravity waves.

59.8.5 Stability conditions

The dispersion relation (59.137c) determines the squared angular frequency, ω2, for a plane wave
ansatz. If ω2 > 0 then there are propagating waves. However, if ω2 < 0 then the waves can be
exponentially growing, in which case we say the flow is unstable. To determine the condition for
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Figure 59.9: Transverse plane wave used to probe the stability of a baroclinic front. The phase vector, k, makes
an angle γ with the horizontal and α with the vertical.

stability, write the dispersion relation in the form

ω2 = F (tanα) cos2 α, (59.138)

where we introduced the quadratic stability function

F (τ) = f (f + ζg) + (2 f ∂zug) τ +N2 τ2. (59.139)

The question of stability has been reduced to the question of whether there are wave
perturbations that realize F (tanα) < 0, in which case ω2 < 0. To answer this question we write

F (τ) = (τ −R+) (τ −R−), (59.140)

with the two roots given by the quadratic formula

N2R± = −f ∂zug ±
√
(f ∂zug)2 −N2 f (f + ζg) = −f ∂zug ±

√
−f Qg, (59.141)

where the final equality introduced the base state potential vorticity, Qg, from equation (59.122).
Remarkably, local stability has boiled down to the sign of f Qg at any point within the fluid.

Stable case

If f Qb > 0, then the two roots, R±, are complex conjugates. Yet tanα is real for all waves
with real wavevectors. Hence, if f Qg > 0 then there are no waves for which F (tanα) vanishes,
meaning that the stability function has one sign for all waves. To establish the sign, note that
for very weak fronts in stably stratified fluids,

F (τ) ≈ f2 +N2 τ2 > 0, (59.142)

which is the case for linear, and stable, inertia-gravity waves. Ramping up the strength of the
geostrophic front, while maintaining f Qg > 0, ensures that such geostrophic fronts are locally
stable.

For the typical case in stratified geophysical fluids, we have N2 > f2, so that the maximum
angular frequency (59.137c) occurs with horizontally propagating waves where α = π/2 so that

ω2
max = N2, (59.143)

in which case fluid particles exhibit buoyancy oscillations in the vertical. At the other end of the
spectrum, the minimum angular frequency occurs when α = 0 so that the wavevector is vertical
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and
ω2

min = f (f + ζg), (59.144)

which are inertial oscillations in the presence of a nonzero relative vorticity.

Unstable case

If f Qg < 0 then the two roots, R±, are real

R± =
−f ∂zug ±

√
|f Qg|

N2
, (59.145)

thus ensuring that there are waves that render F (tanα) = 0. Hence, the stability function
changes sign so that waves are unstable if ω2 < 0. In the unstable case, ω is not an angular
frequency but instead it measures the exponential growth rate for the unstable wave.

59.8.6 Ertel potential vorticity and local stability

In developing the stability conditions in Section 59.8.5, appearance of the Ertel potential vorticity
might not have seemed so remarkable. Namely, it seemingly just provided a useful shorthand
for the discriminant of the square root appearing the quadratic formula. In fact, potential
vorticity is central to the power of the stability analysis since it provides a direct connection
to physical processes required to initiate symmetric instability. Namely, potential vorticity
is materially invariant in a perfect fluid (Chapters 41 and 42). Hence, if a fluid starts in a
stable state with f Q > 0, say it starts with zero baroclinicity and with stable stratification so
that f Q = f2N2 > 0, then it has very restrictive means to evolve into an unstable state with
f Q < 0. One means for inducing f Q < 0 is to introduce friction, diffusion, boundary processes,
and/or other irreversible processes that materially alter Q in such a manner that brings f Q < 0.
Another means is for a perfect fluid parcel to cross the equator so that f changes sign. If the
parcel starts from a side of the equator with f Q > 0, then on the other side it has f Q < 0 and
so it is symmetrically unstable.

As noted by Thomas et al. (2013), the instability criteria, f Q < 0, embodies three instabilities.
Namely, for a barotropic fluid, whereby ∇hb = 0, then the potential vorticity is given by

f Q = f (f + ζ)N2. (59.146)

The f Q > 0 stability criteria is satisfied with N2 > 0 (gravitational stability; Section 30.6)
and f (f + ζ) > 0 (horizontal inertial stability; Section 59.5). In the presence of baroclinicity
with a symmetric front, the f Q > 0 stability criteria then reflects symmetric stability of the
present section. Buckingham et al. (2021) offer a generalization of the stability criteria by
allowing for curvature of the front, thus providing a criteria to determine stability with regard
to gravitational, centrifugal, horizontal inertial, and symmetric instabilities.

59.8.7 Comments and further study

The bulk of this section is an elaboration of Hoskins (1974), which exposed the connection
between symmetric instability and Ertel potential vorticity. The study from Thomas et al. (2013)
provides an example of these ideas for the ocean, offering practical details to map out stability
regimes across the spectrum of gravitational, inertial, and symmetric instabilities. Buckingham
et al. (2021) generalized Hoskins (1974) to the allow for a curved front.
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59.9 Semi-geostrophy and ageostrophic overturning

We here study the overturning circulation that arises in a symmetric front on an f -plane. This
overturning circulation is ageostrophic, and it is sometimes referred to as the ageostrophic
secondary circulation. Hoskins (1975) advanced the study of frontal secondary circulations
by rationalizing the equations of semi-geostrophy, making use of the geostrophic momentum
approximation. Semi-geostrophy is a balanced theory (i.e., gravity waves are filtered), just like in
the quasi-geostrophic theory of Chapter 45. However, the semi-geostrophic equations allow us to
study flows associated with fronts and where the cross-front flows can have relatively small length
scales sufficient to reach order unity Rossby numbers. Hence, semi-geostrophic equations are
quite useful for studying submesoscale flows surrounding geostrophic fronts and eddies (e.g., see
the book chapter by Thomas et al. (2008)), as well as the study of atmospheric fronts associated
with synoptic scale weather patterns (which motivated Hoskins (1975); see also Chapter 9 of
Holton and Hakim (2013)). In this section we provide just a taste of semi-geostrophy sufficient
to derive a diagnostic equation for the ageostrophic secondary overturning circulation.

59.9.1 Hydrostatic and Boussinesq ocean on an f -plane

We develop the semi-geostrophic equations within the perfect fluid hydrostatic Boussinesq ocean
equations (see Section 43.7) on an f -plane

Du

Dt
+ f ẑ × u = −∇hφ (59.147a)

∂zφ = b (59.147b)

Db

Dt
= 0 (59.147c)

∇ · v = ∇h · u+ ∂zw = 0. (59.147d)

The geostrophic velocity is written in terms of the pressure field

ug = f−1 ẑ ×∇hφ =⇒ ug = −f−1 ∂yφ and vg = f−1 ∂xφ, (59.148)

which is horizontally non-divergent on the f -plane. It is notable that this geostrophic velocity is
written in terms of the pressure field, φ, just like in the planetary geostrophic theory of Chapter
44. It also accords with the gauge choice discussed in Section 45.3.9 for quasi-geostrophy.

Inserting the geostrophic velocity (59.148) into the horizontal momentum equation (59.147a)
yields the identity

u− ug = ẑ ×Du =⇒ u− ug = −Dv and v − vg = Du, (59.149)

where we introduced the dimensionless material time derivative operator

D =
1

f

D

Dt
. (59.150)

The horizontal ageostrophic flow can thus be written

uag = u− ug = ẑ ×Du, (59.151)

with one iteration of this equation leading to

uag = ẑ ×Dug −D2u =⇒ uag = −D(vg +Du) and vag = D(ug −Dv). (59.152)
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This identity motivates the geostrophic momentum approximation in Section 59.9.3 that ignores
the D2u term.

59.9.2 Scaling for frontal flows

For f -plane flow, we lose no generality by orienting the front parallel to the x̂ direction, so that
the across-front flow is in the ŷ direction. We write U for the velocity scale of the along-front
flow and Lx for the corresponding length scale.13 Likewise, write V and Ly for the across-front
scales, with our interest in flows satisfying the inequalities

Lx ≫ Ly and U ≫ V with Lx/Ly = U/V. (59.153)

Inserting these scales into horizontal momentum equation (59.147a) yields

U

T
+
U U

Lx

+
U V

Ly

− f V = −Φ/Lx (59.154a)

V

T
+
V U

Lx

+
V V

Ly

+ f U = −Φ/Ly, (59.154b)

where Φ is the pressure scale. Now introduce two Rossby numbers according to

Rox =
U

f Lx

and Roy =
V

f Ly

, (59.155)

and then divide equation (59.154a) by f V and equation (59.154b) by f U , thus yielding

Rox

Lx

T V
+Rox

U

V
+Rox

Lx

Ly

− 1 = − Φ

Lx f V
(59.156a)

Roy

Ly

T U
+Roy

V

U
+Roy

Ly

Lx

+ 1 = − Φ

Ly f U
. (59.156b)

Now assume the time scale is advective so that

T = Lx/U = Ly/V, (59.157)

in which case equations (59.156a) and (59.156b) become

Rox Lx/Ly +Rox U/V +Rox Lx/Ly − 1 = −Φ/(Lx f V ) (59.158a)

Roy Ly/Lx +Roy V/U +Roy Ly/Lx + 1 = −Φ/(Ly f U). (59.158b)

Consider the across-front momentum equation (59.158b). Since Ly/Lx = V/U ≪ 1, and
assuming Roy is at most order unity, terms in the across-front momentum equation (59.158b)
balance only if the along-front flow is geostrophic

f U = −Φ/Ly. (59.159)

In turn, the along-front flow has a small Rossby number, Rox ≪ 1. We emphasize that the
along-front flow is geostrophic even if Roy ∼ 1. In contrast, even with Rox ≪ 1, each term in
equation (59.158a) can be order unity since U/V = Lx/Ly ≫ 1, so that the across-front flow is
not geostrophic. That is, Roy ∼ 1, so that the across-front flow is ageostrophic.

13The radius of curvature for the front provides a suitable along-front length scale. Recall we introduced
the radius of curvature in decomposing horizontal flows in Chapter 32. Also, the mathematics of the radius of
curvature was introduced in Chapter 5.
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Semi-geostrophy is designed to study flow along and across geostrophic fronts, with the
along front flow geostrophic and across-front flow ageostrophic. Equivalently, semi-geostrophy is
designed to study flows with relatively large cross-front shear induced relative vorticity (and small
curvature induced relative vorticity), with correspondingly large vertical velocity magnitudes,
both of which are signatures of Roy ∼ 1 flow (see Section 3 of Hoskins (1975)).14

59.9.3 Geostrophic momentum approximation
The geostrophic momentum approximation assumes the horizontal ageostrophic velocity is given
by

uag ≈ ẑ ×Dug, (59.160)

which results from truncating equation (59.152) at the leading order. From equation (59.152)
we see that the geostrophic momentum approximation holds so long as the horizontal velocity
components satisfy the following respective inequalities

|u| ≫ |D2u| =⇒ f2 ≫
∣∣∣∣1u D2u

Dt2

∣∣∣∣ (59.161a)

|v| ≫ |D2v| =⇒ f2 ≫
∣∣∣∣1v D2v

Dt2

∣∣∣∣ . (59.161b)

These inequalities are satisfied if the Lagrangian timescale of variability for the flow (both its
magnitude and direction; see Section 3 of Hoskins (1975)) is much longer than an inertial period.
Rearranging the geostrophic momentum approximation (59.160) leads to

Dug + ẑ × uag = 0, (59.162)

which is equivalent to
Dug

Dt
+ f ẑ × uag = 0, (59.163)

Hence, for the geostrophic momentum approximation, the material time evolution of the
geostrophic velocity is forced by the Coriolis acceleration arising from the horizontal ageostrophic
velocity. Furthermore, the material time derivative for the semi-geostrophic system is given by

D

Dt
= ∂t + v · ∇ = ∂t + (ug + uag) · ∇h + wag ∂z, (59.164)

with
v = (ug + uag) + ẑwag. (59.165)

Note that any vertical flow is ageostrophic, so that it is not really necessary to place the “ag”
subscript on wag. Even so, we do so to remind us that it lives at the same order as the horizontal
ageostrophic flow, uag. Furthermore, note that the key distinction between semi-geostrophy
and quasi-geostrophy is the presence of wag in the material time derivative operator for semi-
geostrophy, whereas quasi-geostrophy only makes use of advection by the geostrophic flow (see
Section 45.3.9).

The geostrophic momentum approximation is consistent with the frontal scaling given in
Section 59.9.2, and so it offers a suitable starting point for the study of frontal dynamics. Even so,
to make use of the geostrophic momentum approximation to evolve the geostrophic flow requires
further work since the ageostrophic velocity appears as part of the material time derivative
operator. This situation is analogous to quasi-geostrophy, whereby evolution of the geostrophic
flow arises from ageostrophic processes. To derive a closed equation set, Hoskins (1975) developed

14In Section 38.5 we decomposed relative vorticity into from cross-flow shear and along-flow curvature.
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the semi-geostrophic momentum equations via a coordinate transformation to geostrophic
coordinates, making use also of material constancy of the buoyancy and potential vorticity.15

We do not present that formulation here. Instead, we focus on deriving a diagnostic equation for
the secondary ageostrophic overturning circulation, with the manipulations reminiscent of those
used in Section 59.8 for symmetric instability of a baroclinic front.

59.9.4 Geostrophic evolution of the buoyancy gradient

As a preface to the diagnostic equations for the ageostrophic flow, consider the evolution of
the horizontal buoyancy gradient, considering just that evolution arising from geostrophic flow.
Recall that for the Boussinesq ocean, the horizontal gradient of buoyancy provides a measure
of baroclinicity (Section 40.7.2). Flow processes that increase the magnitude of the buoyancy
gradient lead to growth of the thermal wind flow and thus the frontal strength.

Start by considering the buoyancy equation for adiabatic and geostrophic flow

(∂t + ug · ∇h) b = 0. (59.166)

Separately taking the zonal and meridional derivatives and rearranging leads to

(∂t + ug · ∇h)(∂xb) = −∂xug · ∇hb and (∂t + ug · ∇h)(∂yb) = −∂yug · ∇hb, (59.167)

which can be combined to
(∂t + ug · ∇h)(∇hb) = Q, (59.168)

where we introduced the horizontal vector

Q = −(∂xug · ∇hb) x̂− (∂yug · ∇hb) ŷ. (59.169)

Correspondingly, geostrophic evolution of the squared buoyancy gradient is

(∂t + ug · ∇h)|∇hb|2 = 2Q · ∇hb. (59.170)

Evidently, the buoyancy gradient grows in magnitude if Q has a positive projection onto the
horizontal buoyancy gradient.

59.9.5 Secondary ageostrophic circulation

In Sections 59.5 and 59.6 we focused on the stability of a geostrophically balanced equilibrium
with flow along a symmetric front. In addition to the geostrophic flow along the front, there is
generally an ageostrophic circulation that circulates in the plane orthogonal to the front. We
here derive an equation describing this overturning circulation, and then specialize that equation
in Section 59.9.6 to a zonally symmetric front. For this purpose, start from the zonal momentum
equation, buoyancy equation, and continuity equation within the semi-geostrophic system

∂tug + (ug · ∇h)ug + (uag · ∇h)ug + wag ∂zug − fvag = 0 (59.171a)

∂tb+ ug · ∇hb+ uag · ∇hb+ wagN
2(z) = 0 (59.171b)

∂xuag + ∂yvag + ∂zwag = 0. (59.171c)

15Some authors reserve the name semi-geostrophy for the transformed equations derived by Hoskins (1975).
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The vertical derivative of the zonal momentum equation (59.171a) leads to

∂t∂zug + (∂zug · ∇h)ug + (ug · ∇h)∂zug + (∂zuag · ∇h)ug + (uag · ∇h)∂zug

+ ∂z(wag ∂zug)− f ∂zvag = 0, (59.172)

and the meridional derivative of the buoyancy equation (59.171b) yields

∂t∂yb+ (∂yug · ∇h)b+ (ug · ∇h)∂yb+ (∂yuag · ∇h)b+ (uag · ∇h)∂yb+ ∂ywagN
2 = 0. (59.173)

The thermal wind relation,

f ∂zug = ẑ ×∇hb =⇒ ∂zug = −f−1 ∂yb and ∂zvg = f−1 ∂xb, (59.174)

brings equation (59.172) to the form

∂t(∂yb)− f (∂zug · ∇h)ug + (ug · ∇h)∂yb− f (∂zuag · ∇h)ug + (uag · ∇h)∂yb
+ ∂z(wag ∂yb) + f2∂zvag = 0, (59.175)

and equation (59.173) becomes

∂t(∂yb) + (∂yug · ∇h)b + (ug · ∇h)∂yb + (∂yuag · ∇h)b + (uag · ∇h)∂yb + ∂ywagN
2 = 0. (59.176)

Subtracting equation (59.176) from equation (59.175) eliminates the time derivative thus revealing
the diagnostic relation

− f (∂zug · ∇h)ug − f (∂zuag · ∇h)ug + ∂z (wag ∂yb) + f2 ∂zvag − (∂yug · ∇h)b
− (∂yuag · ∇h)b− ∂ywagN

2 = 0. (59.177)

Making use of thermal wind and horizontal non-divergence for the geostrophic velocity allows us
to write

f(∂zug · ∇h)ug = (∂yug · ∇h)b = −Qy, (59.178)

where Qy is the meridional component of the geostrophic Q-vector introduced in Section 45.4.1
(see equation (45.67)).16

Q ≡ −(∂xug · ∇hb) x̂− (∂yug · ∇hb) ŷ. (59.179)

Introduction of Qy into equation (59.177) yields

−f (∂zuag · ∇h)ug + ∂zwag ∂yb+ wag ∂yzb+ f2 ∂zvag − (∂yuag · ∇h)b− ∂ywagN
2 = −2Qy. (59.180)

Again making use of thermal wind and ∇h · ug = 0 renders

−f (∂zuag ·∇h)ug− (∂yuag ·∇h)b = f∂zuag ∂yvg− f∂zvag ∂yug + f∂yuag ∂zvg + f∂yvag ∂zug. (59.181)

The mixed partial derivative of the buoyancy vanishes

∂2b

∂z∂y
=

∂

∂y

∂b

∂z
=
∂N2(z)

∂y
= 0, (59.182)

16Be careful to distinguish the geostrophic Q-vector from the potential vorticity, Q. In particular, note the
upright Q versus the slanted Q.
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which follows since the background vertical stratification is assumed to be independent of the
horizontal direction. Bringing these results together into equation (59.180) leads to

f∂zuag ∂yvg + f∂yuag ∂zvg + f∂yvag ∂zug + ∂zwag ∂yb+ f∂zvag (f − ∂yug)

− ∂ywagN
2 = −2Qy, (59.183)

with another use of thermal wind yielding

f∂zuag ∂yvg+f∂yuag ∂zvg+f∂zug (∂yvag−∂zwag)+f∂zvag (f−∂yug)−∂ywagN
2 = −2Qy. (59.184)

This equation provides a relation for the ageostrophic cross-flow and vertical circulation, (vag, wag),
written in terms of the buoyancy field and the geostrophic flow. We next next consider flow
surrounding a symmetric front, in which case equation (59.184) becomes a diagnostic equation
for the ageostrophic overturning streamfunction.

59.9.6 Ageostrophic overturning circulation for a symmetric front

Equation ((59.184) is now specialized by assuming the zonal velocity is purely geostrophic (as in
a zonal geostrophic front) so that

uag = 0. (59.185)

For this flow, the ageostrophic flow in the cross-flow/depth plane is non-divergent

∂yvag + ∂zwag = 0. (59.186)

The diagnostic equation (59.184) now takes on the specialized form for a symmetric front

−2 f ∂zug ∂zwag + f (f + ζg) ∂zvag − ∂ywagN
2 = −2Qy, (59.187)

where
ζg = −∂yug (59.188)

is the vertical component of the geostrophic relative vorticity. Introducing an overturning
streamfunction for the cross-flow/vertical ageostrophic circulation

uag = −x̂×∇ψ =⇒ vag = ∂zψ and wag = −∂yψ, (59.189)

and using thermal wind brings equation (59.187) into the form

[N2 ∂yy − 2 ∂yb ∂yz + f (f + ζg) ∂zz]ψ = −2Qy. (59.190)

Equation (59.190) is useful for the study of ageostrophic (Ro ∼ 1) dynamics along a front in
which there is an ageostrophic overturning circulation in response to geostrophic forcing from
Qy.

59.9.7 Connection to potential vorticity and symmetric instability

The partial differential equation (59.190) can be written

Kψ = −2Qy, (59.191)

where
K = N2 ∂yy − 2 ∂yb ∂zy + f (f + ζg) ∂zz (59.192)
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is a linear partial differential operator that is a function of the geostrophic flow and the buoyancy.
Following the considerations in Section 6.5, we know that this operator is elliptic if the following
inequality holds

(∂yb)
2 −N2 f (f + ζg) < 0. (59.193)

We can relate the ellipticity condition (59.193) to the Ertel potential vorticity for the
Boussinesq geostrophic flow. For this purpose, write the geostrophic vorticity as

ωg = ∇× ug (59.194a)

= −x̂ ∂zvg + ŷ ∂zug + ẑ ∂xvg − ∂yug) (59.194b)

= −f−1 (x̂ ∂xb+ ŷ ∂yb) + ẑ (∂xvg − ∂yug). (59.194c)

If we assume the front is zonally symmetric, then the relative vorticity in the geostrophic flow
takes the form

ω2d
g = −f−1 ∂yb ŷ − ẑ ∂yug, (59.195)

in which case the Ertel potential vorticity (for the Boussinesq geostrophic flow) takes the form

Q2d
g = ∇b · (ωg + f ẑ) (59.196a)

= −f−1 (∂yb)
2 +N2 (f − ∂yug). (59.196b)

= −f−1 (∂yb)
2 +N2 (f + ζg). (59.196c)

Ellipticity of the PDE (59.190) is thus assured so long as

f Q2d
g = −(∂yb)2 +N2 f (f + ζg) > 0. (59.197)

The PDE (59.6) transitions to a hyperbolic system when f Q2d
g < 0, which is the condition for

symmetric instability detailed in Section 59.6. Hence, when f Q2d
g > 0 the front is stable to

symmetric instability, with the ageostrophic circulation acting to relax the front. In contrast,
when f Q2d

g > 0 the front is symmetrically unstable.

59.9.8 Further study

Chapter 9 of Holton and Hakim (2013) provides a pedagogical discussion of semi-geostrophy
and the study of atmospheric fronts.

59.10 Exercises

exercise 59.1: Inertial instability in a shallow water layer
In Section 59.5 we developed the physics of horizontal inertial instability within the continuous
Boussinesq equations. Consider the analysis instead within the context of a single layer of
shallow water fluid. What are the conditions for inertial instability within the shallow water
layer? Are they the same as for the continuous Boussinesq equations? Why?

exercise 59.2: Symmetric instability criteria in terms of balanced Richardson
number
Consider the balanced Richardson number, defined for the geostrophic and hydrostatic balanced
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flow, along with a corresponding angle

Rib =
N2

(∂zug)2
and ϕRib ≡ tan−1(−1/Rib). (59.198)

Show that the instability criteria, f Q < 0, from Section 59.8 can be written in the equivalent
form

ϕRib < ϕc ≡ tan−1(−(f + ζg)/f). (59.199)

As shown by Thomas et al. (2013), this alternative form of the instability criteria allows for a
very effective means to characterize flow regimes conducive to the suite of local instabilities:
gravitational, inertial, and symmetric.

exercise 59.3: Group velocity for symmetric meridional-vertical waves
In this exercise we derive some properties for the group velocity of the stable meridional-vertical
plane waves discussed in Section 59.8.4.

(a) Derive the group velocity, cg, for the stable meridional-vertical waves whose dispersion
relation is given by equation (59.137c).

(b) Compute cg · k, where the wavevector is k = ky ŷ + kz ẑ.
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Chapter 60

STABILITY OF FLUID INTERFACES

In this chapter we study the Rayleigh-Taylor and Kelvin-Helmholtz instabilities as realized along
an infinitesimal material fluid interface that separates two homogeneous (constant density) fluid
layers of differing densities, and with the two fluids immiscible and inviscid. The gravitational
body force is active throughout the fluid layers, and the surface tension is active at the interface
between the layers. We do not consider Coriolis or centrifugal acceleration in this chapter
(non-rotating reference frame), and the relative vorticity vanishes in both layers. The normal
mode method, based on Fourier modal analysis, is suited to developing necessary and sufficient
conditions for instability.

The physical system is highly idealized in its assumption that the interface between the
fluid layers is infinitesimal, and furthermore that the fluids are inviscid and immiscible. Both
assumptions accord with our treatment of surface gravity and capillary waves in Chapter 52.
Even though quite idealized, the methods and concepts encountered in studying the instabilities
are useful in more realistic cases. Furthermore, experimental results support the relevance of the
instability conditions found in this chapter.

reader’s guide for this chapter
This chapter is an extension of the material in Chapter 52, which is concerned with

stable linear surface waves on an interface arising from gravity and/or surface tension. The
methods of modal instability analysis used in this chapter are also used for a variety of other
instabilities elsewhere in this book.
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60.1. GOVERNING EQUATIONS

60.1 Governing equations
Formulation of the stability problem in this chapter closely follows that pursued in Chapter 52
for surface gravity waves and capillary waves. In that study we assumed the waves occur on
the interface between two regions of constant density, yet with the upper region having zero
density, as motivated by waves on the free surface of the ocean underneath the much less massive
atmosphere. Here, we allow for the upper region to have a nonzero density. Under certain
circumstances, fluctuations on the interface lead to stable linear waves, and we develop the
associated dispersion relations. However, a Rayleigh-Taylor instability occurs when the smaller
density layer sits below a heavier layer, and with a base state that is at rest. More precisely, an
instability occurs when the destabilizing effects from gravity overcome the stabilizing effects from
surface tension. In the absence of surface tension, there is always a Rayleigh-Taylor instability
when heavy fluid sits above light fluid.

For the Kelvin-Helmholtz instability, we consider the heavy fluid below the light fluid, yet
with a base state velocity that differs between the two layers so that there is a velocity shear
(more precisely, a velocity jump) at the interface and an associated vorticity singularity. An
instability occurs when the destabilizing effects from the velocity shear are sufficiently strong so
as to overcome the stabilizing effects from gravity and surface tension. In the absence of both
gravity and surface tension, any velocity shear renders an instability of the interface which, as
noted on page 485 of Chandrasekhar (1961), leads one to conclude that the Kelvin-Helmholtz
instability arises by the crinkling of the interface by the shear that is present; and this crinkling
occurs even for the smallest differences in the velocities of the two fluids. We find in Chapter 61
a modification to this result when considering a finite shear layer rather than the infinitesimal
interface considered in the current chapter.

In this section we develop the equations describing motion of an interface separating two
homogeneous, inviscid, and immiscible fluids in a non-rotating reference frame and with densities,
ρ1 and ρ2, and constant zonal velocities, x̂U1 and x̂U2. (Figure 60.1). We ignore side boundaries
by assuming the domain to be horizontally infinite. This is the idealized physical system that is
used to study the Rayleigh-Taylor instability and the Kelvin-Hemholtz instability.

<latexit sha1_base64="fPZGsfV8CJAjcG9SY22RYNJ4KJY=">AAACLnicbVDLSsNAFJ2prxpfrS5cuAkWwVVJxNey6MZlC/YBbSiT6U07dDIJMxOhhn6BW/0Pv0ZwIW79DKdtFtrmwIXDOfdy7z1+zJnSjvOJC2vrG5tbxW1rZ3dv/6BUPmypKJEUmjTikez4RAFnApqaaQ6dWAIJfQ5tf3w/89tPIBWLxKOexOCFZChYwCjRRmo890sVp+rMYa8SNyMVlKHeL+Pj3iCiSQhCU06U6rpOrL2USM0oh6nVSxTEhI7JELqGChKC8tL5pVP7zCgDO4ikKaHtufp3IiWhUpPQN50h0SO17M3EXA8UEzrX8cM8uZvo4NZLmYgTDYIuLgsSbuvInuVkD5gEqvnEEEIlM8/ZdEQkodqkmbPaskyU7nJwq6R1UXWvq1eNy0rtLgu1iE7QKTpHLrpBNfSA6qiJKAL0gl7RG37HH/gLfy9aCzibOUL/gH9+ARmKp/U=</latexit>z

<latexit sha1_base64="x1bMQ6SEPQ7I2IPYZEjpX0zzPFc=">AAACLnicbVDLSsNAFJ2prxpfrS5cuAkWwVVJxNey6MZlC/YBbSiT6U07dDIJMxOxhH6BW/0Pv0ZwIW79DKdtFtrmwIXDOfdy7z1+zJnSjvOJC2vrG5tbxW1rZ3dv/6BUPmypKJEUmjTikez4RAFnApqaaQ6dWAIJfQ5tf3w/89tPIBWLxKOexOCFZChYwCjRRmo890sVp+rMYa8SNyMVlKHeL+Pj3iCiSQhCU06U6rpOrL2USM0oh6nVSxTEhI7JELqGChKC8tL5pVP7zCgDO4ikKaHtufp3IiWhUpPQN50h0SO17M3EXA8UEzrX8cM8uZvo4NZLmYgTDYIuLgsSbuvInuVkD5gEqvnEEEIlM8/ZdEQkodqkmbPaskyU7nJwq6R1UXWvq1eNy0rtLgu1iE7QKTpHLrpBNfSA6qiJKAL0gl7RG37HH/gLfy9aCzibOUL/gH9+ARX2p/M=</latexit>x

<latexit sha1_base64="QaH1K1aaBRtzcXqqgq5DhlUss7s=">AAACNXicbVC7SgNBFJ2JrxhfiRYWNoNBsAq74qsM2lhGMA9IljA7mU2GzGOZmRXCkp+w1f/wWyzsxNZfcJJsockeuHA4517uvSeMOTPW8z5gYW19Y3OruF3a2d3bPyhXDltGJZrQJlFc6U6IDeVM0qZlltNOrCkWIaftcHw/89vPVBum5JOdxDQQeChZxAi2Tur09Ej1U3/aL1e9mjcHWiV+RqogQ6Nfgce9gSKJoNISjo3p+l5sgxRrywin01IvMTTGZIyHtOuoxIKaIJ0fPEVnThmgSGlX0qK5+ncixcKYiQhdp8B2ZJa9mZjrUcOkzXVCkSd3ExvdBimTcWKpJIvLooQjq9AsLjRgmhLLJ45gopl7DpER1phYF2rO6lLJRekvB7dKWhc1/7p29XhZrd9loRbBCTgF58AHN6AOHkADNAEBHLyAV/AG3+En/ILfi9YCzGaOwD/An1/9m6ru</latexit>⇢1

<latexit sha1_base64="qYKjOBdVrnx84MXEBW5gb+iPEiQ=">AAACNXicbVC7SgNBFJ3xGddXooWFzWAQrMJu8FUGbSwjmAckS5idzCZD5rHMzAphyU/Y6n/4LRZ2YusvOEm20CQHLhzOuZd774kSzoz1/Q+4tr6xubVd2PF29/YPDoulo6ZRqSa0QRRXuh1hQzmTtGGZ5bSdaIpFxGkrGt1P/dYz1YYp+WTHCQ0FHkgWM4Ktk9pdPVS9rDrpFct+xZ8BLZMgJ2WQo94rwZNuX5FUUGkJx8Z0Aj+xYYa1ZYTTiddNDU0wGeEB7TgqsaAmzGYHT9C5U/ooVtqVtGim/p3IsDBmLCLXKbAdmkVvKq70qGHSrnQisUrupDa+DTMmk9RSSeaXxSlHVqFpXKjPNCWWjx3BRDP3HCJDrDGxLtQVqz3PRRksBrdMmtVKcF25erws1+7yUAvgFJyBCxCAG1ADD6AOGoAADl7AK3iD7/ATfsHveesazGeOwT/An1//Zqrv</latexit>⇢2

<latexit sha1_base64="bPFmbmBiQfrXYNZH1Dzk8Ot3TDw=">AAACNHicbVDLSgMxFE3qq46vVhcu3ASL4KrMiK+NUHTjsoJ9QDuUTJppQ5PMkGSEOvQj3Op/+C+CO3HrN5i2s9B2Dlw4nHMv994TxJxp47ofsLCyura+Udx0trZ3dvdK5f2mjhJFaINEPFLtAGvKmaQNwwyn7VhRLAJOW8Hobuq3nqjSLJKPZhxTX+CBZCEj2Fip9Xwz7KXepFequFV3BrRMvIxUQIZ6rwwPu/2IJIJKQzjWuuO5sfFTrAwjnE6cbqJpjMkID2jHUokF1X46u3eCTqzSR2GkbEmDZurfiRQLrccisJ0Cm6Fe9KZirkc1kybXCUSe3ElMeO2nTMaJoZLMLwsTjkyEpmmhPlOUGD62BBPF7HOIDLHCxNhMc1Y7jo3SWwxumTTPqt5l9eLhvFK7zUItgiNwDE6BB65ADdyDOmgAAkbgBbyCN/gOP+EX/J63FmA2cwD+Af78AuVTql4=</latexit>

z = h1

<latexit sha1_base64="JyUCmUAmDo0LxHEy5Be7f/eiM0E=">AAACQHicbVDLTgJBEJzFF+IL9ODBy0Ri4kHJrvF1JHrxiIk8EpaQ2WGACTOzm5leDW74FK/6H/6Ff+DNePXkAHtQoJJOKlXd6e4KIsENuO6Hk1laXlldy67nNja3tnfyhd2aCWNNWZWGItSNgBgmuGJV4CBYI9KMyECwejC4Hfv1R6YND9UDDCPWkqSneJdTAlZq5wunPeyfYL9PIPEDiZ9H7XzRLbkT4HnipaSIUlTaBWff74Q0lkwBFcSYpudG0EqIBk4FG+X82LCI0AHpsaalikhmWsnk9hE+skoHd0NtSwGeqH8nEiKNGcrAdkoCfTPrjcWFHjNcwUInkIvkZgzd61bCVRQDU3R6WTcWGEI8Tg53uGYUxNASQjW3z2HaJ5pQsPkuWJ3L2Si92eDmSe2s5F2WLu7Pi+WbNNQsOkCH6Bh56AqV0R2qoCqi6Am9oFf05rw7n86X8z1tzTjpzB76B+fnF2zLrf4=</latexit>

�g ẑ
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Figure 60.1: An infinite box filled with two homogeneous and immiscible fluids with densities, ρ1 and ρ2, and
horizontal velocities, u1 and u2. The material interface between the layers is located at z = η(x, y, t), with η = 0
when the interface is flat. The fluid region is denoted R, which is infinite in the horizontal directions. For study
of the Rayleigh-Taylor instability we assume rigid and flat plates located at z = −h2 and z = h1, whereas for
Kelvin-Helmholtz instability we let h1 and h2 go to infinity. The interface generally experiences a surface tension
due to the density jump.
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60.1.1 Equations from potential theory

The fluid in each layer has a constant density and so is incompressible, so that the velocity in
each layer is non-divergent, ∇·v = 0. Furthermore, we assume the flow is irrotational (∇×v = 0)
and so can make use of the potential theory detailed in Section 52.2. In particular, the velocity
potential has a time tendency given by Bernoulli’s equation of motion (52.16)

∂tΨ = Φ+K + p/ρ = K + pd/ρ, (60.1)

where

v = −∇Ψ velocity and velocity potential (60.2a)

Φ = g z geopotential (60.2b)

K = v · v/2 kinetic energy per mass (60.2c)

p = −ρΦ+ pd p = pressure and pd = dynamic pressure. (60.2d)

The velocity potential, Ψ, satisfies Laplace’s equation in the fluid interior and the no-normal
flow kinematic boundary condition (Neumann boundary condition) at the rigid top and rigid
bottom

∇2Ψ = 0 x ∈ R (60.3a)

n̂ · ∇Ψ = 0 x ∈ ∂R. (60.3b)

When considering a background zonal velocity, we extract the velocity potential for the static
background potential, Ψo

n = −Un x, with n = 1, 2 the layer index and with the remaining portion
of the velocity potential capturing the perturbation relative to the background. The background
velocity potential trivially satisfies Laplace’s equation and the no-normal flow boundary condition
at the flat and rigid top and bottom boundaries.

60.1.2 Kinematic boundary condition at the interface

Motion of the interface, z = η(x, y, t), is determined by boundary conditions evaluated at the
interface. The interface is material since the fluid layers are assumed to be immiscible. Focusing
first on the lower side, in region 2, the kinematic boundary condition from Section 19.6.2 states
that

(v2 − vη) · n̂2 = 0 at z = η, (60.4)

where v2 is the fluid velocity in the lower region, and

n̂2 = n̂ =
∇(z − η)
|∇(z − η)| at z = η, (60.5)

is the outward normal direction pointing into the upper layer. The analysis for layer-2 holds
equivalantly for layer-1, only with the normal direction pointing from layer-1 down to layer-2.
We thus have

(v2 − vη) · n̂ = 0 and (vη − v1) · n̂ = 0 =⇒ (v2 − v1) · n̂ = 0. (60.6)

That is, the normal components to the layer velocities match at the interface. Consequently, the
normal derivative of the velocity potential also matches at the interface

n̂ · (∇Ψ2 −∇Ψ1) = 0 at z = η. (60.7)
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The velocity of the interface, vη, has a normal component given by

|∇(z − η)|vη · n̂ = ∂tη at z = η, (60.8)

so that the kinematic boundary condition (60.4) can be written in the equivalent form

(∂t + u1 · ∇) η = w1 and (∂t + u2 · ∇) η = w2 at z = η. (60.9)

Inserting the background velocity and the velocity potential leads to the kinematic boundary
conditions at the fluid interface

(∂t+U1 ∂x−∇Ψ1 ·∇) η = −∂zΨ1 and (∂t+U2 ∂x−∇Ψ2 ·∇) η = −∂zΨ2 at z = η. (60.10)

60.1.3 Dynamic boundary condition at the interface

The dynamic boundary condition from Section 25.10 says that the pressure is continuous across
the interface so long as we ignore surface tension. For the case with surface tension, the discussion
in Section 25.11 reveals a pressure jump across the interface, which here takes the form given by
the Young-Laplace formula (25.149),1

p2 − p1 = −γ∇2
h η at z = η. (60.11)

In this equation, γ > 0 is the surface tension (dimensions of force per length = M T−2). Evidently,
pressure on the concave side of the interface is higher than on the convex side. For example,
if the interface extends upward then p2 − p1 > 0 since the layer-2 fluid is on the concave side
and so it has the higher interface pressure. This result also follows since ∇2

h η < 0 for an upward
extension of the interface, which leads to a local free surface maximum. The treatment here
follows our approach for surface capillary-gravity waves in Section 52.10.1.

60.1.4 Pressures within the two layers

We find it convenient to isolate the hydrostatic pressure within the two layers. For the upper
layer we have

ph1 = g ρ1 (h1 − z) for η ≤ z ≤ h1, (60.12)

where we assumed pressure at z = h1 is zero. Similarly, the hydrostatic pressure in layer two is

ph2 = ph1(η) + g ρ2 (η − z) = g ρ1 (h1 − η) + g ρ2 (η − z) for −h2 ≤ z ≤ 0. (60.13)

Note that these hydrostatic pressures match at the interface

ph2(x, y, z = η, t) = ph1(x, y, z = η, t). (60.14)

If there is fluid motion within the layers, then the layer interface is not flat and the pressure
is not equal to its resting pressure. In this case we write the pressure as

p1(x, y, z, t) = ph1(x, y, z, t) + δp1(x, y, z, t) (60.15a)

p2(x, y, z, t) = ph2(x, y, z, t) + δp2(x, y, z, t)− γ∇2
h η(x, y, t), (60.15b)

1We write ∇2
h η to emphasize that the Laplacian is only acting in the horizontal directions. This notation is

not needed when the Laplacian acts on the interface, η, since this field is just a spatial function of the horizontal
positions, x, y. However, in equation (60.24) we replace ∂tη(x, y, t) with −∂zΨ(x, y, z = 0, t) as per the linearized
kinematic boundary condition (60.20c) with u1 = u2 = 0. It is this replacement that makes it important to note
that the Laplacian is acting just in the horizontal.
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where δp1 and δp2 are pressures associated with the fluid motion and that vanish when the fluid
is at rest. Furthermore, these pressures are continuous at the interface just like the hydrostatic
pressures

δp1 = δp2 at z = η, (60.16)

so that there remains a pressure jump (60.11) in the presence of surface tension

p2 − p1 = −γ∇2
h η at z = η. (60.17)

60.1.5 Linearized equations

As for the study of surface gravity waves and capillary waves in Chapter 52, linearization of this
system is based on an assumed small slope for the interfaces. Hence, we follow the study of surface
waves in Section 52.3 to linearize the Bernoulli equation of motion (60.1). Correspondingly, we
linearize the kinematic boundary condition (60.9) and dynamic boundary condition (60.17). In
particular, the linearized boundary conditions are evaluated at z = 0 rather than at z = η, in
which case the linearized version of ph2 is a function just of z alone.

A new feature here beyond the case of surface waves concerns the presence of a background
flow, in which case the kinetic energy contributes at linear order. In particular, the layer-1
Bernoulli equation yields

ρ1 ∂tΨ1 = g z ρ1 + p1 + ρ1 [U1 u1 + (U1)
2/2]. (60.18)

The constant, ρ1 (U1)
2/2, can be eliminated by taking a gauge transformation, as detailed in

Section 52.2.3 when studying surface waves. Hence, we drop this term in the following. Writing
u1 = −∂xΨ1 then brings the linearized Bernoulli equation to the form

ρ1 (∂t + U1 ∂x)Ψ1 = g z ρ1 + p1, (60.19)

so that the background zonal flow provides a constant advection of the velocity potential. We
are thus led to the following linearized layer equations

ρ1 (∂t + U1 ∂x)Ψ1 = g z ρ1 + p1 linearized Bernoulli equation for layer 1 (60.20a)

ρ2 (∂t + U2 ∂x)Ψ2 = g z ρ2 + p2 linearized Bernoulli equation for layer 2 (60.20b)

(∂t + U1 ∂x)η = −∂zΨ1 linearized kinematic b.c. at z = 0 (60.20c)

(∂t + U2 ∂x)η = −∂zΨ2 linearized kinematic b.c. at z = 0 (60.20d)

δp2 − δp1 = 0 dynamic b.c. at z = 0 (60.20e)

p2 − p1 = −γ∇2
h η dynamic jump b.c. at z = 0. (60.20f)

Taking the difference between the Bernoulli equations in the two layers gives

ρ2 (∂t + U2 ∂x)Ψ2 − ρ1 (∂t + U1 ∂x)Ψ1 = g (ρ2 z2 − ρ1 z1) + p2 − p1, (60.21)

and then evaluating this difference on the interface (z1 = z2 = η) leads to

ρ2 (∂t + U2 ∂x)Ψ2 − ρ1 (∂t + U1 ∂x)Ψ1 = (g δρ− γ∇2
h ) η (60.22)

where the density difference is written

δρ = ρ2 − ρ1. (60.23)

Note that when multiplied by gravity, we evaluate the interface position at z = η, whereas other

CHAPTER 60. STABILITY OF FLUID INTERFACES page 1711 of 2158



60.2. RAYLEIGH-TAYLOR INSTABILITY

terms in the linear theory are evaluated at z = 0.2

60.2 Rayleigh-Taylor instability

For the Rayleigh-Taylor instability analysis, we assume the background flow is at rest so that
U1 = U2 = 0. Hence, we are here examining stability of the rest state to small perturbations of
the layer interface.

60.2.1 Boundary value problem and dispersion relation

With zero background flow it is a simple matter to eliminate the free surface from the interface
condition (60.22). We do so by taking a time derivative and using the linearized kinematic
boundary condition (60.20c) (or equivalently equation (60.20d))

∂tt(ρ2Ψ2 − ρ1Ψ1) = −[g δρ− γ∇2
h ] ∂zΨ at z = 0, (60.24)

where w1 = w2 = −∂zΨ at z = 0. We are thus led to the boundary value problem

∂zΨ1 = 0 z = h1 (60.25a)

∇2Ψ1 = 0 0 < z < h1 (60.25b)

∂tt(ρ2Ψ2 − ρ1Ψ1) = −[g δρ− γ∇2
h ] ∂zΨ z = 0 (60.25c)

∇2Ψ2 = 0 − h2 < z < 0 (60.25d)

∂zΨ2 = 0 z = −h2. (60.25e)

Following the approach for surface waves in Section 52.5, we seek a traveling plane wave
solution with horizontal wavevector,

k = kx x̂+ ky ŷ and k̂ = k/|k|, (60.26)

and a wave ansatz in the form of a cosine modulated by a vertical structure function

Ψ(x, y, z, t) = AΓ(z) cos(k · x− ω t), (60.27)

where A is a real amplitude. The solution to Laplace’s equation with Neumann boundary
conditions in the two half-domains is given by3

Ψ1 = A
cosh[|k| (z − h1)]

sinh[−|k|h1]
cos(k · x− ω t) 0 ≤ z ≤ h1 (60.28a)

Ψ2 = A
cosh[|k| (z + h2)]

sinh[|k|h2]
cos(k · x− ω t), − h2 ≤ z ≤ 0. (60.28b)

The dispersion relation is obtained by plugging equations (60.28a)-(60.28b) into the interface

2We detailed this treatment of the boundary position when deriving the linear equations for surface waves in
Section 52.3.4. The same considerations hold here.

3As noted in Section 52.2.2, solutions to Laplace’s equation do not support spatial oscillations in all three
directions since the sum of the curvature in each direction (i.e., second partial derivatives) must vanish. Cor-
respondingly, the velocity potential supports traveling waves in the horizontal and exponential behavior in the
vertical.
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condition (60.25e), with the following pieces needed (recall each term is evaluated at z = 0)

∂tt(ρ2Ψ2 − ρ1Ψ1) = −ω2A [ρ2 coth(|k|h2)− ρ1 coth(−|k|h1)] cos(k · x− ω t) (60.29a)

∂zΨ1 = ∂zΨ2 = A |k| cos(k · x− ω t) (60.29b)

(∂xx + ∂yy)Ψ = −|k|2Ψ, (60.29c)

thus leading to the dispersion relation

ω2 =
|k| (g δρ+ γ |k|2)

ρ1 coth(|k|h1) + ρ2 coth(|k|h2)
. (60.30)

As for the surface waves in Chapter 52, the horizontal wavenumber, |k|, determines the vertical
scale of the wave. We now examine various cases for stable and unstable waves.

60.2.2 Stable traveling plane waves
When the squared angular frequency (60.30) is positive, ω2 > 0, then the waves are interface
waves related to those studied in Chapter 52.4 For example, when the waves are so short that
they do not feel the rigid boundaries at z = h1 and z = −h2, then we can set coth(|k|h2) ≈ 1
and coth(|k|h1) ≈ 1, in which case the dispersion relation takes on the approximate form

ω2 ≈ |k| (g δρ+ γ |k|2)
ρ1 + ρ2

shortwave limit with |k|h1 ≫ 1 and |k|h2 ≫ 1. (60.31)

This limit (when surface tension is set to zero) corresponds to the deep water waves from Section
52.5.5. For the longwave limit, in which case the waves feel the top and bottom boundaries, we
set coth(|k|h1) ≈ 1/(|k|h1) and coth(|k|h2) ≈ 1/(|k|h2) so that

ω2 ≈ |k|2 g δρ
ρ1/h1 + ρ2/h2

longwave limit with |k|h1 ≪ 1 and |k|h2 ≪ 1. (60.32)

Note that we dropped the surface tension term since |k| is very small in the longwave limit.
Evidently, since ω2/|k|2 is independent of k, the longwaves are non-dispersive gravity waves and
are thus the analog of non-dispersive shallow water gravity waves studied in Section 55.5. The
waves here are affected by a modified value for the gravitational acceleration, which we write as5

grH ≡ g δρ

ρ1/h1 + ρ2/h2
with H = h1 + h2. (60.33)

By introducing this reduced gravity, gr, the two-layer shallow water dispersion relation (60.32)
takes the form

ω2 = (grH) |k|2. (60.34)

Recall that the dispersion relation for a single shallow water layer (Section 55.5) is given by
ω2 = (g H) |k|2. We thus see that long gravity waves on an interface between two fluid layers
feels a reduced version of the gravitational acceleration, with gr ≪ g when there is a small density
difference. In fact, even the case of a single shallow water can be formulated as a two-layer
system, with the upper layer having zero density so that the reduced gravity equals to g.

4More precisely, if we set ρ1 = 0 as for a vacuum, then the waves are identical to the surface waves from
Chapter 52.

5The reduced gravity in a shallow water model is defined (e.g., see equation (35.54)) without the layer
thicknesses introduced in equation (60.33). A key difference is that in the present section we start with the
non-hydrostatic equations and then take the longwave limit, whereas in Section 35.3.2 we only work with the
hydrostatic shallow water equations.
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60.2.3 Unstable exponentially growing plane waves
The case with ω2 < 0 leads to unstable wave growth. This case is rendered by δρ = ρ2 − ρ1 < 0.
That is, if there is heavy fluid above light fluid then the system can be unstable, depending
on whether the gravitationally unstable stratification can overcome the stabilizing effects from
surface tension. We now examine various cases to explore this unstable case, known as the
Rayleigh-Taylor instability.

The growth rate

To express the temporal structure of the unstable wave, introduce the growth rate

ω2 = −σ2 =⇒ ω = ±iσ, (60.35)

where σ > 0 is given by

σ =

[ |k| (g |δρ| − γ |k|2)
ρ2 coth(|k|h2) + ρ1 coth(|k|h1)

]1/2
> 0. (60.36)

We furthermore express the velocity potential (60.28a) and (60.28b) as the real part of complex
exponentials. In particular, write for the top layer

Ψ1 = AΓ(z) Re[ei (k·x−ω t)] = AΓ(z) e±σ tRe[eik·x] = AΓ(z) e±σ t cos(k · x). (60.37)

The solution with the time behavior, eσ t, is exponentially growing and this is the unstable wave.

All waves are unstable in the absence of surface tension

In the absence of surface tension, the growth rate is given by

σ =

[
g |k| |δρ|

ρ2 coth(|k|h2) + ρ1 coth(|k|h1)

]1/2
if γ = 0. (60.38)

Evidently, all waves are unstable, with the smallest waves having the largest growth rate given
approximately by

σ ≈
√
g |k| |δρ|/(ρ1 + ρ2) with |k|h2 ≫ 1 and |k|h1 ≫ 1. (60.39)

We thus expect to find the smallest scales rapidly going unstable, with the instability halted
only after all of the denser fluid occupies the lower layer.

The stabilizing role of surface tension

The growth rate (60.36) vanishes at the critical wavenumber

|k|2c = g |δρ|/γ. (60.40)

All waves with wavenumbers larger than |k|c are stablized by surface tension, in which case
the stable linear waves are capillary-gravity waves. We studied the physics of surface tension
in Section 25.11, where we noted that it can counteract the effects from gravity when the
radius of curvature is sufficiently small. To get a sense for the size of these stable waves,
recall our discussion of capillary-gravity waves in Section 52.10. For an air-water interface the
surface tension is approximately γ = 0.072 N m−1 = 0.072 kg s−2, along with the air density
ρ1 = 1 kg m−3, water density of ρ2 = 1020 kg m−3. With these physical constants the critical
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wavenumber is given by

|k|c ≈ 372 m−1 =⇒ Λc = 2π/|k|c ≈ 1.7 cm. (60.41)

Again, waves of wavelength smaller than Λc are stable.

Maximum growth rate with both surface tension and gravity

We saw above that all waves are unstable without surface tension, with the growth rate increasing
as |k|1/2 as per equation (60.39). However, surface tension introduces a high wavenumber cutoff
so that all waves with |k| > |k|2c are stable. Again, such waves are stablized since surface tension
dominates over gravity when the radius of curvature is small enough. What is the most unstable
wave when there is both surface tension and gravity? One might expect that in the presence
of random forcing, this wavenumber will be the one most visibly growing in any particular
situation.

To simplify the algebra for computing the most unstable wave, we consider the growth rate
(60.36) in the limit that the two rigid boundaries separate to infinity. This limit is not overly
constraining since the waves exponentially decay away from the interface, and we expect that the
most unstable wavenumber is within an order of magnitude of |k|c. With h1, h2 set to infinity
the dispersion relation is given by

σ2 =
g |δρ| |k| − γ |k|3

ρ2 + ρ1
. (60.42)

The wavenumber leading to the maximum growth rate is found by setting ∂σ2/∂|k| = 0, in
which case

|k|2max = g |δρ|/(3 γ) = |k|2c/3. (60.43)

Using the numbers above for an air-water interface, we see that the wavelength for the most
unstable wave is roughly 1.7 cm ∗

√
3 ≈ 3 cm.

60.2.4 Further study
The current section follows the approach from section 2 from Fetter and Walecka (2003), whereas
chapter X of Chandrasekhar (1961) and chapter 2 of Sutherland (2010) provide more detailed
presentations. The 18 minute mark of this video from Prof. Mollo-Christensen provides a
laboratory example of Rayleigh-Taylor instability.

60.3 Kelvin-Helmholtz instability
Kelvin-Helmholtz instability arises when the two fluid layers in Figure 60.1 are moving horizontally
relative to each other. In the following we assume the velocities are zonal and written x̂U1 and
x̂U2. Furthermore, we assume the fluids are stably stratified so that δρ > 0. Finally, to simplify
the analysis, assume the rigid boundaries are moved to infinity so that the only boundary of
concern is at the fluid interface.

60.3.1 Velocity potential
The velocity potential satisfying Laplace’s equation in the two half spaces is given by

Ψ1 = −U1 x+A1 e
−|k|z ei (k·x−ω t) 0 ≤ z <∞ (60.44a)

Ψ2 = −U2 x+A2 e
|k|z ei (k·x−ω t) −∞ < z ≤ 0. (60.44b)
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In contrast to the Rayleigh-Taylor instability, as given by equations (60.28a) and (60.28b), we
here use complex exponentials, with the real part of each expression assumed. We also introduced
two real amplitudes, A1 and A2. Both of these features proves of use in the following analysis.
Furthermore, the nonzero background flow makes it less convenient to eliminate the interface
height, so that we explicitly consider its wave ansatz in the form

η = ηo e
i (k·x−ω t). (60.45)

To develop a dispersion relation, we make use of the difference in the Bernoulli equation of
motion when evaluated at the interface (equation (60.22)), as well as the kinematic and dynamic
boundary conditions (60.20c)-(60.20f).

60.3.2 Dispersion relation from the interface conditions
Evaluating equation (60.22) at z = 0 for the waves (60.44a), (60.44b), and (60.45), leads to the
following relation between the wave amplitudes

i [ρ2 (−ω + kx U2)A2 − ρ1 (−ω + kx U1)A1] = (g δρ+ γ|k|2) ηo (60.46)

Likewise, the linearized kinematic boundary conditions (60.20c) and (60.20d) render the relations

i (−ω + kx U1) ηo = |k|A1 (60.47a)

i (−ω + kx U2) ηo = −|k|A2. (60.47b)

Use of equations (60.47a) and (60.47b) in equation (60.46) leads to the dispersion relation

ρ1 (ω − kx U1)
2 + ρ2 (ω − kx U2)

2 = |k| (g δρ+ γ|k|2). (60.48)

We can readily check that this result agrees with that found for the Rayleigh-Taylor instability
in equation (60.30). Expanding equation (60.48) and solving the quadratic expression leads to
the more conventional form of the dispersion relation

ω =
kx (U1 ρ1 + U2 ρ2)

ρ1 + ρ2
±
√
|k| (g δρ+ γ |k|2)

ρ1 + ρ2
− k2x ρ1 ρ2 (U1 − U2)2

(ρ1 + ρ2)2
. (60.49)

We consider facets of this dispersion relation in the following.

60.3.3 Analysis of the stability condition
The angular frequency is a real number, and the flow is stable, so long as the discriminant in
equation (60.49) is positive,

ρ1 ρ2 (U1 − U2)
2

(ρ1 + ρ2)
<
|k| (g δρ+ γ |k|2)

k2x
=⇒ stable state, (60.50)

with the perturbations organizing into stable linear capillary-gravity waves modified by the
background velocity. To help understand this stability condition, we find it useful to consider
a few special cases. To reduce algebra, assume the wavevector is aligned in the x̂ direction so
that |k|2 = k2x. Now write the stability condition (60.50) as a condition on the squared velocity
difference, in which case

(U1 − U2)
2 <

(ρ1 + ρ2)

ρ1 ρ2
(g δρ/|k|+ γ |k|) =⇒ stable state. (60.51)
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This equation says that the waves are stable so long as the squared velocity difference is
insufficient to counteract the stabilizing effects from surface tension and gravity. Notice that the
gravitational effects are weighted by the density difference, δρ = ρ2 − ρ1, so that gravity plays
no role when the densities are the same. In general, as the wave number increases (wavelength
decreases), the effects from gravity acting to stabilize the waves become less important than
those from surface tension, whereas the converse situation holds for low wavenumber waves (long
wavelength). We illustrate these properties in Figure 60.2.
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Figure 60.2: Stability diagram for Kelvin-Helmholtz instability of the interface between two constant density
layers in a gravity field and with surface tension at the interface. The red curve arises from the gravity contribution
to equation (60.51); the yellow curve is for the surface tension; and the green curve is the sum. If the squared
velocity difference, (U1 − U2)

2, is above the green line then there are unstable waves whose wavenumbers are
between the low and high wavenumber bounds defined by the green line. This figure is generated using the following
numbers appropriate for the interface between the atmosphere (region 1) and ocean (region 2): ρ1 = 1 kg m−3,
ρ2 = 1020 kg m−3, g = 9.8 m s−2, γ = 0.072 kg s−2. The critical wavenumber from equation (60.52) equals
to |k|c =

√
g δρ/γ = 372 m−1, which corresponds to a critical wavelength λcrit = 2π/|k|c = 0.017 m. As the

velocity difference increases from zero, this is the first wave that goes unstable when the velocity difference reaches
U1 − U2 = 7.3 m s−1 = 26 km hr−1.

Most easily growing wave

The stability condition (60.51) indicates that that waves that are either small enough or large
enough are stable, whereas waves of intermediate length are unstable in the presence of sufficient
velocity difference (shear) across the interface. To find the wavenumber of the unstable wave
that appears with the least amount of shear (e.g., minimum of the green curve in Figure 60.2),
we find where the derivative, ∂/∂|k|, of the right hand of equation (60.51) vanishes, which leads
to the critical squared wavenumber

|k|2c = g δρ/γ, (60.52)

which is the same as found for the Rayleigh-Taylor instability in Section 60.2.3. Evidently, when
the wavenumber equals to |k|c, then the stability condition is most easily violated by the smallest
squared shear, thus leading to exponential growth for this wave. Plugging in |k|c to the stability
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condition (60.51) leads to

(U1 − U2)
4
crit <

4 γ g (ρ1 + ρ2)
2 (ρ2 − ρ1)

ρ21 ρ
2
2

=⇒ stable state. (60.53)

This expression shows how surface tension and gravity act together to help maintain stability in
the face of a velocity difference. Yet if the velocity difference grows, eventually the inequality
swaps sign so that the flow becomes unstable. Furthermore, the wavenumber |k|c is the first
wave to exponentially grow.

The case of vanishing surface tension

If the surface tension vanishes then equation (60.53) says that there are always unstable high
wavenumber waves for an arbitrarily small velocity difference. More precisely, we return to the
general condition (60.51) with γ = 0 to find

(U1 − U2)
2 <

g (ρ1 + ρ2) δρ

|k| ρ1 ρ2
=⇒ stable state. (60.54)

Evidently, no matter how small the velocity difference, there are waves with high enough
wavenumber that violate this inequality and thus lead to an instability. In Figure 60.2, the case
with zero surface tension means that the green and red curves are identical, so that without the
effects from surface tension, there is no high wavenumber cutoff for the instability.

The case of vanishing gravity

If we align the layers horizontally rather than vertically, then gravity is no longer able to enhance
stability in the face of the velocity difference. Just like in the case with zero surface tension,
there are always waves that go unstable in this case. However, the unstable waves here have
arbitrarily low wavenumber, so that in the absence of gravity there is no low wavenumber cutoff.

Stability is enhanced when ρ1/ρ2 ≪ 1

If the upper layer has a vanishingly small density relative to the lower layer, then the right
hand side of the stability condition (60.51) becomes large. We say that this case is strongly
stable since it takes a large velocity difference to produce an instability. A geophysically relevant
example is air blowing over water with γ = 0.072 N m−1 = 0.072 kg s−2, ρ2 = 1020 kg m−3 and
air density ρ1 = 1 kg m−3. Equation (60.53) says that the most unstable wave is stimulated
with an air-sea velocity difference

U1 − U2 = 7.3 m s−1 = 26 km hr−1. (60.55)

These numbers are used to generate Figure 60.2.

60.3.4 Insights from vorticity

The vorticity vanishes everywhere in the fluid, except at the interface. At the interface the
velocity jump leads to a Dirac delta vortex sheet. We compute the vorticity of the base state by
writing the velocity in terms of Heaviside step functions (equation (7.19))

v = x̂ [U1H(z) + U2H(−z)] (60.56)
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so that the vorticity is given by

ŷ · ∇ × v = ∂z[U1H(z) + U2H(−z)] = (U1 − U2) δ(z), (60.57)

with Figure 60.3 providing an illustration. The vortex sheet is a stationary equilibrium state
since the flow felt by adjacent vortices exactly cancels. However, as shown in Figure 60.4, the
vortex sheet is unstable to small perturbations. Indeed, in the absence of gravity or surface
tension then any perturbation is unstable, which is the Kelvin-Helmholtz instability.
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Figure 60.3: A vorticity perspective on the Kelvin-Helmholtz instability, whereby the velocity jump leads to a
Dirac delta vorticity at the interface and a corresponding circulation for loops that enclose a portion of the sheet.
Each circular arrow surrounding a black dot represents a point vortex induced by the velocity jump, with the
z = 0 plane filled with a continuum of such point vortices. The circulation around the sheet is C = x̂ · (u2 −u1)L,
where L is the length of the side parallel to the sheet. This configuration is a stationary equilibrium since the flow
felt by adjacent vortices exactly cancels so that they remain fixed. However, it is generally unstable, as shown in
Figure 60.4.
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Figure 60.4: The equilibrium configuration from Figure 60.3 is unstable to small perturbations, and in the case
of zero surface tension and zero gravity any perturbation is unstable. We understand the cause of the instability
by observing that if a vortex is displaced away from the sheet, the flow from adjacent vortices and the background
flow causes the sheet to roll-up on itself, which is the Kelvin-Helmholtz instability. This figure is a variant of
Figure 7.1.3 of Batchelor (1967) (who provides full details of the vorticity interpretation of the Kelvin-Helmholtz
instability), Figure 1.3 of Drazin and Reid (1981), and Figure 3.9 of McWilliams (2006).

60.3.5 Insights from Bernoulli’s theorem
Figure 60.5 provides a schematic of the pressure forces active next to the interface in the presence
of a wavelike perturbation. A wavelike perturbation along the interface gives rise, through
Bernoulli’s theorem, to pressure anomalies of opposite sign in the regions near to the interface.6

In particular, consider the case of an interface that enters one of the two regions and so reduces
the cross-sectional area for the fluid flow. The flow is incompressible, and so the flow speed
increases in this region, with increased speed associated with an anomalously low pressure. The
opposite occurs in the other region, where there is an anomalously high pressure. Evidently, the
pressure dipoles increase the amplitude of the wavelike perturbation. If the pressure perturbation

6At the interface, the pressure has a jump given by the Young-Laplace equation (60.11). We are here interested
in the region local to the boundary.
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is sufficiently strong to overcome the stabilizing effects from gravity and surface tension, then
the perturbation grows and becomes nonlinear, which is the Kelvin-Helmholtz instability.
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Figure 60.5: Schematic of a region near the interface between two uniform density and immiscible fluid regions
with nonzero relative motion between the regions. The left panel shows a small wavelike perturbation along the
interface that gives rise, through Bernoulli’s theorem, to pressure anomalies of opposite signs in the regions on
either side of the interface. Evidently, the pressure dipoles increase the amplitude of the wavelike perturbation,
thus leading to a positive feedback. If the feedback is sufficiently strong to overcome the stabilizing effects from
gravity and surface tension, then it will lead to the Kelvin-Helmholtz instability. The right panel shows the
nonlinear stage in which the waves are growing and eventually break.

60.3.6 An energetic perspective on Kelvin-Helmholtz induced mixing

Kinetic energy of the background flow provides the energy source for the Kelvin-Helmholtz
instability. Once the instability fully acts, it produces a well mixed state whereby the density
and velocity are mixed within a region local to the initial interface. The kinetic energy of the
final mixed state is less than the initial state, which we can infer since mixing removes the
velocity jump across the interface; i.e., mixing smooths the velocity profile. Conversely, the
gravitational potential energy is increased since some of the light fluid from the upper region is
mixed with the heavy fluid from the lower region, and vice versa, thus raising the center of mass
of the fluid column.7

A deductive analysis of the energetics of mixing is outside our scope. Indeed, without
information about the pressure forces causing the base flow, we do not have sufficient information
to perform an energy budget. However, we can study the energetic effects from mixing by making
reasonable assumptions about the final flow profile, and in so doing we can quantitatively support
the above inferences about the effects of mixing on kinetic energy and gravitational potential
energy. For analytical tractability we assume the mixing region extends over the symmetric
range, −H ≤ z ≤ H, with negligible signature of mixing outside of this range. Furthermore, we
make use of the Boussinesq ocean from Chapter 29 with density a linear function of temperature
and with a reference density ρo.

To estimate the thickness, H, of the mixing region, recall the expression (60.54) allows us to
compute the low wavenumber cutoff for the case of Kelvin-Helmholtz instability in the absence
of surface tension

|k|low =
g (ρ1 + ρ2) δρ

ρ1 ρ2 (U1 − U2)2
. (60.58)

The unstable waves riding on the interface are exponentially decaying in the direction away
from the interface, with their decay scale given by |k|. Evidently, unstable Kelvin-Helmholtz
waves extend a distance ∼ 1/|k|low away from the interface, thus suggesting that a scale for the
associated mixing is given by

H ∼ ρ1 ρ2 (U1 − U2)
2

g (ρ1 + ρ2) δρ
≈ ρo (U1 − U2)

2

2 g δρ
, (60.59)

7We studied this effect of mixing on gravitational potential energy in Section 26.2.6.
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where the approximate expression made use of the oceanic Boussinesq approximation.
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z = �H

Figure 60.6: The initial velocity profile (left panel) for the study of Kelvin-Helmholtz instability, with U1 = U2.
This profile is assumed to evolve to the linear profile (right panel) after mixing. The kinetic energy in the mixed
profile is less than the kinetic energy in the initial profile. In turn, mixing raises the center of mass of the fluid so
that it increases the gravitational potential energy. It is notable that the final state velocity profile shown here
could be unstable to shear instability, as discussed in Chapter 61, in which case the shear instability will further
act to homogenize the velocity and density.

The initial density and velocity profiles are given by the jump across the interface at z = 0,
with the initial velocity and density having a depth integral of

ˆ H

−H
u dz = H (U1 + U2) and

ˆ H

−H
ρdz = H (ρ1 + ρ2). (60.60)

We assume the final density and velocity profiles have a depth integral equal to those in the
initial state, thus ensuring that zonal momentum and heat are conserved by the mixing. For
simplicity, assume the final state profiles are linear, in which case (see Figure 60.6)

ρ(z) = ρ2 − (ρ2 − ρ1) (1 + z/H)/2 = (ρ1 + ρ2)/2− z δρ/(2H) for −H ≤ z ≤ H (60.61a)

u(z) = U2 − (U2 − U1) (1 + z/H)/2 = (U1 + U2)/2− z δU/(2H) for −H ≤ z ≤ H. (60.61b)

The depth integrated kinetic energy and gravitational potential energy per horizontal area

K =
ρo
2

ˆ H

−H
u2 dz and P = g

ˆ H

−H
z ρdz, (60.62)

take on the following initial values

Kinit =
ρo
2

ˆ H

−H
u2 dz = H ρo (U

2
1 + U2

2 )/2 (60.63a)

Pinit = g ρ2

ˆ 0

−H
z dz + g ρ1

ˆ H

0
z dz = −g H2 δρ/2. (60.63b)

Use of the linear profiles (60.61a) and (60.61b) render the final mixed state energies

Kfinal =
ρo
2

ˆ H

−H
u2 dz = H ρo

[
U2
1 + U2

2 + U1 U2

]
/3 (60.64a)

Pfinal = g

ˆ H

−H
ρ z dz = −g H2 δρ/6. (60.64b)
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As anticipated, we find that the kinetic energy is reduced upon mixing whereas the gravitational
potential energy increases

Kfinal −Kinit = −H ρo (U1 − U2)
2/6 < 0 and Pfinal − Pinit = g H2 δρ/3 > 0. (60.65)

The ratio of the change in potential energy to the change in kinetic energy is

Pfinal − Pinit

Kfinal −Kinit

= −2 g

ρo

δρ/H

[(U1 − U2)/H]2
, (60.66)

which is the ratio of the density stratification to the squared vertical shear. This ratio is a
discrete version of the gradient Richardson number as discussed in Section 61.7.5. Indeed, in
Section 61.7.5 we consider an energetic argument similar to that given here as applied to the final
state linear sheared profile in Figure 60.6, which can be unstable to strataified shear instability
if the Richardson number is less than 1/4.

60.3.7 Further study
Chapter XI of Chandrasekhar (1961) provides a detailed study of Kelvin-Helmholtz instability,
with particular comments in Section 101b on the geophysical relevance of the critical shear.
Section 2 of Fetter and Walecka (2003) also provides a presentation consistent with that gien
here. The first half of this video from Prof. Mollo-Christensen provides laboratory examples
of Kelvin-Helmholtz instabilities. This video from Prof. Worster’s fluids lab provides a vivid
illustration of Kelvin-Helmholtz instability in a two-layer fluid.
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Chapter 61

SHEAR INSTABILITY

In this chapter we study shear instability as realized in two canonical cases. The first concerns
a meridionally sheared zonal flow in a horizontally non-divergent barotropic fluid, with this
instability sometimes called barotropic instability. We derive integral stability conditions for
arbitrary zonal flow profiles, and then study a special flow profile that admits an analytic solution.
The analytic study exposes the underlying wave resonance mechanism active in shear instability,
with this mechanism involving the interaction of edge waves that live on the background vorticity
field (Section 54.5). We thus interpret shear instability as the constructive interference of two
vorticity (edge) waves, where interference supports the mutual exponential growth of both waves
that is characteristic of a modal instability.

The second kind of shear instability concerns vertically sheared flows in a gravitationally
stratified fluid (N2 > 0) in the absence of planetary rotation (f = 0). The stable vertical
stratification creates a potential energy barrier that stabilizes the vertically sheared flow relative
to the horizontally sheared case without gravity. If the kinetic energy of the vertically sheared flow
is large enough, then the potential energy barrier can be overcome to produce a shear instability.
Our study of stratified shear instability makes use of normal mode stability analysis just like for
the barotropic shear flow. The gradient Richardson number provides a non-dimensional measure
of the potential energy relative to the kinetic energy, with a normal mode instability occuring if
the Richardson number is below a critical value. We offer a derivation following Miles (1961)
revealing that the critical Richardson number is 1/4.

reader’s guide for this chapter
Surface tension is ignored throughout this chapter, so that we focus on sheared flows of

scales larger than the ≈ 10−3 m characteristic of capillary waves. To study horizontal shear
instability, we assume familiarity with the horizontally non-divergent barotropic model from
Chapter 38 and the associated wave mechanics in Sections 54.2 and 54.3. We make particular
use of edge waves studied in Section 54.5 as part of our wave resonance interpretatation of
shear instability. For our study of stratified shear instability, we make use of the perfect
Boussinesq fluid from Chapter 29. In linearizing the equations we follow many of the same
steps used for the study of internal gravity waves in Chapter 57. The linear partial differential
equation appearing in the stability analysis is known as the Taylor-Goldstein equation, which is
very similar to the Rayleigh equation encountered in the barotropic shear instability. Methods
and concepts from this chapter are very useful in the study of baroclinic instability in Chapter
62.

Kelvin and Helmholtz studied the interfacial instability described in Chapter 60. Even so,
the continuous shear layer instability of the present chapter is also, sometimes, referred to as
Kelvin-Helmholtz instability.
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61.1 Loose threads

• Discuss Couette flow stability in Section 61.5.1 even though it satisfies the Rayleigh
inflection point theorem.

• Look at the pressure field in the waves to offer a force balance interpretation of the
instabilties. Also, to help understand why unstable waves tilt into the shear.
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61.2 Global versus local instabilities

The wave/modal interpretation of shear instability that we pursue in this chapter contrasts to
the variety of symmetric instabilities studied in Chapter 59. In particular, symmetric stablility
of a given flow can be deduced by the local necessary and sufficient condition, f Q < 0, with Q
the Ertel potential vorticity. A corresponding mechanistic interpretation follows from parcel
arguments. As emphasized by Cushman-Roisin and Beckers (2011) (see their Chapter 17),
wave instabilities, such as shear instability of this chapter, are not characterized by a local
flow property. The reason is that a wave instability arises from the constructive interaction
between coherent wave motion, with that interaction a function of boundary conditions and
phase relations. Hence, a quantitative understanding of shear instability requires the solution of
an eigenvalue problem to determine properties of the interacting waves.

Squire’s theorem (Squire, 1933) states that for every three-dimensional perturbation to a plane
shear flow, there exists a more unstable two-dimensional perturbation.1 Hence, to characterize
the most unstable perturbations, it is sufficient to study shear instability in a two-dimensional
flow. Even so, as presented in Chapter 3 of Smyth and Carpenter (2019), it can be pedagogically
useful to start from the more general three-dimensional case and then show the validity of
Squire’s theorem.

61.3 Governing barotropic equations

As in the study of edge waves in Section 54.5, we here consider flow of a horizontally non-divergent
barotropic fluid in the presence of a prescribed background zonal flow that is a function of
latitude

ub = ub(y) x̂. (61.1)

This background velocity has zero material acceleration

(∂t + ub · ∇)ub = 0, (61.2)

so that it is in exact geostrophic balance with a background pressure gradient

f ẑ × ub = −∇φb =⇒ f ub = −∂yφb. (61.3)

Much of this chapter (e.g., the linearized equations with a modulated wave ansatz in Section 61.4
and the interacting edge waves in Section 61.6) considers the case of a non-rotating reference
frame (f = 0), in which case the background flow is generated by an unspecified pressure gradient.
In other sections we retain planetary rotation in the form of the β plane, such as for the integral
stability conditions of Section 61.5. In the remainder of this section we develop the equations
describing the velocity and the kinetic energy of fluid flow in the presence of the prescribed zonal
background flow, and with details for generation of the background flow left unspecified.

61.3.1 Velocity equation

Writing the velocity and pressure as the sum of a background plus a fluctuation

u = ub + u
′ and φ = φb + φ′, (61.4)

1See Drazin and Reid (2004) or Section 11.8 of Kundu et al. (2016) for more details of Squire’s theorem. We
illustrate Squre’s theorem in Section 62.7.3 when studying the growth rate of unstable Eady edge waves.
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leads to the material acceleration

Du

Dt
= (∂t + u · ∇)u = (∂t + u

′ · ∇)u′ + (u′ · ∇)ub + (ub · ∇)u′, (61.5)

and the corresponding equation of motion

(∂t + u
′ · ∇)u′ + (u′ · ∇)ub + (ub · ∇)u′ + f ẑ × u′ = −∇φ′, (61.6)

which takes on the linearized form with the given background flow (61.1)

(∂t + ub ∂x)u
′ + x̂ v′ ∂yub + f ẑ × u′ = −∇φ′. (61.7)

61.3.2 Eddy kinetic energy

As detailed in Section 38.1.2, energetic transfers in the horizontally non-divergent barotropic fluid
only involve the kinetic energy since the gravitational potential energy is a constant. Working
with the linearized equation of motion (61.7), we find that the kinetic energy per mass contained
in the fluctuating flow, u′ · u′/2, satisfies

[∂t + ub ∂x](u
′ · u′)/2 = −u′ v′ ∂yub −∇ · (u′ φ). (61.8)

We commonly refer to u′ · u′/2 as the eddy kinetic energy. The first term on the right hand
side of equation (61.8) arises from fluctuations of the zonal and meridional velocity weighted
by the meridional derivative of the background zonal flow. This term is associated with the
transfer of kinetic energy from the background flow to the fluctuating flow.2 The second term is
the convergence of the pressure flux that is determined by the fluctuating flow. Taking a zonal
average over the domain, and assuming all zonal boundary contributions vanish, leads to

∂tK = −u′ v′ ∂yub − ∂y(v′ φ′), (61.9)

where we defined the zonal averaged eddy kinetic energy in the fluctuating fields

K = u′ · u′/2. (61.10)

Evidently, equation (61.9) says that the zonal averaged kinetic energy of the fluctuating fields
has an Eulerian time derivative determined by the following two terms:

−∂y(v′ φ′) = meridional convergence of pressure flux (61.11a)

−u′ v′ ∂yub = shear production. (61.11b)

We assume that the pressure convergence term vanishes when integrated over the meridional
extent of the domain (e.g., v′ = 0 along the meridional boundaries), in which case it represents
a redistribution or transport that moves eddy kinetic energy around but does not alter its
domain integrated value. In contrast, the shear production term is a source/sink that measures
the rate that eddy kinetic energy is modified via the zonal correlations between u′ and v′ and
as modulated by the meridional gradient of the background flow. As noted above, this term
provides a transfer of kinetic energy between the mean flow and the fluctuating flow. It is
expected that this term provides the source of the growing kinetic energy of an unstable wave.
Note that its name arises since it is a nonzero production of kinetic energy in the presence of a
background shear.

2Note that we do not have access to the energy equation for the background flow since it is prescribed and
remains static.
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We can interpret the shear production term as the meridional flux of zonal momentum
contained in the fluctuating field. Evidently, kinetic energy in the fluctuating fields increases if
this flux is down the gradient of the background meridional shear

v′ u′ ∂yub < 0 growing kinetic energy of fluctuations. (61.12)

Such downgradient transport by the growing fluctuations acts in a direction that smooths the
meridional shear of the backgound zonal flow.

61.3.3 Pressure equation

Taking the divergence of the linearized velocity equation (61.7), and noting that ∇·u′ = 0, leads
to the Poisson equation for pressure

−∇2φ′ = 2 (∂yub) (∂xv
′) + β u′ − f ζ ′, (61.13)

where we introduced the relative vorticity contained in the fluctuating field (i.e., the eddy
vorticity)

ζ ′ = ∂xv
′ − ∂yu′. (61.14)

The analysis of interacting edge waves in Section 61.6 is formulated in a non-rotating reference
frame, in which the pressure equation simplifies to

−∇2φ′ = 2 (∂yub) (∂xv
′). (61.15)

61.3.4 Meridional velocity equation

The meridional component of the linearized velocity equation (61.7) is given by

∂tv
′ + ub ∂xv

′ + f u′ = −∂yφ′. (61.16)

Setting f = 0 and taking the Laplacian leads to

∂t(∇2v′) +∇2(ub ∂xv
′) = −∂y(∇2φ′). (61.17)

Use of the pressure equation (61.15) then provides an equation for the meridional velocity

(∂t + ub ∂x)(∇2v′) = (∂xv
′) ∂yyub. (61.18)

Evidently, the background zonal flow provides an advection of ∇2v′ as well as an interaction
term on the right hand side.

61.4 Barotropic flow with a modulated wave ansatz

We here study a modulated wave ansatz for a non-rotating reference frame using the linearized
flow in the presence of a background state with a meridionally sheared zonal flow. Following
the development in Section 54.5, we expect plane traveling waves in the zonal direction, with
a meridionally dependent modulation function. This expectation leads to the ansatz for the
streamfunction

ψ(x, y, t) = ψ̃(y) ei (k x−ω t). (61.19)
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61.4.1 Accounting for the edge wave direction
An edge wave can move in either the positive or negative x̂ direction, so that the wavevector is

k = |k| k̂ = |k| k̂ = ±|k| x̂. (61.20)

A convenient means to incorporate the two directions of motion is to write the phase as

k x− ω t = k [x− (ω/k) t] = k (x− c t), (61.21)

where the phase velocity is3

cp = (ω/|k|) k̂ = (ω/k) x̂ = c x̂. (61.22)

For the geometry of this problem, an edge wave only moves along one-dimension, in which case
it is sufficient to refer to c = ω/k as the phase velocity and |c| = ω/|k| the phase speed.4 A real
and positive wave velocity, c > 0, has k = k x̂ with k > 0, thus indicating a stable edge wave
with phase moving in the +x̂ direction. Conversely, c < 0 has k = k x̂ = −|k| x̂ with k < 0, thus
indicating a stable edge wave with phase moving in the −x̂ direction.

61.4.2 Polarization relations
The horizontal velocity components are computed from the streamfunction via

ψ = ψ̃ ei k (x−c t) (61.23a)

u′ = ẑ ×∇ψ = ei k (x−c t) (−x̂ ∂y + ŷ i k)ψ̃ (61.23b)

u′ = (i/k) ∂yv
′ = −ei k (x−c t) ∂yψ̃ (61.23c)

v′ = i k ψ = i k ei k (x−c t) ψ̃. (61.23d)

As a check we confirm that the horizontal velocity is non-divergent

∂xu
′ + ∂yv

′ = i k ∂yψ̃ ei k (x−c t) (−1 + 1) = 0. (61.24)

To get the pressure perturbation, return to the zonal component of the velocity equation (61.7)
(with f = 0)

(∂t + ub ∂x)u
′ + v′ ∂yub = −∂xφ′, (61.25)

and make the ansatz
φ′ = φ̃(y) ei k (x−c t). (61.26)

Use of this pressure ansatz along with the horizontal velocity equations (61.23c) and (61.23d),
yields the pressure amplitude in terms of the streamfunction amplitude

φ̃ = [(ub − c) ∂y − ∂yub]ψ̃. (61.27)

In summary, the amplitude equations (polarization relations) for the horizontal velocity compo-
nents and the pressure are given, in terms of the streamfunction, by

ψ = ψ̃(y) ei k (x−c t) (61.28a)

u′ = ũ(y) ei k (x−c t) and v′ = ṽ(y) ei k (x−c t) and φ′ = φ̃(y) ei k (x−c t) (61.28b)

3Remember that for a stable wave, ω ≥ 0 in this book (see Section 49.2.3).
4Many books refer to c as the phase speed, even though c can be positive or negative. However, as emphasized

in Section 49.5.2, the phase speed is the non-negative magnitude of the phase velocity.
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ũ = −∂yψ̃ and ṽ = i k ψ̃ and φ̃ = [(ub − c) ∂y − ∂yub]ψ̃. (61.28c)

61.4.3 Complex phase velocity

To investigate shear instability, we are interested in flow properties that lead to the phase velocity,
c, having an imaginary part, in which case

c = cr + i ci = cr + iσ/k. (61.29)

In this case, it is the real part, cr, that is the phase velocity whereas ci measures the decay rate
or growth rate for the wave amplitude

ψ(x, y, t) = ψ̃(y) ei k (x−cr t) ek ci t = ψ̃(y) ei k (x−cr t) eσ t. (61.30)

If ci > 0 then the wave is exponentially unstable with growth rate,

σ = k ci, (61.31)

whereas if σ < 0 then the wave exponentially decays.

As we see in Section 61.4.4, if c is complex then it appears along with its complex conjugate,
so that the exponentially growing mode and the decaying mode appear as a pair. Furthermore,
note that the complex conjugate of the streamfunction (61.30) is given by

ψ∗ = ψ̃∗(y) e−i k (x−cr t) eσ t, (61.32)

so that
|ψ|2 = ψ∗ ψ = |ψ̃|2 e2σ t, (61.33)

along with the analogs for the horizontal velocity components

|u′|2 = u′ (u′)∗ = |∂yψ̃|2 e2σ t and |v′|2 = v′ (v′)∗ = k2 |ψ̃|2 e2σ t. (61.34)

These identities are used when developing the phase averaged kinetic energy budget in Section
61.4.6.

61.4.4 Rayleigh-Kuo equation for the streamfunction

Inserting the modulated wave ansatz (61.19) into the linearized vorticity equation (54.82) leads
to the Rayleigh equation

(ub − c) (∂yy − k2) ψ̃ + ∂yζb ψ̃ = 0. (61.35)

Or, in the presence of β ̸= 0 we find the Rayleigh-Kuo equation (54.84)

(ub − c) (∂yy − k2) ψ̃ + (β + ∂yζb) ψ̃ = 0. (61.36)

For a study of instabilities, the phase velocity, c = ω/k, and the streamfunction, ψ̃, are generally
complex, whereas all other terms are real. Hence, the complex conjugate of the Rayleigh-Kuo
equation (61.36) is given by

(ub − c∗) (∂yy − k2) ψ̃∗ + (β + ∂yζb) ψ̃
∗ = 0. (61.37)

Evidently, if c satisfies the Rayleigh-Kuo equation (61.36) with streamfunction ψ̃, then c∗ satisfies
the complex conjugate equation (61.37) with streamfunction ψ̃∗. Hence, the phase velocities
come in complex conjugate pairs.
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61.4.5 Rayleigh-Kuo equation for the meridional displacement
Let ξ(x, y, t) be the meridional component of the fluid particle displacement from its equilibrium
position. This particle displacement satisfies the evolution equation

v′ = (∂t + u ∂x)ξ = [∂t + (u′ + ub) ∂x]ξ. (61.38)

Linearizing for small amplitude displacements leads to

v′ = (∂t + ub ∂x)ξ, (61.39)

with the usual ansatz,
ξ = ξ̃(y) ei k (x−c t), (61.40)

yielding
ψ̃ = (ub − c) ξ̃. (61.41)

Evidently, for small amplitude motion, the streamfunction amplitude, ψ̃, equals to the meridional
particle excursion amplitude, ξ̃, multiplied by the difference between the phase velocity and the
background flow, ub − c.

With the relation (61.41), we can convert the Rayleigh equation (61.35) for the streamfunction
into an equation for the meridional particle excursion. For this purpose make use of the derivative

∂yyψ̃ = ξ̃ ∂yyub + 2 ∂y ξ̃ ∂yub + (ub − c) ∂yy ξ̃, (61.42)

along with a few lines of algebra to derive the Rayleigh-Kuo equation in terms of the meridional
excursion

∂y[(ub − c)2 ∂y ξ̃] = (ub − c) [−β + k2 (ub − c)] ξ̃. (61.43)

We make use of equation (61.43) in Section 61.5.3 to derive a condition required for a modal
perturbation to initiate an instability.

61.4.6 Phase and zonal averaged eddy kinetic energy equation
In Section 61.3.2 we developed the equation for the kinetic energy of the fluctuating field and
took its zonal average to find

∂t(u′ u′ + v′ v′)/2 = −u′ v′ ∂yub − ∂y(v′ φ′). (61.44)

Following the methods of complex variables and phase averaging as detailed in Section 8.1,
use of the polarization relations from Section 61.4.2, and recognition that the phase velocity is
generally complex according to equations (61.33) and (61.34), lead to5

2 ⟨u′ u′⟩ = |∂yψ̃|2 e2σ t (61.45a)

2 ⟨v′ v′⟩ = k2 |ψ̃|2 e2σ t (61.45b)

2 ⟨u′ v′⟩ = kRe[i ψ̃∗ ∂yψ̃] e
2σ t = −k Im[ψ̃∗ ∂yψ̃] e

2σ t = k Im[ψ̃ ∂yψ̃
∗] e2σ t, (61.45c)

along with the phase average of the meridional velocity and pressure

2 e−2σ t ⟨v′ φ′⟩ = kRe[i ψ̃ φ̃∗] (61.46a)

= −k Im[ψ̃ φ̃∗] (61.46b)

= −k Im[(ub − c) ψ̃ ∂yψ̃∗ − ∂yub |ψ̃|2] (61.46c)

5Exercise 61.1 derives the identity Im
[
ψ̃∗ ∂yψ̃

]
= − Im

[
ψ̃ ∂yψ̃

∗
]
used in equation (61.45c).
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Figure 61.1: The lines of constant phase, Φ(x, y) = k x−α(y), for the streamfunction (or the meridional velocity)
in an unstable barotropic wave. The wave depicted here has an increasing kinetic energy since the phase lines
are tilted into the shear. That is, this orientation of the wave ensures that the barotropic shear production
increases the kinetic energy of the wave as per equation (61.56). Namely, since the waves are transverse, fluid
particles move on constant phase lines, with the tilt shown here ensuring that ⟨u′ v′⟩ < 0. That is, a meridionally
positive particle motion corresponds to a zonally negative motion, and vice versa. This behavior is characteristic
of unstable waves whose kinetic energy grows by feeding off the unstable background shear state. Observe that if
one placed a passive tracer in the flow, or an array of fluid particles, then they would be stretched to align with
the shear rather than against the shear. The growing wave, however, is an active flow feature, with the present
analysis indicating that energy growth for this feature requires phase lines to tilt into the shear as depicted here.

= −k Im[(ub − c) ψ̃ ∂yψ̃∗], (61.46d)

where we used Im[∂yub |ψ̃|2] = 0 for the final equality. Bringing terms together leads to the
phase and zonal averaged eddy kinetic energy budget

2σ
[
|∂yψ̃|2 + k2 |ψ̃|2

]
/2 = −k ∂yub Im

[
ψ̃ ∂yψ̃

∗
]
/2︸ ︷︷ ︸

shear production

+ k ∂y Im
[
(ub − c) ψ̃ ∂yψ̃∗

]
/2,︸ ︷︷ ︸

KE flux convergence

(61.47)

where we recognize σ/k = ci according to equation (61.29).

61.4.7 Phase lines of unstable waves tilt into the shear

As noted in Section 61.3.2, the only way for the globally integrated kinetic energy to grow
is through the shear production term, since the globally integrated pressure flux convergence
vanishes. A sufficient, though not necessary, condition for global kinetic energy growth is that
the shear production is positive at each point within the fluid domain. From equation (61.47)
we thus have

k ∂yub Im
[
ψ̃∗ ∂yψ̃

]
> 0 =⇒ sufficient condition for kinetic energy growth. (61.48)

If the kinetic energy growth arises from shear instability, then equation (61.48) offers a sufficient
condition for shear instability.

To develop a geometric view for the energy growth condition (61.48), introduce the phase,
α(y), of the streamfunction via

ψ̃(y) = |ψ̃(y)| eiα(y), (61.49)

so that
Im
[
ψ̃∗ ∂yψ̃

]
= Im

[
|ψ̃| e−iα(y) (∂y|ψ̃|+ i |ψ̃| ∂yα) eiα(y)

]
= |ψ̃|2 ∂yα, (61.50)

thus bringing the sufficient condition (61.48) to the form

k ∂yub|ψ̃|2 ∂yα > 0 =⇒ sufficient condition for energy growth. (61.51)
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Now write the full streamfunction as

ψ = ψ̃(y) ei k (x−c t) = |ψ̃(y)| eiα(y) ei (k x−c t) = |ψ̃(y)| ei (Φ(x,y)−c t), (61.52)

where we defined the spatial phase function

Φ(x, y) ≡ k x+ α(y). (61.53)

Lines of constant phase are defined by

dΦ = 0 = k dx+ (∂yα) dy =⇒ (dy/dx)phase = −k/∂yα, (61.54)

so that the instability condition (61.48) can be written

k ∂yub |ψ̃|2 ∂yα = −k2 |ψ̃|2 ∂yub

(dy/dx)phase
> 0 =⇒ sufficient condition for energy growth. (61.55)

Simplifying this equation leads to the condition for the ratio of the shear and the phase slope

∂yub

(dy/dx)phase
< 0 =⇒ sufficient condition for energy growth. (61.56)

This inequality says that kinetic energy of the wave grows when the wave’s phase lines tilt into
the background flow shear, such as depicted in Figure 61.1. The tilted phase lines reflect the
ability of the wave to extract kinetic energy from the background state. This geometric property
offers a visual indicator that the wave is acting on an unstable shear state, thus providing a
valuable diagnostic tool for identifying shear instabilities as they are happening.

61.5 Integral conditions necessary for shear instability

In this section we develop integral conditions for stability of an inviscid horizontally sheared
fluid on a β plane, with the conditions arrived at by forming spatial integrals of the Rayleigh
equation (61.35) and the Rayleigh-Kuo equation (61.36). These integral conditions allow us to
determine stability properties even without explicitly solving the detailed instability problem
for a particular flow (see Section 61.6 for a solution example). We do so by deriving geometric
conditions that are necessary for the flow to be unstable, or conversely that are sufficient to
ensure the flow is stable. We also consider conditions needed for a particular perturbation to
initiate an instability. Generally, the conditions we derive are necessary though not sufficient to
ensure instability. Evidently, even if a flow satisfies the necessary conditions for instability, the
flow can still be stable. This situation for the modal instabilities of sheared flows contrasts to
the parcel instabilities from Chapter 59, where the instability conditions are both necessary and
sufficient.

61.5.1 Rayleigh-Kuo inflection point theorem

Here we establish the Rayleigh instability criteria, also known as the Rayleigh inflection-point
criteria. In the presence of β, it is known as the Rayleigh-Kuo condition. To proceed, start from
the Rayleigh-Kuo equation (61.36) written as

(∂yy − k2) ψ̃ +
(β − ∂yyub) ψ̃

ub − c
= 0. (61.57)
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Multiplying by ψ̃∗ (complex conjugate of ψ̃) and integrating over the meridional extent of the
domain, R, leads to

ˆ
R

[∂y(ψ̃
∗ ∂yψ̃)− |∂yψ̃|2 − k2 |ψ̃|2] dy = −

ˆ
R

(β − ∂yyub) |ψ̃|2
ub − c

dy. (61.58)

If the streamfunction or its derivatives vanish on the meridional boundaries (or vanish when
bounded away from the region of interest), then the left hand side is a negative real number.
Now all terms on the right hand side are real except, possibly, the phase velocity, c. Hence, this
equation is self-consistent only if the imaginary part of the right hand side vanishes

ci

ˆ
R

(β − ∂yyub) |ψ̃|2
|ub − c|2

dy = 0. (61.59)

This condition can be satisfied in two ways. The first way is if the phase velocity is real, so
that ci = 0 and hence all waves are stable.6 The second way is if the integral vanishes. For the
integral to vanish requires β − ∂yyub to change sign somewhere in the domain, since all the other
terms in the integral are positive. That is, somewhere in the domain there must be an extrema
of the base state’s absolute vorticity,

β − ∂yyub = ∂y(f + ζb). (61.60)

There are many qualifiers to this result. In particular, for β − ∂yyub to change sign in the
domain represents a necessary condition for a shear instability, and yet it is not a sufficient
condition for instability. Indeed, there are flow profiles that satisfy the inflection point criteria
and yet there are still no growing wave modes. Turning the condition around we find that a
sufficient condition for stability is that there are no sign changes for β − ∂yyub. We summarize
the result by stating the following theorem.

Rayleigh-Kuo inflection point theorem: Consider an inviscid and homoge-
neous (constant density) fluid, with flow in an inertial reference frame (no Coriolis)
and with a base state of zonal flow with meridional shear. A necessary condition for
shear instability is that there exists an inflection point in the base state zonal flow
somewhere in the domain; i.e., where ∂yyub = 0 and so where the relative vorticity has
an extrema, ∂yζb = −∂yyub = 0. For flow on the β-plane, this criteria is generalized
to ∂y(f + ζb) = β − ∂yyub = 0, in which case the absolute vorticity must have an
extrema in the domain in order to admit an instability. If there is no inflection point,
then its absence is sufficient to conclude that the flow is stable to shear instability.

It is notable that β > 0 always acts to stabilize the flow since its contribution requires a stronger
background flow curvature to realize an inflection point. So if β is large enough then it can
eliminate the inflection point, ∂y(f + ζb) = β − ∂yyub = 0, from the domain, and in so doing it
can stabilize the flow according to the Rayleigh-Kuo theorem. We can understand this stabilizing
effect by noting that β supports planetary Rossby waves (Section 54.3), with such waves offering
an alternative means to discharge the kinetic energy carried by shear in the base state flow.

61.5.2 Fjørtoft’s theorem
Roughly 70 years after Rayleigh (1880) introduced the inflection point theorem, and a year after
Kuo (1949) extended the inflection point theorem to the β-plane, Fjørtoft (1950) established

6Recall from Section 61.6.1 that if c solves the Rayleigh equation with streamfunction ψ̃, then c∗ also satisfies
the equation with streamfunction ψ̃∗. Hence, for each decaying mode there is a growing mode. So a sufficient
condition for instability is to find a wave in which ci ̸= 0.
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another necessary condition for instability that is somewhat more constraining than the Rayleigh-
Kuo theorem from Section 61.5.1.

To derive Fjørtoft’s theorem, return to equation (61.58). Rather than focus on the imaginary
part as done for the Rayleigh criteria, consider the real part

ˆ
R

(ub − cr) (β − ∂yyub) |ψ̃|2
|ub − c|2

dy =

ˆ
R

[|∂yψ̃|2 + k2 |ψ̃|2] dy > 0. (61.61)

We are interested in profiles that satisfy the Rayleigh criteria for instability, so that the integral
(61.59) vanishes, in which case we have

ˆ
R

cr (β − ∂yyub) |ψ̃|2
|ub − c|2

dy = 0, (61.62)

since cr is a constant. Hence, equation (61.61) is trivially satisfied with any constant, Us, inserted
into the integral ˆ

R

(ub − Us) (β − ∂yyub) |ψ̃|2
|ub − c|2

dy > 0. (61.63)

A particularly useful constant is the value of the zonal velocity at the inflection point, y = ys,
where the absolute vorticity has an extrema ∂y(f + ζb) = β − ∂yyub = 0. We are thus led to the
following theorem.

Fjørtoft’s theorem: Under the same assumptions as the Rayleigh-Kuo theorem
(Section 61.5.1), a necessary condition for shear instability is that (ub − Us) (β −
∂yyub) > 0 occurs somewhere in the domain in order to satisfy the condition (61.63).
Here, the inflection point is determined by ∂y(f + ζb) = β − ∂yyub(ys) = 0, with
Us = ub(ys) the velocity at the inflection point.

Fjørtoft’s theorem is rather subtle in its meaning, in particular it implies that an instability
can occur only if the absolute vorticity has its maximum magnitude within the domain interior
rather than at the domain boundary. One means to support this conclusion is by considering
example zonal velocity profiles in Section 61.5.4.

61.5.3 Critical latitude theorem

The Rayleigh-Kuo condition and Fjørtoft’s condition are statements about the geometry of
the base flow state. Here we derive a condition necessary for a wave perturbation to support
an instability. To do so, consider the Rayleigh-Kuo equation (61.43) written in terms of the
meridional displacement

∂y[(ub − c)2 ∂y ξ̃] = (ub − c) [−β + k2 (ub − c)] ξ̃. (61.64)

Following the approach taken for the Rayleigh-Kuo theorem in Section 61.5.1, multiply by ξ̃∗,
integrate over the domain, and assume boundary contributions are zero so that

ˆ
R

(|∂yξ|2 + k2 |ξ|2) (ub − c)2 dy = β

ˆ
R

(ub − c) |ξ|2 dy. (61.65)

Writing
(ub − c)2 = (ub − cr)2 − (ci)

2 − 2 i ci (ub − cr), (61.66)
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leads to the two conditions taken from the real and imaginary parts of equation (61.65)

ˆ
R

(|∂yξ|2 + k2 |ξ|2) [(ub − cr)2 − (ci)
2] dy = β

ˆ
R

(ub − cr) |ξ|2 dy (61.67a)

2 ci

ˆ
R

(|∂yξ|2 + k2 |ξ|2) (ub − cr) dy = ci β

ˆ
R

|ξ|2 dy. (61.67b)

We are interested in unstable flows, in which case ci ≠ 0. So the second condition provides a
statement about the value of the real phase velocity relative to the background flow

2

ˆ
R

(|∂yξ|2 + k2 |ξ|2) (ub − cr) dy = β

ˆ
R

|ξ|2 dy ≥ 0. (61.68)

Since the first portion of the left hand side integral is positive, the integral condition (61.68) can
only be met if ub − cr is predominantly positive throughout the domain. For the special case of
β = 0, we find the more definitive statement

ˆ
R

(|∂yξ|2 + k2 |ξ|2) (ub − cr) dy = 0 if β = 0. (61.69)

Evidently, when β = 0 then ub − cr must change sign within the domain in order to support an
instability. That is, for an instability to exist we must have the real phase velocity of a modal
perturbation equal the background velocity at some latitude within the domain. For a wave
perturbation to grow requires it to travel with the flow at least at one latitude, where the wave
perturbation is stationary relative to the background flow and can thus extract kinetic energy to
feed the growing wave. We are thus led to the critical latitude theorem.

Critical latitude theorem: Under the same assumptions as the Rayleigh-Kuo
theorem (Section 61.5.1), a modal perturbation to a sheared flow with β = 0 is
able to initiate an instability if its real phase velocity equals to the background flow
velocity somewhere in the domain, thus ensuring that the real phase velocity is within
the range of the background velocity.

We return to this theorem in Section 61.7.6, where we find that this result also holds for stratified
shear instability as represented by Howard’s semi-circle theorem.

61.5.4 Stability conditions for sample profiles

We here consider a suite of example velocity profiles and discuss their stability properties as
per the Rayleigh inflection point theorem and Fjørtoft’s theorem, with consideration given only
to the case of β = 0. We leave the velocity, U , and length L, scales arbitrary, noting that the
stability theorems of Rayleigh and Fjørtoft are statements about the flow geometry rather than
the scale of the flow.

Parabolic profile is stable

In Figure 61.2 we display a parabolic velocity profile, sometimes referred to as Poiseuille flow,
which can be considered a highly smoothed version of the point jet studied in Section 54.5.
Recall the point jet supports stable edge waves. In the absence of multiple point jets that can
interact with one another, we expect the flow to be stable. Hence, extrapolating from the point
jet motivates us to guess that the parabolic jet in Figure 61.2 is stable. Indeed, it is stable
according to the Rayleigh inflection point theorem simply because there is no inflection point
given that the derivative of the vorticity is constant.
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Figure 61.2: A parabolic velocity profile (Poiseuille flow) and its derivatives. Left panel: ub/U = (y/L)2. Middle
panel: vorticity, (L/U) ζb = −(L/U) ∂yub = −2 (y/L). Right panel: derivative of the vorticity, (L2/U) ∂yζb =
−(L2/U) ∂yyub = −2. Rayleigh’s inflection point theorem says that this profile is stable since there is no inflection
point.
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Figure 61.3: A sinusoidal velocity profile and its derivatives. Left panel: ub/U = sin(2π y/6L). Middle
panel: vorticity, (L/U) ζb = −(L/U) ∂yub = −(2π/6) cos(2π y/6L). Right panel: derivative of the vorticity,
(L2/U) ∂yζb = −(2π/6)2 ub/U . This velocity profile satisfies both the Rayleigh and Fjørtoft criteria for instability.

Sinusoidal profile is unstable according Rayleigh and Fjørtoft

Figure 61.3 shows a sinusoidal velocity profile. This flow has an inflection point at y = 0, and
so satisfies the Rayleigh inflection point condition for instability. It also satisfies the Fjørtoft
condition for instability, which we see with Us = 0 at the y = 0 inflection point so that

(ub − Us) (β − ∂yyub) = (ub − 0) (0− ∂yyub) = (2π y/6L)2 (ub)
2 > 0. (61.70)

Gaussian jet profile is unstable according to Rayleigh and Fjørtoft

Figure 61.4 shows a Gaussian jet profile. There are two inflections points, y = ±L, so that this
profile is unstable according to the Rayleigh inflection point theorem. It is also unstable due to
Fjørtoft’s theorem since the vorticity extrema are within the domain.
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Figure 61.4: A Gaussian velocity profile and its derivatives. Left panel: ub/U = e−(y/L)2/2. Middle panel:
vorticity, (L/U) ζb = −(L/U) ∂yub = −(y/L)ub/U . Right panel: derivative of the vorticity, (L2/U) ∂yζb =
−(L2/U) ∂yyub = [(y/L)2 − 1] (ub/U). This velocity profile is unstable according to the Rayleigh inflection point
theorem, with the two inflection points at y = ±L.
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Figure 61.5: A sinh velocity profile and its derivatives. Left panel: ub/U = sinh(y/L). Middle panel: vorticity,
(L/U) ζb = −(L/U) ∂yub = − cosh(y/L). Right panel: derivative of the vorticity, (L2/U) ∂yζb = −(L2/U) ∂yyub =
− sinh(y/L). This velocity profile satisfies the Rayleigh inflection point theorem, suggesting that it is unstable to
shear instability. However, Fjørtoft’s theorem says that it is stable.

Sinh profile is unstable according to Rayleigh but stable according to Fjørtoft

Consider the sinh velocity profile,

ub = U sinh(y/L) (61.71a)

ζb = −∂yub = −(U/L) cosh(y/L) (61.71b)

∂yζb = −∂yyub = −(U/L2) sinh(y/L), (61.71c)

as shown in Figure 61.5. The velocity vanishes at the y = 0 inflection point (where ∂yζb =
−∂yyub = 0), so that Us = 0. Consequently, the velocity profile satisfies Rayleigh’s necessary
condition for instability. However, for Fjørtoft’s theorem we note that

(ub − Us) (β − ∂yyub) = (ub − 0) (0− ∂yyub) = −(U/L)2 sinh2(y/L) < 0. (61.72)

Evidently, the flow is stable via the Fjørtoft theorem since (ub −Us) (β − ∂yyub) is never positive
in the domain. In particular, the vorticity extrema are at the latitudinal bounds of the domain
(see middle panel of Figure 61.5), with the extrema increasing in magnitude as the domain is
expanded. In Exercise 61.2 we consider β > 0, where we find that the sinh profile is also stable
according to Fjørtoft.

61.6 Interacting edge waves and shear instability
So far in this chapter we developed sufficient conditions for sheared flows to be stable. Conversely,
we developed necessary conditions for the sheared flow to be unstable. In this section we study
a particular flow configuration and solve the Rayleigh equation to determine the dispersion
relation and corresponding instability conditions. This case study exposes the interacting wave
mechanism for shear instability. For this purpose, recall from Section 54.5 the theory for edge
waves riding on a single jump in the base state vorticity, with salient features given by the
following.

• Edge waves propagate along the interface where vorticity experiences a jump, with the
waves trapped to this interface due to the exponential decay of the wave in the direction
orthogonal to the jump surface.

• The edge wave phase velocity, cp, is built from two contributions: one due to a Doppler
shift from the background flow, and the other from the vorticity jump. The vorticity jump
contribution is referred to as the intrinsic phase velocity, cintrinsicphase .

• The intrinsic phase velocity is directed so that the higher relative vorticity is to the right
when facing in the direction of the phase velocity. Equivalently, the phase velocity is

CHAPTER 61. SHEAR INSTABILITY page 1737 of 2158



61.6. INTERACTING EDGE WAVES AND SHEAR INSTABILITY

<latexit sha1_base64="i06zVRU+TPuJL5CjgOvTOMOqxH0=">AAACLnicbVDLSsNAFJ34rPHV6sKFm8EiuCqJ+FoW3bhswT6gDWUyvWmHTiZhZiKE0C9wq//h1wguxK2f4bTNQtscuHA4517uvcePOVPacT6ttfWNza3t0o69u7d/cFiuHLVVlEgKLRrxSHZ9ooAzAS3NNIduLIGEPoeOP3mY+Z1nkIpF4kmnMXghGQkWMEq0kZrpoFx1as4ceJW4OamiHI1BxTrpDyOahCA05USpnuvE2suI1IxymNr9REFM6ISMoGeoICEoL5tfOsXnRhniIJKmhMZz9e9ERkKl0tA3nSHRY7XszcRCDxQTutDxwyK5l+jgzsuYiBMNgi4uCxKOdYRnOeEhk0A1Tw0hVDLzHKZjIgnVJs2C1bZtonSXg1sl7cuae1O7bl5V6/d5qCV0is7QBXLRLaqjR9RALUQRoBf0it6sd+vD+rK+F61rVj5zjP7B+vkFF8Cn9A==</latexit>y

<latexit sha1_base64="x1bMQ6SEPQ7I2IPYZEjpX0zzPFc=">AAACLnicbVDLSsNAFJ2prxpfrS5cuAkWwVVJxNey6MZlC/YBbSiT6U07dDIJMxOxhH6BW/0Pv0ZwIW79DKdtFtrmwIXDOfdy7z1+zJnSjvOJC2vrG5tbxW1rZ3dv/6BUPmypKJEUmjTikez4RAFnApqaaQ6dWAIJfQ5tf3w/89tPIBWLxKOexOCFZChYwCjRRmo890sVp+rMYa8SNyMVlKHeL+Pj3iCiSQhCU06U6rpOrL2USM0oh6nVSxTEhI7JELqGChKC8tL5pVP7zCgDO4ikKaHtufp3IiWhUpPQN50h0SO17M3EXA8UEzrX8cM8uZvo4NZLmYgTDYIuLgsSbuvInuVkD5gEqvnEEEIlM8/ZdEQkodqkmbPaskyU7nJwq6R1UXWvq1eNy0rtLgu1iE7QKTpHLrpBNfSA6qiJKAL0gl7RG37HH/gLfy9aCzibOUL/gH9+ARX2p/M=</latexit>x

<latexit sha1_base64="jQqxyrQQmbAqlL9cs7WZ3npx2+k="></latexit>

cintrinsic
phase

<latexit sha1_base64="jQqxyrQQmbAqlL9cs7WZ3npx2+k="></latexit>

cintrinsic
phase

<latexit sha1_base64="zE7m85aLhYT7CpVjEv+2+5ueYgk=">AAACN3icbVDJTgJBEO3BDXEDPXjw0pEYPZEZ43YyRC8eMZElAiE9TQEdenom3TUmOOEvvOp/+CmevBmv/oHNclDgJZW8vFeVqnp+JIVB1/1wUkvLK6tr6fXMxubW9k42t1sxYaw5lHkoQ13zmQEpFJRRoIRapIEFvoSq378d+dUn0EaE6gEHETQD1lWiIzhDKz02ngHZMb2mbiubdwvuGHSeeFOSJ1OUWjlnv9EOeRyAQi6ZMXXPjbCZMI2CSxhmGrGBiPE+60LdUsUCMM1kfPKQHlmlTTuhtqWQjtW/EwkLjBkEvu0MGPbMrDcSF3pghMKFjh8skusxdq6aiVBRjKD45LJOLCmGdBQYbQsNHOXAEsa1sM9R3mOacbSxLlidydgovdng5knltOBdFM7vz/LFm2moaXJADskJ8cglKZI7UiJlwokiL+SVvDnvzqfz5XxPWlPOdGaP/IPz8wvMCaq6</latexit>

⇣ 0 > 0
<latexit sha1_base64="WkeLVWEYXRhdV9CB9uOti1IKRZQ=">AAACN3icbVDJTgJBEO3BDXEDPXjw0pEYPZEZ43bwQPTiERNZIhDS0xTQoadn0l1jghP+wqv+h5/iyZvx6h/YLAcFXlLJy3tVqarnR1IYdN0PJ7W0vLK6ll7PbGxube9kc7sVE8aaQ5mHMtQ1nxmQQkEZBUqoRRpY4Euo+v3bkV99Am1EqB5wEEEzYF0lOoIztNJj4xmQHdNr6rayebfgjkHniTcleTJFqZVz9hvtkMcBKOSSGVP33AibCdMouIRhphEbiBjvsy7ULVUsANNMxicP6ZFV2rQTalsK6Vj9O5GwwJhB4NvOgGHPzHojcaEHRihc6PjBIrkeY+eqmQgVxQiKTy7rxJJiSEeB0bbQwFEOLGFcC/sc5T2mGUcb64LVmYyN0psNbp5UTgveReH8/ixfvJmGmiYH5JCcEI9ckiK5IyVSJpwo8kJeyZvz7nw6X873pDXlTGf2yD84P7/Icaq4</latexit>

⇣ 0 < 0

<latexit sha1_base64="tlJZGI5bDGn+5f8WyrkJzDe3wQo=">AAACM3icbVDLTgIxFG3xheMLdOHCTSMxuiIzxtfCBdGNS0zkkcCEdEqBStuZtB0SMuEf3Op/+DHGnXHrP1hgFgpzkpucnHNv7r0niDjTxnU/YG5ldW19I7/pbG3v7O4Vivt1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh/dRvjKjSLJRPZhxRX+C+ZD1GsLFSfXSKbpHbKZTcsjsDWiZeSkogRbVThIftbkhiQaUhHGvd8tzI+AlWhhFOJ0471jTCZIj7tGWpxIJqP5mdO0EnVumiXqhsSYNm6t+JBAutxyKwnQKbgV70pmKmRzWTJtMJRJbcik3vxk+YjGJDJZlf1os5MiGahoW6TFFi+NgSTBSzzyEywAoTYyPNWO04NkpvMbhlUj8ve1fly8eLUuUuDTUPjsAxOAMeuAYV8ACqoAYIeAYv4BW8wXf4Cb/g97w1B9OZA/AP8OcXScao9g==</latexit>

v0 < 0
<latexit sha1_base64="wR5T0Pf452yLOXJH8DhBg/tu10o=">AAACM3icbVDLSgMxFE3qq46vVhcu3ASL6KrMiK+VFN24rGAf0A4lk6ZtbJIZkkyhDP0Ht/offoy4E7f+g2k7C23nwIXDOfdy7z1BxJk2rvsBcyura+sb+U1na3tnd69Q3K/rMFaE1kjIQ9UMsKacSVozzHDajBTFIuC0EQzvp35jRJVmoXwy44j6Avcl6zGCjZXqo1N0i9xOoeSW3RnQMvFSUgIpqp0iPGx3QxILKg3hWOuW50bGT7AyjHA6cdqxphEmQ9ynLUslFlT7yezcCTqxShf1QmVLGjRT/04kWGg9FoHtFNgM9KI3FTM9qpk0mU4gsuRWbHo3fsJkFBsqyfyyXsyRCdE0LNRlihLDx5Zgoph9DpEBVpgYG2nGasexUXqLwS2T+nnZuypfPl6UKndpqHlwBI7BGfDANaiAB1AFNUDAM3gBr+ANvsNP+AW/5605mM4cgH+AP79NXqj4</latexit>

v0 > 0

<latexit sha1_base64="X9RZ9zU0u/Bva4jGsdw4TmbaXys=">AAACSXicbVDLSgNBEJxNfMT4SvQg6GUwCJ7Crvi6CEEvHiMYFbIhzE46yeDM7DLTK8Yl4Nd41f/wC/wMb+LJSczBRwoaiqpuuruiRAqLvv/m5fIzs3PzhYXi4tLyymqpvHZl49RwaPBYxuYmYhak0NBAgRJuEgNMRRKuo9uzkX99B8aKWF/iIIGWYj0tuoIzdFK7tBk+ALJ2Fqoovs9CFHpAo+GQnlC/Xar4VX8M+p8EE1IhE9TbZW8j7MQ8VaCRS2ZtM/ATbGXMoOAShsUwtZAwfst60HRUMwW2lY2fGNIdp3RoNzauNNKx+nMiY8ragYpcp2LYt3+9kTjVAys0TnUiNU1uptg9bmVCJymC5t+XdVNJMaajCGlHGOAoB44wboR7jvI+M4yjC3rK6mLRRRn8De4/udqrBofVg4v9Su10EmqBbJFtsksCckRq5JzUSYNw8kieyDN58V69d+/D+/xuzXmTmXXyC7n8F1qusWc=</latexit>

⇣b = 0

<latexit sha1_base64="X9RZ9zU0u/Bva4jGsdw4TmbaXys=">AAACSXicbVDLSgNBEJxNfMT4SvQg6GUwCJ7Crvi6CEEvHiMYFbIhzE46yeDM7DLTK8Yl4Nd41f/wC/wMb+LJSczBRwoaiqpuuruiRAqLvv/m5fIzs3PzhYXi4tLyymqpvHZl49RwaPBYxuYmYhak0NBAgRJuEgNMRRKuo9uzkX99B8aKWF/iIIGWYj0tuoIzdFK7tBk+ALJ2Fqoovs9CFHpAo+GQnlC/Xar4VX8M+p8EE1IhE9TbZW8j7MQ8VaCRS2ZtM/ATbGXMoOAShsUwtZAwfst60HRUMwW2lY2fGNIdp3RoNzauNNKx+nMiY8ragYpcp2LYt3+9kTjVAys0TnUiNU1uptg9bmVCJymC5t+XdVNJMaajCGlHGOAoB44wboR7jvI+M4yjC3rK6mLRRRn8De4/udqrBofVg4v9Su10EmqBbJFtsksCckRq5JzUSYNw8kieyDN58V69d+/D+/xuzXmTmXXyC7n8F1qusWc=</latexit>

⇣b = 0

<latexit sha1_base64="81pehdGPXyHocok8u4/cxcQxeyQ=">AAACMHicbVDLSgMxFE181vHV6sKFm2ARXJUZ8bURim5cuKhoH9AOJZNm2tAkMyQZoQz9BLf6H36NrsStX2HazkLbOXDhcM693HtPEHOmjet+wqXlldW19cKGs7m1vbNbLO01dJQoQusk4pFqBVhTziStG2Y4bcWKYhFw2gyGtxO/+UyVZpF8MqOY+gL3JQsZwcZKj6Pr+26x7FbcKdAi8TJSBhlq3RI86PQikggqDeFY67bnxsZPsTKMcDp2OommMSZD3KdtSyUWVPvp9NYxOrZKD4WRsiUNmqp/J1IstB6JwHYKbAZ63puIuR7VTJpcJxB5cjsx4ZWfMhknhkoyuyxMODIRmiSFekxRYvjIEkwUs88hMsAKE2PzzFntODZKbz64RdI4rXgXlfOHs3L1Jgu1AA7BETgBHrgEVXAHaqAOCOiDF/AK3uA7/IBf8HvWugSzmX3wD/DnF1huqJE=</latexit>

y = L

<latexit sha1_base64="NV0n5TY4JqMc3TXb13z1N/OF3h4=">AAACMXicbVDLSsNAFJ3xWeOr1YULN8EiuLEk4msjFN24cFHBPqANZTKdtENnJmFmIoTQX3Cr/+HXdCdu/QknbRba5sCFwzn3cu89fsSo0o4zhSura+sbm6Uta3tnd2+/XDloqTCWmDRxyELZ8ZEijArS1FQz0okkQdxnpO2PHzK//UqkoqF40UlEPI6GggYUI51Jyd35U79cdWrODPYycXNSBTka/Qo86g1CHHMiNGZIqa7rRNpLkdQUMzKxerEiEcJjNCRdQwXiRHnp7NiJfWqUgR2E0pTQ9kz9O5EirlTCfdPJkR6pRS8TCz2iqNCFjs+L5G6sg1svpSKKNRF4flkQM1uHdhaVPaCSYM0SQxCW1Dxn4xGSCGsTaMFqyzJRuovBLZPWRc29rl09X1br93moJXAMTsAZcMENqINH0ABNgMEIvIF38AE/4RR+we956wrMZw7BP8CfX88BqMg=</latexit>

y = �L

<latexit sha1_base64="8k9DL+SQDqm+9sLHqrDpDh80jzc=">AAACMXicbVDLSsNAFJ3xWeOr1YULN8EiuLEk4msjFN10WcE+oA1lMp20Q2cmYWYihNBfcKv/4dd0J279CSdtFtrmwIXDOfdy7z1+xKjSjjODa+sbm1vbpR1rd2//4LBcOWqrMJaYtHDIQtn1kSKMCtLSVDPSjSRB3Gek40+eMr/zSqSioXjRSUQ8jkaCBhQjnUnJw2VjUK46NWcOe5W4OamCHM1BBZ70hyGOOREaM6RUz3Ui7aVIaooZmVr9WJEI4QkakZ6hAnGivHR+7NQ+N8rQDkJpSmh7rv6dSBFXKuG+6eRIj9Wyl4mFHlFU6ELH50VyL9bBvZdSEcWaCLy4LIiZrUM7i8oeUkmwZokhCEtqnrPxGEmEtQm0YLVlmSjd5eBWSfuq5t7Wbp6vq/XHPNQSOAVn4AK44A7UQQM0QQtgMAZv4B18wE84g1/we9G6BvOZY/AP8OcXx9moxA==</latexit>

y = �H

<latexit sha1_base64="JIotkYXS7j1/qhNHVC4GXW/FmyQ=">AAACMHicbVDLSgMxFE181vHV6sKFm2ARXJUZ8bURim66rGgf0A4lk2ba0CQzJBlhKP0Et/offo2uxK1fYdrOQts5cOFwzr3ce08Qc6aN637CldW19Y3NwpazvbO7t18sHTR1lChCGyTikWoHWFPOJG0YZjhtx4piEXDaCkb3U7/1TJVmkXwyaUx9gQeShYxgY6XH9LbWK5bdijsDWiZeRsogQ71XgkfdfkQSQaUhHGvd8dzY+GOsDCOcTpxuommMyQgPaMdSiQXV/nh26wSdWqWPwkjZkgbN1L8TYyy0TkVgOwU2Q73oTcVcj2omTa4TiDy5k5jwxh8zGSeGSjK/LEw4MhGaJoX6TFFieGoJJorZ5xAZYoWJsXnmrHYcG6W3GNwyaZ5XvKvK5cNFuXqXhVoAx+AEnAEPXIMqqIE6aAACBuAFvII3+A4/4Bf8nreuwGzmEPwD/PkFUUaojQ==</latexit>

y = H

<latexit sha1_base64="hekMOJt5OAMGf/lBpGZrT2Mb8GQ="></latexit>

ub = x̂U y/L

<latexit sha1_base64="neHD8am6rwadDFr6NHbUfXU/kDE="></latexit>

ub = �x̂U

<latexit sha1_base64="80R6WE44Kpy2rai3lWLW9PwMW+k="></latexit>

ub = +x̂U

<latexit sha1_base64="ge4VtffdydAJrvLK+0cX8qMRCnY="></latexit>

ωb = ωo = →U/L

Figure 61.6: Depicting the interaction between two edge waves generated by a base flow that is unstable to shear
instability. On the left we show the zonal base flow, with velocity kinks at y = ±L. At y = −L, the vorticity
jumps from zero to the south to a negative value to the north, so that the higher vorticity is to the south. This
vorticity jump supports an edge wave with eastward intrinsic phase velocity, cintrinsicphase . For the y = L kink, the
vorticity jumps from negative to zero when moving north. This vorticity configuration has higher vorticity to
the north, thus supporting an edge wave with westward intrinsic phase velocity. These phase directions, both of
which are contrary to the background flow, allow for Doppler shifting to make each of the edge waves stationary
(i.e., zero real phase velocity). The oriented circles denote the anomalous vorticity associated with a particular
fluctuation of the respective interfaces. For example, on the southern edge wave, a northward fluctuation brings
fluid with higher relative vorticity northward, thus denoted by ζ′ > 0 and a counter-clockwise oriented circle. The
secondary circulations induced by the anomalous vorticity induce anomalous meridional flows, depicted by the
meridional arrows. These meridional flows have maximum amplitude at the wave nodes, pointing upward in front
of a wave peak and downward on the back side. Interactions between the waves are mutually constructive with a
phase shift whereby the southern wave is shifted to the east of the northern wave (see Figure 61.1); i.e., with the
y = L wave shifted ahead of the y = −L wave so that lines of constant phase are slanted into the background
shear. With this phase shift, a northward anomalous flow from the southern wave enhances the peak of the
northern wave, thus supporting its further growth. A similar enhancement occurs for the opposite wave, thus
resulting in mutual amplification of each wave’s amplitude. To optimize the growth requires the waves to be phase
locked, whereby they stay stationary relative to one another, thus allowing the positive feedback to create the
exponential wave growth.

directed towards the concave portion of the velocity profile. One can understand this
orientation via the conservation of relative vorticity (holding for an inviscid flow in an
inertial reference frame), as explained for the point jet in Figure 54.8.

We focus in this section on interactions between two edge waves, with the aim to characterize
conditions that support shear instability. For analytical tractability, we focus on the case with
zero planetary beta (β = 0). This assumption serves to clearly expose the underlying wave
resonance instability mechanism that arises from mutually reinforcing edge wave interactions.
Additionally, it is convenient to set H →∞ so that there are no solid boundaries, thus studying
stability of a free shear layer.

Figure 61.6 illustrates the wave resonance mechanism, with the figure caption detailing
the basic ingredients. In brief, the two edge waves, with oppositvely directed intrinsic phase
velocities, are phase locked due to Doppler shifting by the background flow. Phase locking means
that the interacting waves move with the same phase velocity. Indeed, symmetry of the setup in
Figure 61.6 leads to phase locked waves that are stationary, meaning that the real part of the
phase velocity vanishes. When the waves are phase locked with a phase shift so that lines of
constant phase are slanted into the background shear, then that orientation supports a mutual
reinforcement of the opposing wave’s amplitude, which is a signature of a modal instability. The
goal of this section is to expose mathematical details supporting this figure.

61.6.1 Phase locked streamfunction and Rayleigh equation
Our mathematical task is to derive the streamfunction corresponding to the interacting edge
waves supported by the velocity kinks at y = L and y = −L shown in Figure 61.6. Ingredients
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for this derivation were developed in Section 54.5 when studying a single edge wave along a
single velocity jump. As for that analysis, start with the wave ansatz given by equation (61.30),
written here again

ψ(x, y, t) = ψ̃(y) ei k (x−cr t) ek ci t = ψ̃(y) ei k (x−cr t) eσ t. (61.73)

As noted at the start of this section, writing a wave function with a single phase velocity is
consistent with a phase locked system of two edge waves. With this wave ansatz we then solve
the Rayleigh equation (61.35) (i.e., the vorticity equation) in the fluid region between the kinks,
and use kinematic and dynamic boundary conditions to match the streamfunction across the
kinks.

With the velocity profile in Figure 61.6, the meridional derivative of the background vorticity,
∂yζb, has a Dirac delta at each of the vorticity jumps so that the Rayleigh equation (61.35) is

(ub − c) (∂yy − k2) ψ̃ + ζo [δ(y + L)− δ(y − L)] ψ̃ = 0 with ζo = −U/L. (61.74)

The solution to this equation outside of the singular vorticity interfaces (at y = ±L) is given by

ψ̃(y) =

 A1 e
−|k|(y−L) y ≥ L

A2 e
|k|(y−L) +A3 e

−|k|(y+L) −L ≤ y ≤ L
A4 e

+|k|(y+L) y ≤ −L,
(61.75)

where A1,2,3,4 are constants determined by the kinematic and dynamic boundary conditions
applied (in the linear theory) at y = ±L.

61.6.2 Kinematic boundary condition at y = ±L

We derived the kinematic boundary condition in Section 54.5.4, which arises from the material
nature of the interface. The velocity is continuous at y = ±L, so that the kinematic boundary
condition means that the streamfunction is also continuous at the kinks. Evaluating equation
(61.75) at y = ±L leads to the relations

A1 = A2 +A3 e
−2|k|L and A4 = A3 +A2 e

−2|k|L, (61.76)

so that

ψ̃(y) =

 Aup e
−|k|(y−L) +Alo e

−|k|(y+L) y ≥ L
Aup e

|k|(y−L) +Alo e
−|k|(y+L) −L ≤ y ≤ L

Aup e
|k|(y−L) +Alo e

|k|(y+L) y ≤ −L,
(61.77)

which can be written in the more succinct form

ψ̃(y) = Aup e
−|k||y−L| +Alo e

−|k||y+L|, (61.78)

where we wrote
Aup = A2 and Alo = A3. (61.79)

The notation (61.79) for the amplitudes correspond to the latitude (y = L or y = −L) where
their respective exponentials are maximized. Equation (61.78) reveals that the streamfunction
is the sum of two functions, each peaked at one of the kinks in the background flow.

The coefficients, Aup and Alo, are generally complex. However, symmetry of the setup for
when the edge waves are phase locked requires their magnitudes to be equal, in which case

Aup = Γei θup and Alo = Γei θlo with Γ > 0, (61.80)
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and the corresponding streamfunction

ψ̃(y) = Γ
[
e−|k||y−L|+i θup + e−|k||y+L|+i θlo

]
. (61.81)

61.6.3 Dynamic boundary condition at y = L

As detailed in Section 54.5.5, the dynamic boundary condition is based on continuity of pressure
across an interface (ignoring surface tension). Equivalently, it arises from integrating the Rayleigh
equation (61.74) across each interface, with the Dirac delta rendering a jump condition. For this
purpose, it is convenient to write the Rayleigh equation in the form of equation (54.85)

∂y[(ub − c) ∂yψ̃ − ψ̃ ∂yub] + [−k2 (ub − c)] ψ̃ = 0. (61.82)

Since ub and ψ̃ are everywhere continuous, integration across y = L yields

lim
ϵ→0

ˆ L+ϵ

L−ϵ
∂y[(ub − c) ∂yψ̃ − ψ̃ ∂yub] dy = 0, (61.83)

which leads to the jump condition[
(U − c) ∂yψ̃ + ψ̃ ζo

]
y=L−ϵ =

[
(U − c) ∂yψ̃

]
y=L+ϵ

, (61.84)

where we noted that there is zero vorticity for y > L, and the zonal velocity equals to +U
at y = L. Note that ϵ is set to zero once evaluating the expressions. Making use of the
streamfunction (61.77) and its derivative,

∂yψ̃ = |k|

 −Aup e
−|k|(y−L) −Alo e

−|k|(y+L) y ≥ L
Aup e

|k|(y−L) −Alo e
−|k|(y+L) −L ≤ y ≤ L

Aup e
|k|(y−L) +Alo e

|k|(y+L) y ≤ −L,
(61.85)

brings the y = L jump boundary condition to

Aup [2 (U − c) |k|+ ζo] +Alo ζo e
−2|k|L = 0, (61.86)

which, with ζo = −U/L (equation (61.74)), can be written as

Aup [2 (1− c/U) |k|L− 1] = Alo e
−2|k|L. (61.87)

Solving for the dimensionless phase velocity leads to

c/U = 1− 1

2 |k|L

[
1 +

Alo

Aup

e−2 |k|L
]
= 1− 1

2 |k|L
[
1 + e−2 |k|L−i∆θ

]
, (61.88)

where we introduced the phase for the amplitudes according to equation (61.80) and wrote the
phase difference as

∆θ = θup − θlo. (61.89)

The phase velocity (61.88) is comprised of three terms

c = U︸︷︷︸
Doppler

− U

2 |k|L︸ ︷︷ ︸
free wave

− U

2 |k|L e−2 |k|L−i∆θ.︸ ︷︷ ︸
interaction

(61.90)

The first term arises from the Doppler shift via the background flow at the upper interface that
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is directed to the east,
ub(y = L) = U x̂. (61.91)

The second term corresponds to the phase velocity of a free edge wave at the upper interface,
with the westward intrinsic phase velocity

cintrinsicphase = −U/(2 |k|L) x̂ = ζo/(2 |k|) x̂. (61.92)

For high wavenumbers (short wavelengths), the first and second terms dominate, with the phase
velocity positive (eastward) as it is dominated by the Doppler term.

The final term in the phase velocity (61.90) arises from interactions between the upper and
lower edge waves. The interaction decays both exponentially and algebraically according to |k|L,
meaning that the edge waves have vanishingly small interactions for short wavelength zonal
waves. Furthermore, the interaction term is generally a complex number that can be written

− U

2 |k|L e−2 |k|L−i∆θ =
U e−2 |k|L

2 |k|L
[
− cos(∆θ) + i sin(∆θ)

]
= cr + i ci. (61.93)

Evidently, the growth rate, σ = ci k, is positive (meaning the wave grows) if

k sin(∆θ) > 0 =⇒ σ = ci k > 0 =⇒ growing waves. (61.94)

For k > 0 this condition means that the lines of constant phase are slanted into the background
shear, just as anticipated by Figures 61.1 and 61.6.

61.6.4 Dynamic boundary condition at y = −L
The interface at y = −L has the jump condition[

(−U − c) ∂yψ̃
]
y=−L−ϵ =

[
(−U − c) ∂yψ̃ + ψ̃ ζo

]
y=−L+ϵ, (61.95)

where the vorticity is zero for y < −L and the zonal velocity is −U . Making use of the
streamfunction (61.77) and the derivative (61.85) brings the y = −L jump boundary condition
to

Aup ζo e
−2|k|L +Alo [2 (U + c) |k|+ ζo] = 0, (61.96)

which can be written as

Alo [2 (1 + c/U) |k|L− 1] = Aup e
−2|k|L, (61.97)

thus leading to the dimensionless phase velocity

c/U = −1 + 1

2 |k|L

[
1 +

Aup

Alo

e−2 |k|L
]
= −1 + 1

2 |k|L
[
1 + e−2 |k|L+i∆θ

]
, (61.98)

where we introduced the phase for the amplitudes according to equation (61.80). Just like for
the y = L interface, we have the following interpretation for the phase velocity

c = −U︸︷︷︸
Doppler

+
U

2 |k|L︸ ︷︷ ︸
free wave

+
U

2 |k|L e−2 |k|L+i∆θ︸ ︷︷ ︸
interaction

= cr + i ci. (61.99)

At the y = −L interface the background flow is

ub(y = −L) = −U x̂, (61.100)
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so that the Doppler shift is in the opposite direction to that at the upper interface, as is the free
edge wave intrinsic phase velocity

cintrinsicphase = U/(2 |k|L) x̂ = −ζo/(2 |k|) x̂. (61.101)

The interaction term in equation (61.99) shares much with that at the upper interface given
by equation (61.90). Namely, both decay exponentially and algebraically according to |k|L.
Furthermore, the interaction term is generally a complex number that can be written

U

2 |k|L e−2|k|L+i∆θ =
U e−2|k|L

2 |k|L
[
cos(∆θ) + i sin(∆θ)

]
= cr + i ci. (61.102)

Just like for the upper interface, the growth rate, σ = ci k, is positive (meaning the wave grows)
if

k∆θ > 0 =⇒ σ = ci k > 0 =⇒ growing waves. (61.103)

61.6.5 Phase velocity for phase locked edge waves

Application of the dynamical boundary condition at y = L and y = −L resulted in two
expressions for the phase velocity as given by equations (61.88) and (61.98). The two phase
velocities must be identical for the edge waves to be phase locked, with inspection of the two
expressions leading to

cr/U = 0 = ±
[
−1 + 1

2 |k|L +
e−2 |k|L cos∆θ

2 |k|L

]
(61.104a)

ci/U =
sin(∆θ) e−2|k|L

2 |k|L . (61.104b)

That is, the phase velocity for the phase locked edge waves is purely imaginary, so that the edge
waves are stationary and have a streamfunction given by

ψ(x, y, t) = ψ̃(y) ei k x+k ci t = ψ̃(y) ei k x+σ t. (61.105)

Growth rate

The phase velocity for the phase locked edge waves has a nonzero imaginary component when
there is a nonzero phase shift between the two edge waves. Growth occurs when k ci = σ > 0,
which leads to the sufficient condition for instability

k∆θ > 0 =⇒ σ > 0 =⇒ unstable waves. (61.106)

Vanishing real phase velocity

The vanishing real phase velocity puts a constraint on the zonal wavenumber, in which case

2 |k|L = 1 + e−2|k|L cos∆θ. (61.107)

The maximum wavenumber that can satisfy this constraint is found when there is no phase shift
(∆θ = 0), in which we define a critical wavenumber

(1− 2 |k|L) = e−2|k|L =⇒ (|k|L)crit = 0.6329. (61.108)
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This is a high wavenumber cutoff, meaning that for wavenumbers larger than (|k|L)crit (i.e.,
relatively short waves), then there is a nonzero real component to the phase velocity. The nonzero
real component to the phase velocity means that the two edge waves are in fact not phase locked,
and as a result their amplitudes do not grow. Hence, the dimensionless wavenumber (61.108)
separates the stable regime (high wavenumbers, |k|L > (|k|L)crit) from the unstable regime (low
wavenumbers, |k|L < (|k|L)crit).

61.6.6 Dispersion relation and its interpretation
Here we derive the dispersion relation, which captures much of the information already gleaned
by studying the phase velocity as well as some complementary perspectives.

Deriving the dispersion relation

Combine the two jump conditions (61.86) and (61.96) into a matrix-vector equation[
[2 (U − c) |k|+ ζo] ζo e

−2|k|L

ζo e
−2|k|L [2 (U + c) |k|+ ζo]

] [
Aup

Alo

]
=

[
0
0

]
. (61.109)

Nontrivial solutions to this equation exist if the determinant of the 2× 2 matrix vanishes, which
then leads to the dispersion relation

(c/U)2 =
1

(2 |k|L)2
[
(1− 2 |k|L)2 − e−4|k|L] = [1− 1

2 |k|L

]2
− e−4|k|L

(2 |k|L)2 . (61.110)

Interpreting the two roots to the dispersion relation

The dispersion relation (61.110) leads to two roots for the phase velocity, c = ω/k, with roots
either both real or both imaginary. We already saw in Section 61.6.5 that the real roots must
vanish for phase locked edge waves, with a vanishing real phase velocity present when the
horizontal wavenumber satisfies |k|L < (|k|L)crit from equation (61.108). We interpret the
nonzero real roots that arise with |k|L > (|k|L)crit as stable and non-phase locked edge waves
moving in opposite directions along the velocity kinks at y = L and y = −L. For example, in
the high wavenumber limit the roots are real and have the approximate value

c ≈ ±U
[
1− 1

2 |k|L

]
. (61.111)

In this limit, the two edge waves correspond to the isolated edge waves studied in Section 54.5.
Evidently, the wavenumber is so large (small wavelength) that the meridional structure of the
edge waves rapidly decays in the direction away from their respective interfaces. As a result the
two edge waves are effectively free waves since their interaction is negligible and they are not
phase locked. As |k|L gets smaller, the wavelength gets longer and the meridional extent of the
two edge waves broadens. Interactions between the waves thus occurs, with these interactions
possible even when the waves are stable. However, phase locking occurs for |k|L < (|k|L)crit,
with such waves unstable.

Critical wavenumber separating the stable and unstable regimes

As seen in equation (61.108), the real part of the phase velocity vanishes when the dimensionless
wavenumber satisfies

(1− 2 |k|L)2 = e−4|k|L =⇒ (|k|L)crit = 0.6329. (61.112)
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Figure 61.7: Dimensionless phase velocity, c/U = ω/(k U), from equation (61.110) derived for the piecewise
linear velocity profile shown in Figure 61.6. A nonzero real phase velocity corresponds to stable edge waves
that are not phase locked. If there are two edge waves, one on each of the velocity jumps and moving in the
opposite directions, then they can interact. If the interaction is weak then it does not support a growing instability.
Imaginary phase velocities correspond to phase locked edge waves with zero real phase velocity, so that the waves
are stationary and have both an exponentially growing and decaying mode. The dimensionless wavenumber,
|k|crit L = 0.6329, separates the stable (high wavenumber) regime from the unstable (low wavenumber) regime.

That is, for lower dimensionless wavenumbers, the squared phase speed (61.110) becomes negative

(c/U)2 < 0 =⇒ c = i ci, (61.113)

in which case the two real roots vanish and, for smaller wavenumbers, become two imaginary
roots. One of the imaginary roots is an exponentially decaying mode and the other is the
exponentially growing mode. Since the real part of the phase velocity vanishes, the modes are
stationary relative to the shear layer, and thus they are either decaying or growing in place.

Fastest growth rate

The growth rate, σ = ci k, is given by

(σ L/U) = ±
[
e−4|k|L/4− (|k|L− 1/2)2

]1/2
, (61.114)

which we plot in Figure 61.8. The fastest growth rate is given by

d(σ L/U)2

d(|k|L) = 0 =⇒ (|k|L)fastest ≈ 0.4 =⇒ Λfastest ≈ 2πL/0.4 = 5πL. (61.115)

Evidently, the most unstable mode has a zonal wavelength that is roughly 16 times the meridional
width of the shear zone (see Figure 61.6). For this mode the positive dimensionless growth rate
is

(σ L/U) ≈ 0.2 =⇒ σ = 0.2U/L. (61.116)

The growth rate increases as the horizontal shear, U/L, increases, either by increasing the
background flow speed, U , or by decreasing the width of the shear zone.
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Figure 61.8: Dimensionless growth rate, σ L/U , from equation (61.114) derived for the piecewise linear velocity
profile shown in Figure 61.6. A real growth rate corresponds to imaginary phase velocity from Figure 61.7,
and represents exponentially growing (σ > 0) and decaying (σ < 0) modes. The dimensionless wavenumber,
|k|crit L = 0.6329, separates the stable (higher wavenumber) from unstable (lower wavenumber) regimes.

Phase shift for the fastest growing unstable mode

Making use of equation (61.104b) renders the expression for the phase shift present for phase
locked unstable edge waves

sin(∆θ) =
2 |k|Lσ
k U

e−2|k|L. (61.117)

Equation (61.116) says that the fastest growing mode has a growth rate of σ L/U ≈ 0.2 at the
non-dimensional wavenumber |k|L ≈ 0.4 (equation (61.115)), so that

sin(∆θ) = ±2 (σ L/U) e2|k|L ≈ ±0.4 e0.8. (61.118)

For an eastward intrinsic phase velocity, so that k > 0, the constraint (61.94) says that the
growing wave has k sin(∆θ) > 0, with sin(∆θ) = 0.4 e0.8 yielding a phase shift of

∆θ ≈ 1.3π/2. (61.119)

From Figure 61.6 we infer that the optimal alignment for growth of the two edge waves occurs
with a π/2 phase shift. However, this phase shift requires a larger |k|L, and a larger |k|L reduces
the exponential appearing in the interaction between the two edge waves and thus slows the
growth rate. Hence, the most unstable wave results from the dual need to optimize the relative
phase of the two waves as well as the amplitude of the interaction.

61.6.7 Plotting the ψ̃(y) streamfunctions
In Figure 61.9 we plot the streamfunction based on equation (61.78)

ψ̃(y) = Aup e
−L|k| |y/L−1| +Alo e

−L|k| |y/L+1|, (61.120)

for stable waves with k L = 1 and k L = −1, and for an unstable wave with k L = 0.4. There are
some subtleties with producing these plots, thus motivating the following presentation of details.
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Figure 61.9: Streamfunction, ψ̃(y), for stable and unstable edge waves on the free shear layer shown in Figure
61.6. Each streamfunction is non-dimensionalized with an amplitude set so that the maximum streamfunction
is unity. The black and red streamfunctions are for stable and non-phase locked edge waves maximized at the
upper velocity kink (red at y = L) and lower kink (black at y = −L). The two stable streamfunctions have
zero phase shift (θlo = θup = 0). The blue streamfunction is for the unstable mode with |k|L = 0.4 and with the
phase shift ∆θ = 1.3π/2, with the streamfunction given by equation (61.127). Details for how to compute these
streamfunctions are given in Section 61.6.7.

The stable streamfunction maximized at y = L

The stable streamfunctions have zero phase shifts (since they are stable waves) and they have
unequal amplitudes, Aup ≠ Alo. The k L = −1 wave is maximized on the y = L velocity kink
since this is where the edge wave has a westward intrinsic phase velocity. The dimensionless
phase velocity is given by the dispersion relation (61.110) with k L = −1, which yields (see also
equation (61.90))

c/U ≈ 0.495, (61.121)

with the eastward phase velocity arising from dominance of the eastward background flow at
y = L. That is, the stable edge wave maximized at y = L is swept eastward by the background
flow, thus precluding it from being phase locked with the edge wave centered on y = −L. The
amplitude ratio is computed from equation (61.87)

Alo/Aup = e2 [2 (1− c/U)− 1] ≈ 0.068, (61.122)

with the resulting streamfunction (61.120)

ψ̃(L)(y) = Aup

[
e−|y/L−1| + (Alo/Aup) e

−|y/L+1|
]
. (61.123)

We specify the amplitude, Aup, so that the maximum of ψ̃(L)(y) is unity as plotted in Figure 61.9.

The stable streamfunction maximized at y = −L

The k L = 1 wave is symmetric with respect to the k L = −1 wave. Namely, the k L = 1 wave
is maximized on the y = −L velocity kink since this is where the edge wave has a westward
intrinsic phase velocity. The dimensionless phase velocity is given by the dispersion relation
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(61.110) with k L = 1, which yields (see also equation (61.99))

c/U ≈ −0.495, (61.124)

with the westward phase velocity due to dominance of the westward background flow at y = −L.
That is, the stable edge wave maximized at y = −L is swept westward by the background flow,
thus precluding it from being phase locked with the edge wave centered on y = L. The amplitude
ratio is computed from equation (61.97)

Aup/Alo = e2 [2 (1 + c/U)− 1] ≈ 0.068, (61.125)

which is numerically equal to the ratio Alo/Aup in equation (61.122) for the wave maximized at
y = L. The resulting streamfunction (61.120) is

ψ̃(−L)(y) = Alo

[
(Aup/Alo) e

−|y/L−1| + e−|y/L+1|
]
. (61.126)

We specify the amplitude, Alo, so that the maximum of ψ̃(−L)(y) is unity as plotted in Figure
61.9.

The unstable streamfunction

When the zonal wavenumber gets smaller than (|k|L)crit = 0.6329, then the two edge waves
become phase locked and stationary (zero real phase velocity), with a phase shift allowing
for mutual growth to manifest shear instability. In Figure 61.9 we plot the magnitude of the
streamfunction for |k|L = 0.4 according to equation (61.81)

ψ̃(y) = Γ ei θup
[
e−L|k| |y/L−1| + e−L|k| |y/L+1|+i∆θ

]
, (61.127)

where the phase shift is given by ∆θ = 1.3π/2 as per equation (61.119), and the magnitude is
computed by

|ψ̃| =
√
ψ̃ ψ̃∗. (61.128)

61.6.8 Lack of mutual wave growth for stable flows
The wave mechanism for shear instability offers a mechanistic understanding of the integral
stability theorems from Section 61.5. For example, the case of Figure 61.6 illustrates how waves
can mutually reinforce each other’s amplitudes if there is an inflection point in the background
flow, thus satisfying the necessary condition for Rayleigh’s inflection point theorem. We sketch
a profile in Figure 61.10 that has no inflection point, and for which the edge waves have their
phase velocities in the same direction. If their relative phases are oriented so that the lower
wave enhances the amplitude of the upper wave, as in Figure 61.10, then the upper wave in turn
diminishes the amplitude of the lower. This result holds regardless the value for the relative
phase. Whereas one wave’s amplitude growth is supported by the other wave, that growth comes
at the cost of diminishing the amplitude of its partner. We conclude that no matter what the
relative phase relations, no mutual wave resonance can occur for the background flow profile of
Figure 61.10 so there is no instability.

61.6.9 Further study
The linear sheared velocity profile in an unbounded domain was first analyzed by Rayleigh
(1894) (volume II, page 393), and it forms the basis for most subsequent treatments, such as
Chandrasekhar (1961), Drazin and Reid (2004), Vallis (2017), and Smyth and Carpenter (2019).
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Figure 61.10: Two edge waves riding on their respective velocity jumps. There is no inflection point for this
velocity profile, so that the velocity profile is stable according to the Rayleigh inflection point theorem from Section
61.5.1. We can mechanistically understand this result by noting the that two edge waves have a phase velocity in
the same direction. Consequently, the waves cannot enter into the mutual resonance condition needed to create
exponential growth. In this sketch, the secondary circulation from the lower wave enhances the amplitude of the
upper wave. However, the upper wave diminishes the amplitude of the lower wave. Any other phase arrangement
results in a similar situation whereby the two waves cannot mutually enhance each other’s amplitude.
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Figure 61.11: Schematic of the flow configuration used to examine stratified shear instability. The fluid is
contained within a vertically bounded yet horizontally unbounded domain, with no-normal flow at the top and
bottom meaning that the vertical flow vanishes at these boundaries, w(0) = w(H) = 0. The background flow is
zonal with a vertical shear, ub(z) x̂. The background buoyancy, bb(z), is stably stratified with dbb/dz = N2(z) > 0.
The analysis in Section 61.7 reveals that the flow is stable if the gradient Richardson number, Ri = N2/(dub/dz)

2,
is everywhere less than the critical value of 1/4. In contrast, the flow satisfies a necessary (though not sufficient)
condition for shear instability if the Richardson number somewhere drops below 1/4.

In particular, the treatment of Smyth and Carpenter (2019) offers many insights into the nature
of the wave phases and phase speeds, with the presentation in this section emulating much from
theirs. This video from Prof. Mollo-Christensen provides a pedagogical introduction to a variety
of instabilities.

61.7 Integral conditions for stratified shear stability/instability

In this section we examine the stability of a vertically sheared zonal flow in the presence of
gravity and with a gravitationally stable vertical buoyancy stratification. The fluid is contained
within a vertically bounded domain yet with no boundaries in the horizontal, with Figure 61.11
providing an illustration of the configuration. Much in this discussion reflects that given for
the meridionally sheared zonal flow in Section 61.5, here with the added feature of buoyancy
stratification along with a slight increase in algebraic complexity.
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61.7.1 Governing equations

We formulate the problem using the inviscid and adiabatic Boussinesq ocean equations in a
rotating reference frame as developed in Section 29.1.6, with the governing equations given by

∂tv + (v · ∇)v + f ẑ × v = −∇φ+ b ẑ (61.129a)

(∂t + v · ∇) b = 0 (61.129b)

∇ · v = 0, (61.129c)

where b is the buoyancy, φ is the pressure divided by the Boussinesq reference density, and v is
the non-divergent velocity.

The Coriolis acceleration generally plays a minor role in the mechanics of stratified shear
instabilities, since the space-time scales are far too small for the Coriolis acceleration to play a
noticeable role in the dynamics. We thus set f = 0 in this section. In this case,

v = ub(z) x̂+ vb(z) ŷ, (61.130)

is an exact solution to the inviscid equations (61.129a)-(61.129c) if the background pressure has
a zero horizontal gradient.7 Evidently, the static and depth dependent horizontal flow (61.130)
is an exact solution to the inviscid equations of motion in the absence of a Coriolis acceleration.
It represents an unforced (free) mode for inviscid hydrostatic flow with pressure, φ(z), and
buoyancy b(z), in exact hydrostatic balance.

With zero Coriolis acceleration, it is sufficient to orient the background flow along the x̂ axis
so that we set vb = 0 in the following. We can further make use of Squire’s theorem (Section
61.2) to note that the most unstable perturbation is two-dimensional and in the x-z plane (the
plane of the background flow). We thus focus on stability of two-dimensional flows in the form

v = [ub(z) + u′(x, z, t)] x̂+ w′(x, z, t) ẑ, (61.131)

where u′ x̂+ w′ ẑ is the non-divergent perturbation flow in the x-z plane

∂xu
′ + ∂zw

′ = 0. (61.132)

Given the above flow perturbation, we decompose the buoyancy and pressure fields according
to

φ = φb(z) + φ′(x, z, t) and b = bb(z) + b′(x, z, t), (61.133)

where
dφb

dz
= bb and

dbb
dz

= N2 > 0. (61.134)

In this manner, the governing equations (61.129a)-(61.129c) take the form

∂tu
′ + (ub + u′) ∂xu

′ + w′ ∂z(ub + u′) = −∂xφ′ (61.135a)

∂tw
′ + (ub + u′) ∂xw

′ + w′ ∂zw
′ = −∂zφ′ + b′ (61.135b)

∂tb
′ + (ub + u′) ∂xb

′ + w′ ∂zb
′ = −w′N2 (61.135c)

∂xu
′ + ∂zw

′ = 0. (61.135d)

7This point is noted in Section 21 of Drazin and Reid (2004).
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61.7.2 The linear vorticity equation

To develop an integral condition for stability, linearize the governing equations (61.135a)-(61.135d)
(i.e., drop all terms with products of primed fields) to have

∂tu
′ + ub ∂xu

′ + w′ ∂zub = −∂xφ′ (61.136a)

∂tw
′ + ub ∂xw

′ = −∂zφ′ + b′ (61.136b)

(∂t + ub ∂x)b
′ = −w′N2 (61.136c)

∂xu
′ + ∂zw

′ = 0. (61.136d)

Taking the z-derivative of the zonal equation (61.136a) and the x-derivative of the vertical
equation (61.136b), and then subtracting, eliminates the pressure gradient to render

∂t(∂zu
′ − ∂xw′) + ∂z(ub ∂xu

′)− ub ∂xxw
′ + ∂z(w

′ ∂zub) = −∂xb′. (61.137)

A bit of rearrangement, and use of the continuity equation (61.136d), yields the linearized
vorticity equation

(∂t + ub ∂x)(∂zu
′ − ∂xw′) + w′ ∂zzub = −∂xb′, (61.138)

with
∂zu

′ − ∂xw′ = ŷ · (∇× v′) (61.139)

the meridional component to the vorticity of the fluctuating flow.

Since the x-z flow is non-divergent (equation (61.136d)), it is convenient to introduce a
zonal-depth streamfunction

u′ x̂+ w′ ẑ = ŷ ×∇ψ = ∂zψ x̂− ∂xψ ẑ, (61.140)

in which case the linear vorticity equation (61.138) becomes

(∂t + ub ∂x)(∂xx + ∂zz)ψ − ∂xψ ∂zzub = −∂xb′, (61.141)

where the meridional component to the vorticity is given by the Laplacian of the streamfunction

ŷ · (∇× v′) = (∂xx + ∂zz)ψ. (61.142)

Likewise, the linear buoyancy equation (61.136c) becomes

(∂t + ub ∂x)b
′ = ∂xψN

2. (61.143)

Since the fluid is contained by a top and bottom boundary as per Figure 61.11, the no-normal
flow condition for the vertical velocity,

w′ = 0 at z = 0, H, (61.144)

means that the streamfunction is a spatial constant along the top and bottom boundaries

∂xψ = 0 at z = 0, H. (61.145)

Without loss of generality we take these constant streamfunction values to be zero, thus rendering
the homogeneous Dirichlet boundary conditions

ψ = 0 at z = 0, H. (61.146)
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61.7.3 Taylor-Goldstein equation
The vorticity equation (61.141) and buoyancy equation (61.143) are two coupled linear partial
differential equations with independent variables, (x, z, t), and with z-dependent coefficients via
d2ub(z)/dz

2 and N2(z). To study the stability of this flow, we pursue a modal analysis based on
the wave ansatz

ψ(x, z, t) = ψ̃(z) ei k (x−c t) and b′(x, z, t) = b̃(z) ei k (x−c t), (61.147)

which accords with the wave ansatz (61.147) used to study stability of meridionally sheared
flows in Section 61.4. In particular, the phase velocity,

cp = c x̂ = (ω/k) x̂, (61.148)

follows the conventions in Section 61.4.1. Use of the ansatz (61.147) brings the vorticity equation
(61.141) and buoyancy equation (61.143) to

(−ω + ub k)(−k2 + ∂zz)ψ̃ − k ψ̃ ∂zzub = −k b̃ (61.149a)

(−ω + ub k)b̃ = −k ψ̃ N2. (61.149b)

Substituting the buoyancy equation (61.149b) into the vorticity equation (61.149a) leads to the
Taylor-Goldstein equation for the streamfunction

(ub − c)
[
d2

dz2
− k2

]
ψ̃ +

[
N2

ub − c
− d2ub

dz2

]
ψ̃ = 0. (61.150)

In the special case of N2 = 0 and with z swapped to y, the Taylor-Goldstein equation reduces
to the Rayleigh equation (61.35).

61.7.4 Richardson number and the stability conditions

An inspired transformation of the Taylor-Goldstein equation

To develop conditions for stability/instability, we make the inspired transformation of the
streamfunction to

ψ̃ = ϕ̃
√
ub − c and ϕ̃(0) = ϕ̃(H) = 0. (61.151)

A bit of algebra yields the second derivative

(ub − c)
d2ψ̃

dz2
=[

− 1

4 (ub − c)1/2
(
dub

dz

)2

+
(ub − c)1/2

2

d2ub

dz2

]
ϕ̃+ (ub − c)1/2

d

dz

[
(ub − c)

dϕ̃

dz

]
, (61.152)

and the consequent transformation of the Taylor-Goldstein equation (61.150)[
1

ub − c

[
N2 − 1

4

(
dub

dz

)2
]
− (ub − c) k2 −

1

2

d2ub

dz2

]
ϕ̃+

d

dz

[
(ub − c)

dϕ̃

dz

]
= 0. (61.153)

This form of the Taylor-Goldstein equation is actually a bit less compact than the original form
(61.150). Even so, as we now show, it offers an elegant stability condition in terms of the gradient
Richardson number.
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Sufficient condition for stability and necessary condition for instability

To develop an integral stability theorem, multiply equation (61.153) by the complex conjugate,
ϕ̃∗, and integrate over the depth range 0 ≤ z ≤ H. Performing this integral on the derivative
term in equation (61.153) leads to

ˆ H

0
ϕ̃∗

d

dz

[
(ub − c)

dϕ̃

dz

]
dz =

ˆ H

0

d

dz

[
ϕ̃∗ (ub − c)

dϕ̃

dz

]
dz −

ˆ H

0
(ub − c)

∣∣∣∣∣dϕ̃dz
∣∣∣∣∣
2

dz, (61.154)

with the total derivative term vanishing through use of the homogeneous Dirichlet boundary
conditions in equation (61.151). Rearrangement thus renders

ˆ H

0

|ϕ̃|2
ub − c

[
N2 − 1

4

(
dub

dz

)2
]
dz =

ˆ H

0
(ub − c)

k2 |ϕ̃|2 + ∣∣∣∣∣dϕ̃dz
∣∣∣∣∣
2
dz +

1

2

ˆ H

0

d2ub

dz2
|ϕ̃|2 dz. (61.155)

This integral condition provides the basis for developing a sufficient condition for stability and,
conversely, a necessary condition for instability.

The final term on the right hand side of equation (61.155) is real, so that the imaginary part
of this equation is given by

ci

ˆ H

0

|ϕ̃|2 (dub/dz)
2 (Ri− 1/4)

|ub − c|2
dz = −ci

ˆ H

0

k2 |ϕ̃|2 + ∣∣∣∣∣dϕ̃dz
∣∣∣∣∣
2
dz, (61.156)

where we used the identity

1

ub − c
=

ub − c∗
(ub − c) (ub − c∗)

=
ub − cr + i ci
|ub − c|2

, (61.157)

and introduced the gradient Richardson number (assuming nonzero vertical shear)

Ri =
N2

(dub/dz)2
. (61.158)

Evidently, if the Richardson number is greater than the critical value,

Ricrit = 1/4, (61.159)

throughout the vertical column, then the only way to satisfy equation (61.156) is for ci = 0,
which establishes a sufficient condition for stratified shear stability

Ri(z) > Ricrit = 1/4 ∀ z ∈ [0, H] =⇒ sufficient condition for stability. (61.160)

Conversely, a necessary condition for stratified shear instability is for the Richardson number to
be less than 1/4 somewhere in the vertical column

Ri(z) < Ricrit = 1/4 for some z ∈ [0, H] =⇒ necessary condition for instability. (61.161)

We emphasize that a Richardson number less than the critical value is necessary but not sufficient
for stratified shear instability. Although for many purposes it is sufficient, there are examples
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where it is not. For example, flows near boundaries generally require a smaller Richardson
number to go unstable. Even so, for most geophysical applications, Ricrit = 1/4 is a very good
indicator for stratified shear instability.

Comparison to barotropic shear instability

The gradient Richardson number (61.158) is the ratio of the buoyancy stratification to the
vertical shear of the horizontal flow. It is notable that the necessary condition for instability,
Ri < 1/4, does not depend on the curvature of the background flow, which contrasts to the case
of barotropic shear instability studied in Section 61.5. For stratified shear instability, there is
a direct struggle by the vertical shear to overcome the stabilizing effects from the background
buoyancy stratification.

61.7.5 Richardson number and mixing energetics
The gradient Richardson number (61.158) provides a measure of the struggle between stabilizing
effects from vertical stratification to the destabilizing effects from vertical shear. Here we
provide an interpretation of the Richardson number in terms of mixing energetics, with mixing
induced by the stratified shear instability. For this purpose we examine the thought experiment
illustrated in Figure 61.12, with the analysis emulating that in Section 60.3.6 for mixing induced
by Kelvin-Helmholtz instability.

Initial and final states of the thought experiment

Consider a Boussinesq ocean whose initial flow has a linear shear and a linear density profile

ub(z) = U0 + (z/H) δU and ρb(z) = ρo − (z/H) δρ, (61.162)

where U0 is the velocity at z = 0, ρo is the Boussinesq reference density, δρ > 0 is a constant
that sets the strength of the vertical stratification, and δU is a constant that sets the strength
of the vertical shear. The initial Richardson number is assumed to be less than the critical value
of 1/4,

Ri =
N2

(∂zub)2
=
g

ρo

(δρ/H)

(δU/H)2
< 1/4, (61.163)

thus satisfying the necessary condition for stratified shear instability. For the final state, assume
the fluid completely mixes to produce a uniform density and uniform velocity, which are taken
to be the vertical average of the initial values

ρ = U0 + δU/2 and ρ = ρo − δρ/2. (61.164)

We might think of this configuration as a tiny region where the shear and density are well
approximated with a linear vertical profile, and where shear induced mixing homogenizes the
density and velocity.

Change in the potential and kinetic energies per area

The difference in the potential energy (per horizontal area) between the final and initial states is
given by

Pfinal − Pinit = g

ˆ H

0
z [ρ− ρb(z)] dz = g δρH2/12. (61.165)

An increase in potential energy upon mixing is anticipated by the study in Section 60.3.6 of
Kelvin-Helmholtz induced mixing, and from the more general examination of potential energy
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g = �g ẑ<latexit sha1_base64="W/MbYqAZcUkeqS2qt9uSVrelEpU="></latexit>

ub(z) = U0 + (z/H) �U

<latexit sha1_base64="0orhTWSQhoIoHLiTOZq7Mhl68ks=">AAACOnicbVDLSgMxFM34tr6qLt0Ei1BB64yIiiCIbrqsYKvQKSWTpjaYx5DcEesw/+KHuHarW7fuxK0fYPpArHogcDjnXs7NiWLBLfj+qzc2PjE5NT0zm5ubX1hcyi+v1KxODGVVqoU2VxGxTHDFqsBBsKvYMCIjwS6jm7Oef3nLjOVaXUA3Zg1JrhVvc0rASc38UWg6upmGMtJ3aQhcdXGUZcX7zdwxHlh+hrdx8X6nvInDLRy2mAAysPIFv+T3gf+SYEgKaIhKM/8etjRNJFNABbG2HvgxNFJigFPBslyYWBYTekOuWd1RRSSzjbT/xwxvOKWF29q4pwD31Z8bKZHWdmXkJiWBjv3t9cT/vHoC7cNGylWcAFN0ENROBAaNe4XhFjeMgug6Qqjh7lZMO8QQCq7WkZRIfge4boLfTfwltd1SsF/aP98rnJwOW5pBa2gdFVGADtAJKqMKqiKKHtATekYv3qP35r17H4PRMW+4s4pG4H1+AdZhq9Q=</latexit>

⇢b(z) = ⇢0 � (z/H) �⇢

<latexit sha1_base64="W0NziMtabHXRXrwf+D3hyKPRe4M=">AAACAXicbVDLSgMxFL3js9ZX1aWbYBFclRmR6kYounFZ0T6gHUomzbShSWZIMkIdunLtVr/Bnbj1S/wE/8K0HcS2HggczrmXc3OCmDNtXPfLWVpeWV1bz23kN7e2d3YLe/t1HSWK0BqJeKSaAdaUM0lrhhlOm7GiWAScNoLB9dhvPFClWSTvzTCmvsA9yUJGsLHS3eOl2ykU3ZI7AVokXkaKkKHaKXy3uxFJBJWGcKx1y3Nj46dYGUY4HeXbiaYxJgPcoy1LJRZU++nk1BE6tkoXhZGyTxo0Uf9upFhoPRSBnRTY9PW8Nxb/81qJCS/8lMk4MVSSaVCYcGQiNP436jJFieFDSzBRzN6KSB8rTIxtZyYlEL8BthtvvolFUj8teeVS+fasWLnKWsrBIRzBCXhwDhW4gSrUgEAPnuEFXp0n5815dz6mo0tOtnMAM3A+fwDqkZa8</latexit>

z = 0

<latexit sha1_base64="dZQlUqtFHeQBPexxJfWvXtrcDRk=">AAACAXicbVDLSgMxFL1TX7W+qi7dBIvgqsyIVDdC0U2XFe0D2qFk0rQNTTJDkhHq0JVrt/oN7sStX+In+Bem7SC29UDgcM69nJsTRJxp47pfTmZldW19I7uZ29re2d3L7x/UdRgrQmsk5KFqBlhTziStGWY4bUaKYhFw2giGNxO/8UCVZqG8N6OI+gL3Jesxgo2V7h6vKp18wS26U6Bl4qWkACmqnfx3uxuSWFBpCMdatzw3Mn6ClWGE03GuHWsaYTLEfdqyVGJBtZ9MTx2jE6t0US9U9kmDpurfjQQLrUcisJMCm4Fe9Cbif14rNr1LP2Eyig2VZBbUizkyIZr8G3WZosTwkSWYKGZvRWSAFSbGtjOXEojfANuNt9jEMqmfFb1SsXR7Xihfpy1l4QiO4RQ8uIAyVKAKNSDQh2d4gVfnyXlz3p2P2WjGSXcOYQ7O5w8RKJbU</latexit>

z = H

<latexit sha1_base64="7wzHKrKrjFE3/YZUr15C19Pw960=">AAACIXicbVDLSsNAFJ3UV62vqEs3o0UQhJoUqW6EohuXFUxbaEKYTCbt0MmDmYlQQtd+iGu3+g3uxJ34Bf6FkzaIbT0wcDjnXs6d4yWMCmkYn1ppaXllda28XtnY3Nre0Xf32iJOOSYWjlnMux4ShNGIWJJKRroJJyj0GOl4w5vc7zwQLmgc3ctRQpwQ9SMaUIykklz90I6VnW9n6RheQcvNjDE8hbZPmETQOqu7etWoGRPARWIWpAoKtFz92/ZjnIYkkpghIXqmkUgnQ1xSzMi4YqeCJAgPUZ/0FI1QSISTTb4yhsdK8WEQc/UiCSfq340MhUKMQk9NhkgOxLyXi/95vVQGl05GoySVJMLToCBlUMYw7wX6lBMs2UgRhDlVt0I8QBxhqdqbSfHC3wDVjTnfxCJp12tmo9a4O682r4uWyuAAHIETYIIL0AS3oAUsgMEjeAYv4FV70t60d+1jOlrSip19MAPt6wcBqKJf</latexit>

u = U0 + �U/2
<latexit sha1_base64="Un3s0HtyAy7IjeqLNzs+5Wt75qE=">AAACKnicbVDNSgMxGMzWv1r/Vj16CRZBBOtukepFKHrxWMH+QHdZsmnahmaTJckKZek7+CCeveozeCtevfgWZtsitvWDkGHmGyaZMGZUaccZW7mV1bX1jfxmYWt7Z3fP3j9oKJFITOpYMCFbIVKEUU7qmmpGWrEkKAoZaYaDu0xvPhGpqOCPehgTP0I9TrsUI22owD7zhJEzd+rJvhjBG5jdQeqM4Dn0OoRpNGEuyoFddErOZOAycGegCGZTC+xvryNwEhGuMUNKtV0n1n6KpKaYkVHBSxSJER6gHmkbyFFElJ9O/jSCJ4bpwK6Q5nANJ+xfR4oipYZRaDYjpPtqUcvI/7R2orvXfkp5nGjC8TSomzCoBcwKgh0qCdZsaADCkpq3QtxHEmFtapxLCaPfANONu9jEMmiUS26lVHm4LFZvZy3lwRE4BqfABVegCu5BDdQBBs/gFbyBd+vF+rDG1ud0NWfNPIdgbqyvH/cZpos=</latexit>

⇢ = ⇢0 � �⇢/2

Figure 61.12: Left panel: initial conditions for a linearly stratified flow specified by a constant density parameter,
δρ > 0, that sets the strength of the linear stratification, and a constant shear parameter, δU , that sets the
strength of the linear vertical shear. Right panel: a homogenized final state in which the density equals to
the average of the initial density, ρ = ρo − δρ/2, and the velocity equals to the average of the initial velocity,
u = U0 + δU/2. The ratio of the potential energy change to the kinetic energy change is proportional to the
gradient Richardson number as given by equation (61.167).

in Section 26.2.6. The basic idea is that vertical mixing raises the center of mass of the fluid,
thus increasing the gravitational potential energy.

Where does the energy come from to raise the center of mass? For this thought experiment
it must come from the kinetic energy, as that is the only other energy source. We thus anticipate
that the kinetic energy decreases upon mixing. Indeed, the change in the kinetic energy (per
horizontal area) is given by

Kfinal −Kinit =
ρo
2

ˆ H

0
(u2 − u2b ) dz = −

ρo
2

ˆ H

0
(ub − u)2 dz = −ρoH (δU)2/24. (61.166)

A decrease in kinetic energy follows since the square of a spatially variable velocity is always
greater than the square of its spatial average.

Taking the absolute ratio of the change in potential energy to the change in kinetic energy
renders ∣∣∣∣ Pfinal − Pinit

Kfinal −Kinit

∣∣∣∣ = 2 g

ρo

δρ/H

(δU/H)2
= 2Ri, (61.167)

where the second equality introduced the Richardson number (61.163) of the initial state.
Evidently, the Richardson number in this thought experiment is directly proportional to the
absolute ratio of the potential energy change upon mixing to the kinetic energy change upon
mixing. In Exercise 61.3 we find a similar result for a two-layer system, yet with a different
proportionality constant. These two thought experiments support the general connection between
the Richardson number and the energy ratio. Namely, the numerator is proportional to the
potential energy increase due to mixing (presenting a barrier to mixing), and the denominator is
proportional to the kinetic energy available from the shear to overcome the potential energy
barrier.

61.7.6 Constraining the phase velocity of unstable waves
The inspired transformation (61.151) is not the only one that can extract useful information
about stability from the Taylor-Goldstein equation (61.150). Another transformation, following
Howard (1961), is motivated by considering the vertical displacement of a fluid particle under
small amplitude linear waves, with this approach following that given in Section 61.4.5, where we
considered meridional displacements of fluid particles. The particle following approach motivates
a transformation of the Taylor-Goldstein equation that then leads to constraints on the real
and imaginary part of the phase velocity for unstable waves. That is, we derive conditions
that must be satisfied for a wave to grow when placed in an unstable background flow. The
development leads to the critical height theorem as well as Howard’s semi-circle theorem, which
are generalizations of the critical latitude theorem from Section 61.5.3.
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Taylor-Goldstein equation in terms of a fluid particle’s vertical displacement

Introduce the field, η(x, z, t), which measures the vertical displacement of a fluid particle that
has its rest vertical position at z. As such, this field satisfies

w′ = [∂t + (u′ + ub) ∂x]η ≈ (∂t + ub ∂x)η, (61.168)

with the linearization step following from the assumed small displacements. As defined, η(x, z, t)
is the vertical displacement of a fluid particle that has its rest position at z. Now assume the
displacements are generated by small amplitude waves of the form

η(x, z, t) = η̃(z) ei k (x−c t). (61.169)

The corresponding wave ansatz for the vertical velocity,

w′ = −∂xψ = −i k ψ̃(z) ei k (x−c t), (61.170)

leads to the relation between the streamfunction amplitude and the particle displacement
amplitude

ψ̃ = −(ub − c)η̃. (61.171)

The corresponding relation between second derivatives

−(ub − c)
d2ψ̃

dz2
=

d

dz

[
(ub − c)2

dη̃

dz

]
+ η̃ (ub − c)

d2ub

dz2
(61.172)

leads to the Taylor-Goldstein equation (61.150) written in terms of the vertical particle displace-
ment

d

dz

[
(ub − c)2

dη̃

dz

]
= [−N2 + k2 (ub − c)2] η̃ with η̃(0) = η̃(H) = 0. (61.173)

Multiplying by η̃∗, then integrating over the vertical extent of the domain and using the
homogeneous Dirichlet boundary conditions, η̃(0) = η̃(H) = 0, leads to the identity

ˆ H

0
N2 |η̃|2 dz =

ˆ H

0

[
k2 |η̃|2 +

∣∣∣∣dη̃dz
∣∣∣∣2
]
(ub − c)2 dz. (61.174)

The critical height theorem

The imaginary part of the integral condition (61.174) leads to the constraint

2 ci

ˆ H

0

[
k2 |η̃|2 +

∣∣∣∣dη̃dz
∣∣∣∣2
]
(ub − cr) dz = 0, (61.175)

where we used
(ub − c)2 = (ub − cr)2 − c2i − 2 i ci (ub − cr). (61.176)

The constraint (61.175) holds in the presence of an instability (ci ̸= 0) only if the real part of
the phase velocity lives within the bounds of the background flow

umin
b < cr < umax

b =⇒ ub(zcrit) = cr. (61.177)

That is, for a wave to grow in the presence of an unstable background flow, its phase velocity
must have a real part within the bounds of the background flow. It follows that there is a vertical
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position, z = zcrit, where the background flow and the real part of the phase velocity are equal,

ub(zcrit) = cr. (61.178)

This critical height theorem is the vertical analog to the critical latitude theorem from Section
61.5.3. Evidently, for a wave to grow, the real part of its phase velocity must match that of the
background flow at no less than one vertical position. Otherwise, if cr is outside of the bound
(61.177), then the wave simply moves too fast for it to extract energy from the background flow.

Howard’s semi-circle theorem

The real part of the integral condition (61.174) leads to the constraint

ˆ H

0
Q [(ub − cr)2 − c2i ] dz ≥ 0, (61.179)

where we introduced the shorthand for the non-negative quantity

Q = k2 |η̃|2 +
∣∣∣∣dη̃dz

∣∣∣∣2 ≥ 0. (61.180)

For the case with ci ̸= 0, which means there is an unstable wave, then equation (61.175) implies

2

ˆ H

0
Q (ub − cr) dz = 0. (61.181)

We can thus add this term to the constraint (61.179) to render

ˆ H

0
Q [(ub − cr)2 − c2i ] dz =

ˆ H

0
Q [(ub − cr)2 − c2i + 2 cr (ub − cr)] dz ≥ 0, (61.182)

which then leads to

ˆ H

0
Q u2b dz ≥

ˆ H

0
Q (c2r + c2i ) dz =⇒ (c2r + c2i ) ≤

´ H
0 Q u2b dz´ H
0 Q dz

. (61.183)

This inequality places a constraint on the real and imaginary part of the phase velocity. However,
it is not so practical since we need to specify Q from equation (61.180), which requires information
about the wavenumber and particle displacements.

A more useful practical constraint can be derived by starting from the inequality

ˆ H

0
Q (ub − umin

b ) (ub − umax
b ) dz =

ˆ H

0
Q [u2b − ub u

min
b − ub u

max
b + umin

b umax
b ] dz ≤ 0, (61.184)

which follows from the definition of the umin
b and umax

b , and recalling that Q ≥ 0. Making use of
equation (61.183) allows us to replace u2b with c2r + c2i and still maintain the inequality, so that

ˆ H

0
Q [c2r + c2i − ub (u

min
b + umax

b ) + umin
b umax

b ] dz ≤ 0, (61.185)

and use of the constraint (61.181) then allows us to replace ub with cr to have

ˆ H

0
Q [c2r + c2i − cr (umin

b + umax
b ) + umin

b umax
b ] dz ≤ 0. (61.186)
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Figure 61.13: Illustrating Howard’s semi-circle theorem (61.188) in the complex plane defined by the phase
velocity. The semi-circle theorem says that growing waves (with ci > 0) in a sheared flow have their phase velocity
within the gray region, with radius (umax

b − umin
b )/2 and center along the real axis at cr = (umin

b + umax
b )/2.

This constraint is more practical since it only involves the phase velocity and the maximum and
minimum values of the background velocity, each of which are independent of z. Evidently, since
Q is positive, we must have

c2r + c2i − cr (umin
b + umax

b ) + umin
b umax

b ≤ 0, (61.187)

which can be rearranged to

[cr − (umin
b + umax

b )/2]2 + c2i ≤ [(umax
b − umin

b )/2]2. (61.188)

This constraint is depicted in Figure 61.13, where we see that unstable waves (with ci > 0) have
phase velocities that sit within the semi-circle in the upper half of the complex plane whose
center is along the real axis with cr = (umin

b + umax
b )/2 and whose radius is (umax

b − umin
b )/2.

The semi-circle theorem is particularly useful when designing numerical algorithms to find
unstable waves. Also note that we derived this theorem starting from the case of a stratified
shear layer. However, the same result holds for unstable waves in the presence of a meridionally
sheared barotropic flow discussed as earlier in this chapter.

61.7.7 Further study
The Ri = 1/4 stability argument was first presented by Miles (1961) and soon thereafter it was
extended by Howard (1961). Our derivation of Howard’s semi-circle theorem (61.188) follows
Section 11.7 of Kundu et al. (2016).

61.8 A vertically sheared homogeneous fluid with a free surface
In this chapter we studied horizontal sheared flow in a homogeneous fluid, and then rotated the
geometry to consider vertically sheared flow in a gravitationally stratified fluid. Here we consider
a vertically sheared homogeneous fluid moving over a flat surface at z = 0 and with a free
surface at z = η, as depicted in Figure 61.14. Directly translating the analysis of stratified shear
instability from Section 61.7 to the present case, we might presume that since the Richardson
number vanishes here, then any flow satisfies the necessary condition for vertical shear instability.
However, besides having a vanishing buoyancy (since the fluid is homogeneous), the free upper
surface further distinguishes this configuration from the vertically stratified shear instability
studied in Section 61.7 (where we assumed the flow to occur between two rigid boundaries). The
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Figure 61.14: Schematic of the flow configuration used to examine vertical shear instability in a homogeneous
inviscid flow with a free upper surface. The background flow is zonal with a vertical shear, ub(z) x̂. The fluid
domain has a rigid lower bound at z = 0, where the bottom kinematic boundary condition means that w(0) = 0.
The upper surface is free at z = η = H + η′(x, t), so that the linearized upper kinematic boundary condition is
(∂t + ub ∂x) η

′ = w′, and this boundary condition is evaluated at z = H rather than z = η.

presence of a free surface removes the ability to make general statements about the stability,
thus illustrating the importance of boundary conditions when studying modal instabilities. This
section also serves to highlight the role of non-hydrostatic pressure for enabling vertical shear
instability.

61.8.1 Linearized governing equations

The linearized governing equations are given by equations (61.136a)-(61.136d) with identically
zero buoyancy

∂tu
′ + ub ∂xu

′ + w′ ∂zub = −∂xφ′ (61.189a)

∂tw
′ + ub ∂xw

′ = −∂zφ′ (61.189b)

∂xu
′ + ∂zw

′ = 0, (61.189c)

along with the bottom kinematic boundary condition and the linearized kinematic free surface
boundary condition

w′ = 0 at z = 0 (61.190a)

(∂t + ub ∂x) η
′ = w′ at z = H. (61.190b)

Since the x-z flow is non-divergent we can introduce a streamfunction as in equation (61.140)

u′ x̂+ w′ ẑ = ŷ ×∇ψ = ∂zψ x̂− ∂xψ ẑ, (61.191)

which yields the governing equations

(∂t + ub ∂x) ∂zψ − ∂xψ ∂zub = −∂xφ′ for 0 < z < H (61.192a)

(∂t + ub ∂x) ∂xψ = ∂zφ
′ for 0 < z < H (61.192b)

ψ = 0 at z = 0 (61.192c)

(∂t + ub ∂x)η
′ = −∂xψ at z = H. (61.192d)
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61.8.2 Hydrostatic fluctuations are stable

If we assume the fluctuations are hydrostatic then the zonal pressure gradient is given by the
zonal derivative of the free surface (as in the case of a hydrostatic shallow water fluid),

∂xφ
′ = g ∂xη

′, (61.193)

so that the zonal velocity equation (61.192a) becomes

(∂t + ub ∂x) ∂zψ − ∂xψ ∂zub = −g ∂xη′. (61.194)

Now assume the small amplitude fluctuations of the streamfunction and free surface take the
propagating plane wave form

ψ(x, z, t) = ψ̃(z) ei k (x−c t) and η′(x, t) = η̃ ei k (x−c t). (61.195)

For these fluctuations the kinematic boundary conditions (61.192c) and (61.192d) become

ψ̃ = 0 at z = 0 (61.196a)

(ub − c)η̃ = −ψ̃ at z = H. (61.196b)

Similarly, the zonal velocity equation (61.194) renders the relations between the amplitude
functions

(ub − c)∂zψ̃ − ψ̃ ∂zub = −g η̃ for 0 < z < H. (61.197)

Dividing by (ub − c)2 brings about

d

dz

[
ψ̃

ub − c

]
= − g η̃

(ub − c)2
, (61.198)

whose vertical integral renders

ψ̃

ub − c

∣∣∣∣∣
z=H

− ψ̃

ub − c

∣∣∣∣∣
z=0

= −g η̃
ˆ H

0

dz

(ub − c)2
, (61.199)

where we evaluated the upper integral limit at z = H as per the linear theory. Making use of
the kinematic boundary conditions (61.196a) and (61.196b) brings this equation into the form

g

ˆ H

0

dz

(ub − c)2
= 1. (61.200)

This identity can only be satisfied if the phase velocity, c, has zero imaginary part, in which case
we conclude that the fluctuations are stable to vertical shear instability. In particular, for ub a
constant we recover the case considered in Exercise 55.4 for gravity waves moving on a constant
background flow, in which the phase velocity is c = ub ±

√
g H = ub ± cgrav.

We understand why the hydrostatic fluctuations are stable by appealing to the discussion of
shallow water dynamics in Section 35.2. In that section we observed that a homogeneous fluid
layer with a hydrostatic pressure (i.e., a shallow water fluid layer) renders a horizontal pressure
gradient that is depth independent, which in turn leads to a depth independent horizontal
velocity. That is, the homogeneous hydrostatic fluid cannot support a vertical shear in the
horizontal flow, so that there can be no vertical shear instability. That is, when studying stability
of a vertically sheared homogeneous fluid layer, hydrostatic fluctuations are depth independent
and so they cannot lead to a vertical shear instability.
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61.8. A VERTICALLY SHEARED HOMOGENEOUS FLUID WITH A FREE SURFACE

61.8.3 Taylor-Goldstein equation

Accepting that unstable fluctuations must involve a non-hydrostatic pressure, we make use of
the analysis in Section 61.7.3 for stratified shear instability, in which we formed the linearized
vorticity equation and introduced the streamfunction to render the Taylor-Goldstein equation
(61.150). Specializing Taylor-Goldstein to the case of zero buoyancy (N2 = 0) yields

(ub − c)
[
d2

dz2
− k2

]
ψ̃ =

d2ub

dz2
ψ̃ (61.201a)

ψ̃ = 0 at z = 0 (61.201b)

(ub − c)η̃ = −ψ̃ at z = H. (61.201c)

In deriving the necessary condition for vertical shear instability in Section 61.7.4, we made use
of the assumed rigid top and bottom boundaries to eliminate the two boundary contributions
appearing in equation (61.154). Yet with a free surface the z = H boundary contribution no
longer vanishes, instead it satisfies the kinematic condition (61.201c).

61.8.4 Necessary conditions for instability

To develop an integral condition, rather than introduce the ansatz (61.151), we work directly
with the Taylor-Goldstein equation (61.201a). Since N2 = 0, the manipulations are quite similar
to those used to derive the Rayleigh-Kuo inflection point theorem in Section 61.5.1. For this
purpose, multiply the Taylor-Goldstein equation (61.151) by ψ̃∗ and rearrange to yield

d

dz

[
ψ̃∗ dψ̃

dz

]
=

[
k2 +

1

ub − c
d2ub

dz2

]
|ψ̃|2 +

∣∣∣∣∣dψ̃dz
∣∣∣∣∣
2

(61.202)

Vertical integration and use of the kinematic boundary conditions leads to

ψ̃∗ dψ̃

dz

∣∣∣∣∣
z=H

=

ˆ H

0

k2 |ψ̃|2 + ∣∣∣∣∣dψ̃dz
∣∣∣∣∣
2
dz +

ˆ H

0

d2ub

dz2
|ψ̃|2
ub − c

dz. (61.203)

Taking the imaginary part of this equation and exposing the amplitude and phase for ψ̃,

ψ̃ = |ψ̃(z)| eiα(z), (61.204)

leads to [
|ψ̃|2 dα

dz

]
z=H

= ci

ˆ H

0

d2ub

dz2
|ψ̃|2
|ub − c|2

dz. (61.205)

The left hand side vanishes for a rigid upper boundary, in which case we recover the Rayleigh-Kuo
inflection point theorem (61.59). But with a free surface there are other situations that support
instability since the left hand side is no longer zero. That is, allowing for a free surface opens up
further avenues for instabilities. When developing necessary conditions for baroclinic instability
in Section 62.8, we also find a fundamental role for boundary processes.
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Figure 61.15: Initial (left) and final (right) conditions for a two-layer stratified flow that completely mixes
its density and velocity. In Exercise 61.3 we work through the energetics of mixing and show that the ratio of
the potential energy change to the kinetic energy change is proportional to a discrete version of the gradient
Richardson number.

61.9 Exercises
exercise 61.1: Complex conjugate formula
In equations (61.45c) and (61.48) we made use of the identity

Im
[
ψ̃∗ ∂yψ̃

]
= − Im

[
ψ̃ ∂yψ̃

∗
]
. (61.206)

Derive this identity. Hint: make use of equation (61.49) for the streamfunction.

exercise 61.2: Fjørtoft’s theorem with sinh profile and β ̸= 0
Consider the sinh velocity profile from Section 61.5.4. Show that with β ̸= 0 the flow remains
stable according to Fjørtoft’s theorem.

exercise 61.3: Richardson number and energetics of mixing
Rework the energetics from Section 61.7.5, only now with the two-layer stratified shear profile
shown in Figure 61.15. In particular, compute the ratio of the potential energy increase to the
kinetic energy decrease and show that this ratio is proportional to a discrete version of the
gradient Richardson number

Pfinal − Pinit

Kinit −Kfinal

∝ Ri. (61.207)

Assume a Boussinesq ocean for purposes of computing the kinetic energy. Hint: the solution to
this exercise is detailed in Section 14.1 of Cushman-Roisin and Beckers (2011).
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Chapter 62

QUASI-GEOSTROPHIC WAVES AND BAROCLINIC INSTABILITY

In this chapter we study waves and baroclinic instability in a continuously stratified quasi-
geostrophic flow within a vertically bounded domain. The vertically bounded domain is more
relevant to the ocean, with the atmosphere top boundary more suitably assumed to be at
infinity. However, beyond the ocean case, we are motivated to consider the vertically bounded
domain since it is assumed for the Eady model of baroclinic instability (Eady , 1949), which is a
particularly elegant example of baroclinic instability. We furthermore find it is convenient to
study waves in combination with baroclinic instability since baroclinic instability follows a wave
resonance mechanism, much like that considered for shear instability in Chapter 61.

The waves we encounter in this chapter include planetary Rossby waves, topographic Rossby
waves, and Eady edge waves. Recall that we encountered Rossby waves and edge waves in
the horizontally non-divergent barotropic model of Chapter 54, as well as Rossby waves and
topographic waves for the shallow water model in Chapter 55. In the present chapter, we work
fully within the quasi-geostrophic theory and allow for continuous stratification. In addition to
Rossby waves, we here consider a thermal wind background state, in which the quasi-geostrophic
flow supports Eady edge waves. As shown here, Eady edge waves rely on the presence of a
buoyancy gradient along the top and/or bottom boundaries of the domain. Eady waves are the
primary actors in the Eady model of baroclinic instability.

The study of baroclinic instability is motivated by asking whether a thermal wind flow is
stable to small amplitude geostrophic perturbations. Under certain circumstances, there are
unstable wave modes whose energy grows by feeding off the potential energy of the thermal wind
state. The Eady model considers the constructive interference of edge waves that leads to wave
resonance. This resonance then drives the mutual growth of the edge waves, which constitutes
baroclinic instability. Baroclinic instability dominates the fluctuations of the large-scale (order
deformation radius) flows in the middle latitude atmosphere (synoptic scale) and the mesoscale
ocean.

reader’s guide for this chapter
In this chapter we make use of the governing equations of continuously stratified quasi-

geostrophic flow from Chapter 45, as well as the Rossby wave discussions in Chapter 54
(horizontally non-divergent barotropic model) and Section 55.9 (shallow water layer). The
wave resonance interpretation of Eady’s model of baroclinic instability closely follows that
given for shear instability in Chapter 61.
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62.1. LOOSE THREADS
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62.6.7 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1782

62.7 Interacting Eady waves and baroclinic instability . . . . . . . . . . . . . 1782
62.7.1 Streamfunction solution . . . . . . . . . . . . . . . . . . . . . . . 1782
62.7.2 Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . 1783
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62.8.3 Necessary conditions based on the imaginary part . . . . . . . . . 1787
62.8.4 Necessary conditions based on the real part . . . . . . . . . . . . 1788
62.8.5 Necessary condition for instability of the Eady model . . . . . . . 1788
62.8.6 Effects from adding a bottom slope to the Eady model . . . . . . 1789
62.8.7 Flat bottom with constant buoyancy along the two boundaries . 1789

62.9 Energetics of small amplitude fluctuations . . . . . . . . . . . . . . . . . 1789
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62.9.4 Horizontal and thermal wind shear production . . . . . . . . . . 1792
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62.1 Loose threads
• Split this chapter into one with the linear waves and placed into Part X, and another
chapter focusing on baroclinic instability.

• Vertically propagating Rossby waves with an infinite top

• Continuous modes

• Show some vertical baroclinic modes in Section 62.4.1 for constantN2 and for an exponential
thermocline.

• Polarization relations for Eady waves.
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• Group velocity for Eady waves

• Energetics for planetary waves, topographic waves, and Eady waves. Prove that phase
averaged energy flux equals to the group velocity times the energy.

• Discuss the neutral wave case with ub = c and further explore Footnote 10 in Chapter 9 of
Vallis (2017).

• Offer further elaborations from Vallis (2017) and Cushman-Roisin and Beckers (2011).

• Eliasen-Palm fluxes and potential vorticity fluxes in Section 62.9.

• Discuss Figures 13.1 and 13.4 of Gill (1982).

• Charney model

62.2 Equations of quasi-geostrophy

As developed in Chapter 45, quasi-geostrophy is concerned with the evolution of hydrostatic and
nearly geostrophic flow in the presence of a prescribed and gravitationally stable background state
that is itself in hydrostatic and geostrophic balance. In this section we summarize salient features
of continuously stratified quasi-geostrophy that are useful in the study of quasi-geostrophic waves
and baroclinic instability.

62.2.1 Equations in the fluid interior

Within the interior of the fluid domain, the quasi-geostrophic buoyancy equation (45.42), relative
vorticity equation (45.47), and potential vorticity equation (45.54), are given by

(∂t + u · ∇) b = −wN2 buoyancy equation (62.1a)

(∂t + u · ∇) ζ = −β v + fo ∂zw relative vorticity equation (62.1b)

(∂t + u · ∇) q = 0, quasi-geostrophic potential vorticity equation, (62.1c)

in which

ψ = p/(ρo fo) quasi-geostrophic streamfunction (p =pressure)
(62.2a)

u = ẑ ×∇ψ non-divergent geostrophic velocity (62.2b)

b = fo ∂zψ buoyancy (62.2c)

ζ = ẑ · (∇× u) = ∇2
h ψ geostrophic relative vorticity (62.2d)

q = fo + β y + ζ + fo ∂z(b/N
2) quasi-geostrophic potential vorticity (62.2e)

q = fo + β y +∇2
h ψ + f20 ∂z(∂zψ/N

2) potential vorticity in terms of streamfunction. (62.2f)

The prescribed time-independent parameters are given by

N2(z) > 0 background stratification (62.3a)

f(y) = fo + β y β-plane Coriolis frequency. (62.3b)
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Quasi-geostrophy is based on the following scale assumptions

Ro = U/foL≪ 1 small Rossby number (62.4a)

β L/fo ≪ 1 β-plane approximation (62.4b)

Bu(z) = [Ld(z)/L]
2 = [N(z)H/fo]

2 L−2 ∼ 1 order unity Burger number (62.4c)

Ri(z) = Ro−2Bu(z)≫ 1 very large Richardson number. (62.4d)

The small Rossby number, Ro, means that the flow is strongly affected by the Coriolis acceleration,
which furthermore means it is in near geostrophic balance. This scaling holds for both the
background flow, which is prescribed, and perturbations to the background. The order unity
Burger number says that the horizontal length scale of the flow, L, is comparable to the
deformation radius, Ld, with the deformation radius a function of the vertical scale of motion,
H (also the vertical size of the Eady model domain), the f -plane Coriolis parameter, fo, and
the prescribed background buoyancy frequency, N(z). The large Richardson number, Ri, means
that the flow is stable with respect to stratified shear instability (Chapter 61). Note that when
writing the potential vorticity, the constant fo can be dropped since it plays no role in the
potential vorticity equation.

The evolution of buoyancy (equation (62.1a)) and relative vorticity (equation (62.1b)) are
both impacted by the ageostrophic vertical velocity, w. However, we do not need to explicity
compute w to evolve the flow within the domain interior. The reason is that we can instead
evolve the quasi-geostrophic potential vorticity through equation (62.1c). Thereafter, we solve
the Poisson equation (with boundary conditions) for the geostrophic streamfunction

∇2
h ψ + f2o ∂z(∂zψ/N

2) = q − (fo + β y). (62.5)

Upon updating the streamfunction we then update the velocity, buoyancy, and relative vorticity.
Even though w is unnecessary for updating the flow state, it can be useful for a variety of
diagnostic purposes. In Section 45.4.2 we derive a diagnostic equation for this ageostrophic
velocity component.

62.2.2 Boundary conditions for vertically bounded domain

For the lateral boundaries, we assume either an infinite horizontal domain with all fields assumed
to be finite or vanishing at spatial infinity, or assume doubly periodic domains. In this manner,
the lateral boundaries play no fundamental role in the dynamics of concern in this chapter.
In contrast, we are concerned with vertically bounded domains in which the top and bottom
boundaries are central to the dynamics. To establish the corresponding boundary conditions,
we make use of the buoyancy equation (62.1a), given the presence of the vertical velocity.
Furthermore, we are concerned with perfect fluid quasi-geostrophy, so consider just the kinematic
boundary conditions. The dynamic boundary conditions involve frictional stresses and are not
considered here.

The top and bottom boundary conditions for quasi-geostrophy were studied in Sections 45.6
and 45.7. For the upper surface (top) boundary, the vertical velocity is vanishingly small relative
to interior vertical motion, thus prompting the rigid lid approximation. Evaluating the buoyancy
equation (62.1a) at the rigid lid top boundary means that the boundary buoyancy is materially
invariant

(∂t + u · ∇h) b = 0 =⇒ (∂t + u · ∇h) ∂zψ = 0 at z = η. (62.6)

To within the accuracy of quasi-geostrophy, this boundary condition is evaluated at the resting
position of the top boundary, z = η, which is typically taken as η = 0.
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The analogous boundary condition at the domain bottom, z = ηb(x, y), is given by

(∂t + u · ∇h) b = −N2 u · ∇ηb at z = ηb. (62.7)

which takes on the following form with the streamfunction

(∂t + u · ∇h) (fo ∂zψ) = −N2 u · ∇ηb at z = ηb. (62.8)

The bottom boundary condition is evaluated at the horizontally averaged position, z = ηb, since
the more precise boundary location, z = ηb(x, y), is one order higher in Rossby number and so is
dropped from quasi-geostrophic theory. Correspondingly, quasi-geostrophic theory is formally
valid only for very gently sloping bottom boundaries. Note that when ηb is a constant, then
∇hηb = 0, so that the bottom boundary condition reduces to the material invariance of the
boundary buoyancy, just like the top boundary condition.

Quasi-geostrophic theory based on studies of just the top and/or bottom boundary conditions
is known as surface quasi-geostrophy (e.g., Held et al. (1995), Yassin and Griffies (2022)), where
the interior potential vorticity is assumed to be a constant, which can be set to zero without loss
of generality. Surface quasi-geostrophy shares mathematically elements with the study of surface
gravity waves in Chapter 52. Namely, surface quasi-geostrophy supports edge waves that are
exponentially trapped at the boundaries and with a vertical length scale inversely proportional
to the horizontal wavelength (i.e., shorter edge waves are more trapped next to the boundary
than longer edge waves). As we see later in this chapter, edge waves are central to baroclinic
instability as realized in the Eady model.

62.3 Linear fluctuations on a zonal geostrophic background flow

We here formulate equations for a zonal background flow state and the linear fluctuations relative
to that flow. The static and prescribed background state is assumed to be in thermal wind
balance, and all perturbations to that background state satisfy the scalings of quasi-geostrophy.
All background fields have a “b” subscript to remind us that these fields are prescribed.

The linear analysis in this section forms the baseline for subsequent sections that specialize
these results. In particular, in Section 62.4 we specialize to the case of zero thermal wind flow
with planetary beta, thus considering planetary Rossby waves. In Section 62.5, we set planetary
beta to zero but allow for a topographic slope, thus considering topographic Rossby waves. In
Section 62.6, we maintain the thermal wind state but assume zero planetary beta and zero
topographic beta, thus focusing on the mechanics of Eady edge waves, whose existence along
either the top or bottom boundary relies on the presence of a horizontal buoyancy gradient
along that boundary. In Section 62.7 we study the unstable Eady edge waves arising in the Eady
model, thus forming the wave mechanism for baroclinic instability.

62.3.1 Zonal geostrophic background flow

Consider a geostrophic background state described by a streamfunction, Ψb(y, z), with a corre-
sponding zonal flow and thermal wind shear

ub(y, z) = −∂yΨb and ∂zub = −∂yzΨb = −f−1
o ∂ybb, (62.9)

where bb(y, z) is the prescribed background buoyancy field supporting the background geostrophic
flow.

A particular example of buoyancy supporting a geostrophic flow with a constant thermal
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Figure 62.1: Example background buoyancy field written as the linear function, bb = N2 [z− y (dz/dy)bb ], as per
equation (62.13). The squared buoyancy frequency is positive, N2 = ∂zbb > 0, whereas the northward buoyancy
gradient is negative, ∂ybb < 0. Correspondingly, the buoyancy slope, (dz/dy)bb = −∂ybb/∂zbb = fo ∂zub/N

2 > 0, is
positive to the north (north is to the right). There are no lateral boundaries, so that the fluid is assumed to be
unbounded in the horizontal directions. However, the top and bottom are rigid.

wind shear is given by the sloped and planar buoyancy surfaces

bb = N2 z + (∂ybb) y = N2 z − fo (∂zub) y, with N2, ∂ybb, and ∂zub constants. (62.10)

We consider this special case when studying Eady waves in Section 62.6 and the Eady model of
baroclinic instability in Section 62.7. Although very idealized, it provides the core features of
Eady waves and baroclinic instability, and it does so in an analytically tractable manner.

The buoyancy (62.10) can be written in a geometric form by introducing the meridional
slope of the background buoyancy surfaces. To derive an expression for the slope, note that
constant buoyancy surfaces are defined by1

bb = constant =⇒ dbb = 0 = (∂bb/∂y) dy + (∂bb/∂z) dz, (62.11)

which means that the slope of constant buoyancy surfaces is given by[
dz

dy

]
bb

= −∂ybb
∂zbb

= −∂ybb
N2

=
fo ∂zub

N2
, (62.12)

so that the buoyancy (62.10) is

bb = N2 [z − y (dz/dy)bb ] with (dz/dy)bb a constant slope. (62.13)

Figure 62.1 illustrates such a buoyancy field with a constant and positive meridional slope,
(dz/dy)bb > 0.

It is common to forget the minus signs appearing in the first and second expressions for the
slope in equation (62.12). Examination of Figure 62.1 quickly remedies this mistake. Namely,
this figure depicts a buoyancy field that has a positive slope towards the north, (dz/dy)bb > 0.
This slope arises due to the reduction in buoyancy moving north (∂ybb < 0) in the presence of a
vertically stable stratification (∂zbb > 0).

62.3.2 Background state is an exact quasi-geostrophic solution
We here show that the thermal wind flow (62.9) identically satisfies the quasi-geostrophic
equations, thus constituting an exact solution to quasi-geostrophy. For this purpose, introduce

1See Section 63.12.2 for mathematical details on the treatment of generalized vertical coordinates.
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the quasi-geostrophic potential vorticity for the background flow

qb = fo + β y + ζb + f2o ∂z(N
−2 ∂zΨb) = fo + β y − ∂yub + f2o ∂z(N

−2 ∂zΨb), (62.14)

where we introduced the relative vorticity of the background zonal geostrophic flow

ζb = −∂yub. (62.15)

Since qb is static and a spatial function just of (y, z), it trivially satisfies the potential vorticity
equation

(∂t + ub x̂ · ∇h) qb = ub ∂x qb = 0. (62.16)

Likewise, the background buoyancy field, bb(y, z), trivially satisfies the top boundary condition
(62.6) since

(∂t + ub x̂ · ∇h) bb = ub ∂x bb = 0 at z = η. (62.17)

For the bottom boundary condition (62.8) we have

(∂t + ub ∂x) bb + ub ∂x(N
2 ηb) = 0 at z = ηb, (62.18)

which is satisfied if the topography is a function only of latitude, ηb = ηb(y). Hence, the
background thermal wind flow, ub(y, z), and corresponding buoyancy, bb(y, z), are exact solutions
to quasi-geostrophy if the bottom is either flat or has a meridional slope.

62.3.3 Fluctuating streamfunction, potential vorticity, and buoyancy

Now consider fluctuations relative to the zonal geostrophic flow, with streamfunction and
buoyancy decomposed as

ψ(x, y, z, t) = Ψb(y, z) + ψ′(x, y, z, t) and b(x, y, z, t) = bb(y, z) + b′(x, y, z, t). (62.19)

The corresponding quasi-geostrophic potential vorticity is decomposed according to

q(x, y, z, t) = qb(y, z) + q′(x, y, z, t), (62.20)

with qb given by equation (62.14). The fluctuating potential vorticity arises from relative vorticity
and stretching

q′ = ∇2
h ψ

′ + f2o ∂z(N
−2 ∂zψ

′). (62.21)

Substituting these expressions into the quasi-geostrophic potential vorticity equation (62.1c)
leads to

[∂t + (u′ + ub) · ∇] (qb + q′) = [∂t + (u′ + ub) · ∇] q′ + u′ · ∇qb = 0, (62.22)

where we set
∂tqb + ub · ∇qb = 0, (62.23)

since qb is an exact solution to quasi-geostrophy (Section 62.3.2). Rearranging equation (62.22),
and setting ub = ub x̂, leads to

[∂t + (ub x̂+ u′) · ∇h] q′ + v′ ∂yqb = 0. (62.24)

We are concerned in this chapter with linear theory, with the linearized equation for the
perturbation potential vorticity given by

(∂t + ub ∂x) q
′ = −v′ ∂yqb =⇒ (∂t + ub ∂x) [∇2

h ψ
′ + f2o ∂z(N

−2 ∂zψ
′)] = −∂xψ′ ∂yqb. (62.25)
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Evidently, in the linear theory we find that q′ is advected by the zonal background flow, ub,
and it has a source determined by the anomalous meridional advection of the background
quasi-geostrophic potential vorticity, qb.

For the buoyancy, b(x, y, z, t) = bb(y, z) + b′(x, y, z, t), we linearize the buoyancy equation
(62.1a) to find

(∂t + ub ∂x) b
′ = −v′ ∂ybb − w′N2. (62.26)

The right hand side source terms can be written in terms of the slope of the buoyancy surfaces
(62.12)

(∂t + ub ∂x) b
′ = −N2 [w′ − v′ (dz/dy)bb ]. (62.27)

62.3.4 Linearized upper boundary condition
The upper surface boundary condition (62.6) is

∂tb
′ + (ub ∂x + u

′ · ∇h)(bb + b′) = 0, (62.28)

which linearizes to

(∂t + ub ∂x) b
′ = −v′ ∂ybb =⇒ (∂t + ub ∂x) ∂zψ

′ = ∂xψ
′ ∂zub. (62.29)

As we see in Section 62.6, advection by the zonal geostrophic flow provides a frequency shift to
the linear waves, whereas the source, ∂xψ

′ ∂zub, supports the propagation of surface trapped
edge waves relative to the flow.

62.3.5 Linearized bottom boundary condition
The bottom boundary condition (62.8), with ηb = ηb(y), is given by

fo (∂t + ub ∂x + u
′ · ∇h) ∂zψ′ = v′ (fo ∂zub −N2 ∂yηb), (62.30)

which linearizes to
fo (∂t + ub ∂x) ∂zψ

′ = ∂xψ
′ (fo ∂zub −N2 ∂yηb). (62.31)

The right hand side can be written in a geometric manner by introducing the slope of the
background buoyancy as per equation (62.12), so that

(dz/dy)bb = −∂ybb/∂zbb = fo ∂zub/N
2. (62.32)

The bottom boundary condition (62.31) can thus be written as

fo (∂t + ub ∂x) ∂zψ
′ = ∂xψ

′N2 [(dz/dy)bb − ∂yηb], (62.33)

in which the forcing on the right hand side is proportional to the difference between the buoyancy
slope and bottom topography slope. When the bottom topography is flat then the bottom
boundary condition reduces to the same condition as the top

(∂t + ub ∂x) ∂zψ
′ = ∂xψ

′ ∂zub. (62.34)

62.4 Vertically bounded planetary Rossby waves
In this section we simplify the background state by assuming zero background flow with flat
top and bottom boundaries, yet affected by a nonzero planetary beta. That is, we here study
continuously stratified planetary Rossby waves in a vertically bounded domain. We already
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encountered planetary Rossby waves in Section 54.3 for the horizontally non-divergent barotropic
model, and in Section 55.9 for the shallow water model. The goal here is to extend those earlier
discussions to the case of continuous stratification.

62.4.1 Governing linear equations
Again, we assume the background state has a flat bottom with zero background thermal wind
flow, so that the background consists solely of planetary beta. Hence, the background potential
vorticity equals to the planetary vorticity

qb = fo + β y =⇒ ∇qb = β ŷ. (62.35)

The linearized potential vorticity equation (62.25) and linearized boundary conditions (62.29)
and (62.31), each with zero background flow, are given by

∂tq
′ + β v′ = 0 =⇒ ∂t[∇2

h ψ
′ + f20 ∂z(N

−2 ∂zψ
′)] + β ∂xψ

′ = 0 (62.36a)

∂tzψ
′ = 0 at z = η and z = ηb. (62.36b)

In the presence of a horizontally homogeneous vertical stratification, N2(z) > 0, we can introduce
a wave ansatz consisting of horizontally traveling free plane waves that are modulated by a
vertically dependent (generally complex) amplitude

ψ′(x, y, z, t) = ψ̃(z) ei (kx x+ky y−ω t) =⇒ u = (ẑ × ik) ψ̃(z) ei (kx x+ky y−ω t). (62.37)

As we will see when analytically calculating the vertical structure for constant N2 in Section
62.4.3, the vertical structure takes the form of vertically standing waves, which accords with
our prior experience of waves in a bounded domain (e.g., acoustic waves in a rectangular cavity
in Exercise 51.1; surface gravity waves in Section 52.8). Plugging the ansatz (62.37) into
the streamfunction equation (62.36a) and boundary condition equation (62.36b) leads to the
Sturm-Liouville eigenvalue problem2

d

dz

[
f2o
N2

dψ̃

dz

]
= −λ ψ̃ (62.38a)

dψ̃

dz
= 0 at z = η, ηb (62.38b)

λ = −(|k|2 + β kx/ω). (62.38c)

We refer to solutions ψ̃ as eigenmodes with λ the corresponding eigenvalues. From the Sturm-
Liouville theory we know there are a countably infinite number of eigenmodes, with the higher
eigenvalues corresponding to modes with more zero crossings.

62.4.2 Barotropic mode and baroclinic modes

Multiplying the eigenvalue equation (62.38a) by ψ̃∗, integrating over the depth of the fluid,
and making use of the Neumann boundary conditions (62.38b), leads to the expression for the
eigenvalue in terms of the eigenmodes

λ = −(|k|2 + β kx/ω) =

´ η
ηb
|(fo/N) dψ̃/dz|2 dz´ η

ηb
|ψ̃|2 dz

, (62.39)

2Sturm-Liouville eigenvalue problems have a well established theory in differential equations and mathematical
physics. Chapter 11 of Boyce and DiPrima (2009) is a classic reference, now in its 9th edition!
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which proves that the eigenvalues are non-negative

λ ≥ 0. (62.40)

Barotropic mode

The case with zero eigenvalue, λ = 0, has a dispersion relation given by

ω = −kx β/|k|2 barotropic mode, (62.41)

and a corresponding depth independent eigenmode (dψ̃/dz = 0), with this mode referred to
as the barotropic mode. Notice that the barotropic mode’s frequency is unbounded as the
wavenumber gets smaller (longer waves). That is, the longer wavelength modes have higher
frequency. Also note that the phase velocity (equation (49.26))

cp = (ω/|k|) k̂ = (ω/|k|2)k, (62.42)

has a westward component

(cp · x̂)barotropic = (ω/|k|2)k · x̂ = −k2x β/|k|2 < 0. (62.43)

This westward phase velocity accords with our earlier studies of Rossby waves. Even though
this barotropic mode appears in a stratified fluid, its properties are equivalent to that of the
Rossby waves appearing in a horizontally non-divergent barotropic model as studied in Section
54.3, further supporting this mode being referred to it as the barotropic mode.

Baroclinic modes

Equation (62.39) shows that all nonzero eigenvalues are positive

λ = −(|k|2 + β kx/ω) > 0. (62.44)

Furthermore, upon vertically integrating the eigenvalue equation (62.38a) and using the boundary
conditions (62.38b) we find that all higher modes have zero depth integral

ˆ η

ηb

ψ̃ dz = 0. (62.45)

We refer to these as baroclinic modes since they are depth dependent, with the baroclinic modes
having eigenvalues that form a monotonically increasing and countably infinite sequence. Each
successive baroclinic mode has one more zero crossing, and thus more vertical structure. We
display this behavior in Section 62.4.3 when analytically determing the eigenmodes with a
constant N2.

62.4.3 Planetary Rossby waves with constant N2

An analytic solution to the eigenvalue problem (62.38a)-(62.38b) for vertically bounded Rossby
waves can be found for the case of constant N2, whereby the eigenmode is given by the cosine
function

ψ̃ = ψ̃o cos[nπ (z − ηb)/H] with H = η − ηb, (62.46)

with ψ̃o a constant real amplitude. The eigenvalues can be found through equation (62.39),

λ = (nπ/Ld)
2 with n = 0, 1, 2, 3... and Ld = N H/fo, (62.47)
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which then lead to the dispersion relation for the baroclinic modes

ω = − β kx
(nπ/Ld)2 + k2x + k2y

. (62.48)

Since the angular frequency is non-negative (Section 49.2.3), all planetary Rossby wave modes
have a westward, kx < 0, phase propagation, just like we saw for the barotropic planetary wave
with n = 0. We display this property by writing the zonal component of the phase velocity

cp · x̂ = (ω/|k|2) kx = − β k2x/|k|2
(nπ/Ld)2 + k2x + k2y

< 0. (62.49)

Observe that a useful way to non-dimensionalize the dispersion relation (62.48) is to write

ω/(β Ld) = −
kx Ld

(nπ)2 + (kx Ld)2 + (ky Ld)2
, (62.50)

with this expression plotted in Figure 62.2 for the n = 0, 1, 2 Rossby wave modes with ky = 0.

A packet of Rossby waves with carrier wavevector k moves with the group velocity

cg = ∇kω =
β [x̂ (k2x − k2y − (nπ/Ld)

2) + 2 kx ky ŷ]

[(nπ/Ld)2 + k2x + k2y]
2

. (62.51)

In Section 54.3 we studied Rossby waves in the horizontally non-divergent barotropic model,
and then in Section 55.9 we studied Rossby waves in a single shallow water layer. Both of those
discussions share much with the present case, in particular the shallow water Rossby waves since
they have a finite deformation radius whereas the deformation radius is formally infinite in the
barotropic model. Hence, each baroclinic mode found in the continuously stratified case can be
understood as a Rossby wave in a single shallow water layer whose deformation radius,

Ld = cgrav/fo =
√
g H/fo, (62.52)

is chosen to fit that of the baroclinic mode. By extension, we can understand the geometry
of baroclinic Rossby wave packets, including their reflection from surfaces, by referring to the
earlier shallow water discussion.

62.5 Topographic Rossby waves

Now set β = 0, to eliminate planetary Rossby waves, but maintain a background potential
vorticity gradient by allowing the bottom to have a nonzero slope. In so doing we extend the
study of topographic Rossby waves from the shallow water in Section 55.4.6 to the continuously
stratified case. The resulting linearized potential vorticity equation and boundary conditions are

∂tq
′ = 0 =⇒ ∂t[∇2

h ψ
′ + f20 ∂z(N

−2 ∂zψ
′)] = 0 (62.53a)

∂tzψ
′ = 0 at z = η. (62.53b)

fo ∂tzψ
′ +N2 ẑ · (∇ψ′ ×∇ηb) = 0 at z = ηb. (62.53c)

To study plane waves in the horizontal, assume the special case of a gentle and constant linear
slope, ∂yηb, in the meridional direction so that

ηb = ηconst + y ∂yηb with |∂yηb| ≪ 1, (62.54)
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Figure 62.2: Dispersion relation for planetary Rossby waves according to equation (62.50), ω/(β Ld) =
−kx Ld/[(nπ)

2 + (kx Ld)
2 + (ky Ld)

2], showing the n = 0 barotropic mode and n = 1, 2 baroclinic modes,
each with ky = 0. A positive angular frequency is realized with kx < 0, so that the phase propagates to the west.
The frequency for the barotropic mode is unbounded approaching the origin, so that long barotropic Rossby waves
are high frequency waves. Both the barotropic and baroclinic wave modes have a vanishing frequency as the waves
become shorter (|k| → ∞).

in which case the bottom boundary condition (62.53c) becomes

fo ∂tzψ
′ +N2 ∂yηb ∂xψ

′ = 0 at z = ηb. (62.55)

62.5.1 Eigenvalue problem for ψ̃

Taking the linear bottom slope (62.54) allows us to consider the same wave ansatz (62.37) as
used for planetary Rossby waves in Section 62.4.1, which then converts equations (62.53a),
(62.53b), and (62.55) into the eigenvalue problem

ω
d

dz

[
f2o
N2

dψ̃

dz

]
= ω |k|2 ψ̃ ηb < z < η (62.56a)

ω
dψ̃

dz
= 0 at z = η, (62.56b)

fo ω
dψ̃

dz
= N2 ∂yηb kx ψ̃ at z = ηb. (62.56c)

The differential equation (62.56a) and surface boundary condition (62.56b) can be satisfied with
a zero frequency wave, ω = 0, in which case there is no propagating wave. However, the bottom
boundary condition (62.56c) cannot be satisfied with ω = 0 in the presence of a nonzero bottom
slope and nonzero Coriolis frequency. Evidently, the Coriolis frequency plays a fundamental role
in supporting a propagating topographic Rossby waves in the presence of a sloping bottom.

Cancelling the angular frequency in equation (62.56a) (since ω ̸= 0 for topographic waves),
then multiplying by ψ̃∗ and integrating over the depth of the domain leads to

ˆ η

ηb

d

dz

[
ψ̃∗ f

2
o

N2

dψ̃

dz

]
dz =

ˆ η

ηb

|k|2 |ψ̃|2 + f2o
N2

∣∣∣∣∣dψ̃dz
∣∣∣∣∣
2
dz. (62.57)
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Use of the surface boundary condition (62.56b) and bottom boundary condition (62.56c) render

fo ∂yηb kx = − ω

|ψ̃(ηb)|2

ˆ η

ηb

|k|2 |ψ̃|2 + f2o
N2

∣∣∣∣∣dψ̃dz
∣∣∣∣∣
2
dz. (62.58)

The right hand side is a negative number (recall ω > 0), which then orients the zonal component
to the phase velocity according to the sign of fo ∂yηb. For example, in the northern hemisphere
with a bottom slope rising to the north, so that fo ∂yηb > 0, then kx < 0, which means that the
zonal phase velocity is to the west. Likewise, for the southern hemisphere, a bottom slope that
is rising to the south has fo ∂yηb > 0, which also yields kx < 0.

62.5.2 Topographic Rossby waves with constant N2

Following our approach for planetary Rossby waves in Section 62.4.3, assume the buoyancy
frequency is constant so that the eigenvalue problem (62.56a)-(62.56c) reduces to

d2ψ̃

dz2
= k2R ψ̃ ηb < z < η (62.59a)

fo ω
dψ̃

dz
= N2 ∂yηb kx ψ̃ at z = ηb (62.59b)

ω
dψ̃

dz
= 0 at z = η, (62.59c)

where we introduced the inverse Rossby height

kR = |k|N/fo = |k|Ld/H with Ld = N H/fo. (62.60)

As we see below, k−1
R defines an exponential scale height over which the wave decays moving

away from the bottom boundary.

Bottom trapped streamfunction

To further simplify the analysis, assume the upper boundary, at z = η, is far enough away that
it can be ignored. In this case the streamfunction takes on the bottom trapped form

ψ̃ = ψ̃o e
−kR (z−ηb). (62.61)

To determine what is “far enough away”, evaluate the streamfunction at z = η, whereby

ψ̃(z = η) = ψ̃o e
−kRH = ψ̃o e

−|k|Ld . (62.62)

This streamfunction is exponentially small for wavenumbers satisfying

|k| ≫ L−1
d . (62.63)

That is, the topographic Rossby waves do not feel the upper boundary if their horizontal
wavelength is small compared to the deformation radius

Λ≪ 2π Ld. (62.64)
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Dispersion relation

Inserting the streamfunction (62.61) into the bottom boundary condition (62.59b) leads to the
dispersion relation

ω = −N ∂yηb kx/|k|. (62.65)

Since the angular frequency is positive, the wave vector is constrained so that ∂yηb kx < 0. That
is, if the bottom slope is rising to the north (∂yηb > 0) then the phase velocity has a westward
component (kx < 0), whereas a slope rising to the south (∂yηb < 0) has an eastward phase
velocity (kx > 0). We can also see this orientation by looking at the zonal component to the
phase velocity

cp · x̂ = (ω/|k|2) kx = −N ∂yηb k
2
x/|k|3, (62.66)

with the sign of ∂yηb determining the orientation of the zonal phase velocity.
Evidently, the topographic slope acts as a background potential vorticity gradient just like

planetary beta. To further this correspendence, define topographic beta

βtopo = fo ∂yηb/H, (62.67)

so that the dispersion relation (62.65) takes on the form

ω = −βtopo kx Ld

|k| , (62.68)

which shares features with the planetary Rossby wave from Section 62.4.1. However, in contrast
to planetary beta, the topographic beta can be either sign.

62.6 Non-interacting Eady waves
The geometric expression for the bottom boundary condition (62.33) suggests that sloping
buoyancy surfaces support waves in a manner akin to sloping bottom topography. Whereas a
sloping bottom in the presence of flat buoyancy surfaces supports topographic Rossby waves, a
sloping buoyancy surface in the presence of a flat bottom or rigid lid top supports Eady waves.
More precisely, a nonzero gradient of boundary buoyancy supports Eady edge waves.

62.6.1 Assumptions for Eady waves
We make the following assumptions to support an analytic derivation of the dispersion relation
for Eady waves.

• Disable planetary Rossby waves by setting β = 0.

• Disable topographic Rossby waves by setting ∇ηb = 0.

• The flow occurs between a flat bottom at z = ηb = 0 and flat top at z = η = H.

• A linear thermal wind front is supported by the buoyancy in equation (62.10), in which
N2, ∂ybb, and ∂zub are constants, thus implying that the buoyancy slope, (dz/dy)bb , is
also a constant;

• The background zonal geostrophic flow is a linear function of vertical position so that

ub = ub(z) = U0 + ∂zub (z − ηb), (62.69)

where
∂zub = constant. (62.70)
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In turn, the corresponding geostrophic streamfunction is

Ψb = −y [U0 + ∂zub (z − ηb)]. (62.71)

• With these assumptions the background potential vorticity (62.14) is a constant throughout
the fluid interior

qb = fo =⇒ ∇qb = 0, (62.72)

and thus it plays no dynamical role.

Each of the above assumptions is rather restrictive. Indeed, the use of a top boundary is not
very relevant to the atmosphere. However, these assumptions offer a streamlined means to
analytically reveal the core physics of Eady waves, and in turn the interaction of such waves
to produce baroclinic instability (Section 62.7). It is for this reason that the Eady model has
proven so compelling pedagogically.

62.6.2 Streamfunction equation

The linearized potential vorticity equation (62.25) and corresponding boundary conditions (62.29)
and (62.33) take on the form

[∂t + ub(z) ∂x] q
′ = 0 ηb < z < η (62.73a)

[∂t + ub(η) ∂x] ∂zψ
′ = ∂xψ

′ ∂zub z = η (62.73b)

(∂t + ub(ηb) ∂x) ∂zψ
′ = ∂xψ

′ ∂zub z = ηb, (62.73c)

with the bottom boundary condition resulting from the meridional gradient of the background
buoyancy, or equivalently the zonal thermal wind shear

N2 (dz/dy)bb = −∂ybb = fo ∂zub. (62.74)

The simplifying assumptions from Section 62.6.1 have led to a linear boundary value problem
in which the only spatial dependence is in the vertical. Hence, we can consider the familiar
wave ansatz (62.37) for the streamfunction, in which fluctuations are organized into horizontally
propagating free plane waves that are modulated by a vertically dependent amplitude function

ψ′(x, y, z, t) = ψ̃(z) ei (kx x+ky y−ω t). (62.75)

With this ansatz we find the fluctuating potential vorticity (62.21) is given by

q′ = (fo/N)2 (∂zz − k2R)ψ′, (62.76)

and the linear potential vorticity equation (62.73a) is

(−ω + ub kx) (∂zz − k2R) ψ̃ = 0, (62.77)

where
kR = |k|N/fo = |k|Ld/H (62.78)

is the inverse Rossby height originally introduced for topographic waves in equation (62.60).

Throughout the analysis we assume the angular frequency satisfies

ω ̸= ub kx, (62.79)
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Figure 62.3: Depicting the orientation for the intrinsic phase velocity of Eady edge waves for a northern
hemisphere thermal wind balanced base state with buoyancy decreasing northward. Relative to the local
background flow, the upper boundary has westward propagating Eady waves whereas the Eady waves are eastward
at the lower boundary (see Section 62.6.5).

which then means that the streamfunction equation (62.77) reduces to

d2ψ̃

dz2
= k2R ψ̃, (62.80)

which is the same equation as satisfied by the topographic Rossby wave (62.59a). As seen below,
the angular frequency assumption (62.79) indeed holds for Eady waves.

62.6.3 Bottom trapped Eady waves

As in our discussion of topographic Rossby waves in Section 62.5, assume here that the upper
boundary is far from the lower boundary, with “far” determined by a horizontal wavenumber
satisfying equation (62.63), i.e.,

|k| ≫ L−1
d . (62.81)

In this case, the bottom trapped streamfunction solution to equation (62.80) is given by

ψ̃ = ψ̃bot e
−kR (z−ηb), (62.82)

which is, as expected, the same as for the topographic Rossby wave (62.61). Even though they
have the same form for their streamfunctions, the Eady wave dispersion relation differs from
that of the topographic Rossby wave. Here, we derive the dispersion relation through use of the
bottom boundary condition (62.73c), which takes the form

(−ω + ub(ηb) kx)(−kR) = kx ∂zub, (62.83)

thus leading to the dispersion relation

ωbot = kx ub(ηb) + (kx/kR) ∂zub. (62.84)

The vertical shear portion of the right hand side can be written in the following equivalent forms
(again, each evaluated at z = ηb)

fo ∂zub

N
=
H

Ld

∂ub

∂z
= −N−1 ∂ybb = N (dz/dy)bb , (62.85)
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where the final equality introduced the meridional buoyancy slope (62.12). We are thus led to
the dispersion relation for the bottom trapped edge waves

ωbot = kx
[
ub + k−1

R ∂zub

]
z=ηb

= kx

[
ub +

N

|k|

(
dz

dy

)
bb

]
z=ηb

. (62.86)

The kx ub(ηb) term provides a Doppler shifted frequency due to motion of the background zonal
flow at the bottom. The next term arises from thermal wind shear in the presence of rotation
and stratification, with the zonal thermal wind shear reliant on the meridionally sloped buoyancy
surfaces that intersect the bottom.

62.6.4 Upper surface trapped Eady waves
Proceeding just like for the bottom, we now focus on the upper (top) boundary and assume the
bottom boundary is far away. In this case the upper surface trapped streamfunction is given by

ψ̃ = ψtop e
kR (z−η), (62.87)

which, when used in the upper boundary condition (62.29), leads to the dispersion relation

ωtop − kx ub(η) = −(kx/kR) ∂zub. (62.88)

This relation can be written just like equation (62.86) for the bottom boundary condition, only
with a swapped sign on the buoyancy slope term

ωtop = kx
[
ub − k−1

R ∂zub

]
z=η

= kx

[
ub −

N

|k|

(
dz

dy

)
bb

]
z=η

. (62.89)

As for the bottom trapped Eady waves, the term kx ub(η) is a Doppler shift in the frequency
arising from the zonal velocity at the upper boundary that couples to the zonal component of
the phase velocity. The other term arises from the thermal wind shear coupled to rotation and
stratification, which itself relies on the slope of the buoyancy surfaces that intersect the upper
boundary.

62.6.5 Comparing the top and bottom dispersion relations
It is useful to compare the dispersion relations (62.86) and (62.89), rewritten here as the x̂
component of the phase velocity

cp · x̂ = (ω/|k|2) kx, (62.90)

which are given by

(cp · x̂)bot =
k2x
|k|2

[
ub +

H ∂zub

Ld |k|

]
z=ηb

=
k2x
|k|2

[
ub +

N

|k|

(
dz

dy

)
bb

]
z=ηb

(62.91a)

(cp · x̂)top =
k2x
|k|2

[
ub −

H ∂zub

Ld |k|

]
z=η

=
k2x
|k|2

[
ub −

N

|k|

(
dz

dy

)
bb

]
z=η

. (62.91b)

The first difference between these expressions arises from the differences in the background zonal
flow at z = ηb versus z = η. Assuming ∂zub > 0, the background flow at the top has a larger
eastward value than the background flow at the bottom, as given by

ub(η) = ub(ηb) + (η − ηb) ∂zub = ub(ηb) +H ∂zub. (62.92)
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Figure 62.4: A perspective view of the intrinsic phase velocity of Eady edge waves for a northern hemisphere
thermal wind balanced base state with buoyancy increasing northward. The upper boundary has westward
propagating Eady waves whereas the Eady waves are eastward at the lower boundary. The top and bottom
boundaries are flat, and so we write z = η = H for the upper boundary and z = ηb = 0 for the lower boundary.

The second difference between the bottom dispersion relation (62.91a) and top dispersion
relation (62.91b) arises from the swapped signs for the buoyancy slope term. This term represents
the intrinsic frequency for the two edge waves (i.e., the frequency seen by an observer moving
with the background flow)

ωintrinsic
bot =

N kbot
x

|k|

(
dz

dy

)
bb

and ωintrinsic
top = −N ktop

x

|k|

(
dz

dy

)
bb

. (62.93)

For surfaces of constant buoyancy that slope upward to the north, (dz/dy)bb > 0, the intrinsic
frequency for the bottom wave is positive if the phase velocity is eastward relative to the
background flow (kbot

x > 0), whereas a positive frequency for the top wave requires a westward
phase velocity (ktop

x < 0). We also see this orientation by writing the intrinsic components to the
zonal phase velocities

(cp · x̂)intrinsicbot =
N k2x
|k|2

(
dz

dy

)
bb

> 0 and (cp · x̂)intrinsictop = −N k2x
|k|2

(
dz

dy

)
bb

< 0. (62.94)

The zonal component to the phase velocity in equations (62.91a) and (62.91b) are equal for
that wavevector whose magnitude satisfies

Ld |k| = 2, (62.95)

in which case

(cp · x̂)top = (k2x/|k|2) [ub(η)− (H/2) ∂zub] = (k2x/|k|2) [ub(ηb)+(H/2) ∂zub] = (cp · x̂)bot. (62.96)

Evidently, waves with Ld |k| = 2 have the opportunity to phase lock and thus to interact. This
possibility motivates the work in Section 62.7 whereby we include interactions in the formulation.

62.6.6 Meridional and vertical motion within an Eady wave

To help understand fluid particle motion in a stable Eady wave, we compute the meridional
velocity, v′, and vertical velocity, w′, for a wave moving along the bottom boundary, with a
similar calculation holding along the top. Recall that since the flow is quasi-geostrophic that the
vertical velocity is much smaller than the horizontal. Even so, it is nonzero and we can compute
it for the Eady wave, thus revealing motion in the meridional-depth plane. For this calculation
we use the streamfunction for a bottom trapped Eady wave

ψ′(x, y, z, t) = ψ̃o e
−kR (z−ηb) ei (k·x−ωbot t), (62.97)
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with ωbot given by the dispersion relation (62.86).

The meridional velocity of fluid particles within the bottom Eady wave is given by

v′ = ∂xψ
′ = i kx ψ̃o e

−kR (z−ηb) ei (k·x−ωbot t), (62.98)

whose real part is
v′ = −kx ψ̃o e

−kR (z−ηb) sin(k · x− ωbot t). (62.99)

A similar calculation leads to the zonal velocity within the wave

u′ = ky ψ̃o e
−kR (z−ηb) sin(k · x− ωbot t). (62.100)

Calculating the vertical velocity takes a bit more work, for which we make use of the linearized
buoyancy equation (62.26) so that

w′N2 = −(∂t + ub ∂x)b
′ − v′ ∂ybb. (62.101)

The first term is given by

−(∂t + ub ∂x)b
′ = i kR fo (−ωbot + kx ub)ψ

′, (62.102)

whose real part is

−(∂t + ub ∂x)b
′ = kR fo (ωbot − kx ub) ψ̃o e

−kR (z−ηb) sin(k · x− ωbot t), (62.103)

and the meridional velocity term is

−v′ ∂ybb = kx ∂ybb ψ̃o e
−kR (z−ηb) sin(k · x− ωbot t), (62.104)

so that

w′N2 = ψ̃o e
−kR (z−ηb) sin(k · x− ωbot t)[kx ∂ybb + kR fo (ωbot − kx ub)]. (62.105)

Making use of the dispersion relation (62.86) for the bottom trapped Eady edge waves leads to

kx ∂ybb + kR fo (ωbot − kx ub) = kx ∂ybb + kR fo kx (k
−1
R − z) ∂zub (62.106a)

= kR kx z ∂ybb, (62.106b)

so that the vertical velocity component is

w′ = −kR kx z (dz/dy)bb ψ̃o e
−kR (z−ηb) sin(k · x− ωbot t) (62.107)

and its ratio with the meridional velocity is

w′/v′ = z kR (dz/dy)bb = z |k| (N/fo) (dz/dy)bb . (62.108)

For vertical positions less than the Rossby height, k−1
R , the fluid particle motion is more horizontal

than the buoyancy slope, whereas the motion is more vertical than the slope for positions higher
than k−1

R . Also note that the amplitude of the motion exponentially decays moving away from
the bottom boundary with an efolding height k−1

R Figure 62.5 provides a schematic of this
motion.
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Figure 62.5: A meridional-vertical view of fluid particle velocity within a stable bottom trapped Eady wave, as
given by equation (62.108). The particle velocity is parallel to the bottom when at z = ηb = 0, and parallel to
the buoyancy surface at vertical position z kR = 1, and further steepens when moving higher in the column. The
amplitude of the oscillatory motion exponentially decays away from the bottom with an e-folding scale given by
the Rossby height, k−1

R . This figure is adapted from Figure 13.1(e) in Gill (1982).

62.6.7 Further study

The treatment in this section is compatible with Section 13.2 of Gill (1982), Chapter 19 of
Pedlosky (2003) and Section 8.7 of Smyth and Carpenter (2019).

62.7 Interacting Eady waves and baroclinic instability
The analysis from Section 62.6 revealed the presence of Eady edge waves that are exponentially
trapped next to the rigid top and bottom boundaries, with the wave supported by the thermal
wind shear intersecting the boundaries. Furthermore, the zonal component to the phase velocity
of the two waves is equal (equation (62.6.5)) for a horizontal wavenumber

ωtop = ωbot =⇒ |k| = 2L−1
d . (62.109)

For this wave, and for longer waves (smaller wavenumbers), we cannot ignore wave interactions.
Under specific circumstances detailed in this section, the waves constructively interact to support
mutual exponential growth, thus signaling baroclinic instability. The treatment is directly
analogous to our study in Section 61.6 of interacting vortex edge waves in a horizontally sheared
fluid.

62.7.1 Streamfunction solution

As before, we take the streamfunction ansatz (62.75), which builds in an assumption that the
Eady waves at the two boundaries move with the same phase velocity to thus allow them to
interact. We are thus led to the differential equation (62.80) and boundary conditions (62.73c)
and (62.83)

d2ψ̃/dz2 = k2R ψ̃ 0 < z < H (62.110a)

[−ω + ub(H) kx] ∂zψ̃ = kx ∂zub ψ̃ z = H (62.110b)

[−ω + ub(0) kx] ∂zψ̃ = kx ∂zub ψ̃ z = 0, (62.110c)

where we made use of the inverse Rossby height (62.60)

kR = |k|N/fo = |k|Ld/H with Ld = N H/fo. (62.111)

Additionally, we set
η = H and ηb = 0, (62.112)
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to help reduce notational clutter (see Figure 62.4).

Solution to the boundary value problem

The solution to the differential equation (62.110a) is given by the hyperbolic functions

ψ̃ = C1 cosh(kR z) + C2 sinh(kR z), (62.113)

where the coefficients C1 and C2, are specified from the boundary conditions. Making use of the
upper surface boundary condition (62.110b) and bottom boundary condition (62.110c) leads to
the coupled linear equations

(−c̃+H ∂zub) kR [C1 sinh(kRH) + C2 cosh(kRH)] = ∂zub [C1 cosh(kRH) + C2 sinh(kRH)]
(62.114a)

−c̃ kRC2 = C1 ∂zub, (62.114b)

where we introduced the shorthand

c̃ ≡ ω/kx − ub(0), (62.115)

and noted that the constant thermal wind shear means that

ub(H) = ub(0) +H ∂zub. (62.116)

62.7.2 Dispersion relation

Equations (62.114a) and (62.114b) are two homogeneous linear equations for the two unknowns,
C1 and C2. A nontrivial solution exists if the determinant of the 2×2 coefficient matrix vanishes.
This condition leads to the quadratic equation for c̃

c̃2 − c̃ H ∂zub + (∂zub/kR)
2 (H kR coth(kRH)− 1) = 0, (62.117)

which has two roots given by the quadratic formula

c̃ =
H ∂zub

2
± ∂zub

kR

[
(kRH)2

4
− kRH coth(kRH) + 1

]1/2
. (62.118)

A further simplification arises from use of the identity

2 cothx = tanh(x/2) + coth(x/2), (62.119)

in which case we have the roots

ω/kx = ub(z = 0) +
H ∂zub

2
± ∂zub

kR

[(
kRH

2
− coth(kRH/2)

)(
kRH

2
− tanh(kRH/2)

)]1/2
.

(62.120)
Since

x ≥ tanhx, (62.121)

the only way to realize a negative discriminant is for

kRH ≤ 2 coth(kRH/2). (62.122)
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A graphical solution to the equality finds the critical nondimensional wavenumber

kRH = |k|Ld ≈ 2.399. (62.123)

Longer waves that satisfy the inequality are baroclinically unstable

kRH = |k|Ld < 2.399 =⇒ unstable (62.124)

Note how |k|Ld ≈ 2.399 is rather close to the |k|Ld = 2 value from equation (62.109), computed
by setting the frequencies equal for two non-interacting Eady edge waves.

62.7.3 Growth rate

For unstable waves, the growth rate is given by the imaginary part of the angular frequency

σ =
|kx ∂zub|

kR

[∣∣∣∣kRH

2
− coth(kRH/2)

∣∣∣∣ ∣∣∣∣kRH

2
− tanh(kRH/2)

∣∣∣∣]1/2 . (62.125)

Due to the kx factor in the front, we see that for any given horizontal wavenumber,

|k| =
√
k2x + k2y, (62.126)

the growth rate is maximized for waves with a zonal phase velocity, in which case

|k| = |kx|. (62.127)

That is, the most unstable waves whose phase velocity is aligned with the background flow3

σ(k = x̂ kx) =
H |∂zub|
Ld

[∣∣∣∣ |k|Ld

2
− coth(|k|Ld/2)

∣∣∣∣ ( |k|Ld

2
− tanh(|k|Ld/2)

)]1/2
. (62.128)

Since the horizontal flow is non-divergent, Eady waves are horizontally transverse so that fluid
particle movement is perpendicular to the phase velocity. With a zonal phase velocity, fluid
particles move in the meridional direction.

Maximum growth rate

To determine the maximum growth rate we compute the wavenumber, |k| = |kx|, that satisfies

dσ2

dkx
= 0, (62.129)

which yields
|k|max = |kx|max ≈ 1.6/Ld =⇒ Λmax ≈ (2π/1.6)Ld ≈ 3.9Ld. (62.130)

Evidently, the fastest growing Eady waves are purely zonal and have wavelength about four times
the deformation radius. It is this connection to the deformation radius that directly connects
these unstable Eady waves to synoptic eddies in the atmosphere and mesoscale eddies in the
ocean.

3This is a version of Squires theorem described at the start of Chapter 61.
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Eady growth rate

The growth rate (62.128) is the product of an inverse time scale, T−1
Eady, and a non-dimensional

function, where the Eady time scale is given by

TEady =
Ld

H ∂zub

=
1

fo

N

∂zub

=

√
Ri

fo
= [N |(dz/dy)bb |]−1. (62.131)

We here introduced the balanced Richardson number from Section 43.7.5

Ri = N2/(∂zub)
2 = f2o [N (dz/dy)bb ]

−2. (62.132)

For quasi-geostrophic flows, the balanced Richardson number is normally quite large. Evaluating
the growth rate expression (62.128) with the fastest growing wave (62.130) renders

σmax = 0.31T−1
Eady = 0.31 |∂zub (fo/N)| = 0.31

|fo|√
Ri
. (62.133)

This maximum growth rate is sometimes generically called the Eady growth rate. For a background
state with Ri = 100 and fo = 10−4 s−1, we find the growth rate of the most unstable Eady wave

σmax ≈ (3.7 days)−1, (62.134)

which accords with the growth rate of middle latitude atmospheric cyclones. For the ocean, the
Eady growth rate is roughly ten times slower than the atmosphere (e.g., see Figure 1 in Treguier
et al. (1997)).

62.7.4 Further study

Our presentation of the Eady model is consistent with that found in Pedlosky (2003) and Vallis
(2017). Although maths and pictures are revealing, it is also useful to observe laboratory rotating
tank experiments to further ones understanding of the Eady model and baroclinic instability.

62.8 Necessary conditions for instability
In Section 61.5 we established the Rayleigh-Kuo inflection point theorem as well as Fjørtoft’s
theorem, each establishing necessary conditions for shear instability. Here we pursue a similar
approach for baroclinic instability of a zonal background flow

ub = ub(y, z), (62.135)

and maintain nonzero planetary β so that

f = fo + β y. (62.136)

The analysis of non-zonal flows greatly adds to the technical overhead, largely since the flow is
no longer perpendicular to the planetary vorticity gradient. We thus restrict attention to zonal
background flows.

As for the shear instability case, the necessary conditions for instability identifies cases
whereby instabilities are possible. However, the integral conditions are not sufficient conditions.
Hence, detailed calculations are required to determine if the flow is indeed unstable even if it
satisfies the necessary conditions. Both the derivation of the necessary conditions, and their
form, offer insights into the mechanics of baroclinic instability.
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62.8.1 Summary of the governing linear equations

From Section 62.3.3, we have the governing linear equation (62.25) for the geostrophic stream-
function and the boundary conditions (62.29) and (62.33)

(∂t + ub ∂x) [∇2
h ψ

′ + f2o ∂z(N
−2 ∂zψ

′)] = −∂xψ′ ∂yqb ηb < z < η (62.137a)

(∂t + ub ∂x) ∂zψ
′ = ∂xψ

′ ∂zub z = η (62.137b)

fo (∂t + ub ∂x) ∂zψ
′ = ∂xψ

′N2 [(dz/dy)bb − ∂yηb] z = ηb, (62.137c)

where the meridional derivative of the background potential vorticity is given by equation (62.14)

∂yqb = ∂y[fo + β y − ∂yub + f2o ∂z(N
−2 ∂zΨb)] = β − ∂yyub + f2o ∂yz(N

−2 ∂zΨb). (62.138)

The background flow is a function of (y, z), which means it only supports freely propagat-
ing plane waves in the zonal direction. We thus consider the following wave ansatz for the
streamfunction

ψ′(x, y, z, t) = ψ̃(y, z) ei (kx x−ω t). (62.139)

Use of this ansatz in the boundary value problem (62.137a)-(62.137c) yields

(ub − c) [(∂yy − k2x) ψ̃ + f2o ∂z(N
−2 ∂zψ̃)] = −ψ̃ ∂yqb ηb < z < η (62.140a)

(ub − c) ∂zψ̃ = ψ̃ ∂zub z = η (62.140b)

fo (ub − c) ∂zψ̃ = N2 ψ̃ [(dz/dy)bb − ∂yηb] z = ηb, (62.140c)

where the zonal phase velocity is written

cp = (ω/|k|) k̂ = (ω/kx) x̂ = c x̂. (62.141)

Note that the phase velocity, c, is generally complex, which means that the streamfunction, ψ̃,
is also complex. Just like for the horizontal shear case in Section 61.6, if c and ψ̃ satisfy the
boundary value problem (62.140a)-(62.140c), then so do their complex conjugates, c∗ and ψ̃∗.

62.8.2 Steps for deriving the necessary conditions

To develop a necessary condition for instability, multiply the differential equation (62.140a) by
ψ̃∗ and integrate over the full domain

ˆ [
ψ̃∗ (∂yy − k2x) ψ̃ + ψ̃∗ f2o ∂z(N

−2 ∂zψ̃) +
|ψ̃|2 ∂yqb
U − c

]
dy dz = 0. (62.142)

Meridional derivative term

Consider the meridional derivative term, in which we have

ˆ
ψ̃∗ ∂yyψ̃ dy =

ˆ
[∂y(ψ̃

∗ ∂yψ̃)− |∂yψ̃|2] dy. (62.143)

Assuming either meridionally periodic conditions, or fields that decay at infinity, allows us to
drop the total derivative term to have

ˆ
ψ̃∗ ∂yyψ̃ dy = −

ˆ
|∂yψ̃|2 dy. (62.144)
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Vertical derivative term

For the vertical derivative term we haveˆ
ψ̃∗ ∂z(N

−2 ∂zψ̃) dz =

ˆ
[∂z(ψ̃

∗N−2 ∂zψ̃)−N−2 |∂zψ̃|2] dz. (62.145)

The boundary conditions (62.140b) and (62.140c) lead to

[ψ̃∗N−2 ∂zψ̃]z=η =

[
|ψ̃|2 ∂zub

N2 (ub − c)

]
z=η

(62.146a)

[ψ̃∗N−2 ∂zψ̃]z=ηb =

[
|ψ̃|2 [(dz/dy)bb − ∂yηb]

fo (ub − c)

]
z=ηb

(62.146b)

It is important to note that these boundary terms are generally nonzero, and so they play a role
in determining the necessary conditions for instability.

62.8.3 Necessary conditions based on the imaginary part
The various pieces bring the integral (62.142) into the form

ˆ [
k2x |ψ̃|2 + |∂yψ̃|2 + (fo/N)2 |∂zψ̃|2

]
dy dz

=

ˆ |ψ̃|2 ∂yqb
ub − c

dy dz +

ˆ
z=η

f2o |ψ̃|2 ∂zub

N2 (ub − c)
dy −

ˆ
z=ηb

fo |ψ̃|2 [(dz/dy)bb − ∂yηb]
(ub − c)

dy. (62.147)

The left hand side is a real and non-negative number. For consistency, the imaginary part of the
right hand side must vanish. Making use of the identity

1

ub − c
=
ub − cr − i ci
|ub − c|2

(62.148)

leads to the constraint

ci

[ˆ |ψ̃|2 ∂yqb
|ub − c|2

dy dz +

ˆ
z=η

f2o |ψ̃|2 ∂zub

N2 |ub − c|2
dy −

ˆ
z=ηb

fo |ψ̃|2 [(dz/dy)bb − ∂yηb]
|ub − c|2

dy

]
= 0.

(62.149)
An instability exists only if ci ̸= 0. We thus see that if the sum of the integrals does not vanish,
then there can be no instability. That is, a sufficient condition for baroclinic stability of a zonal
geostrophic flow, ub(y, z), is that the sum of the integrals is nonzero. Conversely, a necessary
condition for baroclinic instability of the zonal flow is that the sum of the three integrals in
equation (62.149) vanishes. This necessary condition is known as the Charney-Stern-Pedlosky
condition (Charney and Stern, 1962; Pedlosky , 1964).

In summary, the necessary conditions for instability are that the following three functions
must not have the same sign everywhere

∂yqb must change sign within ηb < z < η (62.150a)

fo ∂yub = −∂ybb must change sign along z = η (62.150b)

(dz/dy)bb − ∂yηb must change sign along z = ηb. (62.150c)

Conversely, if each of these conditions fails, then that is sufficient to conclude that the flow is
stable to baroclinic instability.
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62.8.4 Necessary conditions based on the real part

Following from Fjørtoft’s theorem for shear instability in Section 61.5.2, consider the real part
of equation (62.147), which says

Γ =

ˆ
(ub − cr) |ψ̃|2 ∂yqb
|ub − c|2

dy dz

+

ˆ
z=η

(ub − cr) f2o |ψ̃|2 ∂zub

N2 |ub − c|2
dy −

ˆ
z=ηb

(ub − cr) fo |ψ̃|2 [(dz/dy)bb − ∂yηb]
|ub − c|2

dy, (62.151)

where we introduced the non-negative number

Γ =

ˆ [
k2x |ψ̃|2 + |∂yψ̃|2 + (fo/N)2 |∂zψ̃|2

]
dy dz ≥ 0. (62.152)

Given that the condition (62.149) is maintained (with ci ≠ 0), then we can replace cr in equation
(62.151) with an arbitrary constant, referred to as Us in Fjørtoft’s theorem from Section 61.5.2.
We conclude that a sufficient condition for stability is if there is any constant, Us, whereby all of
the following conditions hold

(ub − cr) ∂yqb < 0 ηb < z < η (62.153a)

(ub − Us) ∂zub < 0 z = η (62.153b)

−(ub − Us) [(dz/dy)bb − ∂yηb] < 0 z = ηb. (62.153c)

62.8.5 Necessary condition for instability of the Eady model

To help understand features of the necessary condition (62.149), and the summary statements
(62.150a)–(62.150c), we consider some special cases, starting with the Eady model from Sections
62.6 and 62.7. In this case, there is a constant interior potential vorticity of the background
state, so that ∂yqb = 0. Hence, the necessary condition for instability (62.149) reduces to a
condition on the boundary integrals

ˆ
z=η

|ψ̃|2 ∂zub

N2 |ub − c|2
dy =

ˆ
z=ηb

|ψ̃|2 ∂zub

N2 |ub − c|2
dy, (62.154)

where we set ∂yηb = 0 as per the Eady model, and the buoyancy slope is

(dz/dy)bb = −∂ybb/∂zbb = fo ∂zub/N
2. (62.155)

Furthermore, N2 and ∂zub are constants in the Eady model, and the zonal flow is a function
only of vertical, ub(z), so that the necessary condition for instability (62.154) reduces to[

|ψ̃|2
|ub − c|2

]
z=η

=

[
|ψ̃|2
|ub − c|2

]
z=ηb

. (62.156)

For this condition to hold requires the streamfunction to be nonzero at both boundaries. We are
ensured that the streamfunction is not exponentially small at the boundaries when the edge
waves have small enough wavenumber that the waves can overlap and have a nontrivial presence
at both boundaries
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Figure 62.6: The Eady model with constant sloping buoyancy surfaces and with a bottom slope that is steeper
than the buoyancy surfaces. This flow state is baroclinically stable according to equation (62.157) since the slope
of the topography is steeper than the buoyancy surface.

62.8.6 Effects from adding a bottom slope to the Eady model
Consider the Eady model but with a sloping bottom, in which case the necessary condition for
instability, equation (62.149), becomes

ˆ
z=η

|ψ̃|2 (dz/dy)bb
|ub − c|2

dy =

ˆ
z=ηb

|ψ̃|2 [(dz/dy)bb − ∂yηb]
|ub − c|2

dy. (62.157)

For the Eady model the buoyancy slope is constant, and let us assume it is positive. If the
bottom topography slope has the same sign as the buoyancy slope, but is larger in magnitude,
then the right hand side of equation (62.157) is negative whereas the left hand side is positive.
We reach a contradiction, which means this necessary condition for instability cannot be satisfied.
Evidently, the flow is baroclinically stable if the bottom slope is steeper than the buoyancy slope.
We depict this situation in Figure 62.6.

62.8.7 Flat bottom with constant buoyancy along the two boundaries
The Eady model has horizontally varying buoyancy along the top and bottom boundaries, and
stability of the Eady waves is determined by the boundary buoyancy. But what if there is a
constant buoyancy along the two boundaries (so (dz/dy)bb = 0) and with the bottom boundary
flat (∂yηb = 0)? In this case there are no topographic waves nor Eady waves along the boundaries,
and both boundary integrals in the necessary condition (62.149) vanish. The necessary condition
for instability (62.149) reduces to

ˆ |ψ̃|2 ∂yqb
|ub − c|2

dy dz = 0. (62.158)

We thus find that in the absence of boundary contributions, the necessary condition for baroclinic
instability holds so long as the meridional derivative of the background potential vorticity changes
sign somewhere in the domain. This condition is reminiscent of the Rayleigh-Kuo inflection
point theorem for horizontal shear instability (Section 61.5).

62.9 Energetics of small amplitude fluctuations
In this section we offer another means to help understand the mechanics of quasi-geostrophic
waves and baroclinic instability, as well as conditions required for a fluctuation to grow. Elements
of this section are shared with Section 62.8, yet here we focus on the mechanical energy budget
of the fluctuating fields. As with Section 62.8, the results here are more general than those found
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for the Eady model in Section 62.7, since we allow for the general linear theory from Sections
62.3 and 62.8.

Recall the energetics of quasi-geostrophy as studied in Section 45.9, where we identify the
mechanical energy per mass of the fluctuations

E = [∇hψ′ · ∇hψ′ + (fo ∂zψ
′/N)2]/2, (62.159)

which is the sum of the kinetic energy per mass

∇hψ′ · ∇hψ′/2 = u′ · u′/2, (62.160)

plus the available potential energy per mass

(fo ∂zψ
′/N)2/2 = (b′/N)2/2. (62.161)

To derive the energy budget equation, we follow the standard procedure in quasi-geostrophy by
multiplying the potential vorticity equation (62.25) by ψ′

ψ′ (∂t + ub ∂x) [∇2
h ψ

′ + f2o ∂z(N
−2 ∂zψ

′)] = −ψ′ ∂xψ
′ ∂yqb. (62.162)

We now move derivatives around, with the manipulations relatively straightforward with ub = 0,
but somewhat more tedious with ub ̸= 0.

62.9.1 Time derivative terms

The time derivative can be written

ψ′ ∂t(∇2
h ψ

′) = ψ′∇h · ∇h(∂tψ′) (62.163a)

= ∇h · [ψ′∇h(∂tψ′)]−∇hψ′ · ∇h(∂tψ′) (62.163b)

= ∇h · [ψ′∇h(∂tψ′)]− ∂t(∇hψ′ · ∇hψ′)/2, (62.163c)

along with

ψ′ ∂t∂z[(f
2
o /N

2) ∂zψ
′] = ψ′ ∂z[(f

2
o /N

2) ∂ztψ
′] (62.164a)

= ∂z[ψ
′ (f2o /N

2) ∂ztψ
′]− ∂zψ′ (f2o /N

2) ∂ztψ
′ (62.164b)

= ∂z[ψ
′ (f2o /N

2) ∂ztψ
′]− ∂t(fo ∂zψ′/N)2/2, (62.164c)

which yields

ψ′ ∂t[∇2
h ψ

′ + f2o ∂z(N
−2 ∂zψ

′)] = −∂tE +∇h · [ψ′∇h(∂tψ′)] + ∂z[ψ
′ (f2o /N

2) ∂ztψ
′]. (62.165)

62.9.2 Advection by the background zonal flow

To account for advection by the zonal background geostrophic flow, it is important to remember
that ub = ub(y, z), so that

ψ′ ub ∂x(∇2
h ψ

′) = ψ′ ub∇h · ∇h(∂xψ′) (62.166a)

= ∇h · [ψ′ ub∇h(∂xψ′)]−∇h(ψ′ ub) · ∇h(∂xψ′) (62.166b)

= ∇h · [ψ′ ub∇h(∂xψ′)]− ψ′∇hub · ∇h(∂xψ′)− ub∇hψ′ · ∇h(∂xψ′) (62.166c)

= ∇h · [ψ′ ub∇h(∂xψ′)]− ψ′ ∂yub ∂xyψ
′ − ub ∂x(∇hψ′ · ∇hψ′)/2. (62.166d)
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One further step is key, whereby we write

ψ′ ∂yub ∂xyψ
′ = ∂x(ψ

′ ∂yub ∂yψ
′)− ∂xψ′ ∂yub ∂yψ

′, (62.167)

so that

ψ′ ub ∂x(∇2
h ψ

′) = ∇h · [ψ′ ub∇h(∂xψ′)]− ∂x(ψ′ ∂yub ∂yψ
′) + ∂xψ

′ ∂yub ∂yψ
′

− ub ∂x(∇hψ′ · ∇hψ′)/2. (62.168)

A similar set of steps for the stretching term (temporarily dropping the constant f2o for brevity)
leads to

ψ′ ub ∂x∂z(N
−2 ∂zψ

′) = ψ′ ub ∂z(N
−2 ∂xzψ

′) (62.169a)

= ∂z[ψ
′ ubN

−2 ∂xzψ
′]− ∂z(ψ′ ub)N

−2 ∂xzψ
′ (62.169b)

= ∂z[ψ
′ ubN

−2 ∂xzψ
′]− ψ′ ∂zubN

−2 ∂xzψ
′ − ub ∂zψ

′N−2 ∂xzψ
′ (62.169c)

= ∂z[ψ
′ ubN

−2 ∂xzψ
′]− ψ′ ∂zubN

−2 ∂xzψ
′ − ub ∂x(∂zψ

′/N)2/2. (62.169d)

As for the relative vorticity terms, write

ψ′ ∂zubN
−2 ∂xzψ

′ = ∂x(ψ
′ ∂zubN

−2 ∂zψ
′)− ∂xψ′ ∂zubN

−2 ∂zψ
′, (62.170)

which then leads to

ψ′ ub ∂xz(f
2
o N

−2 ∂zψ
′) = ∂z(ψ

′ ub f
2
o N

−2 ∂xzψ
′)− ∂x(ψ′ ∂zub f

2
o N

−2 ∂zψ
′)

+ ∂xψ
′ ∂zub f

2
o N

−2 ∂zψ
′ − ub ∂x(fo ∂zψ

′/N)2/2. (62.171)

62.9.3 Summary of the energy equation

Bringing terms together gives

0 = ψ′ (∂t + ub ∂x) [∇2
h ψ

′ + f2o ∂z(N
−2 ∂zψ

′)] + ψ′ ∂xψ
′ ∂yqb

= −(∂t + ub ∂x)E −∇h · F h − ∂zF z + ∂xψ
′ ∂yub ∂yψ

′ + ∂xψ
′ ∂zub f

2
o N

−2 ∂zψ
′, (62.172)

where we introduced the horizontal and vertical components to the energy flux vector

F h = −ψ′ (∂t + ub ∂x)∇hψ′ + x̂ψ′ (−ψ′ ∂yqb/2 + ∂yub ∂yψ
′ + ∂zub f

2
o N

−2 ∂zψ
′) (62.173a)

F z = −ψ′ f2o N
−2 (∂t + ub ∂x)∂zψ

′ = −ψ′ foN
−2 (∂t + ub ∂x)b

′, (62.173b)

which gives the energy equation

(∂t + ub ∂x)E = −∇h · F h − ∂zF z + ∂xψ
′ ∂yub ∂yψ

′ + ∂xψ
′ ∂zub f

2
o N

−2 ∂zψ
′. (62.174)

Since ub is independent of x, one may choose to place the zonal advection term inside of the
horizontal flux by noting that

ub ∂xE = ∂x(ubE), (62.175)

so that

∂tE = −∇h · (E ub x̂+ F h)− ∂zF z + ∂xψ
′ ∂yub ∂yψ

′ + ∂xψ
′ ∂zub f

2
o N

−2 ∂zψ
′. (62.176)
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62.9.4 Horizontal and thermal wind shear production
Equation (62.176) indicates that time changes to the mechanical energy contained in the small
amplitude fluctuations is driven by the convergence of an energy flux, plus two source terms
arising from shears in the background zonal geostrophic flow. The flux convergence acts to move
energy around, and its domain integral provides possible sources for energy at the boundaries.
We do not study this term in this section since it is quite dependent on assumptions about the
boundaries, though we comment on this limitation in the analysis in Section 62.9.7.

Instead, we focus here on the two source terms in equation (62.176). The source arising from
horizontal shear can be written

∂xψ
′ ∂yub ∂yψ

′ = −v′ u′ ∂yub, (62.177)

and the source arising from vertical shear is

∂xψ
′ ∂zub f

2
o N

−2 ∂zψ
′ = v′ b′ (fo ∂zub/N

2) = v′ b′ (dz/dy)bb , (62.178)

where the final step introduced the slope of the background buoyancy surface according to
equation (62.12).

Horizontal shear production and thermal wind shear production

As in the study of horizonal shear instability in Section 61.4.6, we identify

−v′ u′ ∂yub = horizontal shear production. (62.179)

This shear production term is generally rather small for geostrophic flows in comparison to the
ageostrophic flows considered in Chapter 61. In analogy, we introduce

v′ b′ (dz/dy)bb = −v′ b′ ∂ybb/N2 = thermal wind shear production. (62.180)

The thermal wind shear production is fundamentally distinct from horizontal shear production.
The reason is that v′ b′ (dz/dy)bb arises from the potential energy in the background state that
supports the thermal wind shear, rather than from the background kinetic energy that supports
horizontal (or vertical) shear production described in Section 61.4.6. For quasi-geostrophic flows,
kinetic energy sourced shear production is generally far smaller than potential energy sourced
thermal wind shear production.

62.9.5 Meridional and vertical eddy buoyancy fluxes
As shown in the following, fluctuations that increase their energy through making use of the
prescribed background potential energy have a tendency to flux buoyancy down the meridional
gradient and upward. These two effects act in a manner that increases the total quasi-geostrophic
mechanical energy (sum of kinetic plus available potential) of the fluctuations, while feeding off
the available potential energy of the background flow.

Meridionally downgradient flux of buoyancy increases mechanical energy of the fluctuations

Mechanical energy of the fluctuations increases through the thermal wind shear production
(62.180) if the meridional eddy buoyancy flux is down the meridional gradient of the background
buoyancy

v′ b′ ∂ybb = −v′ b′ fo ∂zub < 0 mechanical energy of fluctuations increases. (62.181)
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In practice, this downgradient behavior occurs over a space and/or time and/or ensemble average,
in which we use an overbar as a generic average so that

v′ b′ ∂ybb = −v′ b′ fo ∂zub < 0 averaged mechanical energy of fluctuations increases. (62.182)

This downgradient meridional buoyancy flux leads to a poleward heat transport for flows where
temperature dominates buoyancy. Furthermore, the poleward heat transport extracts potential
energy from the background flow since it acts in a direction that flattens the background buoyancy
surfaces. Such fluctuations increase their energy at the expense of the available potential energy
of the background state.

Fluid particle motion leading to an increase in available potential energy of the fluctuations

Available potential energy contained in the fluctuations evolves according to

(∂t + ub ∂x)[(fo ∂zψ
′/N)2/2] = (∂t + ub ∂x)(b

′/N)2/2 (62.183a)

= (b′/N2) (∂t + ub ∂x)b
′ (62.183b)

= −b′ [w′ − v′ (dz/dy)bb ] (62.183c)

= −b′ (w′ + v′ ∂ybb/N
2), (62.183d)

where we used the linear buoyancy equation (62.27) for the penultimate step. The available
potential energy of the fluctuations increases if

b′ [w′ − v′ (dz/dy)bb ] = b′ (w′ + v′ ∂ybb/N
2) < 0 APE of the fluctuations increases. (62.184)

An increasing available potential energy in the fluctuations is expected for a growing disturbance,
in which fluctuating buoyancy surfaces have growing amplitudes. The condition (62.184) takes
on a geometric expression by cancelling the buoyancy fluctuation and writing

w′/v′ < (dz/dy)bb =⇒ APE of the fluctuations increases, (62.185)

whereas the fluctuations maintain a fixed available potential energy if the meridional and vertical
velocity components align with the background buoyancy surfaces

w′/v′ = (dz/dy)bb ] =⇒ APE of the fluctuations remains constant. (62.186)

We have more to say on these geometric conditions in Section 62.9.7.

Kinetic energy of the fluctuations

Substituting the available potential energy equation (62.183d) into the mechanical energy
equation (62.174) leads to the equation for the kinetic energy of the fluctuations

(∂t + ub ∂x)(u
′ · u′/2) = −∇h · F h − ∂zF z − v′ u′ ∂yub + w′ b′. (62.187)

Growth in the kinetic energy of the fluctuations arises if positive buoyancy anomalies are fluxed
upward,

w′ b′ > 0 kinetic energy of the fluctuations increases. (62.188)

This flux lowers the center of mass for the fluid and so decreases the potential energy.
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Figure 62.7: Depicting the wedge of instability for baroclinic instability. The background buoyancy is oriented
with ∂ybb < 0, so that less buoyant fluid sits to the north (to the right), as well as ∂zbb > 0, so that the fluid is
stably stratified in the vertical. A buoyancy fluctuation, b′, in region R1 is more buoyant than bb, so that b′ > 0,
whereas in region R2 we find b′ < 0 relative to bb. Hence, motion of fluid within a fluctuation that moves from
region R1 to region R2 represents motion of relatively buoyant fluid (b′ > 0) upward (w′ > 0). This motion
thus has w′ b′ > 0, which leads to an increase in kinetic energy of the fluctuation (equation (62.188)). This same
motion also carries v′ b′ > 0 so that v′ b′ ∂ybb < 0, meaning that the mechanical energy of the fluctuation increases
(equation (62.181)). Finally, this motion ensures that w′ b′ ≤ v′ b′ (dz/dy)bb , so that the available potential energy
of the fluctuation increases (equation (62.189)). Motion from region R2 to region R1 reverses all signs of the
perturbations, so that their products remain the same, thus ensuring that energies increase for fluctuations moving
from R2 to region R1.

Summary of the inequalities

We summarize the considerations thus far by noting that the mechanical energy, kinetic energy,
and available potential energy of the fluctuating field increases for fluid particle displacements
that are sloped between the horizontal plane and the constant buoyancy surface passing through
the origin as in the wedge of instability in Figure 62.7

w′/v′ ≤ (dz/dy)bb =⇒ N2w′ b′ < −v′ b′ ∂ybb. (62.189)

Recall that w′ b′ > 0 means that kinetic energy in the fluctuating fields increases (equation
(62.188)), and v′ b′ ∂ybb < 0 means that the mechanical energy increases (equation (62.181)).
Inequality (62.189) thus ensures that available potential energy for the fluctuations also increases.

62.9.6 Tilting phase lines of unstable baroclinic waves
In Section 61.4.7 we showed that phase lines of unstable barotropic waves tilt into the meridional
shear of the zonal flow, with this orientation allowing the wave perturbations to grow by
extracting kinetic energy from the background shear. Here we pursue a similar argument to
reveal that unstable baroclinic waves tilt into the vertical shear of the zonal flow, with this
orientation allowing the waves to extract potential energy from the background thermal wind
flow.

Start with the phase average of the inequality (62.182) that provides a sufficient condition
for wave fluctuations to increase their mechanical energy

⟨v′ b′⟩ fo ∂zub > 0 mechanical energy of fluctuations increases. (62.190)

Writing the streamfunction in the form

ψ′(x, y, z, t) = ψ̃(z) ei (kx x+ky y−ωr t)+ωi t = |ψ̃(z)| ei (kx x+ky y+α(z)−ωr t)+ωi t, (62.191)

leads to

v′ = ∂xψ
′ = i kx |ψ̃| ei (kxx+kyy+α−ωrt)+ωit (62.192a)
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Figure 62.8: The lines of constant phase, Φ(x, z) = k x−α(z), for the streamfunction (or the meridional velocity)
in a northern hemisphere (fo > 0) baroclinic wave. The wave depicted here has an increasing mechanical energy
since the phase lines are tilted into the vertical shear of the zonal background flow, thus allowing for thermal wind
shear production to increase the mechanical energy as per equation (62.197). This figure is directly analogous to
the case of barotropic shear production as given by Figure 61.1.

b′ = fo ∂zψ
′ = fo [∂z|ψ̃|+ i |ψ̃| ∂zα] ei (kxx+kyy+α−ωrt)+ωit, (62.192b)

and with the phase averaging identity (8.17e) yielding

⟨v′ b′⟩ = (1/2) Re[v′ b∗] = (1/2) kx fo |ψ̃|2 e2ωit ∂zα. (62.193)

We focus on phase lines in the x-z plane (so that ky = 0), as that is the plane of the zonal flow
with a vertical shear and so it is the plane of the most unstable wave as per Squire’s theorem.
We thus consider the spatial phase function

Φ(x, z) ≡ kx x+ α(z), (62.194)

whose constant surfaces are defined by

dΦ = 0 = kx dx+ (∂zα) dz =⇒ (dz/dx)phase = −kx/∂zα, (62.195)

so that the instability condition (62.190) takes the form

(1/2) k2x f
2
o |ψ̃|2 e2ωit

∂zub

(dz/dx)phase
< 0 =⇒ sufficient condition for energy growth. (62.196)

Simplifying this equation leads to the condition for the ratio of the vertical shear to the phase
slope

∂zub

(dz/dx)phase
< 0 =⇒ sufficient condition for energy growth. (62.197)

This inequality says that mechanical energy of the wave grows when the wave’s phase lines tilt
into the background vertical shear, such as depicted in Figure 62.8. This condition is directly
analogous to equation (61.56) and Figure 61.1, which hold for unstable barotropic waves on a
meridional sheared zonal flow. Here, the tilt of the phase lines reflects the ability of the wave
to extract potential energy from the background state, thus leading to growth of energy for
the unstable wave. The geometric property (62.197) offers a visual indicator that the wave is
acting on a baroclinically unstable background state, thus providing a valuable diagnostic tool
for identifying when baroclinic instability is happening.

62.9.7 Caveats for extending the wedge of instability to parcels
Inequality (62.189) refers to the orientation of fluid particles affected by small amplitude wave
fluctuations that lead to baroclinic instability, as illustrated in Figure 62.7. Even so, this figure is
the basis for a parcel argument that goes beyond that of a small amplitude wave argument, with
the parcel argument presented in many texts, such as Section 7.6 of Pedlosky (1987), Lecture 20
of Pedlosky (2003), Section 13.15 of Kundu et al. (2016), and Section 9.4.1 of Vallis (2017), and
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originating from Eady (1949). Here we offer some caveats about this argument.

Baroclinic instability versus symmetric instability

The parcel arguments associated with the wedge of instability do not represent necessary
conditions for baroclinic instability, and so they are no substitute for the integral statements in
Section 62.8. This situation contrasts to parcel arguments considered for symmetric instability,
where the necessary and sufficient condition for symmetric instability is summarized by its wedge
of instability shown in Figure 59.8.

Furthermore, the parcel argument used for symmetric instability is based on a force balance,
and so it incorporates accelerations from both buoyancy and Coriolis to account for the vertical
and horizontal motion of the parcels. In contrast, the wedge of instability in Figure 62.7 is based
on energetic arguments for baroclinic instability, with Coriolis acceleration absent from such
arguments.

Baroclinic instability is a wave instability not a local instability

As explored in our study of the Eady model in Section 62.7, baroclinic instability mechanistically
occurs through wave resonance. The realization of wave resonance relies on boundary conditions
and phase locking of waves so that they can mutually reinforce one another. This mechanism is
directly analogous to that considered for horizontal shear instability in Chapter 61.

In contrast, parcel arguments, such as used for symmetric instability, do not know about
boundary conditions or phase locking. Instead, they are only concerned with local environmental
conditions. Consider the following case in point for limitions of parcel arguments for baroclinic
instability. Namely, observe that the wedge of instability does do not distinguish between flat
bottom boundary or sloping bottom boundary. However, in Section 62.8.6 we found that the
Eady model is stable in the presence of a bottom slope that is steeper than the buoyancy surfaces
(Figure 62.6).

Additional points

Focusing specifically on the arguments leading up to inequality (62.189), note that these
arguments have ignored all contributions from the convergence of energy fluxes that appear in
the energy equation (62.174). These fluxes, particularly at domain boundaries, provide further
influences on the domain integrated energetics and hence on stability of the flow (e.g., boundary
terms are critical for the necessary instability conditions in Section 62.8). Additional caveats
are raised by Heifetz et al. (1998) related to the problems with ignoring pressure fluctuations
acting on the fluid particles. These caveats are analogous to those raised in Section 30.11 when
studying effective buoyancy.

62.9.8 Further reading
Chapter 17 of Cushman-Roisin and Beckers (2011) offers qualifiers similar to those raised in
Section 62.9.7 regarding the conceptual limitations of using parcel arguments for describing the
mechanism of instabilities occuring via wave resonance.
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Generalized vertical coordinates (GVCs) offer a mathematical framework for describing fluid
mechanics according to monotonically stacked surfaces that are a general function of space and
time. For studying stratified fluid mechanics, the most common generalized vertical coordinate
is based on Archimedean buoyancy or specific entropy. Generalized vertical coordinates appear
in many guises throughout geophysical fluid mechanics, and they were introduced by Starr
(1945) for atmospheric modeling and Bleck (1978) for ocean modeling. There is a growing use of
GVC-based numerical ocean (e.g., Griffies et al. (2020)) and atmospheric models. This usage
prompts the need to master their use for analysis, model formulation, and theory, thus providing
motivation for this part of the book.

Time dependence of generalized vertical coordinates means that observers situated on a fixed
generalized vertical coordinate surface are non-inertial, in a manner akin to the Lagrangian
reference frame. Generalized vertical coordinates are also non-orthogonal, which contrasts to
the static and locally orthogonal coordinates described in Sections 4.21, 4.22, and 4.23 (e.g.,
Cartesian, cylindrical, spherical). Both time dependence and non-orthogonality offer advantages
for describing certain features of geophysical fluid motion. Yet there is a price to pay due to the
added mathematical complexity that requires care beyond that needed with the coordinates in
Chapter ??.

The key reason we fravor a locally non-orthogonal coordinate set is that gravity plays a
dominant role in orienting geophysical fluid motion. Hence, it is strategically useful to decompose
the equations of motion so that lateral motions are perpendicular to gravity, just like with
geopotential vertical coordinates. That is, we orient horizontal motions the same regardless
whether we use geopotential coordinates or generalized vertical coordinates, since doing so
removes the vertical pressure force from the horizontal equations of motion. If we were to instead
locally rotate the components of the velocity vector to be parallel and perpendicular to the surface
of constant generalized vertical coordinate, as per a locally orthogonal coordinate description,
then that representation would introduce a portion of the vertical pressure gradient into the
equations for lateral motion. Having the vertical pressure gradient appear in each of the three
components to the equations of motion makes it very difficult to isolate the hydrostatic pressure
force. In turn, it makes it difficult to describe nearly all of the basic features of geophysical
flows, such as the geostrophic and hydrostatic balances.4

In this part of the book we develop the mathematics of generalized vertical coordinates, and
then build up the kinematics and dynamics of stratified fluid mechanics using these coordinates.
These chapters are written in the style of a monograph, with equations derived in detail and
concepts explored. Here is a brief summary of these chapters.

• mathematical foundations: Chapter 63 establishes the mathematics of generalized
vertical coordinates. As noted already, their time dependence and their non-orthogonality
present some complexity in both concept and detail. Even so, with practice, generalized
vertical coordinates can become a versatile member of our theoretical and numerical toolkit.

• Chapters 64 and 65 describe elements of fluid kinematics and dynamics using generalized
vertical coordinates.

• Chapter 66 formulates the hydrostatic Boussinesq equations using buoyancy as the vertical
coordinate. This chapter specializes elements from the previous chapters, and in so doing
provides a mathematical and physical basis for isopycnal models of the ocean and isentropic
models of the atmosphere.

• Chapter 67 provides further insights into eddy and mean flow decomposition as viewed
through the lens of thickness weighted averaging (TWA) for the shallow water model.

4The one case where locally orthogonal coordinate are useful concerns the tracer diffusion operator within the
ocean interior, as discussed in Section 71.4.
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We position this chapter in this part of this book since it makes use of the layered
perspective of generalized vertical coordinates, particularly isopycnal coordinates. Indeed,
the adiabatic stacked shallow water model is a discrete realization of the perfect fluid
isopycnal equations. The TWA formalism of the shallow water equations offers a technically
less difficult rendition of the formalism when applied to the continuously stratified isopycnal
coordinates.
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Chapter 63

MATHEMATICAL FOUNDATIONS

In this chapter we present the mathematics of generalized vertical coordinates (GVC), with
Figure 63.1 offering a schematic of how these coordinates monotonically partition the vertical
direction. Such coordinates are of particular use for stratified fluid mechanics, where it is often
convenient to make use of a vertical coordinate distinct from, but uniquely related to, the
geopotential vertical coordinate.

chapter guide

We make use of the general tensor analysis detailed in Chapter 4. We mostly consider just
the spatial tensors in this chapter, consistent with the Newtonian perspective whereby
time is universal. However, since the vertical coordinate is a function of time, we follow the
space-time perspective from Section 4.9 for transforming the partial derivative operator.
Chapters directly relying on the material from this chapter include the fluid kinematics
discussed in Chapter 64, the general vertical coordinate dynamics discussed in Chapter
65, and the tracer equation diffusion and stirring operators discussed in Chapter 71.
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Figure 63.1: This stylized schematic illustrates the geometry of two surfaces of constant generalized vertical
coordinate σ(x, y, z, t) = σ1 and σ(x, y, z, t) = σ2, here showing patches on two such surfaces. The surfaces are
generally undulating in space and time yet are assumed to monotonically layer the fluid. Monotonic layering
means that the surface normal, n̂, always has a non-zero projection onto the vertical: n̂ · ẑ ̸= 0. That is, the
surfaces never become vertical nor do they overturn. It also means that there is a 1-to-1 invertible relation between
σ and geopotential, so that specifying (x, y, σ(x, y, z, t)) is sufficient to yield a unique z.

63.1 Relating Cartesian and GVCs
We make use of the symbol σ for a generalalized vertical coordinate. This coordinate is not
orthogonal to the horizontal spatial coordinates x, y. This is a central property of GVCs that
influences nearly all aspects of their calculus. To help develop the mathematics for transforming
between Cartesian coordinates and GVCs, it is important to distinguish the two coordinate
systems. For that purpose we write the time coordinate and spatial Cartesian coordinates
according to

ξα = (ξ0, ξa) = (ξ0, ξ1, ξ2, ξ3) = (t, x, y, z) with α = 0, 1, 2, 3, and a = 1, 2, 3. (63.1)

As defined, the tensor label a runs over the spatial coordinates 1, 2, 3 whereas α also includes
the time coordinate with α = 0. The corresponding generalized vertical coordinates are denoted
with an overbar

ξα = (ξ0, ξ1, ξ2, ξ3) = (t, x, y, σ). (63.2)

The 1-to-1 coordinate transformation between Cartesian and GVC coordinates is written

ξ0 = ξ0 ⇐⇒ t = t (63.3a)

ξ1 = ξ1 ⇐⇒ x = x (63.3b)
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ξ2 = ξ2 ⇐⇒ y = y (63.3c)

ξ3 = σ(x, y, z, t), (63.3d)

with the final relation expressing the generalized vertical coordinate as a function of space and
time. We ordered the appearance of independent variables in σ with time in the last position,
which is the conventional ordering in this book for functions of space and time even though the
zeroth coordinate is time.

The coordinate transformation is invertible so that we can write

ξ0 = ξ0 (63.4a)

ξ1 = ξ1 (63.4b)

ξ2 = ξ2 (63.4c)

ξ3 = ξ3(x, y, σ, t) = ξ3(x, y, σ, t). (63.4d)

The relation
ξ3 = ξ3(ξa) = ξ3(x, t, σ, t) (63.5)

provides the vertical position of a given σ surface. Since ξ3 = z one commonly writes

z = z(x, y, σ, t). (63.6)

However, this expression is prone to confusion since the meaning of z is overloaded.1 Namely,
one meaning ascribes z to a particular value of the vertical position; i.e., z = −100 m. The other
meaning, as on the right hand side, is for z as the vertical coordinate function of a particular
σ surface, with this value a function of space, time, and σ. Learning to distinguish when z
refers to a particular vertical position or as a coordinate function takes some practice, and
those who routinely work with generalized vertical coordinates typically find no problem with
the overloaded meanings. Indeed, after reading this chapter we should be able to hold the
two meanings in our mind without confusion. As a reminder, we commonly write the vertical
coordinate function as

z = η(x, y, σ, t), (63.7)

where η is used throughtout this book to represent the vertical position of a surface, such as the
ocean free surface, solid-earth topography, or a generalized vertical coordinate surface. Hence,
for example, the vertical position of a pressure surface of chosen value p is given by the functional
relation

ξ3 = z = η(x, y, p, t) = η(x, y, p, t). (63.8)

We make use of the η nomenclature where it seems useful but gradually sprinkle in more use of
the z(x, y, σ, t) notation since it is proves to be natural for many of the formulations.

63.2 Example generalized vertical coordinates
Before further diving into the mathematics, we here offer some examples of generalized vertical
coordinates commonly used to study geophysical fluid flows.

63.2.1 Pressure coordinates
Hydrostatic compressible fluids, such as the large-scale atmosphere, pressure is a convenient
choice as vertical since it absorbs the appearance of density in many formula such as mass

1We use the term overloaded as in computer science where a symbol has more than one meaning or usage.
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continuity as discussed in Section 64.9.2 and the geostrophic balance given by equation (31.1a).
Hence, a natural expression of the compressible hydrostatic equations of motion make use of
pressure rather than geopotential for the vertical coordinate, in which case σ = p(x, y, z, t).

63.2.2 Terrain following coordinates

When allowing for a time dependent ocean free surface, the terrain following coordinate in
oceanography is given by

σ =
z − ηsurf
−ηb + ηsurf

terrain following ocean coordinate, (63.9)

where z = ηsurf(x, y, t) is the vertical position of the ocean surface. The terrain following
coordinate is non-dimensional and extends from σ = 0 at the ocean surface and σ = −1 at
the ocean bottom (where z = ηb(x, y)). For rigid lid ocean models with ηsurf = 0, the terrain
following coordinate becomes time independent

σ = − z
ηb

terrain following rigid lid ocean. (63.10)

Finally, for a compressible ocean, it is more convenient to use pressure to define the terrain
following coordinate so that

σ =
p− pa
pb − pa

terrain following atmosphere coordinate. (63.11)

In this equation, pa is the pressure applied at the ocean surface and pb is the pressure at the
ocean bottom. For an atmosphere model we might set pa as the top of the atmosphere pressure,
which is typically assumed to be zero as in Phillips (1957).

63.2.3 Bottom slope oriented coordinates

Peterson and Callies (2022) consider an alternative to the traditional terrain following coordinates
from Section 63.2.2, here defining a bottom slope oriented coordinate (recall ηb = ηb(x, y))

σ = z − x · ∇ηb = z − x ∂ηb/∂x− y ∂ηb/∂y, (63.12)

with ∇ηb the slope of the bottom topography.

63.2.4 Isopycnal or buoyancy coordinates

Buoyancy surfaces are material when there is no mixing. Hence, for the study of perfect fluid
mechanics it is quite convenient to use the Archimedian buoyancy, b, as the vertical coordinate,
σ = b(x, y, z, t). Equivalently, one may choose the potential density as the vertical coordinate.
We have more to say about such vertical coordinates in Chapter 66 when developing the equations
for isopycnal ocean models.

63.3 Spatial basis vectors
Making use of the tensor formalism from Chapter 4, consider the transformation of the Cartesian
basis vectors into their corresponding GVC representation. This transformation takes is given by

ea = Λaa ea, (63.13)
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where the transformation matrix is

Λaa =

 ∂x/∂x ∂x/∂y ∂x/∂σ
∂y/∂x ∂y/∂y ∂y/∂σ
∂z/∂x ∂z/∂y ∂z/∂σ

 =

 1 0 0
0 1 0

∂η/∂x ∂η/∂y ∂η/∂σ

 , (63.14)

where the second equality used our preferred notation z = η(x, y, σ, t) for the vertical position of
a σ surface. The diagonal unit values for the space-space components arise since a horizontal
position in Cartesian and GVCs is the same and the horizontal directions are orthogonal. Likewise,
the time coordinate does not change when changing x, y, or σ. Additionally, ∂x/∂σ = ∂y/∂σ = 0
since the horizontal position remains unchanged when moving across a GVC surface. In contrast,
a non-zero value for ∂η/∂x and ∂η/∂y arise since we generally change vertical position when
moving horizontally along a sloped σ surface. Finally, the element ∂η/∂σ is nonzero due to
vertical stratification of the fluid when represented using general vertical coordinates.

63.3.1 More on the transformation matrix

To further detail how to produce elements of the transformation matrix (63.14), it is crucial to
ensure that the proper variables are held fixed when performing the partial derivatives. For
example, consider the top row where we compute

Λ1
a =

[
[∂x/∂x]y,σ [∂x/∂y]x,σ [∂x/∂σ]x,y

]
(63.15)

Since x = x, all elements vanish except for the first. Namely, [∂x/∂y]x,σ = 0 since x cannot
change when x is fixed. The same idea leads to the results for y derivatives.

63.3.2 Expressions for the basis vectors

Use of the transformation matrix (63.14) renders the spatial components of the GVC basis
vectors

e1 = x̂+ ẑ (∂η/∂x) (63.16a)

e2 = ŷ + ẑ (∂η/∂y) (63.16b)

e3 = ẑ (∂η/∂σ). (63.16c)

The basis vectors e1 and e2 have a vertical component due to sloping GVC surfaces. These
basis vectors lie within the tangent plane of the GVC surface. The basis vector e3 is purely
vertical and has a non-unit magnitude due to the inverse vertical stratification, ∂η/∂σ. The left
panel of Figure 63.2 illustrates the basis vectors.

As an example, consider the rigid lid terrain following vertical coordinate (63.10), where
σ = −z/ηb. In this case, the vertical position of a generalized vertical surface is given by
η = −σ ηb so that the basis vectors are

e1 = x̂− ẑ σ (∂ηb/∂x) and e2 = ŷ − ẑ σ (∂ηb/∂y) and e3 = −ẑ ηb. (63.17)

Similarly, the bottom slope oriented coordinate (63.12), with σ = z−x·∇ηb so that η = σ+x·∇ηb,
has the corresponding basis vectors

e1 = x̂+ ẑ (∂ηb/∂x) and e2 = ŷ + ẑ (∂ηb/∂y) and e3 = ẑ. (63.18)
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e3

Figure 63.2: Illustrating the basis vectors (left panel) and basis one-forms (right panel) for generalized vertical
coordinates. The e3 basis vector is vertical whereas e1 and e2 lie within the tangent plane to the σ surface.

As a complement, the basis one-form e3 is normal to the σ surface whereas the basis one-forms e1 and e2 are
horizontal.

63.4 Basis one-forms
The basis one-forms are obtained by transforming from Cartesian into GVCs through use of the
inverse transformation

ea = Λaa e
a, (63.19)

where the inverse transformation matrix takes the form

Λaa =

 ∂x/∂x ∂x/∂y ∂x/∂z
∂y/∂x ∂y/∂y ∂y/∂z
∂σ/∂x ∂σ/∂y ∂σ/∂z

 =

 1 0 0
0 1 0

∂σ/∂x ∂σ/∂y ∂σ/∂z

 . (63.20)

As for the transformation matrix (63.14), the unit diagonal values arise since a horizontal position
in Cartesian and GVCs is the same and the horizontal directions are orthogonal. Likewise,
∂x/∂z = ∂y/∂z = 0 since the horizontal position on a GVC surface remains unchanged when
moving across a depth surface. The nonzero values for ∂σ/∂x, ∂σ/∂y, and ∂σ/∂z, arise in the
presence of horizontal and vertical stratification of the generalized vertical coordinate.

63.4.1 More on the inverse transformation matrix
When computing elements of the inverse transformation matrix (63.20), it is crucial to ensure
that the proper variables are held fixed. For example, consider the top row where we compute

Λ1
a =

[
[∂x/∂x]y,z [∂x/∂y]x,z [∂x/∂z]x,y

]
. (63.21)

Just as for the transformation matrix (63.15), since x = x, all but the first element vanish in
equation (63.21). Namely, [∂x/∂y]x,z = 0 since the x cannot change when x is fixed. The same
idea holds for the y row.

63.4.2 GVC basis one-forms
Use of the inverse transformation matrix (63.20) renders the spatial components of the GVC
basis one-forms

e1 = x̂ (63.22a)

e2 = ŷ (63.22b)

e3 = ea ∂aσ = x̂ (∂σ/∂x) + ŷ (∂σ/∂y) + ẑ (∂σ/∂z) = ∇σ. (63.22c)

The left panel of Figure 63.2 illustrates the basis one-forms.
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As an example, consider again the rigid lid terrain following coordinate (63.10), σ = −z/ηb,
in which case

e3 = ∇σ = −(1/ηb) [ẑ − (z/ηb)∇ηb]. (63.23)

Similarly, the bottom slope oriented coordinate (63.12), with σ = z − x · ∇ηb, has

e3 = ẑ −∇ηb − x̂ (x · ∂x∇ηb)− ŷ (x · ∂y∇ηb) = ẑ −∇ηb − (x · ∇)∇ηb. (63.24)

In the case where the bottom slope is constant in both directions then this result simplifies to

e3 = ẑ −∇ηb. (63.25)

63.4.3 Verifying the bi-orthogonality relation

The basis one-forms satisfy the bi-orthogonality relation (4.25) with the basis vectors

ea · eb = δa
b
. (63.26)

This identity is trivial to verify for all a = 1, 2, 3.

63.5 Triple product identities

We find various occasions to make use of a suite of triple product identities that hold for GVCs.
For this purpose we write σ as a composite function as in Section 4.9.3

σ = σ(x, y, z, t) = σ[x, y, z(t, x, y, σ), t], (63.27)

with η(x, y, σ, t) written as z(x, y, σ, t) as it here eases the manipulations. Use of the chain rule
leads to the space-time differential increment

dσ = dt

[
∂σ

∂t

]
x,y,z

+ dx

[
∂σ

∂x

]
t,y,z

+ dy

[
∂σ

∂y

]
t,x,z

+ dz

[
∂σ

∂z

]
t,x,y

. (63.28)

Likewise, writing z = z[t, x, y, σ] leads to the space-time differential increment dz

dz = dt

[
∂z

∂t

]
x,y,σ

+ dx

[
∂z

∂x

]
t,y,σ

+ dy

[
∂z

∂y

]
t,x,σ

+ dσ

[
∂z

∂σ

]
t,x,y

. (63.29)

We note the identities[
∂σ

∂z

]
t,x,y

[
∂z

∂σ

]
t,x,y

= 1 dt = dt dx = dx dy = dy, (63.30)

which follow since t = t, x = x, and y = y. Substituting equation (63.29) into equation (63.28)
and making use of the identities (63.30) yields

0 = dt

[[
∂σ

∂t

]
x,y,z

+

[
∂σ

∂z

]
t,x,y

[
∂z

∂t

]
x,y,σ

]

+ dx

[[
∂σ

∂x

]
t,y,z

+

[
∂σ

∂z

]
t,x,y

[
∂z

∂x

]
t,y,σ

]
+ dy

[[
∂σ

∂y

]
t,x,z

+

[
∂σ

∂z

]
t,x,y

[
∂z

∂y

]
t,x,σ

]
. (63.31)
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For this equation to hold with general increments dt, dx, and dy requires that each bracketed
term vanish, which in turn leads to the following set of triple product identities2[

∂σ

∂z

]
t,x,y

[
∂z

∂t

]
x,y,σ

= −
[
∂σ

∂t

]
x,y,z

(63.32a)[
∂σ

∂z

]
t,x,y

[
∂z

∂x

]
t,y,σ

= −
[
∂σ

∂x

]
t,y,z

(63.32b)[
∂σ

∂z

]
t,x,y

[
∂z

∂y

]
t,x,σ

= −
[
∂σ

∂y

]
t,x,z

. (63.32c)

If the vertical stratification, ∂σ/∂z, is non-zero, the triple product identities are equivalent to[
∂z

∂t

]
x,y,σ

= − [∂σ/∂t]x,y,z
[∂σ/∂z]t,x,y

= −
[
∂σ

∂t

]
x,y,z

[
∂z

∂σ

]
t,x,y

(63.33a)[
∂z

∂x

]
t,y,σ

= − [∂σ/∂x]t,y,z
[∂σ/∂z]t,x,y

= −
[
∂σ

∂x

]
t,y,z

[
∂z

∂σ

]
t,x,y

(63.33b)[
∂z

∂y

]
t,x,σ

= − [∂σ/∂y]t,x,z
[∂σ/∂z]t,x,y

= −
[
∂σ

∂y

]
t,x,z

[
∂z

∂σ

]
t,x,y

. (63.33c)

Since t = t, x = x, and y = y we can write these identities in the more succinct form[
∂z

∂t

]
σ

=

[
∂η

∂t

]
σ

= − [∂σ/∂t]z
[∂σ/∂z]

(63.34a)[
∂z

∂x

]
σ

=

[
∂η

∂x

]
σ

= − [∂σ/∂x]z
[∂σ/∂z]

(63.34b)[
∂z

∂y

]
σ

=

[
∂η

∂y

]
σ

= − [∂σ/∂y]z
[∂σ/∂z]

, (63.34c)

where we reintroduced the notation η(x, y, σ, t) = z(x, y, σ, t). These identities are quite useful
for manipulating equations involving GVCs. In particular, equations (63.34b) and (63.34c)
provide alternate expressions for the slope of σ isosurfaces relative to the horizontal plane (see
Section 63.12).

63.6 Position vector

We are familiar with locating a point in space using Cartesian coordinates as in Figure 1.1. What
about specifying the position using GVCs? We can do so by making use of the basis vectors
(63.16a)-(63.16c) so that the position of an arbitrary point in space is given by

P = ξa ea (63.35a)

= x [x̂+ (∂η/∂x) ẑ] + y [ŷ + (∂η/∂y) ẑ] + σ (∂η/∂σ) ẑ (63.35b)

= x̂x+ ŷ y + ẑ [x (∂η/∂x) + y (∂η/∂y) + σ (∂η/∂σ)] (63.35c)

= x̂x+ ŷ y + ẑ ξa ∂aη. (63.35d)

We identify the following properties as a means to help understand these expressions, with
Figure 63.3 offering a schematic.

2These identities are directly analogous to the Maxwell relations from thermodynamics, with an introduction
in Section 22.8 and full details in the book by Callen (1985).
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z
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⃗e 3

⃗e 1

σ

x

x (∂η/∂x) + σ (∂η/∂σ)

z = η(x, y, σ, t )

Figure 63.3: The position of a point in space as represented using GVCs following equation (63.36a). For this
example, y = 0 so that the horizontal position is determined by the coordinate x = x, whereas the vertical postion
is determined by x (∂z/∂x) + σ (∂z/∂σ) = x (∂η/∂x) + σ (∂η/∂σ).

• The expression (63.35b) has horizontal positions x and y multiplying the basis vectors ex
and ey, with these vectors oriented parallel to a surface of constant GVC as in Figure 63.3.
Likewise, the third term, σ (∂η/∂σ) ẑ, positions the point vertically according to the value
of the GVC and its inverse stratification.

• Consider the case of y = 0 so that

P = x x̂+ ẑ [x (∂η/∂x) + σ (∂η/∂σ)] (63.36a)

= x x̂+ ẑ (∂η/∂σ) [x (∂σ/∂z)x(∂η/∂x)σ + σ] (63.36b)

= x x̂+ ẑ (∂η/∂σ) [−x (∂σ/∂x)z + σ], (63.36c)

where we used the triple product identity (63.34b) for the final equality. Consequently, a
horizontal position vector is realized using GVC coordinates with σ = x (∂σ/∂x). That is,
a horizontal position vector crosses surfaces of constant GVC when the GVC surface has a
nonzero horizontal slope.

• The projection of the position vector onto the basis one-forms leads to

P · eb = ξa ea · eb = ξb. (63.37)

This result follows from the orthogonality relation (4.25). So the projection of the position
vector onto a basis one-form picks out the corresponding coordinate value.

• Equation (63.7) provides the spatial dependence for the vertical position of the surface of
constant GVC

z = z(ξa) = η(ξa). (63.38)

At any particular time instance we can perform a Taylor series about a reference geopotential
z0 = η0, so that

η(ξa) ≈ η0 + ξa ∂aη. (63.39)

We can thus write the position (63.35d) in the form

P = x̂x+ ŷ y + ẑ [η − η0]. (63.40)

Taking the reference geopotential as η0 = 0 recovers the Cartesian expression. Since the
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position vector is a geometric object, it is reassuring that the GVC representation is the
same as the Cartesian representation; it is merely a reorganization of the basis vectors and
corresponding coordinates.

63.7 Transforming components of a vector

Consider a vector field F⃗ with Cartesian representation

F⃗ = F = F a ea = F x x̂+ F y ŷ + F z ẑ. (63.41)

The corresponding GVC components are related through the transformation matrix

F a = Λaa F
a. (63.42)

Making use of the transformation matrix (63.20) yields the relations between GVC components
and Cartesian components

F 1 = F 1 and F 2 = F 2 and F 3 = ∇σ · F , (63.43)

where we wrote
∇σ · F = (∂σ/∂x)F 1 + (∂σ/∂y)F 2 + (∂σ/∂z)F 3. (63.44)

The vector field thus can be represented in GVC coordinates as

F⃗ = F a ea = F 1 e1 + F 2 e2 + (∇σ · F ) e3. (63.45)

Similarly, the covariant components transform as Fa = Λaa Fa, where use of the inverse transfor-
mation matrix (63.20) renders

F1 = F1 + (∂z/∂x)F3 = F1 + (∂η/∂x)F3 (63.46a)

F2 = F2 + (∂z/∂y)F3 = F2 + (∂η/∂y)F3 (63.46b)

F3 = (∂z/∂σ)F3 = (∂η/∂σ)F3, (63.46c)

and the expression for the vector field

F⃗ = Fa e
a = [F1 + (∂η/∂x)F3] e

1 + [F2 + (∂η/∂y)F3] e
2 + (∂η/∂σ)F3 e

3. (63.47)

Recall also that for Cartesian coordinates the contravarient and covariant components to a
vector are identical: F a = Fa.

63.8 Velocity
As an example of the results from Section 63.7, we here represent the velocity vector, considering
both covariant and contravariant representations. As for the position vector detailed in Section
63.6, we are assured that both representations lead to the same velocity vector since the velocity
is an objective geometric object (i.e., an arrow with a magnitude). In Section 63.8.4 we verify that
the transformation formalism indeed respects this equivalance, with the GVC representations
equivalent to the Cartesian representation

v⃗ = u x̂+ v ŷ + w ẑ. (63.48)
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63.8.1 Contravariant components

Following Section 63.7, we have the contravariant velocity components

v1 = u and v2 = v and v3 = v · ∇σ. (63.49)

Use of the basis vectors (63.16a)-(63.16c) then leads to

v⃗ = va ea (63.50a)

= u ex + v ey + (v · ∇σ) eσ (63.50b)

= u [x̂+ (∂η/∂x) ẑ] + v [ŷ + (∂η/∂y) ẑ] + (v · ∇σ) (∂η/∂σ) ẑ. (63.50c)

63.8.2 Covariant components

The covariant velocity components are given by

v1 = u+ (∂η/∂x)w and v2 = v + (∂η/∂y)w and v3 = (∂η/∂σ)w. (63.51)

The one-form basis (63.22a)–(63.22c) thus leads to the velocity vector

v⃗ = va ẽ
a = [u+ (∂η/∂x)w] x̂+ [v + (∂η/∂y)w] ŷ + w (∂η/∂σ)∇σ. (63.52)

63.8.3 Introducing the material time derivative

The material evolution for the generalized vertical coordinate can be written

Dσ

Dt
=
∂σ

∂t
+ v · ∇σ = σ̇, (63.53)

with σ̇ symbolizing any process contributing to motion across σ isosurfaces (as fully explained in
Section 64.3). Using the expression (63.53) in the velocity vector expression (63.50c) leads to

v⃗ = u [x̂+ (∂η/∂x) ẑ] + v [ŷ + (∂η/∂y) ẑ] + (v · ∇σ) (∂η/∂σ) ẑ. (63.54a)

= u [x̂+ (∂η/∂x) ẑ] + v [ŷ + (∂η/∂y) ẑ] + (σ̇ − ∂σ/∂t) (∂η/∂σ) ẑ (63.54b)

= u x̂+ v ŷ + [∂η/∂t+ u · ∇hσz + (∂η/∂σ)σ̇] ẑ, (63.54c)

where the final equality made use of the triple product (63.33a): (∂σ/∂t) (∂η/∂σ) = −∂η/∂t. In
the steady state and in the absence of material changes to σ, the three dimensional flow lies
within a surface of constant σ, whereby v · ∇σ = 0 and

v⃗ = u [x̂+ (∂η/∂x) ẑ] + v [ŷ + (∂η/∂y) ẑ] if ∂tσ = 0 and σ̇ = 0. (63.55)

However, in general there are transient fluctuations and material changes to σ so that v ·∇σ ≠ 0.

63.8.4 Equivalence to the Cartesian velocity representation

Use of the triple product identities (63.34b)-(63.34c) allows us to manipulate both expressions
(63.50c) and (63.52) to recover the Cartesian expression

v⃗ = u x̂+ v ŷ + w ẑ. (63.56)
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Another way to see this identity is to note that in equation (63.54c), the vertical component is
an expression for the material time derivative of the vertical position

w =
Dz

Dt
=
∂η

∂t
+ u · ∇hση +

∂η

∂σ
σ̇. (63.57)

We derive this identity in Section 64.4 where we discuss further kinematic results using GVCs.

63.9 Metric tensor

Recall from Section 4.1 that we make use of a metric tensor to measure the distance between
two points in space. The GVC representation of the metric tensor is given by

gab = ea · eb =

 1 + (∂z/∂x)2 (∂z/∂x) (∂z/∂y) (∂z/∂x) (∂z/∂σ)
(∂z/∂x) (∂z/∂y) 1 + (∂z/∂y)2 (∂z/∂y) (∂z/∂σ)
(∂z/∂x) (∂z/∂σ) (∂z/∂y) (∂z/∂σ) (∂z/∂σ)2

 , (63.58)

with the triple product identities (63.34b) and (63.34c) bringing the metric into the form

gab =

 1 + [(∂σ/∂x) (∂z/∂σ)]2 (∂σ/∂x) (∂σ/∂y) (∂z/∂σ)2 −(∂σ/∂x) (∂z/∂σ)2
(∂σ/∂x) (∂σ/∂y) (∂z/∂σ)2 1 + [(∂σ/∂y) (∂z/∂σ)]2 −(∂σ/∂y) (∂z/∂σ)2
−(∂σ/∂x) (∂z/∂σ)2 −(∂σ/∂y) (∂z/∂σ)2 (∂z/∂σ)2

 .
(63.59)

The representation of the inverse metric tensor is given by the somewhat simpler expression

gab = ea · eb =

 1 0 ∂σ/∂x
0 1 ∂σ/∂y

∂σ/∂x ∂σ/∂y |∇σ|2

 . (63.60)

Proof that gab gbc = δac requires use of the triple product identities (63.34b) and (63.34c). Note
that an additional means to derive the metric tensor (63.58) is given by writing the squared line
element as3

ds2 = dx2 + dy2 + dz2 (63.61a)

= dx2 + dy2 + [(∂z/∂x) dx+ (∂z/∂y) dy + (∂z/∂σ) dσ]2, (63.61b)

from which the metric tensor (63.58) is revealed upon expanding the quadratic term and then
rearranging.

63.9.1 Jacobian of transformation

The determinant of the GVC representation of the metric tensor (63.58) is

det(gab) = (∂z/∂σ)2 = (∂η/∂σ)2 (63.62)

so that the Jacobian of transformation (Section 4.5) is the specific thickness

∂(x, y, z)

∂(x, y, σ)
=
∂z

∂σ
=
∂η

∂σ
. (63.63)

3The traditional notation in physics writes the squared line element as ds2 = (ds)2. Likewise, dx2 = (dx)2,
etc.
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The coordinate transformation from Cartesian to generalized vertical is invertible only so long as
the Jabobian remains nonzero and single-signed, meaning the fluid retains a monotonic vertical
stratification of GVC surfaces. The invertible relation between z and σ means that each point
in the vertical can be uniquely specified by either of the two vertical coordinates, z or σ. For
example, the Jacobian for pressure as the generalized vertical coordinate in a hydrostatic fluid is
given by4

∂z

∂σ
=
∂z

∂p
= − 1

ρg
, (63.64)

which is indeed single-signed since the mass density is always positive.

63.9.2 Covariant and contravariant representations

The metric tensor allows us to convert between the covariant and contravariant representations
of a vector via the identity (Section 4.2.3)

Fa = gab F
b. (63.65)

We use triple product identities (63.34b)-(63.34c) to verify that this relation agrees with the
transformation matrix approach detailed in Section 63.7. For example,

F1 = g1b F
b (63.66a)

= [1 + (∂η/∂x)2]F 1 + (∂η/∂x) (∂η/∂y)F 2 + (∂η/∂x) (∂η/∂σ)F σ (63.66b)

= [1 + (∂η/∂x)2]F 1 + (∂η/∂x) (∂η/∂y)F 2 + (∂η/∂x) (∂η/∂σ)∇σ · F (63.66c)

= F 1 + (∂η/∂x)F 3 (63.66d)

= F1 + (∂η/∂x)F3, (63.66e)

where the final equality holds since F 1 = F1 and F 3 = F3 for Cartesian tensor components.

63.10 Volume element and the Levi-Civita tensor

The square root of the determinant of the metric tensor (63.58) is√
det(gab) = ∂z/∂σ = ∂η/∂σ (63.67)

so that the volume element (Section 4.5) is

dV = (∂z/∂σ) dx dy dσ. (63.68)

The covariant Levi-Civita tensor (Section 4.7) has the GVC representations

εabc = (∂z/∂σ) ϵabc εabc = (∂z/∂σ)−1 ϵabc (63.69)

where ϵ is the permutation symbol introduced in Section 1.7.1 with its components independent
of coordinate representation.

4We derive the hydrostatic balance in Section 27.2.
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63.11 Vector cross product of basis vectors
We now verify the relation (4.87) for the cross product of two basis vectors using GVCs

ea × eb = εabc e
c =⇒ ea × eb = (∂z/∂σ)ϵabc e

c. (63.70)

Making use of the basis vectors from Section 63.3 and the basis one-forms from Section 63.4
renders

ex × ey = ẑ − x̂ (∂η/∂x)− ŷ (∂η/∂y) = (∂z/∂σ)∇σ = εxyσ e
σ (63.71a)

ey × eσ = x̂ (∂z/∂σ) = εyσx e
x (63.71b)

eσ × ex = ŷ (∂z/∂σ) = εσxy e
y. (63.71c)

63.12 Partial derivative operators
We here consider the partial derivative operators and their transformation between coordinate
systems. These identities are used throughout GVC calculus. Given the importance of these
expressions, we offer two derivations. Notably, the geometric derivation in Section 63.12.2
requires minimal use of the previous tensor formalism.

63.12.1 Analytical derivation
The partial derivative operators in GVCs are computed via ∂a = Λaa ∂a. Including also the time
component leads to the relations

∂t = ∂t + (∂z/∂t) ∂z = ∂t + (∂η/∂t) ∂z (63.72a)

∂x = ∂x + (∂z/∂x) ∂z = ∂x + (∂η/∂x) ∂z (63.72b)

∂y = ∂y + (∂z/∂y) ∂z = ∂y + (∂η/∂y) ∂z (63.72c)

∂σ = (∂z/∂σ) ∂z = (∂η/∂σ) ∂z. (63.72d)

We can make use of the triple product identities (63.34b) and (63.34c) to express the slope of a
constant GVC surface in the equivalent manners

S = ∇hση = ∇hσz = −(∂σ/∂z)−1∇hσ (63.73)

where we introduced the standard shorthand notation

∇hσ = x̂ ∂/∂x+ ŷ ∂/∂y and ∇h = x̂ ∂/∂x+ ŷ ∂/∂y. (63.74)

It is common to transform between the horizontal gradient operators, in which case we write

∇hσ = ∇h + (∇hσz) ∂z ≡ ∇h + S ∂z. (63.75)

We emphasize that ∇hσ is merely a shorthand for the two partial derivative operators and that it
only has components in the horizontal directions. Furthermore, the σ subscript is not a tensor
index.

63.12.2 Geometrical derivation
We provide a geometric derivation for the lateral derivative operator that complements the
previous analytical derivation. This operator is computed by taking the difference of a function
along surfaces of constant generalized vertical coordinate, but with the lateral distance computed
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in the horizontal direction as show in Figure 63.4. This feature of the horizontal derivative
operator is a key aspect of the GVCs’ non-orthogonality.

z

x
A

B

C

σ

ϑ
[ ∂ψ

∂x ]
σ

≈
ψ(B) − ψ(A)
x(C) − x(A)

Figure 63.4: A surface of constant generalized vertical coordinate, σ, along with a local tangent plane with a
slope tanϑ with respect to the horizontal plane. This figure illustrates the identities (63.77a)-(63.77d), with these
identities relating a lateral derivative taken along the GVC surface to horizontal and vertical derivatives taken
along orthogonal Cartesian axes.

Consider the geometry shown in Figure 63.4, which shows a generalized vertical coordinate
surface (constant σ surface) along with a sample tangent plane with a slope

Sx =
rise

run
= tanϑ =

z(B)− z(C)
x(C)− x(A) ≈

[
∂z

∂x

]
σ

= −(∂σ/∂x)z
(∂σ/∂z)

(63.76)

relative to the horizontal. We readily verify the following identities based on finite difference
operations for an arbitrary function[

∂ψ

∂x

]
σ

≈ ψ(B)− ψ(A)
x(C)− x(A) (63.77a)

=
ψ(C)− ψ(A)
x(C)− x(A) +

ψ(B)− ψ(C)
x(C)− x(A) (63.77b)

=
ψ(C)− ψ(A)
x(C)− x(A) +

[
z(B)− z(C)
x(C)− x(A)

]
ψ(B)− ψ(C)
z(B)− z(C) (63.77c)

=

[
∂ψ

∂x

]
z

+ Sx
[
∂ψ

∂z

]
x

. (63.77d)

Taking the continuum limit then leads to the relations between horizontal derivatives computed
on constant σ surfaces to those computed on constant z surfaces[

∂

∂x

]
σ

=

[
∂

∂x

]
z

+

[
∂z

∂x

]
σ

∂

∂z
=

[
∂

∂x

]
z

+

[
∂η

∂x

]
σ

∂

∂z
(63.78a)[

∂

∂y

]
σ

=

[
∂

∂y

]
z

+

[
∂z

∂y

]
σ

∂

∂z
=

[
∂

∂y

]
z

+

[
∂η

∂y

]
σ

∂

∂z
, (63.78b)

which can be written in the shorthand vector notation

∇hσ = x̂

[
∂

∂x

]
σ

+ ŷ

[
∂

∂y

]
σ

= ∇h + (∇hσz) ∂z = ∇h + (∇hση) ∂z. (63.79)

63.12.3 The gradient as a tensor operator
The gradient is given by the equivalent expressions

∇ = ea ∂a = e
a ∂a. (63.80)

The gradient has the following Cartesian coordinate expression

∇ = x̂ ∂x + ŷ ∂y + ẑ ∂z, (63.81)
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and the equivalent generalized vertical coordinate expression

∇ = x̂ ∂x + ŷ ∂y + (∇σ) ∂σ. (63.82)

As a check on the equality between equations (63.81) and (63.82), make use of equations (63.72b)-
(63.72d) for the partial derivatives and equations (63.22a)-(63.22c) for the one-form basis so
that

x̂ ∂x + ŷ ∂y + (∇σ) ∂σ = x̂ [∂x + (∂xz) ∂z] + ŷ [∂y + (∂yz) ∂z] + (∇σ) (∂z/∂σ) ∂z. (63.83)

Next use the triple product identities (63.34b) and (63.34c) to have

∂xz + (∂σ/∂x) (∂z/∂σ) = 0 (63.84a)

∂yz + (∂σ/∂y) (∂z/∂σ) = 0, (63.84b)

in which case

x̂ [∂x + (∂xz) ∂z] + ŷ [∂y + (∂yz) ∂z] + (∇σ) (∂z/∂σ) ∂z = x̂ ∂x + ŷ ∂y + ẑ ∂z. (63.85)

63.13 Material time derivative

Making use of the relations for the partial derivative operators in Section 63.12 allows us to
write the material time derivative in the following equivalent forms

D

Dt
=

[
∂

∂t

]
z

+ u · ∇h + w
∂

∂z
(63.86a)

=

[
∂

∂t

]
σ

− (∂η/∂t) ∂z + u · [∇hσ − (∇hση) ∂z] + w ∂/∂z (63.86b)

=

[
∂

∂t

]
σ

+ u · ∇hσ +
[
w − u · ∇hση − ∂η/∂t

]
(∂σ/∂z) ∂/∂σ (63.86c)

=

[
∂

∂t

]
σ

+ u · ∇hσ +
Dσ

Dt

∂

∂σ
(63.86d)

=

[
∂

∂t

]
σ

+ u · ∇hσ +
∂z

∂σ

Dσ

Dt

∂

∂z
. (63.86e)

The equality (63.86d) made use of the identity (63.57), which is itself derived in Section 64.4 where
we discuss further kinematic results using GVCs. Besides differences in the spatial operators, it
is important to note that the time derivative operators are computed on constant geopotential
and constant GVC surfaces, respectively. However, the horizontal velocity component is the
same for both forms of the material time derivative

(u, v) =
D(x, y)

Dt
. (63.87)

63.14 Divergence of a vector and the divergence theorem

Making use of the general expression (4.15) for the covariant divergence of a vector renders the
GVC expression

∇a F a = [det(gab)]
−1/2 ∂a

[
[det(gab)]

1/2 F a
]
= (∂z/∂σ)−1∂a [(∂z/∂σ)F

a]. (63.88)
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Recall that the GVC vector components, F a, are related to the Cartesian components in equation
(63.43), and the GVC components of the partial derivative operator, ∂a, are related to the
Cartesian operator in equation (63.74).

When making use of the divergence theorem (Section 4.19), we require the product of the
volume element and the covariant divergence. For GVCs this product takes on the form

(∇a F a) dV = ∂a [(∂z/∂σ)F
a] dx dy dσ, (63.89)

which reduces to a boundary integral when integrating over a volume.

63.15 The diffusion operator

As an explicit example of the covariant divergence operator (63.88), we here consider the diffusion
operator discussed in Chapter 69. The derivation here recovers much of what we just discussed
in Section 63.14, yet we make use of a bit less tensor formalism though at the cost of more
algebra.

63.15.1 Continuous expression

The diffusion operator is the convergence of the diffusive flux

R = −∇ · J, (63.90)

where J is the tracer flux vector. Let us convert the pieces of this operator from Cartesian
coordinates into generalized vertical coordinate, making use of the transformation of partial
derivative operators given in Section 63.12. Also, we make use of the shorthand z(x, y, σ, t)
rather than η(x, y, σ, t)

−R = ∇ · J (63.91a)

= ∇h · J h + ∂zJ
z (63.91b)

= (∇hσ −∇hσz ∂z) · J h + (σz) ∂σJ
z (63.91c)

= σz [zσ∇hσ · J h + (ẑ ∂σ −∇hσz ∂σ) · J ] (63.91d)

= σz [∇hσ · (zσ J h)− J h · ∇hσ (zσ) + ∂σJ
z − ∂σ (∇hσz · J) + J · ∂σ (∇hσz)] (63.91e)

= σz [∇hσ · (zσ J h) + ∂σJ
z − ∂σ (∇hσz · J h)] (63.91f)

= σz (∇hσ · (∂σz J h) + ∂σ [(ẑ −∇hσz) · J ]) (63.91g)

= σz [∇hσ · (zσ J h) + ∂σ (zσ∇σ · J)] , (63.91h)

where we used
zσ∇σ = ẑ −∇hσz (63.92)

to reach the final equality, and made use of the shorthand

zσ = ∂z/∂σ and σz = ∂σ/∂z = (zσ)
−1. (63.93)

The coordinate transformations in Section 63.7 for vector components reveal that the
expression (63.91h) is identical to equation (63.88) derived using formal tensor methods. Likewise,
multiplying by the volume element

dV = dx dy dz = dx dy zσ dσ, (63.94)
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leads to
−R dV = [∇hσ · (zσ J h) + ∂σ (zσ∇σ · J)] dx dy dσ, (63.95)

which is identical to the expression (63.89).

63.15.2 Layer thickness weighted diffusion operator

Consider a prescribed increment, δσ, separating two σ isosurfaces. This increment commutes
with the horizontal operator ∇hσ, acting within the layer. We can thus formally consider the
following layer-integrated or thickness weighted form of the diffusion operator

−R δV = [∇hσ · (δσ zσ J h) + δσ ∂σ (zσ∇σ · J)] δx δy (63.96a)

=
1

δz
[∇hσ · (δσ zσ J h) + δσ ∂σ (zσ∇σ · J)] δx δy δz (63.96b)

=
1

h
[∇hσ · (hJ h) + ∆σ(zσ∇σ · J)] δx δy h, (63.96c)

where we introduced the infinitesimal layer thickness

h = zσ δσ (63.97)

and the non-dimensional differential operator

∆σ ≡ δσ
∂

∂σ
. (63.98)

Cancelling the volume element on both sides leads to the diffusion operator

R = −1

h
[∇hσ · (hJ h) + ∆σ(zσ∇σ · J)] . (63.99)

This form is commonly found in the numerical modeling literature when considering generalized
vertical coordinate models.

We make the following comments concerning the diffusion operator in equation (63.99).

• Our introduction of the layer thickness h = zσ δσ is treated a bit more formally in Sections
64.9 and 64.10 by considering a vertical integral over a coordinate layer. Even so, the
resulting diffusion operator is the same as that derived here.

• The thickness weighted flux, hJ h, is oriented within the horizontal plane. However, its
contribution to the diffusion operator is computed by taking its convergence using the
operator ∇hσ rather than the horizontal operator ∇h. This distinction is fundamental to how
operators, such as advection and diffusion, appear using generalized vertical coordinates.

• The flux zσ∇σ · J is commonly referred to as the dia-surface subgrid scale flux.

• For the special case of a diffusive flux with zero component parallel to ∇σ, the diffusion
operator reduces to

R = −1

h
[∇hσ · (hJ h)] if ∇σ · J = 0. (63.100)

The neutral diffusion operator of Section 71.4.4 is an example of such an operator, with σ
in that case given by the locally referenced potential density.
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63.16 Vorticity

As detailed in Chapter 40, vorticity is the curl of the velocity

ω⃗ = curl(v⃗), (63.101)

where the curl has components (Section 4.18)

curl(v⃗) = ea ε
abc∂bvc = ea ε

abc∂bvc. (63.102)

63.16.1 The components

We identify the contravariant components of the vorticity via

ωa = εabc∂bvc = (∂z/∂σ)−1 ϵabc ∂bvc (63.103)

where we made use of equation (63.69) to introduce the permutation symbol. Expanding the
components leads to

ω1 = (∂σ/∂z) (∂2 v3 − ∂3 v2) (63.104a)

ω2 = (∂σ/∂z) (∂3 v1 − ∂1 v3) (63.104b)

ω3 = ωσ = (∂σ/∂z) (∂1 v2 − ∂2 v1). (63.104c)

63.16.2 Transforming from Cartesian coordinates

The above approach works solely with the GVC coordinates. An alternative approach connects
the GVC vorticity components and the Cartesian vorticity components. For that purpose we
use the transformation matrix via

ωa = Λaa ω
a, (63.105)

where ωa are the Cartesian components

ω = x̂

(
∂w

∂y
− ∂v

∂z

)
+ ŷ

(
∂u

∂z
− ∂w

∂x

)
+ ẑ

(
∂v

∂x
− ∂u

∂y

)
. (63.106)

Making use of the transformation matrix Λaa from equation (63.20) yields (as in Section 63.7)

ωx = ωx =
∂w

∂y
− ∂v

∂z
and ωy = ωy =

∂u

∂z
− ∂w

∂x
and ωσ = ω · ∇σ. (63.107)

Note that for isopycnal coordinates in a Boussinesq fluid, ωσ equals to the potential vorticity
when the vorticity is the absolute vorticity (Section 66.3). That is, the potential vorticity is the
isopycnal component of the absolute vorticity.

63.17 Velocity circulation

The velocity circulation (Section 37.4) is given by the closed oriented path integral of the velocity
projected into the direction of the path

C ≡
‰
∂S
v · dx (63.108)
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where dx is the vector line element along the path and ∂S is the closed path defining the
boundary to a two-dimensional surface S. Stokes’ Theorem from Section 2.6 leads to the identity

C =

‰
∂S
v · dx =

ˆ
S

(∇× v) · n̂dS =

ˆ
S

ω · n̂dS, (63.109)

where n̂ is the outward normal vector orienting the area element dS according to the right-hand
rule applied to the bounding circuit. These results are all written in a generally covariant manner
(Section 3.1) so that they hold for an arbitrary coordinate representation.

As a particular case, consider the circulation around a closed path on a constant σ surface,
in which

n̂ =
∇σ
|∇σ| (63.110)

is the outward normal and

ω · n̂ =
ωσ

|∇σ| (63.111)

where ωσ = ω · ∇σ (equation (63.107)). So long as the vertical stratification remains non-zero
(∂σ/∂z ̸= 0) we can write the area factor in the form

dS

|∇σ| =
dS√

(∂σ/∂x)2 + (∂σ/∂y)2 + (∂σ/∂z)2
(63.112a)

=
dS

|∂σ/∂z|
√
[(∂σ/∂x)/(∂σ/∂z)]2 + [(∂σ/∂y)/(∂σ/∂z)]2 + 1

(63.112b)

=
dS

|∂σ/∂z|
√
1 + tan2 ϑ

(63.112c)

=

∣∣∣∣∂z∂σ
∣∣∣∣ | cosϑ| dS (63.112d)

=

∣∣∣∣∂z∂σ
∣∣∣∣ dA. (63.112e)

The equality (63.112c) introduces the angle, ϑ, between the boundary surface and the horizontal
plane as in Figure 63.4. The squared slope of this surface given by

tan2 ϑ =
∇hσ · ∇hσ
(∂σ/∂z)2

= ∇hσz · ∇hσz. (63.113)

The equality (63.112d) made use of a trigonometric identity, and the equality (63.112e) introduced
the horizontal projection of the area,

dA = | cosϑ| dS. (63.114)

Bringing these results together leads to the expression for circulation around a closed loop on a
constant σ surface

Cσ−surface =

ˆ
S

(ω · ∇σ) |∂z/∂σ| dA. (63.115)
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Chapter 64

KINEMATIC EQUATIONS

In providing a mechanistic description of budgets within the ocean or atmosphere, it is often
useful to measure the material or momentum transfer through a surface. This transport is
termed the dia-surface transport. Our discussion in this chapter unifies ideas developed for
kinematic boundary conditions in Section 19.6 with transport across an arbitrary surface in
the fluid interior. We do so by making use of the generalized vertical coordinates (GVCs) from
Chapter 63. We make use of the dia-surface transport formulation to express the material
time derivative operator using GVCs. This form for the material time derivative allows us to
decompose the vertical velocity into motion relative to a moving GVC surface. In turn, we
are afforded a means to reinterpret the velocity vector and corresponding particle trajectories.
GVC kinematics also provides a means to express the subduction of fluid into the ocean interior
beneath the mixed layer base. We close the chapter with derivations of the GVC version of
mass continuity and the tracer equation. We also introduce the layer integrated version of the
continuity and tracer equations, with the layer integrated equations appropriate for discrete
numerical fluid models.

chapter guide

We introduced mathematical properties of generalized vertical coordinates in Chapter 63,
including the calculus using these non-orthogonal coordinates. It is essential to have a
working knowledge of that material to understand the present chapter. Later in Chapter
65 we detail the dynamical equations using GVCs, with material in that chapter relying
on the kinematics presented here. Following the treatment in Chapter 63, we here use the
symbol σ to denote a generalized vertical coordinate, where σ has functional dependence
σ(x, y, z, t).
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64.1 Example generalized vertical coordinates
We here consider some generalized vertical coordinates that will prove of use for our discussion
in this chapter, with Figure 64.1 illustrating the examples.

z
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z = z(x, y,�, t) = ⌘(x, y,�, t)

Figure 64.1: Example surface upon which a generalized vertical coordinate, σ(x, y, z, t), is constant. The ocean
free surface can be represented mathematically by σ(x, y, z, t) = z − η(x, y, t) = 0; the ocean mixed layer base by
σ(x, y, z, t) = z − ηmld(x, y, t) = 0; and the solid earth bottom σ(x, y, z) = z − ηb(x, y) = 0. Likewise, the vertical
position of an interior generalized vertical coordinate surface can be written z − η(x, y, σ, t) = constant, where
η(x, y, σ, t) is a function of horizontal position and time for the surface defined by a particular σ value.

64.1.1 Ocean free surface

The first surface is the ocean free surface, whose kinematic boundary conditions were derived in
Section 19.6.3. Here, water and tracer penetrate this surface through precipitation, evaporation,
river runoff (when applied as an upper ocean boundary condition), and sea ice melt. Momentum
exchange arises from stresses between the ocean and atmosphere or ice. The ocean free surface
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can be represented mathematically by the identity

σ(x, y, z, t) = z − η(x, y, t) = 0 ocean free surface. (64.1)

This identity holds so long as we assume the surface height η is smooth and contains no overturns
at the scales of interest. That is, we assume breaking surface waves are filtered from the
description.

64.1.2 Solid earth boundary

We may describe the solid Earth lower boundary mathematically by using the time independent
expression

σ(x, y, z) = z +H(x, y) = z − ηb(x, y) = 0 ocean bottom, (64.2)

where we introduce the two common symbols used for the bottom, ηb = −H. We generally
prefer ηb since H is used elsewhere in this book for vertical scale. As detailed in Section 19.6.1,
we typically assume that there is no fluid mass transport through the solid Earth. However, in
the case of geothermal heating, we may consider an exchange of heat between the ocean and the
solid Earth. Momentum exchange through the action of stresses occur between the solid Earth
and ocean fluid.

64.1.3 Ocean mixed layer base

Let
σ = z − ηmld(x, y, t) = 0 (64.3)

represent the vertical position of the ocean mixed layer base. The corresponding normal vector
is given by

n̂(mld) =
∇ (z − ηmld)

|∇ (z − ηmld)| =
∇ (ẑ −∇ηmld)√
1 + |∇ηmld|2

. (64.4)

This example is relevant for the study of ocean ventilation, whereby we are interested in measuring
the transport of fluid that enters the ocean interior across the mixed layer base (see Section
64.7).

64.1.4 Interior generalized vertical coordinate surfaces

Within the ocean interior, transport across surfaces of constant generalized vertical coordinate
σ = σ(x, y, z, t) constitutes the dia-surface transport affecting budgets of mass, tracer, and
momentum within layers bounded by two generalized vertical coordinate surfaces. A canonical
example is provided by isopycnal layers formed by surfaces of constant potential density (or
equivalently constant buoyancy surfaces) as used in isopycnal ocean models as well as theoretical
descriptions of adiabatic ocean dynamics. The vertical position of this surface is written in one
of two equivalent manners

z = z(x, y, σ, t) = η(x, y, σ, t). (64.5)

The first expression exposes the functional dependence of the vertical position of the σ surface at
a horizontal position and time. In Section 63.1 we discussed the potential for confusion between
writing z as a particular vertical position versus a function, thus motivating z = η(x, y, σ, t).
However, by now we should have sufficient experience with generalized vertical coordinates so
that we can well distinguish when z refers to a particular vertical position versus z(x, y, σ, t) as
a coordinate function. For this reason we only infrequently use the nomenclature z = η(x, y, σ, t)
in this chapter.
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64.2 Specific thickness
As mentioned in Section 63.9.1, a surface of constant generalized vertical coordinate can be
successfully used to partition the vertical so long as the transformation between the generalized
vertical coordinate and the geopotential coordinate is invertible. The Jacobian of transformation
is given by

∂z

∂σ
= zσ, (64.6)

which must be single signed for suitable generalized vertical coordinates. This constraint means
that we do not allow the surfaces to overturn, which is the same assumption made about the ocean
surface, z = η(x, y, t), and solid earth bottom, z = ηb(x, y). This restriction places a limitation on
the ability of certain GVC models (e.g., isopycnal models) to describe non-hydrostatic processes,
such as the overturning common in Kelvin-Helmholtz billows and gravitational convection. Note
that for both the solid earth bottom and ocean free surface

∂z

∂σ
= 1 ocean free surface and fluid/solid interface. (64.7)

Furthermore, this relation also holds, trivially, for geopotential coordinates in which σ = z.
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Figure 64.2: Illustrating the thickness between surfaces of constant generalized vertical coordinates, δz =
(∂z/∂σ) δσ. In regions with larger magnitude for the specific thickness, ∂z/∂σ, or equivalently smaller vertical
stratification of the σ surfaces, ∂σ/∂z, the layer thicknesses are further apart. The converse holds where ∂z/∂σ is
small (equivalently ∂σ/∂z is large).

We refer to the Jacobian zσ as the specific thickness and sometimes find it useful to write it
as

h = zσ =
∂z

∂σ
. (64.8)

This name is motivated by noting that the vertical thickness of an infinitesimal layer of coordinate
thickness δσ is given by

δz =
∂z

∂σ
δσ = h δσ, (64.9)

with Figure 64.2 providing an example with finitely thick layers. For example, if σ = b(x, y, z, t)
(buoyancy or potential density as in isopycnal models), then the thickness of a buoyancy layer is
given by

δz =
∂z

∂σ
δb = N−2 δb, (64.10)

with

N2 =
∂b

∂z
(64.11)

the squared buoyancy frequency (Section 30.6) in a Boussinesq fluid (Chapter 29). For a
hydrostatic fluid using pressure as the vertical coordinate, the thickness of a pressure layer is

δz =
∂z

∂p
δp = − 1

ρ g
δp (64.12)
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where we used the hydrostatic relation (Section 27.2)

∂p

∂z
= −ρ g (64.13)

with g the constant acceleration due to effective gravity. Note that we assume the layer thickness
is positive, δz > 0. For this purpose, with hydrostatic pressure we might choose to consider
negative pressure increments, δp < 0, as this corresponds to vertically upward movement in a
fluid column.

64.3 The dia-surface transport
In this section we develop the concept of dia-surface transport and derive its expression in terms
of the material time derivative of the GVC surface.

64.3.1 Flow normal to the GVC surface
At an arbitrary point on a surface of constant generalized vertical coordinate (see Figure 64.3),
the rate at which fluid moves in the direction normal to the surface is given by

rate of fluid flow in direction n̂ = v · n̂, (64.14)

where

n̂ =
∇σ
|∇σ| , (64.15)

is the surface unit normal. Two examples are useful to ground this expression in common
experience. For the ocean free surface, σ = z − η(x, y, t) = 0, the unit normal takes the form

n̂ =
∇ (z − η)
|∇ (z − η)| =

ẑ −∇η√
1 + |∇η|2

, (64.16)

whereas at the solid Earth bottom, σ = z − ηb(x, y) = 0,

n̂ = − ∇ (z − ηb)
|∇ (z − ηb)|

= − ẑ −∇ηb√
1 + |∇ηb|2

. (64.17)

Introducing the material time derivative

Dσ

Dt
=
∂σ

∂t
+ v · ∇σ (64.18)

to equation (64.14) leads to the identity

v · n̂ =
1

|∇σ|

[
Dσ

Dt
− ∂σ

∂t

]
. (64.19)

Hence, the component to the velocity of a fluid particle that is normal to a GVC surface is
proportional to the difference between the material time derivative of the surface coordinate and
its partial time derivative.

64.3.2 Accounting for movement of the surface
A generalized vertical coordinate surface is generally moving. So to diagnose the net transport
of fluid penetrating the surface requires us to subtract the velocity of the surface, v(σ), from the
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ẑ<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

n̂ v

v(σ)

d𝒮θ
dA = |cos θ | d𝒮 � = constant

<latexit sha1_base64="4USE2vTjnN40Z36GUu8lMA6hy9o=">AAACH3icbZC9SgNBFIVn/Y3xL2pp4WAQrMKuCGohiDaWEYwGsiHcnUzi4PwsM3fFsKT0Qaxt9RnsxNZH8C2cxBSa5MDA4Zx7Ge6XpFI4DMOvYGZ2bn5hsbBUXF5ZXVsvbWzeOJNZxmvMSGPrCTguheY1FCh5PbUcVCL5bXJ/MehvH7h1wuhr7KW8qaCrRUcwQB+1SjuxE10F9JTGKjGPeewUSEmZ0Q5BY79VKoeVcCg6aaKRKZORqq3Sd9w2LFNcI5PgXCMKU2zmYFEwyfvFOHM8BXYPXd7wVoPirpkPD+nTPZ+0acdY/zTSYfp3IwflXE8lflIB3rnxbhBO7RI1LW5k2Dlu5kKnGXLNfv/vZJKioQNYtC0sZyh73gCzwp9A2R1YYOiRFj2baJzEpLk5qESHlZOrw/LZ+YhSgWyTXbJPInJEzsglqZIaYeSJvJBX8hY8B+/BR/D5OzoTjHa2yD8FXz/Rp6MS</latexit>

Figure 64.3: A surface of constant generalized vertical coordinate, σ = constant, within a fluid. The normal
direction, n̂ = ∇σ/|∇σ|, points in the direction of increasing σ. We show an example velocity vector for a fluid
particle, v, at a point on the surface as well as the velocity, v(σ), of a point that lives on the surface. Note
that kinematics is only concerned with the normal component to the surface velocity, v(σ) · n̂, as per equation
(64.25). We require dynamical information to obtain information about the tangential component of v(σ), but
such information is not required for this chapter. Following equation (64.30), the horizontal projection of the
surface area element is given by dA = | cosϑ| dS, where ϑ is the angle between the surface and the horizontal and
dA = dxdy.

velocity of a fluid particle. We are thus led to

rate that fluid crosses a moving GVC surface = n̂ · (v − v(σ)). (64.20)

We next develop a kinematic property of the surface velocity, or more precisely the normal
component to that velocity. For that purpose, consider an infinitesimal increment in both space
and time under which σ undergoes an infinitesimal change

δσ = δx · ∇σ + δt ∂tσ. (64.21)

Now restrict attention to a point fixed on a constant σ surface, in which

δσ = δx(σ) · ∇σ + δt ∂tσ = 0, (64.22)

where δx(σ) is a differential increment following the moving surface. We define the velocity of
that point as

v(σ) =
δx(σ)

δt
, (64.23)

in which case equation (64.22) implies that at each point within the fluid,

∂σ

∂t
+ v(σ) · ∇σ = 0. (64.24)

We can likewise write this equation as one for the normal component of the surface velocity

v(σ) · n̂ = − 1

|∇σ|
∂σ

∂t
. (64.25)

Hence, we reach the sensible result that the normal component to the velocity of the surface
vanishes when the surface is static.
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64.3.3 We only care about divergent surface motion

For the kinematics of fluid motion relative to a surface of constant generalized vertical coordinates,
we are only concerned with the normal component to the surface velocity, v(σ) · n̂. That is, we
are only concerned with divergent motion of the surface, defined as motion parallel to the surface
normal direction, n̂. We have no concern for rotational or tangential motion, which is motion
perpendicular to n̂. Even so, some authors, by fiat, choose to set to zero the tangential component
of the surface motion. In fact, specification of the tangential surface velocity component is
generally not available without extra information about the surface motion, nor is its specification
necessary for developing kinematic properties of fluid motion relative to arbitrary generalized
vertical coordinate surfaces. Hence, we make no statement about tangential motion of the
surface.

64.3.4 Cross GVC transport in terms of GVC material evolution

Using expression (64.25) in equation (64.20) leads to the net flux of fluid crossing the GVC
surface

n̂ · (v − v(σ)) = 1

|∇σ|
Dσ

Dt
. (64.26)

The material time derivative of the GVC surface thus vanishes if no fluid crosses the surface.
Notably, this result holds for motion of the fluid as defined by the barycentric velocity, v, of
Section 20.1.2. For multi-component fluids, σ̇ = 0 can still, in principle, be associed with trace
matter exchange across the surface via diffusion so long as the net matter crossing the surface is
zero. But this situation is rather fine tuned and thus unlikely. Additionally, matter diffusion
also occurs with heat diffusion, in which case σ̇ = 0 only occurs in the absence of both matter
and heat diffusion, which then means that σ is a material surface.

64.3.5 Defining the dia-surface transport

The area normalizing the volume flux in equation (64.26) is the area dS of an infinitesimal patch
on the surface of constant generalized vertical coordinate with outward unit normal n̂. We now
follow the trigonometry discussed in Section 63.17 to introduce the horizontal projection of this
area, dA, which is more convenient to work with for many purposes. So long as the vertical
stratification remains non-zero (∂σ/∂z ̸= 0) we can write the area factor in the form

dS

|∇σ| =
dS√

(∂σ/∂x)2 + (∂σ/∂y)2 + (∂σ/∂z)2
(64.27a)

=
dS

|∂σ/∂z|
√
[(∂σ/∂x)/(∂σ/∂z)]2 + [(∂σ/∂y)/(∂σ/∂z)]2 + 1

(64.27b)

=
dS

|∂σ/∂z|
√
1 + tan2 ϑ

(64.27c)

=

∣∣∣∣∂z∂σ
∣∣∣∣ | cosϑ| dS (64.27d)

=

∣∣∣∣∂z∂σ
∣∣∣∣dA. (64.27e)

The equality (64.27c) introduced the angle, ϑ, between the boundary surface and the horizontal
plane. The squared slope of this surface given by (see Section 63.12)

tan2 ϑ =
∇hσ · ∇hσ
(∂σ/∂z)2

= ∇hσz · ∇hσz. (64.28)
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The equality (64.27d) made use of a trigonometric identity so that

| cosϑ|−1 = |zσ∇σ|. (64.29)

Furthermore, the equality (64.27e) introduced the horizontal projection of the area,

dA = | cosϑ| dS. (64.30)

We now introduce the dia-surface velocity component for the GVC coordinate

w(σ̇) =
∂z

∂σ

Dσ

Dt
= zσ σ̇, (64.31)

which measures the volume of fluid passing through the surface, per unit horizontal area, per
unit time

w(σ̇) ≡ n̂ · (v − v(σ)) dS
dA

(64.32)

=
(volume/time) fluid through surface

horizontal area of surface
, (64.33)

so that

w(σ̇) dA ≡ n̂ · (v − v(σ)) dS. (64.34)

The velocity component w(σ̇) is referred to as the dia-surface velocity component since it measures
flow rate of fluid through the surface. We can think of w(σ̇) as the “vertical” velocity which,
when multiplied by the horizontal area element, measures the transport of fluid that crosses the
surface in the normal direction.

64.3.6 Expressions for the dia-surface velocity component

Making use of various identities derived above, as well as the transformation of partial derivative
operators in Section 63.12, allows us to write the dia-surface velocity component in the following
equivalent forms

w(σ̇) =
∂z

∂σ

Dσ

Dt
(64.35a)

=
∂z

∂σ
|∇σ| n̂ · (v − v(σ)) (64.35b)

=
∂z

∂σ
∇σ · v − ∂z

∂σ
|∇σ| n̂ · (v − v(σ)) (64.35c)

= (ẑ −∇hσz) · v +
∂z

∂σ

∂σ

∂t
(64.35d)

= (ẑ −∇hσz) · v −
∂z

∂t
(64.35e)

= w − (∂t + u · ∇hσ)z, (64.35f)

where ∂z/∂t = (∂z/∂t)σ is the time derivative for the depth of the σ surface. We also made use
of the identity (see equations (63.34b) and (63.34c))

∇hσz = −zσ∇hσ (64.36)
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to express the slope of the σ surface as projected onto the horizontal direction plane, as well as
the corresponding identity (63.34a) for the time derivative[

∂z

∂t

]
σ

= − [∂σ/∂t]z
[∂σ/∂z]

. (64.37)

The form given by equation (64.35f) directly relates the vertical component to the fluid
particle velocity to the dia-surface velocity component

w =
Dz

Dt
←→ w(σ̇) =

∂z

∂σ

Dσ

Dt
= w − (∂t + u · ∇hσ)z. (64.38)

When the GVC surface is static, so that it occupies a constant vertical position ∂z/∂t = 0, then
the dia-surface velocity component reduces to

w(σ̇) = w − u · ∇hσz static surface, (64.39)

whereas if the GVC surface is flat, then the dia-surface velocity component measures the flux of
fluid moving vertically relative to the motion of the GVC surface. Finally, if the surface is flat
and static, the dia-surface velocity component becomes the vertical velocity component

w(σ̇) = w =
Dz

Dt
GVC surface static and flat, (64.40)

which is the case for the geopotential vertical coordinate. This relation reveals the kinematic
distinction between w and w(σ̇), with the two differing in the presence of GVC transients and
horizontal velocities that project onto a non-horizontal GVC surface. Equation (64.35f) thus
offers a useful means to distinguish w from w(σ̇).

64.3.7 An alternative definition of dia-surface velocity component
In some literature presentations, the dia-surface velocity component is taken to be

wdia = n̂ · (v − v(σ)) = 1

|∇σ|
Dσ

Dt
. (64.41)

For example, Groeskamp et al. (2019) prefer this definition for watermass analysis. As seen in
Chapter 73, the reason to prefer expression (64.41) for watermass analysis is that we do not wish
to assume vertically stable stratification for surfaces of constant σ. Dropping that assumption
allows us to consider transformation between arbitrarily oriented elements of seawater, even
those that are gravitationally unstable.

64.3.8 Area integrated dia-surface transport for non-divergent flows
We close this section by further emphasizing the distinction in time dependent flows between
dia-surface transport and flow normal to a surface. For this purpose consider a non-divergent
flow whereby ∇ · v = 0. Non-divergence means that for any closed surface within the fluid
interior, the following identity holds via the divergence theorem

0 =

ˆ
R

∇ · v dV =

˛
∂R
n̂ · v dS. (64.42)

Notably, only in the case of a static surface do we conclude there is no net flow across the surface
(see Exercise 21.6). For surfaces that move, there is generally a nonzero net dia-surface transport.
We clarify this rather puzzling statement in the following.

CHAPTER 64. KINEMATIC EQUATIONS page 1829 of 2158



64.3. THE DIA-SURFACE TRANSPORT

� = const
<latexit sha1_base64="a0J6WVYwyXTYsipsUMfhu3LYyG0=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJWkCroRim5cVrAPaEKZTCft0HmEmYlYQjb+ihsXirj1M9z5N07bLLT1wIXDOfdy7z1Rwqg2nvftLC2vrK6tlzbKm1vbO7vu3n5Ly1Rh0sSSSdWJkCaMCtI01DDSSRRBPGKkHY1uJn77gShNpbg344SEHA0EjSlGxko99zDQdMARvIJZwCP5mGEptMnznlvxqt4UcJH4BamAAo2e+xX0JU45EQYzpHXX9xITZkgZihnJy0GqSYLwCA1I11KBONFhNn0ghydW6cNYKlvCwKn6eyJDXOsxj2wnR2ao572J+J/XTU18GWZUJKkhAs8WxSmDRsJJGrBPFcGGjS1BWFF7K8RDpBA2NrOyDcGff3mRtGpV/6xauzuv1K+LOErgCByDU+CDC1AHt6ABmgCDHDyDV/DmPDkvzrvzMWtdcoqZA/AHzucP9yyWqA==</latexit>

ℛ

Figure 64.4: A constant GVC surface, σ = constant, within an ocean basin that intersects the bottom. The
region R is bounded above by the σ surface and below by the solid-earth. Along the constant σ surface a
non-divergent flow satisfies

´
σ=const

n̂ · v dS = 0.

As a specific example, consider a fluid region such as shown in Figure 64.4, which is bounded
by the solid-earth bottom and a constant GVC surface. Since the solid-earth bottom is static and
there is no-normal flow through the bottom, the identity (64.42) means that the area integrated
flow normal to the GVC vanishes ˆ

σ=const

n̂ · v dS = 0. (64.43)

But what does this identity imply about the area integrated dia-surface velocity? For the case
of a geopotential vertical coordinate, σ = z, it means that the area integrated vertical velocity
vanishes across any geopotential surface below the ocean free surface,

´
z=const

w dA = 0 (see
Exercise 21.6). What about other GVCs?

To address this question consider the general result

ˆ
σ=const

n̂ · (v − v(σ)) dS =

ˆ
σ=const

wdia dS =

ˆ
σ=const

w(σ̇) dA, (64.44)

where again dA = dx dy. Now make use of the property (64.43) for non-divergent flows as well
as the identity (64.25) to render

ˆ
σ=const

w(σ̇) dA = 0−
ˆ
σ=const

n̂ · v(σ) dS (64.45a)

=

ˆ
σ=const

∂σ/∂t

|∇σ| dS (64.45b)

=

ˆ
σ=const

∂σ

∂t

∣∣∣∣∂z∂σ
∣∣∣∣ dA (64.45c)

= −
ˆ
σ=const

[
∂z

∂t

]
σ

dA. (64.45d)

The final equality holds if ∂z/∂σ > 0, whereas we swap signs when the vertical stratification is
∂z/∂σ < 0. We can go one further step by noting that the time derivative is computed with σ
constant, as is the horizontal area integral. Hence, we can pull the time derivative outside the
integral to render ˆ

σ=const

w(σ̇) dA = −
[
∂

∂t

]
σ

ˆ
σ=const

z dA. (64.46)

This identity means that for a non-divergent flow, the integrated dia-surface transport across
the GVC surface equals to minus the time tendency for the area integrated vertical position of
that surface. Hence, there is an area integrated dia-surface transport across the GVC surface so
long as there is a volume change for the region beneath the surface.

For the case of an isopycnal surface in an adiabatic fluid, there is no change in the volume
beneath any interior isopycnal since no flow crosses the isopycnal, in which case we recover the
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expected result
´
σ=const

w(σ̇) dA = 0. However, this result does not hold for other coordinates,
such as the rescaled vertical coordinate, σ = z∗ defined by equation (64.112). In this case

z∗ = H
z − η
H + η

(64.47a)

∂z

∂z∗
= 1 +H/η > 0 (64.47b)[

∂z

∂t

]
z∗

=
∂η

∂t
(1 + z∗/H), (64.47c)

so that ˆ
z∗=const

w(ż∗) dA =

ˆ
z∗=const

(∂η/∂t) (1 + z∗/H) dA, (64.48)

which is generally nonzero. For example, consider a flat bottom so that

ˆ
z∗=const

w(ż∗) dA = (1 + z∗/H)

ˆ
z∗=const

(∂η/∂t) dA = (1 + z∗/H)

ˆ
z∗=const

(Qm/ρo) dA, (64.49)

where Qm is the surface mass flux and we made use of the free surface equation (21.81) holding
for a non-divergent flow. In this case the area integrated dia-surface transport across a z∗ surface
is proportional to the area integrated surface mass flux.

64.4 Material time derivative

The expression (64.31) for w(σ̇) brings the material time derivative operator into the following
equivalent forms

D

Dt
=

[
∂

∂t

]
z

+ u · ∇h + w
∂

∂z
(64.50a)

=

[
∂

∂t

]
σ

+ u · ∇hσ +
Dσ

Dt

∂

∂σ
(64.50b)

=

[
∂

∂t

]
σ

+ u · ∇hσ + w(σ̇) ∂

∂z
. (64.50c)

Note that the chain-rule means that

∂

∂σ
=
∂z

∂σ

∂

∂z
, (64.51)

thus providing a relationship between the two vertical coordinate partial derivatives. Furthermore,
recall that subscripts in the above derivative operators denote variables held fixed when taking
the partial derivatives.

We highlight the special case of no fluid particles crossing the generalized coordinate surface.
This sitution occurs in the case of adiabatic flows with σ equal to the buoyancy or isopycnal
coordinate. For adiabatic flow, the material time derivative in equation (64.50c) only has a
horizontal two-dimensional advective component, u · ∇hσ. This result should not be interpreted
to mean that the fluid particle velocity in an adiabatic flow is strictly horizontal. Indeed, it
generally is not, as the form given by equation (64.50a) makes clear. Rather, it means that the
advective transport of fluid properties occurs along surfaces of constant buoyancy, and such
transport is measured by the convergence of horizontal advective fluxes as measured along these
constant buoyancy surfaces.
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64.5 Vertical velocity and dia-surface velocity
Making use of the material time derivative operator (64.50c) affords us an opportunity to
emphasize both the differences and similarities between the vertical velocity component and the
dia-surface velocity component. Namely, the vertical velocity component takes on the equivalent
forms

w =
Dz

Dt
=

[
∂z

∂t

]
σ

+ u · ∇hσz + w(σ̇) =
∂z

∂σ

[
−∂σ
∂t
− u · ∇hσ +

Dσ

Dt

]
, (64.52)

and the corresponding expressions for the dia-surface velocity component are given by

w(σ̇) =
∂z

∂σ

Dσ

Dt
=
∂z

∂σ

[
∂σ

∂t
+ u · ∇hσ + w

∂σ

∂z

]
= −

[
∂z

∂t

]
σ

− u · ∇hσz + w. (64.53)

Whereas the vertical velocity component, w, measures the transport crossing z surfaces, which are
static and horizontal, the dia-surface velocity component, w(σ̇), measures the transport crossing
σ surfaces, which are generally moving and sloped. It is notable that the area normalization
used in equation (64.33) for the dia-surface velocity component means that it appears only in
the expression for the vertical velocity. However, as we will see in the following, the appearance
of w(σ̇) in the w equation does not necessarily mean that w(σ̇) corresponds to vertical particle
motion. Instead, when it arises from mixing, w(σ̇) can lead to vertical motion of the σ surface
while maintaining a fixed position for the fluid particle.

64.5.1 Decomposing the vertical velocity
The expression

w =

[
∂z

∂t

]
σ

+ u · ∇hσz + w(σ̇) (64.54)

decomposes the vertical velocity of a fluid particle into (i) changes to the vertical position of the
σ-surface at a particular horizontal point, (ii) lateral particle motion projected onto a sloped
σ-surface, (iii) motion that crosses a σ-surface. Importantly, the three terms are coupled. For
example, consider the case of σ defined by isopycnals, in which case irreversible mixing (w(σ̇) ̸= 0)
changes the configuration of σ surfaces by changing both their height, (∂z/∂t)σ, and slope ∇hσz.

64.5.2 Another form of the vertical velocity decomposition

Consider the velocity for a point on the surface, v(σ), which satisfies (Section 64.3.2)

∂σ

∂t
+ v(σ) · ∇σ = 0. (64.55)

Making use of the triple product identities from Section 63.5

∂z

∂σ
∇σ = −∇hσz + ẑ and

∂z

∂σ

[
∂σ

∂t

]
z

= −
[
∂z

∂t

]
σ

(64.56)

brings equation (64.55) into the form[
∂z

∂t

]
σ

= (ẑ −∇hσz) · v(σ) =⇒ ẑ · v(σ) =
[
∂z

∂t

]
σ

+ u(σ) · ∇hσz, (64.57)

where u(σ) is the horizontal component to the surface velocity v(σ). This equation shows that
the vertical component to the σ-surface velocity is given by the sum of the changes to the vertical
position of the surface plus the projection of the horizontal motion of the surface onto the slope
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of the surface. Additionally, even if the σ-surface has no component of velocity in the vertical,
the depth of the σ-surface measured at a horizontal point generally changes if the surface is
sloped and moves horizontally pass that point[

∂z

∂t

]
σ

= −u(σ) · ∇hσz if ẑ · v(σ) = 0. (64.58)

Returning to the general result (64.57) allows us to write[
∂z

∂t

]
σ

+ u · ∇hσz = ẑ · v(σ) + (u− u(σ)) · ∇hσz. (64.59)

Furthermore, return to the fundamental definition of the dia-surface velocity component detailed
in Section 64.3, in which we showed that

w(σ̇) =
∂z

∂σ

Dσ

Dt
=
∂z

∂σ
∇σ · (v − v(σ)) = (−∇hσz + ẑ) · (v − v(σ)). (64.60)

This expression, along with equation (64.59), leads to the rather elaborate decomposition of the
vertical velocity component according to motion of a generalized vertical coordinate surface

w =
[
ẑ · v(σ) + (u− u(σ)) · ∇hσz

]
︸ ︷︷ ︸

(∂t+u·∇hσ)z

+
[
ẑ · v − ẑ · v(σ) − (u− u(σ)) · ∇hσz

]
︸ ︷︷ ︸

w(σ̇)

. (64.61)

Terms in the first bracket compute vertical particle motion relative to the σ-surface. The
dia-surface contribution from the second bracket removes the contribution from σ-surface motion
to leave just the vertical motion of the particle. All terms on the right hand side cancel, except
for ẑ · v = w, thus trivially revealing w = w. The decomposition of w is rather pedantic when
viewed in the unpacked form of equation (64.61). Even so, let us consider some special cases to
offer further interpretation.

• no horizontal contribution: Consider the case where the horizontal velocity of a fluid
particle matches that of the σ-surface: u = u(σ). Alternatively, consider the case with flat
σ-surfaces so that ∇hσz = 0. In either case the vertical velocity is given by

w =
[
ẑ · v(σ)

]
︸ ︷︷ ︸
(∂t+u·∇hσ)z

+
[
ẑ · (v − v(σ))

]
︸ ︷︷ ︸

w(σ̇)

. (64.62)

The first contribution is from vertical motion of the σ-surface. The second contribution
adjusts for the vertical motion of the particle relative to the σ-surface, leaving behind just
the vertical motion of the particle. This rather trivial case exemplifies the contributions
from the two pieces of the vertical velocity.

• zero vertical particle motion: Consider the case where w = 0 so that

w = 0 (64.63a)

=

[
∂z

∂t

]
σ

+ u · ∇hσz + w(σ̇) (64.63b)

=
[
ẑ · v(σ) + (u− u(σ)) · ∇hσz

]
︸ ︷︷ ︸

(∂t+u·∇hσ)z

+
[
−ẑ · v(σ) − (u− u(σ)) · ∇hσz

]
︸ ︷︷ ︸

w(σ̇)

. (64.63c)

The final expression is trivial since each term in one bracket identically cancels terms in
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the other bracket. The penultimate expression reveals the balance between dia-surface
transport and motion relative to the σ surface

−w(σ̇) =

[
∂z

∂t

]
σ

+ u · ∇hσz if w = 0. (64.64)

A particularly simple realization of this balance holds for σ given by isopycnals and where
the isosurfaces are horizontal. In the presence of uniform mixing, the flat isopycnals
stay flat and there is correspondingly no vertical motion of fluid particles even as the
vertical stratification is modified. In contrast, the vertical position of an isopycnal surface
changes according to the dia-surface velocity component (∂z/∂t)σ = −w(σ̇) ̸= 0. This case
illustrates that w(σ̇) ̸= 0 can still occur even when there is zero fluid particle motion since
w(σ̇) ̸= 0 can arise from motion of a σ-surface alone.

64.6 The velocity vector and fluid particle trajectories
Recall from Section 64.5 the alternative forms for the vertical velocity component given by
equation (64.52). We focus on the form

w =

[
∂z

∂t

]
σ

+ u · ∇hσz + w(σ̇) (64.65)

so that the velocity vector is written1

v = u x̂+ v ŷ + w ẑ (64.66a)

= u x̂+ v ŷ +
[
(∂z/∂t)σ + u · ∇hσz + w(σ̇)

]
ẑ (64.66b)

= u [x̂+ ẑ (∂z/∂x)σ] + v [ŷ + ẑ (∂z/∂y)σ] +
[
(∂z/∂t)σ + w(σ̇)

]
ẑ. (64.66c)

To help further understand these velocity expressions we consider the following three cases, each
of which are illustrated in Figure 64.5.

v
(∂z /∂t) δt

σ(t + δt) σ(t + δt)
σ

x
z

(∂z /∂t + w( ·σ)) δt

σ(t) σ(t)

ϑ

Figure 64.5: This schematic shows the various contributions to the fluid particle velocity (red vector) when
written relative to motion of a particular generalized vertical coordinate surface. The fluid particle sits at the tail
of the velocity vector at time t and at the head at time t+ δt. The left panel is for the case of a static and material
σ-surface so that the particle remains on the σ-surface and has a velocity vector given by equation (64.68). The
slope of the σ-surface in the x̂-direction is given by tanϑ = (∂z/∂x)σ. The middle panel is for a non-steady
material σ-surface whereby the velocity of a particle takes on the form (64.69), with the particle remaining on
the moving σ-surface. The right panel shows the case of a non-steady and non-material σ-surface with velocity
(64.70). In this final case the particle position departs from the original σ-surface due to the nonzero dia-surface
velocity component, w(σ̇) ≠ 0. However, it is not known a priori whether this departure is due to particle motion
or motion of the surface. Notably, the horizontal position of the particle remains identical for each of the three
cases. It is only the vertical position that is modified according to the slope of the σ-surface (left panel), motion
of the σ-surface (middle panel), and motion crossing the σ-surface (right panel).

1As discussed in Section 63.7, we can connect these expressions to the contravariant representation of the
velocity vector using GVCs.
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• steady and material σ-surface: The velocity vector is aligned with the instantaneous
σ-surface (v ·∇σ = 0) when the σ-surface is steady (∂σ/∂t = 0) and material (Dσ/Dt = 0).
Hence, we can diagnose the vertical velocity component in terms of the horizontal via

w ∂σ/∂z = −u · ∇hσ =⇒ w = u · ∇hσz, (64.67)

where we used the triple product identities (63.34b) and (63.34c) for the final equality.
The velocity vector thus takes on the form

v = u [x̂+ ẑ (∂z/∂x)σ] + v [ŷ + ẑ (∂z/∂y)σ] ∂σ/∂t = 0 and Dσ/Dt = 0. (64.68)

In this case, the velocity vector is determined only by the horizontal velocity plus the slope
of the σ surface.

• non-steady and material σ-surface: Next consider material σ surfaces (Dσ/Dt = 0)
that move (∂tσ ̸= 0), in which case the velocity vector is

v = u [x̂+ ẑ (∂z/∂x)σ] + v [ŷ + ẑ (∂z/∂y)σ] + (∂z/∂t)σ ẑ Dσ/Dt = 0. (64.69)

To remain on the moving surface, the fluid particle must move vertically by the extra
amount (∂z/∂t)σ δt ẑ relative to the case of a static σ-surface.

• non-steady and non-material σ-surface: The general case with a non-material
and non-steady σ also requires the dia-surface velocity component, w(σ̇), which is diag-
nosed based on the material time derivative of σ and the inverse stratification, w(σ̇) =
(∂z/∂σ)Dσ/Dt :

v = u [x̂+ ẑ (∂z/∂x)σ] + v [ŷ + ẑ (∂z/∂y)σ] +
[
(∂z/∂t)σ + w(σ̇)

]
ẑ. (64.70)

The contribution w(σ̇) measures the vertical motion of the particle relative to the moving
σ-surface. Hence, the sum, (∂z/∂t)σ + w(σ̇), measures the vertical motion of the particle
relative to a fixed origin. As emphasized in Section 64.5, a non-zero w(σ̇) arises from
motion of the fluid particle relative to the σ-surface, and this relative motion does not
necessarily mean that the particle moves; e.g., recall the example discussed in Section
64.5.2 with a static particle and moving σ-surface.

64.7 Subduction across the mixed layer base

Consider the generalized vertical coordinate defined according to the mixed layer base as in
equation (64.3). The dia-surface mass transport across this surface leads us to define the
subduction

−S(subduction) ≡ ρdA
[
D(z − ηmld)

Dt

]
at z = ηmld(x, y, t), (64.71)

where the mass transport S(subduction) (dimensions of mass per time) is positive for fluid moving
downward beneath the mixed layer base into the pycnocline (subduction) and negative for water
moving into the mixed layer (obduction). The area element dA is the horizontal projection of
the area on the mixed layer base. Expanding the material time derivative leads to

−
[
S(subduction)

ρdA

]
= w − [∂t + u · ∇] ηmld at z = ηmld(x, y, t), (64.72)
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where again we define

S(subduction) > 0 subduction (64.73)

S(subduction) < 0 obduction. (64.74)

We illustrate this definition in Figure 64.6, and note that this definition is consistent with that
introduced by Cushman-Roisin (1987).
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z = ⌘(mld)(x, y, t)

Figure 64.6: Illustrating the subduction rate as defined by equation (64.72), which measures the mass transport
acrros the base of the ocean mixed layer. When water enters the ocean interior, S(subduction) > 0, and we say that
water subducts from the mixed layer to the ocean interior. Conversely, when water enters the mixed layer from
below, S(subduction) < 0 and we say that water is obducted from the interior to the mixed layer.

64.8 Mass continuity

We here derive the Eulerian expression for mass continuity (19.6) using generalized vertical
coordinates. We then specialize to non-divergent flows, in which mass conservation is converted
to volume conservation. To start, recall that mass conservation for a fluid element states that

ρ δV = ρ δx δy δz = ρ δx δy zσ δσ (64.75)

is constant following a fluid element.2 To develop the Eulerian expressions we first consider the
case of Cartesian coordinates.

64.8.1 Cartesian coordinates

Consider the expression
1

ρ δV

D(ρ δV )

Dt
=

1

ρ

Dρ

Dt
+

1

δV

D(δV )

Dt
. (64.76)

Now make use of Cartesian coordinates to write the volume

1

δV

D(δV )

Dt
=

1

δx δy δz

D(δx δy δz)

Dt
(64.77a)

=
1

δx

D(δx)

Dt
+

1

δy

D(δy)

Dt
+

1

δz

D(δz)

Dt
(64.77b)

=
δu

δx
+
δv

δy
+
δw

δz
(64.77c)

= ∇ · v. (64.77d)

Setting D(ρ δV )/Dt = 0 leads to the familiar expression for the continuity equation

Dρ

Dt
= −ρ∇ · v. (64.78)

2Recall that we write δ as an infinitesimal increment following a fluid element.
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64.8.2 Generalized vertical coordinates

We follow the above procedure but now with generalized vertical coordinates so that

1

δV

D(δV )

Dt
=

1

δx δy zσ δσ

D(δx δy zσ δσ)

Dt
(64.79a)

=
1

δx

D(δx)

Dt
+

1

δy

D(δy)

Dt
+

1

zσ

D(zσ)

Dt
+

1

δσ

D(δσ)

Dt
(64.79b)

=
δu

δx
+
δv

δy
+

1

zσ

D(zσ)

Dt
+
δ(σ̇)

δσ
(64.79c)

= ∇hσ · u+
1

zσ

D(zσ)

Dt
+
∂σ̇

∂σ
(64.79d)

where we introduced the shorthand σ̇ = Dσ/Dt. Note that we set

δu

δx
+
δv

δy
= ∇hσ · u (64.80)

since we are working with generalized vertical coordinates so that we consider infinitesimal
displacements occurring on constant σ surfaces. We are thus led to

1

ρ δV

D(ρ δV )

Dt
= ∇hσ · u+

1

zσ

Dzσ
Dt

+
∂σ̇

∂σ
+

1

ρ

Dρ

Dt
= 0. (64.81)

Now use the material time derivative in the form (64.50b) to derive the Eulerian expression of
mass conservation

∂(ρ zσ)

∂t
+∇hσ · (ρ zσu) +

∂(ρ zσ σ̇)

∂σ
= 0, (64.82)

where the time derivative is computed holding σ fixed. We can furthermore introduce the
dia-surface velocity component

w(σ̇) = zσ σ̇ (64.83)

so that mass continuity takes the form

∂(ρ zσ)

∂t
+∇hσ · (ρ zσu) +

∂(ρw(σ̇))

∂σ
= 0. (64.84)

Alternatively, we can reintroduce the material time derivative operator to write the mass
continuity equation (64.82) in the form

1

ρ zσ

D(ρ zσ)

Dt
= −(∇hσ · u+ ∂σ̇/∂σ), (64.85)

where we used equation (64.50b) to write

D

Dt
=

[
∂

∂t

]
σ

+ u · ∇hσ + σ̇
∂

∂σ
. (64.86)

64.9 Layer integrated mass continuity

The formulation thus far has been continuous, with the only assumption made that the specific
thickness, h = ∂z/∂σ, is single signed. We here consider a discrete increment in the generalized
vertical coordinate,

σ − δσ/2 ≤ σ′ ≤ σ + δσ/2, (64.87)

CHAPTER 64. KINEMATIC EQUATIONS page 1837 of 2158



64.9. LAYER INTEGRATED MASS CONTINUITY

and formulate the mass budget over this layer whose thickness is given by

h ≡
ˆ z(σ+δσ/2)

z(σ−δσ/2)
dz =

ˆ σ+δσ/2

σ−δσ/2

∂z

∂σ
dσ, (64.88)

and whose mass per horizontal area is

δm =

ˆ z(σ+δσ/2)

z(σ−δσ/2)
ρdz =

ˆ σ+δσ/2

σ−δσ/2
ρ zσ dσ = ρ h, (64.89)

where ρ is the layer averaged density. Note that for Boussinesq fluids the mass per area equals
to the layer thickness times the reference density

δm = ρo h Boussinesq. (64.90)

As defined by equation (64.88) and illustrated in Figure 64.2, the thickness of a layer is
relatively large in regions where ∂σ/∂z is small; i.e., in regions where σ is weakly stratified in
the vertical. Conversely, the layer thickness is relatively small where the vertical stratification
is large. Furthermore, if the specific thickness is negative, then the layer thickness remains
positive by choosing δσ < 0. For example, in a stably stratified fluid with σ given by potential
density, ∂σ/∂z = −(g/ρo)N2 < 0 so that we take δσ < 0 to move vertically upward in the water
column to regions of lower potential density. The same situation holds when σ is the hydrostatic
pressure in which ∂p/∂z = −ρ g (Section 64.9.2).

The formulation in this section, and its companion for tracers in Section 64.10, holds across
all generalized vertical coordinates, even incorporating the trivial case of geopotential coordinates
(σ = z) whereby the specific thickness is unity. Application of the resulting layer integrated
kinematics include the development of discrete equations for numerical layered models (see
Griffies et al. (2020) for a review), as well as the shallow water models discussed in Part VI of
this book.

64.9.1 Compressible fluids

Performing a layer integral of the specific thickness equation (64.84) renders

ˆ σ+δσ/2

σ−δσ/2

[
∂(ρ zσ)

∂t
+∇hσ · (ρ zσu) +

∂(ρw(σ̇))

∂σ

]
dσ = 0. (64.91)

The dia-surface term integrates to a finite difference across the layer

ˆ σ+δσ/2

σ−δσ/2

[
∂(ρ zσ)

∂t
+∇hσ · (ρ zσu)

]
= −∆σ(ρw

(σ̇)), (64.92)

where we introduced the dimensionless finite difference operator for properties defined at the
layer interface

∆σ(A) = A(σ + δσ/2)−A(σ − δσ/2). (64.93)

The time derivative and horizontal space derivative commute with the layer integral, since the
limits are specified fixed values for the layer increment, δσ, and the derivatives are computed
with σ fixed. Hence, layer mass continuity takes the form[

∂

∂t

]
σ

ˆ σ+δσ/2

σ−δσ/2
ρ zσ dσ +∇hσ ·

ˆ σ+δσ/2

σ−δσ/2
ρu zσ dσ = −∆σ(ρw

(σ̇)). (64.94)
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The first term involves the layer averaged density times the layer thickness as per equation
(64.89). The second term involves the layer averaged density-weighted velocity, which is the
layer averaged horizontal mass flux

ˆ σ+δσ/2

σ−δσ/2
ρu zσ dσ = h ρu. (64.95)

We are thus led to the layer integrated continuity equation[
∂(h ρ)

∂t

]
σ

+∇hσ · (h ρu) + ∆σ(ρw
(σ̇)) = 0. (64.96)

When evolving the fields in a discrete numerical model, we have information only about
layer averaged fields. So how do we estimate the depth average of the horizontal advective flux,
ρu, appearing in equation (64.96)? One method interprets all fields as their layer averaged
values so that ρu = ρu, thus considering uncomputed sub-layer correlations ρ′ u′ as part of
the truncation error. Alternately, we note that compressible hydrostatic flows can be described
by a pressure-based vertical coordinate in which case the layer mass per horizontal area is
proportional to a prescribed increment in pressure

δm =

ˆ σ+δσ/2

σ−δσ/2
ρ zσ dσ = ρ h = −g−1 δp. (64.97)

Correspondingly, the layer integrated horizontal mass flux equals to the mass increment times
the pressure-layer averaged velocity

ˆ σ+δσ/2

σ−δσ/2
ρu zσ dσ = −g−1

ˆ p+δp/2

p−δp/2
udp = −g−1 u δp = h ρu. (64.98)

With either of the above two methods, we are led to the same layer integrated continuity equation,
which we write in the generic form that drops overbars[

∂(h ρ)

∂t

]
σ

+∇hσ · (h ρu) + ∆σ (ρw
(σ̇)) = 0. (64.99)

We illustrate contributions to this layer mass budget in Figure 64.7.

h

ρ w( ·σ)

σ + δσ/2

σ − δσ/2

ρ w( ·σ)

ρ h u

Figure 64.7: Illustrating the terms contributing to changes in layer mass according to the layer integrated
continuity equation (64.99). The discrete layer is shown here with bounding interfaces at σ − δσ/2 and σ + δσ/2.
Within a layer there is a horizontal redistribution due to horizontal advective transport. Additionally, matter can
cross the layer due to dia-surface transport via w(σ̇).
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64.9.2 Mass continuity using pressure coordinates

Let us here consider in some detail the special case of pressure coordinates in a hydrostatic fluid,
and thus derive mass continuity using these coordinates.

Method I

The thickness of a hydrostatic pressure layer (equation (64.88)) takes on the following form

h =

ˆ p+δp/2

p−δp/2

∂z

∂p
dp = −

ˆ p+δp/2

p−δp/2

dp

ρ g
, (64.100)

so that its mass per unit area is

ˆ p+δp/2

p−δp/2
ρ
∂z

∂p
dp = −δp/g. (64.101)

The mass continuity equation (64.99) thus becomes

∂(δp)

∂t
+∇hp · (u δp) + ∆p (ṗ) = 0. (64.102)

The partial time derivative vanishes since it is computed by holding pressure fixed so that the
pressure increment has a zero time tendency[

∂(δp)

∂t

]
p

= 0. (64.103)

Likewise, ∇hp (δp) = 0. Thus, we can divide by δp to render the continuity equation

∇hp · u+
∂ṗ

∂p
= 0 compressible hydrostatic. (64.104)

This equation is isomorphic to the continuity equation for non-divergent flows written using
geopotential coordinates

∇h · u+
∂ż

∂z
= ∇h · u+

∂w

∂z
0 non-divergent flow, (64.105)

where w = ż is the vertical component to the velocity vector. For both pressure coordinates,
describing non-Boussinesq fluids, and depth coordinates, describing Boussinesq fluids, the
continuity equation is a diagnostic relation (i.e., no time derivatives) rather than prognostic (i.e.,
containing time derivatives).

Method II

For the second method we make use of the approach detailed in Section 64.8.2, which starts from

D(ρ δV )

Dt
= 0. (64.106)

In pressure coordinates the volume of the fluid element takes the form

δV = δx δy δz = δx δy

[
∂z

∂p

]
δp = −(ρ g)−1 δx δy δp. (64.107)
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Consequently,

0 =
D(ρ δV )

Dt
= g−1

(
D(δx δy δp)

Dt

)
, (64.108)

so that

0 =
1

δx δy δp

(
D(δx δy δp)

Dt

)
= ∇hp · u+

∂ṗ

∂p
. (64.109)

The second step made use of the isomorphism between this result and that for equation (18.140)
that holds for a geopotential vertical coordinate.

64.9.3 Non-divergent flow

Specializing to a non-divergent flow where fluid elements conserve their volume (see Chapters 21
and 29) yields the layer thickness equation

∂h

∂t
+∇hσ · (hu) + ∆σw

(σ̇) = 0. (64.110)

Further specializing to the case of zero dia-surface transport leads to

∂h

∂t
+∇hσ · (hu) = 0 no dia-surface transport. (64.111)

This case is commonly studied for adiabatic fluids using isopycnal coordinates, in which isopycnal
surfaces are material (Section 66.2).

64.9.4 Rescaled geopotential coordinates

The rescaled geopotential coordinate

z∗ =
H (z − η)
H + η

=
ηb (z − η)
ηb − η

and ηb(x, y) ≤ z∗ ≤ 0, (64.112)

is commonly used in Boussinesq ocean models, where z = η(x, y, t) is the ocean free surface and
z = ηb(x, y) = −H(x, y) is the ocean bottom. The thickness of a coordinate layer is given by

h = dz =
∂z

∂z∗
dz∗ = (1 + η/H) dz∗ = (1− η/ηb) dz∗. (64.113)

The depth integrated column thickness and depth integrated coordinate thickness are given by

ˆ η

ηb

dz = η − ηb = η +H and

ˆ z∗(η)

z∗(ηb)
dz∗ = −ηb = H. (64.114)

Correspondingly, the depth integrated thickness equation is given by the depth integrated volume
budget derived in Section 21.8

∂η

∂t
+∇ ·U + [w

(σ̇)
z∗=0 − w

(σ̇)
z∗=ηb

] = 0. (64.115)

We assume no volume flow through the ocean bottom so that w
(σ̇)
z∗=ηb

= 0, whereas

−ρow(σ̇)
z∗=0 = Qm (64.116)

is the mass flux crossing the ocean free surface (Section 19.6.3).
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64.10 Layer integrated tracer equation

h

J(σ)
ρ C w( ·σ)

σ − δσ/2

σ + δσ/2

ρ C w( ·σ)
J(σ)

h ρ C u
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Figure 64.8: Illustrating the terms contributing to changes in layer tracer content according to the layer integrated
tracer equation (64.121). The layer is shown here with bounding interfaces at σ − δσ/2 and σ + δσ/2. Within a
layer there is a redistribution of tracer due to horizontal advective and subgrid scale tracer fluxes. Additionally,
matter can cross the layer due to dia-surface transport via ρC w(σ̇) and subgrid tracer transport J(σ).

The tracer equation from Section 20.1.3 is given by

ρ
DC

Dt
= −∇ · J , (64.117)

where J is a subgrid scale flux. Now introduce the material time derivative operator in the form
(64.50b) to have

ρ

[
∂C

∂t
+ u · ∇hσC + σ̇ ∂σC

]
= −∇ · J , (64.118)

Multiplying by the specific thickness and making use of the mass conservation equation (64.84)
renders the flux-form Eulerian equation

∂(zσ ρC)

∂t
+∇hσ · (zσ ρC u) +

∂(ρC w(σ̇))

∂σ
= −

[
∇hσ · (zσ J h) +

∂(zσ∇σ · J)
∂σ

]
, (64.119)

where we made use of expression (63.99) for the subgrid scale operator. Now perform a layer
integral as detailed in Section 64.9 and use the layer mass continuity equation (64.99) to yield
the layer integrated tracer equation

∂(h ρC)

∂t
+∇hσ · (h ρC u) + ∆σ(ρC w

(σ̇)) = − [∇hσ · (hJ h) + ∆σ(zσ∇σ · J)] . (64.120)

Alternatively, we can bring all terms to the left hand side to yield

∂(h ρC)

∂t
+∇hσ · (h ρC u+ hJ h) + ∆σ(ρC w

(σ̇) + J (σ)) = 0 (64.121)

where we wrote
J (σ) = zσ∇σ · J . (64.122)

We illustrate contributions to the layer tracer budget (64.121) in Figure 64.8. Note that we
interpret these layer integrated fields and fluxes as per the discussion in Section 64.9.1.

page 1842 of 2158 geophysical fluid mechanics



64.11. OVERTURNING CIRCULATION IN THE MERIDIONAL-σ PLANE

64.11 Overturning circulation in the meridional-σ plane
In Section 21.7 we studied the meridional-depth streamfunction, where we showed that equation
(21.73), or the equivalent form (21.78), are streamfunctions for the meridional-depth circula-
tion. Here we introduce a streamfunction defined according to generalized vertical coordinate,
σ(x, y, z, t). This generalization is useful for studying the zonally integrated circulation parti-
tioned according to σ surfaces rather than z surfaces, in particular when σ is potential density
or entropy surface. We make use of Figure 64.9 for the derivation.

As noted in Section 21.7, we can make use of the Boussinesq fluid, where the flow field is
non-divergent. Alternatively, we make use of a non-Boussinesq fluid when the flow is steady.
As shown in this section, we are afforded a meridional-σ streamfunction only when σ is time
independent.
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Figure 64.9: Geometry for computing the meridional streamfunction, here generalizing the meridional-depth
streamfunction geometry in Figure 21.5 to meridional-σ. The zonal boundaries are written x = x1(y, z, t) and
x = x2(y, z, t), which are generally functions of latitude and vertical position as well as time. The bottom is
written as z = ηb(x, y) and the vertical position of an arbitrary surface is written z = η(x, y, σ, t), where we
assume this surface is monotonic in the vertical. Note that for shorthand, we often find it convenient to write
z = ησ(x, y, t), particularly when suppressing the dependencies on horizontal position and time. We also display
the constant zonal positions, xrock1,2 , which are fully within the rock, as well as the bottom position, ηrockb , which is
also within the rock.

64.11.1 Overturning streamfunction
Start from equation (21.78) for the meridional-depth streamfunction, here generalized to

Ψ(y, σ, t) = −
ˆ xrock2

xrock1

[ˆ z=η(x′,y,σ,t)

ηb(x′,y)
v(x′, y, z′, t) dz′

]
dx′. (64.123)

As defined, Ψ(y, σ, t) makes use of z = η(x′, y, σ, t) for the upper bound on the vertical integral,
where η(x′, y, σ, t) is the vertical position of a generalized vertical coordinate surface with value
σ, such as depicted in Figure 64.9. In this manner, Ψ(y, σ, t), is a function of latitude, σ, and
time. Our job in the next subsection is to prove that Ψ(y, σ, t) indeed serves as a streamfunction
for the zonally integrated flow, with the zonal integral along constant σ surfaces rather than
constant z surfaces.

64.11.2 Proving that Ψ(y, σ, t) is a streamfunction
To prove that Ψ(y, σ, t) is indeed a streamfunction, we proceed much like in Section 21.7.3
for the meridional-depth streamfunction, Ψ(y, z, t), with the key new piece in the derivation
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concerning the space-time dependence of the z = η(x, y, σ, t) surface. The vertical derivative of
the streamfunction is given by

∂Ψ

∂z
= − ∂

∂z

ˆ xrock2

xrock1

[ˆ z=η(x′,y,σ,t)

ηb(x′,y)
v(x′, y, z′, t) dz′

]
dx′ (64.124a)

= −
ˆ xrock2

xrock1

[
∂

∂z

ˆ z=η(x′,y,σ,t)

ηb(x′,y)
v(x′, y, z′, t) dz′

]
dx′ (64.124b)

= −
ˆ xrock2

xrock1

v(x′, y, z = η(x′, y, σ, t)) dx′ (64.124c)

= −V (y, σ, t). (64.124d)

In these steps we used used Leibniz’s rule and noted that only the upper integration limit is a
function of z. Furthermore, the upper limit on the vertical integral is evaluated at the vertical
position of the σ surface. Hence, the zonal integral is defined while keeping the vertical position
on the σ surface rather than on a constant geopotential surface.

For the meridional derivative we have

∂Ψ

∂y
= −
ˆ xrock2

xrock1

[
∂

∂y

ˆ z=η(x′,y,σ,t)

ηb(x′,y)
v(x′, y, z′, t) dz′

]
dx′. (64.125)

Focusing on the vertical integral yields (dropping various coordinate dependencies when not
essential)

∂

∂y

ˆ z=η(x′,y,σ)

ηb(x′,y)
v(x′, y, z′) dz′ = v(ησ) ∂yησ − v(ηb) ∂yηb +

ˆ z=η(x′,y,σ)

ηb(x′,y)
∂yv(x

′, y, z′) dz′. (64.126)

Focus again on the vertical integral and make use of the non-divergence condition to yield

ˆ z=η(x′,y,σ)

ηb(x′,y)
∂yv(x

′, y, z′) dz′ = −
ˆ z=η(x′,y,σ)

ηb(x′,y)
[∂x′u(x

′, y, z′) + ∂z′w(x
′, y, z′)] dz′. (64.127)

Leibniz’s rule on the ∂x′u(x
′, y, z′) term then brings us to

∂

∂y

ˆ z=η(x′,y,σ)

ηb(x′,y)
v(x′, y, z′) dz′ = −[w(ησ)− u(ησ) · ∇ησ] + [w(ηb)− u(ηb) · ∇ηb]

− ∂

∂x

ˆ z=η(x′,y,σ)

ηb(x′,y)
u(x′, y, z′) dz′. (64.128)

Recall that w(ηb) − u(ηb) · ∇ηb = 0 from the bottom kinematic boundary condition (19.56).
Furthermore, from equation (64.35f) for the dia-surface velocity, we have

w(ησ)− u(ησ) · ∇ησ = w(σ̇) + ∂tησ. (64.129)

Bringing these results together then renders

∂Ψ

∂y
=

ˆ xrock2

xrock1

[w(σ̇)(x′, y, z = ησ) + ∂tησ] dx
′, (64.130)

where we set
u(xrock

1 ) = u(xrock
2 ) = 0. (64.131)
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We conclude that Ψ(y, σ, t) is a streamfunction for the special case where σ is time independent,
in which case

∂Ψ

∂y
=

ˆ xrock2

xrock1

w(σ̇)(x′, y, z = ησ) dx
′ =W (σ̇)(y, σ, t). (64.132)

We can understand the need for time independence since that ensures that the flow underneath
the σ surface is non-divergent, much like the case for a shallow water model in steady state (see
Chapter 35). In the literature, one can find Ψ(y, σ, t) referred to as a streamfunction even when
the flow has time dependence, in which case extra caution is needed if inferring the associated
flow patterns.
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Chapter 65

DYNAMICAL EQUATIONS

In this chapter we derive the dynamical equations for momentum, vorticity, and potential
vorticity using generalized vertical coordinates. These equations provide the foundations for
many numerical models of the atmosphere and ocean. Besides being essential for developing
methods for numerical simulations, understanding the physical and mathematical basis of these
equations supports the analysis of simulations.

reader’s guide to this chapter
We assume a working knowledge of the mathematics of generalized vertical coordinates as

detailed in Chapter 63 and the corresponding kinematics in Chapter 64. We make particular
use of the layer integrated notions introduced for mass continuity and the tracer equations in
Sections 64.9 and 64.10. We also make use of the dynamical equations derived in Chapter
24. For most purposes in this chapter we find Cartesian horizontal coordinates sufficient.
However, we note some places where spherical coordinates warrant special consideration.

65.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1847
65.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1848
65.1.2 Mass and tracer equations . . . . . . . . . . . . . . . . . . . . . . 1848
65.1.3 Momentum equation . . . . . . . . . . . . . . . . . . . . . . . . . 1848
65.1.4 Flux-form horizontal momentum equation . . . . . . . . . . . . . 1849
65.1.5 Vector-invariant horizontal momentum equation . . . . . . . . . . 1849
65.1.6 Hydrostatic balance with constant gravitational acceleration . . . 1850

65.2 Concerning the pressure force . . . . . . . . . . . . . . . . . . . . . . . . 1850
65.2.1 Computing the horizontal pressure gradient . . . . . . . . . . . . 1851
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65.3 Hydrostatic vorticity and potential vorticity . . . . . . . . . . . . . . . . 1853
65.3.1 Basic manipulations . . . . . . . . . . . . . . . . . . . . . . . . . 1854
65.3.2 Vorticity and potential vorticity equation . . . . . . . . . . . . . 1855
65.3.3 Boussinesq ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856

65.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856

65.1 Equations of motion
We here derive the equations of motion based on generalized vertical coordinates. The scalar
equations were already discussed in Sections 64.8, 64.9, and 64.10, so our main focus concerns
the momentum equation.
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65.1.1 Notation
For much of this chapter we focus on the continuous formulation of the generalized vertical
coordinates. Following the discussion in Section 64.2, we encounter the specific thickness
throughout the equations

h =
∂z

∂σ
= zσ. (65.1)

Using this notation we write the dia-surface transport velocity as

w(σ̇) =
∂z

∂σ
σ̇ = h σ̇, (65.2)

and the dia-surface advection operator is

w(σ̇) ∂z = σ̇ ∂σ. (65.3)

65.1.2 Mass and tracer equations
The mass and tracer equations were derived in Sections 64.8, 64.9, and 64.10, with their
continuous vertical coordinate formulation given by

∂(ρ h)

∂t
+∇hσ · (ρ hu) + ∂σ(ρ h σ̇) = 0 (65.4a)

∂(h ρC)

∂t
+∇hσ · (h ρC u+ h Jh) + ∂σ(ρ h σ̇ C + h∇σ · J) = 0. (65.4b)

Compatibility is maintained between the mass continuity equation (65.4a) and the tracer equation
(65.4b) so long as the tracer equation reduces to the mass equation upon setting the tracer
concentration to a spatial constant. Hence, for compatibility we must have the subgrid fluxes, J ,
vanish when the tracer is a spatial constant. For example, diffusive fluxes, which are proportional
to the tracer gradient, respect this constraint. These properties originate from our discussion of
mass budgets and the barycentric velocity in Section 20.1.

65.1.3 Momentum equation
From Section 26.13, the horizontal and vertical components to the momentum equation are

ρ
Du

Dt
+ 2 ρΩ× u = −ρ∇hΦ−∇hp+ ρF h (65.5a)

ρ
Dw

Dt
= −ρ ∂Φ

∂z
− ∂p

∂z
+ ρF z. (65.5b)

The simple form of the geopotential sets Φ = g z (Section 13.10), so that the horizontal gradient
of the geopotential vanishes

Φ = g z =⇒ ∇hΦ = 0. (65.6)

However, this gradient is nonzero in the presence of astronomical tide forcing, such as discussed
in Chapter 34.

Horizontal momentum equation

We transform the horizontal derivatives from geopotential coordinates to generalized vertical
coordinates according to (see equation (63.75))

∇h = ∇hσ − (∇hσz) ∂z (65.7)
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thus leading to the horizontal momentum equation

ρ
Du

Dt
+ 2 ρΩ× u = −ρ [∇hσ − (∇hσz) ∂z] Φ− [∇hσ − (∇hσz) ∂z] p+ ρF h. (65.8)

In Section 65.1.6 we present some special cases for this equation that simplify the pressure and
geopotential terms.

Vertical momentum equation

The vertical momentum equation is transformed into

ρ
Dw

Dt
= −∂σ

∂z

[
ρ
∂Φ

∂σ
+
∂p

∂σ

]
+ ρF z, (65.9)

with the hydrostatic form given by
∂p

∂σ
= −ρ ∂Φ

∂σ
. (65.10)

65.1.4 Flux-form horizontal momentum equation
Using Cartesian horizontal coordinates and generalized vertical coordinates, the horizontal
momentum equation includes a contribution from the acceleration that has a form similar to
that for a tracer (Section 64.10)

h ρ
Du

Dt
=

[
∂(h ρ u)

∂t

]
σ

+∇hσ · (h ρ uu) + ∂σ(h ρ u σ̇) (65.11a)

h ρ
Dv

Dt
=

[
∂(h ρ v)

∂t

]
σ

+∇hσ · (h ρ vu) + ∂σ(h ρ v σ̇). (65.11b)

We provide a σ subscript on the time derivative operator to signal that this derivative is taken
with σ held fixed. With spherical coordinates there are additional metric terms appearing on the
right hand side, as detailed in Section 24.3. In particular, there is a metric term that contains
the vertical velocity component, w = Dz/Dt. The appearance of w is awkward since the vertical
velocity is not naturally computed using generalized vertical coordinates. This limitation is
overcome through use of the vector-invariant velocity equation derived in Section 65.1.5.

65.1.5 Vector-invariant horizontal momentum equation
As noted in Section 24.4, the vector-invariant form of the velocity equation eliminates the metric
terms that appear in the non-Cartesian flux-form equations. The vector-invariant form is also
suited for deriving the vorticity equation (see Section 65.3). Here, we start with the material
time derivative in the form (64.50c) appropriate for generalized vertical coordinates, in which
case the horizontal acceleration is given by

Du

Dt
=

[
∂u

∂t

]
σ

+ (u · ∇hσ)u+ (σ̇ ∂σ)u. (65.12)

Now make use of the vector identity (see Section 2.3.4)

(u · ∇hσ)u = ∇hσK + (∇hσ × u)× u, (65.13)

where
K = u · u/2 (65.14)
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is the kinetic energy per mass of the horizontal flow. Introducing the generalized vertical
coordinate version of the relative vorticity (see Section 66.3.1)

ζ̃ ≡ ẑ · (∇hσ × u) =
[
∂v

∂x

]
σ

−
[
∂u

∂y

]
σ

(65.15)

renders
Du

Dt
=

[
∂u

∂t

]
σ

+∇hσ K + ζ̃ ẑ × u+ σ̇ ∂σ u, (65.16)

so that the horizontal momentum equation takes the form[
∂u

∂t

]
σ

+ σ̇
∂u

∂σ
+ (2Ω+ ẑ ζ̃)× u = −∇hσK −∇hΦ− (1/ρ)∇hp+ F h, (65.17)

where again ∇h = ∇hσ− (∇hσz) ∂z as per equation (65.7). This equation is form-invariant regardless
the horizontal coordinates, thus motivating the name vector-invariant.1

65.1.6 Hydrostatic balance with constant gravitational acceleration

There are many special cases that simplify various terms in the momentum equation. For
example, when considering a geopotential in the form Φ = g z (Section 13.10) with g assumed to
be a constant effective gravitational acceleration, then the horizontal momentum equation (65.8)
becomes

ρ
Du

Dt
+ 2 ρΩ× u = −[∇hσ − (∇hσz) ∂z] p+ ρF h. (65.18)

Furthermore, assuming an approximate hydrostatic balance (and corresponding simplification of
the Coriolis acceleration as per Section 27.1.3) allows us to write ∂p/∂z = −g ρ so that

ρ
Du

Dt
+ ρ f ẑ × u = −[∇hσp+ ρ∇hσΦ] + ρF h, (65.19)

which also takes on the vector-invariant form[
∂u

∂t

]
σ

+ σ̇
∂u

∂σ
+ (f + ζ̃) ẑ × u = −∇hσ(K +Φ)− (1/ρ)∇hσp+ F h. (65.20)

This form is commonly used for hydrostatic models of the ocean and atmosphere, such as
discussed in Griffies et al. (2020).

65.2 Concerning the pressure force

As seen in Section 25.2.3, the pressure force acting on a fluid region is given by the integral

F press = −
˛
∂R
p n̂dS = −

ˆ
R

∇p dV, (65.21)

where the second equality follows from Gauss’s divergence theorem applied to a scalar field
(Section 2.7.2). We refer to the right-most expression as the pressure gradient body force, and
this expression is the basis for the discussion in Sections 65.1.6 and 65.2.1. In this formulation,
the pressure force at a point is oriented down the pressure gradient, so that the net pressure
force acting on a region is the volume integral of pressure gradient.

1See Section 4.4.4 of Griffies (2004) for a detailed derivation using arbitrary horizontal coordinates.
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The middle expression in equation (65.21) formulates the pressure force as the area integrated
pressure contact force acting on the region boundaries. In this form, the pressure acting on
a region is computed as the integral of pressure over the area bounding the region, with the
orientation determined by the inward normal at each point on the boundary. Much of this
section is concerned with the contact force expression as a basis for computing the pressure force
acting on a finite region as shown in Figure 65.2. The contact force perspective was taken by
Lin (1997) and Adcroft et al. (2008) in their finite volume approach to computing the pressure
force acting on a numerical model grid cell.

65.2.1 Computing the horizontal pressure gradient

σ

x

z

#
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Figure 65.1: Illustrating how the horizontal pressure gradient is decomposed into two terms, one aligned with
the surface of constant σ, and another associated with the slope of the σ-surface relative to the horizontal,
tanϑ = (∂z/∂x)σ. We here consider the decomposition using terrain following vertical coordinates, where the
vertical coordinate is aligned according to the solid-earth bottom (shaded region). Specifically, for terrain following
Boussinesq ocean models we set σ = (z−η)/(−ηb+η), where z = η(x, y, t) is the ocean free surface and z = ηb(x, y)
is the ocean bottom topography. Terrain-following atmospheric models have a similar definition, often using
pressure rather than geopotential so that σ = (p − pa)/(pb − pa), where p is the pressure, pa = pa(x, y, t) is the
pressure applied at the top of the atmosphere (typically assumed to be zero), and pb = pb(x, y, t) is the pressure
at the bottom of the atmosphere.

The horizontal pressure gradient is aligned perpendicular to the local gravitational direction.
It is generally among the dominant horizontal forces acting on a fluid element. Hence, its
accurate representation in numerical models is crucial for the physical integrity of a simulation.
Unfortunately, decomposition of the horizontal pressure gradient into two terms according to the
transformation (65.7) can lead to numerical difficulties. For example, with a simple geopotential
and a hydrostatic fluid, equation (65.19) shows that the horizontal pressure gradient takes the
form

∇hp = ∇hσp+ ρ∇hσΦ = ∇hσp+ g ρ∇hσz, (65.22)

with this decomposition illustrated in Figure 65.1 for the case of terrain following vertical
coordinates. Numerical difficulties occur when the two terms on the right hand side have
comparable magnitude but distinct signs. We are thus confronted with computing the small
difference between two large numbers, and that situation generally exposes a numerical simulation
to nontrivial truncation errors. Unfortunately, these errors can corrupt the integrity of the
computed pressure forces and in turn contribute to spurious flow. An overview of this issue for
ocean models is given by Haney (1991), Mellor et al. (1998), Griffies et al. (2000), with advances
offered by Lin (1997), Shchepetkin and McWilliams (2002), and Adcroft et al. (2008). In the
remainder of this section, we outline a finite volume method for computing the pressure force as
proposed by Lin (1997) for atmosphere models and Adcroft et al. (2008) for ocean models. This
approach starts from the middle expression in equation (65.21) for the pressure force; i.e., it
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formulates the pressure force as the area integral of the pressure contact force rather than the
volume integral of the pressure gradient force.

65.2.2 Integrated pressure force on the cell faces

The inward normal on the grid cell vertical side boundaries points in the horizontal direction.
For example, on the left side of Figure 65.2 the pressure force acts in the positive ŷ direction

F press
left = ŷ

ˆ
left

p dx dz (65.23)

whereas pressure on the right wall acts in the opposite direction

F press
right = −ŷ

ˆ
right

p dx dz. (65.24)

Similar expressions appear for the front and back vertical boundaries acting in the x̂ direction.

Since the top and bottom boundaries of the grid cell are sloped, there is a pressure force
acting on this surface directed in both the horizontal and vertical directions. To unpack the
form of this force, write the vertical position of a point on the top interface as z = η(x, y, t) so
that the outward normal is given by

n̂ =
∇(z − η)
|∇(z − η)| =

ẑ −∇η√
1 + |∇η|2

. (65.25)

Following our discussion of dia-surface transport in Section 64.3.5, we know that the product of
the normal direction and the area element can be written

n̂dS = (ẑ −∇η) dA, (65.26)

where dA = dx dy is the horizontal projection of the area element (see Figure 64.3). Hence, the
net pressure force acting on the top face is given by

F press
top = −ẑ

ˆ
top

pdx dy + x̂

ˆ
top

p (∂z/∂x)σ dx dy + ŷ

ˆ
top

p (∂z/∂y)σ dx dy, (65.27)

where we set z = η in the second and third terms and placed a σ subscript to emphasize that the
horizontal derivative is taken with σ held constant. Notice that the pressure acts in the positive
horizontal direction if the top surface slopes upward (surface shoaling) when moving in either of
the two horizontal directions. Pressure acting on the bottom face has the same appearance yet
with opposite signs

F press
bott = ẑ

ˆ
bott

p dx dy − x̂
ˆ

bott

p (∂z/∂x)σ dx dy − ŷ
ˆ

bott

p (∂z/∂y)σ dx dy. (65.28)

The pressure acts in the positive horizontal direction if the bottom surface slopes downward
(surface deepens) when moving in either of the two horizontal directions. As discussed in Section
25.2.3, the horizontal pressure acting on a sloped surface is known as form stress. Here the
sloped surface is defined by a constant generalized vertical coordinate.
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65.2.3 Net vertical pressure force
Bringing the pieces together leads to the net vertical pressure force acting on the grid cell

F press
vertical = −ẑ

[ˆ
top

p dx dy −
ˆ

bott

p dx dy

]
. (65.29)

If the fluid is in hydrostatic balance, then this vertical force is given by the weight of fluid within
the cell

F press
vertical = ẑMg, (65.30)

where M is the mass of fluid in the grid cell. The net vertical hydrostatic pressure force acts
vertically upward since hydrostatic pressure at the cell bottom is greater than at the cell top.

65.2.4 Net horizontal pressure force
The net meridional pressure force is given by the forces acting on the sides as well as those
acting on the sloped top and bottom boundaries

F press
merid =

[ˆ
left

p dx dz −
ˆ

right

p dx dz

]
+

[ˆ
top

p (∂z/∂y)σ dx dy −
ˆ

bott

p (∂z/∂y)σ dx dy

]
.

(65.31)
We can write this expression in a more compact form by orienting our integration in a counter-
clockwise manner around the cell boundaries, and making use of the identity (∂z/∂y)σ dy = dz
on the top and bottom faces, so that

F press
merid = −

‰
p dx dz. (65.32)

For some purposes it is more convenient to work with the geopotential, Φ = g z, than the
pressure. In this case we can write the meridional pressure force as

F press
merid = −

‰
pdx dz = −

‰
dx [d(p z)− z dp] = g−1

‰
Φdx dp, (65.33)

where

dx d(p z) = 0. This form is useful with compressible / non-Boussinesq models, in which

pressure is a natural vertical coordinate (e.g., see the caption to Figure 65.1).

65.2.5 Comments
A numerical realization of the integrated contact pressure force requires a representation of
pressure along the boundaries of the grid cell. A variety of methods are available with differing
accuracies. Adcroft et al. (2008) are notable in proposing an analytic form that allows for an exact
integration along the cell faces in special cases, and a highly accurate numerical integration in
other cases. In general, this method for computing pressure forces is highly suited to generalized
vertical coordinate grid cells, which was the motivation offered by Lin (1997) in the context of
terrain following atmospheric models.

65.3 Hydrostatic vorticity and potential vorticity
Generalized vertical coordinates are most commonly used to study hydrostatic fluids. We are
thus motivated to develop the evolution equation for the vertical component of vorticity, ζ̃, in a
hydrostatic fluid as written using generalized vertical coordinates. By extension, we derive the
budget equation for the corresponding potential vorticity.
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Figure 65.2: Schematic of pressure forces acting on the boundaries of a finite region such as a discrete model
grid cell. In generalized vertical coordinate models, the side faces are vertical, so that pressure acts only in the
horizontal directions. The top and bottom faces are defined by surfaces of constant generalized vertical coordinates
with depth σ(x, y, z, t) = constant. We assume that these surfaces have an outward normal that has a nonzero
projection into the vertical so that we can write the depth of a point on these surfaces as z = η(x, y, t). Because
of the slope of the top and bottom surfaces, pressure has both a horizontal and vertical component when acting
on these surfaces. The net pressure acting on the grid cell is given by the area integral of the pressures around the
grid cell boundary.

65.3.1 Basic manipulations

Recall the the vector-invariant velocity equation given by equation (65.20)[
∂u

∂t

]
σ

+ σ̇
∂u

∂σ
+ ζ̃a ẑ × u = −∇hσ(K +Φ)− (1/ρ)∇hσp+ F h, (65.34)

where ζ̃a = ζ̃ + f is the absolute vorticity. Taking the curl of this equation and projecting onto
the vertical direction leads to

Dζ̃a
Dt

= −ζ̃a∇hσ · u+
ẑ · (∇hσρ×∇hσp)

ρ2
+ ẑ ·

[
∂u

∂σ
×∇hσσ̇ +∇hσ × F h

]
(65.35)

where we noted that the planetary vorticity, f , is independent of time and vertical position.

Making use of the mass conservation equation

Mass conservation in the form of equation (64.85)

1

ρ h

D(ρ h)

Dt
= −(∇hσ · u+ ∂σ̇/∂σ), (65.36)

renders

ρ h
D

Dt

[
ζ̃a
ρ h

]
=
ẑ · (∇hσρ×∇hσp)

ρ2
+ ζ̃a

∂σ̇

∂σ
+ ẑ ·

[
∂u

∂σ
×∇hσσ̇ +∇hσ × F h

]
. (65.37)
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Massaging the σ̇ terms

The terms containing σ̇ can be written in the form

ζ̃a ∂σσ̇ + ẑ · (∂σu×∇hσσ̇) = ζ̃a ∂σσ̇ + ẑ · [−∇hσ × (σ̇ ∂σu) + σ̇∇hσ × ∂σu] (65.38a)

= ζ̃a ∂σσ̇ + σ̇ ∂σ ζ̃a − ẑ · [∇hσ × (σ̇ ∂σu)] (65.38b)

= ∂σ(σ̇ ζ̃a)− ẑ · [∇hσ × (σ̇ ∂σu)] . (65.38c)

65.3.2 Vorticity and potential vorticity equation

The above results allow us to write equation (65.37) in the form

ρ h
DQ

Dt
=
ẑ · (∇hσρ×∇hσp)

ρ2
+ ∂σ(σ̇ ζ̃a) +∇hσ · [ẑ × σ̇ ∂σu− ẑ × F h] , (65.39)

where we introduced the potential vorticity defined according to the generalized vertical coordi-
nates

Q =
ζ̃a
ρ h

. (65.40)

The potential vorticity equation (65.39) has a generally nonzero baroclinicity contribution (see
Section 40.4 for more on baroclinicity)

ẑ · (∇hσρ×∇hσp)
ρ2

, (65.41)

so that the potential vorticity (65.40) is generally not materially invariant even if σ̇ = 0. Finally,
note that it is sometimes convenient to make use of the potential vorticity (65.40) in the
horizontal velocity equation (65.34) so that[

∂u

∂t

]
σ

+ σ̇
∂u

∂σ
+ (h ρQ) ẑ × u = −∇hσ(K +Φ)− (1/ρ)∇hσp+ F h. (65.42)

Pressure coordinates

The baroclinicity (65.41) vanishes when choosing σ = p. We already noted this property in the
discussion of baroclinicity in Section 40.4. As noted there, pressure does not render a useful
potential vorticity since σ̇ = ṗ does not generally vanish for a perfect fluid. Namely, a nonzero
ṗ merely signals vertical motion, so that ṗ ̸= 0 for both real and perfect fluids. Hence, even
though the baroclinicity vanishes by choosing σ = p, the ∂σ(σ̇ ζ̃a) term does not.

Flux-form potential vorticity budget

Just like we did in Section 65.1.4 for the velocity equation, we can make use of the thickness
equation (65.4a) to bring the material time derivative in equation (65.39) into the form

ρ h
DQ

Dt
= ρ h (∂t + u · ∇hσ + σ̇∂σ)Q+Q [∂t(ρ h) +∇hσ · (ρ hu) + ∂σ(ρ h σ̇)] (65.43a)

= ∂t(ρ hQ) +∇hσ · (ρ huQ) + ∂σ(ρ h σ̇ Q). (65.43b)

Since ζ̃a = h ρQ, we see that the term

∂σ(ρ h σ̇ Q) = ∂σ(σ̇ ζ̃a), (65.44)
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also appears on the right hand side of equation (65.39). Hence, it cancels from the flux form
potential vorticity equation[

∂(ρ hQ)

∂t

]
σ

=
ẑ · (∇hσρ×∇hσp)

ρ2
−∇hσ · [ρ huQ+ ẑ × σ̇ ∂σu+ ẑ × F h] , (65.45)

which is equivalent to the absolute vorticity equation[
∂ζ̃a
∂t

]
σ

=
ẑ · (∇hσρ×∇hσp)

ρ2
−∇hσ ·

[
u ζ̃a + ẑ × σ̇ ∂σu+ ẑ × F h

]
. (65.46)

As a check, note that setting σ = z so that h = 1 reduces the vorticity equation (65.46) to the
vertical component of the vorticity equation (40.42).

65.3.3 Boussinesq ocean
Recall the discussion of the Boussinesq ocean vorticity budget in Section 40.7, where we noted
that the vertical component to the absolute vorticity is unaffected by baroclinicity. This property
holds in the present context, as seen by returning to the vector-invariant velocity equation (65.34)
and setting the factor 1/ρ multiplying the pressure gradient to 1/ρo as part of the Boussinesq
ocean

(1/ρ)∇hσp −→ (1/ρo)∇hσp, (65.47)

in which ρo is a constant. In this case the ∇hσ× operation annihilates pressure and we are left with
no vertical component to the baroclinicity. We are thus led to define the Boussinesq potential
vorticity

Q =
ζ̃a
h

(65.48)

which satisfies the material and flux-form evolution equations

h
DQ

Dt
= ∂σ(σ̇ hQ) +∇hσ · [ẑ × σ̇ ∂σu− ẑ × F h] (65.49)[

∂(hQ)

∂t

]
σ

= −∇hσ · [huQ+ ẑ × σ̇ ∂σu+ ẑ × F h] . (65.50)

We again emphasize that σ̇ is generally non-zero, even for a perfect fluid, so that potential
vorticity as defined via σ is not generally a material constant for a perfect fluid. It is only when
σ̇ = 0 for a perfect fluid (e.g., σ is buoyancy or specific entropy) that we recover the desirable
perfect fluid properties of potential vorticity. We develop the theory for this case in Sections
66.3 and 66.4.

65.4 Exercises
exercise 65.1: Checking the vorticity equation
Verify that for 2Ω = f ẑ the choice σ = z reduces the vorticity equation (65.46) to the vertical
component of the vorticity equation (40.42).
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Chapter 66

ISOPYCNAL PRIMITIVE EQUATIONS

For stably stratified fluids, buoyancy is a particularly useful generalized vertical coordinate.
Most notably, physical processes away from turbulent boundary layers are oriented according
to buoyancy surfaces, and horizontal buoyancy gradients give rise to thermal wind shears in
a geostrophically balanced flow. For this reason buoyancy (or entropy) plays a key role in
theoretical and numerical models of ocean and atmospheric circulation.

In this chapter we study the hydrostatic Boussinesq equations using buoyancy as the vertical
coordinate. The resulting primitive equation set forms the basis for isopycnal models of the
ocean or isentropic models of the atmosphere. We pay particular attention to the needs of
vertically integrating the equations over discrete layers, as required to develop discrete numerical
models. In the adiabatic limit, the isopycnal equations reduce to the stacked shallow water
equations. After deriving the primitive equations using isopycnal coordinates, we derive the
corresponding vorticity and potential vorticity equations. Throughout this chapter we expose
details for the practitioner interested in the mathematical formalism for the purpose of analyzing
ocean momentum, vorticity and potential vorticity budgets using isopycnal models.

reader’s guide for this chapter
We assume an understanding of the generalized vertical coordinate mathematics in Chapter

63, kinematics in Chapter 64, and dynamics in Chapter 65. Furthermore, we are concerned
with details of vorticity and PV budgets in isopycnal coordinates, with the presentation
building from our study of vorticity and potential vorticity in generalized vertical coordinates
from Chapter 65.
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66.1. LOOSE THREADS

66.4.1 Derivation method I . . . . . . . . . . . . . . . . . . . . . . . . . 1866
66.4.2 Derivation method II . . . . . . . . . . . . . . . . . . . . . . . . . 1867
66.4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1869

66.1 Loose threads
When defining PV using h versus h, it is best to use different symbols to avoid confusion.

66.2 Layered isopycnal primitive equations
Rather than specializing the generalized vertical coordinate equations provided in Section 65.1, we
find it pedagogical to start from the equations written using the geopotential vertical coordinate
(see Section 29.1.6)

Du

Dt
+ f ẑ × u = −∇hφ+ F horizontal momentum (66.1a)

∂φ

∂z
= b hydrostatic (66.1b)

∇h · u+
∂w

∂z
= 0 continuity (66.1c)

Db

Dt
= ḃ thermodynamics (66.1d)

DC

Dt
= Ċ tracers, (66.1e)

where v = (u, w) is the velocity field, u is its horizontal component, φ is the dynamic pressure,
b is the buoyancy, and C is an arbitrary tracer concentration. A discrete realization of the
isopycnal layer-integrated form of these equations is depicted in Figure 66.1, with the remainder
of this section detailing the formulation using isopycnal coordinates for the vertical.

hk
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Figure 66.1: Schematic of an isopycnal model, formulated as stacked shallow water layers (green layers) that
generally allow for the transfer of matter and energy across the layer interfaces as well as across the ocean surface
and ocean bottom (as depicted by the double-headed dashed arrows). The dark gray region is land. Discrete layer
thicknesses are denoted hk with corresponding layer buoyancy, bk.

66.2.1 Montgomery potential and the pressure force
We here consider the horizontal pressure force appearing in isopycnal models, in which we
uncover the importance of the Montgomery potential.
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Horizontal pressure gradient force

Throughout this chapter we make use of the horizontal derivatives on constant buoyancy surfaces
(derived in Section 63.12), written here in the form

∇hb = x̂
[
∂

∂x

]
b

+ ŷ

[
∂

∂y

]
b

. (66.2)

Following the discussion in Section 65.1.3, the horizontal pressure thus gradient transforms as

∇hφ = ∇hbφ−
∂φ

∂z
∇hbz (66.3a)

= ∇hbφ− b∇hbz (66.3b)

= ∇hb (φ− b z) (66.3c)

= ∇hbM, (66.3d)

where
M = φ− b z (66.4)

defines the Montgomery potential. As the contribution to the horizontal pressure force, the
Montgomery potential is the geostrophic streamfunction in buoyancy coordinates (see Section
66.2.4).

The horizontal pressure gradient force for numerical models

It is notable that the horizontal pressure gradient force is determined by the horizontal isopycnal
gradient of a single term, the Montgomery potential. Furthermore, as shown below, the
Montgomery potential satisfies the buoyancy coordinate form of the hydrostatic balance. Hence,
numerical isopycnal models do not suffer from problems with computing the horizontal pressure
gradient that can occur with other generalized vertical coordinate models, such as terrain-
following models (see Figure 65.1).

Equation (66.3c) is the key step in the formulation, whereby we made use of ∇hbb = 0.
This step is available only under certain cases that utilize an idealized equation of state for
seawater. In more realistic cases, the buoyancy determining the hydrostatic pressure (i.e., the
mass buoyancy) is defined locally whereas the generalized vertical coordinate must be defined
globally. As a result, there are two terms contributing to the pressure gradient in a manner
similar to terrain-following models. Sun et al. (1999) and Hallberg (2005) discuss this issue in the
context of numerical ocean modeling. For present purposes we ignore this detail and continue to
assume a simplified equation of state so that ∇hbb = 0.

Hydrostatic balance

Supporting our use of the Montgomery potential as a pressure field, the hydrostatic balance
takes the form

∂M

∂b
=
∂φ

∂b
− b ∂z

∂b
− z = ∂φ

∂z

∂z

∂b
− b ∂z

∂b
− z = −z, (66.5)

where we made use of the hydrostatic balance ∂φ/∂z = b (equation (66.1b)). This result means
that M is the buoyancy coordinate version of pressure.
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66.2.2 Material time derivative

As seen in Section 64.4, there are two equivalent forms for the material time derivative

D

Dt
=

[
∂

∂t

]
z

+ u · ∇h + w
∂

∂z
geopotential form (66.6a)

=

[
∂

∂t

]
b

+ u · ∇hb + w(ḃ) ∂

∂z
isopycnal form, (66.6b)

where

w(ḃ) =
∂z

∂b

Db

Dt
(66.7)

is the diapycnal velocity component that measures the rate of flow crossing buoyancy surfaces
(Section 64.3). Besides differences in the spatial operators, it is important to note that the time
derivative operators in equations (66.6a) and (66.6b) are computed on constant geopotential
and constant buoyancy surfaces, respectively. However, the horizontal velocity component is the
same for both forms of the material time derivative

u = x̂u+ ŷ v = (D/Dt) (x̂x+ ŷ y). (66.8)

66.2.3 Layer thickness and specific thickness

The continuity equation, ∇h · u+ ∂zw = 0, is an expression of volume conservation. We already
derived the generalized vertical coordinate version of this equation in Section 64.9.3, and thus
quote the isopycnal layer thickness result here[

∂h

∂t

]
b

+∇hb · (hu) + ∆bw
(ḃ) = 0. (66.9)

The field h measures the isopycnal layer thickness (dimensions of length) and is given by the
vertical integral over a layer

h =

ˆ z(b+δb/2)

z(b−δb/2)
dz =

ˆ b+δb/2

b−δb/2

∂z

∂b
db =

ˆ b+δb/2

b−δb/2
h db =

ˆ b+δb/2

b−δb/2
N−2 db = h db. (66.10)

The specific thickness, h, equals to the inverse squared buoyancy frequency

h =
∂z

∂b
= N−2, (66.11)

and its layer averaged value is
h = h/δb. (66.12)

Furthermore, the dia-surface transport velocity is given by

w(ḃ) = h ḃ. (66.13)

Its difference across layer interfaces

∆bw
(ḃ) =

ˆ b+δb/2

b−δb/2

∂w(ḃ)

∂b
db = w(ḃ)(b+ δb/2)− w(ḃ)(b− δb/2) (66.14)

measures the amount of fluid that diverges from the layer through cross-layer transport.

In the limit that δb→ 0, we find that the non-dimensional vertical difference operator can
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be written in one of the following equivalant manners

lim
δb→0

∆b = δb
∂

∂b
= δb

∂z

∂b

∂

∂z
= δz

∂

∂z
= h

∂

∂z
. (66.15)

The relations are useful in moving between discrete and continuous formulations of the isopycnal
equations.

Specific thickness equation

Inserting h = h δb into the thickness equation (66.9) leads to[
∂h

∂t

]
b

+∇hb · (hu) + ∂bw
(ḃ) = 0, (66.16)

where we pulled the buoyancy increment, δb, outside of the time and horizontal derivative
operators since δb is a fixed number for a chosen layer. We also used the identity (66.15) relating
the difference operator to a differential operator

δb ∂b = ∆b. (66.17)

For a vertically continuous treatment, equation (66.16) can be written with h rather than the
discrete layer averaged value [

∂h

∂t

]
b

+∇hb · (hu) + ∂bw
(ḃ) = 0. (66.18)

It is generally more convenient to use the specific thickness when working with the vertically
continuous equations, whereas the finite layer thickness, h, is more suitable for the layer integrated
equations.

Adiabatic limit

When w(ḃ) ̸= 0, the three terms in the thickness equation (66.9) or the specific thickness equation
(66.16) are coupled. We discussed this coupling in Section 64.5 as part of our broader study
of the vertical velocity and the dia-surface velocity. When considering perfect fluids, we can
set w(ḃ) = h ḃ = 0 since the fluid has no mixing. In this case the layer thickness is altered only
through horizontal rearrangements of volume within a layer according to the adiabatic thickness
equation [

∂h

∂t

]
b

+∇hb · (hu) = 0. (66.19)

As further discussed in Section 66.2.7, the adiabatic limit brings the discrete isopycnal model
into accord with the immiscible stacked shallow water models discussed in Part VI of this book.

66.2.4 Ocean equations
Bringing the pieces together leads to the isopycnal version of the hydrostatic Boussinesq equations,
which are the basis for numerical isopycnal ocean models[

∂u

∂t

]
b

+ (u · ∇hb)u+ (w(ḃ) ∂z)u+ f ẑ × u = −∇hbM + F h (66.20a)

∂M

∂b
= −z (66.20b)
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[
∂h

∂t

]
b

+∇hb · (hu) + ∆bw
(ḃ) = 0 (66.20c)[

∂(hC)

∂t

]
b

+∇hb · (hC u+ hJh) + ∆b(C w
(ḃ) + J (b)) = 0, (66.20d)

where the tracer equation includes possible subgrid scale flux contributions as well as advective
transport. Notice how the advective transport is two-dimensional in the adiabatic case with
ḃ = 0, in which case layer-integrated scalar properties, such as volume and tracer content, are
constant within buoyancy layers. Also note that geostrophic balance in the horizontal momentum
equation (66.20a) gives

f ẑ × ug = −∇hbM =⇒ f ug = −
[
∂M

∂y

]
b

and f vg =

[
∂M

∂x

]
b

. (66.21)

Hence, the Montgomery potential is the streamfunction for geostrophic flow as represented using
buoyancy coordinates.

66.2.5 Thickness weighted velocity equation

As in our discusion of the stacked shallow water system in Section 36.3, we can write the velocity
equation (66.20a) in its thickness weighted form, with this form suited to studying momentum
balances and pressure form stresses. The manipulations are directly analogous to the shallow
water case in Section 36.3, whereby we multiply equation (66.20a) by the thickness, h, and
multiply the thickness equation (66.20c) by the horizontal velocity, u, and then summing to find[

∂(hu)

∂t

]
b

+∇hb · (hu⊗ u) + ∆b(w
(ḃ) u) + f ẑ × (hu) = −h∇hbM + hF h. (66.22)

For the diapycnal transfer term, we made use of the identity

lim
δb→0

∆b = h ∂z (66.23)

from equation (66.15).

66.2.6 Vector-invariant horizontal momentum equation

It is common for isopycnal models to make use of the vector-invariant form of the momentum
equation derived in Section 65.1.5. Introducing the isopycnal version of the relative vorticity

ẑ ζ̃ ≡ ∇hb × u =

[
∂v

∂x

]
b

−
[
∂u

∂y

]
b

(66.24)

renders the vector-invariant horizontal momentum equation[
∂u

∂t

]
b

+ w(ḃ) ∂zu+ ζ̃a ẑ × u = −∇hbB + F h, (66.25)

where
B =M + u · u/2 = φ− b z + u · u/2 (66.26)

is the Bernoulli potential for a hydrostatic Boussinesq fluid (see Section 26.9.3), and

ζ̃a = ζ̃ + f (66.27)

page 1862 of 2158 geophysical fluid mechanics



66.2. LAYERED ISOPYCNAL PRIMITIVE EQUATIONS

is the vertical component to the absolute vorticity using isopycnal coordinates. Note that we
can further introduce the isopycnal potential vorticity (Section 66.3.2)

hQ = ζ̃a (66.28)

to bring the momentum equation to the form[
∂u

∂t

]
b

+ w(ḃ) ∂zu+Q ẑ × (hu) = −∇hbB + F h. (66.29)

This form is commonly used as the starting point for certain theoretical analyses, particularly
when considering the adiabatic limit in which w(ḃ) = 0.

66.2.7 Connection to the stacked shallow water equations
We can make use of the material time derivative operator (66.6b) to write the material form of
the adiabatic and inviscid equations (66.20a)-(66.20c)

Du

Dt
+ f ẑ × u = −∇hbM (66.30a)

∂M

∂b
= −z (66.30b)

Dh

Dt
+ h∇hb · u = 0. (66.30c)

These isopycnal momentum and thickness equations are isomorphic to those for a single layer
of adiabatic shallow water fluid (see Section 35.2). This isomorphism allows us to derive the
vorticity and potential vorticity equations in Section 66.3, making use of the shallow water
manipulations from Section 39.3.

66.2.8 Diapycnal transfer

At ocean boundaries, the diapycnal term, w(ḃ), acccounts for the transfer of matter across the
ocean boundaries via precipitation, evaporation, ice melt/form, and river runoff. Notably, this
matter transfer also generally gives rise to a transfer of trace matter (tracers), heat (evaporation
and precipitation carry a heat content), and momentum (precipitation generally has nonzero

momentum). In the ocean interior, w(ḃ) affects the transfer of volume, tracer, and momentum
between layers as induced by irreversible processes such as mixing.

66.2.9 Momentum transfer
Pressure form stress mechanically couples isopycnal layers even in the absence of diapycnal matter
transfer. We discussed the physics of form stress for the shallow water system in Section 36.4
and more generally in Section 28.1. Furthermore, there are a suite of unresolved processes giving
rise to lateral and vertical stresses. Typical ocean model treatments incorporate a turbulent
friction in the ocean interior, with lateral stresses acting within a layer and diapycnal stresses
acting across isopycnal layer interfaces. A bottom drag is typically applied at the ocean bottom
and a turbulent stress applied at the ocean surface. Details for the boundary stresses involve
the physics of boundary layer turbulence, which is a topic outside of our scope.

66.2.10 Allowing for layers to vanish and reappear
Isopycnal layers have a transient existence at any particular horizontal position since a layer can
incrop at the ocean bottom and outcrop at the ocean surface (see Figure 66.1). The seasonal
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cycle of warming and cooling is a canonical example of layer outcropping at the surface ocean. A
formulational expedient to handle vanishing layers is to assume that all layers exist everywhere
horizontally across the ocean domain, but to allow for zero layer thickness where a layer has zero
volume. We made use of this approach when discussing available potential energy in Section
29.9. To admit this feature in a discrete model requires a careful realization of L‘Hôpital’s rule
of differential calculus, thus ensuring the discrete model conserves properties in the presence of
layers that can appear and disappear at any particular point in the domain.

66.3 Perfect fluid PV using isopycnal coordinates
In Section 41.5, we showed that the absolute vorticity in a Boussinesq hydrostatic fluid with a
simplified seawater equation of state (Section 42.3), when projected into the direction normal
to constant buoyancy surface, ωa · ∇b, is not affected by baroclinicity; i.e., that projection
annihilates the baroclinicity vector. From that property we conclude that ωa ·∇b is the potential
vorticity for the Boussinesq hydrostatic fluid.

For a Boussinesq hydrostatic fluid, isopycnal coordinates build in the above feature of
buoyancy surfaces. Indeed, as shown in Section 65.3.3, the vertical component to baroclinicity
vanishes for any generalized vertical coordinate representation of a Boussinesq fluid. Hence,
buoyancy coordinates are not special from this perspective. Instead, they are special since in the
case of a perfect fluid, the buoyancy based potential vorticity is materially invariant. Deriving
this result is one purpose of this section. Note that in Section 65.3, we derived the potential
vorticity equation for a hydrostatic fluid represented with generalized vertical coordinates. We
could merely specialize that result to the current case. However, we prefer to here work through
the maths to help further our experience performing certain of the key manipulations arising
with vorticity in rotating and stratified fluids. Hence, consider this section, as well as Section
66.4, to be extended worked exercises.

66.3.1 Derivation of the vorticity equation
Acting with the vertical projection of the curl, ẑ · (∇hb×), onto the adiabatic and inviscid form
of the vector-invariant velocity equation (66.25) leads to the isopycnal vorticity equation[

∂ζ̃a
∂t

]
b

+ (u · ∇hb) ζ̃a = −ζ̃a∇hb · u (66.31)

where
ζ̃a = f + ẑ · (∇hb × u) = f + ζ̃ (66.32)

is the absolute vorticity, written as the planetary vorticity plus the isopycnal relative vorticity.
The left hand side of equation (66.31) is the material time derivative of absolute vorticity (see
equation (66.6b)), so that we can write

Dζ̃a
Dt

= −ζ̃a∇hb · u. (66.33)

As advertised above, there is no baroclinicity vector on the right hand side of this vorticity
equation. Again, that property results from our choice to use isopycnal coordinates.

66.3.2 Derivation of the potential vorticity equation
We now make use of the thickness equation derived in Section 66.2.3, here realized in its material
form to eliminate the convergence ∇hb ·u on the right hand side of equation (66.33), thus leading
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to
Dζ̃a
Dt
− ζ̃a
h

Dh

Dt
= 0. (66.34)

Introducing the isopycnal potential vorticity

Q =
ζ̃a
h

=
f + ζ̃

h
(66.35)

leads to
DQ

Dt
= 0. (66.36)

Expanding the material time derivative into its components according to equation (66.6b), and
making use of the adiabatic form of the thickness equation leads to the flux-form equation[

∂ (hQ)

∂t

]
b

+∇hb · (hQu) = 0. (66.37)

As noted in Section 66.2.3, when formulating the vertically continuous equations rather than
finite thickness layered equations, it is more convenient to make use of the specific thickness, h,
rather than the layer thickness, h. In this case we are motivated to define the potential vorticity
as

Q =
ζ̃a
h

=
f + ζ̃

h
= (f + ζ̃)N2. (66.38)

The corresponding PV equation is identical to equation (66.37), only now with h replaced by h.

66.3.3 Coordinate transforming vorticity and potential vorticity
As just shown, PV for a hydrostatic Boussinesq fluid can be written in the relatively simple form
of a shallow water PV when choosing isopycnal coordinates. Here is a direct transformation
from Cartesian to isopyncal coordinates that also reveals this form

(ωhy + f ẑ) · ∇b = −∂v
∂z

∂b

∂x
+
∂u

∂z

∂b

∂y
+

(
∂v

∂x
− ∂u

∂y
+ f

)
∂b

∂z
(66.39a)

=
∂b

∂z

[
f +

(
∂v

∂x
− ∂v

∂z

∂b/∂x

∂b/∂z

)
−
(
∂u

∂y
− ∂u

∂z

∂b/∂y

∂b/∂z

)]
(66.39b)

=
∂b

∂z

[
f +

(
∂v

∂x

)
b

−
(
∂u

∂y

)
b

]
(66.39c)

=
f + (∂v/∂x)b − (∂u/∂y)b

∂z/∂b
(66.39d)

=
f + ζ̃

h
(66.39e)

= Q. (66.39f)

66.4 Isopycnal coordinate PV with irreversible processes
In Section 66.3, we considered the PV equation for an adiabatic, inviscid, hydrostatic, Boussinesq
fluid using isopycnal vertical coordinates. We here extend to the case of friction in the momentum
equation and diabatic heating in the buoyancy equation. We consider two ways to derive the
governing equations. One is to convert the non-hydrostatic PV equation in Exercise 41.2 to
isopycnal coordinates, after making the hydrostatic approximation. The second is to start from
the equations of motion in isopycnal coordinates and derive the vorticity equation and then the
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PV equation. We make use of the vertically continuous equations, thus warranting our use of
specific thickness, h, rather than layer thickness, h (see Section 66.2.3).

Note that much of this section is a specialization of the more general considerations of Section
65.3. Nonetheless, we here revisit some of the earlier derivations as a means to bolster our
mathematical manipulation muscle.

66.4.1 Derivation method I
As derived earlier in this chapter, the equations of motion with diabatic heating and friction,
written using isopycnal (or buoyancy) vertical coordinates, take the form[

∂u

∂t

]
b

+ (u · ∇hb)u+ ḃ
∂u

∂b
+ f × u = −∇hbM + F (66.40a)

∂M

∂b
= −z (66.40b)[

∂h

∂t

]
b

+∇hb · (hu) = −
∂(h ḃ)

∂b
(66.40c)

D b

Dt
= ḃ. (66.40d)

Note that in this section choose to write the dia-surface transport operator in the form

w(ḃ) ∂z = ḃ ∂b. (66.41)

We can make use of the material time derivative operator (66.6b) to write the material form of
the equations

Du

Dt
+ f × u = −∇hbM + F (66.42a)

∂M

∂b
= −z (66.42b)

Dh

Dt
+ h∇hb · u = −h ∂ḃ

∂b
. (66.42c)

Curl of the velocity equation

We start taking the curl, ∇hb×, of the velocity equation (66.40a), thus leading to the isopycnal
vorticity equation[

∂ζ̃a
∂t

]
b

+ (u · ∇hb) ζ̃a + ḃ

[
∂ζ̃a
∂b

]
= −ζ̃a∇hb · u+ ẑ ·

[
∂u

∂b
×∇hbḃ+∇hb × F

]
. (66.43)

The left hand side of equation (66.43) is the material time derivative of absolute vorticity (see
equation (66.6b)), so that

Dζ̃a
Dt

= −ζ̃a∇hb · u+ ẑ ·
[
∂u

∂b
×∇hbḃ+∇hb × F

]
. (66.44)

Now make use of the thickness equation in the material form (66.42c) to eliminate the convergence
∇hb · u on the right hand side, thus leading to

Dζ̃a
Dt
− ζ̃a

h

[
Dh

Dt
− h

∂ḃ

∂b

]
= ẑ ·

[
∂u

∂b
×∇hbḃ+∇hb × F

]
. (66.45)
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Introducing the isopycnal potential vorticity

Q =
ζ̃a
h

=
ζ̃ + f

h
(66.46)

leads to

h
DQ

Dt
= ζa

∂ḃ

∂b
+ ẑ ·

[
∂u

∂b
×∇hbḃ+∇hb × F

]
. (66.47)

Massaging the diabatic terms

The diabatic terms can be written

ζa
∂ḃ

∂b
+ ẑ ·

[
∂u

∂b
×∇hbḃ

]
= ζa

∂ḃ

∂b
+ ḃ

∂ζ̃

∂b
− ẑ ·

[
∇hb × ḃ

∂u

∂b

]
(66.48a)

= ζa
∂ḃ

∂b
+ ḃ

∂ζ̃a
∂b
− ẑ ·

[
∇hb × ḃ

∂u

∂b

]
(66.48b)

=
∂(ζ̃a ḃ)

∂b
− ẑ ·

[
∇hb × ḃ

∂u

∂b

]
(66.48c)

=
∂(ζ̃a ḃ)

∂b
+∇hb ·

[
ẑ × ḃ∂u

∂b

]
, (66.48d)

where the second equality follows since the Coriolis parameter is independent of the buoyancy.

The PV equation

The PV equation takes the material form

h

[
DQ

Dt

]
=
∂(ζ̃a ḃ)

∂b
+∇hb ·

[
ẑ × ḃ∂u

∂b
− ẑ × F

]
. (66.49)

Expanding the material time derivative into its components (66.6b), and making use of the
thickness equation (66.40c), leads to the flux-form equation[

∂ (hQ)

∂t

]
b

+∇hb · (hQu) +
∂ (hQ ḃ)

∂b
=
∂(ζ̃a ḃ)

∂b
+∇hb ·

[
ẑ × ḃ∂u

∂b
− ẑ × F

]
. (66.50)

Since hQ = ζ̃a, the ∂b terms cancel, thus leaving the flux-form PV equation[
∂ (hQ)

∂t

]
b

= −∇hb ·
[
hQu− ẑ × ḃ∂u

∂b
+ ẑ × F

]
. (66.51)

66.4.2 Derivation method II

The alternative method to derive the PV equation in isopycnal coordinates is to start from the
hydrostatic Boussinesq PV equation in geopotential vertical coordinates, and directly transform
to isopycnal coordinates. For this purpose we start from the discussion in Section 41.5.2 to write
the material evolution of PV for a hydrostatic and Boussinesq fluid

DQ

Dt
= ∇ ·

[
(f ẑ + ωhy) ḃ+ b∇× F

]
, (66.52)
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where

Q = ωhy
a · ∇b = ωhy · ∇b+ f

∂b

∂z
and ωhy = −x̂

∂v

∂z
+ ŷ

∂u

∂z
+ ẑ

[
∂v

∂x
− ∂u

∂y

]
. (66.53)

The simplest term in equation (66.52) to transform to isopycnal coordinates is the curl of
the horizontal friction vector

ẑ · (∇× F ) = ẑ · ∇ × (F x, F y, 0), (66.54)

which takes the form

ẑ · (∇× F ) = h−1 ẑ · (∇hb × F ) = −h−1∇hb · (ẑ × F ). (66.55)

The diabatic term requires some more work. Since the vorticity has zero divergence, the diabatic
term can be written as

∇ ·
[
(f ẑ + ωhy) ḃ

]
= (f ẑ + ωhy) · ∇ḃ (66.56a)

= f
∂ḃ

∂z
− ∂v

∂z

∂ḃ

∂x
+
∂u

∂z

∂ḃ

∂y
+

[
∂v

∂x
− ∂u

∂y

]
∂ḃ

∂z
. (66.56b)

We now introduce horizontal derivatives on isopycnal surfaces according to the following relation
(see Section 63.12.2)

∇h = ∇hb +∇hb
[
∂z

∂b

]
∂

∂z
(66.57)

Doing so leads to

∇ ·
[
(f ẑ + ωhy) ḃ

]
= f

∂ḃ

∂z
− ∂v

∂z

∂ḃ

∂x
+
∂u

∂z

∂ḃ

∂y
+

[
∂v

∂x
− ∂u

∂y

]
∂ḃ

∂z

= f
∂ḃ

∂z
− ∂v

∂z

([
∂ḃ

∂x

]
b

+

[
∂b

∂x

]
z

∂z

∂b

∂ḃ

∂z

)
+
∂u

∂z

([
∂ḃ

∂y

]
b

+

[
∂b

∂y

]
z

∂z

∂b

∂ḃ

∂z

)

+
∂ḃ

∂z

([
∂v

∂x

]
b

+

[
∂b

∂x

]
z

∂z

∂b

∂v

∂z

)
− ∂ḃ

∂z

([
∂u

∂y

]
b

+

[
∂b

∂y

]
z

∂z

∂b

∂u

∂z

)
= f

∂ḃ

∂z
− ∂v

∂z

[
∂ḃ

∂x

]
b

+
∂u

∂z

[
∂ḃ

∂y

]
b

+ ζ̃

[
∂ḃ

∂z

]

=
∂b

∂z

(
ζ̃a

[
∂ḃ

∂b

]
− ∂v

∂b

[
∂ḃ

∂x

]
b

+
∂u

∂b

[
∂ḃ

∂y

]
b

)

= h−1

(
ζ̃a

[
∂ḃ

∂b

]
+ ẑ ·

[
∂u

∂b
×∇hbḃ

])

= h−1

(
ζ̃a

[
∂ḃ

∂b

]
+ ḃ

[
∂ζ̃a
∂b

]
+∇hb ·

[
ẑ × ḃ ∂u

∂b

])

= h−1

(
∂(ḃ ζ̃a)

∂b
+∇hb ·

[
ẑ × ḃ ∂u

∂b

])
. (66.58)

To reach the penultimate step we noted that ∂f/∂b = 0 so that we could form the derivative of
the absolute vorticity. Bringing the pieces together leads to the PV equation (66.49) derived
starting from the isopycnal version of the equations of motion.

page 1868 of 2158 geophysical fluid mechanics



66.4. ISOPYCNAL COORDINATE PV WITH IRREVERSIBLE PROCESSES

66.4.3 Comments
The flux-form PV equation (66.51) manifests the impermeability theorem of Chapter 42 since
the right hand side is the isopycnal convergence of a flux.
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Chapter 67

SHALLOW WATER THICKNESS WEIGHTED AVERAGING

There are a variety of mathematical formalisms used to frame the study of how linear waves,
nonlinear waves, eddies, and fully developed turbulence interact with a mean flow. A distinctly
geophysical element enters these studies through the primary role of vertical stratification arising
from gravitation, with stratification particularly important for large scales flows where motions
are approximately hydrostatic. A further specialization to the oceanographic context arises since
there are few regions where zonal averages apply, which contrasts to the atmospheric case.1 The
thickness weighted averaging (TWA) method has emerged as a useful formalism for stratified
flows, with particular use for studies of geostrophic eddies and their parameterization. In this
chapter, we develop the TWA equations for the adiabatic stacked shallow water model. Our
focus concerns the derivation of the TWA equations as well as their physical interpretation.

As noted in the introduction to Part VI of this book, the adiabatic stacked shallow water
model exposes key facets of stratified geophysical flows without requiring the mathematics of
generalized vertical coordinates developed in Chapters 63, 64, 65, and 66. The core simplification
arises by assuming that horizontal motion has no vertical dependence within each shallow water
layer, which then means that vertical motion as well as the hydrostatic pressure are linear
functions of vertical position within each layer. That is, the shallow water fluid moves as
extensible vertical columns (Section 35.2.8). It follows that horizontal pressure gradients do
not need to be projected along the slope of the layer since they are vertically constant within
a layer. In contrast, this projection is needed for a continuously stratified fluid described by
generalized vertical coordinates, as illustrated in Figure 63.4. Hence, the shallow water equations
for momentum, thickness, and tracers retain their use of Cartesian coordinates even though the
layer interfaces undulate and are thus not generally horizontal. This mathematical feature of
shallow water fluids aids in our pedagogical development of the TWA method.

Young (2012) offers an elegant application of the TWA to the continuously stratified Boussi-
nesq hydrostatic fluid, with this paper the culmination of many years of prior work (see Young
(2012) for citations). Penetrating the TWA approach for continuously stratified fluids requires an
understanding of generalized vertical coordinates and the attendant tensor analysis such as that
developed in Chapters 63, 64, 65, and 66. In the present chapter, we focus on the TWA equations
for the adiabatic shallow water model. Doing so minimizes the mathematical requirements
while exposing the key physical concepts. It also offers a useful baseline for those using stacked
shallow water models for studies of adiabatic waves and geostrophic turbulence. Digesting the
material in this chapter, and then coupling to skills in generalized vertical coordinate tensor
analysis, prepares one for penetrating Young (2012). Afterward, the mathematically inclined
reader may study the work of Maddison and Marshall (2013), who provide a somewhat more
general mathematical framework for thickness weighted averaging.

1The Southern Ocean is a notable ocean exception, as discussed in Sections 28.5 and 36.7.
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reader’s guide for this chapter
In this chapter we assume a working knowledge of the shallow water model presented in

Chapters 35, 36, and 39, with particular attention given to the pressure force as realized both
as a contact force and a body force (see Chapter 28 and Section 36.4). The TWA equations
offer a useful framework for eddy parameterizations, with parameterizations for the tracer
equation discussed in Chapters 70 and 71. Parameterizations for both the tracer equation and
the momentum equation remain a topic of ongoing research, particularly in the oceanography
literature.
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67.6.1 Kinetic stress and Reynolds stress . . . . . . . . . . . . . . . . . 1881
67.6.2 Thickness and pressure gradient correlation . . . . . . . . . . . . 1881
67.6.3 Unpacking the thickness and pressure gradient correlation . . . . 1882
67.6.4 Zonal and meridional Eliassen-Palm fluxes: Version I . . . . . . . 1884
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67.7 Vorticity and potential vorticity . . . . . . . . . . . . . . . . . . . . . . . 1887
67.7.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1888
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67.1 Loose threads
• Build more into the bolus discussion in Section 67.3 as per Section 4.5 of McWilliams
(2006).

• More discussion of Taylor-Bretherton relation (67.92).

• Write the EP fluxes for quasi-geostrophic shallow water Rossby waves.

• Write the EP fluxes for 2d non-divergent Rossby waves.

• Formulate the TWA energy equations as in Loose et al.
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• Is there a gauge that offers good options for parameterization?

67.2 The unaveraged thickness weighted equations
The thickness weighted averaging formalism starts from flux-form evolution equations rather
than advective form equations. Applying this approach to the shallow water model means that
we focus on the thickness equation (35.79a), the thickess weighted tracer equation (35.79b), and
the thickness weighted velocity equation (36.45) (also called the momentum equation)

∂hk

∂t
+∇ · (hk uk) = 0 (67.1a)

∂(hkC)

∂t
+∇ · (hk ukC) = 0 (67.1b)

∂(hk uk)

∂t
+∇ · [hk uk ⊗ uk] + f ẑ × (hk uk) = −(hk/ρref)∇pk. (67.1c)

The density, ρref , appearing in the momentum equation (67.1c) is the Boussinesq reference density,
pften chosen as the density of the uppermost layer,

ρref = ρ1. (67.2)

The thickness and tracer equations do not couple to other layers, and as such we can drop the
layer index, k = 1, N , when analyzing these equations. For the momentum equation, we expose
the interface indices, k± 1/2, when considering pressure form stresses.

For this chapter, it proves useful to move seamlessly between the thickness weighted pressure
gradient body force and its equivalent contact force version studied in Section 36.4. The contact
force version of the momentum equation reveals the pressure form stresses acting on the upper
and lower interfaces of a shallow water layer. It also brings stresses (kinetic stresses and pressure
stresses) together into the divergence of a momentum flux. As such, this formulation follows
that of Cauchy as discussed in Section 24.2.3. The eddy correlation portion of the momentum
flux is known as the Eliassen-Palm flux.2

When the dust settles, the TWA equations are isomorphic to the unaveraged equations
(67.1a)-(67.1c), yet with the addition of momentum flux convergences to the right hand sides that
arise from subgrid correlations (i.e., convergence of the Eliassen-Palm flux). The momentum eddy
fluxes are connected to the potential vorticity fluxes, with the connection known as the Taylor-
Bretherton identity. The isomorphism provides some motivation to favor the TWA approach
since properties of the unaveraged equations are directly reflected in the TWA equations. It also
provides a suitable framework for parameterizing the subgrid correlations within the context of
flux-form conservation laws. Even so, any formalism for an eddy and mean decomposition is
subjective since the mean flow and eddying fluctuations are defined by the analyst not by the
physics. Hence, arguments concerning what is a preferable framework are subject to the needs
of the analyst and have no physically objective foundation.

67.3 Thickness transport by the bolus velocity
Prior to diving into the formalism of thickness weighted averaging, we study the eddy-induced
volume transport (more precisely, thickness transport) realized by linear waves within a layer
of shallow water fluid. This discussion provides a specific example of the thickness transport

2See Bühler (2014b) for a historical perspective on the Eliassen-Palm flux, which was introduced by Eliassen
and Palm (1960) in their study of stationary mountain waves.
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by the bolus velocity, with further discussion offered in Sections 67.5.1 and 70.4.5. Much of our
intuition for bolus transport is based on the following relatively simple example of Stokes drift.3

Part of the motivation for TWA is that we do not need to compute the bolus velocity. Even
so, understanding the basic physics of the bolus velocity renders useful insights into how eddies,
even eddies as simple as linear waves, can provide a rectified transport of properties. We also
comment on this point in Section 36.4.

67.3.1 Rectified effects
Rectification is the conversion of a fluctuating motion into motion in a particular direction. For
example, the transformation of an alternating electrical current into a direct electrical current
occurs through a rectifier. More generally, rectification arises from the breaking of a symmetry
typically through a nonlinear mechanism. The primary example in fluid mechanics is the Stokes
drift discussed in Section 52.11 as well as the current section. Stokes drift arises when linear
waves have an amplitude that is a function of space, with this spatial dependence giving rise
to net particle transport (the Stokes drift) in a preferred direction. Another example concerns
the turbulent Stokes drift arising from nonlinear geostrophic waves and eddies in the ocean and
atmosphere that lead to a net transport of buoyancy. In Section 36.7 we discuss the meridional
transport of buoyancy by eddies in a channel, which is the canonical geophysical example of
eddy induced transport.

67.3.2 An undulating fluid layer
Figure 67.1 shows a layer of constant density shallow water fluid within an adiabatic stacked
shallow water model. Since the layers are immiscible, the total volume of fluid within this layer
remains constant. In its unperturbed state with flat layer interfaces, the meridional velocity
in the fluid layer is zero and the thickness is a constant, ho. When perturbed, the thickness is
written

h(y, t) = ho + h′(y, t), (67.3)

where we assume the perturbation only depends on (y, t) for simplicity. The layer thickness
changes in time according to the convergence of the advective transport of thickness as found by
the thickness equation (67.1a)

∂h

∂t
= −∇ · (hu), (67.4)

where the convergence is computed within the layer and we drop the k layer index for brevity. As
seen by Figure 67.1, undulations of the layer thickness at a point arise from the convergence of
thickness advected to that point. Further assuming that there is no zonal dependence (∂x = 0)
leads to the one-dimensional thickness equation

∂h

∂t
= −∂ (h v)

∂y
. (67.5)

67.3.3 Stokes drift
Consider a linear wave perturbation in the meridional velocity that propagates in the meridional
direction

v′(y, t) = vo sin(κ y − ω t), (67.6)

where κ is a constant wave number and ω is a constant frequency. This longitudinal wave is
depicted in Figure 67.1. We now follow the general formalism developed in Section 52.11 (or

3This example is based Section 2 of Lee et al. (1997).
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ho + h′(y, t) ho

z

y

v′

Figure 67.1: Shown here is a single layer of constant density fluid, with resting thickness h = ho and instantanous
thickness h = ho +h

′(y, t). Associated with the undulations in thickness are fluctuations in the meridional velocity
v′ = vo sin(k y − ω t), depicted here by the alternating vectors within the layer. Vertical-meridional axes are
shown in the lower left corner for orientation. We are not concerned with boundaries in the meridional direction.

equivalently in Section 70.2.4) to determine the Stokes drift associated with this wave.

We are only concerned with the meridional component of the velocity, so the fluid particle
trajectory equation is given by

dY

dt
= vo sin(κY − ω t), (67.7)

where Y = Y (Yo, t) is the meridional trajectory with initial postion Yo. Following equation
(52.194) we can write the difference between the velocity following a fluid particle (the Lagrangian
velocity for the moving fluid particle) from the velocity at the initial particle point (the Eulerian
velocity at the initial point of the trajectory)

dY

dt
− v(y, t) = v2o κ cos(κy − ωt)

ˆ t

0
sin(κy − ωt′) dt′ (67.8a)

=
v2o κ

ω

[
cos2(κy − ωt)− cos(κy − ωt) cos(κy)

]
. (67.8b)

Time averaging over a single wave period,

T = 2π/ω (67.9)

leads to the Stokes drift as per the general expression in equation (52.196)

VStokes =
v2o κ

2ω
. (67.10)

Introducing the phase speed for the monochromatic wave,

c = ω/κ (67.11)

allows us to write the Stokes drift as

VStokes =
v2o
2 c
. (67.12)

Notice how the Stokes drift becomes small when the phase speed is large. The reason is that
for this case, the fluid particles have only a short time to feel each wave, and thus can only
experience a relatively small amount of drift. Correspondingly, there is only a small difference
between the Eulerian and Lagrangian velocities. The converse holds for slow phase speeds, where
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Eulerian and Lagrangian velocities have a relatively large difference.4

67.3.4 Linearized thickness perturbations
The velocity and thickness are written in terms of their rest state plus a perturbation due to the
wave

h = ho + h′ and v = v′, (67.13)

where the velocity vanishes when the wave is absent. The thickness equation (67.5) thus takes
the form

∂h′

∂t
+ ho

∂v′

∂y
+ v′

∂h′

∂y
= 0. (67.14)

Linearizing this equation, and using the wave perturbation (67.6), leads to

∂h′

∂t
+ ho vo κ cos(κy − ωt) = 0. (67.15)

Time integrating this equation, and making use of the velocity perturbation in the form of
equation (67.6), renders the thickness perturbation

h′ = ho v
′/c. (67.16)

Hence, to leading order, the thickness perturbation is directly proportional to and in phase with
the velocity perturbation.

67.3.5 Correlation between thickness and velocity
Over a single wave period, T = 2π/ω, the temporal correlation between the linear thickness
perturbation and velocity perturbation is given by

h′ v′ =
1

T

ˆ T

0
h′ v′ dt (67.17a)

=
ho
c T

ˆ T

0
v′ v′ dt (67.17b)

=
v2o ho
c T

ˆ T

0
sin2(κy − ωt) dt (67.17c)

=
v2o ho
2 c

(67.17d)

= ho VStokes, (67.17e)

where we introduced the Stokes drift (67.12) to reach the final equality. A nonzero correlation
h′ v′ means that the thickness has a nonzero tendency when averaged over a wave period.

The nonzero correlation in equation (67.17e) induces a thickness transport from the one-
dimensional linear longitudinal waves. This transport arises from the Stokes drift induced by the
waves; without Stokes drift there is no eddy thickness transport. This behavior exemplifies the
case for more general waves and nonlinear eddies moving through fluid layers. For the general
case, a nonzero bolus velocity (Section 67.5.1), as determined by velocity-thickness correlations,
induces an eddy thickness transport. We see that for the one-dimensional linear longitudinal
wave example, the bolus velocity is the Stokes velocity, thus prompting certain authors to make
the equality in general.

4If we were to consider a formal asymptotic expansion, then the case of relatively slow phase speeds would
require us to keep more terms in the expansion than those carried here.

page 1876 of 2158 geophysical fluid mechanics



67.4. AVERAGING OPERATORS

67.3.6 Do we need the bolus velocity?
The bolus transport is of fundamental importance for how we think about eddy induced Stokes
transport from shallow water waves. More general fluctuations, such as those from turbulent
geostrophic eddies, require a parameterization to determine the thickness transport. We consider
such in Section 31.7 when studying geostrophic eddies in a zonally reentrant channel. As we see
in the remainder of the current chapter, the allure of the thickness weighted averaging formalism
is that it dispenses with the need to parameterize the bolus velocity. Instead, the TWA equations
absorb the bolus transport into the residual mean advection operator. Operationally, the TWA
exposes the eddy correlation terms only in the momentum equation, leaving the TWA thickness
and TWA tracer equations in a form directly parallel to the unaveraged equations.

67.4 Averaging operators
There are many averaging operators used in fluid mechanics, such as the wave average from
Section 67.3, which is useful when the flow is dominantly linear waves; a long time average
(formally an infinitely long time average), which is commonly used for climate studies; a space
average, which is appropriate when the spatial sampling is coarse; general space filters or kernels,
which are commonly used in large eddy simulations; and ensemble averages, which are generally
assumed in traditional studies of turbulence. In the following, we denote the averaging or mean
operator by an overbar

average(Φ) = Φ, (67.18)

where Φ is any field such as velocity, thickness, or tracer concentration. Deviations (also called
fluctations) from the mean are denoted by a prime so that the full field is decomposed into a
mean and eddy term according to

Φ = Φ+ Φ′. (67.19)

Since the equations of fluid mechanics are nonlinear, this decomposition into eddy and mean leads
to nonlinear eddy correlation terms, which are the source of both the richness and complexity of
eddying fluid flows.

67.4.1 Reynolds average
A Reynolds average is an operator that annihilates its corresponding fluctuating quantity, which
then means that the average of an average is the identity operator

Φ′ = 0⇐⇒ Φ = Φ, (67.20)

which in turn means that
ΦΨ = (Φ + Φ′)Ψ = ΦΨ. (67.21)

Reynolds averages are commonly used when deriving mean field equations. Even so, the
assumptions of Reyynolds averaging operators are not satisfied by many operators in practice.
Extra technical issues arise when averaging operators do not satisfy the properties of a Reynolds
average, with these issues beyond our aims in the present chapter. Hence, in this chapter we
retain the Reynolds average assumption (67.20) for the averaging operator.

67.4.2 Ensemble average
A further assumption we make is that the average operator commutes with space and time
derivatives as well as integrals. This assumption does not strictly hold if the operator is a space
and/or time average operator, at least not without a bit of work. However, this assumption holds
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for ensemble averages. An ensemble average is computed over an infinite number of realizations
of the fluid flow, with approximations to this average afforded by finite sized ensembles.

Ensemble averages are typically assumed in traditional fluid turbulence studies. However,
they are not always very practical nor are they the obvious choice when targeting a frameowork for
parameterization. Even so, we prefer ensemble averages for this chapter in order to dispense with
concerns about commutation of the averaging operator with derivative and integral operators.
We also make use of ensemble averaging for our discussion of tracer kinematics in Chapter 70.

67.4.3 Thickness weighted average

The thickness weighted average of a field is defined as the ensemble average of the thickness
weighted field, and then divided by the averaged thickness:

Φ̂ ≡ hΦ

h
⇐⇒ h Φ̂ = hΦ, (67.22)

with widehats adorning a thickness weighted average. Deviations from the thickness weighted
average are denoted with two primes so that the unaveraged field is decomposed into its average
plus fluctuation

Φ = Φ̂ + Φ′′. (67.23)

Since the overline average from Section 67.4.1 satisfies the Reynolds averaging assumption, so
too does the thickness weighted average

Φ = Φ̂ + Φ′′ =⇒ Φ̂′′ =
hΦ′′

h
= 0. (67.24)

We are thus able to derive the following related identities

ΦΨ = (Φ̂ + Φ′′) (Φ̂ + Φ′′) =⇒ Φ̂Ψ = Φ̂ Ψ̂ + Φ̂′′Ψ′′ =⇒ hΦΨ = h Φ̂Ψ. (67.25)

We sometimes need to consider mixed averages and primes, such as for

h Φ̂ = hΦ = h Φ̂, (67.26)

in which case5

hΦ′′ = h(Φ− Φ̂) = hΦ− h′Φ′ ̸= 0. (67.27)

Hence, the ensemble average of a fluctuation, Φ′′ (which is computed relative to the thickness
weighted mean), is generally nonzero. Furthermore, we sometimes find it useful to write the
ensemble mean correlation between thickness and a field according to

h Φ̂′ = hΦ′ = h′Φ′, (67.28)

with the second equality following since

hΦ′ = hΦ′ = 0. (67.29)

The identity (67.28) allows us to write equation (67.27) as

hΦ′′ = h (Φ− Φ̂′). (67.30)

5Footnote #4 in Young (2012) is missing the hΦ term appearing in equation (67.27).
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A similar identity holds according to the following manipulations

h′Φ′ = hΦ′ = h (Φ− Φ) = hΦ− hΦ = h (Φ̂− Φ), (67.31)

so that

Φ̂′ = Φ̂− Φ =
h′Φ′

h
. (67.32)

Derivative operators do not commute with the thickness weighted average, so that, for
example,

∂xû ̸= ∂̂xu. (67.33)

Hence, when deriving differential equations for thickness weighted fields, we first derive equations
for the unaveraged thickness weighted quantities, and only thereafter do we apply the ensemble
mean operator.

67.4.4 Comments

For the most part, we follow the notation of Young (2012). Nonetheless, we caution that
notational clutter and variations on conventions can present a nontrivial barrier to penetrating
the TWA literature. Indeed, for our purposes with the stacked shallow water model, there is
one additional piece of notation concerning the discrete layer indices. Fortunately, much of the
discrete layer notation can be streamlined by exposing just the half-integer indices for fields
situated at layer interfaces, along with the layer density.

67.5 Thickness equation and tracer equation

In this section we derive the TWA versions of the thickness equation (67.1a) and the tracer
equation (67.1b). The derivations involve straightforward applications of the TWA averaging
properties (67.24) and (67.25).

67.5.1 TWA thickness equation

Taking the ensemble average of the thickness equation (67.1a) renders

∂th+∇ · hu = 0, (67.34)

where we dropped the layer index, k, to reduce notation. Introducing the thickness weighted
average according to equation (67.22) brings the thickness equation to the form

∂th+∇ · (h û) = 0. (67.35)

Consequently, the mean layer thickness, h, evolves at a point in space according to the convergence
of the thickness flux, −∇ · (h û), with the flux determined by the thickness weighted velocity, û.

We find it useful to introduce the material time derivative operator defined with the thickness
weighted velocity

D♯

Dt
=

∂

∂t
+ û · ∇ =

∂

∂t
+ û ∂x + v̂ ∂y, (67.36)

so that the flux-form thickness equation (67.35) can be written in the material time derivative
or advective form

D♯h

Dt
= −h∇ · û. (67.37)
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The D♯/Dt notation is based on that used by Young (2012). The alternative D̂/Dt is less suitable
since h (D/Dt) ≠ (D/Dt)h. In brief, an object adorned with a sharp symbol is consistent with
thickness weighted averaging but is itself not the direct result of a thickness weighted average.
In the following, we find it useful to also introduce the vertical velocity, w♯, in equation (67.43),
and the potential vorticity, Π♯, in equation (67.91).

The isomorphism between the TWA thickness equation (67.35) with the unaveraged thickness
equation (67.1a) illustrates a distinct advantage of using the thickness weighted velocity, û.
Even so, for some purposes it is useful to unpack the thickness weighted velocity into its two
components

û = u+
h′ u′

h
≡ u+ ubolus, (67.38)

where we defined the bolus velocity via

hubolus = h′ u′ = h û′, (67.39)

where the second equality follows from the identity (67.28).

We discussed the bolus velocity in Section 67.3 and see it again in Section 70.4.5 when
developing the ensemble mean tracer equation in isopycnal coordinates. However, as per our
discussion in Section 67.3.6, we do not need to know the bolus velocity if we write the averaged
tracer and momentum equations in terms of the thickness weighted velocity, û.

67.5.2 Tracer equation

Taking the ensemble average of the tracer concentration equation (67.1b) for a shallow water
fluid layer renders

∂t(hC) +∇ · hC u = 0. (67.40)

Making use of the thickness weighted averages from Section 67.4.3 allows us to write

hC = h Ĉ and hC u = h (Ĉ û+ Ĉ ′′ u′′), (67.41)

thus yielding the TWA tracer equation

∂t(h Ĉ) +∇ · (h Ĉ û) = −∇ · (h Ĉ ′′ u′′). (67.42)

The right hand side is the convergence of the thickness weighted eddy tracer flux. As seen in
Section 70.5, the isopycnal form of the tracer equation is identical to that given here for a shallow
water layer. In that discussion we present methods commonly used to parameterize the eddy
flux convergence.

67.5.3 Vertical velocity

We generally have no need for the vertical velocity when working with the adiabatic stacked
shallow water model. Nonetheless, it is interesting to define a vertical velocity component, w♯,
satisfying the continuity equation

∇h · û+ ∂zw
♯ = 0. (67.43)

As for the unaveraged vertical velocity component discussed in Section 35.2.8, w♯ is a linear
function of z within the ensemble mean shallow water layers (see equation (35.39)). Note that
w♯ is not a thickness weighted velocity. Rather, it is the vertical velocity that is compatible,
through the continuity equation, with the thickness weighted horizontal velocity. A vertical
velocity is needed for the continuously stratified Boussinesq fluid, and it is defined as done here
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for the shallow water.6

67.6 Horizontal momentum equation
Taking the ensemble mean of the horizontal momentum equation (67.1c) renders

∂t(hu) +∇ · [hu⊗ u] + f ẑ × (hu) = −h∇p/ρref , (67.44)

where we dropped the layer interface lable, k, for brevity. Again, we make use of the thickness
weighted averages from Section 67.4.3 to write

hu = h û (67.45a)

hu⊗ u = h (û⊗ û+ ̂u′′ ⊗ u′′), (67.45b)

so that equation (67.44) becomes

∂t(h û) +∇ · [h û⊗ û] + f ẑ × (h û) = −∇ · [h ̂u′′ ⊗ u′′]− h∇p/ρref . (67.46)

The first term on the right hand side is similar to the eddy tracer flux convergence appearing
in the TWA tracer equation (67.42). In contrast, the thickness weighted pressure gradient is
fundamentally distinct from anything appearing in the tracer equation. Much in the remainder
of this section is devoted to developing a physical and mathematical understanding of h∇p.

67.6.1 Kinetic stress and Reynolds stress
Following our discussion in Section 25.6, we introduce the shallow water kinetic stress tensor

Tsw kinetic = −ρref u⊗ u. (67.47)

The kinetic stress arises from motion of the fluid, with its divergence, ∇ · (hTkinetic), contributing
to changes in the momentum of a shallow water fluid column. Decomposing the velocity into
the TWA velocity and fluctuation leads to the ensemble mean of the thickness weighted kinetic
stress

hTkinetic(u) = −ρref hu⊗ u (67.48a)

= −ρref h [û⊗ û+ ̂u′′ ⊗ u′′] (67.48b)

= hTkinetic(û) + hTReynolds, (67.48c)

where the eddy correlation is known as the Reynolds stress. The divergence of the thickness
weighted Reynolds stress provides a rectified effect onto the mean flow due to nonzero eddy
correlations.

67.6.2 Thickness and pressure gradient correlation
The ensemble mean of the thickness weighted pressure gradient can be written

hk∇pk = hk ∇̂pk equation (67.22) defining the TWA (67.49a)

= hk∇pk + h′k∇p′k expanding the ensemble mean (67.49b)

= hk (∇pk + ∇̂p′k) equation (67.28). (67.49c)

6See equation (73) in Young (2012).
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The eddy term is the correlation between layer thickness fluctuations and horizontal pressure
gradient fluctuations

hk ∇̂p′k = h′k∇p′k, (67.50)

which can be written in terms of the eddy geostrophic velocity

hk ∇̂p′k = −ρref f ẑ × h′k u′
k,g = −ρref f ẑ × hk û′

k,g. (67.51)

For geostrophic flows, the bolus velocity (67.39) equals to û′
k,g, in which case we write

hk ∇̂p′k = −ρref f ẑ × hk u
bolus
k . (67.52)

67.6.3 Unpacking the thickness and pressure gradient correlation

We here unpack the correlation between eddy thickness and eddy pressure gradient as given by

hk ∇̂p′k = h′k∇p′k in equation (67.50). We do so by writing the pressure as a contact force rather
than a body force. Doing so exposes the eddy interfacial form stresses that provide a vertical
transfer of horizontal momentum. In addition, there is a term arising from the gradient in the
layer depth integrated pressure or, alternatively, the layer potential energy. To proceed we rely
on the development given in Section 36.4.9, in which we exposed two equivalent expressions for
the contact pressure.

As part of the following derivation we make use of relations for pressure within a layer and
at an interface

pk(z) = pk−1/2 + g ρk (ηk−1/2 − z) (67.53a)

pk+1/2 − pk−1/2 = g ρk hk = −g ρk (ηk+1/2 − ηk−1/2) (67.53b)

p1/2 = pa, (67.53c)

with pa the applied (or atmospheric) pressure at the ocean surface. We emphasize that the layer
pressure, pk(z), is a linear function of vertical position within the layer so that its horizontal
gradient, ∇hpk, is depth independent.

Interfacial form stress plus gradient of layer depth integrated pressure

The first expression for thickness weighted pressure gradient is given by

−hk∇pk = −∇Pk + F
form
k . (67.54)

In this equation we introduced the pressure vertically integrated over layer-k

Pk =

ˆ ηk−1/2

ηk+1/2

pk(z) dz = hk (g ρk hk/2 + pk−1/2), (67.55)

with its negative gradient

−∇Pk = −∇ [hk (pk−1/2 + g ρk hk/2)] (67.56a)

= −∇ [hk (pk+1/2 − g ρk hk/2)] (67.56b)

= −[hk∇pk+1/2 + pk−1/2∇hk] (67.56c)

leading to a horizontal acceleration from imbalances in the contact pressure acting along the
vertical sides of a shallow water column. The second stress in equation (67.54) is the pressure
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form stress acting on the upper and lower layer interfaces

F form
k = pk−1/2∇ηk−1/2 − pk+1/2∇ηk+1/2 ≡ δk(pk−1/2∇ηk−1/2), (67.57)

where
δkΦk−1/2 = Φk−1/2 − Φk+1/2 = −(Φk+1/2 − Φk−1/2) (67.58)

is a difference operator acting on interface properties. The use of a backward difference operator
is motivated since k increases down whereas ẑ points up. Additionally, we define the difference
operator to only act on fields defined at the layer interface, with layer fields commuting with
this operator so that, for example,

δk(hk ηk−1/2) = hk δk(ηk−1/2). (67.59)

This convention helps produce a tidy form of the Eliassen-Palm flux in Sections 67.6.4 and
67.6.5.

Making use of the depth integrated pressure and form stress as given by equation (67.54)
allows us to write the ensemble mean thickness weighted pressure gradient as

−hk∇pk = −∇Pk + δk[pk−1/2∇ηk−1/2]. (67.60)

Following equation (67.56a), we write the ensemble mean for the layer integrated pressure as

−∇Pk = −∇[hk (pk−1/2 + g ρk hk/2)]−∇[h′k (p′k−1/2 + g ρk h′k/2)] (67.61)

and the vertical divergence of the form stress is

F form
k = δk[pk−1/2∇ηk−1/2] = δk

[
pk−1/2∇ηk−1/2 + p′

k−1/2∇η′k−1/2

]
. (67.62)

We are thus led to the following decomposition of the eddy contribution to the thickness weighted
pressure gradient

−h′k∇p′k = −∇[h′k (p′k−1/2 + g ρk h′k/2)] + δk

[
p′
k−1/2∇η′k−1/2

]
. (67.63)

For orientation, in Figure 67.2 we illustrate the deviations of the interface positions relative to
the ensemble mean.
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Figure 67.2: Schematic of the interface positions for a shallow water layer. The ensemble mean layer interfaces
have vertical positions given by z = ηk±1/2, whereas the fluctuating interfaces are located at z = ηk±1/2 + η′k±1/2.
As depicted here, the ensemble mean interface positions are not generally horizontal.
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Dual interfacial pressure form stress plus gradient of layer potential energy

An alternative formulation uses the dual form stress and potential energy, in which case we write
the thickness weighted horizontal pressure gradient as

−hk∇pk = −∇Pk + F
dual
k . (67.64)

In this equation we introduced the layer gravitational potential energy per area

Pk = g ρk

ˆ ηk−1/2

ηk+1/2

z dz = (g ρk/2) (η
2
k−1/2 − η2k+1/2) = (g ρk/2) δk(η

2
k−1/2), (67.65)

and the dual pressure form stress (see Section 36.4.8),

F dual
k = −δk(ηk−1/2∇pk−1/2) = F

form
k −∇[δk(ηk−1/2 pk−1/2)]. (67.66)

Since they differ by a gradient, the form stress and dual form stress have identical curls and so
they contribute the same interfacial pressure torque as part of the layer vorticity evolution

−∇× (hk∇pk) = ∇× F dual
k = ∇× F form

k . (67.67)

Making use of the potential energy and dual form stress as given by equation (67.64) allows
us to write the ensemble mean thickness weighted pressure gradient as

−hk∇pk = −∇Pk − δk[ηk−1/2∇pk−1/2] (67.68)

where minus the potential energy gradient is decomposed as

−∇Pk = −(g ρk/2) δk

[
∇(ηk−1/2)

2 +∇(η′
k−1/2)

2
]

(67.69)

and the vertical convergence of the dual form stress is

−δk[ηk−1/2∇pk−1/2] = −δk
[
ηk−1/2∇pk−1/2 + η′

k−1/2∇p′k−1/2

]
. (67.70)

We are thus led to decompose the thickness weighted pressure gradient correlation as

−h′k∇p′k = −(g ρk/2)∇[δk(η′k−1/2)
2]− δk[η′k−1/2∇p′k−1/2]. (67.71)

Again, the first term on the right hand side arises from the eddy potential energy and the second
term from the dual eddy form stress.

67.6.4 Zonal and meridional Eliassen-Palm fluxes: Version I

Making use of the thickness and pressure gradient correlation in the form of equation (67.63)
(the version with the form stress) leads to the thickness weighted momentum equation

∂t(h û) +∇ · (h û⊗ û) + f ẑ × h û+ h∇p/ρref

= −∇ · (h ̂u′′ ⊗ u′′)− ρ−1
ref ∇[h′k (p′k−1/2 + g ρk h′k/2)] + ρ−1

ref δk(p
′∇η′)k−1/2, (67.72)

where we only exposed the interface indices to reduce notational clutter, and where we introduced
the shorthand for the eddy form stress at the k− 1/2 interface

(p′∇η′)k−1/2 = p′
k−1/2∇η′k−1/2. (67.73)
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The subgrid scale correlations on the right hand side of equation (67.72) can be organized into
the divergence of two tensors

∇ · (h ̂u′′ ⊗ u′′) + ρ−1
ref ∇[h′k (p′k−1/2 + g ρk h′k/2)]− (h ρref)

−1 δk

[
h (p′∇η′)k−1/2

]
=
[
∂x ∂y (1/h) δk

]  h û′′ u′′ h û′′ v′′ 0

h û′′ v′′ h v̂′′ v′′ 0
0 0 0


+ ρ−1

ref

[
∂x ∂y (1/h) δk

]  h′k (p
′
k−1/2 + g ρk h′k/2) 0 0

0 h′k (p
′
k−1/2 + g ρk h′k/2) 0

−h (p′ ∂xη′)k−1/2 −h (p′ ∂yη′)k−1/2 0

 , (67.74)

where we recall from equation (67.59) that the vertical difference operator, δk, only acts on layer
interface fields so that hk commutes with δk. The first tensor in equation (67.74) arises from
Reynolds stresses and the second tensor arises from eddy pressures, including the eddy form
stress in the third row.

When combined, the columns of the tensors appearing in equation (67.74) are the thickness
weighted shallow water Eliassen-Palm fluxes for the zonal (column 1) and meridional (column 2)
momentum equation

E(uEP) =
[
h û′′ u′′ + ρ−1

ref h
′
k (p

′
k−1/2 + g ρk h′k/2)

]
x̂+ h û′′ v′′ ŷ − (h/ρref) (p′ ∂xη′)k−1/2 ẑ (67.75a)

E(vEP) = h û′′ v′′ x̂+
[
h v̂′′ v′′ + ρ−1

ref h
′
k (p

′
k−1/2 + g ρk h′k/2)

]
ŷ − (h/ρref) (p′ ∂yη′)k−1/2 ẑ.

(67.75b)

The Eliassen-Palm flux has physical dimensions of thickness times squared velocity. We en-
countered the unaveraged version of the Eliassen-Palm flux in Sections 36.3.3 and 36.4.9 when
studying the shallow water momentum equation. Maddison and Marshall (2013) included the
third column of zeros in equation (67.74) to emphasize that the Eliassen-Palm fluxes are the
first and second columns to the Eliassen-Palm flux tensor. They illustrated the utility of this
perspective by considering gauge transformations that result in non-zero elements in the third
column.

The Eliassen-Palm fluxes are second order in eddy amplitude; i.e., they are quadratic in eddy
fluctuations. Furthermore, they bring together the Reynolds stress and eddy pressure terms,
including the eddy form stress. The convergence of the Eliassen-Palm fluxes provides an eddy
rectified acceleration on the thickness weighted velocity. To explicitly see this forcing, write the
components to the mean field momentum equation (67.72) as7

∂t(h û) +∇ · (h û û)− f h v̂ + h ∂xp/ρ = −(∇h + ẑ h−1
δk) ·E(uEP) (67.76a)

∂t(h v̂) +∇ · (h û v̂) + f h û+ h ∂yp/ρ = −(∇h + ẑ h−1
δk) ·E(vEP). (67.76b)

Equations (67.76a) and (67.76b) are isomorphic to the unaveraged horizontal momentum equation
(67.1c), yet with the addition of the convergence of the Eliassen-Palm flux on the right hand
side that encapsulates rectified effects from eddies. They can be written using the material time

7Recall from equation (67.59) that the operator δk only acts on interface fields, so that h
−1
δk(h) = δk. This

convention allows us to combine the horizontal components to the Eliassen-Palm flux with the vertical component,
as written in equations (67.80a) and (67.80b).
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derivative (67.36)

D♯û

Dt
− f v̂ + ∂xp/ρ = −h−1

(∇h + ẑ h−1
δk) ·E(uEP) (67.77a)

D♯v̂

Dt
+ f û+ ∂yp/ρ = −h−1

(∇h + ẑ h−1
δk) ·E(vEP). (67.77b)

We emphasize that these equations only make use of the thickness weighted velocity, û, as do
the averaged thickness equation (67.35) and averaged tracer equation (67.42). We advertised
this point near the start of this chapter, noting that it facilitates the practical use of the TWA
equations for numerical simulations. We further this correspondence in Section 67.7 by showing
that the vorticity and potential vorticity equations also make use of û.

67.6.5 Zonal and meridional Eliassen-Palm fluxes: Version II

We here follow the development in Section 67.6.4, only now making use of the thickness and
pressure gradient correlation in the form of equation (67.71) (the version with the dual form
stress). Our presentation is terse since there are few differences from Section 67.6.4. We start
from the thickness weighted momentum equation

∂t(h û) +∇ · (h û⊗ û) + f ẑ × h û+ h∇p/ρ
= −∇ · (h ̂u′′ ⊗ u′′)− (g ρk/2ρref)∇[δk(η′k−1/2)

2]− δk[(η′∇p′)k−1/2/ρref ]. (67.78)

The subgrid scale correlations on the right hand side can be organized into the divergence of
two tensors

∇ · (h ̂u′′ ⊗ u′′) + (g ρk/2ρref)∇[δk(η′k−1/2)
2] + δk[(η′∇p′)k−1/2/ρref ]

=
[
∂x ∂y h

−1
δk

] h û′′ u′′ h û′′ v′′ 0

h û′′ v′′ h v̂′′ v′′ 0
0 0 0


+
[
∂x ∂y h

−1
δk

] (g ρk/2 ρref) [δk(η′k−1/2)
2] 0 0

0 (g ρk/2 ρref) [δk(η′k−1/2)
2] 0

(h/ρref) (η′ ∂xp′)k−1/2 (h/ρref) (η′ ∂yp′)k−1/2 0

 . (67.79)

The first tensor arises from Reynolds stresses and the second arises from eddy potential energy
and dual eddy form stresses. When combined, the columns are the thickness weighted Eliassen-
Palm fluxes for the zonal (column 1) and meridional (column 2), here making use of the dual
form stress

E
(uEP)
dual =

[
h û′′ u′′ + (g ρk/2ρref) [δk(η′k−1/2)

2]
]
x̂+ h û′′ v′′ ŷ + h (η′ ∂xp′)k−1/2/ρref) ẑ (67.80a)

E
(vEP)
dual = h û′′ v′′ x̂+

[
h v̂′′ v′′ + (g ρk/2ρref) [δk(η′k−1/2)

2]
]
ŷ + h (η′ ∂yp′)k−1/2/ρref) ẑ. (67.80b)

The convergence of the Eliassen-Palm fluxes provides an eddy rectified acceleration on the
thickness weighted velocity

∂t(h û) +∇ · (h û û)− f h v̂ + h ∂xp/ρ = −(∇h + ẑ h−1
δk) ·E(uEP)

dual (67.81a)

∂t(h v̂) +∇ · (h û v̂) + f h û+ h ∂yp/ρ = −(∇h + ẑ h−1
δk) ·E(vEP)

dual . (67.81b)
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67.6.6 Interfacial stresses from geostrophic eddies

In Section 31.7 we studied the rectified effects from geostrophic eddies in a zonally re-entrant
channel for a continuously stratified fluid. In that analysis we found that the zonal mean of
isopycnal eddy form stresses are equivalent to the meridional eddy flux of buoyancy. We here
consider similar questions within the context of the TWA shallow water fluid, here focusing on
the interfacial transfer of momentum due to eddy dual form stresses as given by the vertical
vectors

ρref

[
E

(uEP)
dual

]
interface

= ẑ h (η′ ∂xp′)k−1/2 (67.82a)

ρref

[
E

(vEP)
dual

]
interface

= ẑ h (η′ ∂yp′)k−1/2. (67.82b)

Let us now write the interface pressure gradient fluctuation as

∇pk−1/2 = ∇pk − g ρk∇ηk−1/2 (67.83)

so that
(η′∇p′)k−1/2 = η′k−1/2∇p′k + g ρk (η′∇η′)k−1/2. (67.84)

As for the analysis in Section 31.7, we assume the fluctuations are geostrophic so that we can
introduce the layer geostrophic velocity corresponding to the gradient of the layer pressure
fluctuations

∂xp
′
k = f ρref v

′
k and ∂yp

′
k = −f ρref u

′
k, (67.85)

in which case the dual form stress portion of the Eliassen-Palm fluxes take the form

ρref

[
E

(uEP)
dual

]
interface

= ẑ h
[
f ρref η′k−1/2 v

′
k + g ρk (η′ ∂xη′)k−1/2

]
(67.86a)

ρref

[
E

(vEP)
dual

]
interface

= ẑ h
[
−f ρref η′k−1/2 u

′
k + g ρk (η′ ∂yη′)k−1/2

]
. (67.86b)

The η′
k−1/2 u

′
k term is an eddy transport of the area between z = ηk−1/2 and z = η′

k−1/2 (see

Figure 67.2). We studied the same transport for the continuously stratified fluid in Section 31.7.
In that discussion, we found that the interface fluctuations, η′, can be related to the buoyancy
fluctuations, b′, in which case η′

k−1/2 u
′
k is proportional to the eddy buoyancy flux for the layer.

67.6.7 Comments

Greatbatch and Lamb (1990) and Greatbatch (1998) pursue a similar analysis for the purpose of
framing the mesoscale eddy parameterization problem. They focus on the interfacial form stress
contribution since, for geostrophic eddies, it dominates over the other terms in the Eliassen-Palm
fluxes (67.80a) and (67.80b).

67.7 Vorticity and potential vorticity

We follow the procedure from Chapter 39 to derive the vorticity and potential vorticity for the
thickness weighted shallow water equations. In the process, we connect the eddy flux of potential
vorticity to the Eliassen-Palm fluxes (67.75a) and (67.75b). Note that the same manipulations
also hold for the dual Eliassen-Palm fluxes (67.80a) and (67.80b).
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67.7.1 Derivation

Use the vector identities from Sections 35.5 and 39.1 to bring the material evolution equations
(67.77a) and (67.77b) into their equivalent vector invariant forms8

∂tû− (f + ζ̂) v̂ = −∂x(p/ρ+ û · û/2)− h−1
(∇h + ẑ h−1

δk) ·E(uEP) (67.87a)

∂tv̂ + (f + ζ̂) û = −∂y(p/ρ+ û · û/2)− h−1
(∇h + ẑ h−1

δk) ·E(vEP), (67.87b)

where we introduced the relative vorticity of the thickness weighted horizontal velocity

ζ̂ = ∂xv̂ − ∂yû. (67.88)

Taking ∂x of the meridional equation (67.87b) and subtracting ∂y of the zonal equation (67.87a)

renders the evolution equation for absolute vorticity, ζ̂a = ζ̂ + f ,

D♯ζ̂a
Dt

+ ζ̂a∇ · û = ∂y[h
−1

(∇h + ẑ h−1
δk) ·E(uEP)]− ∂x[h−1

(∇h + ẑ h−1
δk) ·E(vEP)]. (67.89)

Making use of the thickness equation (67.37) to replace ∇ · û leads to the potential vorticity
equation

h
D♯Π♯

Dt
= −∇ · F ♯ (67.90)

where

Π♯ =
f + ∂xv̂ − ∂yû

h
=
f + ζ̂

h
(67.91)

is the potential vorticity defined with the thickness weighted velocity and ensemble mean
thickness. The corresponding eddy potential vorticity flux is a horizontal vector and given in
terms of the divergence of the Eliassen-Palm fluxes

F ♯ = x̂ [h
−1

(∇h + ẑ h−1
δk) ·E(vEP)]− ŷ [h−1

(∇h + ẑ h−1
δk) ·E(uEP)] + ẑ ×∇Υ, (67.92)

where Υ is an arbitrary gauge function.9 This equation connects the potential vorticity flux to
the Eliassen-Palm fluxes and it is known as the Taylor-Bretherton identity. Remarkably, the
potential vorticity flux also provides the eddy forcing to the thickness weighted velocity equation

∂tû+ (f + ζ̂) ẑ × û+∇(p/ρ+ û · û/2) = −ẑ × (F ♯ − ẑ ×∇Υ), (67.93)

which can also be written

∂tû+ ẑ × (h ûΠ♯ + F ♯ − ẑ ×∇Υ) +∇(p/ρ+ û · û/2) = 0, (67.94)

where h ûΠ♯ + F ♯ − ẑ ×∇Υ is the net (mean plus eddy plus gauge) potential vorticity flux.

67.7.2 Concerning the mean field potential vorticity

We emphasize that the mean field potential vorticity arising from our development is Π♯, which
is defined by equation (67.91) using the thickness weighted velocity, û for the relative vorticity.

8In Section D.6 of Griffies et al. (2020), the authors state “In contrast to the flux-form momentum equation,
the vector-invariant velocity equation does not admit a finite volume formulation.” That statement is incorrect,
with equations (67.87a) and (67.87b) the finite volume vector-invariant velocity equation.

9Equation (129) in Young (2012) should have a gauge function on its right hand side, which follows from his
footnote #3. We provide an example of the need for a gauge function in Section 67.8.
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This potential vorticity is distinct from the thickness weighted average potential vorticity

Π̂ =
Πh

h
=
f + ζ

h
=
f + ∂xv − ∂yu

h
, (67.95)

which is the mean field potential vorticity considered by Greatbatch (1998) and Peterson and
Greatbatch (2001). The two forms of potential vorticity differ by the potential vorticity of the
bolus velocity

Π♯ − Π̂ =
(f + ζ̂)− (f + ζ)

h
=
ẑ · [∇× (û− u)]

h
=
ẑ · (∇× û′)

h
=
ẑ · (∇× ubolus)

h
, (67.96)

where the penultimate equality made use of equation (67.32) for û′, and the final equality
introduced the bolus velocity according to equation (67.39). Use of Π♯ allows us to develop
a potential vorticity conservation statement solely in terms of û, whereas the use of Π̂ by
Greatbatch (1998) and Peterson and Greatbatch (2001) requires both u and û.

67.7.3 Comments

As in Young (2012), and as advertised at the start of this chapter, we have developed the
equations for the thickness weighted averaged shallow water solely in terms of the thickness
weighted velocity, û. This development includes the thickness equation (67.35), the tracer
equation (67.42), the velocity equation (67.46) and the potential vorticity equation (67.90).
There is no need for the ensemble mean velocity, u, and thus no need to parameterize the bolus
velocity.

67.8 Vorticity fluxes for non-divergent barotropic flow
In Chapter 38 we studied the mechanics of a two dimensional fluid whose horizontal flow is
non-divergent. As for the shallow water, the fluid moves as columns. However, since the
horizontal flow is non-divergent, each column is rigid and so there is no stretching or squashing
of columns. Correspondingly, there are no form stresses acting on these columns. We specialize
the shallow water analysis in this section to rigid columnar motion as a means to verify that the
Reynolds stresses appearing in the Eliassen-Palm flux formulation correspond to that arising in
the non-divergent barotropic model.

For rigid fluid columns, the thickness weighted average reduces to just the ensemble mean
since all layer thicknesses are fixed. Correspondingly, there are no form stresses acting at the
layer interfaces since interfaces are horizontal. Hence, the Eliassen-Palm fluxes (67.75a) and
(67.75b) reduce to just their Reynold stress contributions

h−1E(uEP) = u′ u′ x̂+ u′ v′ ŷ (67.97a)

h−1E(vEP) = u′ v′ x̂+ v′ v′ ŷ. (67.97b)

The corresponding eddy potential vorticity flux (67.92), absent the gauge term, is

F ♯ = x̂∇ · [u′ v′ x̂+ v′ v′ ŷ]− ŷ∇ · [u′ u′ x̂+ u′ v′ ŷ] (67.98a)

= x̂ [∂x(u′ v′) + ∂y(v′ v′)]− ŷ [∂x(u′ u′) + ∂y(u′ v′)]. (67.98b)

Does the eddy potential vorticity flux (67.98b) agree, to within a gauge function, with the
eddy flux resulting from a direct decomposition into eddy and mean within a two dimensional
non-divergent model? To address this question, recall that the advective flux of potential vorticity
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for the two dimensional non-divergent flow is given by equation (38.52)

u q = u f +∇ · (ẑ × E), (67.99)

where E is the trace-free anisotropic portion of the kinetic stress tensor

E =

[
−(u2 − v2)/2 −u v
−u v (u2 − v2)/2

]
. (67.100)

The mean of the potential vorticity flux is (67.99) is given by

u q = u q + u′ q′, (67.101)

where the flux computed from the mean fields is

u q = u (f + ζ), (67.102)

whereas the eddy potential vorticity flux is

u′ q′ = ∇ · [ẑ × E(u′)] (67.103a)

= x̂ [∂x(u′ v′) + ∂y(v′ v′ − u′ u′)/2] + ŷ [∂x(v′ v′ − u′ u′)/2− ∂y(u′ v′)] (67.103b)

= x̂ [∂x(u′ v′) + ∂y(v′ v′)]− ŷ [∂x(u′ u′) + ∂y(u′ v′)] + (x̂ ∂y − ŷ ∂x)u′ · u′/2 (67.103c)

= F ♯ − ẑ ×∇(u′ · u′)/2. (67.103d)

Hence, u′ q′ agrees with F ♯ in equation (67.98b) to within a gauge function given by the rotated
gradient of the eddy kinetic energy, so that their divergences are equal

∇ · F ♯ = ∇ · u′ q′. (67.104)

That is, when diagnosing contributions to the potential vorticity flux, the gauge term, −ẑ ×
∇(u′ · u′)/2, plays no role in forcing potential vorticity.
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In this part of the book, we study the physics and maths of passive tracers, conservative
tracers,10 as well as density and Archimedean buoyancy. Tensorially, these fields are scalars and
so they provide a number (e.g., temperature, humidity, mass density) throughout the continuum
fluid. This study of scalar mechanics complements that of momentum, vorticity, and energy
considered in other parts of this book, with each scalar offering information about the mechanics
of fluid motion. Much of the material is relevant to both the atmosphere and ocean, though
specialized topics are motivated from ocean applications.

Although the physics and maths of scalar fields is simpler than that describing momentum,
vorticity, and energy, there is a remarkable richness to the study. We only touch upon a few of
the many topics, aiming to provide a theoretical platform for further study by the interested
reader. Here is a synopsis of the chapters in this part of the book.

• In Chapter 68 we focus on tracer diffusion in the absence of advection. The diffusion
equation is the canonical parabolic partial differential equation, and we studied a variety
of its mathematical properties in Chapters 6 and 9. Indeed, there is a long and rich history
of research into diffusive (or conductive) processes across science and engineering, with
books such as Crank (1956) and Carslaw and Jaeger (1959) offering a wealth of theoretical
results and mathematical methods. Our focus in Chapter 68 is somewhat more physical
than our earlier presentations of diffusion, though with much of the physics revealed via
deriving mathematical properties of the diffusion equation.

• In Chapter 69 we consider advection along with diffusion in affecting the evolution of
tracer concentration. Advection results through viewing evolution from within the Eulerian
reference frame. When acting alone on a conservative tracer, advection affects a reversible
stirring of tracer concentration that can increase tracer gradients. When diffusion is
included along with advection, reversibility is lost and tracer gradients increase or decrease
depending on the relative dominance of advection or diffusion.

• In Chapter 70 we introduce notions of wave-mean flow interactions that give rise to
eddy-induced advection (or skew diffusion) as well as diffusion. This chapter, which mostly
focuses on kinematic properties and is restricted to tracers, makes use of both geopotential
coordinates as well as isopycnal coordinate equations from Chapter 66. Doing so provides
examples of the dual roles these two vertical coordinate choices fill for describing turbulent
geophysical flows.

• In Chapter 71 we study elements of tracer parameterizations used for coarse resolution
models of the ocean circulation. We particularly focus on a variety of mathematical prop-
erties of the parameterizations, and unpack the physics embodied within the mathematics.
This chapter exposes a handful of questions at the leading edge of research, with that
material among the less mature found in this book.

• In Chapter 72 we consider ocean density and the budget for global sea level. This study
requires us to dive into the niceties of the enthalpy (heat), salt, and mass budgets for
the ocean. These budgets are central to climate science through the ocean’s role as the
dominant sink of anthropogenically induced increase in planetary enthalpy, and with that
increase affecting a rise in sea level.

• In Chapter 73 we present fundamental elements to the theory of water mass transformation
analysis. This analysis offers a view on ocean circulation mechanics that complements those
available from Eulerian and Lagrangian approaches. Many of the methods of ocean water

10Conservative tracers evolve only via the convergence of advective and diffusive fluxes within the fluid interior,
along with boundary conditions. That is, conservative tracers have no interior sources or sinks. Hence, the net
content of a conservatice tracer over any finite volume domain is affected only through transport across boundaries.
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mass analysis are relevant to atmospheric analyses as well, though this chapter is written
from an oceanographic perspective. Furthermore, this chapter is arguably the toughest in
this part of the book, with progress in understanding water mass transformation theory
sometimes taking years to ponder the concepts and apply the methods.
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Chapter 68

TRACER DIFFUSION

In this chapter we study tracer diffusion in geophysical fluids. Diffusion affects an irreversible
exchange of propertes between fluid elements, thus offering a conceptual and mathematical
depiction of how such properties are mixed at the microscale through chaotic molecular motions.
Furthermore, diffusion forms the null hypothesis for how turbulent eddying flows disperse and mix
tracers at scales larger than the microscale. Diffusion is thus central to how environmental and
geophysical fluid flows act to transport matter and thermodynamic properties, thus motivating
an exploration into a variety of physical and mathematical aspects of tracer diffusion.

chapter guide

We presume an understanding of the tracer equation as studied in Chapter 20. We
considered mathematical elements of the diffusion equation in Chapter 6 as part of
our study of parabolic partial differential equations. We also considered the diffusion
equation when studying Green’s function solutions for passive tracers in Chapter 9. Those
presentations are very useful for the present chapter, though not essential.

In Section 69.2, we summarize some tensor analysis tools for use in studying tracer
diffusion, with that material drawing upon the tensor analysis material in Chapters 1-4.
We work in the context of a non-Boussinesq fluid, with results for the Boussinesq ocean
of Chapter 29 found merely by setting the density factor, ρ, to the Boussinesq reference
density, ρo. Chapter 69 is a direct descendant of the current chapter, where we study the
combined effects of advection and diffusion.

68.1 Loose threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896
68.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 1896

68.2.1 Concerning the upright versus slanted notation . . . . . . . . . . 1896
68.2.2 Metric tensor allows us to measure distance . . . . . . . . . . . . 1897
68.2.3 Raising and lowering tensor indices via the metric tensor . . . . . 1897
68.2.4 Divergence of a vector and the divergence theorem . . . . . . . . 1898
68.2.5 Example tracer fluxes . . . . . . . . . . . . . . . . . . . . . . . . 1898
68.2.6 Comments about the tensor tools . . . . . . . . . . . . . . . . . . 1900

68.3 Basic physics of tracer diffusion . . . . . . . . . . . . . . . . . . . . . . . 1900
68.3.1 Diffusion of matter by random molecular motions . . . . . . . . . 1900
68.3.2 Diffusion of matter by random turbulent motions . . . . . . . . . 1901
68.3.3 Fick’s law for matter diffusion . . . . . . . . . . . . . . . . . . . . 1901
68.3.4 Fourier’s law for heat diffusion . . . . . . . . . . . . . . . . . . . 1903
68.3.5 Newtonian frictional stress and momentum diffusion . . . . . . . 1903
68.3.6 The scale selectivity of Laplacian diffusion . . . . . . . . . . . . . 1904
68.3.7 A Gaussian tracer concentration generated by a Dirac source . . 1905
68.3.8 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1906
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68.4 Further properties of tracer diffusion . . . . . . . . . . . . . . . . . . . . 1906
68.4.1 Sample diffusion tensors . . . . . . . . . . . . . . . . . . . . . . . 1907
68.4.2 Diffusion of tracer concentration powers . . . . . . . . . . . . . . 1907
68.4.3 Moments of tracer concentration . . . . . . . . . . . . . . . . . . 1908

68.5 Connecting tracer dissipation to the diffusion operator . . . . . . . . . . 1909
68.5.1 Fréchet derivative of the diffusion dissipation functional . . . . . 1910
68.5.2 Connection to the diffusion operator . . . . . . . . . . . . . . . . 1911
68.5.3 Why we need to assume Kmn is independent of C . . . . . . . . 1911
68.5.4 Relation to Hamilton’s principle . . . . . . . . . . . . . . . . . . . 1912

68.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1912

68.1 Loose threads
• Add a new section working through some of the classic BVPs for diffusion, such as those
in Csanady (1973). Also add some of these to the exercises.

68.2 Mathematical preliminaries

As derived in Section 20.1, the equation for a conservative tracer1 takes on the form

ρ
DC

Dt
= −∇ · J, (68.1)

where C is the tracer concentration scalar, and J is a tracer flux vector that embodies molecular
diffusion as well as subgrid scale advection and subgrid scale diffusion (Chapter 71). Advective
transport from the resolved flow, v, appears when transforming to an Eulerian or laboratory
reference frame, in which case the tracer equation takes on the equivalent forms

ρ
DC

Dt
= −∇ · J⇐⇒ ∂t(ρC) +∇ · (v ρC+ J) = 0, (68.2)

with v ρC the advective flux. In this chapter we assume J arises just from diffusion, and we
furthermore ignore any flow (i.e., v = 0) so that advection is absent.

68.2.1 Concerning the upright versus slanted notation

The two forms of the tracer in equation (68.2) are written as a tensor equation, prompting
the upright C, v, and J, which follows the notation convention of Section 1.2.2. Hence, these
equations are valid in any coordinate system. When represented in a particular coordinate
system, such as Cartesian, then we write the slanted C, v, and J , which are particular coordinate
representations of the fields C, v, and J.

The upright versus slanted notation is fundamental conceptually, since it is important to
appreciate that tensors are geometric objects that are not subject to the whims of a particular
coordinate choice. Correspondingly, physically robust differential and integral equations are
coordinate invariant. Even so, the upright-slanted notation can be softly adhered to without
much cause for concern, so long as we are careful to write the coordinate equations using rules
of tensor analysis. In that case, the coordinate equations are unaltered in form when changing
coordinates; i.e., they are tensor equations. Developing a practical and conceptual understanding
of what careful means in this context requires the tensor analysis material presented in Chapters

1Conservative tracers evolve without sources or sinks, and so their material time evolution is only affected by
the convergence of a flux.
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1 through 4. In the remainder of this section, we summarize salient points from those chapters
that are of particular use in the study of tracer diffusion.

68.2.2 Metric tensor allows us to measure distance
The metric tensor, g, is a symmetric and positive-definite (i.e., all eigenvalues are positive) second
order tensor that is used to measure the distance between points in space. The Kronecker tensor
(unit tensor) is the representation of the metric tensor for Euclidean space when using Cartesian
coordinates. In this case, gmn = δmn, where δmn is unity when m = n and zero otherwise. In
this book, we are only concerned with fluid motion through a background Euclidean space. Even
so, we find many occasions to use non-Cartesian coordinates and/or to consider flow constrained
to non-Euclidean surfaces that are embedded in Euclidean space (e.g., a spherical planet or
an isopycnal surface). Example non-Cartesian coordinates of use for geophysical fluids include
spherical coordinates (Section 4.23), cylindrical-polar coordinates (Section 4.22), generalized
vertical coordinates (Part XII), and Lagrangian coordinates (Chapter 18). For these cases, and
others, a coordinate representation of the metric tensor is distinct from the Kronecker tensor.

We often have need to work with the inverse metric tensor, g−1, which we know exists since
the metric is a symmetric and positive-definite tensor. To reduce notational clutter, we write
gmn for the coordinate representation of the inverse metric, rather than the more clunky (g−1)mn.
By definition of the inverse metric, we have the following identity holding for any coordinate
choice

δmn = gmp gpn, (68.3)

where δmn is an expression of the identity tensor, which is coordinate invariant.2 Notably, for
Cartesian tensors, where gmn = δmn, the identity (68.3) reduces to the identity across Kronecker
tensor representations

δmn = δmp δpn. (68.4)

Since δmn = δmn (inverse of the Kronecker tensor is the tensor itself), equation (68.4) means
that

δmn = δmn = δmn. (68.5)

Identities (68.4) and (68.5) are indicative of the relative simplicity of Cartesian tensor analysis,
in which there is no distinction between index placement so that there is no quantitative need
to keep track of upstairs versus downstairs indices. Yet there is a distinction for general tensors,
and so we must be careful to use the metric tensor to raise and lower indices, as now discussed.

68.2.3 Raising and lowering tensor indices via the metric tensor
Besides measuring distance between points in space, the metric tensor provides the operational
means to raise and lower indices that appear on the representations of tensors (see Section
4.2.3 for details). For example, consider the second order diffusion tensor, K, with a particular
coordinate representation for Km

n. The K
m
n representation is sometimes referred to as the (1, 1)

natural representation, and it is related to its totally contravariant (2, 0) sharp representation,
Kmn, through contraction with the metric tensor,3

Km
n = gpnK

mp. (68.6)

2Coordinate invariant means that the Kronecker tensor has the same numerical values for all coordinates.
Namely, it is unity when its two indices are the same and zero when the indices differ.

3In Section 1.6.1 we introduced the musical nomenclature sometimes used for the representations of second
order tensors. The natural representation of a second order tensor occurs with one tensor index upstairs and the
other downstairs. The natural representation is sometimes denoted by (1, 1), to indicate the number of indices up
and down. The sharp or (2, 0) representation is when the tensor is represented with both indices upstairs. Finally,
the flat or (0, 2) representation is where both indices are downstairs.
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It follows that to relate the flat or (0, 2) representation to the sharp representation requires two
contractions with the metric tensor,

Kmn = gmq gpnK
qp. (68.7)

Note that since the metric is symmetric, gmn = gnm, there is no need to be concerned with the
ordering of its indices.

68.2.4 Divergence of a vector and the divergence theorem

As seen from the tracer equation (68.2), the convergence of the tracer flux drives the time
evolution of conservative tracers. It is thus important to know how the divergence is expressed
as a tensor equation. In Section 4.15 we derived the coordinate invariant expression (4.134) for
the divergence of a vector

∇ · J = ∇m Jm =
1√

det(gmn)
∂m [

√
det(gmn) J

m], (68.8)

where ∇m are components to the covariant derivative. Equation (68.10) is a convenient result
since it only requires partial derivatives in the chosen coordinate system, with all the coordinate
dependent properties summarized by the square root of the metric determinant,

√
det(gmn).

Since
√
det(gmn) appears in many places within this chapter, we find it useful to introduce the

shorthand
g ≡

√
det(gmn), (68.9)

in which the covariant divergence (68.10) is written in the more tidy manner

∇ · J = g−1 ∂m (g Jm). (68.10)

For Cartesian coordinates, g =
√

det(gmn) = 1, in which case the divergence in equation
(68.10) reduces to its familiar Cartesian form (Section 4.21.3). Yet other coordinates have a
nonzero g, which accounts for the squeezing and expansion of the coordinate surfaces that affect
the divergence. For example coordinate expressions of the divergence, see Section 4.23.8 for
spherical coordinates, Section 4.22.10 for cylindrical-polar coordinates, and Sections 63.14 and
63.15 for generalized vertical coordinates.

The 1/g factor appearing in the covariant divergence (68.10) is convenient since it cancels
the same factor appearing in the invariant volume element (4.60). This cancellation greatly
simplifies the divergence theorem as presented in Section 4.19 and given by equation (4.148)

ˆ
R

∇ · J dV =

ˆ
R

∇m Jm dV =

ˆ
R

∂m(g J
m) d3ξ =

˛
∂R
Jm n̂m dS, (68.11)

where n̂ is the outward normal, and d3ξ = dξ1 dξ2 dξ3 is the coordinate volume element.

68.2.5 Example tracer fluxes

We here briefly consider example tracer fluxes that are studied later in this chapter or in Chapter
69. We start from their form written in Cartesian coordinates and then transform to general
coordinates.
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Advective tracer flux

The advective tracer flux has Cartesian coordinates, denoted by ξm, written as

Jm = ρ vmC, (68.12)

where ρ, C, and vm are functions that represent the density, tracer concentration, and velocity
using Cartesian coordinates as independent variables. To transform the advective tracer flux to
another set of coordinates, ξm, requires the transformation matrix as detailed in Section 4.1.4,
where

Jm = ρC Λmm v
m = ρC vm. (68.13)

In this equation we wrote ρ, C, and vm for the functions representing the density, tracer concen-
tration, and velocity with ξm as the independent variables. Furthermore, the transformation
matrix, Λmm, is built from the partial derivatives of the two sets of coordinates

Λmm = ∂ξm/∂ξm. (68.14)

For nomenclature brevity in the following, we do not write ρ and C, thus relying on the functional
dependence implicit in the coordinate choice.

Isotropic diffusive tracer flux and the Laplace-Beltrami operator

The isotropic diffusive tracer flux has the following representation using Cartesian coordinates

Jm = −ρ κ δmn ∂nC, (68.15)

with κ > 0 the diffusivity scalar. We generalize the isotropic diffusive flux to arbitrary coordinates,
ξm, by introducing the inverse metric tensor represented using the ξm coordinates4

Jm = −ρ κ gmn ∂nC. (68.16)

Making use of equation (68.10) leads to the flux convergence

−∇ · J = g−1 ∂m (ρ κ g gmn ∂nC). (68.17)

If the product, ρ κ, is a constant in space then the resulting flux convergence exposes the
Laplace-Beltrami operator acting on the tracer concentration

−∇ · J = ρ κ g−1 ∂m (g gmn ∂nC)︸ ︷︷ ︸
Laplace-Beltrami acting on C

≡ ρ κ∇2
C. (68.18)

Diffusive tracer flux with an anisotropic diffusion tensor

With a general diffusion tensor (whose form is discussed more in later sections), the Cartesian
expression for the diffusive flux is given by

Jm = −ρKmn ∂nC. (68.19)

The tracer flux has a corresponding expression using arbitrary coordinates

Jm = −ρKmn ∂nC, (68.20)

4The covariant derivative acting on a scalar field is just the partial derivative. So we could just as well have
written Jm = −ρ gmn ∇nC for equation (68.16).
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which is identical in form to the Cartesian expression (68.19). We make use of the transformation
matrix and its inverse to write

∂n = ∂n Λ
n
n and Kmn = Λmm ΛnnK

mn. (68.21)

Note that we actually only need to perform a single transformation since the contraction between
the diffusion tensor and the derivative of the tracer concentration is coordinate invariant

Jm = −ρKmn ∂nC = −ρKmn ∂nC = −ρΛmmKmn ∂nC = Λmm J
m. (68.22)

68.2.6 Comments about the tensor tools
Most of this chapter is unconcerned with the niceties of general tensor analysis. Part of the reason
is that Cartesian coordinates are sufficient to exemplify the key maths and physics ideas. Even
so, we are mindful to use rudimentary tensor notation, thus allowing for the equations derived
with Cartesian coordinates to be valid tensor equations that hold for all coordinates. Given the
growing suite of coordinates used in geophysical fluid studies, this extra bit of formalism has a
nontrivial payoff.

68.3 Basic physics of tracer diffusion
The continuum approximation from Chapter 16 proposes that a macroscopic description of
fluid motion does not require direct information about the motion of individual molecules.
Nonetheless, random molecular motion and properties of the constituent molecules impact on
fluid motion through the process of molecular diffusion of matter. Analogously, the random
motion of fluid elements within a turbulent fluid give rise to turbulent diffusive transport.5 In
this section we explore the basic physical nature of molecular and turbulent diffusion.

68.3.1 Diffusion of matter by random molecular motions
Consider a fluid comprised of a single matter constituent, such as a lake of pure H2O. As
discussed in Section 17.2, for a macroscopic description of this single-component fluid, a constant
mass fluid element is identical to a constant mass material fluid parcel. That is, there is no mixing
of matter since there is just a single matter component. Now place a dye tracer (Section 20.1.5)
into a corner of the lake so that the lake is comprised of two material components (H2O and dye).
Even in the absence of ambient macroscopic fluid motion, the random motion of water and dye
molecules produces an exchange of matter constituents between fluid elements. Consequently,
the dye spreads outward from its initial position; i.e., it diffuses into the surrounding water.

We introduced the notion of matter exchange between fluid elements when discussing the
tracer equation in Section 20.1. In the present context, matter exchange occurs through the
random motion of molecules acting in the presence of a matter concentration gradient. Even
though the continuum approximation has removed all explicit concern for details of molecular
motion, we confront the underlying molecular nature of matter since molecular motions have
a measurable impact on macroscopic fluid properties. This transport of matter by random
molecular motions is known as molecular diffusion. A statistical description of molecular
diffusion is available for certain ideal-like gases, using methods from kinetic theory. Einstein
(1905) advanced the theory by studying Brownian motion, in which a relatively large particle
(e.g., dust) is transported by the random motion of molecules within the fluid. As noted on page
4 of Csanady (1973), results from both kinetic theory of gases and Brownian motion suggest

5For our purposes, turbulence is characterized by a quasi-random fluid flow that acts on fluid elements and
their properties.
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that the distance over which a typical mixing “event” occurs is small relative to the macroscopic
scales of motion of concern for continuum mechanics. Consequently, we are justified in using the
diffusive flux expression (68.23) arising from Fick’s law as considered in Section 68.3.3.

68.3.2 Diffusion of matter by random turbulent motions
Diffusion of matter is a familiar process. For example, the odor from an open perfume bottle
spreads throughout a room, even in the absence of macroscopic motion of air in the room. When
the ambient macroscopic motion is zero (which is rare indeed), spread of the perfume arises
solely from random molecular motions whose properties depend on details of the molecules (e.g.,
their size, speed, inter-molecular forces). The time scale for molecular diffusion is generally
much longer than the analogous turbulent diffusion that results if there is random motion in the
macroscopic fluid, such as occurs by placing a fan next to the perfume bottle.

It is common for environmental and geophysical fluid systems to exhibit some form of
turbulent motion. In these systems, the transport of matter by macroscopic turbulent motion is
much more efficient than from molecular motion. In the case of turbulent transport, we can
generally ignore molecular diffusion since efficiency of the turbulent diffusive transport is far
greater than that from molecular diffusion. Taylor (1921) described the statistical properties of
turbulent diffusion, and many of his insights form the basis for theories of how turbulent motion
impacts on matter concentrations. In Taylor’s theory, turbulent diffusion is not concerned with
molecular properties of the fluid. Rather, the properties of turbulent diffusion (e.g., its efficiency)
depend on the nature of the turbulent motion of fluid elements. In this way, turbulent diffusion
sits within the realm of continuum mechanics, whereas molecular diffusion is a subject for kinetic
theory and statistical mechanics. Each type of turbulent motion gives rise to a distinct form of
turbulent diffusion. For example, turbulent diffusion associated with a turbulent field of internal
gravity waves is distinct from turbulent diffusion from geostrophic eddies.

68.3.3 Fick’s law for matter diffusion
Consider a fluid with a non-uniform tracer concentration such as that drawn for a one-dimensional
case in Figure 68.1. Random motion, due either to molecular motion or turbulent fluctuations,
will transfer tracer across an arbitrary point, line, or plane. Random motion preferentially
moves tracer from regions of high concentration to regions of low concentration, thus smoothing
gradients.

To a good approximation, the mass flux (mass per time per cross-sectional area) of a material
tracer is linearly proportional to the concentration gradient, and thus can be written in the form

J = −κc ρ∇C. (68.23)

In this equation, we introduced the positive proportionality factor, κc > 0, known as the
kinematic diffusivity, whereas the product κc ρ is known as the dynamic diffusivity:

κc kinematic diffusivity with SI units m s−2 (68.24)

ρ κc dynamic diffusivity with SI units kg m−2 s−2. (68.25)

The kinematic diffusivity has dimensions of squared length per time and it sets the efficiency or
strength of the diffusion. The diffusive flux (68.23) is known as Fick’s law of matter diffusion,
and it is commonly used in geophysical fluid mechanics to represent the mixing of matter
through diffusion. The minus sign in the diffusive flux arises since the flux is directed down
the concentration gradient. When considering molecular diffusion, we distinguish diffusivities
according to their respective tracers since they generally differ, whereas turbulent diffusivities
are commonly assumed to be independent of tracer, in which case we write the generic, κ.
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Figure 68.1: A graph illustrating a material tracer concentration, C as a function of the space coordinate
z, with the left panel showing the concentration at an earlier time than the right panel. Across any arbitrary
point, matter is transported through random motions, with this transport generally reducing the magnitude of
the concentration gradient. This reduction of concentration gradient is a direct result of the downgradient (i.e.,
down the concentration gradient) orientation of the diffusive transport. For example, where the concentration is
relatively high, random motion mixes this high concentration with adjacent lower concentration, thus acting to
lower the concentration in the originally high concentration region and raise the concentration in the originally
low concentration region. In this particlar example, ∂C/∂z > 0, so that random fluid motions (either molecular
or turbulent) lead to a diffusive flux directed in the −ẑ direction; i.e., downward. This downward flux brings high
concentration fluid into the lower/deeper regions and low concentration fluid into higher/shallower regions. The
concentration is vertically uniform if allowed to equilibrate under the action of diffusion.

The kinematic diffusivity has physical dimensions equal to the product of a length and a
speed. For molecular diffusion, the kinematic diffusivity is proportional to the mean free path,
Lmfp (see Section 16.3.3), and the root-mean-square molecular speed, vrms (see Section 16.3.4).
Each of these properties is a function of the molecules comprising the matter. For air, the
mean free path is roughly 2 × 10−7 m and the root-mean-square speed is 500 m s−1, so that
Lmfp vrms ≈ 10−4m2 s−1. The precise value for the molecular diffusivity depends on the molecular
properties of the matter diffusing through the fluid; e.g., molecular size and speed.

For turbulent diffusion, Prandtl suggested that the characteristic length and velocity scales
are determined by properties of the turbulent flow, not by the molecular properties of the fluid
or the tracer. The turbulent length scale (also called the mixing length) is generally much larger
than the molecular mean free path, whereas the turbulent velocity scale is much smaller than
molecular speeds. Determination of turbulent length and velocity scales is subject to large
uncertainties and variations given the multiple regimes of turbulence exhibited by geophysical
flows. As a result, tracer transport by turbulent flows has remained a topic of much research
since the early 20th century.

In regions where the diffusive flux is not a constant, there is generally a net transport of
matter that leads to the reduction of the tracer concentration gradient as determined by the
convergence of the diffusive flux

ρ
DC

Dt
= −∇ · J = ∇ · (κc ρ∇C). (68.26)

That is, the concentration increases in regions where the diffusive flux, J , converges, and
decreases where the flux diverges. Expanding the divergence operator leads to

ρ
DC

Dt
= ∇(κc ρ) · ∇C + κc ρ∇2C. (68.27)

The first term is nonzero in regions where the dynamic diffusivity, κc ρ, spatially varies. This
term vanishes for molecular diffusion, in which case the diffusivity is a spatial constant. However,
for turbulent diffusion this term can be quite important given the potential for strong flow
dependence to the diffusivity. Indeed, there are cases in which this spatial dependence can
enhance tracer gradients, overcoming the effects from the curvature term. We consider an
example in Exercise 68.5 known as the Phillip’s layering instability.
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The second term in the diffusion equation (68.27) is proportional to the Laplacian of the
tracer concentration, which provides a measure of the curvature in the tracer field. Hence, this
term vanishes when the tracer concentration is a constant or a linear function of space, whereas
it is nonzero for tracers having less trivial spatial structure. As discussed in Section 68.3.6,
this term provides a scale selectivity to the diffusion operator, thus resulting in a preferential
dampening of small scale features relative to large scale features.

68.3.4 Fourier’s law for heat diffusion
In the same way that matter concentration gradients lead to diffusion by random motions,
temperature gradients lead to diffusion of heat. The corresponding phenomenological relation is
known as Fourier’s law, with the diffusive flux given by

J = −κT ρ∇T, (68.28)

where κT > 0 is the temperature kinematic diffusivity. As for the matter diffusivity, the molecular
thermal diffusivity can be expressed in terms of fundamental properties of the fluid, and it is
different from the matter diffusivity. In general, molecular processes diffuse matter slower than
heat, so that the matter molecular diffusivity is smaller than the heat molecular diffusivity. The
reason for the difference is that matter diffusion requires the movement of matter (molecules),
whereas heat diffusion occurs through the exchange of thermal energy between molecules, and
that exchange does not require the motion of matter. For turbulent transport, however, the
turbulent thermal diffusivity is roughly the same as the turbulent matter diffusivity. The reason
is that the turbulent diffusion of both matter and heat are mediated by the same turbulent
fluctuations of fluid elements.

68.3.5 Newtonian frictional stress and momentum diffusion
In the same way that matter and temperature gradients lead to diffusion by random molecular
and turbulent motions, the momentum of fluid elements is exchanged through diffusion in the
presence of viscosity. The corresponding phenomenological relation is known as Newton’s law of
viscous friction. As momentum is a vector, a general treatment of momentum transport through
irreversible viscous processes involves a second order stress tensor and a fourth order viscosity
tensor. For the specific case shown in Figure 68.2, with shear (i.e., nonzero velocity gradient) in
a single direction, Newtonian frictional stress takes the form

τ = ρµ ∂zu, (68.29)

where µ > 0 is the kinematic viscosity. Note the absence of a minus sign, in contrast to diffusive
fluxes of scalars. The sign difference arises since it is the divergence of the stress tensor that
leads to contact forces on the fluid, whereas it is the convergence of diffusive fluxes that leads to
diffusion of matter and heat. We consider these general properties of the stress tensor when
exploring the fluid dynamical equations in Chapter 24 and further study the physical nature of
stress in Chapter 25.

For geophysical fluid mechanics, we are most generally interested in the molecular viscosity
of water and air. Quite generally, the dynamic viscosity of water (ρµ) is about 102 times larger
than that for air. But since the density of water is about 103 times larger than air, the kinematic
viscosity of air is roughly 10 times greater than that of water.

The molecular kinematic viscosity can be expressed in terms of fundamental properties
of the fluid, and it is different from the molecular matter diffusivity and molecular thermal
diffusivity. For some turbulent processes, the turbulent viscosity, µ, is proportional to the
turbulent diffusivity, κ, of scalar fields (e.g., temperature, salinity, humidity). In general, the
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Figure 68.2: A graph illustrating the zonal velocity, u, as a function of the space coordinate z, with the left panel
showing the velocity at an earlier time than the right panel. Across any arbitrary point, transport of momentum
through random motions generally reduces the magnitude of the velocity gradient; i.e., the diffusive transport
leads to a viscous stress that acts to reduce the velocity shear.

non-dimensional ratio of the viscosity to the diffusivity is known as the Prandtl number

Pr = µ/κ. (68.30)

Theories for the turbulent Prandtl number are largely empirical, with first principles arguments
elusive.

68.3.6 The scale selectivity of Laplacian diffusion

Let us focus on the Laplacian term appearing in the tracer equation (68.27) to establish some
properties characteristic of Laplacian diffusion. Start by considering a tracer concentration
whose spatial structure is given by two Fourier modes,

C(x) = cp sin(p · x) + cq sin(q · x), (68.31)

where p and q are specified wavevectors and cp, cq are their corresponding amplitudes. In this
case the Laplacian of the tracer is given by

∇2C = −[|p|2 cp sin(p · x) + |q|2 cq sin(q · x)]. (68.32)

Consequently, the Laplacian diffusion operator acts preferentially on waves of smaller wavelength
(and larger wavenumber). For example, assume |p| ≪ |q|, in which case the q-mode is more
rapidly damped towards zero than the p-mode.6 For this reason we say that Laplacian diffusion
is scale selective. Note that zero is the wave averaged concentration for each Fourier mode. We
thus see that diffusion acts to dampen each mode towards is average. Scale selectivity results
geometrically from a property of the Laplacian operator as a measure of curvature. Tracer
features with large curvature have a larger magnitude for their Laplacian, and as such they are
damped more rapidly than tracer features with relatively small curvature.7

As a second means to understand properties of Laplacian diffusion, consider a Taylor series
for the tracer concentration computed relative to an arbitrarily chosen origin,

C(x) = C(0) + xm ∂mC|x=0 + (1/2)xm xn ∂n∂mC|x=0 + ... (68.33)

Now compute the average of this tracer concentration over a cube centered at the origin with

6Figure 8.2 illustrates this idea in the context of Fourier analysis.
7Recall our discussion of curvature in Chapter 5.
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sides L and volume L3, and furthermore make use of the identities

ˆ L/2

−L/2

ˆ L/2

−L/2

ˆ L/2

−L/2
xm dx dy dz = 0 (68.34a)

ˆ L/2

−L/2

ˆ L/2

−L/2

ˆ L/2

−L/2
xm xn dx dy dz = δmn (L5/12). (68.34b)

We thus find that the volume averaged tracer concentration, ⟨C⟩, deviates from the concentration
at the origin by a term proportional to the Laplacian of the concentration evaluated at the origin

⟨C⟩ − C(0) = (L2/24)∇2C
∣∣
x=0

=⇒ ∂tC|x=0 = (24κc ρ/L
2) [⟨C⟩ − C(0)], (68.35)

where we made use of the Laplacian portion of the diffusion equation (68.27) for the second
expression. Evidently, Laplacian diffusion provides a tendency to bring the tracer concentration
at a point towards the average tracer concentration in a region surrounding that point. For
example, consider the case where the averaged tracer concentration has no time dependence,
as occurs in a region with zero boundary fluxes of tracer. If we are at a point in the region
where the concentration is less than the average concentration, C < ⟨C⟩, then diffusion provides
a positive tendency to increase C towards ⟨C⟩, and vice versa if C > ⟨C⟩. These results offer
another expression of what we found in studying Laplacian diffusion on Fourier modes. In that
case, the Laplacian operator, as revealed through equation (68.32), damps each mode towards
its average, which is zero.

68.3.7 A Gaussian tracer concentration generated by a Dirac source

Consider a one-dimensional tracer concentration in an unbounded domain whose initial (t = 0)
value vanishes everywhere except at the origin, where it is given by a Dirac delta

C(x, t = 0) = Qδ(x), (68.36)

where δ(x) is the Dirac delta studied in Chapter 7. The Dirac delta has dimensions of inverse
length, so that the constant, Q, has dimensions of [C] L. Integrating over any region containing
the origin reveals that Q is the domain integrated tracer concentration at the initial time,

ˆ ∞

−∞
C(x, t = 0) dx = Q. (68.37)

We are ensured that this integral holds for all time if the domain has no boundary fluxes of
tracer nor any interior tracer sources.

Assume now that the tracer concentration evolves according to the one-dimensional (one
space dimension) diffusion equation with a constant diffusivity, κ, and in a fluid with a constant
density. In the absence of spatial boundaries (i.e., diffusion occurs on the real line, R1), the
concentration is proportional to the causal free space Green’s function given by the Gaussian
function (9.136)

C(x, t) =
Q

(4π κ t)1/2
e−x

2/(4κ t), (68.38)

which indeed satisfies (for any time, t)

Q =

ˆ ∞

−∞
C(x, t) dx, (68.39)

as required by tracer conservation for the infinite domain. We illustrate the Gaussian tracer
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concentration (68.38) in Figure 68.3. The variance of the tracer distribution is given by

Q−1

ˆ ∞

−∞
C x2 dx = 2κ t, (68.40)

so that the standard deviation grows according to
√
2κ t.

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
/Q

Tracer concentration from a Dirac source
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Figure 68.3: Illustrating the tracer concentration resulting from a Dirac source at the origin, as given by the
Gaussian Green’s function (68.38) for three values of κ t. According to equation (68.40), the standard deviation is
given by

√
2κ t, with the standard deviation measuring the spread of the distribution.

68.3.8 Further study

The treatment given in this section is consistent with that from Section 1.5 of Kundu et al.
(2016) and Chapter 1 of Csanady (1973). Molecular diffusion for ideal gases is examined in books
that consider the kinetic theory of gases, such as Reif (1965) and Huang (1987). Treatments of
Brownian motion in the context of turbulent diffusion can be found in Csanady (1973), who
focuses on turbulent diffusion in the environment (e.g., for the study of pollution dispersal), and
in Chapter 13 of Vallis (2017), who focuses on geophysical flows.

68.4 Further properties of tracer diffusion
We considered mathematical properties of the diffusion equation in Chapter 6 as part of our
study of parabolic partial differential equations. We also examined the diffusion equation as part
of our analysis of Green’s function solutions for passive tracers in Chapter 9. Here, we explore
further mathematical properties of diffusion motivated in part by the discussion in Section 68.3.
In particular, we here allow for distinct behavior of the diffusive fluxes in the different directions.
Such distinctions are relevant especially for the turbulent diffusivity arising in stratified fluids,
where turbulent mixing across stratification surfaces is suppressed relative to turbulent mixing
parallel to these surfaces (see Section 30.4). For this purpose we make use of the second order
positive definite and symmetric diffusion tensor, K = KT, with the resulting downgradient
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diffusive tracer flux given by
Jm = −ρKmn ∂nC. (68.41)

68.4.1 Sample diffusion tensors

For the case of molecular diffusion considered in equation (68.23), the diffusion tensor is generally
assumed to be isotropic.8 Written in Cartesian coordinates, the isotropic diffusion tensor takes
the form

Kmn = κ δmn, (68.42)

whereas with general coordinates it is

Kmn = κ gmn. (68.43)

It is notable that the natural or (1, 1) form for the diffusion tensor is numerically identical across
coordinates, in that

Km
p = κ δmp and Km

p = κ gnp gmn = κ δmp, (68.44)

where we made use of the identity (68.3) satisfied by the metric and its inverse.

To parameterize flows that are turbulent and larger than the microscale (e.g., ocean mesoscale
turbulence), it is common to rotate the diffusive fluxes to be along surfaces of constant scalar
field, γ(x, t), in which case the diffusion tensor is

Kmn = κ (δmn − γ̂m γ̂n), (68.45)

where

γ̂n =
∂nγ

|∇γ| (68.46)

is the surface normal direction. The general coordinate representation of this anisotropic diffusion
tensor is

Kmn = κ (gmn − γ̂m γ̂n). (68.47)

One choice for the orientation direction is to set γ̂ = ẑ, in which case the diffusion tensor orients
the tracer fluxes along surfaces of constant geopotential to thus realize horizontal diffusion.
Another choice, motivated from the physics of ocean mesoscale eddy transport, sets γ equal to
a measure of the local buoyancy. In this case we have the neutral diffusion process studied in
Section 71.4.

68.4.2 Diffusion of tracer concentration powers

We here establish how diffusion affects the evolution of powers of the tracer concentration. For
that purpose, consider the material evolution of CΓ, where Γ ≥ 1

ρ
DCΓ

Dt
= ΓCΓ−1 ρ

DC

Dt
= −ΓCΓ−1∇ · J . (68.48)

Making use of equation (68.10) for the covariant divergence leads to

ΓCΓ−1∇ · J = g−1 ΓCΓ−1 ∂m(g J
m) (68.49a)

= g−1 ∂m(ΓC
Γ−1 g Jm)− Γ (Γ− 1)CΓ−2 Jm ∂mC. (68.49b)

8We discussed isotropic tensors in Section 1.11.
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Notice that

g−1 ∂m(ΓC
Γ−1 g Jm) = −g−1 ∂m(ΓC

Γ−1 g ρKmn ∂nC) (68.50a)

= −g−1 ∂m(g ρK
mn ∂nC

Γ) (68.50b)

= ∇ · J(CΓ), (68.50c)

which leads to the evolution equation

ρ
DCΓ

Dt
= −∇ · J(CΓ) + Γ (Γ− 1)CΓ−2 J · ∇C. (68.51)

The first term in equation (68.51) is the convergence of the diffusive flux defined in terms of CΓ.
This term acts to diffuse CΓ just like diffusion acts on C. The second term in equation (68.51)
is negative since the diffusion tensor is symmetric and positive-definite so that

J · ∇C = −ρKmn ∂mC ∂nC < 0. (68.52)

That is, the diffusive flux, by construction, is oriented down the tracer concentration gradient.
Consequently, the second term in equation (68.51) always acts to reduce the magnitude of CΓ

towards zero.

68.4.3 Moments of tracer concentration

Next we consider the evolution of domain integrated tracer concentration and its powers. To
focus on impacts just from diffusion, we assume the boundaries are insulating (i.e., zero normal
boundary flux) so that J · n̂ = 0 with n̂ the outward normal at the boundary. We also assume
the total fluid mass in the domain remains fixed

M =

ˆ
ρdV with

dM

dt
= 0. (68.53)

We can thus treat the domain as material given that there is no exchange of mass or tracer across
the boundaries. These assumptions allow us to focus just on the effects from tracer diffusion.

Domain average tracer concentration

The domain averaged tracer concentration is defined by

C =

´
C ρ dV

M
, (68.54)

and it follows that its time derivative vanishes since

M
dC

dt
=

d

dt

ˆ
C ρ dV =

ˆ
DC

Dt
ρdV = −

ˆ
∇ · J dV = −

˛
J · n̂dS = 0, (68.55)

where J · n̂ = 0 since we are assuming an insulating boundary. Also note that we brought the
time derivative inside the integral as a material derivative since the region is itself material, thus
allowing us to make use of Reynold’s transport theorem from Section 20.2.6. The result (68.55)
follows since there is no change in the total mass of fluid nor is there any exchange of tracer
across the boundaries. Hence, the domain averaged tracer concentration remains fixed in time.
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Tracer variance within the domain

The variance of the tracer concentration is defined by

var(C) ≡
´
(C − C)2 ρ dV

M
= C2 − C2 ≥ 0. (68.56)

The tracer variance measures the deviation of the tracer concentration relative to the domain
averaged concentration. Since the domain average remains fixed in time, the time change of the
variance is given by

d[var(C)]

dt
=

dC2

dt
. (68.57)

Thus, it is common to refer to C2 as the tracer variance, though strictly speaking only time
derivatives of C2 and var(C) are equal as per equation (68.57). Performing the time derivative,
and again noting that the domain is material thus allowing us to use Reynolds transport theorem,
renders

M
dC2

dt
=

d

dt

ˆ
C2 ρdV = 2

ˆ
C

DC

Dt
ρdV = −2

ˆ
C∇ · J dV = 2

ˆ
∇C · J dV. (68.58)

The final equality again made use of the insulating boundary condition, J · n̂ = 0. The time
change in the tracer variance is thus determined by the integral of the projection of the tracer
flux onto the tracer gradient. We already saw from equation (68.52) that diffusive fluxes are
oriented down the tracer gradient. Consequently, diffusion of the tracer concentration results in
a reduction in tracer variance

d[var(C)]

dt
=

dC2

dt
≤ 0. (68.59)

This result further supports our common experience where diffusion removes differences (i.e.,
gradients) within the tracer field.

Diffusion of arbitrary tracer moments

Proceeding as before, and dropping boundary contributions since the domain is material and
insulating, the identity (68.51) shows that the time derivative of an arbitrary tracer moment is
given by

dCΓ

dt
= Γ (Γ− 1)

ˆ
CΓ−2∇C · J dV ≤ 0. (68.60)

For Γ = 0 we have an expression of mass conservation for the domain, whereas Γ = 1 is an
expression of tracer conservation. The case of Γ = 2 yields the tracer variance result (68.59).
The result for higher powers also holds. Hence, we conclude that the downgradient orientation
of diffusive tracer fluxes acts to dissipate all powers of tracer concentration when integrated
globally; i.e., all tracer moments are dissipated by diffusion.

68.5 Connecting tracer dissipation to the diffusion operator

We here take an excursion into linear operator theory. In particular, we make a connection
between the diffusion operator with natural boundary conditions (defined below) and the
functional derivative of the global tracer dissipation functional. This connection holds so long
as the diffusion operator is self-adjoint and linear, as it is when diffusing passive tracers and
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with natural boundary conditions.9 The connection between a linear self-adjoint operator and a
functional is developed in such books as Courant and Hilbert (1953, 1962). In the simplest case,
the Laplacian of the tracer, ∇2C, is equal to the functional derivative,

∇2C =
δF

δC
, (68.61)

where10

F ≡ −1

2

ˆ
|∇C|2 ρ d3x (68.62)

is the associated functional. In the following, we prove this result for a general diffusion tensor
acting on an arbitrary tracer concentration, C, with the proof holding so long as the diffusion
tensor is not a function of the tracer concentration. Besides offering an interesting theoretical
tidbit, this result provides a suitable framework for developing numerical methods for discretizing
the diffusion operator, with examples provided by Griffies et al. (1998) and Chapter 16 of Griffies
(2004).

68.5.1 Fréchet derivative of the diffusion dissipation functional
Define the diffusion dissipation functional

F =

ˆ
L d3x, (68.63)

where the integrand is the negative semi-definite quadratic form

2L = J · ∇C = −ρKmn ∂mC ∂nC ≤ 0. (68.64)

The goal is to relate the diffusion operator, given by the convergence of the diffusion flux,
−∇ · J , to the functional derivative of F, with the derivative taken with respect to the tracer
concentration, C. We compute the functional derivative using variational calculus technology
detailed in Chapters 10, 46, and 47, mostly in relation to Hamilton’s principle for non-dissipative
dynamical systems.

For that purpose, consider a functional variation to the tracer concentration, δC, and insert
it into the dissipation functional

δF =

ˆ [
δC

δL

δC
+ δ(∂mC)

δL

δ(∂mC)

]
d3x. (68.65)

As discussed in Chapter 46, functional variations are perturbations to the form of the function,
in which case

C → C + δC with |δC| ≪ |C|. (68.66)

Notably, δC is itself a function of space and time, δC(x, t), but it is assumed to have much
smaller magnitude than the concentration, C(x, t). Additionally, the functional variation, δC,
has no affect on the space-time points so that the variational operator, δ, commutes with space
and time derivatives and integrals. Integration by parts on the second term in equation (68.65)
leads to

δF =

ˆ [
δC

δL

δC
+ ∂m

(
δC

δL

δ(∂mC)

)
− δC ∂m

(
δL

δ(∂mC)

)]
d3x. (68.67)

9We discussed the self-adjoint nature of the diffusion operator in Section 9.3.6 when developing the Green’s
function for the diffusion equation.

10In this section we write the integration volume element as d3x = dV . Motivation for this notation will
become apparent at the point of equation (68.70).
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The middle term is a total derivative that integrates to a boundary contribution and the
associated natural boundary condition

n̂ · δL
δ∇C = n̂ · J = boundary flux, (68.68)

with n̂ the boundary outward normal. This natural boundary condition is the Neumann boundary
condition from Chapter 9.

To focus on the connection between the diffusion operator and the diffusion dissipation
functional, we ignore boundary fluxes so that the functional variation is given by

δF =

ˆ
δC

[
δL

δC
− ∂m

(
δL

δ(∂mC)

)]
d3x. (68.69)

Consequently, the functional derivative (also known as the Fréchet derivative) is given by

(d3y)−1 δF

δC(y)
=
δL

δC
− ∂m

[
δL

δ(∂mC)

]
, (68.70)

where d3y is the volume element at the field point, y. To reach the last step required the identity

δC(x)

δC(y)
= d3y δ(x− y), (68.71)

where δ(x− y) is the Dirac delta11 satisfying

ˆ
δ(x− y) d3y = 1, (68.72)

so long as the integration domain includes the singular point x = y. Note that the Dirac delta
has dimensions of inverse volume, which necessitates the appearance of the volume factor, d3y,
on the right hand side of equation (68.71).12

68.5.2 Connection to the diffusion operator
Reintroducing the specific form of the diffusion integrand 2L = −ρKmn ∂mC ∂nC leads to

δF

δC(y)
= −∂m

[
δL

δ(∂mC)

]
d3y = ∂m(ρK

mn ∂nC) dy. (68.73)

The second equality identifies the diffusion operator, thus revealing the connection between the
dissipation functional, the diffusion fluxes, and the diffusion operator

δF

δC(y)
= −(∇ · J) d3y. (68.74)

68.5.3 Why we need to assume Kmn is independent of C
There are many geophysical applications in which the diffusion tensor is a function of the tracer
concentration, in which case the diffusion equation is no longer a linear differential equation. For

11We study the Dirac delta in Chapter 7. Additionally, note the unfortunate, though nearly universal, double
meaning for the δ symbol: one referring to the variation operator and one referring to the Dirac delta.

12Many treatments of functional derivatives in mathematics texts ignore the volume factor, d3y, in equation
(68.71). Yet for physical applications it is necessary to maintain dimensional consistency, with the volume factor
required for that reason. The volume factor also appears when using functional methods to derive numerical
discretizations, with examples provided by Griffies et al. (1998), Griffies and Hallberg (2000), and Griffies (2004).
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example, the neutral diffusion of Section 71.4 makes use of a diffusion tensor that is a function of
temperature and salinity gradients. In this case the functional derivative in terms of temperature
or salinity appearing in equation (68.73) becomes

2
δL

δ(∂mC)
= −2 ρKmn ∂nC − ρ ∂mC ∂nC

δKmn

δ(∂mC)
. (68.75)

The specific form of the term δKmn/δ(∂mC) depends on details of the diffusion tensor. Hence,
the general results derived above for the linear diffusion equation no longer hold for this nonlinear
diffusion equation. We have more to say about nonlinear advection-diffusion in Section 69.7.

68.5.4 Relation to Hamilton’s principle
Recall our application of a functional derivative within the context of Hamilton’s principle, which
we studied in Chapters 46 and 47 for non-dissipative continuum systems. For those systems, the
Euler-Lagrange equations of motion result from setting the functional derivative of the action to
zero, which is the mathematical statement of Hamilton’s principle. In contrast, we here showed
that the functional derivative of the tracer dissipation equals to the diffusion operator. In fact,
the construction in this section suggests that linear self-adjoint operators, such as generalized
Laplacian operators, can generally be expressed as the functional derivative of its corresponding
functional. Chapters 16 and 19 of Griffies (2004) provide further examples, with applications to
numerical methods. Further mathematical details can be found in such books as Courant and
Hilbert (1953, 1962).

68.6 Exercises
exercise 68.1: Vertical diffusion of temperature in the ocean (Vallis, 2017)
There is a natural time scale associated with diffusive transport. This time scale can be found
from scaling the diffusion equation, which reveals that it takes the form

τdiffusion = ∆2/κ, (68.76)

where ∆ is the length scale and κ is the kinematic diffusivity (dimensions of squared length per
time). We now make use of this time scale to consider the diffusion of temperature in the ocean,
with diffusion due solely to molecular processes.

Using the observed value of molecular diffusivity of temperature in water (look it up), estimate
the time for a temperature anomaly to mix from the top of the ocean to the bottom, assuming
vertical diffusion through the molecular diffusivity is the only means for mixing. This time scale
follows from the one-dimensional diffusion equation and is determined by the diffusivity and
the depth of the ocean. Comment on whether you think the real ocean has reached equilibrium
after the last ice age (which ended about 12Kyr ago).

exercise 68.2: Analytical solution to one-dimensional diffusion equation
Consider a one-dimensional diffusion equation

∂tC = κ ∂zzC, (68.77)

where C is a tracer concentration (e.g., temperature or salinity), κ is a constant kinematic
diffusivity, and z is the vertical coordinate. Assume the domain has fixed boundaries at z = 0
and z = H.
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(a) Assume there is a zero flux of tracer at the two boundaries. Mathematically express this
no-flux boundary condition.

(b) Assume that the initial tracer concentration is confined to an area near the center of the
domain. Use dimensional analysis to estimate the time scale for the concentration to
homogenize throughout the domain.

(c) Consider the initial-boundary value problem

∂tC = κ∂zzC, (68.78a)

no-flux boundary condition from part (b) (68.78b)

C(z, t = 0) = C0 cos(kz), (68.78c)

where C0 is a constant. What values for the wave-number, k, satisfy the no-flux boundary
condition?

(d) Solve the diffusion equation analytically for the given initial condition. Hint: consult your
favorite partial differential equation book to learn how to solve this linear 1+1 dimensional
diffusion equation.

(e) Explain how the analytical answer you obtained is consistent with the dimensional analysis
answer from part (b).

exercise 68.3: Dissipative properties of diffusion
This exercise explores the dissipative property of diffusion when acting on a tracer extrema.

(a) one-dimensional diffusion

Consider the diffusion equation in one spatial dimension, and assume a Boussinesq ocean
in which case the density factors are all constant and so can be dropped

∂tC = ∂z(κ ∂zC) = ∂zκ ∂zC + κ ∂zzC, (68.79)

where κ(z, t) is an eddy diffusivity (also turbulent diffusivity). The eddy diffusivity is
assumed to be a function of (z, t), with the spatial dependence determined by the flow.
Show that a tracer extrema, C∗, evolves under diffusion according to

∂tC
∗ = κ ∂zzC

∗. (68.80)

So what does diffusion do to a local maxima (e.g., a local hot region) in the tracer field?
What about a minima (e.g., a local cold region)? To answer this question, discuss the
mathematical equation satisfied by the tracer extrema.

(b) three-dimensional diffusion

Generalize the above one dimensional result to three dimensions, whereby the diffusivity κ
becomes a symmetric positive-definite diffusion tensor, in which case

∂tC = ∂m(K
mn ∂nC). (68.81)

Now consider an extrema in the tracer field, which is defined by

∂nC
∗ = 0 ∀ n = 1, 2, 3. (68.82)

Prove that three dimensional diffusion acts to dissipate an extrema. Hint: recall some
linear algebra properties of a symmetric positive-definite matrix. In particular, note that a
symmetric positive-definite matrix has positive eigenvalues.
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exercise 68.4: Diffusion increases information entropy of a tracer concentration
Diffusion is an irreversible process. Here we illustrate this property by considering the information
entropy associated with a non-negative tracer concentration13

SC ≡ −
ˆ
(C lnC) ρdV. (68.83)

Show that
dSC
dt
≥ 0 (68.84)

over a material region with C > 0 and diffusion downgradient, J · ∇C < 0. That is, diffusion
always increases the information entropy. Hint: follow the discussion of tracer moments in
Section 68.4.3.

exercise 68.5: Phillips layering instability
This exercise is based on the discussion in Section 12.2 of Smyth and Carpenter (2019), in which
we consider an oceanographically relevant example of a turbulent diffusivity that is a function of
vertical buoyancy stratification. Under certain circumstances, the flow dependent diffusivity can
enhance, rather than reduce, vertical gradients in the buoyancy, with the associated Phillips
layering instability leading to layering. We here only work through the basic mathematical
formulation, leaving the interested reader to consult Smyth and Carpenter (2019) for more
details.

Consider a buoyancy field that is a function of vertical position and time, b(z, t), and let the
squared buoyancy frequency be given by the vertical derivative of the buoyancy

N2 = ∂zb. (68.85)

If buoyancy is affected only by vertical diffusion, then its evolution equation is the one-dimensional
vertical diffusion equation

∂tb = ∂z(κN
2), (68.86)

where κ > 0 is the vertical diffusivity for buoyancy. Correspondingly, a vertical derivative of the
buoyancy equation leads to the evolution equation for the squared buoyancy frequency

∂tN
2 = ∂zz(κN

2). (68.87)

Assume the diffusivity has the following functional dependence

κ = κ(N2), (68.88)

so that it is a function of the squared buoyancy frequency. A physically relevant choice has the
diffusivity get smaller as the stratification increases, so that

dκ

dN2
< 0. (68.89)

Now consider the case of a squared buoyancy frequency that is a small deviation relative to
a constant background value

N2(z, t) = N2
0 + ϵN2

1 (z, t), (68.90)

where ϵ is a small non-dimensional number. Derive the condition whereby, to first order in ϵ, we
have N2

1 growing in the presence of downgradient diffusion rather than decaying. That is, what
is the condition satisfied by dκ/dN2, N2

0 , and κ that renders an unstable diffusion equation,

13Information entropy is used in statistical physics as a measure of the order/disorder of a probability
distribution. We here apply these notions to measure the information entropy of a tracer concentration.
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whereby κ > 0 leads to an increase in N2 rather than a decrease?
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Chapter 69

TRACER ADVECTION AND DIFFUSION

In this chapter we study tracer advection and diffusion, building on the study of tracer diffusion
in Chapter 68. We focus on the particular case of conservative tracers, which are tracers whose
evolution is only affected by advection and diffusion within the fluid interior, along with boundary
conditions. The adjective “conservative” refers to the property that such tracers evolve only
through the convergence of a tracer flux vector, and so the net tracer content is altered only
through transport across boundaries. That is, conservative tracers have no interior sources or
sinks, thus making their budgets simpler than tracers, such as chemical and biogeochemical
treacers, that are also affected by sources and sinks.

Example geophysical tracers that are nearly conservative include salinity in the ocean and
humidity in the atmosphere. Both of these tracers are material tracers, in that they measure the
mass of a matter substance within a fluid element, per mass of the fluid element. Hence, these
material tracers are non-dimensional scalar fields whose concentrations range from zero to unity.
We derived their budget equations in Chapter 20. Conservative Temperature, Θ, as defined in
Section 26.11, is a nearly conservative thermodynamical tracer that provides a measure of the
relative heat content in a fluid element. Conservative Temperature is typically measured in K
in the atmosphere and ◦C in the ocean. Finally, there are many applications of idealized or
theoretical passive tracers whose impacts on the flow are assumed to vanish (Section 20.1.5).
Passive tracers are versatile theoretical tools for probing aspects of the flow, including pathways
and time scales.

chapter guide

This chapter follows directly from our study of tracer diffusion in Chapter 68. We make
use of the tracer equation and associated properties (including boundary conditions)
studied in Chapter 20, with results relevant for tracer transport in both the atmosphere
and ocean. Results for the Boussinesq ocean of Chapter 29 are found merely by setting
the density factor, ρ, to the Boussinesq reference density, ρo, where it appears in the
budget equations of this chapter. The discussion of Green’s functions in Section 69.9
assumes familiarity with the Green’s function material detailed in Chapter 9. The review
paper from Haine et al. (2025) offers example applications of passive tracers facilitated by
the Green’s function method, with Section 69.9 serving as an extended introduction to
Haine et al. (2025). We generally assume Cartesian coordinates in this chapter. Even so,
the equations are written in a tensorially consistent manner to allow them to be valid for
arbitrary coordinates.
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69.1 Loose threads
• Schematic for the boundary propagator.

69.2 Introduction to advection and diffusion
In this chapter we consider the equation describing the evolution of conservative tracers

ρ
DC

Dt
= −∇ · J⇐⇒ ∂t(ρC) +∇ · (v ρC+ J) = 0, (69.1)

where the flow is nonzero, v ̸= 0, so that advection contributes to the tracer evolution in addition
to subgrid scale fluxes, such as diffusion, captured by the tracer flux J. For the first part of this
chapter, we focus on the effects from advection alone, in which J = 0. In this case, the advective
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tracer flux renders a reversible stirring and stretching of fluid elements. This stirring, particularly
in the presence of turbulent flows, can increase the magnitude of tracer concentration gradients
(see Section 69.4.2), and it does so while maintaining, for each fluid element, a fixed mass for all
matter constituents and fixed specific entropy.1

When diffusion is enabled, as seen in Chapter 68, the fluid experiences an irreversible
exchange, or mixing, of properties between fluid elements. Correspondingly, diffusion reduces
the magnitude of property gradients between fluid elements. When acting together, advection
is no longer a pure stirring and diffusion is no longer a pure mixing. Indeed, in the steady
state, advection and diffusion exactly balance. Eckart (1948) articulated what has become the
standard conceptual paradigm for stirring and mixing in geophysical fluids, with elements of
that paradigm reflected in this chapter.

69.3 Perfect fluid tracer advection

A perfect fluid is comprised of material fluid elements whose matter content and thermodynamic
properties remain fixed. From the discussion of molecular diffusion in Section 68.3, we know that
a perfect fluid can at most consist of a single matter constituent and uniform thermodynamic
properties. The reason is that in the presence of multiple constituents with non-uniform
concentrations, molecular motions irreversibly exchange matter and thermodynamic properties
(e.g., temperature, specific entropy) among fluid elements. This exchange, or mixing, breaks the
assumption of a perfect fluid. Nonetheless, we find many occasions to ignore molecular diffusion
when focusing on macroscopic motions of the continuum fluid. Such is the case when considering
the advection equation in the absence of mixing.

69.3.1 The advection equation

In the absence of mixing or other irreversible processes, the matter content of a fluid element
remains fixed as the element moves within the fluid environment. Since the total mass of the
element is also constant, then the tracer concentration remains constant and thus satisfies the
reversible (source-free) advection equation

DC

Dt
= (∂t + v · ∇)C = 0. (69.2)

The first equality relates the material time derivative to the Eulerian time derivative plus
advective transport (see Section 17.4), with v the barycentric velocity of a fluid element (Section
20.1.2). We can convert the material form of the advection equation (69.2) into its flux-form by
combining with the mass continuity equation (19.6)

∂tρ+∇ · (ρv) = 0, (69.3)

which yields
∂t(ρC) +∇ · (ρC v) = 0. (69.4)

Again, the material form of the advection equation is the trivial statement that tracer
concentration remains constant on a fluid element in the absence of sources or mixing. Hence, a
general solution to the advection equation is given by

C(x, t) = C[X(0)], (69.5)

1Recall from Chapter 22 that specific entropy remains materially constant on fluid elements in the absence of
mixing or diabatic sources.
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where X(0) is the initial position of a fluid element that is at the position x at time t. If we
know the trajectories for all fluid elements and their initial tracer concentration, then we know
the tracer concentration for all space and time. For those cases where trajectories are unknown,
it is useful to make use of the Eulerian form of the advection equation in order to deduce the
evolution of tracer concentration.

69.3.2 Eulerian time tendencies from advection
At a point in the fluid, the advection equation (69.2) leads to the Eulerian time tendency for
tracer concentration

∂tC = −v · ∇C. (69.6)

Geometrically, the tendency arises from the projection of the fluid velocity onto the normal to
concentration iso-surfaces. The concentration remains fixed in time (steady) at points where the
velocity is parallel to concentration iso-surfaces. From the flux-form advection equation (69.4),
the density-weighted tracer concentration (the tracer mass per volume) has an Eulerian time
tendency given by the convergence of the advective flux

∂t(ρC) = −∇ · (ρC v). (69.7)

The tendency vanishes at a point if there is no convergence of tracer mass towards the point.

69.3.3 Impermeability property of tracer isosurfaces
We now offer a geometric interpretation of the advection equation

(∂t + v · ∇)C = 0, (69.8)

following the discussion of dia-surface transport in Section 64.3. For this purpose, introduce the
unit normal on a tracer isosurface

n̂ =
∇C
|∇C| (69.9)

and the normal projection for the velocity of a point on that surface

v(C) · n̂ = − ∂tC

|∇C| . (69.10)

The advection equation (69.8) thus can be written as an impermeability condition for a tracer
isosurface

ρ (v − v(C)) · n̂ = 0 on C isosurfaces. (69.11)

We encountered this condition in Section 19.6.2 when studying the kinematics of a moving
material surface. Hence, in the absence of mixing, tracer isosurfaces are indeed material surfaces
since they allow no fluid elements, moving with the fluid velocity v, to cross them. This is an
important kinematic result that is extended in Section 69.6.5 to include effects from an eddy
induced velocity.

69.4 Some mathematical properties of tracer advection
We now explore various mathematical properties of the advection equation. For that purpose,
recall the mass continuity equation (69.3) and flux-form tracer advection equation (69.7)

∂tρ+∇ · (ρv) = 0 (69.12a)
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∂t(ρC) +∇ · (ρC v) = 0. (69.12b)

These equations are manifestly compatible in that the tracer equation (69.12b) reduces to the
continuity equation (69.12a) if the tracer concentration is spatially uniform (see Section 20.1.4
for more discussion of compatibility).

69.4.1 Material constancy of CΓ

A trivial consequence of the material constancy of tracer concentration is that CΓ is also
materially constant, for Γ an arbitrary number. We show this property mathematically by noting
that the chain rule holds for a material time derivative, so that

DCΓ

Dt
= ΓCΓ−1DC

Dt
= 0. (69.13)

Likewise, making use of the Eulerian form yields

∂tC
Γ + v · ∇CΓ = ΓCΓ−1 [∂tC + v · ∇C] = 0. (69.14)

We conclude that advection, in the absence of diffusion, serves to reversibly transport the tracer
concentration without altering any of its powers. Correspondingly, all tracer moments are
untouched by advection, which contrasts to the case of diffusion considered in Section 68.4.3.

69.4.2 Evolution of squared tracer gradient

As noted at the start of Section 69.2, some flows can enhance the magnitude of the tracer
concentration gradient, |∇C|2 = ∂mC δ

mn ∂nC. The kinematics of that process begin with the
following equation for the evolution of the squared gradient

(1/2) ∂t(∂mC δ
mn ∂nC) = ∂mC δ

mn ∂n∂tC (69.15a)

= −∂mC δmn ∂n(vk ∂kC) (69.15b)

= −∂mC δmn (vk ∂k ∂nC + ∂nv
k ∂kC) (69.15c)

= −(1/2) vk ∂k (∂mC δmn ∂nC)− ∂mC δmnGkn ∂kC (69.15d)

= −(1/2) (v · ∇)|∇C|2 − ∂mC δmn Skn ∂kC (69.15e)

= −(1/2) (v · ∇)|∇C|2 −∇C · S · ∇C. (69.15f)

The second equality made use of the advection equation, ∂tC = −vk ∂kC, and then we introduced
the velocity gradient tensor, G, from equation (18.86), and its symmetric component, the strain
rate tensor, S, from equation (18.90a)

Gmn = ∂nv
m and Smn = (Gmn +Gn

m)/2. (69.16)

We are thus led to the material evolution equation

1

2

D|∇C|2
Dt

= −∇C · S · ∇C. (69.17)

The strain rate tensor is symmetric and yet it is not positive-definite. Hence, we can have either
growth or decay of the squared tracer gradient depending on details of the velocity gradient and
tracer gradient.
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69.4.3 Eddy-induced and residual mean

The mass density time tendency
∂tρ = −∇ · (v ρ) (69.18)

remains unchanged if the advective mass flux, ρv (dimensions of mass per time per area), is
modified by the addition of a total curl

ρv → ρv† = ρv +∇× (ρΨ∗). (69.19)

As in Section 21.5.1, the arbitrariness manifest in equation (69.19) is known as a gauge symmetry.
The additional mass flux, ∇× (ρΨ∗), leads to no accumulation of mass at a point since it has
zero divergence. In the case of a Boussinesq ocean with ρ set to a constant ρo, the divergent-free
velocity ∇×Ψ∗ leads to zero accumulation of volume at a point.

The non-divergent mass flux
ρv∗ ≡ ∇× (ρΨ∗) (69.20)

often arises when we decompose the mass flux into a mean and non-divergent eddy fluctuations.
In that context, we make use of the following terminology:

v = Eulerian mean velocity (69.21a)

ρv = Eulerian mean mass flux (69.21b)

v∗ = eddy-induced velocity (69.21c)

ρΨ∗ = eddy-induced mass streamfunction (69.21d)

ρv∗ = ∇× (ρΨ∗) = eddy-induced mass flux (69.21e)

v† = v + v∗ = residual mean velocity (69.21f)

ρv† = ρ (v + v∗) = residual mean mass flux. (69.21g)

The name “residual mean” is motivated since the sum v + v∗ is often smaller than either term
individually. That is, the eddy contribution often compensates for the mean, with sum of the
mean and eddy representing a residual. We study particular forms of the eddy induced velocity
in Chapter 71.

69.4.4 Advective tracer fluxes and skew tracer fluxes

Following from the previous discussion, we consider the advection equation with the advective
tracer transport determined by the residual mean velocity

∂t(ρC) +∇ · (ρC v†) = 0. (69.22)

Given the form (69.20) for the eddy mass flux ρv∗, we can write the advective tracer flux as

ρC v† = C (ρv + ρv∗) (69.23a)

= C ρv + C∇× (ρΨ∗) (69.23b)

= C ρv +∇× (C ρΨ∗)−∇C × ρΨ∗. (69.23c)

It is the divergence of the tracer flux that determines the time tendency, in which case the total
curl plays no role

∇ · (ρC v†) = ∇ · (ρC v + ρC v∗) (69.24a)

= ∇ · (ρC v −∇C × ρΨ∗). (69.24b)
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That is, the divergence of the advective tracer flux equals to the divergence of the skew tracer
flux

∇ · (ρC v∗)︸ ︷︷ ︸
advective flux divergence

= ∇ · (−∇C × ρΨ∗)︸ ︷︷ ︸
skew flux divergence

(69.25)

since the advective flux and skew flux differ by a rotational flux

J adv = J skew + J rot (69.26)

where

J adv = C ρv∗ and J skew = −∇C × ρΨ∗ and J rot = ∇× (ρCΨ∗). (69.27)

Notably, the skew tracer flux is neither upgradient nor downgradient. Rather, it is oriented
parallel to iso-surfaces of tracer concentration

∇C · J skew = ∇C · (−∇C × ρΨ∗) = 0. (69.28)

This orientation serves as motivation for the name skew, with Figure 69.1 providing a schematic
of these tracer fluxes.
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J skew

Figure 69.1: Skew fluxes (dashed lines with arrows) for a tracer C are oriented parallel to lines of constant
tracer concentration (tracer isolines are the solid lines). Even though the skew fluxes are aligned with tracer
contours, these fluxes generally affect a time change to the tracer concentration through their convergence.

69.4.5 Skew diffusion

Introducing tensor labels brings the skew tracer flux into the form

(J skew)m = −(∇C × ρΨ∗)m (69.29a)

= −ϵmnp ∂nC ρΨ∗
p (69.29b)

= −ρAmn ∂nC, (69.29c)

where we defined the anti-symmetric skew diffusion tensor

Amn = ϵmnpΨ∗
p =⇒ A =

 0 Ψ∗
3 −Ψ∗

2

−Ψ∗
3 0 Ψ∗

1

Ψ∗
2 −Ψ∗

1 0

 . (69.30)

Evidently, advection by a non-divergent mass flux is equivalent to skew-diffusion through the
action of an anti-symmetric tensor.

Although leading to the same stirring operator, skew and advective fluxes possess the
following complementary properties.

• derivative operator: The skew flux is proportional to the vector streamfunction and the
gradient of the tracer, whereas the advective flux is related to the curl of the streamfunction
and the value of the tracer concentration. In effect, the fluxes swap their placement of the

CHAPTER 69. TRACER ADVECTION AND DIFFUSION page 1923 of 2158



69.5. ADVECTION AND SKEWSION

derivative operator. Correspondingly, the advective flux vanishes if the velocity vanishes,
whereas the skew flux vanishes of the tracer gradient vanishes (just as for a diffusive flux).

• flux orientation: The orientation of the advective flux is determined by the velocity
field, which is oriented according to trajectories of fluid particles. This orientation is the
same regardless of the tracer. In contrast, a skew tracer flux is directed along lines of
constant tracer; i.e., it is neither upgradient nor downgradient. Hence, orientation of the
skew flux is directly tied to the tracer field, with each tracer yielding a generally distinct
flux orientation. The very distinct orientations of the advective and skew fluxes can be the
origin of confusion. We explore many features of these geometric distinctions in Section
70.3 in studying eddy induced tracer fluxes.

• material flux: Fluid elements carry a particular amount of trace matter so that an
advective flux of a material tracer measures the passage of matter across an area per unit
time (dimensions of mass per area per time). In contrast, a skew flux is not interpreted as
the passage of matter across an area per time. This distinction is particularly important
when interpreting boundary conditions discussed in Section 69.5.3.

In Section 69.5 we pursue the above points to further reveal the dual relation between advective
fluxes and skew fluxes.

69.4.6 A comment about skew fluxes and Lagrangian kinematics
The advective tracer flux and skew tracer flux are very distinct vectors and we further explore
the distinction in Sections 69.5 and 70.3. As detailed in each of those sections, it is a matter
of convenience how one chooses to formulate the Eulerian tracer equation since the advective
flux and skew flux lead to the same tracer evolution. Furthermore, the choice to formulate the
tracer equation in terms of a skew flux in no way eliminates the Lagrangian perspective. That
is, fluid particles, or fluid elements, still move through the fluid and transport tracer as part
of this motion. The Lagrangian formulation of tracer evolution is naturally connected, via a
transformation of reference frames, to the Eulerian advection equation. Even so, we do not
eliminate fluid particle motion when choosing to work with skew tracer fluxes. Instead, we
merely choose to formulate the tracer equation in terms of the vector streamfunction rather
than the velocity. This choice is typically based on mathematical and/or physical convenience.

69.4.7 Further reading
The uses of residual-mean transport are many and varied in the ocean and atmospheric literature.
Vallis (2017) offers a thorough and pedagogical treatment. Skew diffusion is treated in Moffatt
(1983), in which he raises the connection to fluids with rotation and/or magnetic fields. Middleton
and Loder (1989) applied these ideas to ocean gravity waves, tides, and Rossby waves. Griffies
(1998) applied these ideas to the methods used for parameterizing tracer transport from ocean
mesoscale eddies.

69.5 Advection and skewsion
We introduced skew diffusion in Section 69.4.5 and will again encounter it in Chapterd 70 and
71. Following the terminology of Section 9.2 of Griffies (2004), we refer to skewsion as any
process that leads to tracer transport via skew fluxes, with skew diffusion a particular example.
There are occasions where it is conceptually and operationally more convenient to use advective
fluxes, such as when considering the transport of tracers by the flow field explicitly resolved by a
numerical simulation. In contrast, skew fluxes are sometimes more convenient for certain subgrid
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scale eddy parameterizations, such as the one discussed in Section 71.1. We here consider facets
of advection and skewsion for those interested in diving deeper into the mathematical physics.

69.5.1 Choosing a gauge
Consider an arbitrary divergent-free mass transport

∇ · (ρv∗) = 0, (69.31)

where the divergent-free constraint is satisfied by introducing a vector streamfunction

ρv∗ = ∇× (ρΨ∗). (69.32)

The streamfunction is arbitrary up to a gauge transformation

ρΨ′ = ρΨ∗ +∇(ρΛ), (69.33)

where Λ is a gauge function.

Changes to the skew flux under a gauge transformation

Although the velocity is invariant up to an arbitrary gauge function, the skew flux, J skew =
−∇C × ρΨ∗, changes. Nonetheless, the divergence of the skew flux is invariant, as we see by
noting that

∇C × [ρΨ∗ +∇(ρΛ)] = ∇C × (ρΨ∗) +∇× [C∇(ρΛ)]. (69.34)

and since ∇ · ∇ × [C∇(ρΛ)] = 0, the flux divergence, ∇ · J skew, remains unchanged.

Coulomb gauge

We have some freedom in specifying the gauge function. One choice is to set Λ = 0. However,
there are occasions in which it is useful to set the gauge function in a manner to cancel unwanted
terms. The Coulomb gauge is commonly used in electrostatics (e.g., Jackson (1975)), which is
defined by setting

∇ · (ρΨ∗) = 0 Coulomb gauge. (69.35)

Making use of the curl identity (2.42c) leads to the Poisson equation for the vector potential

∇2(ρΨ∗) = −∇× (ρv∗). (69.36)

In the absence of boundaries, this equation has a Coulomb-Ampere solution comprised of the
convolution of the source with the free-space Green’s function2

ρ(x, t)Ψ∗(x, t) =

ˆ ∇× [ρ(x′, t)v∗(x′, t)]

4π |x− x′| dV ′, (69.37)

where dV ′ is the volume element for integration over the test points, x′. We know of no
geophysical fluid application making use of the Coulomb gauge.

69.5.2 Vertical gauge
As introduced in Section 21.5.5, a gauge commonly used for eddy parameterizations (Section
71.1) sets to zero one of the three components of the vector streamfunction. This gauge choice

2See Section 9.3 for a discussion of Green’s function methods for elliptic operators.
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is available since there are only two independent functional degrees of freedom available from a
divergence-free mass transport field. A common choice is the vertical gauge in which

Ψ∗
3 = 0 vertical gauge. (69.38)

To further specify the vertical gauge we invert the relations

ρ u∗ = −∂z(ρΨ∗
2) and ρ v∗ = ∂z (ρΨ

∗
1) and ρw∗ = ∂x (ρΨ

∗
2)− ∂y(ρΨ∗

1) (69.39)

to render the vector streamfunction

ρΨ∗ = ẑ ×
ˆ z

−H
ρu∗ dz′ = ẑ ×U (∗ρ) (69.40)

where

U (∗ρ)(z) =

ˆ z

−H
ρu∗ dz′ (69.41)

is the horizontal mass transport associated with u∗ passing between the bottom and a depth
z ≥ −H. The anti-symmetric stirring tensor for the vertical gauge is given by

ρAmn =

 0 0 U (∗ρ)

0 0 V (∗ρ)

−U (∗ρ) −V (∗ρ) 0

 , (69.42)

and the corresponding skew, rotational, and advective fluxes are

J skew = −U (∗ρ) ∂zC + ẑ U (∗ρ) · ∇hC (69.43a)

J rot = ∂z(CU
(∗ρ))− ẑ∇h · (CU (∗ρ)) (69.43b)

J adv = C (∂zU
(∗ρ))− ẑC∇h ·U (∗ρ). (69.43c)

Note that the identity J adv = J skew + J rot is maintained by these expressions. The horizontal
components to the skew flux vanish when the tracer is uniform in the vertical, and the vertical
skew flux vanishes with a horizontally uniform tracer field. These properties manifest the skewed
nature of the fluxes.

69.5.3 Boundary conditions

We assume that all external domain boundaries are material in regards to the velocity v∗.
Furthermore, even for moving domain boundaries, we assume that the suite of kinematic
boundary conditions is based on the barycentric velocity v (see Section 19.6), so that v∗ satisfies
the no-normal flow condition even on moving boundaries

n̂ · v∗ = 0 external domain boundaries. (69.44)

As we discuss in Section 69.6.1, this boundary condition is required for the eddy-induced velocity
to have zero impact on the total mass of an arbitrary tracer within the full fluid domain.

Correspondingly, the advective tracer flux also satisfies a no-normal boundary condition on
all external boundaries

n̂ · J adv = n̂ · v∗ρC = 0. (69.45)

The corresponding boundary condition for the skew flux is found by inserting the relation (69.26)
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into the advective flux boundary condition (69.45) to render

n̂ · J adv = n̂ · [J skew + J rot] = 0. (69.46)

Hence, the skew flux generally has a non-zero normal component at the solid boundaries as
determined by the rotational flux

n̂ · J skew = −n̂ · J rot. (69.47)

Even so, there might be occasions in which n̂ · J skew = 0, which is ensured so long as

(−∇C × ρΨ∗) · n̂ = −(ρΨ∗ × n̂) · ∇C = 0. (69.48)

A sufficient condition is to have Ψ∗ × n̂ = 0, in which case the vector streamfunction is parallel
to the boundary normal. An alternative sufficient condition is to have the streamfunction vanish
at the boundary. Further details for boundary conditions depend on physical properties of the
velocity v∗. We discuss one example in Section 71.1 as prescribed by the Gent et al. (1995)
mesoscale eddy parameterization.

69.6 Finite volume budgets with eddy velocities

In this section we examine how an eddy induced velocity modifies the budgets for fluid mass and
tracer mass in finite domains. The discussion is nuanced, and yet it is relevant to those aiming to
diagnose tracer budgets computed over finite regions. We start by writing the local/differential
mass and tracer budgets in the form

∂tρ+∇ · (ρv†) = 0 (69.49a)

∂t(ρC) +∇ · (ρv†C + J diff) = 0, (69.49b)

where (see Section 69.5)
v† = v + v∗ and ∇ · (ρv∗) = 0, (69.50)

and where J diff is a subgrid scale flux encompassing all processes, such as diffusion and boundary
conditions, that are not represented by an eddy-induced advection. Given that ∇ · (ρv∗) = 0,
the mass budget (69.49a) can we written in the equivalent manners

∂tρ+∇ · (ρv†) = ∂tρ+∇ · (ρv) = 0. (69.51)

That is, the eddy-induced velocity does not lead to any local sources of fluid mass. This property
is very important for the budget analysis in this section.

As shown in the following, the finite volume budgets for fluid mass and tracer mass also
make use of the residual mean velocity, v†. That result is not surprising, since the finite volume
budgets are consistent with the differential budgets (69.49a) and (69.49b). Nonetheless, it is
useful to expose the details as they appear in many budget analysis applications, such as the
water mass and tracer mass analysis of Chapter 73. We furthermore explore how the budgets for
tracer mass appear when formulated using advective fluxes versus skew fluxes. As we show, the
finite volume budgets are consistent across the variety of formulations only if the eddy velocity
and eddy vector streamfunction satisfy boundary conditions detailed in Section 69.5.3.
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69.6.1 Advective formulation

Making use of the tracer equation (69.49b) in the Leibniz-Reynolds transport theorem (20.49)
renders the finite volume tracer mass budget for an arbitrary domain, R

d

dt

[ˆ
R

ρC dV

]
= −
˛
∂R

[
ρC (v† − v(b)) + J diff

]
· n̂dS, (69.52)

where v(b) is the velocity of a point on the domain boundary. Appearance of the residual mean
velocity, v†, in the finite volume budget (69.52) follows from its appearance in the local tracer
budget (69.49b). We thus see that the eddy-induced velocity impacts on the tracer mass budget
for an arbitrary domain. However, its impacts disappear when integrating over a closed or
periodic fluid domain so long as

v∗ · n̂ = 0 on all boundaries. (69.53)

We already encountered this boundary condition in Section 69.5.3. It holds on all boundaries,
including those such as the ocean free surface that are time dependent and/or permeable. It is
required if we assume the eddy-induced velocity does not modify the mass of any tracer in the
full fluid domain. That assumption is generally made for eddy-induced velocities such as those
associated with mesoscale and submesoscale eddies in the ocean (see Section 71.3).

Setting the tracer concentration to a constant in equation (69.52) leads to the fluid mass
budget

d

dt

[ˆ
R

ρ dV

]
= −

˛
∂R
ρ (v† − v(b)) · n̂dS, (69.54)

where we set the diffusive tracer flux, J diff , to zero since there is no diffusion of fluid mass between
fluid elements (Section 20.1). As for the differential expression (69.49a), the mass budget for
any domain is not changed by the eddy-induced velocity since

∇ · (ρv∗) = 0 =⇒
˛
∂R
ρv∗ · n̂dS = 0, (69.55)

so that the mass budget is given by

d

dt

[ˆ
R

ρdV

]
= −
˛
∂R

[
ρ (v† − v(b))

]
· n̂dS = −

˛
∂R

[
ρ (v − v(b))

]
· n̂dS (69.56)

Hence, the eddy velocity contribution to the mass budget for any finite region vanishes, which
is expected since it provides no net mass source to a region. Furthermore, one may choose to
diagnose the right hand side of the mass budget in either the residual mean or Eulerian mean
form. The choice is based on convenience, such as whether one has easier access to the residual
mean velocity or the Eulerian mean velocity. Although the patterns of the fluxes across any
particular boundary differs if v∗ ̸= 0, the accumulation of mass within the region is identical for
the two formulations.

69.6.2 Skew flux formulation

Now consider the complement perspective afforded by the skew flux formulation from Section
69.5. Here we decompose the advective tracer flux according to

C ρv† = C ρv −∇C × ρΨ∗ +∇× (C ρΨ∗) = C ρv + J skew +∇× (C ρΨ∗), (69.57)
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where we introduced the skew tracer flux arising from the eddy-induced streamfunction

J skew = −∇C × (ρΨ∗). (69.58)

The differential budget for tracer is thus given by

∂t(ρC) +∇ · [ρC v + J skew + J diff ] = 0, (69.59)

where the rotational term, ∇× (C ρΨ∗), has zero divergence and so does not affect the tracer
budget. The corresponding finite volume tracer mass budget is

d

dt

[ˆ
R

ρC dV

]
= −
˛
∂R

[
ρC (v − v(b))−∇C × (ρΨ∗) + J diff

]
· n̂dS. (69.60)

In this form, the contribution from the eddy induced transport is now included inside the skew
tracer flux rather than in the residual mean advective tracer flux. Setting C to a constant reveals
the mass budget as in the second form of equation (69.56).

69.6.3 Domain with a tracer boundary

We now apply the previous general budget discussion to a specific domain that anticipates the
more complete budget analysis provided in Section 73.10 as part of our study of water mass
analysis. Here, we consider the fluid mass and tracer mass within an ocean region with at least
one of its bounds determined by an isosurface of constant tracer concentration, as in Figure 69.2.
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Figure 69.2: An ocean region with one of its boundaries set by a surface of constant tracer, C = C̃. Note
that the region need not be monotonically stratified in the tracer concentration, nor does it need to be simply
connected. The region is bounded at the top by ∂Ωsurf(C̃), with the geometry of this surface depending on C̃.
The bottom boundary is set by the tracer surface, C = C̃, as well as the solid-earth bottom, ∂Ωbot(C̃). The
region can generally be multiply connected. A subregion, Rsub, is also considered where its sides extend from the
free surface to the tracer isosurface, and they are assumed to be fully within the fluid domain. We develop the
tracer and fluid mass budgets for region Rsub in Section 69.6.4, whereas the budget in the full region C ≥ C̃ is
considered in Section 69.6.3.

Advective formulation

The tracer mass budget written using the advective formulation (69.52) is given by

d

dt

[ˆ
R

ρC dV

]
=

ˆ
∂Ωsurf(C̃)

QmC dA− C̃
ˆ
C=C̃

ρ (v† − v(b)) · n̂dS −
˛
∂R
J diff · n̂dS. (69.61)
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For the first right hand side term we made use of the surface kinematic boundary condition
(19.88c), with Qm dA the mass per time crossing the surface interface and where dA is the
horizontal projection of the interface area element, dS. We also made use of the exterior
boundary condition (69.53) for the eddy-induced velocity. For the second term we pulled the
tracer concentration outside of the boundary integral over the C = C̃ interface, since the
concentration is fixed at C̃ on this interface.

The mass budget for this region, also formulated using advective fluxes, is given by

d

dt

[ˆ
R

ρ dV

]
=

ˆ
∂Ωsurf(C̃)

Qm dA−
ˆ
C=C̃

ρ (v† − v(b)) · n̂dS. (69.62)

Combining this budget with the tracer mass budget allows us to write

d

dt

[
MC − C̃ M

]
=

ˆ
∂Ωsurf(C̃)

Qm (C − C̃) dA−
˛
∂R
J diff · n̂dS, (69.63)

where we introduced the shorthand for the tracer mass and fluid mass in the region

MC =

ˆ
R

C ρ dV and M =

ˆ
R

ρdV. (69.64)

In Section 73.10.2 we motivate the name internal tracer mass for the quantity MC − C̃ M .

Skew flux formulation

The tracer mass budget formulated using skew tracer fluxes is generally given by equation
(69.60). It takes on the following form for the domain in Figure 69.2

d

dt

[ˆ
R

ρC dV

]
=

ˆ
∂Ωsurf(C̃)

QmC dA− C̃
ˆ
C=C̃

ρ (v − v(b)) · n̂dS

−
˛
∂R

[−∇C × (ρΨ∗) + J diff ] · n̂dS, (69.65)

and the corresponding budget for the fluid mass is

d

dt

[ˆ
R

ρ dV

]
=

ˆ
∂Ωsurf(C̃)

Qm dA−
ˆ
C=C̃

ρ (v − v(b)) · n̂dS. (69.66)

As for the advective formulation, we combine the fluid mass budget equation (69.66) with the
tracer mass equation (69.65) to render a budget equation for the internal mass content

d

dt

[
MC − C̃ M

]
=

ˆ
∂Ωsurf(C̃)

Qm (C − C̃) dA−
˛
∂R
J diff · n̂dS, (69.67)

which is identical to the advective formulation given by equation (69.63).

Proving the budgets based on the two formulations are equivalent

The two tracer budgets, (69.61) and (69.65), must be the same since they measure changes to
the tracer mass within the same region. Likewise, the two mass budgets, (69.62) and (69.66),
must be the same, as are the two internal tracer mass budgets (69.63) and (69.67). We here
expose the manipulations required to verify these equalities.

To prove the C = C̃ terms in the tracer budget equations (69.61) and (69.65) are the same,
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consider the identity (69.55) applied to the region under consideration

0 =

˛
∂R
ρv∗ · n̂dS =

ˆ
∂Ωsurf(C̃)

ρv∗ · n̂dS +

ˆ
∂Ωbot(C̃)

ρv∗ · n̂dS +

ˆ
C=C̃

ρv∗ · n̂dS. (69.68)

The surface and bottom boundary terms vanish due to the external boundary condition (69.53);
namely, v∗ · n̂ = 0 for each point along an external fluid boundary. We are thus led to conclude
that ˆ

C=C̃
ρv∗ · n̂dS = 0. (69.69)

This boundary integral means that there is no net accumulation of mass in the region due to
action of the eddy velocity. Notably, we generally have v∗ · n̂ ̸= 0 at any particular point on the
C = C̃ surface, yet its integral over the C = C̃ interface vanishes. Given the boundary integral
(69.69) we are led to conclude

ˆ
C=C̃

ρ (v† − v(b)) · n̂dS =

ˆ
C=C̃

ρ (v − v(b)) · n̂dS. (69.70)

This identity proves that the two mass budgets (69.62) and (69.66) are indeed measuring changes
to the same fluid mass, even though one computes the domain boundary fluxes based on the
residual mean velocity, v†, whereas the other uses the Eulerian mean, v.

Next we need to show that the skew flux term vanishes when integrated around the domain
boundary. For the C = C̃ boundary we have

ˆ
C=C̃

[∇C × (ρΨ∗)] · n̂dS = 0, (69.71)

which follows since n̂ is parallel to ∇C along this boundary. For the external boundaries, equality
of the tracer mass budgets (69.61) and (69.65) is satisfied for an arbitrary tracer concentration
if one of the boundary conditions discussed in Section (69.5.3) is maintained; i.e., if Ψ∗ vanishes
on an external boundary or if it is parallel to the boundary normal direction (n̂ ×Ψ∗ = 0).
Maintenance of either of these two boundary conditions allows us to conclude that the two
budgets (69.61) and (69.65) are indeed identical.

69.6.4 Budget for a region with interior sides

Consider the subregion, Rsub, shown in Figure 69.2. This region is bounded above by the free
surface and below by the tracer isosurface, C = C̃, just like the region R encountered in Section
69.6.3. Additionally, region Rsub is bounded along its sides by surfaces assumed to be within the
fluid interior. For much of this discussion we allow the sides to have an arbitrary shape and to
move. Towards the end of this section we specialize to the case of static sides, such as relevant
for a vertical section through the fluid and/or a numerical model grid cell.

Fluid mass budget

The fluid mass budget for the region, Rsub, can be formulated using either the residual mean
velocity or the Eulerian mean velocity

d

dt

[ˆ
Rsub

ρ dV

]
=

ˆ
∂Ωsurf(C̃)

Qm dA−
ˆ
C=C̃

ρ (v† − v(b)) · n̂dS −
ˆ

sides

ρ (v† − v(b)) · n̂dS

(69.72a)
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d

dt

[ˆ
Rsub

ρdV

]
=

ˆ
∂Ωsurf(C̃)

Qm dA−
ˆ
C=C̃

ρ (v − v(b)) · n̂dS −
ˆ

sides

ρ (v − v(b)) · n̂dS.

(69.72b)

The two budgets are identical since the eddy velocity satisfies
¸
ρv∗ · n̂ dS = 0 for any domain,

as well as v∗ · n̂ = 0 along any external domain boundary. Hence, as already noted in Section
69.6.1, the eddy velocity contribution to the right hand side of equation (69.72a) vanishes; it
provides no net mass source to any region. We next show the same equality holds for the tracer
mass budgets, with that equality requiring a bit more effort.

Tracer mass budget

The advective flux formulation of the tracer mass budget is given by

d

dt

[ˆ
Rsub

ρC dV

]
=

ˆ
∂Ωsurf(C̃)

QmC dA− C̃
ˆ
C=C̃

ρ (v† − v(b)) · n̂dS

−
˛
∂Rsub

J diff · n̂dS −
ˆ

sides

C ρ (v† − v(b)) · n̂dS, (69.73)

and the corresponding skew flux formulation is

d

dt

[ˆ
Rsub

ρC dV

]
=

ˆ
∂Ωsurf(C̃)

QmC dA− C̃
ˆ
C=C̃

ρ (v − v(b)) · n̂dS

−
˛
∂Rsub

J diff · n̂dS −
ˆ

sides

C ρ (v − v(b)) · n̂dS −
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS. (69.74)

As for the discussion in Section 69.6.3, we introduce the internal tracer mass and make use of
the fluid mass budgets (69.72a) and (69.72b) to write the advective form of the internal mass
budget

d

dt

[
MC − C̃ M

]
=

ˆ
∂Ωsurf(C̃)

Qm (C − C̃) dA−
˛
∂R
J diff · n̂dS

−
ˆ

sides

(C − C̃) ρ (v† − v(b)) · n̂dS, (69.75)

and the corresponding skew flux form of the same budget

d

dt

[
MC − C̃ M

]
=

ˆ
∂Ωsurf(C̃)

Qm (C − C̃) dA−
˛
∂R
J diff · n̂dS

−
ˆ

sides

(C − C̃) ρ (v − v(b)) · n̂dS −
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS. (69.76)

We now examine the right hand side of the budgets (69.75) and (69.76) to show they are
indeed measuring the same tracer mass budget. For that purpose, consider the skew flux integral
in equation (69.76) and note that the integrand vanishes on both the top of the domain, at
z = η, and bottom at C = C̃, thus allowing us to write

−
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS = −
˛
∂Rsub

[−∇C × (ρΨ∗)] · n̂dS, (69.77)

where the right hand side is an integral around the full domain boundaries. Now reintroduce
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the eddy induced velocity and rotational flux to have

−
˛
∂Rsub

[−∇C × (ρΨ∗)] · n̂dS = −
˛
∂Rsub

[C ρv∗ −∇× (C ρΨ∗)] · n̂dS. (69.78)

The rotational flux has zero divergence, so that Gauss’s divergence theorem means that the
rotational flux vanishes when integrated along the domain boundaries

˛
∂Rsub

∇× (C ρΨ∗) · n̂dS = 0. (69.79)

The eddy advection term in equation (69.78) vanishes on the top boundary at z = η due to the
boundary condition v∗ · n̂ = 0, thus yielding

˛
∂Rsub

C ρv∗ · n̂dS =

ˆ
sides

C ρv∗ · n̂dS +

ˆ
C=C̃

C ρv∗ · n̂dS (69.80a)

=

ˆ
sides

C ρv∗ · n̂dS + C̃

ˆ
C=C̃

ρv∗ · n̂dS. (69.80b)

Again make use of the property ∇ · (ρv∗) = 0 and n̂ · v∗ = 0 at z = η to write

0 =

˛
∂Rsub

ρv∗ · n̂dS =

˛
sides

ρv∗ · n̂dS +

˛
C=C̃

ρv∗ · n̂dS, (69.81)

which gives us

−
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS = −
˛
∂Rsub

C ρv∗ · n̂dS = −
ˆ

sides

(C − C̃) ρv∗ · n̂dS. (69.82)

Making use of this result in the skew flux formulated budget equation (69.76) brings it to the
advective flux form found in equation (69.75).

We are thus led to conclude that the right hand side to equation (69.76) does indeed equal
to the right hand side of equation (69.75). So although the formulation of the boundary flux
contributions is rather distinct between the advective flux and skew flux formulations, the
resulting tracer mass budget is the same. The choice for how to formulate the budget is thus a
matter of convenience.

69.6.5 Budget for a stirred fluid in a region with interior sides

Although contained within the formalism developed in Section 69.6.4, it is revealing to specialize
those budgets to the case of zero mixing, in which J diff = 0, and there is zero boundary mass
flux, Qm = 0. In this case the fluid is reversibly stirred. Examining the finite region budgets for
this pure stirring case allows us to further reveal the complementary treatments available from
advection versus skewsion.

Summary of the differential stirring formalism

As explored in this chapter, an Eulerian description of tracer stirring can arise from either
advection or skewsion. In the presence of an eddy induced velocity we here consider two
representations of tracer stirring, with the first being advection by the residual mean velocity, v†

ρ
D†C

Dt
= ∂t(ρC) +∇ · (ρv†C) = 0. (69.83)
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This formulation makes it clear that surfaces of constant C are material as defined by the
residual mean velocity rather than by the Eulerian mean, v. That is, tracer isosurfaces satisfy
the residual mean impermeability condition

ρ (v† − v(b)) · n̂ = 0 on C isosurfaces, (69.84)

with

n̂ =
∇C
|∇C| and v(b) · n̂ = − ∂tC

|∇C| . (69.85)

The impermeability condition (69.84) offers a geometric interpretation of the tracer equation
(69.83) following from the discussion of dia-surface transport in Section 64.3. Correspondingly,
Lagrangian fluid particles moving with the residual mean velocity do not cross tracer isosurfaces
even if those isosurfaces move. Furthermore, we observe that the eddy induced velocity has a
nonzero projection across tracer isosurfaces

(v† − v(b)) · n̂ = 0 =⇒ (v − v(b)) · n̂ = −v∗ · n̂ on C isosurfaces. (69.86)

This property of the eddy induced velocity was emphasized by McDougall and McIntosh (2001).
It reveals that in the absence of mixing, eddy motion crossing tracer isosurfaces is exactly
balanced by Eulerian motion plus surface motion, thus leaving a net zero residual mean transfer
of matter across the surface. Equation (69.86) is a key kinematic property used for interpreting
features of the finite volume budgets detailed below.

Our second means to represent tracer stirring makes use of advection by the Eulerian mean
velocity plus skewsion by the eddy induced streamfunction

ρ
DC

Dt
+∇ · [−∇C × (ρΨ∗)] = ∂t(ρC) +∇ · [ρvC −∇C × (ρΨ∗)] = 0. (69.87)

In terms of the eddy streamfunction, ρΨ∗, the impermeability condition (69.84) takes on the
form [

ρv +∇× (ρΨ∗)− ρv(b)
]
· n̂ = 0 on C isosurfaces. (69.88)

Budgets via residual mean advection

The mass budget formulated in terms of residual mean advection, and the corresponding residual
mean advective flux formulation of the tracer mass budget, are given by

d

dt

[ˆ
Rsub

ρdV

]
= −
ˆ
C=C̃

ρ (v† − v(b)) · n̂dS −
ˆ

sides

ρ (v† − v(b)) · n̂dS (69.89a)

d

dt

[ˆ
Rsub

ρC dV

]
= −C̃

ˆ
C=C̃

ρ (v† − v(b)) · n̂dS −
ˆ

sides

C ρ (v† − v(b)) · n̂dS. (69.89b)

The residual mean impermeability condition (69.84) for the C = C̃ surface renders a simplification
to the flud mass and tracer mass budgets

d

dt

[ˆ
Rsub

ρ dV

]
= −

ˆ
sides

ρ (v† − v(b)) · n̂dS (69.90a)

d

dt

[ˆ
Rsub

ρC dV

]
= −

ˆ
sides

C ρ (v† − v(b)) · n̂dS. (69.90b)

Hence, in the residual mean formulation, the only fluxes that affect changes to the mass budgets
are those that cross the side faces of the region.
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Budgets via Eulerian mean advection plus eddy skewsion

The mass budget formulated in terms of Eulerian mean advection, and the corresponding tracer
mass budget using eddy skewsion, are given by

d

dt

[ˆ
Rsub

ρdV

]
= −
ˆ
C=C̃

ρ (v − v(b)) · n̂dS −
ˆ

sides

ρ (v − v(b)) · n̂dS (69.91a)

d

dt

[ˆ
Rsub

ρC dV

]
= −C̃

ˆ
C=C̃

ρ (v − v(b)) · n̂dS −
ˆ

sides

C ρ (v − v(b)) · n̂dS

−
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS. (69.91b)

We already saw in Section 69.6.4 how to bring the right hand side terms into the form realized
by the residual mean advective approach. So there is no question concerning the equivalance of
the advective and skew flux formulations for the tracer mass budget. Nonetheless, what is here
clearly emphasized is that the skew flux approach requires us to account for Eulerian advective
transport across the C = C̃ isosurface, whereas for the advective flux approach the only flux
in equation (69.90b) is that crossing the region side boundaries. Even so, as stated earlier, an
Eulerian mean transport of tracer across the C = C̃ isosurface does not correspond to material
transport across this surface. The reason is that material transport is determined by the residual
mean velocity, v†, as per the residual mean impermeability conditions 69.86 and 69.88. So even
though there is a contribution to the skew flux formulated budget from Eulerian transport across
the C = C̃ material surface, there remains zero net material crossing that surface.

Zero Eulerian mean advection and static side walls

One further specialization serves to clearly emphasize the complementary nature of the advective
and skew flux approaches. Here, we assume the sides of the region are static and the Eulerian
mean velocity vanishes. With a zero Eulerian velocity, the residual mean impermeability condition
(69.86) means that on the C = C̃ isosurface, the normal component of the eddy velocity is
balanced by the boundary velocity as per the impermeability condition (69.92):

(v∗ − v(b)) · n̂ = 0 on C isosurfaces and with v = 0. (69.92)

When formulated using the residual mean advection, the fluid mass budget (69.90a) and
tracer mass budget (69.90b) reduce in this case to

d

dt

[ˆ
Rsub

ρ dV

]
= −

ˆ
sides

ρv∗ · n̂dS (69.93a)

d

dt

[ˆ
Rsub

ρC dV

]
= −

ˆ
sides

C ρv∗ · n̂dS, (69.93b)

so that these budgets are only affected by eddy advection across the side boundaries. The
corresponding mass budget written in terms of Eulerian mean advection, (69.91a), and tracer
mass budget written in terms of skew fluxes, (69.91b), are given by

d

dt

[ˆ
Rsub

ρ dV

]
= +

ˆ
C=C̃

ρv(b) · n̂dS (69.94a)

d

dt

[ˆ
Rsub

ρC dV

]
= +C̃

ˆ
C=C̃

ρv(b) · n̂dS −
ˆ

sides

[−∇C × (ρΨ∗)] · n̂dS. (69.94b)

For the mass budget, (69.94a), there are no contributions to the side walls since they are static
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and the Eulerian advection is assumed to vanish. The only contribution comes from the eddy
term acting on the C = C̃ isosurface where v(b) · n̂ = v∗ · n̂. For the tracer mass budget, (69.94b),
we also have the eddy contribution on the C = C̃ isosurface, plus skew fluxes that penetrate the
side walls.

The right hand sides to the fluid mass budgets (69.93a) and (69.94a), and tracer mass
budgets (69.93b) and (69.94b), are remarkably distinct. Even so, they both measure the same
budgets. Furthermore, in both cases the C = C̃ boundary is a material boundary as defined by
the residual mean velocity.

69.7 Active tracers and dia-surface flow
An active tracer impacts the fluid flow, with Conservative Temperature and salinity the canonical
examples for the ocean. Active tracers directly impact the buoyancy, which in turn affects
pressure and velocity. Hence, the advection-diffusion equation for active tracers is nonlinear
since the velocity field is dependent on active tracers. We here write the advection-diffusion
equation in terms of the residual mean velocity using Conservative Temperature as an example
active tracer

ρ
D†Θ

Dt
= ρ (∂t + v

† · ∇)Θ = −∇ · J diff(Θ). (69.95)

Further nonlinearities arise when the subgrid scale diffusion tensor is itself a function of the
buoyancy, as discussed at the end of Section 68.5, and/or when the parameterized eddy-induced
velocity is a function of the buoyancy, as discussed in Section 71.3.

69.7.1 Adiabatic flow
Conservative Temperature is materially invariant in an adiabatic flow, so that advected by the
residual mean velocity we have

D†Θ

Dt
= (∂t + v

† · ∇)Θ = 0 adiabatic. (69.96)

Furthermore, following the kinematics of Section 19.6.2, the adiabatic residual mean flow field does
not penetrate surfaces of constant Conservative Temperature (Θ-isosurfaces are impermeable)
since

v† · ∇Θ = −∂tΘ. (69.97)

In this case we say that residual mean advection reversibly stirs the Conservative Temperature
field. This property of the residual mean velocity was also considered in the discussion of pure
stirring in Section 69.6.4.

69.7.2 Diabatic processes generating dia-Θ transport
Conservative Temperature is not materially invariant in the presence of diabatic processes, such
as mixing typically parameterized by diffusion. Correspondingly, the residual mean velocity picks
up a component, wdia, that crosses the moving Conservative Temperature surface, thus making
Θ surfaces permeable to fluid flow. In turn, advective transport in the presence of mixing is not
reversible. We follow the kinematics from Section 64.3 to render the expression (64.26) for wdia,
which we here write as

wdia ≡ n̂ · (v† − v(Θ)) =
1

|∇Θ|
D†Θ

Dt
(69.98)

where

n̂ =
∇Θ
|∇Θ| and v(Θ) · ∇Θ = −∂tΘ. (69.99)
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Rearrangement of equation (69.98) renders the kinematic identity

D†Θ

Dt
= ∂tΘ+ v† · ∇Θ = wdia |∇Θ|. (69.100)

With nonzero wdia, we no longer have residual mean advection preserving properties along fluid
element trajectories. There can be many physical processes contributing to a nonzero wdia, such
as from the following examples.

Diffusion with no fluid motion

Diffusion is the canonical example of a diabatic process (Section 68.3), with molecular diffusion
leading to

ρ
D†Θ

Dt
= ∇ · (κ ρ∇Θ), (69.101)

with κ > 0 the scalar kinematic diffusivity and the product, κ ρ, the dynamic diffusivity.
Following the definition (69.98), we see that diffusion drives the following diabatic transport
velocity

ρwdia =
∇ · (κ ρ∇Θ)

|∇Θ| . (69.102)

Consider a horizontally homogeneous Conservative Temperature field. If buoyancy is alone
determined by Θ, then there is no fluid motion since buoyancy surfaces are flat (and we assume
the eddy-induced motion is also zero). Yet in the presence of vertical diffusion and vertical
stratification there is a diabatic transport since

ρwdia =
∂z(κ ρ ∂zΘ)

|∂zΘ|
̸= 0. (69.103)

In the absence of fluid flow, the dia-surface transport is determined solely by movement of the Θ
surfaces. Correspondingly, Θ evolution is determined only by vertical diffusion since with v† = 0
we have

∂tΘ = ρ−1 ∂z(κ ρ ∂zΘ) = wdia |∂zΘ|. (69.104)

Steady state advective-diabatic balance

A steady state Conservative Temperature field in the presence of diabatic processes is realized
when there is an exact balance between advective transport and dia-surface transport enabled
by diffusion

ρv† · ∇Θ = ρwdia |∇Θ| = ∇ · (κ ρ∇Θ). steady state. (69.105)

That is, maintaining static Θ-surfaces (∂tΘ = 0) requires the residual mean advective transport
to cross Θ surfaces (left hand side) by an amount that exactly balances diabatic processes such
as diffusion (right hand side). This example illustrates that in the presence of mixing, advection
is no longer an adiabatic stirring process. Indeed, in the steady state, advection exactly balances
diffusion.

69.8 Tracer homogenization inside closed tracer contours
In this section we prove a far reaching theorem involving the steady advective-diffusive balance
that holds within closed tracer contours. For this purpose, consider the equation for a conservative
tracer

∂t(ρC) +∇ · (ρvC) = −∇ · J (69.106)
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where
J = −ρK · ∇C (69.107)

is a downgradient diffusive flux with K a symmetric positive-definite diffusion tensor. In the
steady state, the divergence of the advective tracer flux balances the convergence of the diffusive
flux

∇ · (ρvC) = −∇ · J . (69.108)

Now specialize to a two-dimensional steady state flow in a region enclosed by a constant tracer
contour. We here prove that the tracer concentration is homogeneous (i.e., a spatially constant)
within the contour of constant C, as shown in Figure 69.3. Evidently, in the steady state,
diffusion removes all tracer variations within closed tracer contours; i.e., there are no tracer
extrema within a closed tracer contour.

<latexit sha1_base64="IiSoDyiG3ESb4BMiiRiQ/vHvP/Q=">AAACB3icbVDLSgMxFL1TX7W+qi7dBIvgqsyIVDdCsRuXFexD2qFk0kwbmmSGJCOUoR/g2q1+gztx62f4Cf6FaTuIrR4IHM65l3NzgpgzbVz308mtrK6tb+Q3C1vbO7t7xf2Dpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvBqDb1Ww9UaRbJOzOOqS/wQLKQEWysdF9DV6jWS91Jr1hyy+4M6C/xMlKCDPVe8avbj0giqDSEY607nhsbP8XKMMLppNBNNI0xGeEB7VgqsaDaT2cHT9CJVfoojJR90qCZ+nsjxULrsQjspMBmqJe9qfif10lMeOmnTMaJoZLMg8KEIxOh6e9RnylKDB9bgoli9lZEhlhhYmxHCymB+Amw3XjLTfwlzbOyVylXbs9L1euspTwcwTGcggcXUIUbqEMDCAh4gmd4cR6dV+fNeZ+P5pxs5xAW4Hx8A3C6mJs=</latexit>

C = C0

Figure 69.3: In a steady flow, the tracer concentration within a region bounded by a constant tracer contour
is uniform, with diffusion providing the mechanism for homogenizing the tracer. Evidently, diffusion expells all
variations in tracer concentration from the region. In this figure, the concentration within the closed region has
constant value C = C0.

69.8.1 Proof of the theorem
The following proof follows that given in Section 3.2 of Rhines and Young (1982) and Section
13.5 of Vallis (2017) for a horizontally non-divergent flow as per a Boussinesq ocean. Here, we
show the result also holds for a steady state divergent flow, as per a non-Boussinesq fluid. The
proof is based on a reductio ad absurdum argument, whereby we first assume the tracer is not
homogeneous within a closed tracer contour, and then show that this assumption leads to an
inconsistency and so is wrong. Notably, if the tracer concentration is not homogeneous within a
contour, then there is an extrema within that contour.

To start the proof, integrate the left hand side of the steady state advection-diffusion equation
(69.108) around an arbitrary simply connected surface and make use of the divergence theorem

ˆ
S

∇ · (ρuC) dS =

˛
∂S
ρuC · n̂dl, (69.109)

where n̂ is the outward normal along the area’s boundary, ∂S, and dl is the line element around
the boundary. Now specify the surface under consideration to be bounded by a constant contour
with C = C0. We can thus remove the tracer concentration from the contour integral to have

˛
∂S
ρuC · n̂dl = C0

˛
∂S
ρu · n̂dl = C0

ˆ
S

∇ · (ρu) dS, (69.110)

where the second equality follows from the divergence theorem. For a steady state flow, mass
continuity means that density at a point is time independent, so that the density-weighted
velocity has zero divergence

∇ · (ρu) = 0. (69.111)
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Consequently, when integrated over a closed tracer contour we have the identity

ˆ
S

∇· (ρuC) dS = C0

ˆ
S

∇· (ρu) dS = 0 with S enclosed by a closed C contour. (69.112)

Returning to the steady state advection-diffusion equation (69.108), the identity (69.112) then
implies the analogous result for the diffusive flux

ˆ
S

∇ · J dS = 0 with S enclosed by a closed C contour. (69.113)

We now show that the identity (69.113) holds only if the tracer is homogeneous inside the closed
contour; i.e., there are no extrema within a closed contour.

Appealing to a nonzero flux in the presence of an extrema

Consider the right hand side of the steady state advection-diffusion equation (69.108) and
integrate it over a closed region

−
ˆ
S

∇ · J dS = −
˛
∂S
J · n̂dl =

˛
∂S

(K · ∇C) · n̂ ρ dl. (69.114)

If the contour surrounds an extremum of the tracer concentration, then a downgradient diffusive
flux is nonzero and has a nonzero projection in the outward normal direction.3 Hence, the
integral is nonzero, which then contradicts equation (69.113). Consistency thus implies that the
diffusive flux vanishes, which means the tracer contour does not surround an extrema. That is,
the tracer concentration is homogeneous inside the closed tracer contour.

Introducing an expression for the outward normal

If the tracer is not homogeneous, so that ∇C ̸= 0, then we can introduce the normal direction,

n̂ =
∇C
|∇C| , (69.115)

which is directed orthogonal to a constant tracer contour. Using this expression for the normal
direction within the tracer flux integral leads to

−
ˆ
S

∇ · J dS =

˛
∂S
∇C ·K · ∇C ρdl

|∇C| . (69.116)

The diffusion tensor is a symmetric positive-definite second order tensor, so that the quadratic
form in the integral is positive,

∇C ·K · ∇C = Kmn ∂mC ∂nC > 0. (69.117)

Furthermore, the line element, dl, is positive, and so are ρ and |∇C|. Consequently, the integral
around a closed tracer contour, where the normal to that contour is given by equation (69.115),
is positive

−
ˆ
S

∇ · J dS =

ˆ
∂S
∂mC K

mn ∂nC ddl > 0 if n̂ = ∇C/|∇C|. (69.118)

3For example, consider a circular tracer contour surrounding a circular maximum, and assume isotropic
diffusion. In this case the diffusive flux is radial so that it has a nonzero projection onto the outward normal.
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However, this inequality contradicts the zero result (69.113). The zero result (69.113) is based
only on the steady state assumption, whereas the inequality (69.118) is a direct result of assuming
the tracer is inhomogeneous. Dropping the tracer inhomogeneity assumption is the only way to
recover consistency.

69.8.2 Comments

Both of the above approaches led us to conclude that the tracer has zero gradient within the
interior of a closed constant C contour; i.e., the steady state tracer concentration is homogeneous
within a closed tracer contour. Given enough time to reach a steady state, diffusion, no matter
how weak, expells all steady state tracer gradients from within regions bounded by closed tracer
contours. This result can be extended to three dimensions, in which case steady state tracers are
homogenous within closed volumes bounded by a constant tracer concentration. However, such
bubble-like regions are less common for geophysical flows. In contrast, they are commonly found
in quasi-two dimensional flows, including flows on constant isopycnals. So the theorem is more
readily applied to two dimensional (or quasi two dimensional) flows. We offer another proof of
the tracer homogenization result in Section 73.10.1 as part of our study of tracer mass analysis.

Furthermore, we assumed that the tracer equation included just a symmetric diffusion tensor,
K, in defining the subgrid flux (69.107). However, the theorem also holds if there is an additional
anti-symmetric tensor, A, added to K. The reason is that an anti-symmetric tensor vanishes
from the quadratic form (69.117)

∇C ·A · ∇C = Amn ∂mC ∂nC = 0. (69.119)

That is, the tracer skew flux, J skew = −A · ∇C, does not cross tracer isolines: ∇C · J = 0, which
we already found when studying skew fluxes in Section 69.5.

69.8.3 Further study

A powerful application of this theorem appears when the tracer, C, is a dynamically active
tracer, such as vorticity or quasi-geostrophic potential vorticity (Chapter 45). The case of
vorticity was discussed by Batchelor (1956), with Rhines and Young (1982) extending that work
to the case of quasi-geostrophic potential vorticity. For the quasi-geostrophic case, contours of
constant potential vorticity are known as geostrophic contours. Rhines and Young (1982) used
the homogenization theorem to develop a theory of ocean circulation. They did so by considering
potential vorticity homogenization by the mesoscale eddies that are active in regions of closed
geostrophic contours, such as in mid-latitude ocean gyres.

69.9 Green’s function method for passive tracers

Passive tracers (Section 20.1.5) have no impact on the flow field, so that they do not impact the
fluid density nor the diffusion tensor. Hence, passive tracer patterns serve to “trace” the effects
from advective and diffusive transport without affecting the transport velocity or diffusion tensor.
Correspondingly, the passive tracer advection-diffusion equation is a linear partial differential
equation. With some qualifications identified below, we can make use of the Green’s function
methods from Chapter 9 when studying solutions to the passive tracer equation. This section
offers a supplement to the review paper from Haine et al. (2025) who synthesize the variety of
Green’s function methods of use for studying geophysical fluids. Although our formulation is
largely based on ocean applications, the Green’s function method for the advection-diffusion
equation is also applicable to the atmosphere.
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69.9.1 Concerning time dependent domain boundaries

The ocean free surface is time dependent, so that the domain, R, is itself time dependent.
Mathematically, this time dependence means that time and space integrations do not commute.
In particular, space integration is generally written in the form

ˆ
R

dV =

¨ [ˆ η

ηb

dz

]
dx dy, (69.120)

where z = ηb(x, y) is the static bottom and z = η(x, y, t) is the time dependent free surface. We
must, in turn, first compute the space integration over the full domain and then do the time
time integration when deriving the reciprocity relation and the Green’s function solution.

The free surface undulations make the vertical extent of the domain time dependent. Ad-
ditionally, in an ocean with sloping sidewalls, the horizontal domain boundaries are also time
dependent as the ocean moves up and down the sloping sides. However, allowing for the hor-
izontal domain extent to fluctuate does not introduce any fundamentally new kinematics in
our analysis. The reason is that when integrating to the lateral domain boundaries, all terms
vanish since the water depth vanishes at the edge of the sloping beaches. We saw this kinematic
result in Section 28.5 when integrating the angular momentum budget in a channel with sloping
sidewalls.

Therefore, we assume the horizontal extent of the domain to be static in order to slightly
ease the analysis. We do so by imagining a few meter high vertical seawall placed around
the ocean domain edges, and by assuming a minimum depth so that there is nonzero water
everywhere in the domain. These assumptions are common in ocean modeling, except in models
allowing for wetting and drying of land/ocean cells. So in conclusion, we limit our analysis to
time dependence of the vertical extent of the domain, with the horizontal extent static. Such
limitation can be removed without much difficulty but doing so adds nothing new fundamentally.

69.9.2 Passive tracer boundary conditions

In this section, we are concerned with the evolution of a smooth passive tracer concentration,
C, which is the dimensionless ratio of the tracer mass to seawater mass. Boundary conditions
play a key role in the evolution. We here discuss the boundary conditions placed on the passive
tracer along the ocean bottom, at z = ηb(x, y), and the free surface, at z = η(x, y, t).

Ocean bottom

At the static ocean bottom we generically consider a no-flux condition for the diffusive flux

J · n̂ = −ρK · ∇C · n̂ = 0 at z = ηb. (69.121)

The no-flux condition, along with the kinematic no-normal flow condition, v · n̂ = 0, means that
there is zero tracer flux through the bottom.

Ocean free surface

At the ocean free surface we use results from Section 19.6.3, which developed the boundary
conditions for mass flux Qm (mass per time per area) across a permeable free surface, as well
as Section 20.4, which developed the analogous boundary conditions for tracers. In particular,
equation (20.84) provides an expression for the net mass flux of tracer crossing the free surface,
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QC , written as the sum of an advective flux plus a non-advective flux

QC = C Qm − J · n̂ = C Qm︸ ︷︷ ︸
advective

+ ρK · ∇C · n̂︸ ︷︷ ︸
diffusive

for x ∈ ∂Rsurface, (69.122)

where C is the concentration at z = η, and we assumed the non-advective flux is given by a
diffusive flux. We consider the following prescribed boundary conditions.

• Robin conditions: Prescribing the boundary tracer mass flux, QC , leads to a Robin or
mixed boundary condition

QC = prescribed = C Qm + ρK · ∇C · n̂ for x ∈ ∂Rsurface. (69.123)

This boundary condition is relevant for enthalpy and salt, with full discussion given in
Section 72.5. However, the Robin condition is rarely used for passive tracers along the
ocean surface and so it is not further considered in this section.

• Neumann conditions: Prescribing the diffusive flux leads to the Neumann boundary
condition

ρK · ∇C · n̂ = prescribed ≡ Σ(x, t) for x ∈ ∂Rsurface. (69.124)

This surface ocean boundary condition is also rarely used for passive tracers, though we
do examine it within the following.

• Dirichlet conditions: Prescribing the value of the tracer concentration at the boundary
leads to the Dirichlet boundary condition

C = prescribed ≡ σ(x, t) for x ∈ ∂Rsurface. (69.125)

This boundary condition is the most commonly used condition for passive tracers, and
thus it is our favored choice in the following. Note that both the Neumann and Dirichlet
conditions generally involve a net transport of tracer, QC ̸= 0, across the ocean boundary.

As shown in Section 69.9.5, the Neumann boundary condition in the presence of a surface
mass flux is problematic due to the associated non-closed reciprocity relation satisfied by the
Green’s function and its adjoint. The absence of a suitable reciprocity relation makes it difficult
to use the Green’s function method, since one would need to solve for both the Green’s function
and its adjoint. In contrast, the Dirichlet condition allows for a simple reciprocity relation,
identical to that for the diffusion equation (Section 9.5.7), thus making the Green’s function
method for the advection-diffusion equation with a Dirichlet condition suitable even in the
presence of a surface mass flux (see page 2450 of Larson (1999) for a similar point).

69.9.3 Advection-diffusion initial-boundary value problem
We study the initial-boundary value problem for a smooth passive tracer concentration, C,
which is the dimensionless ratio of the tracer mass to seawater mass. The tracer is affected by
advection and diffusion on a spatial domain, R, in the presence of a tracer source, ρΛ (with
dimensions of tracer mass per volume per time), with initial data available for the density and
tracer concentration at time t = tinit. The initial-boundary value problem in the presence of
Neumann or Dirichlet boundary conditions is given by

∂t(ρC) +∇ · (ρv†C − ρK · ∇C) = ρΛ x ∈ R, t ≥ tinit (69.126a)

ρC = ρ I x ∈ R, t = tinit (69.126b)

n̂ · ρK · ∇C = ρΣ or ρC = ρ σ x ∈ ∂R, t ≥ tinit. (69.126c)
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The prescribed initial condition data for the tracer concentration at time t = tinit is given by I(x),
and the initial density is also prescribed at this time, ρ(x, tinit). We consider two options for the
boundary condition at x ∈ ∂R: (i) the Neumann boundary condition with a prescribed flux,
n̂ · ρK · ∇C = ρΣ, or the (ii) Dirichlet boundary condition with a prescribed value, ρC = ρ σ.
Furthermore, we assume the flow field, v(x, t), the eddy-induced velocity, v∗(x, t), the seawater
density, ρ(x, t), and the diffusivity tensor, K(x, t), are known functions of space-time that
are determined by solving for the dynamics, kinematics, thermodynamics, and active tracers.
Finally, we assume the tracer concentration source, Λ(x, t), does not itself depend on the tracer
concentration, C, thus ensuring linearity of the partial differential equation (69.126a).

69.9.4 The Green’s function and its adjoint

Green’s function problem

The Green’s function corresponding to the passive tracer advection-diffusion equations (69.126a)-
(69.126c) satisfies the following causal boundary value problem

∂t[ρG(x, t|x0, t0)] +∇x · [ρv†G(x, t|x0, t0)− ρK · ∇xG(x, t|x0, t0)] = δ(x− x0) δ(t− t0) (69.127a)

G(x, t < t0|x0, t0) = 0 (69.127b)

n̂x ·K · ∇xG(x ∈ ∂R, t|x0, t0) = 0 or G(x ∈ ∂R, t|x0, t0) = 0. (69.127c)

The space-time point, (x0, t0), is where the Dirac delta source is located, which is within the
spatial domain, R, and it fires at a time after the initial time

x0 ∈ R and t0 ≥ tinit. (69.128)

The Green’s function satisfies homogeneous boundary conditions that correspond to the boundary
conditions satisfied by the passive tracer concentration in equation (69.126c). That is, if the
passive tracer satisfies a Dirichlet boundary condition, then the Green’s function satisfies a
homogeneous Dirichlet condition, and likewise for Neumann boundary conditions. Finally, since
the Dirac delta source, δ(x− x0) δ(t− t0), has dimensions of inverse volume times inverse time,
the Green’s function has dimensions of inverse mass. We physically interpret the Green’s function
as the tracer concentration resulting from an impulsive tracer concentration source, divided by
the mass of tracer injected by the source.

Adjoint Green’s function problem

The adjoint Green’s function, G‡, satisfies the adjoint problem4

−∂t[ρG‡(x, t|x0, t0)] +∇x · [−ρv†G‡(x, t|x0, t0)− ρK · ∇xG
‡(x, t|x0, t0)] = δ(x− x0) δ(t− t0)

(69.129a)

G‡(x, t > t0|x0, t0) = 0 (69.129b)

n̂x ·K · ∇xG
‡(x ∈ ∂R, t|x0, t0) = 0 or G‡(x ∈ ∂R, t|x0, t0) = 0. (69.129c)

Note the sign change on both the time derivative, as for the diffusion equation in Section 9.5.6,
as well as the advection term. The sign change on advection is expected since with time running
backwards, so too does the velocity of a fluid particle. Hence, the adjoint advection-diffusion
equation is a backwards in time advection-diffusion equation.

4Note the use of the double dagger, ‡, for the adjoint Green’s function, G‡, versus the single dagger, †, for the
residual velocity, v†.
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69.9.5 Reciprocity relation

We here derive the reciprocity relation satisfied by the Green’s function, G, and its adjoint,
G‡. The derivation follows that in Section 9.3.6 for the Poisson equation and Section 9.5.7 for
the diffusion equation. A new feature here arises from the advection operator, and another
arises from allowing the domain boundary to be time dependent as occurs at the ocean free
surface. We will see that the reciprocity relation for Neumann boundary conditions (69.127c)
and (69.129c) does not “close” when there is mass transport across the ocean free surface (see
equation (69.144) below). In contrast, the reciprocity relation closes with Dirichlet boundary
conditions, taking the same form as for the diffusion equation in equation (9.156). We have
more to say on this distinct behavior after its derivation.

Notation and setup

Consider the Green’s function partial differential equation (69.127a) with a Dirac delta source,
δ(x − x1) δ(t − t1), along with the adjoint Green’s function equation (69.129a) with a Dirac
delta source, δ(x − x2) δ(t − t2), where both sources are within the spatial domain and both
occur later than the initial time:

x1,x2 ∈ R and tinit < t1, t2. (69.130)

We follow the approach in Section 9.5.7 for the diffusion equation by introducing the arbitrarily
large time, T , such that −T < t1, t2 < T . As for the diffusion equation, causality conditions
ensure that T drops out from the final expression for the tracer concentration. Additionally, to
help ease notational clutter, we make use of the following shorthand where convenient

G(x, t|x1, t1) = G(1) and G‡(x, t|x2, t2) = G‡(2). (69.131)

Cross-multiplication

Multiply the Green’s function equation (69.127a) by G‡(2) and the adjoint equation (69.129a)
by G(1) to find

G‡(2)
(
∂t[ρG(1)] +∇x · [ρv†G(1)− ρK · ∇xG(1)]

)
= G‡(2) δ(x− x1) δ(t− t1) (69.132a)

G(1)
(
−∂t[ρG‡(2)] +∇x · [−ρv†G‡(2)− ρK · ∇xG

‡(2)]
)
= G(1) δ(x− x2) δ(t− t2).

(69.132b)

In the following, we work from the left hand side of equation (69.132a) and bring the differential
operators from G(1) onto G‡(2). The result of this movement will be equation (69.132b) plus
some extra terms whose form depends on the causality condition and boundary conditions.
Integration over space and time will then render the reciprocity relation.

Self-adjointness of the generalized Laplacian operator

The generalized Laplacian operator term on the left hand side of equation (69.132a) can be
written

−G‡(2)∇x · [ρK · ∇xG(1)]

= ∇x · [−G‡(2) ρK · ∇xG(1) +G(1) ρK · ∇xG
‡(2)]−G(1)∇x · [ρK · ∇xG

‡(2)]. (69.133)
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A spatial integration of this equation over the region R, and use of the homogeneous boundary
conditions in equations (69.126c) or (69.129c) eliminates the divergence term to reveal

ˆ
R

G‡(x, t|x2, t2)∇x · [ρK · ∇xG(x, t|x1, t1)] dV

=

ˆ
R

G(x, t|x1, t1)∇x · [ρK · ∇xG
‡(x, t|x2, t2)] dV. (69.134)

This equality proves that the generalized Laplacian operator with a symmetric diffusion tensor is
self-adjoint, which is a result already encountered in Section 9.5.7 when discussing the diffusion
equation. This result holds for either Neumann or Dirichlet boundary conditions.

Time derivative plus advection

Next write the time derivative and advection portion of equation (69.132a) as

G‡(2)
(
∂t[ρG(1)] +∇x · [ρv†G(1)]

)
= ∂t[G

‡(2) ρG(1)] +∇x · [G‡(2) ρv†G(1)]−G(1) ρ
[
∂tG

‡(2) + v† · ∇xG
‡(2)

]
= ∂t[G

‡(2) ρG(1)] +∇x · [G‡(2) ρv†G(1)]−G(1)
(
∂t(ρG

‡(2)) +∇ · [ρv†G‡(2)]
)
, (69.135)

where we used the mass continuity equation (19.6) for the final equality. Rearrangment thus
leads to

G‡(2)
(
∂t[ρG(1)] +∇x · [ρv†G(1)]

)
−G(1)

(
−∂t[ρG‡(2)]−∇ · [ρv†G‡(2)]

)
= ∂t[G

‡(2) ρG(1)] +∇x · [G‡(2) ρv†G(1)]. (69.136)

Space integration

Now integrate equations (69.132a) and (69.132b) over the spatial domain, R, subtract these two
equations, and make use of the results (69.134) and (69.136) to reveal

G‡(x1, t|x2, t2) δ(t− t1)−G(x2, t|x1, t1) δ(t− t2)

=

ˆ
R

[
∂t[G

‡(2) ρG(1)] +∇x · [G‡(2) ρv†G(1)]
]
dV. (69.137)

The divergence term on the right hand side takes the form

ˆ
R

∇x · [G‡(2) ρv†G(1)] dV =

˛
∂R
G‡(2)G(1) ρv† · n̂x dS divergence theorem

(69.138a)

=

˛
∂R
G‡(2)G(1) ρv · n̂x dS n̂ · v∗ = 0

(69.138b)

=

ˆ
z=η

G‡(2)G(1) ρv · n̂x dS v · n̂ = 0 for z = ηb

(69.138c)

=

ˆ
z=η

G‡(2)G(1) ρv · ∇(z − η) dA equation (19.91)

(69.138d)
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=

ˆ
z=η

G‡(2)G(1) ρ (w − u · ∇η) dA. (69.138e)

The time derivative term takes the form
ˆ
R

∂t[G
‡(2)G(1) ρ] dV =

∂

∂t

[ˆ
R

G‡(2)G(1) ρ dV

]
−
ˆ
z=η

[
G‡(2)G(1) ρ ∂tη

]
dA, (69.139)

where we made use of Leibniz’s rule to bring the time derivative across the integral sign and
made note of the time dependent free surface, z = η(x, y, t). Combining equations (69.139) and
(69.138e) leads to

G‡(x1, t|x2, t2) δ(t− t1)−G(x2, t|x1, t1) δ(t− t2) (69.140a)

=
∂

∂t

[ˆ
R

G‡(2)G(1) ρ dV

]
+

ˆ
z=η

G‡(2)G(1) [ρ (w − u · ∇η − ∂tη)] dA (69.140b)

=
∂

∂t

[ˆ
R

G‡(2)G(1) ρ dV

]
−
ˆ
z=η

G‡(2)G(1)Qm dA, (69.140c)

where the final equality follows from the surface ocean kinematic boundary condition (19.94),
with Qm the mass per time per horizontal area crossing the ocean surface.

Time integration

We are now ready to integrate equation (69.140c) over time, with its left hand side leading to

ˆ T

−T

[
G‡(x1, t|x2, t2) δ(t− t1)−G(x2, t|x1, t1) δ(t− t2)

]
dt

= G‡(x1, t1|x2, t2)−G(x2, t2|x1, t1), (69.141)

which used the sifting property (7.69). There are two terms that appear when time integrating
the time derivative on the right hand side of equation (69.140c), with each term vanishing due
to the causality conditions (69.127b) and (69.129b)

ˆ
R

G‡(x, t = T |x2, t2)G(x, t = T |x1, t1) ρ dV = 0 ⇐= G‡(x, t = T |x2, t2) = 0 (69.142)

ˆ
R

G‡(x, t = tinit|x2, t2)G(x, t = tinit|x1, t1) ρ dV = 0 ⇐= G(x, t = tinit|x1, t1) = 0. (69.143)

We are thus left with

G‡(x1, t1|x2, t2)−G(x2, t2|x1, t1)

= −
ˆ t1

tinit

[ˆ
z=η

G‡(x, t|x2, t2)G(x1, t1|x, t)Qm dA

]
dt, (69.144)

which we refer to as a non-closed reciprocity relation between G and G‡. Note that the time
limits on the integral follow from causality on the Green’s function and its adjoint.

Closed form reciprocity in special cases

There are two cases in which the relation (69.144) leads to a closed reciprocity relation:

• Zero mass flux across surface: Qm = 0.
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• Homogeneous Dirichlet boundary conditions, in which case G‡(x ∈ ∂R, t|x0, t0) = G(x ∈
∂R, t|x0, t0) = 0.

In either case we are led to

G‡(x1, t1|x2, t2) = G(x2, t2|x1, t1), (69.145)

which is the same reciprocity (9.156) satisfied for the diffusion equation Green’s functions.

The more nuanced reciprocity for the advection-diffusion equation arises from the advective
mass flux at the ocean free surface boundary. The mass flux couples the ocean with its
surrounding media (e.g., the atmosphere, rivers, or cryosphere), and in so doing precludes a
general closed reciprocity relation. However, the Dirichlet boundary condition closes the surface
boundary through the homogeneous Green’s function boundary conditions. Most applications of
Green’s function methods for passive ocean tracers make use of Dirichlet boundary conditions,
in which case we are afforded a closed reciprocity relation even with a free surface open to mass
transport.

69.9.6 Composition property

We here follow the analysis of Section 9.5.8 to derive the composition property of the Green’s
function for the advection-diffusion equation. For this purpose, return to the cross-multiplication
equations (69.132a) and (69.132b) used to derive reciprocity, here written as

G‡(2)
(
∂t[ρG(1)] +∇x · [ρv†G(1)− ρK · ∇xG(1)]

)
= G‡(2) δ(x− x1) δ(t− t1) (69.146a)

G(1)
(
∂t[ρG

‡(2)] +∇x · [ρv†G‡(2) + ρK · ∇xG
‡(2)]

)
= −G(1) δ(x− x2) δ(t− t2). (69.146b)

Adding these two equations and use of mass continuity (19.6) brings the left hand side to

LHS = ∂t[ρG(1)G
‡(2)] +∇x · [ρv†G(1)G‡(2) + ρG(1)K · ∇xG

‡(2)− ρG‡(2)K · ∇xG(1)].
(69.147)

Integration over the domain R eliminates the diffusion terms for both the Dirichlet and Neumann
boundary conditions. For the time derivative term we use Leibniz’s rule to write

ˆ
R

∂t[ρG(1)G
‡(2)] dV =

d

dt

ˆ
R

ρG(1)G‡(2) dV −
ˆ
z=η

ρG(1)G‡(2) ∂tη dA. (69.148a)

For the advection term we follow the manipulations used for equation (69.138e) to derive

ˆ
R

∇x · [ρv†G(1)G‡(2)] dV =

ˆ
z=η

ρG(1)G‡(2)v† · n̂dS (69.149a)

=

ˆ
z=η

ρG(1)G‡(2) (w − u · ∇η) dA (69.149b)

=

ˆ
z=η

G(1)G‡(2) (ρ ∂tη −Qm) dA. (69.149c)

Bringing the pieces together and expanding the arguments leads to

d

dt

ˆ
R

ρ(x, t)G(x, t|x1, t1)G
‡(x, t|x2, t2) dV = G‡(x1, t|x2, t2) δ(t− t1)

−G(x2, t|x1, t1) δ(t− t2)−
ˆ
z=η

G(x, t|x1, t1)G
‡(x, t|x2, t2)Qm(x, t) dA. (69.150)
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As for the derivation of reciprocity in Section 69.9.5, we here assume either Qm = 0 or a
homogeneous Dirichlet boundary condition so that

d

dt

ˆ
R

ρ(x, t)G(x, t|x1, t1)G
‡(x, t|x2, t2) dV = G‡(x1, t|x2, t2) δ(t− t1)

−G(x2, t|x1, t1) δ(t− t2). (69.151)

This equation is directly analogous to equation (9.165) satisfied by the diffusion equation Green’s
function. Following from that analysis, and making use of reciprocity (69.145), we find the
composition property for the advection-diffusion equation

G(x2, t2|x1, t1) =

ˆ
R

ρ(x, τ)G(x2, t2|x, τ)G(x, τ |x1, t1) dV if t1 < τ < t2. (69.152)

The left hand side of this equation is the response from a Dirac source that is advected-diffused
from (x1, t1) and measured at the space-time point (x2, t2). The right hand side is the composition
of a Green’s function feeling the source at (x1, t1) but now sampled at an intermediate space-time
position, (x, τ), and then further advective-diffused to (x2, t2), with integration over all possible
intermediate positions x. The intermediate sampling can occur at an arbitrary intermediate
time τ , so long as t1 < τ < t2. The composition property (69.152) allows us to conceive of a
long-time interval Green’s function as the composition of an arbitrary number of shorter time
interval Green’s functions.

69.9.7 Integral expression for the tracer concentration

We are now ready to express the passive tracer concentration, C, as a suite of integrals involving
the Green’s function and the known boundary and initial conditions as well as the known source
function. The process for deriving this expression is identical to that used in Section 69.9.5 for
reciprocity, with the following steps offered for completeness.

Derivation setup

The initial-boundary value problem for the passive tracer is given by

∂t(ρC) +∇ · (ρv†C − ρK · ∇C) = ρΛ x ∈ R, t ≥ tinit (69.153a)

ρC = ρ I x ∈ R, t = tinit (69.153b)

ρC = ρ σ x ∈ ∂R, t ≥ tinit (69.153c)

where we only consider the Dirichlet boundary condition to ensure a closed reciprocity relation in
the presence of surface mass fluxes (Section 69.9.5). The corresponding adjoint Green’s function
satisfies

−∂t[ρG‡(x, t|x0, t0)] +∇x · [−ρv†G‡(x, t|x0, t0)− ρK · ∇xG
‡(x, t|x0, t0)] = δ(x− x0) δ(t− t0)

(69.154a)

G‡(x, t > t0|x0, t0) = 0 (69.154b)

G‡(x ∈ ∂R, t|x0, t0) = 0, (69.154c)

with the reciprocity condition (69.145) holding since we chose Dirichlet boundary conditions. Mul-
tiplying the adjoint Green’s function equation (69.154a) by C(x, t) and performing manipulations
just like those for reciprocity leads to

− ∂t(ρC G‡) +∇x ·
[
G‡ ρK · ∇C − C ρK(x, t) · ∇xG

‡ − C ρv†G‡
]
+G‡ ρΛ
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= C(x, t) δ(x− x0) δ(t− t0). (69.155)

With the homogeneous Dirichlet conditions satisfied by G‡ on the spatial boundaries, a space
and time integration over (x, t) leads to

C(x0, t0) =

ˆ
R

G‡(x, tinit|x0, t0) ρ(x, tinit) I(x) dV

+

ˆ t0

tinit

[ˆ
R

G‡(x, t|x0, t0) ρ(x, t) Λ(x, t) dV

]
dt

−
ˆ t0

tinit

[˛
∂R
σ(x, t) ρ(x, t)K(x, t) · ∇xG

‡(x, t|x0, t0) · n̂x dS

]
dt. (69.156)

Use of the reciprocity relation (69.145) allows us to write this equation in terms of the Green’s
function rather than the adjoint Green’s function

C(x0, t0) =

ˆ
R

G(x0, t0|x, tinit) ρ(x, tinit) I(x) dV

+

ˆ t0

tinit

[ˆ
R

G(x0, t0|x, t) ρ(x, t) Λ(x, t) dV
]
dt

−
ˆ t0

tinit

[˛
∂R
σ(x, t) ρ(x, t)K(x, t) · ∇xG(x0, t0|x, t) · n̂x dS

]
dt. (69.157)

Finally, swapping labels (x0, t0)↔ (x, t) renders

C(x, t) =

ˆ
R

G(x, t|x0, tinit) ρ(x0, tinit) I(x0) dV0

+

ˆ t

tinit

[ˆ
R

G(x, t|x0, t0) ρ(x0, t0) Λ(x0, t0) dV0

]
dt0

−
ˆ t

tinit

[˛
∂R
σ(x0, t0) ρ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0. (69.158)

This solution manifests causality since the tracer concentration at time t is a function only of
processes occuring from tinit up to time t.

69.9.8 Properties of the tracer concentration
The integral solution (69.158) is of the same form as equation (9.176) for the diffusion equation.
Properties of this solution, and corresponding properties of the Green’s function, follow from
those satisfied by the diffusion equation as detailed in Section 9.5. We here summarize these
properties for completeness.

The role of advection and diffusion at boundaries

Explicit contributions from the advective flux are absent from the solution (69.158). Namely,
there are no advective flux contributions at the surface boundary due to the homogeneous
Dirichlet boundary conditions imposed on the Green’s function. For the ocean bottom, material
and rigid no-flux conditions mean that v · n̂ = 0 at the bottom. The presence of advection arises
only through its effect on the Green’s function, which is affected by both advection and diffusion.

Furthermore, notice how in the absence of diffusion (i.e., K = 0) the Dirichlet boundary
data is unable to penetrate into the ocean interior since the surface boundary integral vanishes
from equation (69.158). In effect, the surface boundary becomes a material surface when there
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is no diffusion. That is, diffusive mixing is needed for boundary data to move into the interior.
This role for diffusion was also identified when studying the surface flux condition for salt and
freshwater in Section 72.5 (see also Nurser and Griffies (2019)).

Initial conditions

When sampling the tracer concentration at the initial time, t→ tinit, all the time integrals vanish
from the solution (69.158), thus leaving

lim
t→tinit

C(x, t) = lim
t→tinit

ˆ
R

G(x, t|x0, tinit) ρ(x0, tinit) I(x0) dV0. (69.159)

Self-consistency implies that the Green’s function satisfies

lim
t→tinit

G(x, t|x0, tinit) ρ(x0, tinit) = δ(x− x0) with x,x0 ∈ R, (69.160)

so that

lim
t→tinit

ˆ
R

ρ(x, tinit)G(x, t|x0, tinit) I(x0) dV0 =

ˆ
R

δ(x− x0) I(x0) dV0 = I(x). (69.161)

Dirichlet boundary conditions

Evaluating the Dirichlet solution (69.158) on a spatial boundary, x ∈ ∂R, eliminates both
the volume integrals given that the Green’s function satisfies homogeneous Dirichlet boundary
conditions. The tracer concentration (69.158) thus takes the form

C(x, t) = −
ˆ t

tinit

[˛
∂R
σ(x0, t0) ρ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0

with x ∈ ∂R. (69.162)

Self-consistency with the Dirichlet boundary condition (69.126c) implies that the Green’s function,
when both spatial points are evaluated on the boundary, satisfies

ρ(x0, t0)K(x0, t0) ·∇x0G(x, t|x0, t0) ·n̂x0 = −δ(t−t0) δ(2)(x−x0) with x,x0 ∈ ∂R, (69.163)

so that

C(x, t) =

ˆ t

tinit

[˛
∂R
σ(x0, t0) δ(t− t0) δ(2)(x− x0)dS0

]
dt0 = σ(x, t) with x ∈ ∂R. (69.164)

69.9.9 Boundary propagator

Defining the boundary propagator

As for the diffusion equation in Section 9.5.13, we here introduce the boundary propagator for
the advection-diffusion equation with Dirichlet boundary conditions. For this purpose, consider
the special case of a passive tracer with zero interior source and with zero initial condition, thus
satisfying the initial-boundary value problem

∂t(ρC) +∇ · (ρv†C − ρK · ∇C) = 0 x ∈ R, t ≥ tinit (69.165a)

ρC = 0 x ∈ R, t = tinit (69.165b)

ρC = ρ σ x ∈ ∂R, t ≥ tinit, (69.165c)
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which leads to the simplification of the Green’s function solution (69.158)

C(x, t) = −
ˆ t

tinit

[˛
∂R
σ(x0, t0) ρ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 dS0

]
dt0. (69.166)

The tracer concentration at a point in space-time is determined by the history of the advection
and diffusion that transfers boundary information to this point. To manifest this cause-effect
relation, it is useful to define the boundary propagator just as for the diffusion equation

Gbp(x, t|x0, t0) ≡ −ρ(x0, t0)K(x0, t0) · ∇x0G(x, t|x0, t0) · n̂x0 with x0 ∈ ∂R, (69.167)

with Gbp having dimensions L−2 T−1. The boundary propagator thus brings the tracer concen-
tration (69.166) into the rather tidy form

C(x, t) =

ˆ t

tinit

[˛
∂R
σ(x0, t0)G

bp(x, t|x0, t0) dS0

]
dt0. (69.168)

Inhomogeneous Dirichlet at the surface and homogeneous Neumann at the bottom

In applications of passive tracers to study ocean circulation, it is common to apply inhomogeneous
Dirichlet boundary conditions just at the ocean surface, and homogeneous Neumann boundary
conditions (no-flux) at the ocean bottom

∂t(ρC) +∇ · (ρv†C − ρK · ∇C) = 0 x ∈ R, t ≥ tinit (69.169a)

C = 0 x ∈ R, t = tinit (69.169b)

ρC = ρ σ x ∈ ∂Rsurface, t ≥ tinit (69.169c)

n̂x ·K · ∇xC = 0 x ∈ ∂Rbottom, t ≥ tinit. (69.169d)

Note that since n̂ · v = 0 at the solid earth ocean bottom, kinematics imposes no advective flux
through the bottom, n̂ · vC = 0. Since the bottom boundary conditions are homogeneous, the
solution (69.166) also holds for the initial-boundary value problem (69.169a)-(69.169d). The key
distinction, however, is that the Green’s function now satisfies the following boundary value
problem

∂t[ρG(x, t|x0, t0)] +∇x · [ρv†G(x, t|x0, t0)− ρK · ∇xG(x, t|x0, t0)] = δ(x− x0) δ(t− t0) (69.170a)

G(x, t < t0|x0, t0) = 0 (69.170b)

G(x, t|x0, t0) = 0 x ∈ ∂Rsurface (69.170c)

n̂x ·K · ∇xG(x, t|x0, t0) = 0 x ∈ ∂Rbottom. (69.170d)

Boundary value problem for the boundary propagator

Following the more detailed presentation in Section 9.5.13 for the diffusion equation, we are led
to the following boundary value problem satisfied by the boundary propagator

∂t[ρG
bp(x, t|x0, t0)] +∇x · [ρv†Gbp(x, t|x0, t0)− ρK · ∇xG

bp(x, t|x0, t0)] = 0, x ∈ R (69.171a)

Gbp(x, t|x0, t0) = 0, x /∈ ∂R, t ≤ t0 (69.171b)

Gbp(x, t|x0, t0) = δ(t− t0) δ(2)(x− x0), x,x0 ∈ ∂R. (69.171c)

The boundary propagator acts as the mediator between boundary data, σ, and interior points,
with the transfer of information realized through both advection and diffusion. A focus on the
boundary propagator rather than the Green’s function allows us to dispense with the need to
compute the normal gradient of the Green’s function at the boundary, with that calculation
rather awkward in practice. Also recall our discussion in Section 9.7.5, where we argued that the
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boundary propagator can be considered the impulse response function for spatially distributed
sources. Here, the mediation of the Dirac boundary sources is performed by advection plus
diffusion, whereas in Section 9.7 we only considered linear damping and diffusion.

Normalization of the boundary propagator

As seen in Sections 68.3 and 68.4, diffusion acts to smooth all structure in the tracer field. Hence,
if the boundary data is a uniform constant, σ = σconst, then given sufficient time the tracer
concentration will equal to this constant, C = σconst. This steady state result is independent
of details for the velocity field and for the diffusivity tensor, with details of advection and the
diffusivity acting only to modify the time scale for the equilibration. Assuming we wait long
enough, or equivalently that the initial condition occurs infinitely far in the past, then the tracer
concentration solution (69.168) leads to the normalization of the boundary propagator

lim
tinit→−∞

ˆ t

tinit

[˛
∂R
Gbp(x, t|x0, t0) dS0

]
dt0 = 1 for x ∈ R. (69.172)

This normalization holds for all field points, x, within the region. Even though this condition
was derived by assuming the special case of constant boundary data, it holds in general since the
Green’s function, and by extension the boundary propagator, are independent of the boundary
data prescribed for the tracer concentration.

69.9.10 Comments
The Green’s function method is a powerful and elegant means to study passive ocean tracers, with
Haine et al. (2025) reviewing the theory and practice. However, the method is also technically
challenging for realistic applications, in part due to doubling of the space-time dimensions to
hold the Green’s function, G(x, t|x0, t0), in memory. As a result, realistic applications make
approximations to reduce the dimensionality, such as to assume steady state or to focus only
on boundary propagators. Hence, there has yet to be a calculation of the full Green’s function
for a realistic ocean, with that calculation awaiting bigger computers and/or novel methods to
side-step the nontrivial memory requirements.

69.10 Exercises
exercise 69.1: One-dimensional advection
Consider the advection equation in one space dimension without boundaries

(∂t + u ∂x)C = 0 (69.173a)

C(x, z, t = 0) = C0 cos(k x) (69.173b)

u(z, t) = α z cos(ω t). (69.173c)

The specified zonal velocity is non-divergent, oscillatory in time, and vertically sheared

∂zu = α cos(ω t), (69.174)

with ω the angular frequency of the temporal oscillations. What is the tracer concentration at
times t > 0? Hint: make use of the exact solution given by equation (69.5).
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exercise 69.2: Skew flux for ocean mesoscale eddies
Consider a middle-latitude mesoscale ocean eddy respecting geostrophic balance (see Section
31.4) on an f -plane (constant Coriolis parameter) and incompressibility. In this case, the
horizontal eddy-induced velocity at the ocean surface is non-divergent

u∗ = ∇× ẑ ψ. (69.175)

In this equation, the geostrophic streamfunction is given by

ψ = −ẑ g η/f, (69.176)

with f the Coriolis parameter, g the gravitational acceleration, and η the sea level undulation
associated with the eddy. Since the fluid is incompressible, the mass transport equals to the
volume transport times a constant reference density, ρo.

(a) Determine the skew diffusion tensor (69.30).

(b) Determine the skew tracer flux (69.43a).

exercise 69.3: Integration between two closed tracer contours
This exercise introduces some ideas of use for determining processes affecting the transport of
matter across a tracer contour. Note that in general, the tracer concentration is a function of
time. However, the present suite of questions concerns the instantaneous geometry of the tracer
field, so that time dependence is not considered.
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Figure 69.4: Illustrating the area contained between two closed tracer contours, C0 ≤ C(x, y, t) ≤ C1. Exercise
69.3 develops some mathematical expressions for integration within this area, with the resulting expressions of use
for the analyses of tracer transport.

(a) Consider a closed two-dimensional region bounded by two contours of tracer concentration,
C0 ≤ C(x, y, t) ≤ C1, such as shown in Figure 69.4. Derive the following expression for
the area enclosed by the two contours

A =

ˆ C1

C0

dC

‰
dl

|∇C| . (69.177)

In this expression, dl is the line element for a path taken in a counter-clockwise direction
along a contour of constant C. We also assume the tracer concentration is not uniform in
the region of interest so that ∇C ̸= 0.

(b) As a corollary, show that for

A(C) =

ˆ C

C0

dC ′
‰

dl

|∇C ′| (69.178)

we have the identity
∂A(C)

∂C
=

‰
dl

|∇C| . (69.179)
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In words, this result means that the area between two tracer contours has a partial
derivative, with respect to the tracer contour, equal to the line integral on the right hand
side. The area per C is smaller in regions where the tracer gradient is larger; i.e., there is
less area “concentration” in regions of strong tracer gradient.

(c) Use the above two results to prove the following form of the Fundamental Theorem of
Calculus

∂

∂C

[ˆ
Φ(x) dA

]
=

∂

∂C

[ˆ C

C0

dC ′
‰

Φdl

|∇C ′|

]
=

‰
Φdl

|∇C| , (69.180)

with Φ an arbitrary function. This is a remarkable identity with many useful applications
such as those discussed in Marshall et al. (2006).

exercise 69.4: Evolution of tracer center of mass in a static domain
The exercise introduces us to how the tracer center of mass evolves within a Boussinesq ocean.
We define the tracer center of mass as

⟨x⟩C =

´
xC dV´
C dV

, (69.181)

with C the tracer concentration, x the coordinate of a point in the fluid, and integration is over
the full fluid domain. For example, with a spherically symmetric tracer cloud, the center of
mass position is at the sphere’s center. The center of mass position is not necessarily where the
largest tracer concentration sits, in the same way that the center of mass of a massive object is
not necessarily where the object is most dense. For example, a hollow spherical shell has its
center of mass at the center of the sphere, even though there is no mass there.

For this exercise, assume the fluid is within a domain whose static boundaries are either
material (no normal component to the boundary flux) or periodic. Hence, the total fluid volume
and total tracer content remain constant

V =

ˆ
dV and C =

ˆ
C dV. (69.182)

Furthermore, when computing the time derivative acting on the integral, make use of the
kinematic results from Section 20.2.3, in which for any integrand φ

d

dt

ˆ
φdV =

ˆ
∂tφdV, (69.183)

which follows since the region boundaries are assumed to be static. Equivalently, since the
region under consideration is material (no matter crosses the boundaries), we can make use of
Reynold’s transport theorem from Section 20.2.4 to write

d

dt

ˆ
φdV =

ˆ
Dφ

Dt
dV. (69.184)

(a) Consider a tracer concentration whose tendency at a point in space is affected only by
advection

DC

Dt
= 0 =⇒ ∂tC +∇ · (vC) = 0, (69.185)

with v a non-divergent velocity, ∇ · v = 0. Show that the tracer center of mass position
evolves according to the tracer center of mass velocity

d⟨x⟩C
dt

= ⟨v⟩C , (69.186)
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where the tracer center of mass velocity is given by

⟨v⟩C =

´
vC dV´
C dV

=
1

C

ˆ
vC dV. (69.187)

(b) Consider a tracer concentration whose tendency at a point in space affected only by
diffusion

∂tC = ∇ · (K · ∇C) , (69.188)

where K = K(x, t) > 0 is a kinematic diffusivity (physical dimensions of squared length
per time), and which is assumed to vanish at the domain boundaries. Show that the tracer
center of mass drifts up the diffusivity gradient

d⟨x⟩C
dt

= ⟨∇K⟩C . (69.189)

Hint: use the product rule and drop boundary terms.

(c) Consider an initial tracer concentration that is a function only of latitude,

C(x, y, z, t = 0) = C0(y), (69.190)

and assume a smooth spherical domain. Assume the diffusivity, K, is a turbulent diffusivity
proportional to the eddy kinetic energy of the flow, so that large diffusivity occurs in
regions with large eddy activity; i.e., there is a lot of turbulent mixing where turbulence is
active. Introduce an stirring from the eddies that breaks the zonal symmetry. Qualitatively
discuss the process whereby this turbulent diffusive mixing causes the tracer center of mass
to drift towards the turbulent region.

(d) Generalize the result from part (b) to the case of the diffusion equation

∂tC = ∇ · (K · ∇C) = ∂p(K
pq ∂qC), (69.191)

where K is a second order symmetric diffusion tensor.

exercise 69.5: Evolution of tracer center of mass in moving region
Consider a finite region of fluid with fixed mass that is moving with the fluid velocity field, R(v).
The fluid is assumed to have a tracer whose concentration is affected by an irreversible process
so that

DC

Dt
= Ċ ̸= 0. (69.192)

For example, Ċ may represent a diffusive process, in which case the tracer content within the
region changes due to diffusion of tracer across the region boundary.

Determine the evolution equation for the tracer center of mass position

⟨x⟩C =

´
R(v) xC ρ dV´
R(v)C ρ dV

. (69.193)

Hint: the region under consideration is moving with the fluid and has constant mass. Although
the region boundaries are not material, we can make use of Reynold’s transport theorem from
Section 20.2.6 since the region has a constant mass. Consequently, we can set

d

dt

ˆ
R(v)

ψ ρdV =

ˆ
R(v)

Dψ

Dt
ρ dV. (69.194)
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exercise 69.6: Steady two dimensional advection-diffusion
Consider the steady state advection-diffusion equation for a scalar field, Q, in a two dimensional
non-divergent flow

∇ · (uQ) = ∇ · (K · ∇Q) with u = ẑ ×∇ψ, (69.195)

and K a diffusion tensor. Show that when evaluated along a contour of constant Q we can write

−(n̂ · ∇Q) (t̂ · ∇ψ) = ∇ · (K · ∇Q) (69.196)

where t̂ is the unit tangent along the contour and n̂ is a unit vector pointing to the left of the
tangent (e.g., see Figure 5.6). Assuming n̂ · ∇Q ̸= 0, this equation takes on the form

t̂ · ∇ψ = −∇ · (K · ∇Q)

(n̂ · ∇Q)
, (69.197)

which provides a means to integrate the streamfunction, ψ, along contours of constant Q.

If Q is the quasi-geostrophic potential vorticity (Chapter 45), then contours of constant Q
are known as geostrophic contours. Within this context, Rhines and Holland (1979) made use
of the identity (69.197) in their study of ocean circulation in the presence of eddy diffusion of
potential vorticity.

Hint: write the advection operator as a Jacobian and make use of Exercise 5.1.

exercise 69.7: Distribution of one tracer with respect to another
Consider two tracers, ψ and B, that satisfy the advection-diffusion equation with the same
diffusion tensor

ρ
Dψ

Dt
= ∇ · (ρK · ∇ψ) (69.198a)

ρ
DB

Dt
= ∇ · (ρK · ∇B). (69.198b)

Having access to two tracers allows us to diagnose certain properties of the flow, both in
geographical/depth space as well as in the space defined by the tracers. We here study how the
tracer B is distributed within layers defined by ψ, and how that distribution evolves in time.
These considerations are partly motivated by the work of Ruan and Ferrari (2021), who assumed
B to be buoyancy (with a linear equation of state). Whereas Ruan and Ferrari (2021) assumed
a Boussinesq ocean with a constant scalar diffusivity, here we generalize to the non-Boussinesq
case with a flow-dependent diffusion tensor, K, which is a symmetric and positive-definite second
order tensor.

(a) Derive the following identity

ρ
D(ψBΓ)

Dt
= ∇·(BΓ ρK ·∇ψ−ψ ρK ·∇BΓ)+Γψ∇BΓ−1 ·ρK ·∇B+2ΓψBΓ−1 ρ Ḃ, (69.199)

where BΓ is B raised to the integer power Γ, and where we made use of the shorthand

Ḃ =
DB

Dt
. (69.200)

Show all relevant steps in the derivation of equation (69.199). Hint: as an optional warm-up,
derive the special case with Γ = 1

ρ
D(ψB)

Dt
= ∇ · (B ρK · ∇ψ − ψ ρK · ∇B) + 2ψ ρ Ḃ (69.201)
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and then the case with Γ = 2

ρ
D(ψB2)

Dt
= ∇ · (B2 ρK · ∇ψ − ψ ρK · ∇B2) + 2ψ∇B · ρK · ∇B + 4ψB ρ Ḃ. (69.202)

(b) Introduce the ψ-weighted mean of an arbitrary field, Γ, according to

Γ ≡
´
R
Γψ ρ dV´

R
ψ ρdV

. (69.203)

Furthermore, assume all boundaries to the domain are material, which means that the
domain matter content is fixed in time

d

dt

ˆ
R

ρdV = 0 and
d

dt

ˆ
R

ψ ρdV = 0 and
d

dt

ˆ
R

B ρdV = 0. (69.204)

Make use of equation (69.201) to derive the following identity

dB

dt
= 2 Ḃ, (69.205)

and offer some discussion.

exercise 69.8: Evolution of tracer moments
In Section 68.4.3 we studied how tracer diffusion affects tracer moments. Here we consider the
combined effects of advection and diffusion. We assume the boundaries are insulating (i.e., zero
normal boundary flux of tracer) so that J · n̂ = 0 with n̂ the outward normal at the boundary.
We also assume there is no matter crossing the boundary, so that (v − v(b)) · n̂ = 0, where v(b)

is the velocity of a point stuck to the boundary. Correspondingly, the total fluid mass in the
domain remains fixed

M =

ˆ
ρ dV with

dM

dt
= 0, (69.206)

so that the domain is material since we assume no exchange of mass or tracer across the
boundaries. These assumptions allow us to focus on the effects from tracer diffusion and
advection within the domain interior.

(a) domain averaged tracer concentration: The domain averaged tracer concentration
is defined by

C =

´
R
C ρ dV

M
. (69.207)

Show that its time derivative vanishes.

(b) tracer variance within the domain: The variance of the tracer concentration is
defined by

var(C) ≡
´
R
(C − C)2 ρ dV

M
= C2 − C2 ≥ 0. (69.208)

The tracer variance measures the deviation of the tracer concentration relative to the
domain averaged concentration. Since the domain average tracer concentration remains
fixed in time, the time change of the variance is given by

d[var(C)]

dt
=

dC2

dt
. (69.209)

Thus, it is common to refer to C2 as the tracer variance, though strictly speaking only
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time derivatives of C2 and var(C) are equal as per equation (69.209). Show that

d[var(C)]

dt
=

dC2

dt
≤ 0, (69.210)

with this inequality determined solely by diffusion, whereas advection has no impact on
the variance.

(c) diffusion of arbitrary tracer moments: Prove that

dCΓ

dt
= Γ (Γ− 1)

ˆ
CΓ−2∇C · J dV ≤ 0. (69.211)

For Γ = 0 we have an expression of mass conservation for the domain, whereas Γ = 1 is
an expression of tracer conservation. The case of Γ = 2 yields the tracer variance result
(69.210).

Hint: This exercise reveals that tracer moments evolve solely through the effects of diffusion,
whereas advection does not touch the tracer moments. The goal of this exercise is to emphasize
these results by working through the details, which are largely identical to those presented in
Section 68.4.3 when studying diffusion alone.
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Chapter 70

EDDY AND MEAN TRACER KINEMATICS

Geophysical fluid flows exhibit multiple scales in both space and time. In the analysis of these
flows, it is useful to seek a description that decomposes fluid properties into a mean component
and a fluctuation relative to the mean. We perform an eddy-mean decomposition when interest
concerns the mean field and impacts on the mean by the fluctuating instantaneous flow, with
such impacts often termed rectified effects. The mean field can be defined in many fashions
with subjective choices based on particulars of the flow and the analysis goals. The definition
for the mean in turn affects what we refer to as the fluctuation. Quite generally, fluctuations
take the form of transient linear waves, nonlinear and/or breaking waves, coherent structures,
and/or a chaotic/turbulent soup of eddying features. In this chapter we develop a kinematic
framework originally motivated by the analysis of scalar transport induced by small amplitude
wave-like eddying features. This framework can also be used for turbulent processes and their
parameterizations (e.g., Chapter 71).

We consider two kinematic methods to decompose the flow into a mean and eddy, with
elements of these methods pervasive in the geophysical fluids literature. The first method is
the generalized Lagrangian mean (GLM), which is a hybrid Eulerian/Lagrangian method that
introduces an Eulerian disturbance field to measure the position of a fluid particle relative to its
mean position (Andrews and McIntyre, 1978a,b; Bühler , 2014a; Gilbert and Vanneste, 2025).
We only access a small portion of the GLM framework, used here to help unpack the kinematics
of eddy tracer fluxes following from Middleton and Loder (1989). A more thorough treatment
that considers the momentum and vorticity equations is outside the scope for this chapter.

The second kinematic method makes use of isopycnal vertical coordinates. The isopycnal
approach is quasi-Lagrangian since it fixes the horizontal position (Eulerian) yet allows the
vertical to follow an adiabatic fluid parcel (Lagrangian). Furthermore, we show that the isopycnal
description is a special case of the GLM, where the GLM displacement field is restricted to the
vertical direction. The isopycnal approach is frequently used to describe how ocean mesoscale
eddies affect stratification and tracer transport in stably stratified flows. Our presentation
follows the methods developed by McDougall and McIntosh (2001) and summarized in Chapter
9 of Griffies (2004). A directly related approach is considered in Chapter 67 for the stacked
shallow water equations, in which we develop the thickness weighted tracer, momentum, and
vorticity budgets (see also Young (2012) and Jansen et al. (2024)).

1959



chapter guide

This chapter relies on an understanding of the tracer equation as derived in Section 20.1
and the maths and physics of the advection-diffusion equation explored in Chapter 69. We
focus on non-divergent flows with kinematics presented in Chapter 21 and as applicable
to the Boussinesq ocean studied in Chapter 29. Generalizations to non-Boussinesq flows
are straightforward, with examples provided by Griffies and Greatbatch (2012). The
kinematics of isopycnal fluid layers in a perfect fluid (Sections 70.4 and 70.5) are posed
using the isopycnal vertical coordinates detailed in Chapter 63 and further pursued in
Chapter 65. This discussion is served by experience with the shallow water thickness
weighted averaging from Chapter 67.

Throughout this chapter we assume Cartesian tensors in the horizontal directions, which
simplifies the necessary mathematical tools. This assumption is sufficient for the isopycnal
averaging in Sections 70.4 and 70.5. Indeed, this assumption is sufficient for any generalized
vertical coordinate discussed in Part XII of this book. However, to extend the full GLM
theory to arbitrary horizontal coordinates requires more sophisticated mathematical tools,
such as those reviewed by Gilbert and Vanneste (2025).
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70.5.5 Summary of the tracer parameterization problem . . . . . . . . . 1985
70.5.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1986

70.1 Reynolds decomposition
At any point in space and time, we can perform an Eulerian average operation to decompose a
field into a mean, Ψ(x, t), and a departure from the mean, Ψ′(x, t)

Ψ(x, t) = Ψ(x, t) + Ψ′(x, t). (70.1)

The departure from the mean is generally termed the “eddy” or the “fluctuation”. The following
offers a non-exhaustive list of mean operators computed at a fixed point in space (i.e., Eulerian
mean operators).

• time mean: If the mean operator is based on a long time average, then the mean fields
are assumed to be time independent: Ψ(x, t) = Ψ(x). This is a common operator when
interest is focused on the long term mean fluid properties. Additionally, it is often the
mean operator of choice with realistic climate modeling.

• phase average: Rather than a time mean, we may choose to average over the phase (or
period) of a wave. This choice is particularly relevant when the fluctuating field involves
quasi-linear waves such as studied in Part X of this book.

• zonal mean: If the mean operator is based on an average along a particular coordinate
direction (e.g., zonal average), then the mean field is independent of the “averaged out”
direction.

• coarse graining: If the mean operator is based on an average over a spatial and temporal
region, such as the mesoscale, then such coarse-graining averages out smaller scales. A
systematic means for doing so is detailed in Buzzicotti et al. (2023).

• ensemble average: Rather than a space or time mean operation, we may consider the
mean or average computed over an ensemble of many flow realizations. For many purposes
this is the most analytically convenient mean operator, though it is often difficult to realize
in practice.

If a mean operator satisfies the following properties then it is said to provide a Reynolds
decomposition

Ψ′ = 0 (70.2a)

Ψ = Ψ (70.2b)

AΨ = AΨ for A a constant. (70.2c)

Equation (70.2a) says that the mean of an eddy fluctuation vanishes. The equality (70.2b) says
that the mean of a mean field returns the mean field. The final equality, (70.2c), says that a
constant commutes with the mean operator. Notably, some or all of these properties are not
satisfied by certain operators used for eddy-mean decompositions. However, in the following we
assume they are satisfied.

A Reynolds average acting on a linear equation means that both the mean and fluctuating
quantity satisfy the linear equation. In particular, consider the non-divergence condition for a
Boussinesq ocean flow, ∇ · v = 0. Taking the mean of this equation renders

∇ · v = 0 =⇒ ∇ · v = 0, (70.3)
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so that the mean velocity is non-divergent. So since both the full velocity and mean velocity are
non-divergent, then so is the fluctuating velocity

∇ · (v + v′) = ∇ · v′ = 0. (70.4)

70.2 GLM kinematics for scalar fields

We here consider basic elements of generalized Lagrangian mean (GLM) theory. GLM is a
hybrid between Lagrangian and Eulerian descriptions of fluid motions, so that it might be more
appropriate to refer to it as the “hybrid Lagrangian-Eulerian mean theory”. The GLM and the
Eulerian mean for a fluid property are generally distinct, with their difference referred to as the
Stokes mean

generalized Lagrangian mean = Eulerian mean + Stokes mean. (70.5)

This name is motivated from the Stokes drift introduced in Section 52.11, which is the difference
between the Lagrangian and Eulerian means. Note that the literature sometimes refers to the
Stokes mean as the “Stokes correction”. We avoid that terminology in order to avoid the spurious
notion that one type of mean operator is more correct than the other. Instead, a mean operator
is subjectively chosen based on its suitability to a particular question.

70.2.1 Motivation

Consider a materially constant scalar field

DΨ

Dt
=
∂Ψ

∂t
+ v · ∇Ψ = 0. (70.6)

The scalar, Ψ, is constant following fluid particles whose trajectories are integral curves of the
fluid velocity, v. The goal is to develop a mean operator that averages over fluctuations in the
trajectories while preserving the material constancy nature of the instantaneous equation. This
goal is not trivial.

Eulerian mean

An Eulerian mean operator considered in Section 70.1 leads to the mean field equation, here
written either in advective form or flux form

∂Ψ

∂t
+ v · ∇Ψ = −v′ · ∇Ψ′ advective form (70.7a)

∂Ψ

∂t
+∇ · (vΨ) = −∇ · (v′Ψ′) flux form. (70.7b)

The equations are equivalent since both the Eulerian mean velocity and the fluctuating velocity
are non-divergent, as shown in Section 70.1. Whereas Ψ is materially constant when following the
instantaneous flow field, v, the Eulerian mean, Ψ, is not materially constant when following the
Eulerian mean velocity, v, due to the source term, −v′ · ∇Ψ′, provided by the eddy correlation.
Furthermore, when given information only about the mean fields, then we must develop a closure
for the unresolved correlation. Accurate and physically motivatived closures are not simple to
derive.
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Lagrangian mean

An alternative approach is to remain in the Lagrangian frame, where we work with the scalar
property evaluated along a fluid particle trajectory as in Section 18.3.31

ΨL(a, T ) = property Ψ following the fluid particle trajectory X(a, T ), (70.8)

where a is the material label coordinate, and T is the time measured in the co-moving fluid
particle frame. Since we are not considering relativistic motions, T = t, and yet it is useful to
make the distinction for purposes of time derivatives. As such, the material constancy equation
(70.6) becomes

∂ΨL(a, T )

∂T
= 0. (70.9)

Consider a mean operator computed as an average over a region of material space. For example,
if a is the initial fluid particle position, then an average coordinate, a, and corresponding
averaged field, Ψ

L
, render a coarse-graining over the initial positions. Since each member of the

Lagrangian average satisfies equation (70.9), so too does the Lagrangian mean

∂Ψ
L
(a, T )

∂T
= 0. (70.10)

Although this equation retains the simplicity of the unaveraged version, it still requires information
about trajectories. Trajectories are computed based on the flow map (i.e., the velocity field),
with trajectories not always convenient when describing chaotic or turbulent fluids. GLM offers
an alternative that aims to meld elements of the Eulerian (e.g., computability) to the Lagrangian
(e.g., material constancy).

Generalized Lagrangian mean

The GLM approach produces a field that remains constant following the GLM velocity

∂Ψ
(GLM)

∂t
+ v(GLM) · ∇Ψ(GLM)

= 0. (70.11)

Hence, GLM maintains the desirable properties of the Lagrangian mean. However, it does so
using Eulerian methods that prove to be more practical for many cases. Notably, even if the
Eulerian velocity is non-divergent, as for a Boussinesq ocean, the GLM velocity is divergent.
Although we do not derive the GLM equation (70.11), in the following we motivate the GLM
average from the analysis of small amplitude eddying motions.

70.2.2 Length scales and the small parameter

We consider two length scales associated with an eddy or wave fluctuation. One characterizes
the size of the eddy whose length scale we write as λ. If the eddy is a monochromatic wave,
then λ is its wave length. The other length scale characterizes the size of particle displacements,
|ξ|. In the following, we assume the particle displacements are small relative to λ

|ξ| ≪ λ small amplitude waves. (70.12)

1We here use the notation X(a, T ) for the trajectory of fluid particles, whereas in Chapter 18 we generally
used the motion field, φ(a, T ). As discussed in Section 18.2.1, the two are the same when fixing a particular
particle label, a.
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We thus introduce the small non-dimensional ratio of length scales for the following analysis

α = |ξ|/λ≪ 1. (70.13)

70.2.3 Decomposing the particle trajectory

Recall the discussion of fluid particle trajectories given in Chapter 17. In this description, the
trajectory of a particle is determined by integrating the relation between the particle trajectory
and the particle velocity[

∂X(a, T )

∂T

]
a

= v[X(a, T )] =⇒X(a, T ) =X(a, 0) +

ˆ T

0
v[X(a, T ′)] dT ′, (70.14)

so that the trajectory measures the position of a particle relative to a chosen origin. The material
coordinate, a, distinguishes the continuum of fluid particles, thus making the trajectory a field
in material space-time.

The GLM develops a hybrid Eulerian-Lagrangian method and it is motivated by linear or
quasi-linear disturbances. Keeping this motivation in mind, we consider each point in space, x,
to be the mean position of a unique fluid particle. In turn, we introduce an Eulerian field, ξ(x, t),
that measures the position of a fluid particle relative to its mean position.2 Correspondingly,
the Eulerian mean of the disturbance field vanishes

ξ(x, t) = 0. (70.15)

Note that the Eulerian mean operator can be any of the operators (or others) satisfying the
Reynold’s decomposition property discussed in Section 70.1

Specification of ξ(x, t) for large amplitude disturbances (i.e., nonlinear waves) requires the
full machinery of GLM, which is beyond our scope. Instead, to expose the rudiments we here
assume small amplitude disturbances such as shown in Figure 70.1, for which the particle
displacement amplitude is much smaller than the wavelength of the disturbance as given by the
inequality (70.13). In this case the disturbance field is constructed by time integration of the
eddy velocity field [

∂ξ(x, t)

∂t

]
x

= v′(x, t) =⇒ ξ(x, t) =

ˆ t

v′(x, t′) dt′. (70.16)

With this specification for the disturbance field, we see that if the eddy velocity is non-divergent
then so is the disturbance field

∇ · v′ = 0 =⇒ ∇ · ξ = 0. (70.17)

The definition (70.16) for the disturbance field, ξ(x, t), is directly analogous to the particle
trajectory position, X(a, T ), given by equation (70.14). However, there are important distinc-
tions. Namely, the disturbance, ξ(x, t), is an Eulerian field that measures the position of a fluid
particle relative to its mean position, with each Eulerian position, x, corresponding to the mean
position for a distinct fluid particle. In contrast, the particle position, X(a, T ), is a Lagrangian
field that is attached to each fluid particle and measures the position of that particle relative to
a chosen origin.

2We introduced a one-dimensional disturbance field in Section 51.3 when taking a Lagrangian perspective to
derive the equations for acoustic waves. Hence, the GLM disturbance field, ξ(x, t), provides a three-dimensional
generalization of that approach.
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Figure 70.1: Illustrating the displacement of fluid particles at two selective vertical positions due to a linear
transverse wave disturbance. The particle positions, x(ξ)(x, t) = x + ξ(x, t), here have a disturbance field of
the form ξ(x, t) = ẑ ξ0(x, z) sin(k x − ω t), with ξ0(x, z) a spatially dependent wave amplitude, λ = 2π/k the
wavelength, k = x̂ k the wavevector, ω = c k the angular frequency, and c the phase speed. Small amplitude
waves satisfy |ξ0| ≪ λ. Note that this wave does not produce a Stokes drift since particle displacements are
perpendicular to the wavevector: ξ · k = 0 (see Section 70.2.5), whereas Stokes drift requires particle motion to
have a nonzero component in the wave direction (see Figures 52.4 and 52.9). Even so, it does generally produced
a Stokes mean for an arbitrary field Ψ (Section 70.2.4).

70.2.4 GLM and the Stokes mean
The mean of a fluid property, Ψ, is a function of how the property is sampled when computing
the mean. For example, the mean sampled on a fluctuating fluid particle differs from the mean
sampled at the particle’s mean position. Mathematically, this distinction implies that

Ψ(x+ ξ(x, t))︸ ︷︷ ︸
GLM

̸= Ψ(x, t)︸ ︷︷ ︸
Eulerian

, (70.18)

where it is common to make use of the shorthand

x(ξ)(x, t) ≡ x+ ξ(x, t) (70.19)

for the instantaneous position of the fluid particle. The average,

Ψ
(GLM)

(x, t) ≡ Ψ(x+ ξ(x, t), t) = Ψ(x(ξ), t), (70.20)

defines the generalized Lagrangian mean for the fluid property, Ψ. That is, the GLM is computed
by evaluating the property, Ψ, at the position of a fluid particle, x(ξ)(x, t) = x+ ξ(x, t), and
then performing an Eulerian average. We emphasize that x is both an arbitrary Eulerian field
point and the mean position of a fluid particle, x(ξ) = x. In contrast, the Eulerian mean is
determined by evaluating Ψ at a fixed Eulerian point in space

Ψ
(E)

(x, t) ≡ Ψ(x, t), (70.21)

where there is no consideration of instantaneous particle positions. Given this identity, we
sometimes drop the (E) superscript on the Eulerian mean to reduce clutter.

Following our discussion at the start of Section 70.2, we define the Stokes mean as the
difference between the GLM and Eulerian mean

Ψ
(S)

(x, t) = Ψ
(GLM)

(x, t)−Ψ(x, t). (70.22)

The Stokes mean arises from inhomogenities in Ψ, which in turn lead to differences in its mean
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depending on how that field is sampled, whether sampled on a fluid particle, x(ξ)(x, t), or
sampled at the mean position of the fluid particle, x.

We mathematically expose the origin of the Stokes mean by performing a Taylor series
expansion around the mean particle position

Ψ(x+ ξ, t) = Ψ(x, t) + ξ · ∇Ψ(x, t) +
1

2
ξm ξn∂m∂nΨ(x, t) +O(α3). (70.23)

The non-dimensional ratio, α = |ξ|/λ≪ 1, was introduced in equation (70.13). It measures the
ratio of the amplitude for particle displacements to the wavelength, λ, of fluctuations in the field
Ψ. Taking the mean of equation (70.23) then leads to an expression for the Stokes mean

Ψ
(S)

(x, t) = Ψ
(GLM)

(x, t)−Ψ(x, t) (70.24a)

= ξ · ∇Ψ+
1

2
ξm ξn∂m∂nΨ+O(α3). (70.24b)

= ξ · ∇Ψ′ +
1

2
ξm ξn ∂m∂nΨ+O(α3), (70.24c)

where we introduced the Eulerian fluctuation,

Ψ′(x, t) = Ψ(x, t)−Ψ(x, t), (70.25)

and all terms on the right hand side of equation (70.24c) are evaluated at (x, t). Observe that
the Stokes mean (70.24c) is nonzero only starting at O(α2). When Ψ represents the velocity
field, we refer to the Stokes mean as the Stokes drift (Section 52.11), in which

v(S) = (ξ · ∇)v′ + 1

2
ξm ξn ∂m∂nv +O(α3). (70.26)

70.2.5 An example wave

We exemplify the previous discussion by considering the small amplitude wave

ξ = −ω−1U(x) sin(k · x− ω t) (70.27a)

v′ = ∂tξ = U(x) cos(k · x− ω t) (70.27b)

∇v′p = ∇Up cos(k · x− ω t)− kUp sin(k · x− ω t) (70.27c)

∇ · v′ = (∇ ·U) cos(k · x− ω t)− k ·U sin(k · x− ω t), (70.27d)

where U is the velocity amplitude that is generally a function of space, k is the wavevector, and
2π/ω is the wave period. The wave renders an oscillatory motion to fluid particles, with the
disturbance field specifying the instantaneous position of fluid particles whose mean position is
x. The disturbance field and velocity field both have a zero mean when time integrated over a
wave period

1

2π/ω

ˆ 2π/ω

0
ξ(x, t) dt = 0 (70.28a)

1

2π/ω

ˆ 2π/ω

0
v′(x, t) dt = 0. (70.28b)

To maintain a non-divergent eddy velocity at arbitrary times requires

∇ · v′ = 0 =⇒ ∇ ·U = U · k = 0. (70.29)
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As studied in Part X of this book, U · k = 0 means that the wave is transverse, so that particle
displacements arising from the wave are orthogonal to the wavevector (e.g., Figure 70.1)

Stokes drift

Specializing to the velocity field (70.27b), substituting into the Stokes drift expression (70.26),
and making use of an average over a wave period yields

(ξ · ∇)v′p = UpU · k
2ω

and v = 0. (70.30)

The second equality holds since the velocity at a point arises just from the wave field, which has
a zero Eulerian mean. Hence, to O(α2), the Stokes drift velocity associated with the GLM is
given by

v(S) =
U (U · k)

2ω
+O(α2). (70.31)

The Stokes drift vanishes at this order of accuracy for transverse waves since U · k = 0.

As a check on the formalism, consider a one-dimensional longitudinal wave, in which the
Stokes drift is given by

v(S) =
U2

2 c
+O(α2), (70.32)

where c = ω/k is the wave speed. This result agrees with that derived using Lagrangian
trajectories in Section 52.11 (see Exercise 52.7). Use of the GLM displacement field offers a
somewhat more streamlined method for computing Stokes drift.

Stokes mean for an arbitrary field

The Stokes mean for an arbitrary field is given by

Ψ
(S)

(x, t) = −ω−1U · ∇Ψ′ sin(k · x− ωt) +O(α2) (70.33a)

= −ω−1∇ · (U Ψ′) sin(k · x− ωt) +O(α2), (70.33b)

where the second equality made use of the non-divergent nature of the wave field (70.29). To
second order in wave amplitude, the Stokes mean is determined by the projection of the gradient
of the Eulerian fluctuation, ∇Ψ′, onto the wave amplitude, U . For example, consider a transverse
wave such as that shown in Figure 70.1. Even though the Stokes drift vanishes to order O(α2),

the Stokes mean, Ψ
(S)

(x, t), can be nonzero so long as there is a nonzero vertical gradient in the
Eulerian fluctuation.

70.2.6 GLM with a materially constant scalar

Consider a materially constant scalar field, such as a tracer concentration in the absence of
mixing and sources

DC

Dt
= 0. (70.34)

How the GLM for C is related to the instantaneous C

The GLM for C equals to the value of C on a fluid particle

C(x+ ξ, t) = C
(GLM)

(x, t) = C(x+ ξ, t). (70.35)
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This is a subtle identity that packs in a lot of information. It says that when evaluated at

the mean fluid particle position, x, the GLM tracer concentration, C
(GLM)

(x, t), equals to the
concentration evaluated on a fluid particle, C(x+ ξ, t). One way to understand this identity is
to assume the averaging operator is an ensemble mean, so that the GLM is an ensemble mean
following fluid particles. Since C is constant on fluid particles, each ensemble member has the
same value for C, in which case the GLM for C clearly equals the value of C for each ensemble
member. We make particular use of the identity (70.35) when considering isopycnal kinematics
in Sections 70.4 and 70.5.

Relating the particle disturbance field to Eulerian properties of C

There is a frequently used consequence of the identity (70.35) involving the Eulerian fluctuation

C ′(x, t) = C(x, t)− C(x, t) (70.36)

and the Eulerian mean
C(E)(x, t) = C(x, t). (70.37)

To derive it, recall the Taylor series expansion (70.23) truncated here to first order accuracy

C(x+ ξ, t) = C(x, t) + ξ · ∇C(x, t) +O(α2). (70.38)

Taking the Eulerian mean of both sides renders

C(x+ ξ, t) = C(x, t) +O(α2), (70.39)

which follows since ξp = 0 for each component of the displacement field. The identity (70.39)
says that the GLM equals to the Eulerian mean to order O(α2), which is a result consistent with
the Stokes mean being an order O(α2) quantity as revealed by equation (70.24c). From equation
(70.35) we know that C(x+ ξ, t) = C(x+ ξ, t), so that we can subtract equations (70.38) and
(70.39) to find

C ′(x, t) = −ξ · ∇C(x, t) +O(α2). (70.40)

Hence, to first order accuracy, the Eulerian fluctuation equals to minus the disturbance field
projected onto the gradient of the mean field; i.e., the Eulerian fluctuation in the tracer is first
order in the disturbance. We make use of this result when discussing the kinematics of eddy
tracer fluxes in Section 70.3. Furthermore, for the isopycnal kinematics in Sections 70.4 and
70.5, we focus on vertical particle displacements, ξ = ξ ẑ, in which case the Eulerian fluctuation
is given by

C ′(z, t) = −ξ ∂zC(z, t) +O(α2). (70.41)

70.2.7 Further study

GLM was introduced in the seminal papers by Andrews and McIntyre (1978a,b). These papers
offer a wealth of intellectual rewards after much study. GLM is also detailed in the monograph
on waves and mean flows by Bühler (2014a). Gilbert and Vanneste (2025) provide an elegant
and powerful mathematical framework for GLM that allows for its use for arbitrary manifolds.
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70.3 Kinematics of eddy tracer fluxes
As introduced in Section 70.2.1, consider the Eulerian eddy-mean decomposition for a materially
constant tracer in an non-divergent flow. The advection equation for this tracer is given by

∂tC +∇ · (vC) = 0, (70.42)

and its Eulerian mean is
∂tC +∇ · (vC) = −∇ · (v′C ′). (70.43)

The eddy advective flux, v′C ′, is the product of the eddy velocity and eddy tracer concentration.
Its mean provides the correlation or mean eddy flux, v′C ′. The convergence of this mean eddy
flux provides a source to the advection equation for the Eulerian mean tracer concentration.

In this section we make use of the particle disturbance field of Section 70.2 to unpack the
kinematics of eddy tracer fluxes induced by small amplitude waves. As we see, the particle
disturbance field is a useful conceptual tool to frame the kinematics of tracer eddy fluxes.

70.3.1 Particle displacements and eddy tracer fluxes

Following Section 70.2, we here introduce a particle disturbance vector corresponding to small
amplitude eddy fluctuations

∂tξ(x, t) = v
′(x, t) +O(α2) (70.44a)

ξ = 0. (70.44b)

Correspondingly, each spatial point, x, is the mean position of a fluid particle whose instantaneous
position is x+ ξ(x, t). Following the results from Section 70.2.6, to leading order we can write
the Eulerian fluctuation in terms of the particle displacement (equation (70.40))

C ′(x, t) = −ξ · ∇C(x, t) +O(α2). (70.45)

Notice that if the particle displacement is oriented along a mean tracer iso-surface, then
ξ · ∇C(x, t) = 0 and there is no tracer fluctuation, C ′ = 0, to order O(α2). More general eddy
motions lead to a nonzero tracer fluctuation with the eddy tracer flux taking on the form

v′C ′ = −∂tξ (ξ · ∇)C +O(α2). (70.46)

We unpack this expression for the purpose of characterizing kinematic properties of the eddy
tracer flux.

70.3.2 Decomposing into symmetric and skew symmetric fluxes

From equation (70.46), the m’th component of the eddy tracer flux is given by

v′mC ′ = − [(∂t ξ
m) ξn] ∂nC. (70.47)

To explore the kinematic properties of the tracer flux (70.47), decompose the second order tensor,
(∂t ξ

m) ξn, into its symmetric and anti-symmetric components3

2 (∂t ξ
m) ξn = [(∂t ξ

m) ξn + (∂t ξ
n) ξm] + [(∂t ξ

m) ξn − (∂t ξ
n) ξm] (70.48a)

= ∂t(ξ
m ξn) + [(∂t ξ

m) ξn − (∂t ξ
n) ξm] . (70.48b)

3See Section 18.8 for a similar decomposition of the velocity gradient tensor.
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Introducing the symmetric and anti-symmetric correlation tensors

2Kmn ≡ ∂t (ξm ξn) (70.49a)

2Amn ≡ (∂t ξm) ξn − (∂t ξn) ξm (70.49b)

allows us to write the mean eddy tracer flux

v′mC ′ = −(Kmn +Amn) ∂nC (70.50)

and the mean field tracer equation (70.43)

∂tC +∇ · (vC) = ∇ ·
[
(K +A) · ∇C

]
. (70.51)

The right hand side of this equation equals to the convergence of the symmetric and skew-
symmetric tracer fluxes

∇ ·
[
(K +A) · ∇C

]
= −∇ · (F sym + F skew), (70.52)

where

F sym = −K · ∇C (70.53a)

F skew = −A · ∇C (70.53b)

v′C ′ = F sym + F skew. (70.53c)

70.3.3 The symmetric tracer flux
In terms of particle displacements, the symmetric flux (70.53a) is given by

(F sym)m = −Kmn ∂nC = −1

2
∂t(ξm ξn) ∂nC. (70.54)

The symmetric tensor, K, vanishes when the average is over the period of a periodic wave, in
which the particle displacements undergo reversible periodic excursions (see Section 70.3.9). For
waves that decay in amplitude over the averaging period, particle displacements decrease in
magnitude thus leading to an upgradient symmetric flux. In contrast, particle displacements
increase in magnitude for waves that grow over the averaging period, in which case the flux
is downgradient, just as for diffusion. Furthermore, growing nonlinear waves generally break
and then develop into turbulence, with turbulence leading to further particle separation and
dispersive tracer mixing. Dispersive mixing from turbulent motions is generally parameterized
by downgradient diffusion, and we have more to say about diffusive parameterizations of lateral
dispersion in Section 71.4.

70.3.4 The skew, advective, and rotational tracer fluxes
Following our discussion in Section 69.5, we write the skew flux as

(F skew)m = −Amn ∂nC = −ϵmnpΨp ∂nC = −
(
∇C ×Ψ

)m
, (70.55)

where we introduced the vector streamfunction (dimensions squared length per time)4

Ψ =
1

2
∂tξ × ξ =

1

2
v′ × ξ. (70.56)

4Middleton and Loder (1989) and Garrett (2006) introduce a skew-diffusivity, D, which is opposite in sign to
the vector streamfunction: Ψ = −D.
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The vector streamfunction is half the angular momentum per mass of a fluid particle undergoing
eddying motion, with the angular momentum computed relative to the mean particle position.
The vector streamfunction is nonzero only if the eddy has a preferred sense of rotation, in which
case the wave field is said to be polarized. That is, polarization results if the fluctuating velocity,
v′, is correlated to a fluid particle displacement, ξ, in an orthogonal direction, thus giving rise
to a nonzero angular momentum.

The skew flux can be written

F skew = −∇C ×Ψ (70.57a)

= (∇×Ψ)C −∇× (CΨ) (70.57b)

= UAC −∇× (CΨ) (70.57c)

= F adv − F rot, (70.57d)

so that the skew flux equals to an advective flux minus a rotational flux. We here introduced
the non-divergent velocity

UA = ∇×Ψ (70.58)

and the non-divergent rotational flux

F rot = ∇× (CΨ). (70.59)

Since ∇ · F rot = 0, we see that the divergence of the skew flux equals to the divergence of the
advective flux

∇ · F skew = ∇ · (F adv − F rot) = ∇ · F adv. (70.60)

Consequently, the rotational flux, F rot, has no impact on evolution of the mean tracer concentra-
tion.

70.3.5 What does a point measurement estimate?

From equation (70.53c), we see that a point measurement of the correlation, v′C ′, provides an
estimate of the symmetric tracer flux plus the skew tracer flux

v′C ′ = F sym + F skew = −(K +A) · ∇C. (70.61)

Furthermore, for a periodic wave field, where the symmetric tensor vanishes, the correlation,
v′C ′, provides a direct estimate of the skew flux, −∇C ×Ψ. This latter result might seem
puzzling on first encounter, since one could imagine v′C ′ instead provides an estimate for the
advective flux, CUA. But that presumption is wrong, as indicated by the decomposition (70.61).
We emphasize this point by summarizing the various relations

v′C ′ = F sym + F skew (70.62a)

= −K · ∇C −∇C ×Ψ (70.62b)

= −K · ∇C −∇× (CΨ) + C∇×Ψ (70.62c)

= F sym − F rot + F adv. (70.62d)

The rotational flux is generally nontrivial for polarized waves or turbulent eddies. Hence, the
rotational flux provides a sizable contribution to any measurement of v′C ′ either from a field
measurement or numerical simulation. Hence, for some purposes it can be more convenient to
work directly with the skew flux rather than the advective flux.
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70.3.6 Area integrated tracer flux
We further our understanding of the rotational contribution by considering the mean of the
tracer flux integrated over a static area S

T =

ˆ
S

vC · n̂dS =

ˆ
S

vC · n̂dS =

ˆ
S

[vC + v′C ′] · n̂dS. (70.63)

Introducing the diffusive, advective, and rotational flux as in equation (70.62d) renders

T =

ˆ
S

[vC +UAC −∇× (CΨ)−K · ∇C] · n̂dS. (70.64)

Use of Stokes’ Theorem transforms the rotational term to a line integral around the boundary
of the area

T =

ˆ
S

[vC +UAC −K · ∇C] · n̂dS −
‰
∂S
CΨ · dl. (70.65)

Following Section 2b of Middleton and Loder (1989), we interpret the boundary term as a Stokes
contribution associated with the correlation of particle motion and perturbation velocity along
the boundary ‰

∂S
CΨ · dl = 1

2

‰
∂S
C (v′ × ξ) · dl. (70.66)

We further this interpretation when considering the transport beneath a fluctuating isopycnal
surface in Section 70.5.4.

70.3.7 Massaging the mean field tracer equation
We here write the mean tracer equation (70.51) in various forms that can be found throughout
the literature. For this purpose, write the right hand side of equation (70.51) in the form

∇ ·
[
(K +A) · ∇C

]
= ∂m

[
(Kmn +Amn) ∂nC

]
(70.67a)

= ∂m (Kmn +Amn) ∂nC + (Kmn +Amn) ∂m∂nC (70.67b)

= ∂m (Kmn +Amn) ∂nC +Kmn ∂m∂nC. (70.67c)

The final equality follows from the identity

Amn ∂m∂nC = 0, (70.68)

which results from the contraction of the anti-symmetric tensor, Amn, with the symmetric
derivative operator ∂m∂n. The second term, Kmn ∂m∂nC, is a diffusion operator if the symmetric
tensor K is also positive-definite. The first term in equation (70.67c) can be interpreted as an
advection operator through the action of a non-divergent plus a divergent advection velocity

∂m (Kmn +Amn) ∂nC ≡ −(UK +UA) · ∇C, (70.69)

where we defined5

UK ≡ −∇ ·K =⇒ ∇ ·UK = −∂n∂mKmn ̸= 0 (70.70a)

UA ≡ −∇ ·A =⇒ ∇ ·UA = −∂n∂mAmn = 0. (70.70b)

Bringing the above results together allows us to write the mean field tracer equation (70.51)

5Note that Middleton and Loder (1989) define UK = ∇ ·K, which is the opposite sign to that used here in
equation (70.70a), whereas they define UΨ = −∇ ·A as in equation (70.70b).
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in the following equivalent forms

∂tC + (v +UA +UK) · ∇C = Kmn ∂m∂nC advective form (70.71a)

∂tC +∇ · [(v +UA)C] = ∇ · (K · ∇C) flux form (70.71b)

∂tC +∇ · [(v +UA)C + F sym] = 0, alternate flux form (70.71c)

where we made use of the identities

∇ · v = 0 and ∇ ·UA = 0 and ∇ ·UK ̸= 0. (70.72)

70.3.8 Connection to Stokes drift

From equation (70.26) we have the leading order expression for the Stokes drift

v(S) = ξn ∂n ∂t ξ +O(α2). (70.73)

As noted in equation (70.17), with ∂tξ = v′ and with ∇ · v′ = 0, the corresponding particle
displacements are non-divergent, ∇ · v′ = 0⇒ ∇ · ξ = 0. Consequently, to second order accuracy,
the Stokes drift velocity can be written

(v(S))p = ξn ∂n ∂t ξp (70.74a)

= ∂n [(∂t ξp) ξn] (70.74b)

= ∂n (K
pn +Apn) (70.74c)

= ∂n (K
np −Anp) (70.74d)

= −(UK)p + (UA)p. (70.74e)

For the case of periodic fluid particle motion, the Stokes drift velocity equals to the non-divergent
skew velocity

v(S) = UA =⇒ ∇ · v(S) = 0 periodic motion. (70.75)

More generally, for non-periodic motion, the divergent velocity is non-zero so that the Stokes
velocity is also divergent

v(S) = UA −UK =⇒ ∇ · v(S) = −∇ ·UK ̸= 0 non-periodic motion. (70.76)

70.3.9 A polarized periodic example

We illustrate some of the previous analysis by considering a particle displacement vector comprised
of periodic and polarized motion in the horizontal plane

ξ(x, t) = Γ [x̂ cos(ω t) + ŷ sin(ω t)] (70.77a)

∂tξ(x, t) = ω Γ [−x̂ sin(ω t) + ŷ cos(ω t)], (70.77b)

where Γ > 0 a time-independent amplitude and 2π/ω > 0 is the period. The fluid particles
exhibit counter-clockwise circular and periodic motion in the horizontal plane with squared
radius

ξ · ξ = Γ2. (70.78)

Define the mean operator be a phase average

ϕ =
1

2π/ω

ˆ 2π/ω

0
ϕ(t) dt, (70.79)
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which is a suitable averaging operator for examining the impacts of oscillatory motion on mean
fields. For a spatially constant amplitude, we find below that the mean tracer concentration, C,
remains unchanged. The absence of a rectified change to C reflects the assumed periodic nature
of the fluid particle motion.
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F (skew)

Figure 70.2: Sketch of the skew tracer flux associated with the polarized displacement vector (70.77a). The fluid
particles are moving in the horizontal plane along a circle with a constant radius, Γ. The vector streamfunction
(70.82) points in the negative ẑ direction. The mean concentration gradient, ∇C, generally points outside of the
horizontal plane. However, it is only the horizontal components that contribute since the displacement vector is
in the horizontal plane, thus resulting in a horizontal skew tracer flux. The advective velocity vanishes since the
amplitude, Γ, is assumed to be spatially constant. Hence, the skew flux is purely rotational, which means there is
no rectified effects on the mean tracer concentration.

Symmetric mixing tensor

In the presence of the oscillatory particle displacement (70.77a), the symmetric mixing tensor
(70.49a) is given by

2Kmn =
Γ2

2π/ω

ˆ 2π/ω

0
dt

∂

∂t

[
cos2(ω t) cos(ω t) sin(ω t)

cos(ω t) sin(ω t) sin2(ω t)

]
= 0, (70.80)

which vanishes identically since the particles exhibit periodic motion.

Skew symmetric stirring tensor

The skew-symmetric tensor (70.49b) has non-zero components due to the polarization

2A12 = −A21 = (∂t ξ1) ξ2 − (∂t ξ2) ξ1 = −Γ2 ω sin2(ω t) + cos2(ω , t) = −Γ2 ω. (70.81)

The corresponding vector streamfunction (70.56) is vertical

Ψ = −Γ2 ω

2
ẑ, (70.82)

and the skew flux is horizontal

F skew = −Γ2 ω

2
(ẑ ×∇C). (70.83)

Finally, the advective velocity is given by

∇×Ψ = −ω Γ∇Γ× ẑ. (70.84)

The advective velocity vanishes when the wave amplitude, Γ, is a constant, in which case the
advective tracer flux is zero although the skew flux is non-zero. Indeed, with a constant wave
amplitude, the skew tracer flux has a zero divergence so that it is a purely rotational flux. Hence,
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for a constant wave amplitude, neither the skew flux nor the advective flux affect the evolution
of C. Figure 70.2 offers a schematic of the skew flux induced by the periodic rotating particle
motion in the horizontal plane.

70.3.10 Further study
Much of this section follows Plumb (1979), Middleton and Loder (1989), and Garrett (2006),
each of whom considered elements of tracer dispersion by waves and nonlinear eddies. Middleton
and Loder (1989) work through a few oceanographically motivated examples that offer further
understanding of skew fluxes. Additional treatments can be found in the review article of Moffatt
(1983), who considers flow in a rotating reference frame as well as magneto-hydrodynamic flows.

70.4 Kinematics of volume transport in isopycnal layers
In this section we consider the reversible stirring of fluid parcels by turbulent flow in a perfect
(i.e., no mixing or sources) stratified Boussinesq fluid. As the fluid parcels are stirred, they
preserve their volume while changing their shape and stretching into finer scale features. Stirring
by ocean mesoscale/baroclinic eddies offers the canonical example of such stirring. Eventually,
small-scale processes, such as those summarized in Section 71.1.1, irreversibly mix properties.
We are here focused just on the stirring part of this process.

Over space and time scales larger than the mesoscale, the stirring by ocean mesoscale eddies
can be considered chaotic, which in turn motivates a stochastic perspective in which an ensemble
of eddies is considered. The goal is to describe the ensemble mean properties of the perfect
fluid, with a focus in this section on the kinematics of parcel rearrangement. Hence, eddy
correlations in the present section appear between the thickness of a fluid layer and the velocity.
We introduce tracers in Section 70.5, at which point we also consider eddy correlations between
velocity and tracer as in Section 70.3.

The material in this section is rather detailed. However, its mastery comes readily by keeping
in mind the more general (and somewhat simpler) presentation of GLM offered in Section
70.2. We are motivated to provide full details in this section since the kinematics of isopycnal
ensembles appears throughout the study of wave-mean flow interactions in adiabatic geophysical
fluid mechanics, such as in the study of ocean mesoscale eddies.

70.4.1 Isopycnal mean
Each fluid parcel in a stably stratified perfect Boussinesq ocean preserves its potential density.
We are interested in following the vertical motion of potential density layer interfaces as waves
and turbulent processes transport layer thickness from one region to another. In contrast, we
are not concerned with following the lateral position of a fluid parcel within a layer. Here we
introduce the isopycnal mean, which is based on describing ensembles of perfect fluid parcels
using isopycnal coordinates. In Sections 70.4.2 and 70.4.3, we relate this isopycnal approach to
the GLM restricted to the vertical direction.

Defining the isopycnal ensemble

An overbar with a potential density label, ( )
(ϱ)

, denotes a mean over an ensemble of fluid
parcels, each having the same potential density, ϱ, the same horizontal position, (x, y), and the
same time, t. Isopycnals undulate in space and time, which means that each ensemble member
has a vertical position that is generally distinct from the ensemble mean vertical position, z.
Furthermore, when the context is clear, it is useful to drop the dependence on (x, y, t) to highlight
the dependence on potential density and/or the vertical position.
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Figure 70.3: Schematic of the ensemble mean vertical position, zϱ(x, y, ϱ, t), for a particular potential density
surface ϱ, here illustrated with a three member ensemble whose potential density is ϱ. In general, different
members of an isopycnal ensemble live on different geopotentials. Therefore, when considering ensemble members
with the same potential density, the ensemble mean vertical position is the average over the different members.
For the case of a three member ensemble, as shown here, the averaged vertical position is 3 zϱ(x, y, ϱ, t) =
z(1)(x, y, ϱ, t) + z(2)(x, y, ϱ, t) + z(3)(x, y, ϱ, t).

Isopycnal ensemble mean

The isopycnal ensemble mean makes use of potential density as a vertical coordinate (Chapters
63 and 65), with the mean field denoted by

Ψ
(ϱ)

(x, y, ϱ, t) ≡ ensemble mean using isopycnal vertical coordinates. (70.85)

This average is straightforward to compute when using isopycnal coordinates, thus producing an
isopycnal mean that is a function of the potential density, ϱ. Figure 70.3 depicts this average.

70.4.2 Modified mean is the vertical GLM
As a complement to the isopycnal approach in Section 70.4.1, we here introduce the vertical
GLM following isopycnals, which is also known as the modified mean.

The vertical GLM following isopycnal surfaces

The discussion in Section 70.2 considered a three dimensional particle displacement vector ξ(x, t).
In contrast, we are here interested just in the vertical displacement of an isopycnal layer interface

ξ(x, y, ϱ, t) = ẑ ξ(x, y, ϱ, t). (70.86)

The displacement field, ξ(x, y, ϱ, t), measures the vertical position of a potential density interface,
ϱ, relative to its ensemble mean vertical position. For any particular ensemble member with
potential density, ϱ, we write its vertical position as (dropping x, y, t dependence for brevity)

z(ϱ) = z(ϱ) + ξ(ϱ), (70.87)

where
z(ϱ) = z(ϱ)

(ϱ)
(70.88)

is the vertical position for the isopycnal ensemble mean, and the displacement field has a zero
ensemble mean

ξ(ϱ)
(ϱ)

= 0. (70.89)

Given the above definitions for the vertical position, we define the vertical GLM for an
arbitrary function

Ψ̃(x, y, z(ϱ), t) ≡ Ψ(x, y, z(ϱ) + ξ(x, y, ϱ, t), t)
(ϱ)
. (70.90)
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As defined, the vertical GLM, Ψ̃, is a function of the ensemble mean vertical position, z(ϱ) (left
hand side), and it is determined by an ensemble mean of Ψ sampled at the vertical position of
each ensemble member, z(ϱ) + ξ(ϱ). McDougall and McIntosh (2001) refer to the vertical GLM
defined by equation (70.90) as the modified mean.

Relating the modified mean to the isopycnal mean

Following the general result (70.35), we know that the modified mean potential density,
ϱ̃(x, y, z(ϱ), t), equals to the potential density of each ensemble member so that

ϱ̃(x, y, z(ϱ), t) = ϱ(x, y, z(ϱ) + ξ(x, y, ϱ, t), t). (70.91)

This relation means that the modified mean potential density is the functional inverse of the
isopycnal ensemble mean vertical position. Consequently, the isopycnal ensemble mean of a

function, Ψ
(ϱ)

(equation (70.85)), when evaluated at the modified mean potential density, ϱ̃,
equals to the modified mean Ψ̃ when evaluated at the vertical position of the mean density

Ψ
(ϱ)

(x, y, ϱ̃, t) = Ψ̃(x, y, z(ϱ), t). (70.92)

This is a very important identity that will be used in the following.

70.4.3 Transformed residual mean (TRM)

When working with isopycnal layers, it is very useful to use specific thickness weighting to
account for the net amount of material within a layer, or to measure the net transport in the
layer.6 For this purpose we make use of the specific thickness from Section 64.2 as given by7

h = ∂z/∂ϱ = 1/(∂ϱ/∂z), (70.93)

and thus make use of thickness weighted fields, hΨ, and the corresponding thickness weighted
isopycnal ensemble mean

Ψ̂(ϱ) =
hΨ

(ϱ)

h
(ϱ)

. (70.94)

The identity (70.91) then renders

Ψ
#
(x, y, z(ϱ), t) ≡ Ψ̂(x, y, ϱ̃, t), (70.95)

where Ψ
#

is the transformed residual mean (TRM) evaluated at the isopycnal ensemble mean
vertical position. This is yet another important identity that will be used in the following.

Depth integrated TRM transport

The horizontal TRM velocity is a particularly key TRM field

û(x, y, ϱ̃, t) = u#(x, y, z(ϱ), t). (70.96)

6We pursue a vertical discrete version of this thickness weighted averaging approach for the stacked shallow
water model in Chapter 67.

7As discussed in Section 63.9.1, specific thickness is the Jacobian of transformation between geopotential
coordinates, (x, y, z, t), and isopycnal coordinates, (x, y, ϱ, t). For stably stratified ideal fluids, h is one-signed,
hence making the coordinate transformation well defined. It is also related to the buoyancy frequency through
(Section 30.6.1) N2 = −(g/ρo) (∂ϱ/∂z) = −g/(ρo h).
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Following the discussion of the vertical gauge in Section 69.5.1 (see in particular equation
(69.41)), we are led to define the depth integrated TRM transport

U
#
(z(ϱ)) =

ˆ z(ϱ)

−H
u#(z) dz =

ˆ ϱ̃(z(ϱ))

ϱ(−H)
û(γ) h

(γ)
dγ, (70.97)

with the second equality following from a change of coordinates from geopotential to isopycnal.
We can go further with this expression by writing

U
#
(z(ϱ)) =

ˆ ϱ̃(z(ϱ))

ϱ(−H)
û(γ) h

(γ)
dγ from equation (70.97) (70.98a)

=

ˆ ϱ̃(z(ϱ))

ϱ(−H)
u h

(γ)
dγ from equation (70.94) (70.98b)

=

ˆ ϱ(z(ϱ)+ξ)

ϱ(−H)
u h

(γ)
dγ from equation (70.91). (70.98c)

The final equality makes it clear that the TRM transport, U
#
(z(ϱ)), is the ensemble mean

volume transport for fluid denser than ϱ(z(ϱ) + ξ) = ϱ̃(z(ϱ)). This transport can also be written
using geopotential coordinates

U
#
(z(ϱ)) =

ˆ z(ϱ)+ξ

−H
udz. (70.99)

The transport from each ensemble member is determined by integrating from the bottom to
the vertical position, z(ϱ) + ξ, and then the TRM transport is determined by computing the
ensemble mean for this transport.

Quasi-Stokes transport

The TRM transport (70.99) can be decomposed into an Eulerian mean plus the correlation of a
fluctuation

U
#
(z(ϱ)) ≡ U(z(ϱ)) +U

qs
(z(ϱ)). (70.100)

The first term,

U(z(ϱ)) =

ˆ z(ϱ)

−H
u dz (70.101)

is the ensemble mean transport between the bottom and the ensemble mean vertical position,
z(ϱ). We interpret this transport as an Eulerian mean since the depth ranges are fixed. In
contrast, the quasi-Stokes transport

U
qs
(z(ϱ)) ≡

ˆ z(ϱ)+ξ

z(ϱ)
udz (70.102)

measures the ensemble mean transport between the mean vertical position of an isopycnal, z(ϱ),
and that of each ensemble member, z(ϱ) + ξ(ϱ). We refer to transport as “quasi-Stokes” given
that it is the difference between an isopycnal (i.e., quasi-Lagrangian) mean and an Eulerian
mean (see Section 70.2)

U
qs
= U

# −U . (70.103)
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As for the traditional Stokes drift discussed in Sections 52.11, and 70.2.5, which arises from a
correlation between larger velocity when a wave crest is present, so too does the quasi-Stokes
transport arise from a correlation between a larger velocity and a larger undulation in isopycnal
thickness.

Three-component TRM velocity

Following from the vertical gauge expression (69.40), we introduce the TRM vector streamfunction

Ψ
#
= U

# × ẑ, (70.104)

and the corresponding three-dimensional non-divergent TRM velocity

v# = ∇×Ψ
#
. (70.105)

The vertical component,

w# = ẑ · (∇×Ψ
#
), (70.106)

has no corresponding component in an isopycnal description, which only requires the horizontal
thickness weighted transport, û. However, the TRM vector streamfunction only requires the

horizontal TRM transport, U
#
, so the two descriptions in effect make use of the same number

of degrees of freedom.

70.4.4 Volume conservation and the thickness equation

Consider two perspectives on volume conservation: one based on isopycnal coordinates and the
other based on geopotential coordinates.

Isopycnal coordinates

In isopycnal vertical coordinates, the volume of a fluid element is written

δV = δx δy δz = δx δy δϱ h, (70.107)

where we introduced the specific thickness, h, from equation (70.93). Geometrically, the product
|h δϱ| represents the vertical distance, or thickness, between two infinitesimally close density
interfaces, ϱ and ϱ+ δϱ (see Figure 64.2). Material conservation of both volume and potential
density implies conservation of the product of specific thickness and horizontal area, δx δy h,
which leads to the thickness equation (Section 66.2.3)

∂h

∂t
+∇hϱ · (hu) = 0, (70.108)

with u the horizontal velocity field, the time derivative is computed with ϱ held fixed, and

∇hϱ = ∇h + S ∂z (70.109)

is the horizontal derivative operator with ϱ held fixed, and

S = ∇hϱz (70.110)

is the horizontal slope of the potential density surface.
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Geopotential coordinates

An Eulerian z-coordinate description of volume stirring within isopycnal layers is rendered via a
combination of volume conservation, ∇ · v = 0, and material conservation of potential density,
Dϱ/Dt = 0. When written as skewsion rather than advection, the natural gauge is the vertical
gauge introduced in Section 69.5.1, since this gauge only requires the same horizontal velocity
field, u, used with the isopycnal coordinate description. This gauge has an associated potential
density skew flux, F skew = −∇ϱ×Ψ, which leads to the evolution

∂tϱ = ∇ · (∇ϱ×Ψ), (70.111)

where all derivatives are here taken with fixed Eulerian (geopotential) coordinates, (x, y, z), and
the ∇ operator is three-dimensional.

70.4.5 Ensemble mean kinematics in isopycnal coordinates
Consider an ensemble of stably stratified (so that the layer specific thickness, h, is single-
signed and nonvanishing) perfect Boussinesq fluid parcels with the same infinitesimal volume,
δV = δx δy δz = δx δy h δϱ, and same potential density, ϱ. Lacking any other marker, such as
a tracer concentration, the ensemble members are distinguished from one another by values
of their horizontal area, δA = δx δy, and their specific thickness, h, that is, their geometric
attributes. The ensemble members are assumed to be stirred by different stochastic realizations
of the fluid flow. Since each flow realization alters the geometric properties of the parcels, a
mean field description focuses on the mean of these geometric properties.

In isopycnal coordinates, (x, y, ϱ, t), the thickness equation (70.108) is satisfied by each
ensemble member

∂th +∇hϱ · (hu) = 0. (70.112)

The ensemble mean computed over these fluid parcels, each with potential density ϱ, satisfies

∂t h
(ϱ)

+∇hϱ ·
(
h
(ϱ)
u(ϱ) + h′ u′(ϱ)

)
= 0, (70.113)

where primed variables represent deviations from the isopycnal mean. It follows that the mean

specific thickness, h
(ϱ)

, of parcels with potential density, ϱ, satisfies the conservation equation

∂t h
(ϱ)

+∇hϱ · (h(ϱ) û) = 0. (70.114)

In this equation we introduced the thickness weighted isopycnal ensemble mean horizontal
velocity

û =
hu

(ϱ)

h
(ϱ)

= u(ϱ) +
h′ u′(ϱ)

h
(ϱ)

≡ u(ϱ) + ubolus, (70.115)

along with the isopycnal ensemble mean horizontal velocity, u(ϱ), and the horizontal bolus
velocity, ubolus, originally introduced by Rhines (1982). The bolus velocity for an isopycnal layer
corresponds to the transport

h
(ϱ)
ubolus = h

(ϱ)
(û− u(ϱ)) = h′ u′(ϱ), (70.116)

which arises from the along-isopycnal correlations between specific thickness and horizontal
velocity.

Quite conveniently, the mean conservation equation (70.114) takes the same mathematical
form as the conservation equation (70.112) satisfied by each ensemble member. The key difference

is that the isopycnal ensemble mean thickness, h
(ϱ)

, is stirred by the thickness weighted isopycnal
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ensemble mean horizontal velocity, û, whereas the thickness of each ensemble member is stirred
by a randomly different realization of the horizontal velocity, u. The simplicity of the mean field
description (70.114) is afforded by use of the Lagrangian vertical coordinate, ϱ.

70.4.6 Ensemble mean kinematics in geopotential coordinates

Now consider a geopotential coordinate description of the isopycnal ensemble. For this purpose,
we interpret a vertical position, z, as the ensemble mean vertical position, z(ϱ). Consequently,
mean fields defined at the fixed vertical position correspond to either modified mean fields when
not thickness weighted (equation (70.90)), or TRM fields when thickness weighted (equation
(70.95)).

Evolution of modified mean density

Following the skewsion formulation from Section 69.5, at the ensemble mean vertical position,

z = zρ, the streamfunction Ψ
#

defines an effective skew flux of the modified mean potential
density given by

F
#
= −∇ϱ̃×Ψ

#
. (70.117)

Using the identity Ψ
#
= U

# × ẑ, we can write this skew flux as

F
#
= −U#

∂zϱ̃+ ẑ U
# · ∇hϱ̃ (70.118a)

= −(U#
+ ẑ S ·U#

) ∂zϱ̃, (70.118b)

where

S = −∇hϱ̃
∂zϱ̃

(70.119)

is the slope of the modified mean density field originally introduced via equation (70.110), and
∇h = (∂x, ∂y, 0) is the horizontal gradient operator taken with constant geopotential, z = z(ϱ).
The convergence of the effective skew flux leads to a stirring of the modified mean density ϱ̃ at
the mean vertical position, z = z(ϱ),

∂tϱ̃ = ∇ · (∇ϱ̃×Ψ
#
). (70.120)

This equation represents a geopotential coordinate specification of the evolution of the modified
mean density due to stirring by the mean eddies. It corresponds directly to the evolution
equation (70.111) satisfied at vertical position, z, by a single member of the ensemble.

70.4.7 Approximate ensemble mean kinematics in geopotential coordinates

Equation (70.120) represents an exact z-coordinate description of the stirring of modified mean
potential density. However, when working in geopotential coordinates, all that is available is
Eulerian information. Hence, the Lagrangian information used to realize this exact description
must be approximated.

Estimating the quasi-Stokes transport

The approximation requires an estimate of the quasi-Stokes transport, U
qs
, defined by equation

(70.102). We addressed a similar estimation in Section 70.2.4 when discussing the Stokes mean.
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Here, we expand the TRM transport in a Taylor series about the vertical position, z = z(ϱ)

U
#
(z) =

ˆ z+ξ

−H
u(s) ds (70.121a)

= U(z) + u ξ
(z)

+
1

2
∂zu ξ ξ

(z)
+O(α3), (70.121b)

where neglected terms are third order in deviation quantities. Note that all ensemble means are
taken at fixed vertical position, which accords with taking a Taylor series about the ensemble
mean vertical position, z = z(ϱ).

The ensemble means in equation (70.121b) are interpreted as follows. The first term is
the Eulerian mean horizontal transport passing beneath the ensemble mean vertical position,
z = z(ϱ). The second term, u ξ, is the horizontal velocity evaluated at the ensemble mean
vertical position and multiplied by the deviation, ξ, of the potential density surface from its
mean vertical position, all averaged at fixed vertical position. An Eulerian split of the horizontal
velocity, u, into its Eulerian mean, u(z), and deviation, u′, leads to the correlation

u ξ
(z)

= u′ ξ
(z)
. (70.122)

For the second order term, similar considerations lead to

∂zu ξ ξ
(z) ≈ ∂zu(z) ξ ξ

(z)
, (70.123)

where neglected terms are third order and higher. Combining these relations leads to the second
order accurate expression

U
# ≈ U + u′ ξ

(z)
+

1

2
ξ ξ

(z)
∂zu

(z). (70.124)

The disturbance field

Following the discussion in Section 70.2.6, we here determine the disturbance field, ξ, in terms
of fields at constant vertical position. For this purpose, use the identity (70.91) to give

ϱ̃(z) = ϱ(z + ξ) (70.125a)

= ϱ(z) + ∂zϱ(z) ξ +
1

2
∂zzϱ(z) ξ

2 +O(α3). (70.125b)

Subtracting the Eulerian mean of equation (70.125b) from the unaveraged equation (70.125b),
and noting that ϱ̃ is already a mean field, leads to the second order accurate expression for the
deviation

ξ = −ϱ′(z)/∂zϱ(z) +O(α2), (70.126)

where
ϱ(z) = ϱ(z) + ϱ′(z). (70.127)

To within the same order, the deviation can be written

ξ = −ϱ′(z)/∂zϱ̃(z) +O(α2). (70.128)
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Approximate quasi-Stokes transport

Substituting the deviation (70.128) into the approximate expression (70.121b) for the TRM
transport yields an approximate expression for the quasi-Stokes transport

U
qs
= −u

′ ϱ′
(z)

∂zϱ̃
+
ϕ
(z)
∂zu

(z)

(∂zϱ̃)2
+O(α3), (70.129)

where

ϕ
(z)

=
1

2
ϱ′ ϱ′

(z)
(70.130)

is the mean potential density variance. McDougall and McIntosh (2001) noted that the Gent
et al. (1995) scheme offers a parameterization of the two correlations on the right hand side of
equation (70.129). We have more to say regarding this parameterization in Section 71.1.

Substituting the deviation (70.128) into the approximate expression (70.125b) yields, to
within terms of third order, the relation

ϱ̃ = ϱ(z) − ∂z
[
ϕ
(z)

∂zϱ(z)

]
+O(α3). (70.131)

As for the Stokes transport, the modified mean density and Eulerian mean density, when
evaluated at the same vertical position, differ by terms that are second order in eddy amplitude.

70.4.8 Further study

This section is largely based on approaches used by DeSzoeke and Bennett (1993), McIntosh
and McDougall (1996), Kushner and Held (1999), and McDougall and McIntosh (2001) as
summarized in Section 9.3 of Griffies (2004). Many other papers have applied this formalism to
a variety of analyses, with examples including Nurser and Lee (2004a), Nurser and Lee (2004b),
Young (2012), Wolfe (2014), and Jansen et al. (2024).

70.5 Mean tracer equation
We now include a tracer field to the ideal Boussinesq fluid element and determine a mean
field description for the tracer. The transport of tracer by eddies has both a reversible stirring
component and an irreversible mixing component. The stirring arises from both the thickness
correlation to velocity as well as the velocity correlated with tracer.

70.5.1 Thickness weighted average8

In equation (70.115) we introduced a specific thickness weighted average (or mean) operator,
which is quite useful when considering the mean tracer equation. In general, for any field, Ψ,
associated with a potential density layer, ϱ, we define the decomposition into thickness weighted
average and deviation

Ψ(ϱ) = Ψ̂(ϱ) + Ψ′′(ϱ) (70.132a)

=
hΨ

(ϱ)

h
(ϱ)

+Ψ′′. (70.132b)

8We also considered thickness weighted averaging for the shallow water equations in Chapter 67. The same
identities hold here for the continuously stratified fluid.
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It follows by definition that the thickness weighted average of Ψ′′ vanishes,

hΨ′′(ϱ) = 0. (70.133)

70.5.2 Isopycnal mean thickness weighted tracer equation

When attaching a tracer to fluid elements, each member of the ensemble satisfies the isopycnal
tracer equation

∂tC + u · ∇hϱC = 0. (70.134)

Combining the tracer and thickness equations leads to the thickness weighted tracer equation

∂t(hC) +∇hϱ · (huC) = 0. (70.135)

Hence, in isopycnal coordinates and in the absence of irreversible processes, the evolution of
thickness weighted tracer occurs via the isopycnally oriented convergence of the two-dimensional
thickness weighted horizontal advective flux, huC.

To address the problem of describing the ensemble mean tracer equation in isopycnal
coordinates, decompose the tracer and velocity field into their thickness weighted average and
deviation

∂t[h (Ĉ + C ′′)] +∇hϱ · [h (û+ u′′) (Ĉ + C ′′)] = 0. (70.136)

Taking an ensemble average over fluid elements with the same potential density, and using
equation (70.133), yield the mean thickness weighted tracer equation

∂t(h
(ϱ)
Ĉ) +∇hϱ · (h(ϱ) Ĉ û) = −∇hϱ · (hC ′′ u′′(ϱ)). (70.137)

Now introduce the correlation,

hC ′′ u′′(ϱ) = h
(ϱ)
Ĉ ′′ u′′, (70.138)

(see equation (70.132b)), and recall that the mean thickness h
(ϱ)

satisfies the mean thickness
equation (70.114). These two points lead to the evolution equation for the mean thickness
weighted tracer concentration

(∂t + û · ∇hϱ) Ĉ = − 1

h
(ϱ)
∇hϱ · (h(ϱ) Ĉ ′′ u′′). (70.139)

70.5.3 Subgrid scale tracer transport tensor

The correlation between tracer and velocity found on the right-hand side of the mean thickness
weighted tracer equation (70.139) is typically written in terms of a subgrid scale tracer transport
tensor

Ĉ ′′ u′′ = −J · ∇hϱĈ. (70.140)

This definition leads to the evolution equation

(∂t + û · ∇hϱ) Ĉ =
1

h
(ϱ)
∇hϱ · (h(ϱ) J · ∇hϱĈ). (70.141)

The subgrid scale operator on the right hand side has the same general form as the diffusion
operator written in isopycnal coordinates as derived in Section 63.15. However, in addition to
symmetric diffusion processes, this operator includes skewed fluxes that lead to skew diffusion
as discussed in Section 70.3.2. Whereas the diffusive aspect is commonly parameterized as
dianeutral diffusion and neutral diffusion (Section 71.1), there is no parameterization for the
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skewed correlations for use in ocean models. We comment further on this situation in Section
71.3.9.

70.5.4 Mean tracer transport beneath a density surface
It is useful to further elucidate the relevance of mean thickness weighted fields. For this purpose,
consider the mean horizontal tracer transport occurring beneath a particular potential density
surface ϱ = ϱ̃,

C
#
(z(ϱ)) =

ˆ zϱ+ξ

−H
C udz. (70.142)

Setting tracer concentration to unity recovers the expression (70.99) for the TRM transport.
Changing coordinates and making use of the subgrid scale tracer tensor renders

C
#
(z(ϱ)) =

ˆ ϱ̃(z(ϱ))

ϱ(−H)
C u h

(ϱ)
dϱ (70.143a)

=

ˆ ϱ̃(z(ϱ))

ϱ(−H)
(Ĉ û+ Ĉ ′′ u′′)h

(ϱ)
dϱ (70.143b)

=

ˆ ϱ̃(z(ϱ))

ϱ(−H)
(Ĉ û− J · ∇hϱĈ)h(ϱ) dϱ (70.143c)

=

ˆ z(ϱ)

−H
(Ĉ û− J · ∇hϱĈ) dz. (70.143d)

Hence, the mean thickness weighted fields naturally appear when considering such physically
interesting quantities as the mean horizontal transport of a tracer beneath the modified mean
potential density surface.

70.5.5 Summary of the tracer parameterization problem
Traditionally, the isopycnal parameterization problem for the evolution of the mean thickness
weighted tracer requires a parameterization of the bolus velocity ubolus, which again is related
to the thickness weighted horizontal velocity via

û((ϱ)) =
hu

(ϱ)

h
(ϱ)

= u(ϱ) +
h′ u′(ϱ)

h
(ϱ)

= u(ϱ) + ubolus. (70.144)

In addition to the bolus velocity, it is necessary to parameterize the subgrid scale tracer transport
tensor

Ĉ ′′ u′′ = −J · ∇hϱĈ, (70.145)

which generally has symmetric (diffusive) and antisymmetric (stirring) components (Section
70.3).

For a geopotential coordinate description, equation (70.95) is used to relate thickness weighted
mean fields, defined as a function of ϱ, and TRM fields, defined as a function of the mean vertical
position of ϱ, to write for the tracer field

Ĉ(x, y, ϱ̃, t) = C
#
(x, y, z(ϱ), t). (70.146)

Equation (70.146), and the developed formalism, leads to the mean field tracer equation in
geopotential coordinates

∂tC
#
= ∇ · (∇C# ×Ψ

#
) +R(C

#
), (70.147)
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where R(C
#
) is the geopotential coordinate form of the mixing/stirring operator on the right-

hand side of equation (70.141). Details for the transformation of the mixing/stirring opertor
from isopycnal to geopotential coordinates are provided in Section 63.15.

70.5.6 Comments
Much in this section follows from Smith (1999), McDougall and McIntosh (2001), Young (2012),
and Jansen et al. (2024), each of which focused on the hydrostatic primitive equations assuming
a vertically stable buoyancy stratification. The paper by Young (2012) is the first to formulate
the ensemble mean primitive equations (continuity, tracer, momentum, vorticity, and energy
equations) in a form where only the thickness weighted (residual mean) velocity appears. Hence,
the formulation of Young (2012) eliminates the need to parameterize the bolus velocity or the
quasi-Stokes transport since neither appear as separately identified terms. The paper by Jansen
et al. (2024) further pursues the ideas from Young (2012) within the context of generalized vertical
coordinate ocean models (see Part XII of this book), and they identify some inconsistencies in
how certain ocean models are implementing the eddy parameterizations. The topic of formulating
the equations of motion remains an active topic of research for purposes of facilitating subgrid
scale closure.
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Chapter 71

ELEMENTS OF PARAMETERIZED OCEAN TRACER

TRANSPORT

In the presence of turbulent flows, tracer variance directly cascades to the small scales. This
downscale cascade is facilitated by reversible stirring from balanced and unbalanced fluctuations
(e.g., mesoscale eddies, submesoscale eddies, breaking gravity and lee waves, turbulent boundary
layer processes). The cascade to progressively smaller scales eventually reaches the Batchelor
scale (order millimetres; e.g., Section 11.5.1 of Vallis (2017)). At this scale, tracer gradients are
sufficiently large in magnitude that molecular diffusion can readily act to dissipate tracer variance
through irreversible diffusive mixing. Tracer transport at scales larger than the Batchelor scale
is dominated by nearly reversible stirring, whereas transport at and below the Batchelor scale
is dominated by irreversible mixing from molecular diffusion. This phenomenology provides a
constraint on the form of the tracer equation to be used for coarse grained numerical models,
where the model grid scale is generally much larger than the Batchelor scale.

In this chapter, we study certain of the mathematical and physical properties of parameterized
advective and diffusive tracer transport. In general, such parameterizations aim to encapsulate
key aspects of physical processes too small to observe and/or to simulate. This subgrid scale
parameterization problem is far broader and deeper than available from a single chapter. We focus
mostly on subgrid scale tracer advection and diffusion operators arising from mesoscale eddy
motions, yet even this limited focus involves far more than can be covered here. In particular, we
do not discuss theories for how the eddy diffusivities are computed, which generally require studies
of the momentum, energy, and vorticity budgets that are not considered here. Furthermore, we
only consider parameterizations of the subgrid scale tracer flux, whose convergence provides a
subgrid tendency for the coarse-grained tracer equation. Focusing on fluxes supports locality
and conservation for the coarse-grained tracer equation, with these properties also shared by the
uncoarsened tracer equation.
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chapter guide

We studied the physics of tracer diffusion in Chapter 68 and then advection-diffusion in
Chapter 69. We also studied the kinematics of tracer transport in Chapter 70. The present
chapter relies on that material, with a focus on the maths and physics of advective-diffusive
parameterizations of tracer transport. We also make use of neutral directions as detailed
in Section 30.5. Mathematically, we rely on Cartesian tensor analysis from Chapters 1
and 2.

The reader is cautioned that the notation in this chapter is somewhat tedious, which
arises from the many variants of tracer fluxes considered. Furthermore, there are a variety
of unanswered questions about the suitability of certain parameterizations for ocean
circulation models, particularly the anisotropic neutral diffusion discussed in Section 71.5
and the anisotropic Gent-McWilliams stirring in Section 71.6. These sections are written
in the hope that they offer a framework for numerically implementing and testing these
schemes in models.
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71.6.2 Anisotropic Gent-McWilliams skew tracer flux . . . . . . . . . . . 2013
71.6.3 Anisotropic GM skewsion plus small slope neutral diffusion . . . 2014
71.6.4 A parameterization based on a boundary value problem . . . . . 2014

71.1 Summarizing tracer transport parameterizations
In this section we offer an outline of the tracer transport parameterizations, starting from the
small scales and moving to the mesoscale. We mostly focus on ocean applications, though similar
arguments hold for the atmosphere as well.

71.1.1 A synopsis of ocean mixing processes
Irreversible mixing in the ocean takes place at the millimeter scale through the action of chaotic
molecular motions that act to dissipate property gradients. This mixing is generally represented
by downgradient molecular diffusion. The molecular diffusivity of matter (e.g., salt) in seawater
is roughly 10−9 m2 s−1, whereas the molecular thermal diffusivity is roughly 100 times larger (it
is easier to diffuse enthalpy (heat) than matter, Gill , 1982). Reversible stirring by turbulent
eddies greatly increases the magnitude of property gradients upon which molecular diffusion
acts (Eckart , 1948; Nakamura, 2001; Müller and Garrett , 2002), thereby increasing the total
amount of irreversible mixing. Motivated by molecular diffusion and Brownian motion Einstein
(1905), and following the pioneering work of Taylor (1921), it is common to parameterize mixing
induced by turbulent eddy stirring as a diffusive closure with an eddy diffusivity that is far
larger than molecular values. Furthermore, the eddy diffusivities are generally the same for all
tracers since eddies generally act the same regardless the tracer. Double diffusive processes is
the notable counter-example to this equivalence Schmitt (1994).

Mixing induced by eddies of length scale O(centimeters−metres) is associated with fine scale
mixing processes such as gravitational instability, shear instability and breaking internal gravity
waves (MacKinnon et al., 2013), as well as a suite of boundary layer processes (Large et al.,
1994). This mixing is commonly parameterized by a flow dependent isotropic eddy diffusivity.
The magnitude of the eddy diffusivity is typically O(10−3 − 10−2 m2 s−1) in boundary layers,
and O(10−5 m2 s−1) in the quiescent ocean interior (Polzin et al., 1997; Whalen et al., 2012;
Waterhouse et al., 2014).

Mesoscale eddies, with size O(10−100) km, preferentially stir tracers along neutral directions
(McDougall , 1987a,b; McDougall et al., 2014). The mesoscale eddy stirring in turn induces a
mixing that is parametrized by downgradient diffusion along neutral directions (Section 71.4).
When feeling the geometric constraints of the surface boundary, mesoscale stirring leads to
horizontal oriented mixing across outcropped density surfaces (Treguier et al., 1997; Ferrari
et al., 2008; Danabasoglu et al., 2008). This mixing is parameterized by downgradient horizontal
diffusion. The neutral and horizontal eddy diffusivities associated with mesoscale processes are
typically O(102 − 103 m2 s−1) in the ocean interior and can rise to O(104 m2 s−1) in the ocean
surface layer (Abernathey et al., 2013; Klocker and Abernathey , 2014; Cole et al., 2015).

71.1.2 A rough comparison
What process is more important for setting tracer distributions: neutral diffusion induced by
mesoscale eddies or small scale isotropic diffusion induced by breaking gravity waves? Since the
neutral diffusivity arises from mesoscale eddy stirring, it is many orders of magnitude larger
than the isotropic diffusivity arising from fine scale mixing. However, these two eddy diffusivities
act on very different tracer gradients, in which case the net effects on tracer distributions could
be more comparable.
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To help answer the question, consider a scaling with a constant neutral diffusivity and
a constant isotropic diffusivity. Furthermore, assume Cartesian orientation of the diffusion
operators (i.e., zero neutral slope) and assume the isotropic diffusion is dominated by vertical
diffusion (see Section 71.2). We are thus comparing the following two diffusion processes

horizontal diffusion = κhorz∇2
h C and vertical diffusion = κvert ∂zzC. (71.1)

Now introduce a vertical length scale, H, and horizontal scale, L, over which the tracer
concentration changes by the same amount δC. Doing so leads to the scaled diffusion operators

horizontal diffusion ∼ (κhorz/L
2) δC and vertical diffusion ∼ (κvert/H

2) δC. (71.2)

These operators have the same scale when

κvert = (H/L)2 κhorz. (71.3)

Choosing L = 105 m and H = 101 m leads to

κvert = 10−8 κhorz. (71.4)

Furthermore, if κhorz = 103 m2 s−1, then the two operators provide a similar contribution to
tracer evolution if κvert = 10−5 m2 s−1. This is a rather small diffusivity that is generally thought
to be on the order of that afforded by the background of breaking gravity waves in the ocean
interior (MacKinnon et al., 2013). This scaling is crude since the length scales are dependent
on details of the flow regime, as are the eddy diffusivities. Even so, it suggests that the two
diffusive processes can indeed contribute to tracer distributions by a similar amount.

71.1.3 Diffusive parameterization of fine scale mixing

Ignoring the cross-diffusion processes introduced in Section 26.10 (see also IOC et al. (2010),
Section 2.5 of Olbers et al. (2012), and Graham and McDougall (2013)), the molecular diffusion
of Θ and S lead to the material evolution equations

ρ
DΘ

Dt
= ∇ · (ρ κΘ∇Θ) (71.5a)

ρ
DS

Dt
= ∇ · (ρ κS∇S), (71.5b)

where κΘ > 0 and κS > 0 are the molecular kinematic diffusivities for Conservative Temperature,
Θ, and salinity, S, respectively. For a measured scale, ∆, larger than the scale where gravity
waves break and dissipate kinetic energy (i.e., tens to hundreds of metres), diffusion is commonly
used to parameterize the associated irreversible tracer mixing (e.g., MacKinnon et al., 2013).
Diffusion is also used to parameterize mixing from other small scale processes, such as turbulent
boundary layer processes, double-diffusion, and breaking leewaves. As discussed in Section 4 of
McDougall et al. (2014), small scale mixing generally takes place in an isotropic manner. Its
parameterization thus appears just as for isotropic molecular diffusion given by equation (71.5b),
yet with a far larger eddy diffusivity κfine ≫ κΘ, κS that is a function of the flow

ρ
DΘ

Dt
= ∇ · (ρ κfine∇Θ) (71.6a)

ρ
DS

Dt
= ∇ · (ρ κfine∇S). (71.6b)
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The same eddy diffusivity is used for both Θ and S. This assumption follows the general approach
for turbulent transport parameterizations (e.g, Vallis , 2017), whereby eddies are assumed to act
in the same manner on any conserved scalar tracer.

71.1.4 Advective-diffusive parameterization of eddy-induced transport

Stirring from turbulent scales smaller than the grid scale is commonly parameterized by an
eddy-induced stirring velocity, v∗. For ocean mesoscale eddies, such parameterized stirring
generally follows a variant of Gent and McWilliams (1990) and Gent et al. (1995), with this
stirring quite important for setting large-scale ocean tracer distributions. In addition, mixing
is promoted by the direct cascade from stirring. This mixing is parameterized by a diffusion
operator distinct from that used for the small scale mixing discussed in Section 71.1.3.

Consider a second order subgrid scale eddy transport tensor, E, meant to parameterize both
subgrid scale eddy stirring and eddy mixing. With this tensor, the evolution of salinity and
Conservative Temperature takes the form

ρ
DS

Dt
= ∇ · (ρE · ∇S) (71.7a)

ρ
DΘ

Dt
= ∇ · (ρE · ∇Θ). (71.7b)

As for the fine scale diffusion equations (71.6a) and (71.6b), we here use the same transport
tensor for both S and Θ as eddies are assumed to act in the same manner on any conserved
scalar tracer. As presented in Chapter 69, we decompose the second order transport tensor into
the sum of its symmetric and anti-symmetric components

E =K +A. (71.8)

When the symmetric tensor, K, is positive-definite, it gives rise to downgradient diffusion,
whereas the anti-symmetric tensor, A, gives rise to skew-diffusion or eddy-induced advection.

71.1.5 Mathematical elements of eddy-induced stirring

As detailed in Sections 69.3, 69.4, and 70.3, the anti-symmetric tensor, A, contributes to the
parameterized transport according to

∇ · (ρA · ∇S) = ∂m(ρA
mn ∂nS) (71.9a)

= ∂m(ρA
mn) ∂nS + ρAmn ∂m∂nS (71.9b)

= −ρv∗n ∂nS, (71.9c)

where Amn are the components to the anti-symmetric transport tensor A. Additionally, we
noted that

ρAmn ∂m∂nS = 0 (71.10)

since Amn is anti-symmetric on the indices m,n whereas ∂m∂nS is symmetric (see Exercise 1.2).
Finally, we introduced a density-weighted eddy-induced velocity

ρ v∗n = −∂m(ρAmn)⇐⇒ ρv∗ = −∇ · (ρA). (71.11)

Importantly, ρv∗ has a zero divergence, again due to anti-symmetry of Amn

∇ · (ρv∗) = ∂n(ρv
∗n) = −∂n∂m(ρAmn) = 0. (71.12)
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A zero-divergence for ρv∗ means that it contributes no mass sources or sinks to the fluid.1

Transport from the anti-symmetric tensor thus provides a means to stir tracers due to
unresolved eddy processes. The mathematical form of the stirring can be either through skew-
diffusion or through advection (see Section 69.4). Choosing to make use of the advection form
allows us to combine the contribution from the anti-symmetric transport tensor with the resolved
advection operator, thus resulting in a residual mean material transport equation

ρ
D†S

Dt
= ∇ · (ρK · ∇S) (71.13a)

ρ
D†Θ

Dt
= ∇ · (ρK · ∇Θ), (71.13b)

where the residual mean material time derivative is given by

D†

Dt
=

∂

∂t
+ v† · ∇ (71.14)

and the residual mean velocity is
v† = v + v∗. (71.15)

71.1.6 Dianeutral unit vector and the neutral slope

When considering closures for subgrid mixing and stirring arising from mesoscale motions, we
orient the parameterized processes according to buoyancy as that reflects the physics of mesoscale
motions.2 We thus follow the discussion in Section 30.5 by working with locally referenced
Archimedean buoyancy to determine neutral directions. In particular, at each point in the fluid
we orient stirring and mixing through use of the dianeutral unit vector (Section 30.5.3)

γ̂ =
−α∇Θ+ β∇S
| − α∇Θ+ β∇S| and γ̂ = x̂ γ̂x + ŷ γ̂y + ẑ γ̂z and γ̂ · γ̂ = γ̂2x + γ̂2y + γ̂2z = 1, (71.16)

with γ̂ pointing perpendicular to the neutral tangent plane in a direction towards larger density.3

Furthermore, when the fluid is stably stratified in the vertical, which is common for the mesoscale
and larger, then the squared buoyancy frequency is positive (Section 30.4)

N2 = −g (−α∂zΘ+ β ∂zS) > 0. (71.17)

We can thus introduce the slope of the neutral tangent plane relative to the (x, y) horizontal
plane

S = −
[−α∇hΘ+ β∇hS
−α∂zΘ+ β ∂zS

]
=
g (−α∇hΘ+ β∇hS)

N2
= x̂Sx + ŷ Sy. (71.18)

For such stably stratified fluids, the dianeutral direction can be written in terms of the neutral
slope

γ̂ =
S − ẑ

(1 + S2)1/2
. (71.19)

1For a Boussinesq fluid, the density factor is replaced by the constant reference density, ρo, so that ∇ · v∗ = 0
in the Boussinesq fluid. See section 7 of Griffies and Greatbatch (2012) for more details of the Boussinesq and
non-Boussinesq forms for the parameterized eddy-induced transport.

2We offer further discussion of this point at the start of Section 71.4.
3Equation (4) in McDougall et al. (2014) makes use of the opposite convention so that their dianeutral

direction points towards decreasing density. We instead follow the water mass transformation convention as in
equation (73.38), so that γ̂ points in the direction of increasing density.
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In this form we see that the dianeutral direction is vertically downward when the slopes vanish
(i.e., horizontal neutral directions), which accords with this direction generally pointing toward
increasing density.

71.2 Expressions of small scale diffusion
We here follow Section 4 from McDougall et al. (2014) to highlight distinctions between isotropic
diffusion, dianeutral diffusion,4 and vertical diffusion. Although commonly considered inter-
changeable in the literature as parameterizations of small scale mixing, there are conceptual
distinctions that we identify here. Note that the distinctions between these three diffusions are
quantitatively small when neutral slopes are modest and when κntr ≫ κfine.

71.2.1 Isotropic diffusion
As discussed in Section 71.1.3, we generally parameterize fine scale mixing processes via an
isotropic diffusion process using a diffusivity κfine > 0, diffusion tensor

K iso = κfine

 1 0 0
0 1 0
0 0 1

 , (71.20)

and corresponding diffusion flux
J iso = −ρK iso · ∇C. (71.21)

As illustrated in Figure 71.1, under the effects from isotropic diffusion, a region of tracer is
diffused the same in all three directions so that, for example, a spherical tracer distribution
remains spherical.

71.2.2 Vertical diffusion
Because vertical density gradients are generally much larger than lateral gradients, it is common
to approximate the small scale isotropic diffusion tensor with a vertical diffusion tensor

Kvert = κfine

 0 0 0
0 0 0
0 0 1

 , (71.22)

with a corresponding vertical diffusive flux

J vert = −ρ κfine (∇C · ẑ) ẑ = −ρK iso · ∇C = −ρ κfine ∂zC ẑ. (71.23)

In this manner, vertical mixing of a tracer patch occurs only in the vertical direction (see Figure
71.1).

71.2.3 Dianeutral diffusion
Dianeutral diffusion orients tracer fluxes according to the dianeutral direction (71.16)

J dia = −ρ κfine (∇C · γ̂) γ̂ = −ρKdia · ∇C, (71.24)

4Dianeutral diffusion is commonly also referred to as diapycnal diffusion, with diapycnal diffusion referring
to diffusion across constant potential density surfaces. We distinguish dianeutral from diapycnal in this chapter
since neutral directions are defined by locally referenced potential density, and as such neutral directions generally
differ from isopycnals. Further discussion is provided in Section 30.5 as well as McDougall (1987a).
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where the dianeutral diffusion tensor is given by

Kdia = κfine

 γ̂2x γ̂x γ̂y γ̂x γ̂z
γ̂x γ̂y γ̂2y γ̂y γ̂z
γ̂x γ̂z γ̂y γ̂z γ̂2z

 . (71.25)

Assuming a vertically stable stratification, we can make use of the relation (71.19) to write γ̂ in
terms of the slope, S, thus rendering

(∇C · γ̂) γ̂ =
(S − ẑ) · ∇C

1 + S2
(S − ẑ) = 1

1 + S2

 S2
x Sx Sy −Sx

Sx Sy S2
y −Sy

−Sx −Sy 1

 ∂xC
∂yC
∂zC

 , (71.26)

so that the dianeutral diffusion tensor now takes on the form

Kdia =
κfine

1 + S2

 S2
x Sx Sy −Sx

Sx Sy S2
y −Sy

−Sx −Sy 1

 . (71.27)

As illustrated in Figure 71.1, dianeutral diffusion elongates a tracer patch in the direction normal
to the neutral tangent plane.

z

y

neutral tangent 

plane

isotropic

vertical

dianeutral epineutral

Figure 71.1: Illustrating the effects from various forms of diffusion on a tracer patch. When diffused with an
isotropic diffusion tensor (equation (71.20)), a spherical patch remains spherical. When diffused with a vertical
diffusion tensor (equation (71.22)), a tracer patch elongates in the vertical direction. When diffused with a
dianeutral diffusion tensor (equation (71.27)), a tracer patch elongates in the direction normal to the slanted
neutral tangent plane. Finally, when diffused with a neutral diffusion tensor, such as the Redi tensor (71.74) or
the small slope tensor (71.75), a tracer patch elongates along the neutral tangent plane; i.e., in the epineutral
direction. This figure is adapted from Figure 4 of McDougall et al. (2014).

71.3 Gent-McWilliams eddy-induced advection
As mentioned in Section 70.5.3, there are two processes that contribute to eddy-induced advec-
tion/stirring. One involves the correlations between eddy fluctuations in the velocity and tracer
fields. In Section 70.3, we considered the kinematics of correlations induced by small amplitude
eddying motions, where we found that the eddy-induced motion of fluid particles leads to both
a symmetric (mixing) and anti-symmetric (stirring) dispersion of tracer concentrations. There
is currently no method proposed for parameterizing this form of eddy-induced stirring when it
arises from subgrid scale processes, thus leaving unanswered its importance to large-scale tracer
distributions.

The second process leading to eddy-induced stirring arises from correlations between fluc-
tuations in isopycnal layer thickness and horizontal velocity. As detailed in Section 70.4, this
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second effect leads to a movement of volume between isopycnal layers, or equivalently we can
conceive of it as the quasi-Stokes transport of volume arising from transient eddy motion. This
eddy-induced volume transport affects an eddy-induced tracer transport within isopycnal layers.
Transient mesoscale eddies are the canonical dynanical process leading to this form of transport.
For simulations that do not resolve transient mesoscale eddies, we commonly parameterize the
subgrid scale stirring through variants of the Gent et al. (1995) scheme. Mathematical elements
of this scheme are detailed in this section.

Most presentations of the Gent et al. (1995) scheme assume a Boussinesq fluid, though
with Section 7 of Griffies and Greatbatch (2012) an exception. We here present the non-
Boussinesq form, though in places make the Boussinesq approximation since doing so simplifies
the presentation without losing anything fundamental.5

71.3.1 Details of the parameterization
Gent et al. (1995) parameterize the three-dimensional non-divergent eddy-induced mass flux
(recall Section 69.4.3) according to

ρv∗ = ∇× (ρΨ∗) with Ψ∗ = ẑ × κgm S, (71.28)

where S is the neutral slope given by equation (71.18), and κgm > 0 is a kinematic eddy diffusivity
with dimensions of velocity times a length. Performing the curl on the streamfunction leads to
the horizontal and vertical components to the eddy-induced mass flux

ρu∗ = −∂z (κgm ρS) and ρw∗ = ∇h · (κgm ρS), (71.29)

along with the skew diffusive tensor

Agm = κgm

 0 0 −Sx
0 0 −Sy
Sx Sy 0

 . (71.30)

Following the discussion in Section 69.4.4, we can identify the advective tracer flux, skew tracer
flux, and rotational tracer flux corresponding to the Gent-McWilliams parameterization

J adv = J skew + J rot (71.31)

where

J adv = C ρv∗ = C ρ [−∂z (κgm ρS) + ẑ∇h · (κgm ρS)] (71.32a)

J skew = −∇C × ρΨ∗ = ρ κgm [S ∂zC − ẑ (S · ∇C)] (71.32b)

J rot = ∇× (ρCΨ∗). (71.32c)

71.3.2 Effects on buoyancy
We now consider a Boussinesq fluid with a linear equation of state in order to focus on the
impact of the Gent-McWilliams parameterization on buoyancy, which we measure with potential
density, ϱ. In this case the parameterized skew flux of potential density due to the quasi-Stokes
transport is given by

ρ−1
o J skew = −κgm[∇hϱ− ẑ S2 ∂zϱ] = −κgm [∇hϱ+ ẑ (ρo/g) (SN)2], (71.33)

5In brief, for a Boussinesq fluid, the in situ density factor found throughout this section is set to the constant
Boussinesq reference density, ρo.
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with the squared neutral slope and squared buoyancy frequency written

S2 = S · S and N2 = − g
ρo

∂ϱ

∂z
. (71.34)

The parameterization yields a horizontal downgradient diffusive flux of potential density along
with a vertical upgradient diffusive flux. As illustrated by Figure 71.2, so long as the stratification
is stable (N2 > 0), which is assumed by the parameterization, the vertical component to the
potential density skew flux is vertically downward, which corresponds to a vertically upward
buoyancy skew flux. As we see in Section 71.3.3, this orientation ensures that the parameterization
reduces available potential energy. Additionally, Gent et al. (1995) prescribe a diffusivity
that vanishes at the ocean surface and ocean bottom. McIntosh and McDougall (1996) and
McDougall and McIntosh (2001) present more discussion of the boundary conditions, which can
be understood by considering the exact form of the quasi-Stokes transport defined by equation
(70.102). Furthermore, we consider a boundary value problem approach in Section 71.3.8 that
also pays particular attention to the boundary conditions.

z
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Figure 71.2: Orientation of the skew flux of potential density, ϱ, arising from the Gent et al. (1995) parameteri-
zation and as described by Griffies (1998). The sloped black lines are constant ϱ isosurfaces (isopycnals). The
horizontal skew flux of potential density is downgradient (directed from high density to low density), whereas the
vertical skew flux component is upgradient (directed from low density to high density). The net effect is a skew
flux that is oriented parallel to isopycnals.

Figure 71.3 brings elements of the parameterization together by illustrating the Gent-
McWilliams effect for a meridional potential density front in the southern hemisphere. The
mean geostrophic thermal wind flow is eastward, as in the Antarctic Circumpolar Current,
whereas a parameterized secondary circulation acts to weaken the front, with the secondary
circulation proportional to the strength of the front as measured by the isopycnal slope. That
is, the parameterization assumes that the mean effects from geostrophic eddies, whose kinetic
energy is supported by the potential energy in the front, lead to a weakening of the potential
density slope so that the front relaxes toward the horizontal.

71.3.3 Local adiabatic dissipation of available potential energy

We here consider the effects from the Gent et al. (1995) scheme on the available potential energy,
continuing to assume a Boussinesq fluid with a linear equation of state. We express the behavior
using both skew fluxes and advective fluxes. Since we are assuming the parameterization is
adiabatic, the change in potential energy is identical to the change in available potential energy.
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Figure 71.3: The Gent-McWilliams effect for a meridional potential density front in the Southern Hemisphere,
where dense water rises to the south so that ∂yϱ < 0. The mean geostrophic thermal wind flow is eastward
(out of the page), as in the Antarctic Circumpolar Current. With a stable stratification, whereby ∂zϱ < 0, the
Gent-McWilliams streamfuction given by equation (71.28) leads to a counter-clockwise circulation (red isolines).
The dual perspective offered by the Gent-McWilliams skew flux for potential density, given by equation (71.33),
reveals a northward (downgradient) meridional skew flux component along with a downward (upgradient) vertical
component (red vectors). The result from either the streamfunction perspective or the skew flux perspective is a
potential density tendency that relaxes the front towards the horizontal so to reduce the isopycnal slope.

Skew flux approach

Let us approach the parameterization problem from the perspective of satisfying two general
properties: (I) the subgrid scale operator adiabatically stirs while maintaining the same amount
of fluid within isopycnal layers, (II) the subgrid operator locally dissipates potential energy
through an abiabatic rearrangement of the potential density surfaces, with the dissipation
vanishing when there is zero baroclinicity. That is, the scheme dissipates available potential
energy. What is the form of the stirring operator implied by these two assumptions?

Adiabatic stirring of potential density can be realized via the convergence of a skew flux
oriented parallel to potential density surfaces

ρ−1
o J skew = −∇ϱ×Ψ∗, (71.35)

where at this point we have yet to specify Ψ∗. To see what the local dissipation of available
potential energy imposes, consider the gravitational potential energy

P = g

ˆ
ϱ z dV, (71.36)

where, again, we assume the in situ density equals to the potential density as per a linear
equation of state (Section 30.3.5). Assuming all boundaries are material and static allows us to
focus on the time tendency of potential energy associated with the unknown flux

dP

dt
= g

ˆ
z
∂ϱ

∂t
dV = − g

ρo

ˆ
(z∇ · J skew) dV = − g

ρo

ˆ
(z ∂zJ

z) dV =
g

ρo

ˆ
Jz dV, (71.37)

where Jz is the vertical flux component. We drop boundary effects by assuming the subgrid
scale flux vanishes on all boundaries. To provide a local available potential energy sink requires

Jz ≤ 0, (71.38)

CHAPTER 71. ELEMENTS OF PARAMETERIZED OCEAN TRACER TRANSPORT page 1997 of 2158



71.3. GENT-MCWILLIAMS EDDY-INDUCED ADVECTION

where zero occurs when the isopycnals are flat. It is sufficient to construct the vertical flux
component using only the potential density field itself. For a stably stratified fluid in which
∂zϱ < 0, the following form provides a local available potential energy sink

ρ−1
o Jz = κgm S

2 ∂zϱ = −(κgm ρo/g) (SN)2 ≤ 0. (71.39)

The corresponding horizontal flux is given by a downgradient diffusive flux

J h = −ρo κgm∇hϱ. (71.40)

We have thus recovered the skew flux (71.33) as proposed by Gent et al. (1995). Note that Aiki
et al. (2004) proceed in a similar manner yet do not assume locality of the available potential
energy sink, thus deriving a more general subgrid scale operator.

Advective flux approach

The impacts on potential energy should be the same when representing the parameterization as
an advective flux. To verify this result, return to equation (71.37) and make use of the vertical
component of the advective flux rather than the skew flux

dP

dt
= g

ˆ
ϱw∗ dV (71.41a)

= g

ˆ
ϱ∇h · (κgm S) dV (71.41b)

= g

ˆ
∇h · (ϱ κgm S) dV − g

ˆ
∇hϱ · κgm S dV (71.41c)

= −ρo
ˆ
κgm (SN)2 dV, (71.41d)

which is the same result as for the skew flux.

71.3.4 Meridional overturning mass transport
It is often of interest to compute the mass transport across a portion of the ocean. In particular,
meridional-depth or meridional-potential density streamfunctions allow one to visualize and
quantify the zonally integrated transport occurring in a closed basin or over the full globe. The
quasi-Stokes transport provides a transport in addition to that from the resolved scale Eulerian
mean transport, and the parameterization of Gent et al. (1995) leads to a straightforward
computation of the quasi-Stokes contribution. For this purpose, write the net meridional mass
transport of fluid across a basin and passing beneath a particular depth in the form (the minus
sign is conventional)

T(y, z, t) = −
ˆ

dx

ˆ z

−H
ρ (v + v∗) dz (71.42a)

= −
ˆ

dx

ˆ z

−H
ρ v dz +

ˆ
dx

ˆ z

−H
∂z(κgm ρSy) dz (71.42b)

= −
ˆ

dx

ˆ z

−H
ρ v dz +

ˆ
κgm ρSy dx (71.42c)

≡ Teulerian(y, z, t) +Tgm(y, z, t). (71.42d)

For the penultimate step we set the parameterized quasi-Stokes transport to zero at the ocean
bottom. We thus see that the parameterized quasi-Stokes transport adds a contribution that
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scales linearly with basin size, isopyncal slope, and diffusivity,

Tqs ∼ ρo L |S|κgm. (71.43)

As an example, let ρ = 1035 kg m−3, κgm = 103 m2 s−1, |S| = 10−3, and L = 107 m, which
yields Tqs ≈ 10× 109 kg s−1. This additional transport is a nontrivial addition to that from the
resolved scale velocity field.

71.3.5 Connection to form stress

We now connect the Gent et al. (1995) closure, normally implemented in the tracer equation,
to vertical transfer of momentum through form stress. For this purpose, recall the general
discussion of form stress in Section 28.1 and the more detailed discussions in Sections 31.7 and
36.4. In those discussions, we identify form stress as the horizontal pressure force acting on a
sloped surface, with our present concern with surfaces of constant isopycnals as discussed in
Sections 31.7 and 36.4.

Young (2012) provides a general means for making the connection between Gent et al. (1995)
and form stress for a continuously stratified fluid. Loose et al. (2023) and Jansen et al. (2024)
provide further theoretical and numerical analysis of this approach. For our more schematic
purposes, we follow the treatment in Greatbatch and Lamb (1990), Gent et al. (1995) (their
Section 4), Ferreira and Marshall (2006) (their Section 2), and Zhao and Vallis (2008) (their
Section 2.2). For this purpose, assume the fluid is in Boussinesq planetary geostrophic balance
(detailed in Section 31.5) whereby the horizontal momentum satisfies

ρo f (ẑ × u) = −∇hp+ ∂zτ , (71.44)

with τ a horizontal subgrid scale stress vector. The Coriolis acceleration balances the acceleration
from horizontal pressure gradients plus a vertical transfer of horizontal stress. The horizontal
stress term is generally quite small in the ocean interior, where the flow is in geostrophic balance,
whereas it is large at the ocean surface where it arises from turbulent air-sea interactions; i.e.,
wind stress. Furthermore, it can be large at the bottom through turbulent bottom stresses.

To make the connection between Gent et al. (1995) and the vertical transfer of horizontal
form stress, add ρo f (ẑ × u∗) to both sides of equation (71.44) to obtain

ρo f (ẑ × u†) = −∇hp+ ∂zτ + ρo f (ẑ × u∗), (71.45)

where u† = u + u∗ is the horizontal residual mean velocity. This equation says that the
Coriolis acceleration from the horizontal residual mean velocity balances pressure gradients, the
vertical divergence of the horizontal frictional stresses, plus the Coriolis acceleration from the
eddy-induced velocity. We further unpack the eddy Coriolis acceleration by noting that the
planetary geostrophic velocity satisfies the thermal wind relation in the ocean interior (Section
31.6), whereby

f ∂zu = −(g/ρo) ẑ ×∇ρ = −ẑ ×N2S. (71.46)

We can thus write the Coriolis acceleration from the eddy-induced velocity as

f (ẑ × u∗) = −f [ẑ × ∂z(κgm S)] (71.47a)

= −∂z [ẑ × (f κgm S)] (71.47b)

=
∂

∂z

[
κgm f

2

N2

∂u

∂z

]
(71.47c)

= ∂z(νe ∂zu), (71.47d)

CHAPTER 71. ELEMENTS OF PARAMETERIZED OCEAN TRACER TRANSPORT page 1999 of 2158



71.3. GENT-MCWILLIAMS EDDY-INDUCED ADVECTION

where the final equality introduced an eddy-induced vertical viscosity

νe ≡ κgm (f
2/N2). (71.48)

Making use of this result in the planetary geostrophic equation (71.45) thus leads to

ρo f (ẑ × u†) = −∇hp+ ∂z(τ + τe), (71.49)

where
ρ−1
o τe = νe ∂zu (71.50)

defines a horizontal mesoscale eddy stress arising from the thermal wind shears. Equation (71.49)
says that the Coriolis acceleration from the horizontal residual mean velocity is in balance with
the horizontal pressure gradient plus the vertical transfer of horizontal shears arising from both
friction/wind/bottom drag plus a contribution from parameterized mesoscale eddies.

We conclude that the Gent et al. (1995) parameterization appears in the planetary geostrophic
residual mean momentum equation as a vertical transport of horizontal stress determined by a
viscosity νe = κgm (f/N)2. Notably, this vertical eddy transfer occurs in the absence of irreversible
mixing. We thus interpret it as a parameterization of the vertical transfer of pressure form stress
via mesoscale eddies that act between isopycnal layers. That is, the Gent et al. (1995) scheme
offers a means to parameterize vertical transfer of horizontal form stress arising from undulating
mesoscale eddies in the ocean interior. This interpretation is more thoroughly discussed in
Section 31.7 (see also Greatbatch and Lamb (1990) and Loose et al. (2023)).

71.3.6 Connection to isopycnal thickness diffusion
Recall the ensemble mean thickness equation (70.114) for a Boussinesq fluid was derived in
Section 70.4.5

∂t h +∇hϱ · (h û) = 0, (71.51)

where
û = u+ ubolus (71.52)

is the thickness weighted transport velocity affecting evolution of the ensemble mean thickness
h. Note that for brevity we here drop the nomenclature ( )(ϱ) used in Section 70.4.5.

Isopycnal correlations of horizontal velocity and layer thickness define the bolus velocity via

hubolus = h′ u′ (71.53)

Now consider a downgradient diffusive closure for this correlation

hubolus = h′ u′ (ϱ) = −K thick · ∇hϱh, (71.54)

with K thick a symmetric and positive-definite 2× 2 diffusion tensor. The mean thickness equation
thus takes the form of an advection-diffusion equation in isopycnal coordinates

∂th +∇hϱ · (hu) = ∇hϱ · (K thick · ∇hϱh). (71.55)

We note one special property of the closure (71.54) revealed when considering discrete
shallow water layers and assuming the thickness diffusion tensor is depth independent. Vertically
summing the eddy transport from the ocean bottom up to a particular layer yields

n=k∑
n=kb

h′n u
′
n
(ϱ)

= −
n=k∑
n=kb

K thick · ∇hϱhn = −K thick ·
n=k∑
n=kb

∇hϱhn = −K thick · ∇hϱηk−1/2, (71.56)
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where ηk−1/2 is the upper interface of layer k (see Figure 35.6), and where kb is the index for
the layer at the ocean bottom. In this case we see that the eddy transport below an isopycnal
interface is directly proportional to the slope of that interface.

71.3.7 Connection to Gent-McWilliams parameterization

To make a direct connection between the thickness diffusion closure (71.54) and the Gent et al.
(1995) closure discussed in Section 71.3.1, note that the specific thickness is the inverse of the
vertical derivative of the potential density

h = (∂zϱ)
−1. (71.57)

Correspondingly, using the relation between derivative operators, ∇hϱ = ∇h + S ∂z, gives

h−1∇hϱh = −h∇hϱ(1/h) product rule identity (71.58a)

= −(∂zϱ)−1 (∇h + S ∂z) ∂zϱ h = ∂z/∂ϱ and ∇hϱ = ∇h + S ∂z (71.58b)

= −∂z(∇hϱ)
∂zϱ

+
∂zzϱ∇hϱ
(∂zϱ)2

rearrangement (71.58c)

= −∂z[∇hϱ/(∂zϱ)] product rule identity (71.58d)

= ∂zS isopycnal slope S = −∇hϱ/(∂zϱ). (71.58e)

Consequently, the bolus velocity takes the form

ubolus = −h−1K thick · ∇hϱh = −K thick · ∂zS. (71.59)

The special case of depth independent diffusivity

For the special case of K thick that is independent of depth and proportional to the 2× 2 identity
matrix, we recover the identity

ubolus = −∂z(κgm S) = u
∗, (71.60)

where the horizontal component of the Gent et al. (1995) velocity, u∗, was identified from
equation (71.29). Again, this identity holds only for the special case of a vertically independent
diffusivity tensor proportional to the identity.

Further caveats

The relevance of a depth-independent diffusivity has been questioned by many authors, such as
Killworth (1997), Treguier et al. (1997), Smith and Vallis (2002), Smith and Marshall (2009), and
Abernathey et al. (2013). We conclude from these studies that a depth independent diffusivity is
not the best choice for the Gent et al. (1995) parameterization, in which case where one places
the vertical derivative is crucial.

The relation between thickness diffusion with the Gent et al. (1995) parameterization further
breaks down near boundaries. The reason is that the eddy diffusivity vanishes next to boundaries
and thus has a depth-dependence. Additionally, as noted by Holloway (1997) and Griffies et al.
(2000), thickness diffusion next to solid earth boundaries leads to an increase in potential energy,
with isopycnals creeping up the topographic slope. Such unphysical behavior motivates isopycnal
modelers instead to use interfacial height diffusion to dissipate noise in the thickness field.
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71.3.8 A parameterization based on a boundary value problem

There have been variants of the Gent et al. (1995) scheme proposed in the literature, such as
those of Aiki et al. (2004) and Ferrari et al. (2010). As for the Gent et al. (1995) scheme, these
alternatives dissipate available potential energy without mixing between isopycnal classes. We
here briefly discuss the scheme of Ferrari et al. (2010), which is used by a variety of ocean climate
models largely since it contains a natural means to numerically regularize the eddy-induced
streamfunction in regions of weak vertical stratification. These considerations are relevant
especially in ocean climate models, where weak or zero vertical stratification is inevitable and so
it is necessary to handle such regimes.

For the Ferrari et al. (2010) scheme we write the parameterized eddy streamfunction as

Ψ∗ = ẑ ×Υ =⇒ u∗ = −∂zΥ and w∗ = ∇h ·Υ, (71.61)

with Υ determined by solving the following vertical boundary value problem at each horizontal
position6

(c2 ∂zz −N2)Υ = −N2Υgm and Υ(ηb) = Υ(η) = 0, (71.62)

where (see equation (71.28))

Υgm = κgm S and N2 S = (g/ρo)∇hϱ. (71.63)

We recover the Gent et al. (1995) scheme when setting the squared speed to zero, c2 = 0, in
which case Υ = Υgm. For c2 > 0, the second order differential operator ensures that Υ smoothly
and continuously transitions through regions where the vertical stratification is weak (N2 is
small), and hence where |S| is large. In contrast, the standard regularization approaches, with
c2 = 0, are somewhat more ad hoc (e.g., see Chapter 15 of Griffies (2004)) or very tedious (e.g.,
Ferrari et al. (2008)).

Following the discussion in Section 71.3.3, we deduce the impacts on potential energy
(assuming a linear equation of state) via equation (71.37), where we make use of the vertical
component of the potential density skew flux

1

g

dP

dt
=

1

ρo

ˆ
Jz dV = −

ˆ
ẑ · (∇ϱ×Ψ∗) dV = −

ˆ
∇hϱ ·Υ dV = −ρo

g

ˆ
N2 S ·Υ dV. (71.64)

The governing differential equation (71.62) leads to

Υ · (c2 ∂zz −N2)Υ = −(g/ρo)κgm Υ · ∇hϱ, (71.65)

which rearranges to

(g/ρo)κgm Υ · ∇hϱ = −c2 ∂z(Υ · ∂zΥ) + c2 (∂zΥ · ∂zΥ) +N2Υ ·Υ. (71.66)

Integrating over a vertical column and making use of the homogeneous Dirichlet boundary
conditions from equation (71.62) leads to

g

ρo

ˆ
κgm Υ · ∇hϱdz =

ˆ
(c2 ∂zΥ · ∂zΥ+N2Υ ·Υ) dz ≥ 0. (71.67)

This inequality means that the potential energy of a vertical column is dissipated. However,
locally at any point in the column the potential energy might increase due to the sign-indefinite
term, −c2 ∂z(Υ · ∂zΥ). Notably, there is no a priori reason that mesoscale eddies dissipate
potential energy at every point in space. Furthermore, numerical experiments documented

6Note that Ferrari et al. (2010) used the opposite sign convention on Υ from that used here.
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in Ferrari et al. (2010) suggest that local potential energy dissipation is not necessary for a
numerically stable operator. We conclude that this approach offers a suitable method for ocean
climate simulations.

71.3.9 Comments

As noted in Section 70.5.3, there is presently no parameterization of subgrid scale stirring along
neutral directions arising from the correlations between tracer and velocity fluctuations. Rather,
the only parameterized subgrid scale stirring is associated with quasi-Stokes transport, with Gent
et al. (1995) providing the canonical approach as summarized in this section. To parameterize
the skew fluxes arising from tracer-velocity correlations requires one to study the polarization of
the eddies giving rise to these skew fluxes, as per the discussion in Section 70.3.2 and Middleton
and Loder (1989).

71.4 Neutral diffusion
Neutral diffusion, also referred to as epineutral diffusion, parameterizes the mixing induced by
mesoscale eddy transport. The parameterization assumes that the neutral diffusive flux of a
tracer is oriented along a neutral direction or a neutral tangent plane. The neutral diffusive
tracer flux, J , for an arbitrary tracer, C, is perpendicular to the dianeutral unit vector

J · γ̂ = 0 =⇒ J · (−α∇Θ+ β∇S) = 0, (71.68)

where γ̂ is defined by equation (71.16).

71.4.1 Motivation for neutral diffusion

Pioneering models of the ocean circulation, such as Cox and Bryan (1984), were formulated
with the tracer mixing tensor oriented according to the horizontal and vertical directions. These
simulations exhibited problems near strong density fronts, such as those found in western bound-
ary currents. In such regions, the horizontally oriented diffusion spuriously fluxed temperature
and salinity across isopyncnals, thus degrading the strength of the front and leading to, among
other problems, unphysically weak meridional heat transport (Böning et al., 1995). In earlier
work based on tracer measurements, Montgomery (1938), Veronis (1975), and Rooth (1982)
suggested that ocean properties were preferentially homogenized along local potential density
surfaces rather than geopotential surfaces. Such measurements motivated Solomon (1971) and
Redi (1982) to propose rotating the tracer mixing tensor according to neutral directions.

We offer further indirect evidence that mesoscale eddy induced diffusion is preferentially
aligned along neutral directions. For that purpose, consider a diffusive flux that is not aligned
with neutral directions. In this case, diffusive mixing can cause tracer distributions to cross
neutral directions, thus adding to the mixing that is already parameterized from small scale
mixing processes from Section 71.2. As discussed in Section 14.1.5 of Griffies (2004) as well as
Section 1 of McDougall et al. (2014), the extra mixing induced by this non-neutral orientation of
the mesoscale induced diffusive fluxes is proportional to the squared slope between the proposed
new direction and the neutral tangent plane. Estimates based on field measurements for interior
ocean mixing constrain the magnitude of the miss-alignment to be less than 10−4. This number is
very small, indeed it is zero within error bars of field measurements. Although the measurements
are sparse, they do support the use of mesoscale eddy induced diffusive fluxes that are oriented
according to neutral directions. We thus make use of this constraint in designing the diffusion
tensor in the remainder of this section.
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71.4.2 Redi neutral diffusion
One diffusive flux satisfying the property (71.68) is given by

J redi = −ρ κntr [∇C − γ̂ (γ̂ · ∇C)], (71.69)

where κntr > 0 is the eddy neutral diffusivity (dimensions of squared length per time). In Figure
71.4 we illustrate the diffusive flux arising for a particular configuration of the neutral directions
and the tracer concentration.

z

y

x
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J redi = →ω εntr [↑C → ω̂ (ω̂ ·↑C)]

Figure 71.4: Schematic of the Redi neutral diffusion flux, J redi = −ρ κntr [∇C− γ̂ (γ̂ ·∇C)], from equation (71.69).
The sloping lines represent surfaces whose local tangent is in the neutral direction, so that the tracer flux is
aligned parallel to the surfaces. We here depict the case with higher tracer concentration on the right side so that
the downgradient neutral diffusive flux is to the left and upward.

We confirm that J redi is oriented down the tracer gradient by noting that

J redi · ∇C = −ρ κntr

[
|∇C|2 − (γ̂ · ∇C)2

]
≤ 0. (71.70)

We can write the neutral diffusive flux (71.69) in the downgradient flux-gradient relation

J redi = −ρK redi · ∇C, (71.71)

with the neutral diffusion tensor, K redi, given by

K redi = κntr

 1− γ̂2x −γ̂x γ̂y −γ̂x γ̂z
−γ̂x γ̂y 1− γ̂2y −γ̂y γ̂z
−γ̂x γ̂z −γ̂y γ̂z 1− γ̂2x

 =⇒ (K redi)mn = κntr (δ
mn − γ̂m γ̂n). (71.72)

The corresponding neutral diffusion operator is given by the three-dimensional flux convergence

R redi = −∇ · J redi = ∇ · (ρK redi · ∇C). (71.73)

When the neutral surfaces are stably stratified in the vertical, so that their slopes are bounded,
then the diffusion tensor takes the following form originally suggested by Redi (1982), which is
written in terms of the neutral slope

K redi =
κntr

1 + S2

 1 + S2
y −SxSy Sx

−SxSy 1 + S2
x Sy

Sx Sy S2

 . (71.74)
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71.4.3 Small slope neutral diffusion

Another form of the neutral diffusion flux is based on assuming a small magnitude for the slope
of the neutral tangent plane relative to the horizontal, which is the case for most of the ocean
interior even in frontal regions. With this approximation, the small slope neutral diffusion tensor
takes the form

K small = κntr

 1 0 Sx
0 1 Sy
Sx Sy S2

 . (71.75)

The corresponding small slope neutral diffusive flux is

J small = −ρ κntr [∇hγ + ẑ (S · ∇hγ)]C (71.76)

where
∇hγ = ∇h + S ∂z (71.77)

is the horizontal derivative operator computed on the neutral tangent plane (see equation
(63.75)). To show that J small · γ̂ = 0, we make use of the identity (71.19) so that

J small · γ̂ =
J small · S − J small · S

(1 + S2)1/2
= 0. (71.78)

Furthermore, we confirm that J small is oriented down the tracer gradient by noting that

J small · ∇C = −ρ κntr [∇hγC · ∇hC + (S · ∇hγC) ∂zC] (71.79a)

= −ρ κntr

[
|∇hC|2 + 2 (S · ∇hC) ∂zC + |S ∂zC|2

]
(71.79b)

= −ρ κntr |∇hC + S ∂zC|2 (71.79c)

= −ρ κntr |∇hγC|2 (71.79d)

≤ 0. (71.79e)

The small slope approximation was proposed by Cox (1987). However, his form for the small
slope neutral diffusion flux was incorrect as it did not satisfy J small · γ̂ = 0. The corrected form
given by equation (71.76) was first written by Gent and McWilliams (1990). The resulting small
slope neutral diffusion operator is commonly used in ocean climate models (Griffies et al., 1998;
Lemarié et al., 2012), which results from computing the three-dimensional convergence

Rsmall = −∇ · J small = ∇h · (ρ κntr∇hγC) + ∂z(ρ κntr S · ∇hγC). (71.80)

71.4.4 Neutral tangent plane neutral diffusion

A third method to compute neutral diffusion is motivated by the form of isopycnal diffusion in
isopycnal layered models. Rather than isopycnal layers, we work with layers determined locally
by neutral tangent planes. The neutral tangent frame makes use of projected non-orthogonal
generalized vertical coordinates detailed in Chapter 63.

Following the derivations given in Section 63.15, the neutral diffusive flux in the neutral
tangent frame is given by the horizontal flux

J ntp = −ρ κntr∇hγC. (71.81)

This flux is oriented down the tracer gradient as oriented along neutral directions

J ntp · ∇hγC = −ρ κntr |∇hγC|2, (71.82)
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which is the same as equation (71.79d) for the small slope fluxes. However, as a purely horizontal
flux, J ntp is not oriented along neutral directions

J ntp · γ̂ ̸= 0. (71.83)

Nevertheless, rather than computing the neutral diffusion operator as a horizontal convergence
of this flux, the neutral tangent plane diffusion operator is computed by taking the convergence
of J ntp along the neutral tangent plane as per equation (63.100)

Rntp = − 1

hγ
[∇hγ · (hγ J ntp)] =

1

hγ
[∇hγ · (hγ ρ κntr∇hγC)] , (71.84)

where

hγ =
∂z

∂γ
dγ = −

[
g

ρoN2

]
dγ (71.85)

measures the thickness of a layer defined by two neutral tangent planes (see equation (63.97)).

As detailed in Section 63.15, Rntp is identical to the small slope neutral diffusion operator
(71.80)

Rntp = Rsmall. (71.86)

In principle, it is a matter of convenience which form of the operator one uses. However, there are
certain issues to consider when implementing these operators in a numerical model. Notably, a
discrete realization of Rntp allows for a diagonal downgradient implementation of neutral diffusion,
just as isopycnal diffusion in an isopycnal ocean model. In contrast, a discrete realization of either
R redi or Rsmall cannot guarantee downgradient fluxes due to the off-diagonal nature of its neutral
diffusive flux components (Griffies et al. (1998), Beckers et al. (1998), Gnanadesikan (1999),
Beckers et al. (2000) Lemarié et al. (2012), Shao et al. (2020)). As a result, discrete realizations
of R redi or Rsmall can produce extrema, which are distinctly not properties of diffusion in the
continuum (see Exercise 68.3). Hence, even though the continuum identity holds Rntp = Rsmall,
there are important differences that arise upon realizing these operators on a discrete lattice.
Shao et al. (2020) provide further discussion of these points as part of their numerical realization
of neutral diffusion.

71.4.5 Neutrality condition

Given the expression (71.16) for the dianeutral unit vector, γ̂, it is straightforward to show that
the neutral diffusive flux for Conservative Temperature and salinity satisfy the constraints

∇Θ · [−αJ(Θ) + β J(S)] = 0 and ∇S · [−αJ(Θ) + β J(S)] = 0. (71.87)

These constraints are generally satisfied if the diffusive fluxes satisfy the balance

αJ(Θ) = β J(S) =⇒K · γ̂ = 0. (71.88)

We refer to this balance as the neutrality condition. It reflects the vanishing of the neutral
diffusive flux of locally referenced potential density. It is maintained by the diffusive flux
(71.69) of Redi (1982), the small slope flux (71.76) of Gent and McWilliams (1990), and the
neutral tangent frame neutral diffusive flux (71.81). However, it is not maintained by the small
slope fluxes from Cox (1987). Furthermore, Griffies et al. (1998) argued for the importance of
maintaining this balance to avoid a nonlinear instability plaguing certain numerical realizations
of neutral diffusion such as that from Cox (1987).
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71.4.6 Symmetry condition

Since the neutral diffusion tensor is symmetric (as are all diffusion tensors), we have

J(Θ) · ∇S = −κntr ρK
mn∂nΘ ∂mS (71.89a)

= −κntr ρK
nm ∂nS ∂mΘ (71.89b)

= −κntr ρK
nm ∂nS ∂mΘ (71.89c)

= J(S) · ∇Θ. (71.89d)

This symmetry condition holds for for any of the diffusion tensors introduced in this chapter. It
is particularly useful in our discussion of cabbeling and thermobaricity in Section 72.3.

71.4.7 GM skewsion plus small slope neutral diffusion

A parameterization of mesoscale eddy stirring and mixing often appears in geopotential coordinate
ocean models in the form of GM skewsion (Section 71.3.1) and small slope neutral diffusion
(Section 71.4.3). The combined tracer flux takes the form

ρ−1 J = −κntr∇hC − (κntr − κgm)S ∂zC − ẑ [(κntr + κgm)S · ∇hC + κntr S
2 ∂zC], (71.90)

which can be written in terms of a subgrid scale transport tensor

ρ−1

 Jx

Jy

Jz

 = −

 κntr 0 (κntr − κgm)Sx
0 κntr (κntr − κgm)Sy

(κntr + κgm)Sx (κntr + κgm)Sy κntr S
2

 ∂xC
∂yC
∂zC

 . (71.91)

In the 1990s and throughout much of the 2000s, it was common to assume that κntr = κgm, in
which case the combined mixing tensor is

K small +Agm = κntr

 1 0 0
0 1 0

2Sx 2Sy S2

 if κntr = κgm, (71.92)

so that the subgrid scale flux simplifies to

ρ−1 J = −κntr∇hC − ẑ κntr (2S · ∇hC + S2 ∂zC) if κntr = κgm. (71.93)

Notably, the 2× 2 horizontal mixing tensor is diagonal. Hence, the horizontal tracer flux is the
same as that which arises from downgradient horizontal tracer diffusion. The simplicity of the
horizontal flux component was alluring to modelers. It was furthermore argued by Dukowicz and
Smith (1997) to be a fundamental property of mesoscale turbulence. However, as emphasized
through the works of Treguier et al. (1997), Ferrari et al. (2008), Danabasoglu et al. (2008), and
Ferrari et al. (2010), the boundary conditions for neutral diffusion and GM skewsion are distinct,
thus breaking their symmetry. Furthermore, studies such as Smith and Marshall (2009) and
Abernathey et al. (2013) clearly point to the distinct vertical structure for the two diffusivities.
Such distinctions are expected since the skew diffusivity and neutral diffusivity parameterize
physically distinct processes: one parameterizes the quasi-Stokes transport, associated with
velocity and layer thickness correlations, whereas the other parameterizes downgradient diffusion
along neutral directions, associated with velocity and tracer correlations.
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71.4.8 Generalized vertical coordinates
Thus far we have considered neutral diffusion as realized in geopotential coordinates or using
neutral tangent plane coordinates. Here, we detail the steps needed to realize neutral diffusion
using the generalized vertical coordinates (GVCs) detailed in Chapters 63 and 64. This formula-
tion is relevant for the now common use of generalized vertical coordinates for ocean modeling
as reviewed by Griffies et al. (2020).
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θ(γ/z)
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θ(σ/z)

θ(γ/σ)
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generalize
d vertic
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x horizontal plane

Figure 71.5: Slopes of a neutral tangent plane (denoted by γ) relative to both the horizontal plane, tan θ(γ/z),
and relative to a generalized vertical coordinate isoline, tan θ(γ/σ), where σ is a generalized vertical coordinate.
We assume positive angles as measure counter-clockwise relative to the horizontal and relative to the σ-isoline,
respectively. Hence, for this example, θ(γ/z) > 0 yet θ(γ/σ) < 0. When extending to the two horizontal directions,
the slopes generally satisfy S(σ/z) = S(γ/z) − S(γ/σ), where |S(γ/z)| = | tan θ(γ/z)| and |S(γ/σ)| = | tan θ(γ/σ)|.
Note that this relation between slope vectors also holds for arbitrary orientations of the σ isolines and neutral
tangent planes.

Start by recalling the expression (63.99) for a general diffusion operator written in terms of
the generalized vertical coordinate, σ = σ(x, y, z, t)

R = − 1

hσ
[∇hσ · (hσ J h) + δσ(zσ∇σ · J)] , (71.94)

where δσ ≡ dσ ∂σ is the dimensionless derivative operator, and the thickness of a σ-layer is

hσ = dz = zσ dσ =
∂z

∂σ
dσ. (71.95)

Now assume the flux, J , is given by equation (71.76) for small slope neutral diffusion. Trans-
forming to generalized vertical coordinates leads to the horizontal flux component

Jhsmall = −ρ κntr∇hγC (71.96a)

= −ρ κntr [∇h + (∇hγz) ∂z]C (71.96b)

= −ρ κntr [∇hσ + (−∇hσz +∇hγz) ∂z]C (71.96c)

= −ρ κntr [∇hσ + (−S(σ/z) + S(γ/z)) ∂z]C (71.96d)

= −ρ κntr (∇hσ + S(γ/σ) ∂z)C, (71.96e)

where the neutral slopes as shown in Figure 71.5 satisfy the identity

S(σ/z) = S(γ/z) − S(γ/σ). (71.97)

Furthermore, we made use of the identity (63.75) relating the partial derivative operators

∇hγ = ∇h + (∇hγz) ∂z and ∇h = ∇hσ − (∇hσz) ∂z. (71.98)

The horizontal flux (71.96e) has the same form as when written using geopotential coordinates,
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only now with the derivative operator ∇hσ and the slope S(γ/σ). Correspondingly, the vertical
flux component

Jzsmall = Jhsmall · S(γ/z) (71.99)

takes the form
zσ∇σ · J small = −S(σ/z) · Jhsmall + Jzsmall = Jhsmall · S(γ/σ), (71.100)

which in turn yields the diffusion operator (71.94)

R = − 1

hσ

[
∇hσ · (hσ Jhsmall) + δσ(J

hsmall · S(γ/σ))
]
. (71.101)

In the special case when σ is parallel to the neutral direction so that S(γ/σ) = 0, the diffusion
operator (71.101) reduces to the neutral tangent plane version given by equation (71.84).

71.5 Anisotropic neutral diffusion

The neutral diffusion discussed in Section 71.4 is based on isotropic diffusion in the neutral
tangent plane. That assumption has been questioned by Smith and Gent (2004) and Fox-Kemper
et al. (2013). We here develop some of the formalism appropriate for studying anisotropic neutral
diffusion.

71.5.1 Orthonormal triad of basis vectors

We make use of the following orthonormal unit vectors7 as depicted in Figure 71.6

ê1 =
d̂× γ̂
|d̂× γ̂|

(71.102a)

ê2 =
γ̂ × (d̂× γ̂)
|d̂× γ̂|

=
d̂− (γ̂ · d̂) γ̂
|d̂× γ̂|

(71.102b)

ê3 = γ̂ (71.102c)

where
d̂ = x̂ d̂x + ŷ d̂y + ẑ d̂z (71.103)

is an arbitrary unit vector that is not parallel to γ̂. The three unit vectors (ê1, ê2, ê3) form an
orthonormal triad at each point in the fluid so that

ê1 = ê2 × ê3 and ê2 = ê3 × ê1 and ê3 = ê1 × ê2. (71.104)

These vectors are oriented by the arbitrary direction, d̂, and the dianeutral direction, γ̂. We
verify that ê2 has unit magnitude by noting that

|d̂× γ̂|2 = |γ̂ × (d̂× γ̂)|2 = 1− (d̂ · γ̂)2. (71.105)

It is also useful to verify that ê3 = ê1 × ê2 through the following vector identity (see equation
(1.71g))

(d̂× γ̂)× [γ̂ × (d̂× γ̂)] = γ̂ |d̂× γ̂|2. (71.106)

7The basis vectors (71.102a)-(71.102c) are more suitable for present purposes than the analogous basis vectors
defined by equations (14.4)-(14.6) in Griffies (2004). In particular, the basis (71.102a)-(71.102c) has a sensible
limit when the neutral slopes are horizontal, in which γ̂ = −ẑ.
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The unit vectors ê1 and ê2 are both within the neutral tangent plane since they are both
orthogonal to γ̂.

The unit vector ê1 is orthogonal to d̂ whereas ê2 is parallel to d̂ if d̂ · γ̂ = 0. For example,

Smith and Gent (2004) proposed setting d̂ to be a horizontal vector set according to the local
horizontal flow direction, in which case

d̂ =
u x̂+ v ŷ

(u2 + v2)1/2
. (71.107)

With γ̂ nearly vertical for much of the ocean interior, then ê2 becomes nearly aligned with d̂.

For these reasons we refer to ê1 as the across-d̂ direction and ê2 as the along-d̂ direction.
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<latexit sha1_base64="4M2onjIwWhNGo6ybDodazNktZK0=">AAACGnicbVDLSsNAFJ34rPUVdaebwSK4KokUdVl047KCfUATwmQ6aYfOZMLMRCgh4Ie4dqvf4E7cuvET/AsnbRba9sDA4Zxz73BPmDCqtON8Wyura+sbm5Wt6vbO7t6+fXDYUSKVmLSxYEL2QqQIozFpa6oZ6SWSIB4y0g3Ht4XffSRSURE/6ElCfI6GMY0oRtpIgX3sjZDOvJBDkgeZJ0y2WJW5eR7YNafuTAEXiVuSGijRCuwfbyBwykmsMUNK9V0n0X6GpKaYkbzqpYokCI/RkPQNjREnys+mN+TwzCgDGAlpXqzhVP07kSGu1ISHJsmRHql5rxCXeiFfJvdTHV37GY2TVJMYz/6PUga1gEVPcEAlwZpNDEFYUnMCxCMkEdamzarpxp1vYpF0LuruZb1x36g1b8qWKuAEnIJz4IIr0AR3oAXaAIMn8AJewZv1bL1bH9bnLLpilTNH4B+sr1+ZWqFr</latexit>

ê1
<latexit sha1_base64="AIe/hetugW5n2tQ9GT6NZ1wmE24=">AAACGnicbVDLSgMxFM3UV62vUXe6CRbBVZkpRV0W3bisYB/QGYZMmrahSWZIMkIZBvwQ1271G9yJWzd+gn9hpp2Ftj0QOJxz7g33hDGjSjvOt1VaW9/Y3CpvV3Z29/YP7MOjjooSiUkbRyySvRApwqggbU01I71YEsRDRrrh5Db3u49EKhqJBz2Nic/RSNAhxUgbKbBPvDHSqRdySLIg9SKTzVel9SwL7KpTc2aAy8QtSBUUaAX2jzeIcMKJ0JghpfquE2s/RVJTzEhW8RJFYoQnaET6hgrEifLT2Q0ZPDfKAA4jaZ7QcKb+nUgRV2rKQ5PkSI/VopeLK72Qr5L7iR5e+ykVcaKJwPP/hwmDOoJ5T3BAJcGaTQ1BWFJzAsRjJBHWps2K6cZdbGKZdOo197LWuG9UmzdFS2VwCs7ABXDBFWiCO9ACbYDBE3gBr+DNerberQ/rcx4tWcXMMfgH6+sXmvehbA==</latexit>

ê2

<latexit sha1_base64="f8M6FPtSPj/FqSnDqQbOfDoN7JI=">AAACCXicbZDLSgMxGIX/qbdab1WXboJFcFVmpKjLohuXFewFpkPJpJk2NMkMSUaoQ5/AtVt9Bnfi1qfwEXwL03YW2vZA4OOc/yfJCRPOtHHdb6ewtr6xuVXcLu3s7u0flA+PWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2Ho9tp3n6kSrNYPphxQgOBB5JFjGBjLb87xCbrhgI9TXrlilt1Z0LL4OVQgVyNXvmn249JKqg0hGOtfc9NTJBhZRjhdFLqppommIzwgPoWJRZUB9nsyRN0Zp0+imJljzRo5v7dyLDQeixCOymwGerFbGquzEKxyvZTE10HGZNJaqgk8/ujlCMTo2ktqM8UJYaPLWCimP0CIkOsMDG2vJLtxltsYhlaF1Xvslq7r1XqN3lLRTiBUzgHD66gDnfQgCYQiOEFXuHNeXbenQ/ncz5acPKdY/gn5+sXnZuaeQ==</latexit>

ẑ

Figure 71.6: Depicting the orthonormal triad of basis vectors given by equations (71.102a)-(71.102c). Our
convention is such that γ̂ typically points downward toward increasing density. The unit vector d̂ is arbitrary so
long as it is not parallel to the dianeutral unit vector, γ̂. It is horizontal when making use of the Smith and Gent
(2004) proposal whereby d̂ = u/|u|, with u = x̂u+ ŷ v the horizontal velocity vector. Since ê1 is orthogonal to d̂,
we refer to ê1 as the cross-d̂ basis vector. Likewise, since ê2 is nearly parallel to d̂, especially when d̂ is close to
horizontal and γ̂ is close to vertical (e.g., Section 71.5.4), then ê2 is referred to as the along-d̂ basis vector.

71.5.2 Anisotropic neutral diffusion tensor

We consider anisotropy according to the unit vectors ê1 and ê2. Hence, the diffusion tensor as
represented using the locally orthogonal triad (ê1, ê2, ê3) is given by

Kaniso =

 κcross 0 0
0 κalong 0
0 0 0

 , (71.108)

where κcross > 0 and κalong > 0 are the generally distinct neutral diffusivities. This tensor takes on
the component form

(Kaniso)mn = κcross ê
m
1
ên
1
+ κalong ê

m
2
ên
2

(71.109a)

= κcross (δ
mn − êm

2
ên
2
− êm

3
ên
3
) + κalong (δ

mn − êm
1
ên
1
− êm

3
ên
3
), (71.109b)

where the second expression made use of the following decomposition of the unit tensor in terms
of the orthonormal basis vectors

δmn = êm
1
ên
1
+ êm

2
ên
2
+ êm

3
ên
3
. (71.110)

Note that (Kaniso)mn is invariant under d̂ → −d̂. Likewise, it is invariant under a change in
the sign of γ̂. Furthermore, note that we recover the isotropic Redi diffusion tensor (71.72) by
setting κcross = κalong = κntr and in which case

(Kaniso)mn = 2κntr (δ
mn − êm

3
ên
3
)− κntr (ê

m
1
ên
1
+ êm

2
ên
2
) (71.111a)

= κntr (δ
mn − êm

3
ên
3
) (71.111b)
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= (K redi)mn (71.111c)

To render a geopotential-Cartesian representation of the anisotropic diffusion tensor, we can
make use of the transformation methods for Cartesian tensors developed in Section 1.10. We do
so by transforming from the locally orthogonal neutral plane coordinate system, defined by the
orthonormal triad (71.102a)-(71.102c), to the geopotential-Cartesian coordinate system, defined
by the Cartesian triad

ê1 = x̂ and ê2 = ŷ and ê3 = ẑ. (71.112)

Since we are working with Cartesian tensors, this transformation is a local rotation matrix, R,
so that8

(Kaniso)mn = Rm
mRn

n (K
aniso)mn =⇒Kaniso = RKaniso RT , (71.113)

where the second equality made use of matrix notation with RT the transpose, and where the
elements to the rotation matrix are given by the direction cosines following equation (1.87)

R =

 ê1 · ê1 ê1 · ê2 ê1 · ê3
ê2 · ê1 ê2 · ê2 ê2 · ê3
ê3 · ê1 ê3 · ê2 ê3 · ê3

 =

 x̂ · ê1 x̂ · ê2 x̂ · ê3
ŷ · ê1 ŷ · ê2 ŷ · ê3
ẑ · ê1 ẑ · ê2 ẑ · ê3

 . (71.114)

The machinery outlined here for the transformation is straightforward but tedious (i.e., two matrix
multiplies). A more streamlined approach, also used for determining the Cartesian components to
the Redi tensor (71.74), is to simply express (ê1, ê2, ê3) using geopotential-Cartesian coordinates
and then plug directly into equation (71.109b).

71.5.3 Properties of the anisotropic neutral diffusive fluxes

We here verify some standard properties for the anisotropic neutral diffusive flux for tracers

J aniso = −ρKaniso · ∇C. (71.115)

Downgradient orientation within the neutral tangent plane

By construction, the flux is downgradient along the two orthogonal directions, ê1 and ê2,

J aniso = −ρ κcross ê1 (ê1 · ∇C)− ρ κalong ê2 (ê2 · ∇C). (71.116)

Furthermore, the flux is within the neutral tangent plane

J aniso · γ̂ = 0 (71.117)

due to orthogonality between the basis vectors

ê1 · γ̂ = ê2 · γ̂ = 0. (71.118)

Neutrality condition

The neutrality condition (71.88) follows since

(−α∇Θ+ β∇S) · ê1 = (−α∇Θ+ β∇S) · ê2 = 0, (71.119)

8Since we are dealing with Cartesian tensors there is no distinction between raised or lowered tensor indices
in equation (71.113). We choose to follow the convention of general tensors in Chapters 3 and 4 simply to help
organize elements of the tensor.
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so that
αJ aniso(Θ) = β J aniso(S). (71.120)

71.5.4 Small slope anisotropic neutral diffusion

We now consider the special case in which the orientation direction, d̂, is strictly horizontal and
normalized so that

d̂ · d̂ = d̂2x + d̂2y = 1. (71.121)

Additionally, we assume the neutral slope is small so that the neutral directions are nearly
horizontal. In this case the basis vectors (71.102a)-(71.102c) take on the following form valid to
O(|S|)

ê1small
= d̂× (S − ẑ) (71.122a)

ê2 = d̂+ ẑ (d̂ · S) (71.122b)

ê3small
= S − ẑ. (71.122c)

Note that ê3small
is orthogonal to ê1small

and ê2small
, however ê1small

· ê2small
is O(S · S). Likewise,

each of these vectors is normalized only to O(S · S).
Making use of the small slope basis vectors in the anisotropic diffusion tensor (71.109a),

and expressing them in geopotential-Cartesian coordinates leads to the small slope anisotropic
neutral diffusion tensor9

K smallaniso = κcross

 1 0 Sx
0 1 Sy
Sx Sy S · S

+∆κntr

 d̂2x d̂x d̂y (d̂ · S) d̂x
d̂x d̂y d̂2y (d̂ · S) d̂y

(d̂ · S) d̂x (d̂ · S) d̂y (d̂ · S)2

 , (71.123)

where
∆κntr = κalong − κcross. (71.124)

As for the unapproximated anisotropic neutral diffusion tensor (71.109a), its small slope version,
Ksmall aniso, is invariant if we swap the direction d̂→ −d̂. Furthermore, in the form (71.123) we
trivially see that K smallaniso =K small (equation (71.75)) in the isotropic limit where κcross = κalong =
κntr.

The anisotropic small slope neutral diffusive flux is given by

Jhsmallaniso = −ρK smallaniso · ∇C, (71.125)

with horizontal and vertical components

Jhsmallaniso = −ρ κcross∇hγC − ρ∆κntr d̂ (d̂ · ∇hγ)C (71.126a)

Jzsmallaniso = S · Jhsmallaniso, (71.126b)

where ∇hγ = ∇h + S ∂z is the horizontal operator as per equation (71.77). By making use of the
expression (71.19), γ̂ = (S − ẑ) (1 + S2)−1/2, we readily find that

Jhsmallaniso · γ̂ = 0. (71.127)

Similarly, we can verify that the neutrality condition (Section 71.4.5) is maintained

K smallaniso · γ̂ = 0 =⇒ αJhsmallaniso(Θ) = β Jhsmallaniso(S). (71.128)

9Equation (71.123) agrees with equations (10) and (14) from Smith and Gent (2004).
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Finally, as per the discussion in Section 71.4.4, we can evaluate the small slope anisotropic
neutral diffusion operator by following the non-orthogonal neutral tangent approach rather than
the three-dimensional Cartesian approach. It is the non-orthogonal neutral tangent approach
that is appropriate for vertical Lagrangian ocean models such as detailed in Griffies et al. (2020)
and Shao et al. (2020).

71.6 Anisotropic Gent-McWilliams stirring

In addition to proposing the use of a small slope anisotropic neutral diffusion tensor (equation
(71.123)), Smith and Gent (2004) proposed a complementary anisotropic version of the Gent-
McWilliams stirring. We here detail the parameterization, again assuming the orientation
direction, d̂, is horizontal

d̂ = x̂ d̂x + ŷ d̂y, (71.129)

just as assumed when discussing the anisotropic small slope neutral diffusion operator in Section
71.5.4.

71.6.1 Streamfunction and anti-symmetric tensor

The parameterized eddy-induced streamfunction is generalized from that in equation (71.28) to
read

Ψ∗ = ẑ × κgmcross S + ẑ × (κgmcross − κgmalong) (d̂ · S) d̂, (71.130)

and the corresponding anti-symmetric stirring tensor is

Agmaniso = κgmcross

 0 0 −Sx
0 0 −Sy
Sx Sy 0

+∆κgm (d̂ · S)

 0 0 −d̂x
0 0 −d̂y
d̂x d̂y 0

 , (71.131)

where
∆κgm = κgmalong − κgmcross. (71.132)

As for the small slope anisotropic neutral diffusion tensor (71.123), we write the skew tensor
Agmaniso in equation (71.131) in a form that manifestly reduces to the isotropic Gent-McWilliams
stirring tensor Agm when κgmalong = κgmcross = κgm.

71.6.2 Anisotropic Gent-McWilliams skew tracer flux

The anisotropic Gent-McWilliams skew tracer flux is

Jgm-aniso = −ρAgmaniso · ∇C (71.133a)

= ρ κgmcross [S ∂zC − ẑ (S · ∇hC)] + ρ∆κgm (d̂ · S) [d̂ ∂zC − ẑ (d̂ · ∇hC)]. (71.133b)

When acting on locally referenced potential density, C = γ, the flux reduces to

Jgm-aniso = ρ κgmcross [−∇hγ + ẑ S2 ∂zγ] + ρ∆κgm (d · S) [d̂+ ẑ (d̂ · S)] ∂zγ. (71.134)

As discussed in Section 71.3.3, a negative vertical component to the potential density skew flux
ensures that the available potential energy is dissipated,

ẑ · Jgm-aniso = ρ [κgmcross S
2 +∆κgm (d · S)2] ∂zγ < 0 =⇒ APE dissipated. (71.135)
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Stably stratified water means that ∂zγ < 0, in which case ẑ · Jgm-aniso < 0 since

κgmcross S
2 +∆κgm (d · S)2 = κgmcross [S

2 − (d̂ · S)2] + κgmalong (d̂ · S)2 > 0. (71.136)

71.6.3 Anisotropic GM skewsion plus small slope neutral diffusion

As noted in Section 71.4.7, there are strong reasons to keep the Gent-McWilliams skew flux
parameterization distinct from the neutral diffusion parameterization. The central practical
reason for the distinction concerns their different treatment of boundary conditions and generally
distinct diffusivities. Even so, we here briefly comment on the special case where we ignore these
distinctions and set the skew flux diffusivities equal to the neutral diffusivities

κgmcross = κcross and κgmalong = κalong. (71.137)

This is the approach assumed by Smith and Gent (2004). With the small slope approximation
to neutral diffusion, we find the combined anisotropic mixing tensor becomes

K smallaniso +Agmaniso =

κcross

 1 0 0
0 1 0

2Sx 2Sy S · S

+∆κ

 d̂2x d̂x d̂y 0

d̂x d̂y d̂2y 0

2 (d̂ · S) d̂x 2 (d̂ · S) d̂y (d̂ · S)2

 . (71.138)

The vanishing right hand column terms simplifies the horizontal tracer fluxes computed from
this tensor. However, again, this formulation lacks is inconsistent with theory that supports the
distinct treatments of the skew flux and neutral flux.

71.6.4 A parameterization based on a boundary value problem

We now follow the approach from Section 71.3.8 to develop a boundary value problem version of
the anisotropic Gent-McWilliams stirring. For this purpose we consider the vertical boundary
value problem

(c2 ∂zz −N2)Υ = −N2Υgmaniso and Υ(ηb) = Υ(η) = 0, (71.139)

where (see equation (71.130))

Υgmaniso = κgmcross S + ẑ ×∆κgm (d̂ · S) d̂. (71.140)

As in Section 71.3.8, we deduce the impacts on potential energy (assuming a linear equation of
state) via the vertical component of the potential density skew flux,

1

g

dP

dt
=

1

ρo

ˆ
Jz dV = −

ˆ
∇hϱ ·ΥdV. (71.141)

The governing differential equation (71.139) leads to

Υ · (c2 ∂zz −N2)Υ = −N2Υ ·Υgmaniso (71.142)

which rearranges to

N2Υ ·Υgmaniso = −c2 ∂z(Υ · ∂zΥ) + c2 ∂zΥ · ∂zΥ+N2Υ ·Υ. (71.143)
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Integrating over a vertical column and making use of the homogeneous Dirichlet boundary
conditions in equation (71.139) leads to

g

ρo

ˆ
Υ · ∇hϱdz = −

ˆ
N2∆κgm(d̂ · S) (d̂ ·Υ) dz +

ˆ [
c2 ∂zΥ · ∂zΥ+N2Υ ·Υ

]
dz, (71.144)

which can be rearranged into the equivalent form

g

ρo

ˆ
Υ · ∇hϱdz

=

ˆ [
c2 ∂zΥ · ∂zΥ+N2 (Υ ·Υ− (d̂ ·Υ)2)

]
dz︸ ︷︷ ︸

positive semi-definite

+

ˆ
N2 (d̂ ·Υ) d̂ · (Υ− S∆κgm) dz.︸ ︷︷ ︸

sign indefinite

(71.145)

The first term on the right hand side is positive semi-indefinite whereas the second term is sign
indefinite. If the second term is positive, or smaller in magnitude than the first term, then the
parameterization provides a column integrated sink of potential energy. Otherwise, potential
energy for the column can increase. There are no existing numerical implementations of this
scheme to determine its suitability for realistic ocean climate simulations.

CHAPTER 71. ELEMENTS OF PARAMETERIZED OCEAN TRACER TRANSPORT page 2015 of 2158



71.6. ANISOTROPIC GENT-MCWILLIAMS STIRRING

page 2016 of 2158 geophysical fluid mechanics



Chapter 72

OCEAN DENSITY AND SEA LEVEL

Conservative temperature, Θ, is the preferred means to measure the transport of enthalpy in
the ocean (Section 26.11), and salinity, S, measures the concentration of dissolved salt matter.
These two scalar fields are referred to as active tracers as they both impact density and in turn
affect pressure and ocean currents. In this chapter we study how the evolution of Θ and S
affects density as well as buoyancy. As part of this study, we examine how to compute air-sea
bouyancy fluxes.

Θ and S are conservative tracers so that the net changes in potential enthalpy and salt over
the global ocean domain arise from net imbalances in their boundary fluxes. Likewise, ocean
mass is a conserved field, with global mass changes arising from imbalances in boundary mass
fluxes such as those occuring from increases in land ice melt. However, ocean volume, and hence
ocean density and buoyancy, are not conserved fields. Consequently, ocean volume can change
even if there is no net volume transferred to the ocean. These points have direct impact on
how global mean sea level is affected by ocean processes such as mixing and heating, with the
rudiments presented in this chapter.

chapter guide

Basic notions of thermodynamics, such as Section 26.11, motivate the use of Conservative
Temperature, Θ, as a measure of ocean enthalpy transfer, rather than in situ temperature
or potential temperature. We also make use of the ideas of parameterized turbulent
mixing discussed in Chapters 68 and 71 when formulating the budget equations for Θ
and S. We use Cartesian tensors to reduce the mathematical overhead. Also note that
we use subscripts on specific volume, ν, and density, ρ, for partial derivatives with respect
to Θ and S. This is the only chapter in this book that makes use of subscript notation
for partial derivatives, and we only use it for thermodynamic derivatives.
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72.1 Loose threads
• Schematics for cabbeling and thermobarocity.

72.2 Material evolution of in situ density
Changes to the in situ density of seawater affects pressure forces in the ocean as well as the
volume occupied by the ocean fluid (i.e., sea level). As discussed in Section 30.3.2, we write the
seawater equation of state for density as a function of salinity, S, and Conservative Temperature,
Θ, where Conservative Temperature is the potential enthalpy divided by a constant heat capacity
(see Section 26.11.3 and McDougall (2003); IOC et al. (2010)). We thus make use of the empirical
relation for the seawater density in the functional form

ρ = ρ(S,Θ, p), (72.1)

where S is the salinity rather than the salt concentration (S = 1000S).

We formulate the material evolution of density as weighted by the specific volume1

ν = ρ−1, (72.2)

so that we study

D ln ρ

Dt
=
∂ ln ρ

∂Θ

DΘ

Dt
+
∂ ln ρ

∂S

DS

Dt
+
∂ ln ρ

∂p

Dp

Dt
(72.3a)

= −α DΘ

Dt
+ β

DS

Dt
+

ṗ

ρ c2s
. (72.3b)

1In other chapters we write the specific volume as νs = 1/ρ to distinguish it from ν that is used for kinematic
viscosity. However, in this chapter we write ν = 1/ρ to enable a shorthand for partial derivatives as defined by
equation (72.8). We have no use kinematic viscosity in this chapter.
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In this equation we introduced the thermal expansion coefficient, the haline contraction
coefficient, the squared speed of sound, and the vertical pseudo-velocity in pressure

α = −
[
∂ ln ρ

∂Θ

]
p,S

β =

[
∂ ln ρ

∂S

]
p,Θ

c2s =

[
∂p

∂ρ

]
S,Θ

ṗ =
Dp

Dt
. (72.4)

For the the remainder of this section we unpack the processes contributing to the density material
time evolution appearing in equation (72.3).

72.2.1 Material changes to pressure

To garner some exposure to the physics of ṗ as it appears in equation (72.3), we consider the
special case of a hydrostatic fluid, where the volume per time per horizontal area of fluid crossing
a surface of constant hydrostatic pressure is given by (see Section 64.3.6)

w(p) =
∂z

∂p

Dp

Dt
= −(ρ g)−1 ṗ. (72.5)

The transport measured by w(p) is the pressure-coordinate analog of the vertical velocity
component, w = Dz/Dt, that arises in a geopotential coordinate representation of the vertical.
That is, fluid moving into regions of increasing hydrostatic pressure (ṗ > 0) represents downward
movement of fluid, with w(p) < 0 in this case. Conversely, motion into decreasing hydrostatic
pressure represents upward motion, with w(p) > 0. This vertical movement generally occurs in
the presence of waves, currents, and mixing; i.e., both reversible and irreversible processes give
rise to vertical motion.

72.2.2 Material changes to Θ and S

We now focus on the salinity and temperature contributions to the evolution of in situ density.
To do so, assume that the material evolution of Θ and S are given by the convergence of a
subgrid scale flux

ρ
DΘ

Dt
= −∇ · J (Θ) (72.6a)

ρ
DS

Dt
= −∇ · J (S). (72.6b)

The Conservative Temperature equation (72.6a) was derived in Section 26.11, whereas the
Absolute Salinity equation (72.6b) follows from our derivation of the tracer equation in Section
20.1.2

72.2.3 General expression for density changes

The expressions (72.6a) and (72.6b) for material changes in Θ and S then lead to

−α DΘ

Dt
+ β

DS

Dt
= νΘ∇ · J (Θ) + νS ∇ · J (S) (72.7a)

= ∇ · [νΘ J (Θ) + νS J
(S)]−

[
J (Θ) · ∇νΘ + J (S) · ∇νS

]
(72.7b)

2We here ignore remineralization processes that can contribute to a source term in the salinity equation
(72.6b). Such source terms are discussed in IOC et al. (2010).
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where again ν = ρ−1 is the specific volume and its partial derivatives are written

νΘ =
∂ν

∂Θ
=
α

ρ
and νS =

∂ν

∂S
= −β

ρ
. (72.8)

Bringing the above results together leads to the density equation

D ln ρ

Dt
− ṗ

ρ c2s
= ∇ · [νΘ J (Θ) + νS J

(S)]−
[
J (Θ) · ∇νΘ + J (S) · ∇νS

]
, (72.9)

which has the equivalent form

Dρ

Dt
− ṗ

c2s
= ∇ · [αJ (Θ) − β J (S)]−

[
J (Θ) · ∇α− J (S) · ∇β

]
. (72.10)

We brought the source term from motion across pressure surfaces (Section 72.2.1) onto the left
hand side, as this term appears in the absence of subgrid processes. The first term on the right
hand side represents the divergence of a buoyancy flux due to subgrid scale fluxes of Conservative
Temperature and salinity. In turn, density increases in regions where the buoyancy flux diverges
(e.g., Θ reducing and S increasing). These fluxes arise from a variety of mixing processes, some of
which are surveyed in Section 71.1.1. The second term on the right hand side of equations (72.9)
and (72.10) relates to properties of the locally referenced potential density surface. We study
this source term in Section 72.3 as it appears from the neutral diffusion process. Further effects
arise from unresolved eddy-induced stirring, with that process contributing to the material time
derivative operator to render a residual mean velocity (Section 71.1.4).

72.2.4 Unpacking the subgrid contributions

Recall from Section 71.1 that the subgrid scale fluxes are generally written in terms of a second
order eddy transport tensor, E, so that

J (Θ) = −ρE · ∇Θ and J (S) = −ρE · ∇S. (72.11)

Furthermore, E is typically decomposed as in equation (71.8) into a symmetric downgradient
diffusion tensor, K, and an anti-symmetric skew diffusion (or stirring) tensor, A,

E =K +A. (72.12)

We decompose the contributions to density according to these subgrid tensors using the following
manipulations

Dρ

Dt
− ṗ

c2s
= α∇ · J (Θ) − β∇ · J (S) (72.13a)

= −α∇ · (ρE · ∇Θ) + β∇ · (ρE · ∇S). (72.13b)

Expanding the Θ term leads to

α∇ · J (Θ) = −α∇ · (ρE · ∇Θ) (72.14a)

= −α∇ · (ρA · ∇Θ)− α∇ · (ρK · ∇Θ) (72.14b)

= −α∇ · (ρA) · ∇Θ− α∇ · (ρK · ∇Θ), (72.14c)

= −α v∗ · ∇Θ− α∇ · (ρK · ∇Θ). (72.14d)
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To reach this result we made use of the identities

∇ · (ρA · ∇Θ) = ∂m(ρA
mn ∂nΘ) expose tensor indices (72.15a)

= ∂m(ρA
mn) ∂nΘ+ ρAmn ∂m∂nΘ product rule (72.15b)

= ∂m(ρA
mn) ∂nΘ Amn ∂m∂nΘ = 0 (72.15c)

= −ρv∗ · ∇Θ ∂m(ρA
mn) = −ρ v∗n. (72.15d)

In the final equality we introduced the density weighted eddy-induced velocity, ρv∗, defined by
equation (71.11). The same manipulations for the salinity term lead to

Dρ

Dt
− ṗ

c2s
+ ρv∗ · (−α∇Θ+ β∇S) = −α∇ · (ρK · ∇Θ) + β∇ · (ρK · ∇S). (72.16)

We can write this expression in terms of the residual mean material time operator

D†

Dt
= ∂t + v

† · ∇ =
D

Dt
+ v∗ · ∇ (72.17)

through adding and subtracting c−2
s v∗ · ∇p

ρv∗·(−α∇Θ+β∇S) = v∗·(−ρα∇Θ+ρ β∇S+c−2
s ∇p)−c−2

s v∗·∇p = v∗·(∇ρ−c−2
s ∇p), (72.18)

which then leads to

Dρ

Dt
− ṗ

c2s
+ ρv∗ · (−α∇Θ+ β∇S) = D†ρ

Dt
− 1

c2s

D†p

Dt
, (72.19)

so that
D†ρ

Dt
− 1

c2s

D†p

Dt
= −α∇ · (ρK · ∇Θ) + β∇ · (ρK · ∇S). (72.20)

Transport from the symmetric tensor, K, corresponds to diffusion so long as the tensor is
positive definite. The diffusion operator in the residual mean evolution equation (72.20) can be
written

− α∇ · (ρK · ∇Θ) + β∇ · (ρK · ∇S)
= ∇ · [ρK · (−α∇Θ+ β∇S)] + ρ∇α ·K · ∇Θ− ρ∇β ·K · ∇S, (72.21)

so that the in situ density evolves according to

D†ρ

Dt
− 1

c2s

D†p

Dt
= −∇ · [ρK · (α∇Θ− β∇S)]︸ ︷︷ ︸

conservative processes

+ ρ∇α ·K · ∇Θ− ρ∇β ·K · ∇S.︸ ︷︷ ︸
sources from nonlinear EOS processes

(72.22)

We now discuss the physical processes associated with the right hand side terms.

• linear equation of state: A linear equation of state has ∇α = ∇β = 0 and is
independent of pressure, so that the evolution equation (72.22) takes the form

D†ρ

Dt
= −∇ · [ρK · (α∇Θ− β∇S)] . (72.23)

Under the residual mean transport with a linear equation of state, density remains
materially constant in the absence of any diffusion.

• nonlinear equation of state: A nonlinear equation of state is characterized by spatially
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dependent thermal expansion and haline contraction coefficients. Mixing of Θ and S in the
presence of a nonlinear equation of state generally gives rise to material evolution of in situ
density through cabbeling and thermobaricity (McDougall , 1987b). We offer a summary of
these processes in Section 72.3.

• neutral diffusion:

Neutral diffusion from Section 71.4 maintains a density-compensated diffusive flux of Θ
and S so that

Kneutral · (α∇Θ− β∇S) = 0. (72.24)

Hence, neutral diffusion leaves in situ density changed only via the nonlinear equation of
state processes.

• isotropic small scale diffusion:

As discussed in Section 71.1.3, it is common to parameterize fine scale mixing processes
using an isotropic diffusivity so that the diffusion tensor is given by

K iso = κ I, (72.25)

where I is the unit tensor and κ > 0 is the isotropic eddy diffusivity.

72.2.5 Synthesis of the density equation
In summary, the material time evolution equation for in situ density in the presence of subgrid
scale processes takes the form

Dρ

Dt
=

1

c2s

Dp

Dt︸ ︷︷ ︸
compressibility

−v∗ · (−α∇Θ+ β∇S)︸ ︷︷ ︸
eddy-induced advection

−∇ · [ρ κ (−α∇Θ+ β∇S)]︸ ︷︷ ︸
small scale diffusive mixing

+ ρ∇α ·K · ∇Θ− ρ∇β ·K · ∇S.︸ ︷︷ ︸
nonlinear EOS processes from eddy mixing

(72.26)

We thus have the following physical processes contributing to the evolution of in situ density.

• adiabatic compression: Material changes to pressure in the presence of a finite sound
speed lead to changes in the fluid density.

• small scale mixing: Small scale mixing is parameterized by an isotropic diffusivity,
κ. This diffusivity is the same for all tracers, with the exception of double-diffusive
processes whereby material tracers (e.g., salinity, nutrients) have a diffusivity distinct
from temperature (Schmitt , 1994). Given the dominance of vertical stratification over the
horizontal, it is common to approximate the isotropic diffusion operator with a vertical
diffusion operator (but see Section 4 of McDougall et al. (2014) for caveats).

• eddy-induced stirring: For subgrid scale stirring, such as from mesoscale (and sub-
mesocale) eddies, we introduce a parameterized eddy-induced advection operator. When
combined with the resolved advection, we are led to a residual mean material time derivative,
D†/Dt.

• eddy-induced diffusion: Subgrid scale eddy-induced stirring leads to a direct cascade
of Θ and S variance to the small scales. Mixing arising from this cascade is parameterized
by neutral diffusion, whereby the diffusive fluxes of Θ and S are density compensated
according to the constraint (72.24).
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• nonlinear EOS processes: Mixing of Θ and S in the presence of a nonlinear equation
of state means that in situ density evolves due to cabbeling and thermobaricity (Section
72.3). The dominant contributions to these processes arise from eddy induced mixing (i.e.,
neutral diffusion) (McDougall , 1987b), though small scale mixing also has a contribution.

72.3 Cabbeling and thermobaricity

We now return to the density equation (72.10)

D ln ρ

Dt
− ṗ

ρ c2s
= ∇ · [νΘ J (Θ) + νS J

(S)]−
(
J (Θ) · ∇νΘ + J (S) · ∇νS

)
, (72.27)

and here focus on Θ and S fluxes arising just from the neutral diffusion process described in
Section 71.4. The neutrality condition (71.88) is a fundamental property of neutral diffusion,
and it takes the following form in terms of specific volume

νΘ J
(Θ) + νS J

(S) = 0. (72.28)

Consequently, neutral diffusion affects density evolution only through the source term[
D ln ρ

Dt

]
ntrl diff

= −J (Θ) · ∇νΘ − J (S) · ∇νS . (72.29)

In the remainder of this section we manipulate the source term in this expression with the goal
to identify the variety of physical processes associated with neutral diffusion in the presence of a
nonlinear equation of state.

72.3.1 Basic manipulations

As a first step, eliminate the salt flux by using the neutrality condition (72.28)

J (Θ) · ∇νΘ + J (S) · ∇νS = J (Θ) · [νS ∇νΘ − νΘ∇νS ]/νS . (72.30)

Next, expand the gradients of the specific volume to write

∇νΘ = νΘΘ∇Θ+ νΘS ∇S + νΘp∇p and ∇νS = νSS ∇S + νΘS ∇Θ+ νSp∇p, (72.31)

so that

νS ∇νΘ − νΘ∇νS = ∇Θ(νS νΘΘ − νΘ νΘS)
+∇S (νS νΘS − νΘ νSS) +∇p (νS νΘp − νΘ νSp). (72.32)

We again make use of the neutrality condition (72.28), as well as the symmetry condition (71.89d)
to write

J (Θ) · ∇S (νS νΘS − νΘ νSS) = −J (Θ) · ∇Θ
[
νΘ νΘS − νSS

(νΘ)
2

νS

]
. (72.33)

Bringing these results together leads to

J (Θ) · ∇νΘ + J (S) · ∇νS = J (Θ) · ∇p (νΘp − νpS νΘ/νS)
+ J (Θ) · ∇Θ [νΘΘ − 2 νΘS νΘ/νS + νSS (νΘ/νS)

2], (72.34)
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which can be written in terms of density partial derivatives as

J (Θ) · ∇νΘ + J (S) · ∇νS = −ρ−2 J (Θ) · ∇p (ρΘp − ρpS ρΘ/ρS)
− ρ−2 J (Θ) · ∇Θ [ρΘΘ − 2 ρΘS ρΘ/ρS + ρSS (ρΘ/ρS)

2]. (72.35)

72.3.2 A tidy form

We next write the bracket terms appearing in equation (72.35) in forms consistent with those
written by McDougall (1987b). For that purpose, introduce the thermobaricity parameter
(dimensions of inverse temperature times inverse pressure) whose form is given by

T = β ∂p

[
α

β

]
(72.36a)

=
∂α

∂p
− α

β

∂β

∂p
(72.36b)

= ρ νS ∂p(νΘ/νS) (72.36c)

= −ρ−1 ρS ∂p(ρΘ/ρS) (72.36d)

= −ρ−1 (ρΘp − ρpS ρΘ/ρS), (72.36e)

and the cabbeling parameter (dimensions of squared inverse temperature)

C =
∂α

∂Θ
+ 2

α

β

∂α

∂S
−
(
α

β

)2 ∂β

∂S
(72.37a)

= −ρ−1 [ρΘΘ − 2 ρΘS (ρΘ/ρS) + ρSS (ρΘ/ρS)
2] (72.37b)

= ρ [νΘΘ − 2 νΘS (νΘ/νS) + νSS (νΘ/νS)
2] (72.37c)

to render the very compact result

J (Θ) · ∇νΘ + J (S) · ∇νS = ρ−1 J (Θ) · (T∇p+ C∇Θ) (72.38)

which in turn yields the material evolution of in situ density due to neutral diffusion[
Dρ

Dt

]
ntrl diff

= −J (Θ) · (T∇p+ C∇Θ). (72.39)

72.3.3 Cabbeling

Consider the mixing of two seawater elements. Let the fluid elements separately have distinct
Conservative Temperature and/or salinity, but equal locally referenced potential density. For
a linear equation of state, whereby density is a linear function of Θ and S, then the resulting
mixed fluid element has the same density as the unmixed separate elements. However, for a
nonlinear equation of state, the mixed element generally has a different density. Furthermore,
a property of seawater is that the density of the mixed element is greater than the unmixed
elements. This densification upon mixing is a physical process known as cabbeling (McDougall ,
1987b).

The sign definite nature of cabbeling (i.e., cabbeling always results in denser fluid elements
after mixing) is a direct result of the geometry of the locally referenced potential density surface
when viewed in Conservative Temperature and salinity space. This property in turn manifests
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with the following inequality for the cabbeling parameter

C =
∂α

∂Θ
+ 2

α

β

∂α

∂S
−
[
α

β

]2 ∂β
∂S
≥ 0. (72.40)

Given the downgradient nature of the neutral diffusive fluxes, we have

cabbeling ≡ −C J (Θ) · ∇Θ ≥ 0, (72.41)

thus providing a mathematical expression for the cabbeling source (with dimensions of density
per time). That is, cabbeling results in a positive material evolution of density; i.e., density
increases due to cabbeling. An increase in the density within a column of fluid results in the
reduction of the sea level due to compression of the column.

72.3.4 Thermobaricity
The thermobaricity parameter

T = β ∂p(α/β) (72.42)

is nonzero due to pressure dependence of the ratio of the thermal expansion coefficient to the
haline contraction coefficient. As both thermal and haline effects are present, the parameter T
is more precisely split into two terms

T =
∂α

∂p
− α

β

∂β

∂p

= −ρΘp
ρ

+
ρΘ
ρS

ρpS
ρ
.

(72.43)

Thermobaricity is the common name for the sum, since pressure variations in the thermal
expansion coefficient dominate those of the haline contraction coefficient. The thermal expansion
coefficient generally increases as pressure increases, thus making the thermobaric parameter
positive.

Since the neutral gradient of Θ need not be oriented in a special manner relative to the
neutral gradient of pressure, there is no sign-definite nature to the thermobaricity source term
(with units of density per time)

thermobaricity ≡ −T J (Θ) · ∇p (72.44)

appearing in equation (72.38). Thus, thermobaricity can either increase or decrease density,
depending on details of the density and fluxes. However, as noted by McDougall and You (1990),
thermobaricity typically increases density in much of the World Ocean.

72.3.5 Comments
Griffies and Greatbatch (2012) discuss the impacts on global mean sea level from thermobaricity
and cabbeling as diagnosed from an ocean model. Given that cabbeling always densifies and
thermobaricity is also dominated by densification, these processes lead to a general reduction in
global mean sea level. Klocker and McDougall (2010a), Groeskamp et al. (2016), and Groeskamp
et al. (2019) diagnose cabbeling and thermobaricity from observational based measurements,
with Groeskamp et al. (2019) also offering a more robust numerical method for performing that
diagnostic calculation.

Cabbeling and thermobaricity lead to watermass transformation and associated transport
of water across neutral directions. However, these processes are distinct from other mixing
processes such as breaking gravity waves (Section 71.1). Namely, cabbeling and thermobarocity
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arise from the transport of Θ and S by mesoscale eddies along neutral directions, which in turn
is parameterized via neutral diffusion of these two active tracers. Transient mesoscale eddies
impart a downscale cascade of tracer variance that is ultimately halted by irreversible molecular
mixing, or microscale processes active before reaching the molecular level. This mixing is the
ultimate cause for cabbeling and thermobaricity, with the overall strength of the cabbeling and
thermobaricity determined by the strength of the mesoscale transport.

72.4 Salt and freshwater budgets
We specialize the kinematics of material tracers given in Section 20.4, here focusing on seawater,
which we treat as a two component fluid comprised of salt and freshwater concentrations. We
extend this discussion in Section 72.6 by studying the role of surface boundary salt, enthalpy,
and water transports on changes in ocean buoyancy.

72.4.1 Salt and freshwater
Seawater is comprised of two material tracers: freshwater plus a suite of dissolved trace “salts”.
The ratio of salts is roughly constant over the World Ocean. We are thus able to make use of a
single effective mass concentration known as the salt concentration3

S =
mass of salt

mass of seawater
=

mass of salt

mass of freshwater + mass of salt
(72.45)

to specify the amount of salt within an element of seawater. In practice oceanographers choose
to work with the salinity,4

S = 1000S, (72.46)

which converts from typical salt concentrations of S = 0.035 to a salinity of S = 35. The
complement to salt concentration is the freshwater concentration or mass fraction for an element
of seawater

F =
mass of freshwater

mass of seawater
=

mass of freshwater

mass of freshwater + mass of salt
= 1− S. (72.47)

Other trace matter occurs at very low concentrations so as to make seawater, in effect, a
two-component fluid consisting of freshwater plus dissolved salt.5 We here derive the mass
budget for salt and freshwater as well as the associated kinematic boundary conditions.

72.4.2 Mass budgets
Following our discussion of the tracer equation in Section 20.1, the mass budget equations for
an element of seawater take the form

∂ρ

∂t
+∇ · (ρv) = 0 seawater (72.48)

∂(ρ S)

∂t
+∇ · (ρv S+ J (S)) = 0 salt (72.49)

3We use the salt concentration, S, in this section to avoid 1/1000 factors needed if working with salinity,
S = 1000 S.

4More precisely, the salinity, S, as defined by equation (72.46) is the Absolute Salinity. Absolute Salinity is
distinct from the practical salinity determined by conductivity measurements. IOC et al. (2010) provides a full
accounting of the theory and practice of ocean salinity.

5See IOC et al. (2010) for more discussion of the variations of salt concentration ratios over the ocean, as well
as the impacts from biogeochemical tracers.
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∂(ρF)

∂t
+∇ · (ρv F+ J (F)) = 0 freshwater. (72.50)

Equation (72.48) is the mass budget for seawater and equation (72.49) is the mass budget for salt.
The freshwater budget (72.50) is derived by subtracting the salt budget (72.49) from the seawater
mass budget (72.48). Hence, only two of the three mass budget equations (72.48)-(72.50) are
independent.

We make use of the barycentric velocity in the above conservation laws, where the barycentric
velocity for the ocean is given by

v = Sv(S) + Fv(F). (72.51)

The velocities v(S) and v(F) are, respectively, the molecular center of mass velocities for salt and
freshwater within a fluid element, in which case

∂S

∂t
+ v(S) · ∇S = 0 and

∂F

∂t
+ v(F) · ∇F = 0. (72.52)

Furthermore, the fluxes J (S) and J (F) arise from the difference between the salt and freshwater
velocities from the barycentric velocity

J (S) = ρS (v(S) − v) and J (F) = ρF (v(F) − v). (72.53)

These fluxes are often parameterized by downgradient diffusive fluxes

J (S) = −ρK · ∇S and J (F) = −ρK · ∇F, (72.54)

where K is the kinematic diffusivity tensor for salt in seawater, which is a positive definite
symmetric tensor. We use the same diffusivity tensor for salt and freshwater since the diffusion
of one is balanced by the other. When concerned with molecular processes, the diffusivity tensor
is isotropic with diffusivities set by the molecular value of 10−9 m2 s−1. However, as discussed
in Section 71.1, the eddy diffusivity is far larger than the molecular diffusivity in the presence of
turbulent eddy processes, which also introduces anisotropies to the diffusion tensor.

The advective flux of seawater is comprised of a salt flux plus a freshwater flux

ρv = ρ Sv(S) + ρFv(F). (72.55)

Conversely, the salt flux and freshwater flux can be represented as a non-advective flux plus an
advective flux where advection is defined by the barycentric velocity

ρSv(S) = ρS (v(S) − v) + ρSv = J (S) + ρSv (72.56a)

ρFv(F) = ρF (v(F) − v) + ρFv = J (F) + ρFv. (72.56b)

The non-advective fluxes, J (S) and J (F), lead to an exchange of mass with zero net movement
of mass. In contrast, the advective flux moves mass as determined by the barycentric velocity.
Furthermore, note that the center of mass velocities, v(S) and v(F), offer a conceptual framework
of use to formulate the kinematic boundary conditions. Even so, they offer no new information
beyond that contained in the fluxes J (S) and J (F).

72.5 Surface boundary conditions for S and Θ

In this section we summarize the surface boundary conditions holding for the salinity and
Conservative Temperature equations. This treatment complements that given in Section 20.4.3.
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72.5.1 Salt and freshwater
In deriving the boundary condition (20.83) in Section 19.6.3, we made use of the barycentric
velocity, v, for an element of seawater. We can garner further kinematic insights into the
two-component ocean system by decomposing the total mass flux into contributions from salt
and freshwater

Qm = QS + QF, (72.57)

and by introducing the center of mass velocities for salt and freshwater according to

−Qm = ρ (v − v(η)) · n̂ (72.58a)

= ρ [Sv(S) + Fv(F) − v(η)] · n̂ (72.58b)

= ρ [S (v(S) − v(η) + v(η)) + Fv(F) − v(η)] · n̂ (72.58c)

= S ρ (v(S) − v(η)) · n̂+ (1− S) ρ (v(F) − v(η)) · n̂ (72.58d)

= S ρ (v(S) − v(η)) · n̂+ F ρ (v(F) − v(η)) · n̂ (72.58e)

≡ −(QS + QF), (72.58f)

where we wrote

S ρ (v(S) − v(η)) · n̂ = −QS (72.59a)

F ρ (v(F) − v(η)) · n̂ = −QF. (72.59b)

In these equations, we introduced the velocity, v(η), of a point fixed to the free surface. We
only need the projection of this velocity in the outward normal direction, which is written by
equation (19.92)

v(η) · n̂ =
∂η/∂t

|∇(z − η)| =
∂η/∂t√
1 + |∇η|2

=⇒ v(η) · n̂dS = ∂tη dA, (72.60)

where dS is the area element on the free surface and dA is its horizontal projection. Note that
in many regions, the ocean surface is impermeable to salt, in which case the ocean surface acts
as a material surface in terms of the salt velocity

ρ (v(S) − v(η)) · n̂ = 0 zero surface salt flux. (72.61)

The key exception to this boundary condition concerns sea ice, whereby salt is exchanged between
liquid seawater and sea ice upon the melting or freezing of ice.

For most applications, it is preferable to make use of equation (72.56a) to eliminate the salt
velocity v(S) in favor of the non-advective flux J (S) = ρS (v(S) − v), in which case the kinematic
boundary condition (72.59a) takes the form

−QS = S ρ (v(S) − v(η)) · n̂ = S ρ (v(S) − v + v − v(η)) · n̂ = J (S) · n̂− SQm. (72.62)

Turning this equation around leads to the non-advective flux

J (S) · n̂ = SQm − QS = SQF − FQS, (72.63)

which relates the mass transport crossing the ocean surface at z = η (right hand side) to the
non-advective salt transport on the ocean side of the surface boundary (left hand side). A form
of this equation was also given by equation (20.85). To support intuition and to check signs,
consider the case with QS = 0 so that J (S) · n̂ = SQF. This expression means there is an upward
non-advective flux of salt (J (S) · n̂ > 0) on the ocean side of the z = η boundary in the presence
of an input of freshwater through the ocean surface (SQF > 0). For the converse, let QF = 0 so
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that J (S) · n̂ = −FQS. Now, there is a downward non-advective flux of salt (J (S) · n̂ < 0) on
the ocean side of the z = η boundary in the presence of salt input through the ocean surface
(FQS > 0).

72.5.2 The non-advective salt flux boundary condition
The above properties of boundary mass transfer result from the kinematic property of a fluid
element whose mass is constant, and so the transfer of freshwater across the boundary of a fluid
element is compensated by an opposite transfer of salt. The ocean boundary interface acts as a
boundary for the fluid elements adjacent to the surface. Hence, to move mass across the z = η
interface requires mass to be replenished to the surface fluid elements.

Diffusive closure for the non-advective flux

Consider an ocean without any mixing, such as for a perfect fluid. In this case, mass arriving to
the ocean surface from Qm > 0 will not be incorporated into the ambient ocean fluid, but instead
will form a separate unmixed surface lens. When mass is exchanged across the ocean surface,
mixing is required to incorporate the mass into the ambient ocean fluid. To determine the
level of mixing, assume that J (S) takes the form of a diffusive flux (72.54) so that the boundary
condition (72.63) becomes

J (S) · n̂ = −ρ [K · ∇S] · n̂ = SQm − QS = SQF − F QS. (72.64)

This equation sets the level of diffusion on the ocean side of the surface boundary that is needed
to generate the non-advective transport. The diffusive mixing of salt and freshwater mediate the
transfer of mass across the ocean surface so to incorporate that mass into the ambient ocean
fluid. For example, freshwater added to the ocean (QF > 0) diffuses downward as salt diffuses
upward toward the surface.

Salt dissolved within the mass transport

In the case when salt is transported across the ocean boundary, as occurs with sea ice melting
and formation, it does so largely dissolved in the water that is transported. There can also be a
non-advective transport, such as via parameterized turbulent fluxes, so that the net salt flux is
given by

QS = Sm Qm + Qnon-adv
S . (72.65)

If there are more sources of this transfer then a relation such as this holds for each process. We
are thus led to the net salt flux

QS = −[ρS (v − v(η)) + J (S)] · n̂ = SQm − J (S) · n̂ = Sm Qm + Qnon-adv
S . (72.66)

which leads to the non-advective salt flux on the ocean side of the boundary

−J (S) · n̂ = Qnon-adv
S + (Sm − S)Qm. (72.67)

Figure 72.1 provides a schematic summary of the salt flux boundary condition. Furthermore,
note that this boundary condition is consistent with that derived in Section 20.4.3 for a general
tracer, in particular with equation (20.82).

Treatment in observational analyses and numerical models

In ocean climate modeling applications, the salt mass flux, QS, typically does not affect the
kinematic boundary conditions. This approximation is reasonable given that the dominant
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Figure 72.1: A schematic of an infinitesimal region of the ocean surface boundary at z = η(x, y, t), with z < η
the ocean. Qm dS = Qm dA is the mass transport (mass per time) that crosses the interface and carries a tracer
concentration. We depict the case for salt concentration, S, and Conservative Temperature, Θ, and the expressions
for their net boundary fluxes. These boundary conditions are derived in Section 72.5.2 for salinity and Section
72.5.3 for Conservative Temperature.

contributor to the mass flux, Qm, is the freshwater. Even so, there remains a net salt transported
across the ocean surface in the presence of sea ice melt and formation. The above boundary
conditions, in particular equations (72.66) and (72.67), remain unchanged. Furthermore, it is
necessary to specify the boundary tracer concentration, S(z = η). For salt, this value is typically
set equal to that within the ocean model surface grid cell. This choice is also common for
observation-based studies.

72.5.3 Conservative Temperature boundary condition
Conservative Temperature, potential temperature, potential vorticity, and passive tracers each
satisfy the tracer equation (72.49), with distinct tracer flux vectors J . However, they are not
material tracers and so the kinematic constraints holding for salt do not hold for these other
tracers. We describe the thermodynamic properties of Conservative Temperature in Section 26.11
and the processes affecting its boundary fluxes in Section 72.6. Here we begin our treatment of
this tracer by outlining its surface boundary condition.

As per the general discussion in Section 20.4.3, the net surface boundary flux of Conservative
Temperature is written

QΘ = Θm Qm + Qnon-adv
Θ = −[ρΘ(v − v(η)) + J (Θ)] · n̂ = ΘQm − J (Θ) · n̂. (72.68)

In this equation, Qnon-adv
Θ arises from the non-advective enthalpy fluxes outside the ocean domain

that impact on the upper ocean interface, such as from radiant and turbulent fluxes, whereas
Θm is the Conservative Temperature of the boundary mass flux. Rearrangement leads to the net
expression for the non-advective flux on the ocean side of the upper ocean boundary

−J (Θ) · n̂ = Qnon-adv
Θ + (Θm −Θ)Qm, (72.69)

where Θ = Θ(z = η) is the Conservative Temperature at the surface interface. A common
assumption made for models and observational studies is to set Θm−Θ(z = η) = 0, in which case

−J (Θ) · n̂ = Qnon-adv
Θ if Θm = Θ(z = η). (72.70)

Figure 72.1 provides a schematic summary of the Θ flux boundary condition.

72.5.4 Comments and further reading
We make use of many results from this section when discussing surface ocean buoyancy fluxes in
Section 72.6 and water mass transformation in Section 73.6. Furthermore, Nurser and Griffies
(2019) offer further discussion of the kinematic boundary condition for salt and freshwater, with
that paper motivated by questions related to water mass transformation considered in Section
73.6.
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72.6 Surface boundary fluxes of buoyancy
As introduced in Chapter 30, buoyancy measures the gravitational acceleration of a fluid element
relative to that of the fluid environment surrounding the element. A reduction in density for the
fluid element is associated with an increase in buoyancy; that is, the fluid element becomes more
buoyant. Changes in buoyancy arise through changes in density associated with temperature
and salinity changes, with buoyancy changes computed relative to a fixed pressure level. In this
way, buoyancy changes are directly related to processes that impact locally referenced potential
density through changes in the temperature and salinity of a fluid element.

In this section we derive the equation describing the changes in ocean buoyancy due to
enthalpy (commonly referred to as “heat”), salt, and water fluxes crossing the ocean surface
boundary. For this purpose, we expose certain of the issues associated with coupling numerical
models of the ocean, atmosphere, and land. A detailed treatment of boundary layer physics
is well outside of our scope. We thus take a phenomenological perspective, developing budget
equations but not diving into details of the turbulent exchange of matter and enthalpy across
the ocean surface boundary. Similar, though simpler, considerations holds for the ocean bottom
boundary, with this an insulating and material boundary except in regions of geothermal fluxes.

72.6.1 Outlining the surface boundary fluxes of enthalpy and salt
Broadly, the surface boundary fluxes are associated with the following physical processes.

• Turbulent processes transfer enthalpy through latent and sensible heating.

• Longwave radiation cools the upper ocean, with this radiation affected by the upper ocean
skin temperature.

• Penetrative shortwave radiation is absorbed in seawater and so increases buoyancy in
regions where the thermal expansion coefficient is positive.6

• All of the above processes are referred to as non-advective transports in that they are
not associated with a net mass transport across the ocean surface. In contrast, advective
processes transfer enthalpy and salt across the ocean surface through the transfer of mass.

• Salt is transferred between the liquid ocean and sea ice when sea ice melts and forms. This
transfer is proportional to the water mass flux and the difference in salinity between the
liquid ocean and solid sea ice. There may be additional turbulent salt fluxes as well, but
there is a negligible transfer of salt associated with precipitation, evaporation, or river
runoff.

72.6.2 Evolution from surface boundary fluxes
We now develop finite volume budget equations for potential enthalpy (via Conservative Tem-
perature, Θ), salt, and seawater mass for a grid cell region next to the ocean surface, with a
focus on contributions due to surface boundary fluxes. For that purpose, introduce the following
quantities for a grid cell,

M =

ˆ
cell

ρdV = ⟨ρ⟩V V =

ˆ
cell

dV = Ah A =

ˆ
cell

dA (72.71a)

hA =

ˆ
cell

[ˆ
cell

dz

]
dA ⟨C⟩M =

ˆ
cell

C ρ dV, (72.71b)

6The Baltic Sea is an outlier in the World Ocean, whose fresh and cold waters often realize a negative thermal
expansion so that heating can increase density rather than reduce it.
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so that ⟨ρ⟩ is the cell averaged density, ⟨C⟩ is the cell averaged tracer concentration, h is the cell
area averaged thickness, V is the cell volume, and A is the cell horizontal area. These definitions
allow us to write

d

dt

[ˆ
cell

ρC dV

]
=

d

dt
[⟨C⟩M ] = A

d

dt

[
h ⟨C⟩ ⟨ρ⟩

]
, (72.72)

where the horizontal area of a cell is assumed to be constant in time and that the cell is bounded
by vertical side walls. The surface boundary fluxes have similar grid cell area averages.

Focusing just on contributions from surface boundary transport leads to the budget equations

∂t(ρ hΘ) = Qm Θm +Qnon-adv
Θ (72.73a)

∂t (ρ hS) = Qm Sm +Qnon-adv
S (72.73b)

∂t (ρ h) = Qm, (72.73c)

where we used a partial time derivative since we are holding the horizontal position fixed.
Furthermore, we reduced notational clutter by dropping the angle brackets for volume average
and the horizontal overline for area average. For a three-dimensional budget, the right hand side
to these equations is combined with fluxes crossing interior cell boundaries. Finally, we wrote
the fluxes as

QmA = Qm S and Qnon-adv
Θ A = Qnon-adv

Θ S and Qnon-adv
S A = Qnon-adv

S S, (72.74)

where S is the area on the free surface and A is the corresponding horizontal area of the grid
cell.7

72.6.3 Buoyancy tendency from surface fluxes
For many purposes, it is of interest to quantify the impacts on ocean buoyancy arising from
surface boundary fluxes. For that purpose, we here develop the budget for buoyancy in a surface
model grid cell region, focusing on surface flux contributions.

Buoyancy has a local time tendency given by

−ρo
g

∂b

∂t
= ρΘ

∂Θ

∂t
+ ρS

∂S

∂t
, (72.75)

where we introduced the shorthand

ρΘ =

[
∂ρ

∂Θ

]
S,p

and ρS =

[
∂ρ

∂S

]
Θ,p

(72.76)

for the partial derivatives of density with respect to Conservative Temperature and salinity,
respectively, each with pressure held constant. We wish to form an evolution equation for
buoyancy at the ocean surface grid cell just due to the effects of surface forcing. For this purpose,
multiply the temperature equation (72.73a) by ρΘ and add to the salinity equation (72.73b)
multiplied by ρS

ρΘ

[
∂(ρ hΘ)

∂t

]
+ ρS

[
∂(ρ hS)

∂t

]
= Qm (ρΘΘm + ρS Sm) + ρΘQ

non-adv
Θ + ρS Q

non-adv
S . (72.77)

Now use the mass budget (72.73c) and introduce the buoyancy tendency according to equation

7The surface area, S, along the z = η boundary is not generally horizontal and it is not generally constant in
time. Yet its horizontal projection, A, is time independent since we fix the horizontal positions for the vertical cell
walls.
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(72.75) to render an expression for the time tendency of the surface ocean buoyancy

−(ρo/g) ρ h
[
∂b

∂t

]surface
= Qm [ρΘ (Θm −Θ) + ρS (Sm − S)] + ρΘQ

non-adv
Θ + ρS Q

non-adv
S . (72.78)

Introducing the thermal expansion and saline contraction coefficients

α = −1

ρ

[
∂ρ

∂Θ

]
S,p

and β =
1

ρ

[
∂ρ

∂S

]
Θ,p

(72.79)

yields [
∂b

∂t

]surface
=

g

ρo h

(
Qm [α (Θm −Θ)− β (Sm − S)] + αQnon-adv

Θ − β Qnon-adv
S

)
(72.80a)

=
g

ρo h

(
α [Qm (Θm −Θ) +Qnon-adv

Θ ]− β [Qm (Sm − S) +Qnon-adv
S ]

)
. (72.80b)

In regions where the thermal expansion coefficient is positive (α > 0), adding a boundary mass
(Qm > 0) that has Θm > Θ increases the buoyancy of the surface ocean; i.e., adding relatively
warm water increases surface ocean buoyancy. Likewise, where the haline contraction coefficient
is positive (β > 0), adding boundary mass with Sm < S increases buoyancy of the surface ocean;
i.e., adding relatively freshwater increases surface ocean buoyancy. The same behavior holds for
the turbulent fluxes, where Qnon-adv

Θ > 0 (adding turbulent thermal energy to the ocean) increases
surface ocean buoyancy whereas Qnon-adv

S > 0 (adding salt to the ocean) decreases buoyancy.
Finally, note that in some contexts it is useful to take the limit as the thickness, h, becomes
vanishingly small and to introduce a Dirac delta (see Chapter 7) and thus write8[

∂b

∂t

]surface
=
g δ(z − η)

ρo

(
Qm [α (Θm −Θ)− β (Sm − S)] + αQnon-adv

Θ − β Qnon-adv
S

)
(72.81a)

=
g δ(z − η)

ρo

(
α [Qm (Θm −Θ) +Qnon-adv

Θ ]− β [Qm (Sm − S) +Qnon-adv
S ]

)
. (72.81b)

This form is of use when organizing processes according to interior processes and surface boundary
processes, such as when considering water mass transformation analysis in Section 73.8. Also
note that we encountered a similar approach when discussing potential vorticity in Section 45.7
when introducing the Dirac delta sheet formulation of the potential vorticity boundary condition.
We are afforded the ability to formulate the boundary condition in this manner, so long as the
boundary condition is of the Neumann type, with general considerations detailed in Section
9.4.8.

72.6.4 Comments

The buoyancy flux expression (72.80b) is of use for boundary layer parameterizations, such as
the KPP scheme of Large et al. (1994) and Van Roekel et al. (2018). It is furthermore used when
studying water mass transformations as reviewed by Groeskamp et al. (2019) and summarized
in Chapter 73.

8From Chapter 7, we know that the Dirac delta, δ(z − η), has dimensions of inverse length, so that equation
(72.81b) is dimensionally consistent.
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72.7 Global mean sea level
In this section we consider some basic features of global mean sea level by making use of the
mass budget of liquid seawater. This analysis highlights the distinction between the mass budget
and the volume (sea level) budget. In particular, mass satisfies a conserved budget, so that
the total ocean mass is affected only through boundary fluxes. In contrast, volume, just like
buoyancy, has interior sources and sinks so that the ocean volume can change even if there are
no boundary fluxes of volume.

72.7.1 Definitions and assumptions
Seawater mass is a conserved quantity so that the total liquid seawater mass, M, changes only
via boundary mass fluxes

dM

dt
= AQm, (72.82)

where A is the ocean surface area, Qm is the area averaged surface mass flux, and we assume
there is no mass entering through the ocean bottom. The global volume of liquid seawater

V = M/⟨ρ⟩ (72.83)

changes due to mass changes and changes to the global mean density, ⟨ρ⟩. Throughout this
section we assume the surface area is constant in time, thus neglecting the relatively small
changes associated with volume changes along sloping beaches. We also assume a temporally
constant area averaged ocean bottom depth, H. These two assumptions mean that changes in
ocean volume arise just from changes in global mean sea level, η. Since around the year 2000,
measurements estimate that global area mean sea level has increased at a rate of[

dη

dt

]
observed

≈ 3 mm yr−1, (72.84)

and that this rate is increasing (positive sea level acceleration). As part of the analysis in this
section we make use of the following phenomenological numbers and make a few assumptions to
facilitate calculations.

• global seawater volume V ≈ 1.3× 1018 m3

• global ocean surface area A ≈ 3.6× 1014 m2

• global ocean mean density ⟨ρ⟩ ≈ 1035 kg m−3

• specific heat capacity for seawater cp ≈ 3992 J kg−1K−1

• Ignore mass fluxes transported through the sea floor, which are small relative to surface
mass fluxes.

• Ignore salinity and pressure effects on density, so that changes in global mean density arise
just from changes in global mean Conservative Temperature.

• Assume a constant thermal expansion coefficient

α = −1

ρ

[
∂ρ

∂Θ

]
S,p

≈ 2 × 10−4 K−1. (72.85)

This is not a great approximation, since the thermal expansion coefficient ranges over the
ocean by a factor of 10. Nonetheless, for this section it is sufficient for deducing rough
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numbers that are consistent with errors in measurements for global boundary enthalpy
and mass fluxes.

72.7.2 Budget for global mean sea level

Expression (72.83) for ocean volume leads to its time derivative

dV

dt
=

1

⟨ρ⟩
dM

dt
− M

⟨ρ⟩2
d⟨ρ⟩
dt

(72.86a)

=
AQm

⟨ρ⟩ −
V

⟨ρ⟩
d⟨ρ⟩
dt

, (72.86b)

where we used equation (72.82) to express mass changes in terms of the surface mass flux.
Additionally, the ocean volume is given by

V =

ˆ
dA

ˆ η

−H
dz = A (H + η), (72.87)

so that its time changes arise from changes in the global mean sea level

dV

dt
= A

dη

dt
. (72.88)

Combining the two volume equations (72.86b) and (72.88) yields the budget equation for global
mean sea level

dη

dt
=
Qm

⟨ρ⟩ −
V

A ⟨ρ⟩
d⟨ρ⟩
dt

. (72.89)

The first term arises from changes in ocean mass (increasing total mass increases sea level)
whereas the second term arises from changes in global mean seawater density (increasing the
mean density decreases sea level).

72.7.3 Changes due to mass input

To ground these formula in phenomenology, assume that a surface mass flux gives one-half of
the observed sea level rise

1

2

[
dη

dt

]
observed

=
Qm

⟨ρ⟩ . (72.90)

This distribution of measured sea level is roughly correct. With ⟨ρ⟩ = 1035 kg m−3 and
dη/dt ≈ 3 mm yr−1, we need an area averaged mass flux across the ocean surface

Qm ≈ 5× 10−8 kg m−2 s−1. (72.91)

Integrated over the global ocean area, this flux leads to a mass transport of

T = A Qm ≈ 1.8× 107 kg s−1 ≈ 0.015×Triver. (72.92)

That is, global mean sea level rises at a rate of 1.5 mm yr−1 if there is a net additional mass
added to the ocean equal to roughly 1.5% of the net river water entering the ocean, Triver. This
additional net mass is largely coming from the melting of land-ice in the form of mountain
glaciers and ice sheets.
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72.7.4 Steric changes due to changes in density
Steric effects generally refer to properties of a substance associated with the space occupied by
atoms. In the sea level context, steric effects refer to changes in sea level associated with density
changes, with changes in density associated with changes in the volume occupied by seawater
molecules. Changes in global mean sea level arising from changes in the global mean density are
called global steric sea level changes. From the sea level budget equation (72.89) we know that
steric changes are written mathematically as[

dη

dt

]
steric

≡ − V

A ⟨ρ⟩
d⟨ρ⟩
dt

. (72.93)

Global mean density changes in time primarily from changes in global mean Conservative
Temperature. If we assume the ocean thermal expansion is constant, then

1

⟨ρ⟩
d⟨ρ⟩
dt

= −αd⟨Θ⟩
dt

, (72.94)

so that steric sea level changes are primarily driven by thermosteric effects[
dη

dt

]
thermosteric

≡ αV

A

d⟨Θ⟩
dt

, (72.95)

with increasing water temperature, in the presence of α > 0, leading to higher sea levels. With
α ≈ 2 × 10−4 K−1 and dη/dt ≈ 1.5 mm yr−1, we have

d⟨Θ⟩
dt
≈ 0.2 K century−1. (72.96)

That is, a global thermosteric sea level rise of 1.5 mm yr−1 corresponds to a rate of increase in
the global volume mean ocean temperature of roughly 0.2 K century−1.

72.7.5 Enthalpy flux imbalances giving rise to thermosteric sea level
A global mean ocean temperature change can arise from an area averaged surface ocean enthalpy
flux

QH ≈ ⟨ρ⟩ cpH
d⟨Θ⟩
dt

, (72.97)

with numbers leading to
QH ≈ 1 W m−2. (72.98)

That is, a surface ocean enthalpy flux of roughly 1 W m−2 (ocean area normalized) gives rise to
a global mean thermosteric sea level rise of roughly 1.5 mm yr−1.

An enthalpy flux of 1 W m−2 is small compared to, say, that crossing the surface of a typical
light bulb. However, 1 W m−2 is comparable to that accumulating within the earth system due
to increases in greenhouse gases (Otto et al., 2013). That is, 1 W m−2 averaged over the global
ocean, or 0.7 W m−2 averaged over the surface area of the planet,9 is roughly the net heating
associated with anthropogenic climate change. Such seemingly small increases in surface heating
represent a nontrivial increase in the earth’s energy budget that are leading to the observed
climate changes and sea level rise.

As specific means to gauge the magnitude of 1 W m−2 distributed over the ocean surface
area, A, let us compare it to the enthalpy flux due to blasting one atomic bomb per second

9The ocean covers roughly 70% of the earth surface. This factor is commonly forgotten when quoting heat flux
numbers, so it is important to note whether the number refers to global area normalized or ocean area normalized.
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(∆t = 1 s) and uniformly distributing the bomb’s released energy, Ebomb, over the ocean surface
area every second. Estimates render Ebomb ≈ 6.3× 1013 J, so that distributing this energy over
the ocean area, and doing so each second, corresponds to a surface ocean enthalpy flux of

Qbomb =
Ebomb

A∆t
≈ 0.17 W m−2. (72.99)

Hence, an enthalpy flux of 1 W m−2 due to anthropogenic climate warming corresponds to
1/0.17 ≈ 6 atomic bomb blasts per second. This way of framing the net heating of the ocean due
to anthropogenic climate change dramatically illustrates the magnitude of the global warming
problem.10

72.7.6 Global sea level in a Boussinesq ocean
The sea level for a Boussinesq ocean evolves according to the kinematic free surface equation
(21.81)

∂tη
bouss = −∇ ·U +Qm/ρo, (72.100)

where

U =

ˆ η

−H
udz (72.101)

is the depth integrated horizontal velocity and ρo is the Boussinesq reference density. This
equation results from ignoring all changes to density, except for those related to the buoyancy
force appearing in the momentum equations. Integrating the sea surface height equation (72.100)
over the surface area of the global ocean reveals that the global mean Boussinesq sea level evolves
according to

dηbouss

dt
=
Qm

ρo
. (72.102)

Hence, ηbouss changes only so long as there are boundary mass fluxes. In contrast to the real
ocean, the sea level computed from a Boussinesq ocean is unaffected by a surface enthalpy flux,
QH ̸= 0. This result in turn means that we cannot use the prognostic sea surface height, ηbouss,
level from a Boussinesq ocean model to compute changes the global mean sea level. Instead,
corrections are required, as first identified by Greatbatch (1994) and further detailed in Appendix
D of Griffies and Greatbatch (2012).

72.7.7 Why global halosteric sea level changes are negligible
When freshwater enters the ocean, such as from melting continental ice sheets, it adds to the ocean
mass and in turn increases global mean sea level. This change is referred to as barystatic sea level
change according to the sea level terminology paper from Gregory et al. (2019). Although ocean
salinity changes upon changing the freshwater content, the net effect on global mean sea level
is almost entirely barystatic since the global halosteric effect is negligible. We can understand
why the global halosteric effect is so tiny by recognizing that freshwater entering the ocean
sees its salinity increase whilst the ambient seawater is itself freshened. These compensating
salinity changes (which are often mistakenly ignored) have corresponding compensating sea level
changes, thus bringing the global halosteric effect to near zero.

We here summarize the two-bucket thought experiment from Appendix B of Gregory et al.
(2019). In this experiment, one bucket holds freshwater and the other holds seawater, with
the Conservative Temperature and pressures assumed to be identical for the two buckets. By

10Importantly, for the global warming problem it is not that industrialization is directly adding 1 W m−2

to the planet. Rather, increases in the concentration of greenhouse gases, caused by the burning of fossil fuels,
increases the amount of solar radiation that remains within the atmosphere rather than being radiated to space.
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working through this example we expose the rather tiny effects on global mean sea level arising
from halosteric effects.

Formulating the change in volume

Consider two buckets containing seawater with mass Mn, volume Vn, density ρn =Mn/Vn, and
salinity Sn, where n = 1, 2 labels the two buckets. Now fully mix the water in the two buckets,
whereby the total mass, M , of seawater remains constant, as does the total mass of salt

M =M1 +M2 and M S =M1 S1 +M2 S2, (72.103)

where S is the salinity of the homogenized fluid so that M S is the total mass of salt in the
combined system. Now place a mass M1 of the homogenized fluid back in the first bucket, and a
mass M2 into the second bucket. Our goal is to compute the change in seawater volume

δV = δV1 + δV2. (72.104)

In determining this volume change, we ignore pressure changes as well as changes in enthalpy
associated with the heat of mixing. So the only change in volume arises from changes in the
salinity.

Since the mass of each bucket remains the same before and after homogenization, then the
density of seawater in each bucket changes only due to the volume changes

δρn = δ(Mn/Vn) = −(Mn/V
2
n ) δVn =⇒ δρn/ρn = −δVn/Vn. (72.105)

That is, the relative change in density equals to minus the relative change in volume. Now the
density changes arise just from salinity changes, in which

δρn/ρn = βn δSn, (72.106)

where βn is the haline contraction coefficient that measures changes in density when fixing
pressure and Conservative Temperature. We are thus led to the volume change

δV = −(V1 δρ1/ρ1 + V2 δρ2/ρ2) = −(V1 β1 δS1 + V2 β2 δS2). (72.107)

We can simplify this expression by making use of salt conservation in equation (72.103), thus
constraining salinity changes according to

M1 δS1 +M2 δS2 = 0 =⇒ δS2 = −(M1/M2) δS1, (72.108)

in which case the volume change takes on the form

δV = −V1 δS1 (β1 − β2 ρ1/ρ2). (72.109)

The haline contraction coefficient changes only by a few percent globally (see Roquet et al. (2015)
or Figure 1 in Griffies et al. (2014)), in which case we set β1 = β2 = β. Furthermore, to connect
to sea level changes we assume the horizontal cross-sectional area of the two buckets is the same,
so that the water column thickness differs between the two buckets by the amount

δh = −h1 β δS1 (1− ρ1/ρ2). (72.110)
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Oceanographic numbers

We can compute the relative change in thickness using equation (72.110) and plugging in some
numbers. Namely, we assume the first bucket is initially filled with freshwater (S1 = 0) whereas
the second bucket is initially filled with ambient seawater, with S2 = 35 ppt a representative
value. Homogenization of the two buckets then raises salinity in the first bucket and lowers it
for the second. Assume the first bucket has its salinity raised to by δS1 = S/2, let the density
ratio be ρ1/ρ2 = 1000/1028, and haline contraction coefficient be β = 0.8× 10−3. These values
then yield a thickness change

δh/h1 = −3.8× 10−4. (72.111)

Hence, for every meter of fresh water added to the ocean surface, the halosteric effect contributes
a 0.38 mm contraction of the water thickness. That is, the total volume of homogenized water
equals to the sum of the volume initially in the two separate buckets to within better than 0.04%.
We conclude that the volume change is almost entirely barystatic, so that the global halosteric
effect is entirely negligible when considering global sea level changes.

It is important to emphasize that this bucket thought experiment only concerns global sea
level. In contrast, regional halosteric effects can be important for studies of sea level patterns,
and as such they are the topic of many studies such as Griffies et al. (2014).

Comments on global thermosteric sea level changes

The above derivation for the global halosteric changes can be directly transferred to the case of
mixing two buckets whose water has different Conservative Temperatures but identical pressure
and salinity. Conservation of salt is here replaced by conservation of potential enthalpy, so that
the relative thickness change is given by

δh/h1 = α δΘ1 (1− ρ1/ρ2), (72.112)

where α is the thermal expansion coefficient. Taking α ≈ 2× 10−4 K−1, we find that δh from
thermal effects are on the same order as those from haline effects given by equation (72.110).
That is, the contributions to the column thickness are dominated by the barystatic (mass) effects.

However, there is a key distinction between thermal and haline contributions to sea level.
Namely, thermal properties are also affected by boundary radiant and turbulent enthalpy fluxes
that are not necessarily associated with boundary mass fluxes. These extra effects of boundary
heating were studied in Section 72.7.5, where we identified the key role for ocean warming on
global thermosteric sea level changes. Such changes are certainly not negligible, comparing to
the observed global barystatic contributions.

72.7.8 Further study
The discussion of steric and thermosteric sea level changes are further explored in Griffies
and Greatbatch (2012) and Griffies et al. (2014). The global halosteric discussion is based on
Appendix B of the sea level terminology paper from Gregory et al. (2019). The Gregory et al.
(2019) paper is also notable for providing a conceptual rationalization of the often confusing
terminology used in sea level studies.
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Chapter 73

WATER MASS TRANSFORMATION THEORY

A water mass refers to a region of seawater characterized by a suite of quasi-homogeneous
properties used to distinguish this water from other water masses. Water masses are typically
formed through surface boundary processes. As these waters enter the ocean interior they are
advected over basin scales while they are also eroded or transformed by irreversible mixing
processes. Water masses offer a conceptual means to partition or bin the ocean into distinct
classes whose origin, movement, and transformation can be measured, modeled, and studied.
Scalar properties generally used to classify water masses are simpler to measure than vector
properties such as velocity and vorticity. Hence, a water mass perspective offers the means to
infer ocean circulation within water mass space without directly measuring vector fields.

In this chapter we develop the mathematical and physical basis for water mass transformation
theory, which considers the budgets for seawater mass and tracer mass within layers or classes
defined by properties such as buoyancy, Conservative Temperature, salinity, or biogeochemical
tracers. The budgets can become rather complex in appearance, given the variety of domains
considered in the analysis. To reduce confusion, just remember that these equations are no
more than fancy scalar budgets equations. It is through these variants of the scalar budgets,
and through examining the processes affecting the budgets, that water mass transformation
theory offers a novel lens for describing and understanding facets of geophysical fluid mechanics.
Indeed, this lens is distinct from the Eulerian and Lagrangian kinematics considered elsewhere
in this book, and it has found great use throughout oceanography and atmospheric sciences, in
particular for questions where irreversible transformation is central to the story.

Readers of this chapter may appreciate the following paraphrase from A. Sommerfeld’s
quote. We gave it at the start of the thermodynamics part of this book (Part IV), and it seems
appropriate for the study of water mass transformation.

Water mass analysis appears somewhat mysterious and puzzling on first encounter.
On second encounter things start to fall into place, except perhaps for a few pesky
math niceties. On third encounter, when deciding to do calculations, one returns to
that unsettled feeling of the first encounter. However, by now, familiarity with the
words and maths means that the mystery presents no practical bother. One simply
turns the crank without thinking too much about the underlying foundations.

In hopes of partially dispelling the mystery, and maintaining an appreciation for the fundamental
processes, we here couple the mathematical equations with schematics, conceptual descriptions,
and thought experiments. To do so, we work through a number of budget analysis questions
with the aim to ground the theory with examples motivated from the growing literature.
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Readers of this chapter should be familiar with the vector calculus encountered in Chapter
2; mass budget kinematics from Chapter 19; tracer budget kinematics from Chapter 20;
elements of the generalized vertical coordinates from Chapters 63 and 64; and nearly
all of the material presented earlier in this part of the book, including the mathematics
and physics of advection and diffusion in Chapters 68, 69, features of parameterized
tracer transport and mixing studied in Chapter 71, and buoyancy budgets in Chapter 72,
including boundary conditions. Mastery of water mass transformation theory can require
years of pondering the fundamentals in the pursuit of applications.
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73.1 Conceptual framework
Water mass analysis is a mathematical formalism supporting the study of budgets for seawater
mass and tracer mass within layers or classes defined by properties such as Archimedean
buoyancy (Chapter 30; shortened to “buoyancy” here), Conservative Temperature, salinity, or
biogeochemical tracers. Water mass transformation theory is concerned with processes affecting
the evolution of fluid within layers and in the characterization of circulation inferred from this
evolution. The theory is very useful for oceanography since it is common to describe seawater
geography in terms of characteristic water properties, with the evolution of those water masses
of primary interest to physical and biogeochemical oceanography.1
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Figure 73.1: Left panel: a fluid element is positioned in geographical/depth x-space according to its horizontal
(x, y) (longitude, latitude) position and its vertical geopotential, z. Right panel: the same fluid element is
positioned in a particular water mass configuration space (q-space, here defined by q = (S,Θ, p) with salinity, S,
Conservative Temperature, Θ, and pressure, p. Mapping between the two spaces is generally not 1-to-1. Namely,
a point in q-space can be occupied by more than one point in x-space. The reason is that more than a single
point in x-space can have the same values for (S,Θ, p). Although the coordinate axes in q-space are depicted here
as mutually orthogonal, there is no objective means to determine angles in q-space since it contains no metric.
Rather, q-space, just like thermodynamic state space (Section 22.1.4), forms a differentiable manifold that has no
metric.

73.1.1 The novel lens of water mass configuration space
Water mass configuration space (denoted q-space) is the space we work within to study water
mass transformations. This space has some or all of its coordinates set by properties other than
geographic/depth coordinates.2 For example, in Figure 73.1 we present the three-dimensional
q-space given by q = (S,Θ, p), where the position (or bin) for a fluid element is determined by
its Conservative Temperature, Θ, salinity, S, and pressure, p. Operationally, we fill q-space by
forming histograms that result in a q-space distribution of seawater properties. For example, a
one-dimensional q-space results from binning the ocean according to potential density, whereas

1Water masses often originate through extremely large buoyancy fluxes at the high latitudes that form waters
such as the Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW). Talley et al. (2011)
provides a great place to embark on a study ocean water mass phenomenology.

2We prefer the term “configuration space” over the alternative “phase space”, since phase space in Hamiltonian
dynamics specifically refers to position and momentum coordinates (see Chapter 12). In contrast, configuration
space, as used in our discussion of water masses, can be determined by most any property or geographic position.

CHAPTER 73. WATER MASS TRANSFORMATION THEORY page 2043 of 2158



73.1. CONCEPTUAL FRAMEWORK

retaining latitudinal information along with potential density renders a two-dimensional q-space.
Typically q-space has three or fewer dimensions, given the three dimensionality of x-space.
There no implied constraint that any of the q-space coordinates are monotonic with respect to
x-space. Indeed, there is no presumption that points in q-space maintain a 1-to-1 relation to
points in x-space. For example, many points in x-space may fall into a single point (or bin)
within q-space.

The lack of 1-to-1 mapping between water mass configuration space and geographic/depth
space is a fundamental kinematic distinction from the 1-to-1 relation that holds between the
Eulerian and Lagrangian descriptions of fluid motion (see Chapter 17). The lack of a 1-to-1
relation can be frustrating since circulation viewed in q-space generally has incomplete x-space
information, whereas oceanographers wish to know where on the planet something is happening.3

Even so, abandoning the 1-to-1 relation can be liberating since working within q-space offers a
framework to infer q-space circulation even without measuring velocity of the fluid in geographical
space. Correspondingly, ocean circulation when viewed through a water mass lens can offer
understanding that complements traditional Eulerian or Lagrangian views.

Water mass configuration space generally has no metric, particularly when none of the chosen
coordinates are geographical (latitude or longitude) or depth.4 Hence, there is generally no
notion of distance or angles between points in water mass configuration space. For example,
what does it mean to be orthogonal in temperature-salinity space or when studying the density-
binned distribution of seawater? The absence of a metric is something we have already seen
when studying thermodynamic configuration space in Chapter 22 (see in particular Section
22.1.4). Mathematically, we say that both thermodynamic configuration space and water
mass configuration space are differentiable manifolds. Even so, one commonly sees a point
in thermodynamic space depicted on a diagram with orthogonal axes (e.g., pressure-volume
diagrams), or a position in water mass configuration space similarly depicted with orthogonal
axes as in Figure 73.1. Yet this depiction is arbitrary since there is no geometric structure
afforded to such spaces since there is no metric tensor, which in turn means we cannot determine
angles or orthogonality. Depictions with orthogonal axes merely satisfy a subjective desire for
geometric structure when in fact there is none afforded to the manifold.5

73.1.2 Transformation and formation
Water moves through water mass configuration space as it is modified or transformed by boundary
and interior ocean processes that cause water to cross surfaces defined by the chosen water mass
property.6 Stated differently, a transformation process leads to material changes in the property
of a fluid element, with sources of transformation arising from mixing, solar radiation, and
chemical reactions. The convergence (i.e., the local imbalance) of such transformation processes
leads to the formation and destruction of water mass classes. As water moves through water
mass configuration space we are afforded a distinct view of ocean circulation that has both direct
and indirect connections to circulation in geographical/depth space. Notably, and quite trivially,
we measure zero motion along a coordinate axis in water mass configuration space when the
property defining that axis remains materially unchanged. For example, adiabatic and isohaline
processes such as linear waves can render nontrivial motion in geographical/depth space whereas
they lead to no motion in (S,Θ) space.

3Auxiliary methods such as the water tagging method of Groeskamp et al. (2014) can be used to recover some
geographical information.

4See Section 4.1 for a discussion of the metric tensor needed to measure distance.
5Differential forms provide a suitable formalism for conducting calculus on a differential manifold sans a

metric as detailed by Nurser et al. (2022). This topic is, however, outside the scope of this book.
6In many parts of this book the word “transformation” refers to coordinate transformations. Here, “trans-

formation” refers to a process acting to change a seawater property; i.e., to change one or more of the q-space
coordinates.
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If one is interested in processes that do not give rise to material changes in a fluid property,
then the corresponding water mass configuration space generally offers a rather bland kine-
matic perspective. Furthermore, given the possible non-local x-space aspects of water mass
configuration space, it provides an unnatural venue to study forces and stresses acting between
spatially adjacent fluid elements. Hence, the study of momentum and vorticity dynamics is
better handled via Eulerian or Lagrangian kinematics. Where water mass configuration space
shines is by revealing the dynamics associated with processes that affect material changes to
those properties defining the water mass classes. For example, a water mass perspective has
found use in framing key questions of primary interest in the Anthropocene, such as ocean
buoyancy and its transformation through interior and boundary mixing, ocean heat uptake and
transport, the hydrological cycle, steric sea level rise, and irreversible changes to biogeochemical
properties (see Groeskamp et al. (2019) for a review with many references).

73.2 Buoyancy transformation and formation

Archimedean buoyancy is a common property used to distribute seawater, with Archimedean
buoyancy commonly approximated by potential density (Chapter 30). In this section we introduce
the notions of transformation and formation when partitioning the ocean according to density (γ)
classes that locally measure buoyancy.7 The ideas presented here extend to any scalar property
used to bin the ocean fluid.

Quantitatively, the transformation of seawater refers to a measure of the mass per time
of water that moves across an isosurface of one of the q-space coordinates. Alternatively,
a transformation refers to the movement from one q-space bin to another bin within the q-
space distribution. For a q-space containing density as one of its coordinates, we say that the
transformation is positive if water moves to larger density and negative if it enters a lighter density
layer. Indeed, one generally says that movement to a larger value for the water mass property
refers to a positive transformation whereas the opposite motion is a negative transformation.
Water mass formation refers to the difference in transformation across the surfaces bounding a
layer, so that formation measures the change in mass of the layer. Evidently, formation is the
q-space convergence of transformation.

Both transformation and formation have dimensions of mass per time (or volume per time
when considering Boussinesq oceans; Chapter 29) and are typically measured in Sverdrup units:

1 Sv = 106 m3 s−1 volume-Sverdrup (73.1a)

1 Sv = 109 kg s−1 mass-Sverdrup. (73.1b)

The mass-Sverdrup can be routinely used for Boussinesq fluids merely by multiplying the
volume-Sverdrup by the constant Boussinesq reference density, ρo.

73.2.1 A three-layer thought experiment

To illustrate the concepts of transformation and formation, bin the World Ocean into density
classes so that q-space is just one dimensional. We thus lose all information about latitude,
longitude, and depth, retaining only the information provided by γ-classes. Furthermore,
partition the World Ocean into just three density layers (also called classes or bins) that are

7Many researchers make use of the neutral density coordinate defined by Jackett and McDougall (1997).
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bounded by four density interfaces:

light density layer = [γ − δγ/2, γ + δγ/2] (73.2a)

middle density layer = [γ + δγ/2, γ + 3 δγ/2] (73.2b)

heavy density layer = [γ + 3 δγ/2, γ + 5 δγ/2], (73.2c)

where δγ > 0 is the size of the density bins. Figure 73.2 depicts a sample mass distribution; i.e.,
the mass census for seawater binned into these three density layers.8 Now consider a physical,
chemical, or biological process that results in water leaving the middle density layer and entering
both the light layer and the heavy layer.9 Let G(σ) measure the mass per time that water
crosses the density interface γ = σ; i.e., G(σ) is the transformation. This particular thought
experiment has the following transformations across the various layer interfaces

G(σ) =


0 σ = γ − δγ/2 closed boundary
< 0 σ = γ + δγ/2 mass moves to light density from middle density
> 0 σ = γ + 3 δγ/2 mass moves from middle density to heavy density
0 σ = γ + 5 δγ/2 closed boundary.

(73.3)

The difference in the transformation across the interface boundaries of a particular layer
determines the formation/destruction of water in that layer. Here, the convergence of water
into the light and heavy layers means that there is a positive formation of water in these two
density layers. In contrast, the divergence of water from the middle density layer means there
is a negative formation or a destruction of some of its water. We write these layer formations
mathematically as follows

light-formation = −[G(γ + δγ/2)−G(γ − δγ/2)] > 0 (73.4a)

middle-formation = −[G(γ + 3 δγ/2)−G(γ + δγ/2)] < 0 (73.4b)

heavy-formation = −[G(γ + 5 δγ/2)−G(γ + 3 δγ/2)] > 0. (73.4c)

The minus sign out front emphasizes that the formation is the layer integrated convergence of
the transformation.

73.2.2 How processes lead to transformations

The central focus of water mass transformation analysis is the movement of water between layers
or classes, with this movement modifying the water mass distribution within the chosen water
mass configuration space. Here we outline a few of the processes that affect this movement
within water mass space, again focusing on buoyancy yet with an easy generalization to any
other property that defines the water mass. Notably, we are not concerned with whether the
fluid element moves in x-space, the boundary moves, or both, since it is only the relative motion
that changes the water mass distribution in q-space. Indeed, we cannot determine motion of the
fluid element in x-space without direct information about the velocity. We return to this notion
when providing a mathematical expression for these ideas in Section 73.4.1.

8A realistic ocean experiences boundary forcing that makes the maximum and minimum density a function of
time. It is thus common to fix the lower density limit to be well below the lightest water in the ocean and the
upper density limit well above the maximum density, thus ensuring that all seawater is contained by the chosen
binning. We introduce such “infinity” bounds in Section 73.3.3.

9Since the layer is the result of binning over the World Ocean, there can be some regions within a bin that
experience processes that decrease the density, whereas other regions where density increases. In this manner,
some water within the bin moves to a denser bin whereas other water moves to a lighter bin.
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Figure 73.2: A sample mass distribution of the ocean binned into three density layers (light, middle, heavy)
bounded by four density interfaces: γn/2 = γ + n δγ/2 for n = −1, 1, 3, 5. The left panel depicts an ocean state
with equal mass in each layer. Some process is then imagined to cause water to diverge from the middle layer and
converge to the light and heavy layers. The right panel shows the mass distribution after the water has moved, so
that the middle layer has experienced a negative formation (i.e., net loss of mass) whereas the light and heavy
layers have experienced a positive formation (i.e., net mass gain). The middle panel depicts the transformation,
G, which measures the mass per time moving across the layer boundaries. By convention, G > 0 for water moving
into a heavier density layer and G < 0 for water entering a lighter density layer. The addition of more layers
refines the picture (e.g., by smoothing the plot of G) but it does not modify the basic ideas illustrated in this
thought experiment.

Interior transformation from mixing

Mixing moves water across layer boundaries in q-space, with q-space coordinates/properties
materially modified in the presence of mixing (so long as there are spatial gradients in the
property). For example, recall our discussion in Chapter 20 where as saw that mixing causes
tracers to move between fluid elements even as mixing does not alter the net mass of fluid
elements (see the discussion of barycentric velocity in Section 20.1.2). Hence, in the presence of
mixing, seawater fluid elements retain a fixed mass, and yet the mass is redistributed among
layers defined by property isosurfaces since the isosurfaces move in the presence of mixing.

Surface mass fluxes

Rain and evaporation alter the mass of the ocean. In turn, the layers where rain and evaporation
occur; i.e., layers that outcrop, have their mass altered through the surface mass fluxes. Addi-
tionally, if the buoyancy of the mass flux differs from that of the ocean layer that it enters/leaves,
then the buoyancy of the ocean layer is modified upon mixing the ambient seawater with the
water entering the ocean.

Surface and bottom boundary transformation

Buoyancy surfaces that outcrop at the ocean surface or incrop at the ocean bottom are exposed to
boundary fluxes that generally modify the buoyancy of the fluid within a layer. This modification
causes the layer boundaries to move so that the mass distributed within the layers can be
modified if the mass moves with a velocity distinct from the buoyancy surface. A particularly
striking example occurs in the upper ocean boundary layer where surface forcing leads to the
seasonal migration of density outcrops. The associated lateral movement of density layers causes
water to entrain and detrain from a layer since the layer boundaries generally have a velocity
distinct from fluid elements. In so doing, the seasonal cycle of surface buoyancy forcing can
inflate or deflate a buoyancy layer by moving the layer boundaries so that the layer entrains or
detrains mass.

Penetrative shortwave radiation provides another means to modify water masses, with
penetrative radiation a function of the optical properties of the fluid. This radiation provides a
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source of heating that can penetrate into the upper few tens of meters in the ocean, and can
impact on the temperature and density structure of the ocean layers affected by radiation.

Finally, layers that intersect the ocean bottom are exposed to geothermal heating as well
as enhanced mixing from bottom boundary layer mixing. Each of these processes affects
a transformation of the buoyancy, thus modifying the buoyancy layer interfaces and mass
distribution within the layers.

Interior sources and sinks

When studying water masses defined by biogeochemical tracers (e.g., carbon, oxygen, nutrients),
there are a variety of chemical reactions and biological processes that act to modify these
properties. These processes generally cannot be represented mathematically as the convergence
of a flux. They are thus sometimes referred to as “non-conservative” processes (see Section
26.12) and written as a source/sink term.

73.3 Mathematical framework

In this section we develop a suite of mathematical tools of use to quantify the conceptual
ideas presented in Sections 73.1 and 73.2. In particular, we develop a formalism for integrating
properties within a region bounded by isosurfaces of a scalar field, λ = λ(x, t). The formulation is
given from both a geometric perspective afforded by x-space, and a complementary distributional
perspective afforded by binning seawater mass according to λ-classes that define a one-dimensional
q-space. As in our study of Eulerian and Lagrangian kinematics elsewhere in this book, it is here
useful to be adept at both the x-space perspective and the distributional q-space perspective.

In Section 73.2 we considered λ to be the buoyancy field, λ = γ, whereas here we assume it is a
generic scalar field, λ(x, t). In contrast to the case of a generalized vertical coordinate (Chapters
63 and 64), we make no assumption regarding the stratification of λ. Rather, λ-isosurfaces
are free to overturn or even to be situated in spatially disconnected regions. This freedom is
motivated by the behavior of most oceanographic scalar properties, which commonly exhibit
vertically unstratified or negatively stratified profiles, particularly within boundary layers. This
degree of freedom comes at the cost of losing the 1-to-1 relation between x-space and q-space,
as mentioned in Section 73.1.1.

73.3.1 Seawater mass in an infinitesimal cylinder

Consider the calculation of seawater mass within an infinitesimal λ-layer bounded by two
isosurfaces, [λ− δλ/2, λ+ δλ/2], as in Figure 73.3. The mass within a tiny cylinder extending
from one interface to the other is given by the seawater density, ρ, multiplied by the volume of
the cylinder,10

δM = ρ δV = ρ δh δS, (73.5)

where δS is the cross-sectional area element and δh is the layer thickness. The geometric
thickness, δh, is related to the differential λ-increment separating the two interfaces according to

δλ = ∇λ · δx = |∇λ| n̂ · δx = |∇λ| δh with n̂ = ∇λ |∇λ|−1, (73.6)

10Recall our notational convention is as follows: δ refers to an infinitesimal increment of a property measured
within the fluid whereas d is a differential increment used for computing integrals. We made use of the same
geometric analysis in Section 41.1.2 when studying potential vorticity.
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where δx is a position vector connecting points on the two interfaces. We thus see that the layer
thickness is given by

δh =
δλ

|∇λ| , (73.7)

which connects a geometric property of the layer, δh, to the λ-increment, δλ > 0. For a given
λ-increment, the layer thickness is smaller with more tightly packed λ-isosurfaces as reflected
by a larger |∇λ|. Furthermore, the geometric thickness is oriented according to the normal
direction, n̂, so that δh measures the distance between the λ-interfaces in the direction of the
normal direction. It follows that the seawater mass within the cylinder is given by

δM = ρ δV = ρ δh δS =
ρ δλ δS

|∇λ| . (73.8)

λ + δλ /2

λ − δλ /2

δh

δ𝒮

Figure 73.3: This schematic shows an infinitesimally thin λ-layer bounded by two interfaces [λ− δλ/2, λ+ δλ/2],
with the λ-increment δλ > 0. The cylinder region extends between the two iso-surfaces and it has thickness δh =
δλ/|∇λ| and cross-sectional area δS. The cylinder is oriented according to the normal direction, n̂ = |∇λ|−1 ∇λ.
We assume |∇λ| ̸= 0, as required to define a normal direction. Indeed, if ∇λ = 0 then we could not perform a
binning according to λ classes, so the |∇λ| ̸= 0 assumption is basic to the use of the scalar field, λ, for water mass
analysis.

73.3.2 Seawater mass within a finite region

Making use of the infinitesimal cylinder mass (73.8) allows us to write the mass of seawater
within the λ-region λ1 ≤ λ ≤ λ2

M(λ1, λ2) ≡
ˆ
Ω(λ1≤λ≤λ2)

dM =

ˆ λ2

λ1

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
dλ. (73.9)

In this equation, Ω(λ1 ≤ λ ≤ λ2) is the region in space bounded by the λ1-interface and
λ2-interface, and ∂Ω(λ) is the surface defined by a λ-isosurface. The ∂Ω(λ) integral is taken
over the area of the λ-isosurface, which is then integrated over the range, λ1 ≤ λ ≤ λ2, to thus
accumulate the layer mass.

73.3.3 Seawater mass distribution/density function

The region bounded by the layer interfaces can have any shape in space and can even be spatially
disconnected. This complexity motivates us to introduce the mass distribution function by
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Figure 73.4: An example mass distribution function, m(λ) = dM/dλ, which measures the mass of seawater per
λ-increment. Integration over a finite λ-region measures the seawater mass within that region. For example, the

mass within a ∆λ-layer is given by M(λ̃−∆λ/2, λ̃+∆λ/2) =
´ λ̃+∆λ/2

λ̃−∆λ/2
m(λ′) dλ′ whereas the mass within the

λ∞-region is M(λ, λ∞) =
´ λ∞
λ

m(λ′) dλ′, where we assume that λ∞ is an arbitrary fixed value that is larger than
any λ realized within the ocean.

integrating the mass over the surface, ∂Ω(λ)

m(λ) ≡ dM

dλ
=

ˆ
∂Ω(λ)

ρ dS

|∇λ| . (73.10)

A mass distribution function is quite useful when the distribution is highly non-local in geograph-
ic/depth space. It is also effective when using multiple water mass coordinates such as Θ and
S as discussed in Nurser et al. (2022). These points motivate leaving the x-space perspective
altogehter to simply define the mass distribution function so that

dM = m(λ) dλ = fluid mass within the infinitesimal λ-layer [λ− dλ/2, λ+ dλ/2], (73.11)

with an illustration given by Figure 73.4. The mass distribution function is the mass density
within λ space; i.e., the mass per λ. Knowledge of the mass distribution function allows us to
compute the seawater mass within a finite region, as in equation (73.9), according to

M(λ1, λ2) ≡
ˆ
Ω(λ1≤λ≤λ2)

dM =

ˆ λ2

λ1

m(λ) dλ. (73.12)

73.3.4 Example regions
To help ground the previous expressions for mass, consider some example regions commonly
considered in water mass analysis.

∆λ-layer defined by [λ1, λ2] = [λ−∆λ/2, λ+∆λ/2]

A ∆λ-layer is defined with the bounding interface values

λ1 = λ−∆λ/2 and λ2 = λ+∆λ/2, (73.13)

for some finite difference increment ∆λ > 0. In this case the layer mass is

M(λ−∆λ/2, λ+∆λ/2) =

ˆ λ+∆λ/2

λ−∆λ/2

[ˆ
∂Ω(λ′)

ρdS

|∇λ′|

]
dλ′ =

ˆ λ+∆λ/2

λ−∆λ/2
m(λ′) dλ′. (73.14)
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Characterizing ocean properties according to their value of λ is generally performed by decom-
posing the ocean into ∆λ-bins and forming histograms to estimate the continuous distribution.

λ∞-region defined by [λ1, λ2] = [λ, λ∞]

A λ∞-region is defined with
λ1 = λ and λ2 = λ∞, (73.15)

where λ∞ is an arbitrary fixed constant that is larger than any value of λ realized in the ocean.
The region mass is thus given by

M(λ, λ∞) =

ˆ
Ω(λ≤λ∞)

dM =

ˆ λ∞

λ

[ˆ
∂Ω(λ′)

ρdS

|∇λ′|

]
dλ′ =

ˆ λ∞

λ
m(λ′) dλ′. (73.16)

An example λ∞-region is shown in Figure 73.5. The λ∞-region as so defined provides an
expression for the differential mass increment

M(λ, λ∞) =

ˆ λ∞

λ
m(λ′) dλ′ =⇒ dM(λ, λ∞) = −m(λ) dλ, (73.17)

which follows since λ∞ is a constant.

The value of the fixed constant, λ∞, is arbitrarily large, indeed it could be infinite. We can
set it to an arbitrarily large constant value since there is no contribution to the integral from
regions with λ′ outside the range realized within the ocean, merely since there is no ocean mass
in that region. As an example, let λ = Θ, the Conservative Temperature, in which the region
Θ ≤ Θ∞ encompasses the ocean region where the Conservative Temperature is larger (warmer)
than Θ.
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Figure 73.5: Depicting the mass of fluid within a λ∞-region, where λ ≤ λ∞ with λ∞ is an arbitrary constant
that is larger than any value of λ in the ocean domain. This figure is oriented for the southern hemisphere with
Antarctica on the left. An example of such a region is for λ = Θ, whereby warmer waters are typically shallower
and towards the equator.

λ−∞-region defined by [λ1, λ2] = [λ−∞, λ]

A λ−∞-region is defined with
λ1 = λ−∞ and λ = λ, (73.18)
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where λ−∞ is an arbitrary constant that is smaller than any value of λ realized in the ocean.
The region mass is thus given by

M(λ−∞, λ) ≡
ˆ
Ω(λ−∞≤λ)

dM =

ˆ λ

λ−∞

[ˆ
∂Ω(λ′)

ρ dS

|∇λ′|

]
dλ′ =

ˆ λ

λ−∞

m(λ′) dλ′. (73.19)

This mass is the complement of that contained in the λ∞-region. The λ−∞-region mass implies
a corresponding differential mass increment via

M(λ−∞, λ) =

ˆ λ

λ−∞

m(λ′) dλ′ =⇒ dM(λ−∞, λ) = m(λ) dλ. (73.20)

λ±∞-region defined by [λ1, λ2] = [λ−∞, λ∞]

The full ocean is contained in the λ±∞-region

λ1 = λ−∞ and λ2 = λ∞, (73.21)

so that the full ocean mass is written

M(λ−∞, λ∞) =

ˆ
Ω(λ−∞≤λ≤λ∞)

dM =

ˆ λ∞

λ−∞

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
dλ =

ˆ λ∞

λ−∞

m(λ′) dλ′. (73.22)

Difference of mass between two λ∞-regions

The difference in mass between two λ∞-regions is given by

M(λ1, λ∞)−M(λ2, λ∞) =

ˆ λ∞

λ1

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
dλ−

ˆ λ∞

λ2

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
dλ. (73.23)

The arbitrary constant, λ∞, drops out when taking the difference so that we are left with the
mass within the intersection of the two regions

M(λ1, λ2) =M(λ1, λ∞)−M(λ2, λ∞) =

ˆ λ2

λ1

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
dλ =

ˆ λ2

λ1

m(λ′) dλ′. (73.24)

73.3.5 Integrals of arbitrary functions

We can extend the above formalism to integrals of an arbitrary function, F(x, t), over a region
defined by λ1,2-interfaces

IF(λ1, λ2) ≡
ˆ
Ω(λ1≤λ≤λ2)

F dM =

ˆ λ2

λ1

[ˆ
∂Ω(λ)

F ρ dS

|∇λ|

]
dλ. (73.25)

Performing the area integral amounts to binning the function according to λ-increments, in
which case we define the distribution function

mF(λ) =

ˆ
∂Ω(λ)

F ρ dS

|∇λ| , (73.26)
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so that an integral over the distribution is given by

IF(λ1, λ2) =

ˆ λ2

λ1

mF(λ) dλ. (73.27)

In particular, consider the integral over a λ∞-region

IF(λ, λ∞) =

ˆ λ∞

λ

[ˆ
∂Ω(λ′)

F ρdS

|∇λ′|

]
dλ′ =

ˆ λ∞

λ
mF(λ

′) dλ′, (73.28)

which has the derivative

∂IF(λ, λ∞)

∂λ
= −

ˆ
∂Ω(λ)

F ρdS

|∇λ| = −mF(λ), (73.29)

as follows from the fundamental theorem of calculus. Note how the derivative removes the
reference value, λ∞. Analogously, the integral over a λ−∞-region has the derivative

∂IF(λ−∞, λ)

∂λ
=

ˆ
∂Ω(λ)

F ρdS

|∇λ| = mF(λ). (73.30)

73.3.6 Moments of λ

Setting F = λ in the integral (73.25) renders

Λ(λ1, λ2) ≡
ˆ
Ω(λ1≤λ≤λ2)

λ dM =

ˆ
Ω(λ1≤λ≤λ2)

λ ρdV =

ˆ λ2

λ1

[ˆ
∂Ω(λ)

λ ρdS

|∇λ|

]
dλ. (73.31)

If λ is a tracer concentration (tracer mass per seawater mass), then Λ(λ1, λ2) is the mass of
tracer within the layer. Observe that λ can be pulled outside of the surface integral in equation
(73.31) since λ is constant along ∂Ω(λ), thus rendering

Λ(λ1, λ2) =

ˆ λ2

λ1

[ˆ
∂Ω(λ)

ρdS

|∇λ|

]
λdλ =

ˆ λ2

λ1

m(λ)λ dλ. (73.32)

We can likewise define any higher powers as

Λ(n)(λ1, λ2) ≡
ˆ λ2

λ1

[ˆ
∂Ω(λ)

ρ dS

|∇λ|

]
λn dλ =

ˆ λ2

λ1

m(λ)λn dλ =M(λ1, λ2) ⟨λn⟩. (73.33)

The final equality introduced the mean value for the power

⟨λn⟩ =
´ λ2
λ1
m(λ)λn dλ´ λ2

λ1
m(λ) dλ

(73.34)

as defined over the [λ1, λ2] region. We refer to ⟨λn⟩ as the n-moment of λ, with n = 1 yielding
the mean.

73.3.7 Internal and external λ-moments

Now specify the region [λ1, λ2] = [λ̃, λ∞] for the moment equation (73.33). Making use of the
differential mass increment, dM(λ, λ∞) = −m(λ) dλ as in equation (73.17) allows us to integrate
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the moment equation by parts

Λ(n)(λ̃, λ∞) =

ˆ λ∞

λ̃
λnm(λ) dλ (73.35a)

= −
ˆ λ∞

λ̃
λn dM (73.35b)

=

ˆ λ∞

λ̃

[
−d(λnM) + nM λn−1 dλ

]
(73.35c)

= −λn∞M(λ∞, λ∞) + λnM(λ̃, λ∞) + n

ˆ λ∞

λ
M(λ, λ∞)λn−1 dλ (73.35d)

= λnM(λ̃, λ∞) + n

ˆ λ∞

λ
M(λ, λ∞)λn−1 dλ, (73.35e)

where the final equality follows since M(λ∞, λ∞) = 0. Making use of equation (73.33) thus leads
to

M(λ̃, λ∞) ⟨λn⟩ =M(λ̃, λ∞) λ̃n︸ ︷︷ ︸
external moment

+ n

ˆ λ∞

λ̃
M(λ, λ∞)λn−1 dλ.︸ ︷︷ ︸
internal moment

(73.36)

We refer to the rightmost term as the internal moment since it is an integral over the region,
whereas M(λ̃, λ∞) λ̃n is the external moment, which is the region mass times the boundary value,
λ̃n. We choose the moniker “external” since the external moment increases in direct proportion
to the mass crossing the ocean layer boundaries, including the external boundaries. In Section
73.6 we develop a budget for the n = 1 moment, in which the internal moment from equation
(73.36) takes the form

M(λ̃, λ∞) [⟨λ⟩ − λ̃] =
ˆ λ∞

λ̃
M(λ, λ∞) dλ. (73.37)

We return to the notion of internal and external moments in Section 73.10.2.

73.3.8 Further study

The formulation given here in terms of mass distribution functions follows that of Walin (1977)
and Walin (1982). In these two papers, Walin pioneered the formalism of water mass analysis,
which is sometimes referred to as Walin analysis in his honor. The concept of internal and
external tracer moments follows the internal and external heat introduced by Holmes et al.
(2019).

73.4 Water mass transformation across a λ-surface

We here develop the formalism to quantify transport of seawater crossing an interior λ-interface.
This transport is referred to as the water mass transformation and is written as G(λ). Figure
73.6 illustrates how this transformation appears in a mass budget for a ∆λ-layer, with details
provided in this section. We assume that λ satisfies a tracer equation as discussed in Section
73.4.3.
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Figure 73.6: A layer of seawater with scalar property λ within the range [λ−∆λ/2, λ+∆λ/2] and defined over
a geographical domain Ω(λ±∆λ/2). In this example, λ increases to the south, towards Antarctica, with λ = γ
(density) an example (Section 73.2). The net seawater mass transport crossing the layer interfaces, ∂Ω(λ±∆λ/2),
is G(λ±∆λ/2), with G > 0 for water moving to regions of larger λ. The seawater mass crossing the layer through
the geographical bounds, ∂Ωin(λ±∆λ/2), is written ∆Ψ(λ±∆λ/2), with ∆Ψ(λ±∆λ/2) > 0 for water leaving
Ω(λ ±∆λ/2). The boundary ∂Ωin(λ ±∆λ/2) is absent when the domain extends across a basin or the global
ocean (e.g., see Figure 73.8). The mass crossing the sea surface, ∂Ωout(λ±∆λ/2), through rain, evaporation, melt,
or rivers is written ∆W (λ±∆λ/2), with ∆W (λ±∆λ/2) > 0 for mass entering Ω(λ±∆λ/2). A layer interface
can have an arbitrary stratification, such as the vertically non-monotonic profile depicted here for the λ+∆λ/2
interface. Additionally, the domain Ω(λ ±∆λ/2) can generally be disconnected. The net domain boundaries
are written ∂Ωin(λ±∆λ/2) + ∂Ωout(λ±∆λ/2) + ∂Ω(λ+∆λ/2) + ∂Ω(λ−∆λ/2). The δλ layer surrounding the
∂Ω(λ−∆λ/2) interface arises as part of the method detailed in Section 73.4.2 for computing G according to the
λ-derivative of an integral over the δλ layer.

73.4.1 Dia-surface flux and interior transformation

The object that measures the local water mass transformation is the dia-surface flux detailed in
Section 64.3.7. This flux is given by

wdia = n̂ · (v − v(λ)) =
λ̇

|∇λ| with n̂ =
∇λ
|∇λ| and λ̇ =

Dλ

Dt
, (73.38)

and with wdia > 0 for water moving to regions of larger λ. It is computed as the projection
of the relative velocity, (v − v(λ)), onto the direction normal to the surface, with the relative
velocity being the difference between the fluid particle velocity, v, and the velocity of a point
on the λ-interface, v(λ). The velocity of a point on the surface satisfies the following kinematic
constraint11

(∂t + v
(λ) · ∇)λ = 0. (73.39)

This constraint is based on assuming v(λ) measures the velocity of a point fixed to the λ-surface.
Evidently, the dia-surface flux, wdia, locally measures the flux of seawater (volume per area per
time) that penetrates a λ-interface in the direction of increasing λ.

The interior water mass transformation, G(λ), is the area integral of ρwdia over the full extent
of the λ-surface

G(λ) ≡
ˆ
∂Ω(λ)

ρwdia dS =

ˆ
∂Ω(λ)

ρ n̂ · (v − v(λ)) dS =

ˆ
∂Ω(λ)

ρ λ̇

|∇λ| dS, (73.40)

11We encountered the relation (73.39) in Section 19.6.2 when deriving the kinematic boundary condition for a
moving surface.
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where ∂Ω(λ) is the surface occupied by the λ-interface (see Figure 73.6). Furthermore, the
dimensions of G(λ) are mass per time

G(λ) [≡] M T−1, (73.41)

thus measuring the mass per time crossing the λ-interface.

Based on the definition (73.40), we see that interior water mass transformation across a
λ-interface occurs when there is a material change, λ̇ ≠ 0, in the property defining the interface.
Interior material changes arise from mixing, which generally causes irreversible changes to λ,
thus driving seawater across the moving λ-interfaces. Material changes can also arise from
sources and sinks, as when considering buoyancy surfaces in the presence of a nonlinear equation
of state (Chapter 72). Sources and sinks are also commonly encountered by biogeochemical
tracers.

73.4.2 Transformation as the derivative of an integral

Following the discussion from Section 73.3.5, we set F = λ̇ and consider the mass integral

Iλ̇(λ, λ∞) =

ˆ
Ω(λ≤λ∞)

λ̇′ dM =

ˆ λ∞

λ

[ˆ
∂Ω(λ′)

ρ λ̇′

|∇λ′| dS
]
dλ′ =

ˆ λ∞

λ
G(λ′) dλ′. (73.42)

The fundamental theorem of calculus leads to the expression of the water mass transformation
as the derivative

G(λ) = −∂Iλ̇(λ, λ∞)

∂λ
fund. thm of calculus (73.43a)

= − lim
δλ→0

1

δλ

[ˆ λ∞

λ+δλ/2
G(λ′)dλ′ −

ˆ λ∞

λ−δλ/2
G(λ′)dλ′

]
definition of derivative (73.43b)

= lim
δλ→0

1

δλ

ˆ λ+δλ/2

λ−δλ/2
G(λ′)dλ′ combine integral limits (73.43c)

= lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

λ̇′ dM equation (73.42) (73.43d)

= lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

λ̇′ ρ dV dM = ρdV. (73.43e)

Evidently, the calculation of interior water mass transformation requires information about the
material time change, λ̇, a weighting of the time changes according to the mass, dM = ρdV ,
and a binning of ρ λ̇ dV according to λ-classes. Note that in the final equality, equation (73.43e),
the limit δλ→ 0 might appear to lead to a singularity. However, as seen by the form in equation
(73.43c), the integration region volume also gets smaller as δλ → 0 so that the limit is well
defined.

73.4.3 Kinematic and process methods of transformation

There are complementary methods to view interior water mass transformation: the process
method and the kinematic method. The two methods are mathematically identical and so they
offer two means to compute the same transformation. The kinematic method tells us how
transformation happens whereas the process method tells us why. We here detail these two
methods.
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Kinematic method

The kinematic method focuses on the kinematic means for realizing dia-surface transport, thus
providing information concerning how interior transformation occurs. It does so by binning
processes contributing to the right hand side of

ρ λ̇ = ∂t(ρ λ) +∇ · (ρ λv), (73.44)

which arises from the local time tendency plus advection, so that

G(λ) = lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

[∂t(ρ λ) +∇ · (ρ λv)] dV. (73.45)

This method is operationally simpler than the process method since there are fewer terms to
bin. However, it does not provide information about why there is transformation, with that
information requiring us to bin tendencies arising from individual processes.

Process method

The process method focuses on physical processes leading to movement of fluid across the λ-
interface, thus providing information concerning why interior transformation occurs. It does so
by binning processes contributing to the right hand side of the tracer equation

ρ λ̇ = −∇ · J + ρ Υ̇, (73.46)

where J is a flux arising from non-advective processes such as diffusion, and Υ̇ is a source/sink
term (dimensions of λ per time) that cannot be written as the convergence of a flux. The tracer
equation (73.46) inserted into the transformation equation (73.43e) leads to

G(λ) = lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

(−∇ · J + ρ Υ̇) dV (73.47a)

= lim
δλ→0

1

δλ

˛
∂Ω(λ±δλ/2)

(−J · n̂) dS + lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

ρ Υ̇ dV, (73.47b)

The second equality made use of the divergence theorem to convert the volume integral into a
surface integral. For the tracer sources, we assume they do not modify the seawater mass at a
point so that there is no source in the seawater mass equation.

For many purposes it is useful to decompose the non-advective flux divergence into contribu-
tions from interior processes, such as ocean mixing, and boundary fluxes

∇ · J = ∇ · (J int + J out + J bot). (73.48)

By definition,
J int · n̂ = 0 on ∂Ωout(λ± δλ/2) and ∂Ωbot(λ± δλ/2), (73.49)

whereas J int · n̂ is generally nonzero on interior layer boundaries. In contrast, the boundary
fluxes, J out · n̂ and J bot · n̂, are identically zero everywhere except on their respective boundaries.
Correspondingly, it is convenient to bin the volume weighted convergence, −∇·J int dV , according
to λ-classes, and to likewise bin the area weighted boundary fluxes, J out · n̂dS and J bot · n̂dS.
In this way we write the non-advective contribution to water mass transformation in the form

G(λ)non-adv = − lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

∇ · J int dV︸ ︷︷ ︸
interior transformation = volume integral of convergence
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− lim
δλ→0

1

δλ

ˆ
∂Ωout(λ±δλ/2)

J out · n̂dS︸ ︷︷ ︸
surface transformation = area integral of surface boundary fluxes

− lim
δλ→0

1

δλ

ˆ
∂Ωbot(λ±δλ/2)

J bot · n̂dS.︸ ︷︷ ︸
bottom transformation = area integral of bottom boundary fluxes

(73.50)

Again, this expression decomposes the contribution from interior processes, here represented as
the volume integral of the interior flux convergence, from the surface and bottom contributions,
here represented as the area integral of the boundary fluxes. This decomposition is further
examined in Section 73.7 where we focus on the surface contribution to water mass transformation.

Since the boundary fluxes are, by definition, zero except on the boundaries, their divergence
can be written in terms of a Dirac delta distribution12

∇ · [J out + J bot] = J out · n̂ δ(z − η) + J bot · n̂ δ(z − ηb). (73.51)

Although this equation is more physically formal than mathematically rigorous, its use in
the transformation equation (73.47a) correctly leads to the expression (73.50). Consequently,
equation (73.51) proves to be a useful shorthand that is commonly used in the literature (e.g.,
Groeskamp et al. (2019)).13

Comments

As we saw, equality of the process method and kinematic method follows simply because the
two provide equivalent expressions for the material time derivative. However, in the analysis of
numerical model output, it can be nontrivial to realize this equivalance due to the extreme care
required to diagnose the terms appearing in the scalar budget equation. See Drake et al. (2025)
for a thorough discussion of the details as required for the MOM6 finite volume numerical ocean
model.

73.4.4 Some details concerning interior transformation

We here consider some details of the water mass transformation arising just from interior
processes such as diffusion.

A global integrated constraint on G(λ)int

Consider the integrated water mass transformation given by equation (73.42), only now integrate
over the full ocean domain

Iλ̇(λ−∞, λ∞) =

ˆ λ∞

λ−∞

G(λ′) dλ′ =

ˆ
Ω(λ−∞,λ∞)

ρ λ̇′ dV. (73.52)

12We detail properties of the Dirac delta distribution in Chapter 7. It has dimensions equal to the inverse the
dimensions of its argument (Section 7.3). For example, when the argument has dimensions of length then the
Dirac delta has dimensions of inverse length. We thus see that equation (73.51) is dimensionally consistent.

13As detailed in Section 9.4.8, we are afforded the ability to introduce Dirac deltas into the boundary conditions
(73.51) since the boundary conditions are Neumann (flux) conditions. A similar method was used for quasi-
geostrophic potential vorticity in Section 45.7 and for the surface buoyancy fluxes in Section 72.6.3.
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This integral vanishes for water mass transformations arising from conservative interior processes
(i.e., those processes determined by the convergence of a flux)

[Iλ̇(λ−∞, λ∞)]int =

ˆ λ∞

λ−∞

G(λ′)int dλ
′ (73.53a)

= −
ˆ
Ω(λ−∞,λ∞)

∇ · J int dV (73.53b)

= −
˛
∂Ω(λ−∞,λ∞)

J int · n̂dS (73.53c)

= 0, (73.53d)

which follows since J int · n̂ = 0 on the ocean boundaries. Hence, there can be no net water mass
transformation across a λ surface arising from conservative interior processes

ˆ λ∞

λ−∞

G(λ′)int dλ
′ = 0. (73.54)

Instead, conservative interior processes only lead to rearrangement of water within the λ-bins.
This result follows since these interior processes conserve the total content of λ within the
global domain. Equation (73.54) provides a constraint that should be verified by any numerical
realization of water mass transformation.

Interior transformation across constant λ surfaces

We now focus on the transformation occuring along surfaces of constant λ (Figure 73.7) so that

G(λ)int = − lim
δλ→0

1

δλ

ˆ
Ω(λ±δλ/2)

∇ · J int dV (73.55a)

= − lim
δλ→0

1

δλ

[ˆ
Ω(λ+δλ/2)

n̂ · J int dS −
ˆ
Ω(λ−δλ/2)

n̂ · J int dS

]
. (73.55b)

Transformation occurs if there is an imbalance between the diffusive transport across the two
bounding surfaces, Ω(λ+ δλ/2) and Ω(λ− δλ/2). As a special case, assume the ocean surface
is a constant λ surface with λ = λtop. Along this surface we have n̂ · J int = 0, so that the
transformation at λtop − δλ/2 has a contribution just from the flux crossing the Ω(λtop − δλ)
surface

lim
δλ→0

G(λtop − δλ/2)int = lim
δλ→0

1

δλ

ˆ
Ω(λtop−δλ)

n̂ · J int dS. (73.56)

Likewise, along the top surface we have

G(λtop)int = lim
δλ→0

1

δλ

ˆ
Ω(λtop−δλ/2)

n̂ · J int dS, (73.57)

where we set n̂ · J int = 0 for the surface Ω(λtop + δλ/2), since this surface exists outside of the
ocean.

The results (73.56) and (73.57) make it appear that G(λtop − δλ/2)int and G(λtop)int are
unbounded as δλ→ 0, so long as there is a nonzero diffusive transport through Ω(λtop − δλ) or
Ω(λtop − δλ/2). However, this unbounded water mass transformation is not realized since the
diffusive flux gets smaller in magnitude when approaching the ocean surface, and it does so in
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order to satisfy the no-flux surface boundary condition (73.49) satisfied by interior processes14

n̂ · J int = 0 at z = η. (73.58)
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Figure 73.7: Example λ surfaces for studying interior transformation due to diffusion. The left panel shows λ
surfaces that outcrop to the ocean surface, with the dotted surface the chosen λ surface across which we compute
the water mass transformation. The right panel assumes the λ surfaces are flat and with λ = λtop the value along
the ocean surface.

To further our understanding of the transformation in the region near the ocean surface, let
the λ surfaces be flat near the ocean surface so that n̂ = −ẑ along Ω(λtop − δλ). Setting the
diffusive flux to

J = −ρo κ∇λ (73.59)

as per a Boussinesq fluid with reference density ρo and diffusivity κ > 0, leads to the transforma-
tion

G(λtop − δλ/2)int =
1

δλ

ˆ
Ω(λtop−δλ)

(ρo κ ∂zλ) dS. (73.60)

With κ ∂zλ > 0, the transformation is positive, G(λtop − δλ/2)int > 0, so that water is entrained
into the layer bounded by λtop − δλ and λtop. Note that in the absence of boundary fluxes, the
value of λtop is reduced due to diffusive mixing with interior waters since these waters have lower
values of λ. Furthermore, as the surface is approached, ∂zλ reduces in magnitude to satisfy the
no-flux condition, κ ∂zλ = 0, at the ocean surface. In this manner, the transformation remains
bounded even as δλ→ 0.

73.5 Budget for seawater mass in a ∆λ-layer
In this section we construct the seawater mass budget for a ∆λ-layer, making reference to Figure
73.6 for the notation. As a shorthand, we write the layer mass as

∆M(λ±∆λ/2) ≡M(λ−∆λ/2, λ+∆λ/2), (73.61)

along with a similar notation for other contributions to the layer mass budget.

73.5.1 Transport crossing interior open boundaries
As depicted in Figure 73.6, the layer region has an open boundary that is within the interior of
the ocean. The mass transport leaving the layer through this interior open boundary is written

∆Ψ(λ±∆λ/2) =

ˆ
∂Ωin(λ±∆λ/2)

ρ (v − v(b)) · n̂dS, (73.62)

14As discussed in Sections 20.4.3, 72.5, and 73.8.3, when water is transported across the ocean surface the
diffusive flux picks up a nonzero boundary contribution. That contribution is assumed to be part of the surface
transformation in equation (73.50) so that the interior diffusive flux still satisfies the no-flux boundary condition
(73.58). Nurser and Griffies (2019) discuss these points for salinity.
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where v(b) is the velocity for a point on the boundary and n̂ is the outward normal along the
boundary. Introducing the mass distribution for this transport renders the equivalent expression

∆Ψ(λ±∆λ/2) =

ˆ λ+∆λ/2

λ−∆λ/2
ṁΨ(λ

′) dλ′, (73.63)

where we introduced

ṁΨ(λ) dλ = mass per time of λ-stuff crossing ∂Ωin within [λ− dλ/2, λ+ dλ/2]. (73.64)

We make particular use of ṁΨ in Section 73.6 when studying the λ-budget in a ∆λ-layer. One
common example for an open interior boundary is when choosing a particular latitude, in which
case v(b) = 0 and n̂ = ŷ so that

∆Ψ(λ±∆λ/2) =

ˆ
∂Ωin(λ±∆λ/2)

ρ v dx dz. (73.65)

In this case, ∂Ωin(λ±∆λ/2) specifies the depth and longitude range for the layer at its intersection
along the constant latitude boundary.

73.5.2 Mass transport crossing the ocean surface

The mass transport crossing the ocean free surface is written

∆W (λ±∆λ/2) = −
ˆ
∂Ωout(λ±∆λ/2)

ρ (v − v(η)) · n̂dS =

ˆ
∂Ωout(λ±∆λ/2)

Qm dS, (73.66)

where we made use of the surface kinematic boundary condition (19.78) to write

ρ (v − v(b)) · n̂ ≡ −Qm, (73.67)

where Qm dS is the mass transport of water crossing the free surface (Qm > 0 for water entering
the ocean). Introducing the mass distribution leads to the equivalent expression

∆W (λ±∆λ/2) =

ˆ λ+∆λ/2

λ−∆λ/2
ṁW(λ

′) dλ′, (73.68)

where

ṁW(λ) dλ = mass per time of λ-stuff crossing ∂Ωout within [λ− dλ/2, λ+ dλ/2]. (73.69)

We make particular use of ṁW in Section 73.6 when studying the λ-budget in a ∆λ-layer.

73.5.3 Mass budget

Bringing the above pieces together leads to the layer mass budget

d∆M

dt
= −∆Ψ+∆W − [G(λ+∆λ/2)−G(λ−∆λ/2)], (73.70)
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where for brevity we dropped λ±∆λ/2 arguments for ∆M , ∆Ψ, and ∆W . It is common to
define the layer mass formation as the mass accumulation within the layer

d∆M

dt
+∆Ψ︸ ︷︷ ︸

storage + outflow

= ∆W − [G(λ+∆λ/2)−G(λ−∆λ/2)]︸ ︷︷ ︸
formation into layer Ω(λ±∆λ/2)

. (73.71)

This equality defines water mass formation as the time change for the mass within the layer
(sometimes referred to as the storage term), plus the net mass leaving the interior open boundary.
Formation into a layer occurs if there is mass converging through transformation across interior
layer interfaces, plus mass entering through the surface boundary outcrop region.

We arrive at a differential equation for the mass budget (73.71) by dividing through by the
layer increment, ∆λ, and taking the limit as this increment tends to zero

∂

∂λ

[
dM

dt
+Ψ−W +G

]
= 0. (73.72)

Integrating from a reference value λ−∞ to λ leads to

ˆ λ

λ−∞

∂Ψ

∂λ
dλ =

ˆ λ

λ−∞

∂

∂λ

[
−dM

dt
+W −G

]
dλ =⇒ Ψ = −dM

dt
+W −G. (73.73)

We dropped the contribution from the constant reference value, λ−∞, since it sits outside of the
ocean domain. The differential water mass equation (73.73) is a continuous version of the discrete
equation (73.71). We wrote this equation as an expression for Ψ given that an accumulation
from the bottom up leads to a transport streamfunction in the steady state, as we discuss in
Section 73.7.1.

73.6 Budget for λmass in a λ∞-region

We build from our understanding of the seawater mass budget in Section 73.5 to develop a
budget for the mass of λ within the λ∞-region of Section 73.3.4 and as illustrated in Figure 73.8.
Part of our aim is to further develop the formalism while also offering added insights into the
causes for water mass transformation, G(λ).

We here choose to be specific by considering λ to be an intensive property such as a material
tracer concentration, in which case λ ρdV has dimensions of tracer mass.15 For non-material
scalar fields, such as Conservative Temperature or buoyancy, the dimensions are modified
accordingly.

73.6.1 Processes affecting the mass of λ-stuff

Our starting point is the Leibniz-Reynolds budget for a scalar field derived in Section 20.2.4,
here including the possibility of scalar sources

d

dt

[ˆ
Ω(λ≤λ∞)

ρ λdV

]
=

ˆ
Ω(λ≤λ∞)

ρ Υ̇ dV −
ˆ
∂Ω(λ≤λ∞)

[
ρ λ (v − v(b)) + J

]
· n̂dS. (73.74)

The right hand side of this budget equation can be decomposed into the following processes
illustrated in Figure 73.8.

15See Section 20.2.1 for more on intensive and extensive fluid properties.
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Figure 73.8: A λ∞-region for studying the λ budget, with the region bounded by the solid-earth bottom,
∂Ωbot(λ ≤ λ∞), the ocean surface boundary, ∂Ωout(λ, λ∞), and the λ-interface, ∂Ω(λ). Hence, in contrast to the
∆λ-region shown in Figure 73.6, the λ∞-region has no interior open boundary. Along the surface boundary, the
λ budget is affected by the non-advective transport, Eout(λ, λ∞), arising from processes such as diffusion, plus
advective transport, W (λ)(λ, λ∞), arising from mass transported across the surface that can carry a non-zero
amount of λ. Along the bottom boundary, the λ budget is affected by non-advective transport, Ebot(λ, λ∞), arising
from processes such as geothermal heating. There is no corresponding advective transport along the bottom since
we assume there is no mass crossing the ocean bottom. Along the interior boundary, ∂Ω(λ), the budget is affected
by non-advective transport, E(λ), arising from diffusion, as well as advective transport through λG(λ), with
G(λ) the interior water mass transformation from Section 73.4. Finally, there is the possibility for an interior
volume source, Ẏ (λ ≤ λ∞), particularly for buoyancy in the presence of a nonlinear equation of state, and for
biogeochemical tracers.

Non-conservative sources and sinks

As noted in Section 73.4.3, the source term, ρ Υ̇, accounts for processes that cannot be represented
as the convergence of a flux. We write its region integrated contribution using the shorthand

Ẏ (λ, λ∞) ≡
ˆ
Ω(λ≤λ∞)

ρ Υ̇ dV ≡
ˆ λ∞

λ
ṁY(λ

′) dλ′. (73.75)

The final equality introduced the distribution function for the source, in which

ṁY(λ) dλ = mass per time of λ-stuff created within [λ− dλ/2, λ+ dλ/2]. (73.76)

Transport from non-advective processes

The contribution from boundary area integrated non-advective fluxes appears in the term

−
ˆ
∂Ω(λ≤λ∞)

J · n̂dS = −
ˆ
∂Ωout(λ≤λ∞)

J · n̂dS−
ˆ
∂Ωbot(λ≤λ∞)

J · n̂dS−
ˆ
∂Ω(λ)

J · n̂dS. (73.77)

Recall the minus signs arise since a non-advective flux increases the λ content of the region
if the flux is oriented into the region, whereas n̂ is the region outward normal. The surface,
∂Ωout(λ ≤ λ∞), extends along the upper ocean boundary and supports non-advective surface
boundary fluxes. Likewise, the boundary, ∂Ωbot(λ ≤ λ∞), intersects the ocean bottom and
generally experiences bottom boundary fluxes such as geothermal heating. Finally, the surface,
∂Ω(λ), has non-advective fluxes that cross the λ-interface, with diffusive fluxes the canonical
example. The boundary area integrated non-advective fluxes give rise to non-advective transports,
with dimensions of mass of λ-stuff per time, and they are written using the shorthand

−
ˆ
∂Ω(λ≤λ∞)

J · n̂dS = Eout(λ, λ∞) + Ebot(λ, λ∞) + E(λ), (73.78)
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with a term having a positive value if it increases the λ mass of the region. We furthermore find
it useful to introduce the distribution functions according to

Eout(λ, λ∞) + Ebot(λ, λ∞) =

ˆ λ∞

λ

[
ṁout

E (λ′) + ṁbot
E (λ′)

]
dλ′, (73.79)

where

ṁout
E (λ) dλ = mass per time of λ-stuff from ∂Ωout transport in [λ− dλ/2, λ+ dλ/2] (73.80a)

ṁbot
E (λ) dλ = mass per time of λ-stuff from ∂Ωbot transport in [λ− dλ/2, λ+ dλ/2]. (73.80b)

λ transported with interior boundary mass fluxes

We next consider the contribution to the budget equation (73.74) arising from the transport of
λ with mass that crosses the interior boundary, ∂Ω(λ), whereby

−
ˆ
∂Ω(λ)

ρ λ (v − v(λ)) · n̂dS = −λ
ˆ
∂Ω(λ)

ρ (v − v(λ)) · n̂dS = λG(λ), (73.81)

To reach this result we noted that λ can be pulled outside of the ∂Ω(λ) integral since it is
constant along this surface, thus allowing for the introduction of the water mass transformation,
G(λ), given by equation (73.40).

Surface boundary mass fluxes

The final term contributing to the right hand side of the λ budget equation (73.74) arises from
the surface mass transport along the boundary, ∂Ωout(λ ≤ λ∞),

−
ˆ
∂Ω(λ≤λ∞)

ρ λ (v − v(b)) · n̂dS =

ˆ
∂Ωout(λ≤λ∞)

λQm dS ≡W (λ)(λ, λ∞). (73.82)

To reach the first equality we followed the steps in Section 73.5.2 by using the kinematic boundary
condition (19.78) to introduce the surface mass transport, Qm dS. The final equality introduced
a shorthand that corresponds to the W (λ, λ∞) from Section 73.5.2. In the following, we find it
useful to introduce the mass distribution function, ṁW(λ), from equation (73.69), thus rendering

W (λ, λ∞) =

ˆ λ∞

λ
ṁW(λ

′) dλ′ and W (λ)(λ, λ∞) =

ˆ λ∞

λ
λ ṁW(λ

′) dλ′. (73.83)

Following the discussion in Sections 72.5.2, we have not assumed a relation between λ along the
interface, ∂Ωout(λ ≤ λ∞), and the concentration, λm, contained in the entering mass. We prefer
to keep the discussion general for now, providing a relation only when necessary.

73.6.2 Summary of the λ budget

Bringing terms together leads to the expanded version of the mass budget (73.74) for λ-stuff,
now written as

d

dt

[ˆ
Ω(λ≤λ∞)

ρ λdV

]
= Ẏ (λ, λ∞) + Eout(λ, λ∞) + Ebot(λ, λ∞) + E(λ) +W (λ)(λ, λ∞) + λG(λ), (73.84)

page 2064 of 2158 geophysical fluid mechanics



73.6. BUDGET FOR λ MASS IN A λ∞-REGION

which has the equivalent expression in terms of distribution functions

d

dt

ˆ λ∞

λ
λ′m(λ′) dλ′ =

ˆ λ∞

λ

[
ṁY(λ

′)+ṁout
E (λ′)+ṁbot

E (λ′)+λ ṁW(λ
′)
]
dλ′+E(λ)+λG(λ). (73.85)

Setting λ to a global constant and assuming there are no seawater mass sources leads to the
seawater mass budget for the λ∞-region

d

dt

[ˆ
Ω(λ≤λ∞)

ρdV

]
=W (λ, λ∞) +G(λ), (73.86)

which takes on the following form in terms of distributions

d

dt

ˆ λ∞

λ
m(λ′) dλ′ =

ˆ λ∞

λ
ṁW(λ

′) dλ′ +G(λ). (73.87)

73.6.3 Processes leading to water mass transformation
We now massage the budget equations to explicitly identify terms leading to water mass
transformation, G(λ). For that purpose, make use of the moment equation (73.37) to write

ˆ
Ω(λ≤λ∞)

ρ λdV =M(λ, λ∞) ⟨λ⟩ =M(λ, λ∞)λ+

ˆ λ∞

λ
M(λ′, λ∞) dλ′, (73.88)

which then leads to

d[M(λ, λ∞) ⟨λ⟩]
dt

= λ
dM(λ, λ∞)

dt
+

ˆ λ∞

λ

dM(λ′, λ∞)

dt
dλ′. (73.89)

Integrated water mass transformation over the λ∞-region

Use of the λ budget equation (73.84) for the left hand side of equation (73.89), and the mass
budget equation (73.86) for the right hand side, yields

Ẏ (λ, λ∞) + Eout(λ, λ∞) + Ebot(λ, λ∞) + E(λ) +W (λ)(λ, λ∞) + λG(λ)

= λ [W (λ, λ∞) +G(λ)] +

ˆ λ∞

λ
[W (λ′, λ∞) +G(λ′)] dλ′. (73.90)

Observe that the λG(λ) term cancels on both sides of this equation. The three contributions
from the surface boundary mass fluxes also cancel, as revealed through the following identity

W (λ)(λ, λ∞)− λW (λ, λ∞) =

ˆ λ∞

λ
(λ′ − λ) ṁW(λ

′) dλ′ (73.91a)

=

ˆ λ∞

λ

[ˆ λ∞

λ′
ṁW(λ

′′) dλ′′
]
dλ′ (73.91b)

=

ˆ λ∞

λ
W (λ′, λ∞) dλ′, (73.91c)

where the second equality follows from the double integral formula (6.107). To understand
the physical reason we see no water mass transformation from surface mass fluxes, recall the
discussion in Section 72.5.2. Namely, mixing and internal sources provide the only means
for irreversible changes to water masses and thus to water mass transformation. In contrast,
boundary mass transport contributes to transformation only if the mass participates in mixing.
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That is, the mass associated with boundary mass transport is incorporated into the ocean (or
leaves the ocean) only in the presence of mixing. It is thus reassuring that the formalism leads
to this same conclusion. Furthermore, this result is consistent with the expression (73.47b),
whereby the water mass transformation is, again, determined solely in terms of the non-advective
fluxes at the region boundaries plus the interior source term.

Cancelling the mass transport terms thus leads to the integrated water mass transformation

ˆ λ∞

λ
G(λ′) dλ′ = Ẏ (λ, λ∞) + Eout(λ, λ∞) + Ebot(λ, λ∞) + E(λ). (73.92)

Each term in this equation has dimensions mass of λ-stuff per time. This equation is an integrated
version of the expression (73.47b) for the water mass transformation, here having exposed the
processes contributing to transformation over the range λ ≤ λ∞. Evidently, the accumulated
effects from sources within the interior, plus non-advective fluxes along the surface and interior
boundaries, lead to an integrated interior water mass transformation.

Water mass transformation across the λ-interface

We derive an expression for the water mass transformation across the λ-interface by taking ∂/∂λ
of equation (73.92) to reveal

G(λ) = − ∂

∂λ

[
Ẏ (λ, λ∞) + Eout(λ, λ∞) + Ebot(λ, λ∞) + E(λ)

]
, (73.93)

thus revealing that the water mass transformation across a λ-surface is the λ-convergence of the
mixing processes plus the interior sources. This equation takes on the following distributional
form

G(λ) = ṁY(λ) + ṁbot
E (λ) + ṁout

E (λ)− ∂E(λ)

∂λ
. (73.94)

73.7 Surface water mass transformation
We have articulated all the terms needed to form the ∆λ-layer mass budget according to Figure
73.6 as well as the λ∞-region mass budget according to Figure 73.8. In this section we focus on
contributions to transformation from surface processes in the transformation equation (73.94)

Gout(λ) ≡ −
∂Eout(λ, λ∞)

∂λ
= ṁout

E (λ) = − lim
δλ→0

1

δλ

ˆ
∂Ωout(λ±δλ/2)

J · n̂dS, (73.95)

where the final equality made use of equation (73.47b). Such surface transformation forms the
focus of many studies of water mass transformation because it only requires surface boundary
information, which is generally more accessible than information from interior ocean mixing
processes or bottom geothermal processes. Furthermore, much of the transformation of water
occurs in surface regions since this region is home to large contributions from surface boundary
fluxes and associated ocean mixing. The basic equation we use is the non-advective flux equation
(20.85), rewritten here for the scalar field λ

−J · n̂ = Qλ − λQm = Qnon-adv
λ + (λm − λ)Qm. (73.96)

73.7.1 Circulation driven by surface transformation
The layer mass budget (73.71) and its continuous expression (73.73) provide the basis for
inferences about circulation and transformation. As an illustration, consider the continuous
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expression (73.73) and integrate from a reference value, λ−∞, up to λ

ˆ λ

λ−∞

Ψdλ′ =

ˆ λ

λ−∞

[
−∂M
∂t

+W −G
]
dλ′. (73.97)

The left hand side is an expression for the circulation in λ-space at the specified interior open
boundary. The right hand side means that a nonzero circulation is driven by mass through the
ocean surface, convergence of mass transformed across the λ-interfaces, and/or time changes to
the mass within the domain. Correspondingly, in the absence of surface boundary mass fluxes, a
steady circulation is driven just by water mass transformation

ˆ λ

λ−∞

Ψdλ′ = −
ˆ λ

λ−∞

G dλ′. (73.98)

Bottom

x
y

z
Ω(λ ± Δλ /2)

G(λ − Δλ /2) > 0

∂Ω(λ + Δλ /2)

∂Ω(λ − Δλ /2)

ΔΨ

G(λ + Δλ /2) = 0
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Figure 73.9: An example of surface transformation driven circulation oriented according to the Southern Ocean
with Antarctica to the left. Here we depict a layer that is exposed to some form of air-sea interaction that causes
the interface with λ−∆λ/2 to move meridionally. For example, if λ = γ (neutral density or potential density),
then an air-sea buoyancy flux generally causes γ outcrops to move laterally. Movement of the near-surface portion
of the ∂Ω(λ−∆λ/2) interface causes seawater to entrain into the layer and thus contribute to the surface water
mass transformation, G(λ−∆λ/2) > 0 (red arrow near the surface directed to the south). In turn, the boundary,
∂Ωin(λ ±∆λ/2), expands as the near-surface portion of the interface, ∂Ω(λ−∆λ/2), moves to the north as a
result of the entrained new water (black arrow moving to the north). If there is a net convergence of water mass
into the layer (as determined by the net mass crossing both layer interfaces ∂Ω(λ+∆λ/2) and ∂Ω(λ−∆λ/2)),
then mass accumulates within the layer [λ−∆λ/2, λ+∆λ/2]. There is a steady state mass budget for the layers
(i.e., layer mass is constant) only if the same amount of mass that converges into the layer via surface or interior
water mass transformation leaves the layer through circulation, Ψ, at the boundary ∂Ωin(λ±∆λ/2).

We depict an example in Figure 73.9 where the surface outcrop of the layer is exposed
to air-sea interactions that lead to a meridional movement of the interface λ − ∆λ/2. This
movement laterally entrains mass into the layer. If there is a net convergence of mass into
the layer, then the layer mass increases. A steady state mass budget for the layer is reached
if the amount of mass entrained through surface transformation is reflected in the same mass
leaving through the circulation at the open boundary, ∂Ωin(λ±∆λ/2). We depict another case
in Figure 73.10, here focusing on how a meridional gradient in the surface buoyancy loss causes
entrainment into buoyancy layers.

These and other statements related to the water mass budget are rather routine mathemati-
cally. Yet since the mass budget is formulated over layers, the mass budget offers the means to
make very general statements about the circulation even without a direct measurement of the
flow. This is a key power of water mass transformation theory.

CHAPTER 73. WATER MASS TRANSFORMATION THEORY page 2067 of 2158



73.8. BUOYANCY WATER MASS TRANSFORMATION

northγ1/2

γ3/2

γ5/2

n̂γ

peak in buoyancy loss

wdia

<latexit sha1_base64="NiKCPxM50brijxcE5GhpVod3LwU=">AAACMHicbVA9SwNBEN2LXzF+JWpnsxgEq3AnAS2DFtoIEY0KSQx7m4ku2d07dufUeNx/sdXSX6OV2PorvIspTOKDgcebGWbe80MpLLruh5ObmZ2bX8gvFpaWV1bXiqX1SxtEhkODBzIw1z6zIIWGBgqUcB0aYMqXcOX3j7L+1T0YKwJ9gYMQ2ordatETnGEqdYqbDzdxS/nBY9xCoQe0K1iSdIplt+IOQaeJNyJlMkK9U3JmW92ARwo0csmsbXpuiO2YGRRcQlJoRRZCxvvsFpop1UyBbcfD9xO6kypd2gtMWhrpUP27ETNl7UD56aRieGcne5n4X68ZYe+gHQsdRgia/x7qRZJiQLMsUrMGOMqha25E+ivld8wwjmlihcIOPT89pjYEngU2dhWs0DhmK/ZVlps3mdI0udyreNVK9axarh2OEsyTLbJNdolH9kmNnJA6aRBOnsgzeSGvzpvz7nw6X7+jOWe0s0HG4Hz/APO+qG4=</latexit>

wdia

<latexit sha1_base64="NiKCPxM50brijxcE5GhpVod3LwU=">AAACMHicbVA9SwNBEN2LXzF+JWpnsxgEq3AnAS2DFtoIEY0KSQx7m4ku2d07dufUeNx/sdXSX6OV2PorvIspTOKDgcebGWbe80MpLLruh5ObmZ2bX8gvFpaWV1bXiqX1SxtEhkODBzIw1z6zIIWGBgqUcB0aYMqXcOX3j7L+1T0YKwJ9gYMQ2ordatETnGEqdYqbDzdxS/nBY9xCoQe0K1iSdIplt+IOQaeJNyJlMkK9U3JmW92ARwo0csmsbXpuiO2YGRRcQlJoRRZCxvvsFpop1UyBbcfD9xO6kypd2gtMWhrpUP27ETNl7UD56aRieGcne5n4X68ZYe+gHQsdRgia/x7qRZJiQLMsUrMGOMqha25E+ivld8wwjmlihcIOPT89pjYEngU2dhWs0DhmK/ZVlps3mdI0udyreNVK9axarh2OEsyTLbJNdolH9kmNnJA6aRBOnsgzeSGvzpvz7nw6X7+jOWe0s0HG4Hz/APO+qG4=</latexit>

wdia

<latexit sha1_base64="NiKCPxM50brijxcE5GhpVod3LwU=">AAACMHicbVA9SwNBEN2LXzF+JWpnsxgEq3AnAS2DFtoIEY0KSQx7m4ku2d07dufUeNx/sdXSX6OV2PorvIspTOKDgcebGWbe80MpLLruh5ObmZ2bX8gvFpaWV1bXiqX1SxtEhkODBzIw1z6zIIWGBgqUcB0aYMqXcOX3j7L+1T0YKwJ9gYMQ2ordatETnGEqdYqbDzdxS/nBY9xCoQe0K1iSdIplt+IOQaeJNyJlMkK9U3JmW92ARwo0csmsbXpuiO2YGRRcQlJoRRZCxvvsFpop1UyBbcfD9xO6kypd2gtMWhrpUP27ETNl7UD56aRieGcne5n4X68ZYe+gHQsdRgia/x7qRZJiQLMsUrMGOMqha25E+ivld8wwjmlihcIOPT89pjYEngU2dhWs0DhmK/ZVlps3mdI0udyreNVK9axarh2OEsyTLbJNdolH9kmNnJA6aRBOnsgzeSGvzpvz7nw6X7+jOWe0s0HG4Hz/APO+qG4=</latexit>

Figure 73.10: An example of surface water mass transformation, here illustrating the effects of transformation
due to a meridional gradient in the surface buoyancy loss (we here assume that λ is buoyancy as measured by
the neutral density, γ). The example is oriented for the northern hemisphere with increasing latitudes to the
north/right. Buoyancy loss is denoted by the thick vertical arrows indicating the removal of buoyancy from the
ocean, thus causing surface water to loose buoyancy and thus get more dense. The surface buoyancy loss causes γ
interfaces to migrate to the south (denser water moves southward)), which in turn causes dianeutral mass flux to
move from lighter layers to denser layers (black vectors pointed to the north, wdia). With a peak in the buoyancy
loss at a particular latitude, more entrainment is driven into the layer to the north of the peak (water converges
to the layer γ3/2 ≤ γ ≤ γ5/2) and less entrainment into the layer to the south (water diverges from the layer
γ1/2 ≤ γ ≤ γ3/2).

73.7.2 Further study

Much of the formalism in this section follows that reviewed by Groeskamp et al. (2019). This
paper offers specific examples of water mass transformation analysis as well as citations to
numerous research papers.

73.8 Buoyancy water mass transformation

In Section 73.2 we considered the transformation of water masses as defined by buoyancy classes,
with λ = γ where γ is a field whose isosurfaces approximate constant buoyancy directions; i.e.,
the neutral directions from Section 30.5. We here fill in further details for such buoyancy water
mass analysis.

73.8.1 Material time changes to S and Θ

The material time derivative of γ can be written as the sum of contributions from salinity and
Conservative Temperature

ρ γ̇ =
∂γ

∂S
ρ Ṡ +

∂γ

∂Θ
ρ Θ̇. (73.99)

Following the decomposition of the water mass transformation in Section 73.4.3, for a general
tracer, we here write the material time derivatives in the form

ρ Ṡ = −∇ · J (S)
int − J (S)

out · n̂ δ(z − η)− J (S)
bot · n̂ δ(z − ηb) (73.100a)

ρ Θ̇ = −∇ · J (Θ)
int − J (Θ)

out · n̂ δ(z − η)− J (Θ)
bot · n̂ δ(z − ηb), (73.100b)

where we assumed there are no interior sources of S or Θ. The surface and bottom boundary
contributions are weighted by Dirac delta distributions and projected into the normal direction
along the two respective boundary surfaces. Following from the decomposition of water mass
transformation given by equation (73.50), we are thus led to the following form for buoyancy
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transformation

G(γ) = − lim
δγ→0

1

δγ

ˆ
Ω(γ±δγ/2)

(
∂γ

∂S
∇ · J (S)

int +
∂γ

∂Θ
∇ · J (Θ)

int

)
dV︸ ︷︷ ︸

interior buoyancy transformation = volume integral of convergence

− lim
δγ→0

1

δγ

ˆ
∂Ωout(γ±δγ/2)

(
∂γ

∂S
J

(S)
out +

∂γ

∂Θ
J

(Θ)
out

)
· n̂dS︸ ︷︷ ︸

surface buoyancy transformation = area integral of surface boundary fluxes

− lim
δγ→0

1

δγ

ˆ
∂Ωbot(γ±δγ/2)

(
∂γ

∂S
J

(S)
bot +

∂γ

∂Θ
J

(Θ)
bot

)
· n̂dS.︸ ︷︷ ︸

bottom buoyancy transformation = area integral of bottom boundary fluxes

(73.101)

This expression is explored in the remainder of this section.

73.8.2 Interior buoyancy water mass transformation

Contributions from cabbeling, thermobaricity, and halobaricity (Section 72.3) arise from the
interior transformation appearing in equation (73.101). Furthermore, in the special case of a
linear equation of state, whereby ∇(∂γ/∂Θ) = 0 and ∇(∂γ/∂S) = 0, then equation (73.54)
means that the global integral of the interior transformation vanishes

ˆ γ∞

γ−∞

Gint(γ) dγ =

ˆ
R

(
∂γ

∂S
∇ · J (S)

int +
∂γ

∂Θ
∇ · J (Θ)

int

)
dV = 0 linear equation of state,

(73.102)
where R is the global ocean domain. By inference, we conclude that any nonzero result for this
integral is a global measure of the effects from the nonlinear equation of state

contribution from nonlinear equation of state =

ˆ γ∞

γ−∞

Gint(γ) dγ. (73.103)

73.8.3 Surface non-advective flux for S and Θ

We review a few of the distinct characteristics of surface non-advective fluxes of S and Θ
as detailed in Section 72.5.2, here working with salinity, S, rather than salt concentration,
S = S/1000.

Non-advective salt flux

The non-advective surface boundary flux for salt is given by equation (72.67), here written as

−J (S) · n̂ = Qnon-adv
S + (Sm − S)Qm, (73.104)

where Qnon-adv
S is a non-advective salt flux, such as might arise from parameterized turbulent

transfer. For the salt concentration of water crossing the ocean surface, we generally take Sm = 0
for precipitation, evaporation, and river runoff, whereas Sm ̸= 0 for ice melt and formation.
Furthermore, the boundary term, S = S(z = η), is commonly approximated by the bulk salt
concentration in the upper ocean.
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Non-advective flux for Conservative Temperature

For Conservative Temperature we follow the discussion in Section 72.5.3, whereby the non-
advective flux is given by equation

−J (Θ) · n̂ = Qnon-adv
Θ + (Θm −Θ)Qm. (73.105)

It is common to approximate the difference Θm −Θ(z = η) = 0, in which case the non-advective
flux is just due to turbulent and radiative heat fluxes

−J (Θ) · n̂ = Qnon-adv
Θ if Θm −Θ(z = η) = 0. (73.106)

73.8.4 Surface buoyancy water mass transformation

To touch base with the commonly employed surface buoyancy transformation, insert the surface
fluxes into equation (73.101) as per Section 73.8.3 to write

G(γ)surface =

lim
δγ→0

1

δγ

ˆ
∂Ωout(γ±δγ/2)

(
γ β [Qnon-adv

S + (Sm − S)Qm]− γ α [Qnon-adv
Θ + (Θm −Θ)Qm]

)
dS, (73.107)

where we introduced the thermal expansion and saline contraction coefficients, here defined
according to16

α = −1

γ

∂γ

∂Θ
and β =

1

γ

∂γ

∂S
. (73.108)

Recall that G(γ) > 0 occurs when water is transformed into regions with larger γ. For example,
net surface cooling in the presence of a positive thermal expansion coefficient (α > 0) leads to
Qnon-adv

Θ + (Θm −Θ)Qm < 0. Such cooling then leads to a positive contribution to G(γ)surface as
water is transformed from light to heavy γ-classes. Likewise, a positive net salt transport into
the upper ocean, Qnon-adv

S + (Sm − S)Qm > 0, leads to a positive contribution to G(γ)surface.

The integrand to equation (73.107) corresponds to minus the surface buoyancy flux derived
in Section 72.6.3. The only difference is that we here make use of the surface element, dS, and
the corresponding fluxes Qnon-adv

Θ , Qnon-adv
S , and Qm. However, if the ocean surface has no overturns,

we can write its vertical position as z = η(x, y, t) and can also define the horizontal projection of
the area element as (see equation (5.33))

dS =
√
1 + |∇η|2 dA. (73.109)

In this case we can introduce the fluxes Qnon-adv
Θ , Qnon-adv

S , and Qm used in Section 72.6.3 via

Qnon-adv
Θ dS = Qnon-adv

Θ dA (73.110a)

Qnon-adv
S dS = Qnon-adv

S dA (73.110b)

Qm dS = Qm dA, (73.110c)

to render

G(γ)surface =

lim
δγ→0

1

δγ

ˆ
∂Ωout(γ±δγ/2)

(
γ β [Qnon-adv

S + (Sm − S)Qm]− γ α [Qnon-adv
Θ + (Θm −Θ)Qm]

)
dA. (73.111)

16In practice, it is common to replace the factor of γ−1 with ρ−1
o on the right hand side of equation (73.108),

with ρo the constant Boussinesq reference density from Chapter 29.
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Integrating the surface transformation (73.111) over all γ-classes leads to the identity17

ˆ γ∞

γ−∞

G(γ)surface dγ =

ˆ
z=η

(
γ β [Qnon-adv

S + (Sm − S)Qm]− γ α [Qnon-adv
Θ + (Θm −Θ)Qm]

)
dA. (73.112)

This equality means that the diagnosed surface transformation, G(γ)surface, which is obtained by
binning surface fluxes into γ-classes, must properly add up to the area integrated surface fluxes
as weighted by the surface value of γ. This equality can be a useful check on the integrity of
numerical binning code used to diagnose surface water mass transformation.

73.9 Tracer mass analysis

In Sections 73.5 and 73.6 we developed the budgets for λ within layers defined λ. Here we extend
that analysis to develop budgets for a tracer concentration, C, localized in a region within a
layer of buoyancy, γ, as depicted in Figure 73.11. The upper panels to this figure illustrate a
tracer patch in geographic/depth x-space along with isolines of buoyancy, whereas the lower
panels show the tracer distribution (histogram) binned within the buoyancy classes (q-space). If
the tracer is mixed within a layer, such as via the neutral diffusion process of Section 71.4, then
the tracer patch is spread laterally within the buoyancy layer and yet the distribution (lower
panel) is unchanged. In contrast, if the tracer is mixed across layer interfaces then the tracer
distribution is spread within buoyancy space.

Another means to alter the tracer distribution is to modify the buoyancy field. This situation
is especially common for tracer near the surface, where boundary buoyancy forcing can act to
move the layers thus causing tracer to move between layers even if the tracer patch is stationary
in x-space. That is, if the tracer moves at a velocity distinct from the buoyancy surfaces, then
its distribution within buoyancy classes will change.

73.9.1 General form of the mass budget

As depicted in Figure 73.11 for buoyancy layers, and Figure 73.12 for generic layers, there are
two general processes whereby a tracer distribution within layers can be modified: (i) the tracer
can mix between layers and (ii) the layers can move relative to the tracer. These ideas transcend
buoyancy and thus can be applied to any scalar field, λ, used to classify water masses. We
quantify these two processes by writing the time change of tracer content within a λ-layer, which
is arrived at by applying the Leibniz-Reynolds transport theorem from Section 20.2.4 to a λ-layer

d

dt
∆MC(λ±∆λ/2) =

ˆ
Ω(λ±∆λ/2)

ρ Ċ dV −
˛
∂Ω(λ±∆λ/2)

ρC (v − v(b)) · n̂dS, (73.113)

where

∆MC(λ±∆λ/2) =

ˆ
Ω(λ±∆λ/2)

ρC dV (73.114)

is the mass of tracer within the layer. The volume integral on the right hand side of equation
(73.113) arises from material time changes to the tracer within the layer, whereas the surface
integral arises from dia-surface transport across the layer boundary.

17The density bound γ−∞ is a constant that is lower than any γ realized in the global domain, whereas γ∞ is
a constant that is larger than any realized γ.
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Figure 73.11: Depicting a tracer patch within the buoyancy layer bounded by the interface values [γ −∆γ/2, γ +
∆γ/2] (left panel) and [γ +∆γ/2, γ + 3∆γ/2] (right panel). The upper panels show the tracer and buoyancy in
geographic/depth x-space whereas the bottom panels show the tracer distribution (histogram) binned according
to buoyancy (q-space). There are two general means to modify the distribution of tracer within the buoyancy
classes. The first occurs via dianeutral mixing that spreads the tracer distribution to other buoyancy layers as
depicted by the vertical arrow in the upper left panel and the horizontal arrows in the lower left panel. The lateral
arrow in the upper left panel depicts neutral diffusion, which laterally spreads the tracer within a layer but does
not alter the distribution across layers (see Section 71.4). The second means to alter the distribution occurs when
the buoyancy surfaces move relative to the tracer. This scenario is depicted in the lower right panel whereby the
tracer patch originally in buoyancy layer [γ −∆γ/2, γ +∆γ/2] now finds itself in the layer [γ +∆γ/2, γ + 3∆γ/2].
This depiction is not realistic, since motion of interior buoyancy surfaces generally occurs along with mixing of
tracer patches. Nonetheless, this example emphasizes that motion of the buoyancy surfaces need not precisely
coincide with motion of the tracer patch.

73.9.2 Tracer processes

We determine the material time changes for a conservative tracer according to the convergence
of a flux

ρ Ċ = ρ
DC

Dt
= −∇ · J . (73.115)

Many biogeochemical tracers have additional source terms beyond the flux convergence considered
here. As in Section 73.4.3, sources can be readily incorporated into the following by adding a
source tendency term that acts throughout a layer and not just at the layer boundaries.

The divergence theorem converts the convergence, −∇ · J , into the area integral of fluxes
over the layer boundaries, including interior layer interfaces as well as intersections with the
surface and bottom boundaries. For the interior interfaces it is typically simpler diagnostically
to bin the volume integrated material time changes within the λ-classes. In contrast, the surface
and bottom boundary contributions are fed into the budget via Neumann boundary conditions
applied to the flux J

J · n̂dS = boundary tracer transport. (73.116)

Note that when there is an advective/skew diffusive component to the subgrid scale flux
(Chapters 70 and 71), then it adds to the resolved advective component to render a residual
mean material time operator

ρ
D†C

Dt
= −∇ · J non-adv, (73.117)

where
D†

Dt
=

∂

∂t
+ (v + v∗) · ∇, (73.118)

with v∗ an eddy-induced velocity (see Section 71.1). For the purposes of water mass transforma-
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tion analysis, we write

Ċ =
D†C

Dt
, (73.119)

thus incorporating the eddy-induced stirring into the kinematic expression for the material time
derivative.

There are many interior and boundary proceses that contribute to Ċ within a layer. Write
the following as a general expression for these contributions to the layer budget

∆EC(λ±∆λ/2) =

ˆ
Ω(λ±∆λ/2)

ρ Ċ dV = −
ˆ
Ω(λ±∆λ/2)

∇ · J dV (73.120)

which is sometimes usefully decomposed into interior and surface boundary processes

∆E int
C (λ±∆λ/2) =

ˆ
Ω(λ±∆λ/2)

ρ Ċ int dV (73.121a)

∆Eout
C (λ±∆λ/2) = −

ˆ
∂Ωout(λ±∆λ/2)

J · n̂dS. (73.121b)

If the region boundary intersects the ocean bottom along ∂Ωbot(λ ±∆λ/2), then there is an
additional bottom boundary contribution in the form

∆Ebot
C (λ±∆λ/2) = −

ˆ
∂Ωbot(λ±∆λ/2)

J · n̂dS. (73.122)
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Figure 73.12: As for the schematic of a layer seawater mass budget depicted in Figure 73.6, we here illustrate
the tracer budget within a layer of seawater with scalar property λ within the range [λ−∆λ/2, λ+∆λ/2] and
defined over a geographical/depth domain ∂Ωin(λ±∆λ/2) + ∂Ωout(λ±∆λ/2) + ∂Ω(λ+∆λ/2) + ∂Ω(λ−∆λ/2).
The budget for a tracer, C, over this layer is affected by the transport of tracer substance across the variety
of layer boundaries. Transport processes include those determined by mixing and/or radiation across interior
and surface boundaries, ∆EC (equation (73.121b)). This term has no associated transfer of seawater mass and
thus is absent from the water mass budget in Figure 73.6. Tracer budgets are also affected by processes that
move seawater mass across layer boundaries: water mass transformation processes giving rise to GC(λ±∆λ/2)
(equation (73.123)); transport across the surface domain boundary, ∆WC, arising from precipitation, evaporation,
runoff, and melt (equation (73.124)); and transport within the circulation crossing an interior domain boundary,
∆ΨC (equation (73.125)).
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73.9.3 Transport across an interior layer interface
The surface integral in the budget (73.113) involves transport across the layer interfaces, with
this transport requiring motion of the interface relative to a fluid particle. The same formalism
introduced earlier can be used to compute this transport. That is, we can generalize the
transformation equation (73.43e) to write

GC(λ) =

ˆ
∂Ω(λ)

ρC (v − v(b)) · n̂dS =
∂

∂λ

ˆ
Ω(λ0≤λ)

ρ λ̇C dV. (73.123)

As a check, note that for the special case where the tracer concentration is a constant along
the layer interface, then GC(λ) = C G(λ). We consider this special case in Section 73.10 when
studying budgets over regions bounded by a tracer isosurface.

73.9.4 Transport across interior and surface boundaries
We now consider the impact on layer tracer mass budgets due to boundary transport. The
budget contribution from mass fluxes crossing the ocean surface boundary is determined by
making use of the surface kinematic boundary condition (20.84)

∆WC =

ˆ
∂Ωout(λ±∆λ/2)

ρC (v − v(b)) · n̂dS =

ˆ
∂Ωout(λ±∆λ/2)

QmCm dA, (73.124)

where Cm is the tracer concentration within the mass transported across the boundary.18 As a
check, note that in the special case of a constant tracer concentration in the mass transported
across the boundary, then ∆WC = Cm ∆W , where ∆W is the water mass transported across the
ocean free surface as given by equation (73.66).

For the interior open boundary the contribution is written in the generic manner

∆ΨC =

ˆ
∂Ωin(λ±∆λ/2)

C ρ (v − v(b)) · n̂dS. (73.125)

Again, in the special case where the tracer concentration is a constant, Cb, along the interior
boundary, then ∆ΨC = Cb ∆Ψ, where ∆Ψ is the seawater mass transport given by equation
(73.62).

73.9.5 The layer tracer budget
Bringing all terms together leads to the layer tracer mass budget

d∆MC

dt
+∆ΨC = ∆EC +∆WC − [GC(λ+∆λ/2)−GC(λ−∆λ/2)], (73.126)

which is directly analogous to the seawater layer mass budget (73.70), with the added term
∆EC arising from material tracer changes. As for the seawater mass budget discussed in Section
73.5.3, the layer tracer budget (73.126) provides the framework for rather general inferences
about tracer transport within λ-classes.

73.9.6 Further study
Much in this section follows the treatment given by Groeskamp et al. (2019). This paper offers
specific examples of tracer mass analysis, which is an area seeing many new applications within

18Note that equation (26) in Groeskamp et al. (2019) incorrectly writes the integrand in equation (73.124) as
Qm (Cm − C).
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C = C̃

C = C̃
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z

Figure 73.13: Left panel: a closed three-dimensional region, R̃, with its boundary, ∂R̃, defined by a surface of
constant tracer concentration, C = C̃. Right panel: the analog closed two-dimensional region with its boundary
defined by a contour of constant tracer concentration, C = C̃.

the research communities.

73.10 Regions bounded by a tracer contour/surface

In Section 73.9 we developed equations for a layer tracer budget where the scalar field, λ, that
defines the layer is generally distinct from the tracer, C, whose budget we are studying. In this
section we specialize to the case where we set λ = C so that the region boundaries are determined
by the tracer whose budget is under study. These budgets were introduced in Sections 73.5 and
73.6, and here we derive some rather useful simplifications that arise as a result of setting λ = C.

As in Section 73.9, our starting point is the Leibniz-Reynolds budgets from Section 20.2.4
for seawater mass and tracer mass computed over an arbitrary region, R

d

dt

[ˆ
R

ρC dV

]
= −

ˆ
∂R

[
ρC (v − v(b)) + J

]
· n̂dS (73.127a)

d

dt

[ˆ
R

ρ dV

]
= −

ˆ
∂R

[
ρ (v − v(b))

]
· n̂dS. (73.127b)

The region R is rather arbitrary, and can in general be disconnected. Throughout this section
we make use of the following shorthand notation for region-integrated quantities

M =

ˆ
R

ρ dV region seawater mass (73.128a)

MC =

ˆ
R

C ρ dV region tracer mass (73.128b)

⟨C⟩ = 1

M

ˆ
R

C ρ dV =
MC

M
region averaged tracer concentration. (73.128c)

73.10.1 Closed region bounded by a tracer surface/contour

Consider a closed region, R̃, bounded by a surface of constant tracer concentration, C = C̃, such
as depicted in Figure 73.13. The tracer budget (73.127a) for this region is given by

d(M ⟨C⟩)
dt

= −C̃
ˆ
∂R̃
ρ (v − v(b)) · n̂dS −

ˆ
∂R̃
J · n̂dS (73.129)
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C = C̃

Figure 73.14: A two-dimensional region bounded by a finite-thick shell with constant tracer concentration,
C = C̃. Inside the shell region the tracer concentration is not uniform.

where we pulled the tracer concentration outside of the surface integral since, by construction, it
is constant on the boundary, ∂R̃. Use of the mass budget (73.127b) then leads to the rather
tidy result

d[M (⟨C⟩ − C̃)]
dt

= −
ˆ
∂R̃
J · n̂dS. (73.130)

The left hand side is the time change of the mass-weighted difference between the region averaged
tracer concentration, ⟨C⟩, and the value of the tracer concentration defining the region boundary,
C̃. These time changes are driven by a nonzero diffusive tracer transport bringing tracer mass
across the region boundary. A nonzero diffusive flux on the region boundary arises only when
there is a gradient of tracer concentration across that boundary. In the special case of a zero net
diffusive tracer transport across the region boundary, the budget equation (73.130) reaches a
steady state whereby

d

dt

[
M (⟨C⟩ − C̃)

]
= 0⇐⇒

ˆ
∂R̃
J · n̂dS = 0. (73.131)

A three-dimensional region bounded by a constant tracer concentration is not commonly
encountered in large-scale ocean and atmospheric fluids. In contrast, we often encounter quasi-
two-dimensional regions as depicted in Figure 73.14, in which one may find two-dimensional
regions bounded by a closed contour of constant tracer concentration. For example, in many parts
of the ocean and atmosphere transport occurs predominantly along two-dimensional surfaces
defined by a constant buoyancy. We may thus find closed contours of tracer concentrations along
constant buoyancy surfaces.

To help illustrate a necessary condition to reach a steady state, consider the particular
example depicted in Figure 73.14. In this figure, the tracer contour defining the region boundary
is a thick shell defined by a uniform concentration C = C̃. The diffusive flux vanishes at each
point within the boundary shell since the tracer concentration is uniform. Hence, the steady
budget (73.131) leads to

(⟨C⟩ − C̃) dM
dt

+M
d⟨C⟩
dt

= 0. (73.132)

If the total seawater mass within the region is constant, then the averaged tracer concentration
is also constant, so that both terms in this steady budget vanish individually. Even so, this
configuration does not reach a steady state at each point throughout the domain interior. The
reason is that diffusion in the interior causes tracer to move from regions of high concentration
to low concentration. Consequently, at any particular point within the domain there is an
evolving tracer concentration. The only way for each point to reach a steady state within a
region bounded by a tracer contour is for the tracer concentration to be a uniform constant
throughout the region interior

C = C̃ steady state tracer throughout a closed tracer region. (73.133)
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Ẽbot
C̃

<latexit sha1_base64="iHcVOYoJ+8jd+oHZfG2xXdnIfzA=">AAACOXicbVDLSsNAFJ34rO+qSzeDRXBVEpGqu2I3LivYBzSlTCY3Ojh5MHOjlJBv8UNcu9W1S3fq1h9wGoOo9cIMh3Pu5dx7vEQKjbb9bM3Mzs0vLFaWlldW19Y3qptbXR2nikOHxzJWfY9pkCKCDgqU0E8UsNCT0POuWxO9dwNKizi6wHECw5BdRiIQnKGhRtUT91b4gEL6kPXyUeaGDK90kLmaK5Fg+eNYAv3R2crzfFSt2XW7KDoNnBLUSFntUfXN9WOehhAhl0zrgWMnOMyYQsEl5MtuqiFh/JpdwsDAiIWgh1lxYk73DOPTIFbmRUgL9udExkKtx6FnOosL/moT8j9tkGJwPMxElKQIEf8yClJJMaaTvKgvFHCUYwOYCcPsSvkVU4yjSfWXixd+G5hsnL9JTIPuQd1p1Bvnh7XmaZlSheyQXbJPHHJEmuSMtEmHcHJHHsgjebLurRfr1Xr/ap2xyplt8qusj0+GR6/f</latexit>

W̃C̃

Figure 73.15: An ocean region where the tracer concentration is greater than a nominal value, C ≥ C̃. A
specific example is with C = Θ, the Conservative Temperature, in which we are concerned with the ocean with
temperature greater than Θ̃. Here we depict a case where the tracer concentration generally increases upward
(as with C = Θ), and yet with vertical stratification not everywhere monotonic, such as for C = Θ in the high
latitudes where salinity effects on density stratification become dominant. Transport processes affecting the budget
of C within this region arise from mixing at the interior boundary and surface boundary, Ẽ int

C̃
and Ẽsurf

C̃
, advection

at the surface, W̃C̃, and the tracer weighted water mass transformation across the interior layer boundary, C̃ G̃.
Arrows are oriented in which a positive value for the corresponding term adds tracer to the region.

Diffusion thus expells tracer gradients from steady state regions bounded by closed tracer
contours, thus leaving a homogenous interior. We proved this same result from a different
perspective in Section 69.8. It is satisfying to see this result follow from the present formalism
based on Leibniz-Reynolds.

73.10.2 Region with C ≥ C̃

As a second example of the formalism, consider the tracer budget for a region where the tracer
concentration is greater than or equal to a particular tracer value, such as depicted in Figure
73.15. In contrast to the domain in Figure 73.12, here there is no inner boundary. To develop
the seawater mass budget and the tracer substance budget, we introduce the seawater mass and
tracer mass for the region with C ≥ C̃

M̃ =

ˆ
C≥C̃

ρdV (73.134a)

M̃C̃ =

ˆ
C≥C̃

C ρ dV = M̃ ⟨C⟩; (73.134b)

the terms arising from water mass transformation across the C̃ interface

G̃ = −
ˆ
C=C̃

ρ (v − v(b)) · n̂dS = −
ˆ
C=C̃

ρwdia dS (73.135a)

G̃C̃ = −
ˆ
C=C̃

C ρ (v − v(b)) · n̂dS = −
ˆ
C=C̃

C ρwdia dS; (73.135b)

terms arising from ocean surface boundary mass transport

W̃ = −
ˆ
∂Ωsurf(C̃)

ρ (v − v(b)) · n̂dS =

ˆ
∂Ωsurf(C̃)

Qm dA (73.136a)

W̃C̃ = −
ˆ
∂Ωsurf(C̃)

C ρ (v − v(b)) · n̂dS =

ˆ
∂Ωsurf(C̃)

C Qm dA; (73.136b)
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and finally, terms arising from subgrid scale transport across the C̃ interface, ocean surface, and
ocean bottom

Ẽ int

C̃
= −
ˆ
C=C̃

J · n̂dS (73.137a)

Ẽsurf

C̃
= −
ˆ
∂Ωsurf(C̃)

J · n̂dS (73.137b)

Ẽbot

C̃
= −

ˆ
∂Ωbot(C̃)

J · n̂dS. (73.137c)

Recall that n̂ is the outward normal on a boundary so that positive values for the above
transports increase the tracer mass within the region. For equations (73.135a) and (73.135b),
we introduced the dia-surface transport velocity according to equation (73.38) for flow across
the C = C̃ layer interface. Likewise, for equations (73.136a) and (73.136b) we made use of the
surface kinematic boundary condition (19.88c)

ρ (v − v(s)) · n̂dS = −Qm dA, (73.138)

where Qm is the mass transport across the free surface, with Qm > 0 adding mass to the ocean,
and dA is the horizontal projection of the surface area element. By inspection of Figure 73.15,
the seawater mass and tracer mass budgets for this region are given by

dM̃

dt
= G̃+ W̃ (73.139a)

d[M̃ ⟨C⟩]
dt

= C̃ G̃+ W̃C̃ + Ẽsurf

C̃
+ Ẽbot

C̃
+ Ẽ int

C̃
, (73.139b)

where we assumed that no mass crosses through the solid earth. Furthermore, along the
C̃-boundary we pulled the tracer concentration outside of the surface integral to write G̃C̃ = C̃ G̃.

Just as we did in Section 73.10.1, the tracer budget (73.139b) can be simplified by making use
of the seawater mass budget (73.139a) to eliminate the water mass transformation contribution
G̃, thus rendering

dM̃IC̃

dt
= [W̃C̃ − W̃ C̃] + Ẽsurf

C̃
+ Ẽbot

C̃
+ Ẽ int

C̃
. (73.140)

In this equation we introduced the internal tracer mass according to

M̃IC̃ ≡ M̃ (⟨C⟩ − C̃) =
ˆ
C≥C̃

(C − C̃) ρ dV. (73.141)

For completeness we express the internal tracer mass budget (73.140) in its integral form

dM̃IC̃

dt
=

ˆ
∂Ωout

[
Qm (C − C̃) dA− J · n̂dS

]
−
ˆ
∂Ωbot

J · n̂dS −
ˆ
C=C̃

J · n̂dS. (73.142)

73.10.3 Comments and further study

Elimination of the water mass transformation, G̃, from the internal tracer mass budget equations
(73.140) and (73.142) offers a practical advantage since G̃ can be rather noisy in applications.
Furthermore, for some applications (e.g., see Holmes et al. (2019)) it is sufficient to consider the
simpler budget (73.140) for internal tracer mass, rather than the budget (73.139b) for the total
tracer mass.
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Appendix A

GLOSSARY OF CONCEPTS AND TERMS

elements pillar The elements pillar of geophysical fluid mechanics comprises the physical and
mathematical formulation of conceptual models used to garner insight into rotating and
stratified fluid motion. This pillar is concerned with setting the stage by deductively and
descriptively exposing how physical concepts are mathematically expressed to describe
geophysical fluid flows. x

emergent phenomena pillar The emergent phenomena pillar of geophysical fluid mechanics
studies solutions to equations that describe phenomena, such as waves, instabilities,
turbulence, and general circulation, all of which emerge from the fundamental equations
based on first principles. These phenomena can emerge in manners that are far from
simple to understand deductively, particularly when considering nonlinear behavior such
as turbulence. xi

geophysical fluid mechanics A branch of theoretical physics concerned with natural fluid motion
on a rotating and gravitating body such as a planet or star, making use of concepts and
methods from classical continuum mechanics and thermodynamics. ix

hydrodynamics A branch of fluid mechanics concerned with the flow of a homogeneous (constant
density) incompressible fluid. ix

internal gravity waves An internal gravity wave is a transverse wave that is comprised of
fluid particles undergoing a simple harmonic oscillation within a continuously and stably
stratified buoyancy field. The angular frequency of the oscillation is determined by the
buoyancy stratification and the sine of the angle the wave’s group velocity makes with
respect to the vertical (equivalently, the cosine of the angle the wave’s phase velocity makes
with horizontal). 1601

irreversible process A physical process that results in the increase of entropy. Processes that
increase the entropy of a fluid particle include the mixing of momentum such as through
viscous friction; the mixing of matter such as through the diffusion of constituents in
a multi-component fluid; and the mixing of enthalpy (diffusion of heat) in a fluid with
variable temperature. ix

perfect fluid A fluid that flows in the absence of irreversible processes so that the motion is
reversible and the specific ntropy remains constant following a fluid particle. Some authors
use the term ideal fluid, but we eschew that term to avoid confusion with ideal gas. ix
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real fluid A fluid whose flow is affected by irreversible processes arising from momentum mixing
(nonzero viscous friction); enthalpy mixing (nonzero diffusivity for temperature); matter
mixing (nonzero diffusivity of matter constituents); and through sources such as radiation
and chemical reactions. The specific entropy increases following a fluid particle moving in
a real fluid. ix

specular reflection Wave packets, in the geometrical optics approximation, exhibit specular
reflection if the angle the incident wave packet makes with the reflecting surface is preserved
upon reflection. Rossby waves, electromagnetic waves, and acoustic waves exhibit specular
reflection, whereas internal gravity waves and inertial waves exhibit non-specular reflection.
1624
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LIST OF ACRONYMS

GFM geophysical fluid mechanics ix
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Appendix C

LIST OF SYMBOLS

Many symbols encountered in this book are defined local to their usage and are not used far
outside of that location. Many other symbols appear in a variety of places and are included in
the tables given below. Additionally, we generally aim to respect the following conventions.

• Many symbols are adorned with extra labels. One usage exposes tensor indices, with tensor
indices written using the slanted math font, such as F i for the component i of the vector
F. Another usage expresses part of the name for the symbol, with the label written with
the upright sans serif. Examples include the “b” in ηb for the position of the bottom solid
boundary of a fluid domain, and the “b” in ∇h for the horizontal gradient operator.

• We strive for unique symbols to represent distinct mathematical and/or physical objects.
Yet that goal must confront the multitude of mathematical expressions appearing in this
book. We have chosen, on rare occasions, to allow some symbols to carry multiple meanings.
In such cases we emphasize the particular meaning of the symbol to help avoid confusion
with its alternative meaning.

non-dimensional numbers

symbol name meaning
Bu Burger Bu = (deformation radius/horizontal length scale of flow)2 = (Ld/L)

2

Db Deborah Db = relaxation time/observation time
Ek Ekman Ek = vertical frictional acceleration/planetary Coriolis acceleration
Fr Froude Fr = fluid particle speed/fluid wave speed = U/c
Ge Geostrophic Ge = horizontal accelerations from Coriolis/pressure acceleration =

f U Lρo/p
Kn Knudsen Kn = molecular mean free path/macroscopic length scale
Ma Mach Ma = fluid particle speed/sound wave speed = U/cs
Re Reynolds Re = inertial acceleration/frictional acceleration = U L/ν
Ri Richardson Ri = squared buoyancy frequency/squared vertical shear
Ro Rossby Ro = horizontal inertial acceleration/planetary Coriolis acceleration =

U/(f L)
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latin symbols and their meaning

symbol meaning
A wave action
AL(a, T ) Lagrangian representation of a fluid property as a function of material

coordinates and time
a coordinate position for a fluid particle using arbitrary

material/Lagrangian coordinates
A,A second order skew symmetric tensor with elements satisfying

Amn = −Anm

Av Avogadro’s number: Av = 6.0222× 1023 mole−1

B baroclinicity vector: B = ∇ρ× (−ρ−1 ∇p) = (∇ρ×∇p)/ρ2
B base (or reference) manifold for describing the space of continuum

matter
b Archimidean buoyancy with b > 0 for relatively light fluid:

b = −g (ρ− ρo)/ρo
C tracer concentration = mass of tracer per mass of fluid = tracer mass

fraction
Cd dimensionless bottom drag coefficient: Cd > 0
C circulation of velocity around the boundary of a surface C ≡


∂S

v · dr
cgrav shallow water gravity wave speed: cgrav =

√
g H

cg wave group velocity, given by wavevector gradient of dispersion
relation: cg = ∇kϖ(k)

cp wave phase velocity: cp = Cp k̂
Cp wave phase speed
cs sound speed: c−2

s = [∂ρ/∂p]Θ,S

cp heat capacity at constant pressure: cp = [∂H/∂T ]p,C
E,E second order eddy transport tensor for tracers, and with elements Emn

E1,E2,E3 one (line), two (plane), and three dimensional Euclidean space
E total energy per mass of a fluid element = sum of internal plus

mechanical energies
ea basis vectors for a chosen coordinate system, with index a = 1, 2, 3 for

3-dimensional space
ea basis one-forms for a chosen coordinate system, with index a = 1, 2, 3

for 3-dimensional space
f Coriolis parameter, also the planetary vorticity: f = 2Ω sinϕ
fo Coriolis parameter at a particular latitude: fo = 2Ω sinϕ0

F frictional acceleration vector
F i

I deformation matrix, which transforms between x-space (Eulerian) and
a-space (Lagrangian)

G = Ggrv Newton’s gravitational constant:
G = 6.674× 10−11 N m2 kg−2 = 6.674× 10−11 m3 kg−1 s−2

G(x|x0) Green’s function with x the observation point (or field point) and x0

the source point

G̃(x|x0) modified Green’s function for Laplace’s operator with Neumann
boundary conditions

G‡(x|x0) adjoint Green’s function for non-self adjoint operators such as the
diffusion operator

G(x|x0) free space Green’s function; i.e., the Green’s function without
boundaries

G velocity gradient tensor with elements Gi
j

G Gibbs potential per mass of a fluid element
ge gravitational acceleration from central gravity due to just the mass of

the planet
g effective gravitational acceleration from central gravity + planetary

centrifugal: g ≈ 9.8 m s−2

gr reduced gravity defined between to shallow water layers:
gr
k+1/2 = g (ρk+1 − ρk)/ρref ≪ g
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symbol meaning
g metric tensor (symmetric positive definite second order tensor) with

components gab

g square root of the metric tensor determinant: g =
√

det(gmn)
gE square root of the metric tensor determinant using Eulerian

coordinates: gE =
√

det(g(x)
gL square root of the metric tensor determinant using Lagrangian

coordinates: gL =
√

det(g(a, T )
hk layer thickness for a shallow water fluid:

hk = ηk−1/2 − ηk+1/2 = δkηk−1/2

h layer thickness for a continuously stratified fluid: h = h δσ
h specific thickness for a generalized vertical coordinate:

h = ∂z/∂σ = 1/(∂σ/∂z)
H(x) Heaviside step function: H(x) = 0 for x < 0 whereas H(x) = 1 for

x > 0
H vertical length scale of the flow under consideration
H sometimes used as depth of the ocean bottom: z = −H(x, y) = ηb(x, y)
H Hamiltonian energy function
H Hamiltonian density used in field theory; dimensions energy per volume

(when in 3d space)
H enthalpy per mass of a fluid element
I unit tensor or Kronecker tensor:

I = δab ea ⊗ eb = δab ea ⊗ eb = δa
b ea ⊗ eb = δab e

a ⊗ eb

I internal energy per mass of a fluid element
i i =

√
−1 used for imaginary numbers

i, j, k tensor indices/labels for Eulerian coordinates
I, J,K tensor indices/labels for Lagrangian coordinates
Im[ ] imaginary part of a complex number; e.g., Im[e−iω t] = − sin(ω t)
J tracer flux; for material tracers the dimensions are mass per time per

area
k wavevector (dimensions inverse length) for a wave of wavelength

Λ = 2π/|k|
k̂ unit vector in the direction of a wave: k = k̂ |k| (as distinct from the

vertical unit vector, ẑ)
|k| wavenumber: |k| = 2π/Λ
K kinetic energy for a particle of mass m: K = mV · V /2
K kinetic energy for a system of N particles,

∑N
n=1m

n V n · V n

K kinetic energy per mass of a fluid element arising from macroscopic
motion: K = v · v/2

Khyd kinetic energy per mass for an approximate hydrostatic flow:
Khyd = u · u/2

Ksw kinetic energy per horizontal area for a shallow water layer:
Ksw = ρ hu · u/2

K,K positive and symmetric second order tensor parameterizing diffusive
mixing

k integer index to label a layer in a shallow water model with k = 1, N
layers (k = 1 is top layer)

kB Boltzmann constant: kB = 1.3806× 10−23 m2 kg s−2 K−1

kR Rossby height/depth: kR = |k|N/f0 with horizontal wavenumber
|k| =

√
k2x + k2y

L Lagrangian used in Lagrangian mechanics: kinetic minus potential
energies: L = K − P

L length scale for a particular physical feature and commonly used in
scale analysis
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symbol meaning
L Lagrangian density used in field theory; dimensions energy per volume

(when in 3d space)
Ld deformation radius: (a) shallow water Ld =

√
g H/f ; (b) continuous

internal Ld = H N/f
M mechanical energy per mass of a fluid element arising from macroscopic

motion
Msw mechanical energy per area of a shallow water fluid column:

Msw = Ksw +Psw

M moment of inertia tensor
M potential momentum vector: M = u+ 2Ω×X
M Montgomergy potential for continuously stratified fluid M = φ− b z

Mdyn
k Montgomergy potential for a shallow water layer:

Mdyn
k =

∑k−1
j=0 g

r
j+1/2 ηj+1/2

M air mass per mole of air: M air = 28.8× 10−3 kg mole−1

N buoyancy frequency
O order of magnitude
P potential energy of a physical system, with corresponding force

F = −∇P
Psw

k potential energy per horizontal area for a shallow water fluid:
Psw

k = g ρk

´ ηk−1/2

ηk+1/2
z dz

P phase of a wave

Pσ generalized momentum for discrete particle system: Pσ = ∂L/∂ξ̇σ

P generalized momentum density for continuous media: P = ∂L/∂(∂tψ)
P linear momentum of a physical system
p pressure at a point in the fluid
pa pressure applied to the ocean surface from the atmosphere or

cryosphere
pb pressure at the bottom of a fluid column, at the fluid-solid earth

interface
pslp sea level pressure with an area average, ⟨pslp⟩ = 101.325× 103 N m−2

pk−1/2 hydrostatic pressure at the layer interface with vertical position
z = ηk−1/2

pdynk dynamic pressure in a shallow water layer:
pdynk = ρref

∑k−1
j=0 g

r
j+1/2 ηj+1/2

Pk pressure integrated over a shallow water layer:
Pk ≡

´ ηk−1/2

ηk+1/2
pk(z) dz = hk (g ρk hk/2 + pk−1/2)

Q potential vorticity for continuously stratified (Ertel PV) or shallow
water (Rossby PV)

q quasi-geostrophic potential vorticity either for a continuous fluid or
shallow water fluid

Qm mass flux (mass per horizontal area per time) across ocean surface:
Qm > 0 enters ocean

Qm mass flux (mass per surface area per time) across ocean surface:
Qm dS = Qm dA

QC turbulent tracer flux (tracer per horiz area per time) across ocean
surface: QC > 0 enters ocean

QC turbulent tracer flux (tracer per surface area per time) across ocean
surface: QCcal dS = QC dA

r radial distance of a point relative to an origin
R rotation tensor: 2Rmn = ∂nvm − ∂mvn = −2Rnm

R1 real number line
R2 two-dimensional space of real numbers
R3 three-dimensional space of real numbers
R radius of a sphere
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symbol meaning
Re radius of sphere whose volume approximates that of the earth:

Re = 6.371× 106 m
Rg universal gas constant:

Rg = 8.314 J mole−1 K−1 = 8.314 kg m2 s−2 mole−1 K−1

Rair specific gas constant for air: Rair = Rg/M air = 2.938× 102 m2 s−2 K−1

R arbitrary region or manifold
Ra

b orthogonal rotation matrix
Re[ ] real part of a complex number; e.g., Re[e−iω t] = cos(ω t)
S spatial manifold
S entropy per mass of a fluid element

S = Sact action: time integral of the Lagrangian: S =
´ tB
tA

Ldt

S strain rate tensor: 2Smn = ∂nvm + ∂mvn
Sdev deviatoric strain rate tensor: Sdev

mn = Smn − δmn Sqq/3
S salt concentration = mass of salt in a fluid element per mass of seawater
S Absolute Salinity, generically referred to as salinity: S = 1000 S
s expression for a generic surface: s = s(x, y, z, t).
s arc-length along a curve x(s) with infinitesimal increment

ds =
√
dx · dx

ŝ unit tangent to a curve, also written as ŝ = t̂ (see below)
sgn sign function related to Heaviside step function via sgn(x) = 2H(x)− 1
T absolute thermodynamic in situ temperature (Kelvin if in a

thermodynamic equation)
T time scale for a particular physical process and commonly used in scale

analysis
T time (universal Newtonian time) measured in the Lagrangian reference

frame
t time (universal Newtonian time) measured in the Eulerian reference

frame
τ general symbol for time as considered in the tensor analysis chapters
T stress tensor with natural elements Tmn

Tkinetic kinetic stress tensor: Tkinetic = −ρv ⊗ v

Tsw kinetic kinetic stress tensor for shallow water fluid: Tsw kinetic = −ρu⊗ u

t̂ unit tangent to a curve: t̂ = dx/ds, where s is the arc-length so that
ds =

√
dx · dx

u horizontal velocity of a fluid particle, with Cartesian representation:
u = x̂u+ ŷ v

U horizontal velocity scale of the flow under consideration
U depth integrated horizontal velocity: U =

´ η

ηb
udz

v velocity of a fluid particle: v = Dx/Dt, with Cartesian components
v = x̂u+ ŷ v + ẑw

v∗ eddy-induced velocity

v† residual velocity of a fluid particle: v† = v + v∗

v(b) velocity of a point on a region boundary
vL(a, T ) Lagrangian velocity of a fluid particle so that

vL(a, T ) = v[x = φ(a, T ), t = T ]
vI velocity of a fluid particle measured in the inertial/absolute reference

frame: vI = v +Ω× x
W vertical velocity scale of the flow under consideration
w vertical component to the velocity: w = Dz/Dt

wdia dia-surface flux = volume per horizontal area per time crossing a
σ-surface: wdia = (1/|∇σ|) σ̇

w(σ̇) dia-surface velocity = volume per horizontal area per time crossing
σ-surface: w(σ̇) = σ̇ ∂z/∂σ
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symbol meaning
(x, y, z) triplet of Cartesian coordinates
x spatial position
x spatial position represented by either general coordinates or Cartesian

coordinates
x̊ initial position for a fluid particle using arbitrary coordinates
(x̂, ŷ, ẑ) triplet of Cartesian unit vectors oriented in a righthand sense
X(t) position for a point particle defining a trajectory through space-time
X(a, T ) position of a material fluid particle expressed using material coordinates
zσ specific thickness for a generalized vertical coordinate: zσ = ∂z/∂σ = h
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symbol meaning
α thermal expansion: α = −ρ−1 ∂ρ/∂θ or α = −ρ−1 ∂ρ/∂Θ or

α = −ρ−1 ∂ρ/∂T
αT thermal expansion in terms of in situ temp: α = −ρ−1 ∂ρ/∂T

α(Θ) thermal expansion in terms of Conservative Temperature:
α(Θ) = −ρ−1 ∂ρ/∂Θ

αaspect aspect ratio; ratio of vertical to horizonal scales of the flow:
αaspect = H/L

β, β(S) saline contraction coefficient: β = β(S) = ρ−1 ∂ρ/∂S
β meridional derivative of planetary vorticity: β = ∂yf
γ̂ dianeutral unit direction perpendicular to the neutral tangent plane
δab components to the Kronecker tensor in Cartesian coordinates
δab components to the Kronecker tensor in general coordinates
ϵ kinetic energy dissipation from viscosity (energy per time per mass)
ϵab components to the permutation symbol in two space dimensions
ϵabc components to the permutation symbol in three space dimensions
εabc components to the Levi-Civita symbol in three space dimensions:

εabc =
√

det(gab) ϵabc
ζ vertical component to the relative vorticity; e.g., ζ = ∂xv − ∂yu
ζa vertical component to the absolute vorticity; e.g., ζa = f + ζ
η vertical position of the free upper surface of a fluid domain:

z = η(x, y, t)
ηk−1/2 vertical position of the top interface of the shallow water layer k

ηk+1/2 vertical position of the lower interface of the shallow water layer k

ηb = −H vertical position of static solid-earth boundary: z = ηb(x, y) = −H(x, y)
θ potential temperature
Θ Conservative Temperature
κ molecular kinematic diffusivity
κT molecular diffusivity for in situ temperature in water:

κT = 1.4× 10−7 m2 s−1

κS molecular diffusivity for salt in water: κS = 1.5× 10−9 m2 s−1

κeddy kinematic eddy diffusivity: κeddy ≫ κ
Λ wavelength of a wave: Λ = 2π/|k|, where k is the wavevector and |k|

the wavenumber.
λ– reduced wavelength of a wave: λ– = Λ/(2π) = 1/|k|.
λ longitude on the sphere: 0 ≤ λ ≤ 2π
µn chemical potential for constituent n within a fluid (energy per mass)
µ̃n chemical potential for constituent n within a fluid (energy per mole

number)
µ relative chemical potential for a binary fluid
µ chemical potential for seawater: µ = µsalt − µwater

µvsc dynamic viscosity = ρ ν
νs specific volume: νs = ρ−1

ν molecular kinematic viscosity
νair molecular kinematic viscosity of air: νair ≈ 1.3× 10−5 m2 s−1

νwater molecular kinematic viscosity of fresh water: νwater ≈ 10−6 m2 s−1

νeddy eddy viscosity: νeddy ≫ ν
ξa a’th component to a generalized coordinate
Π Exner function
Π Boussinesq dynamic enthalpy
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greek symbols and their meaning

symbol meaning
ρ Eulerian in situ density (mass per volume) of a fluid element:

ρ = ρ(x, t)
ρL mass density following a fluid particle trajectory (Lagrangian mass

density): ρL = ρL(a, T )
ρ̊L initial mass density in Lagrangian space-time: ρ̊L = ρL(a, T = t0)
ρo constant reference density used for the Boussinesq ocean
ρref constant reference density used for the shallow water fluid
ϱ potential density referenced to a specified pressure
σ generalized vertical coordinate surface with σ(x, y, z, t) = constant
τ stress vector such as from winds or bottom stresses acting on the ocean
τ frictional stress tensor
φ pressure divided by the Boussinesq reference density: φ = p/ρo
φ sometimes used as the variable for parameteriing a curve
ϕ latitude on the sphere: −π/2 ≤ ϕ ≤ ϕ/2
Φe gravitational potential from a spherical and homogeneous earth
Φ geopotential from central gravity plus planetary centrifugal; also,

potential energy per mass
Φ inverse flow map that generates an inverse mapping of the fluid

continuum: a = Φ(x, t)
φ motion field that maps the fluid continuum as time evolves:

x = φ(a, T )
ψ streamfunction for two-dimensional non-divergent flow: u = ẑ ×∇ψ
Ψ vector streamfunction for three-dimensional non-divergent flow:

v = ∇×Ψ
ω relative vorticity: ω = ∇× v
ω angular frequency for a wave so that the wave period is 2π/|ω|
ϖ dispersion relation for linear waves, relating angular frequency to the

wavevector: ω = ϖ(k)
Ω angular velocity for a rotating reference frame
Ω earth’s angular velocity oriented through the north pole:

|Ω| = 7.2921× 10−5 s−1
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mathematical operations and relations

symbol meaning
[≡] “has dimensions” for use in referring to the physical dimensions
× vector cross product
∇ gradient operator
∇h horizontal gradient operator on constant z surface:

∇h = x̂ (∂/∂x)z + ŷ (∂/∂y)z = x̂ ∂x + ŷ ∂y
∇· covariant divergence operator that acts on a vector to produce a scalar
∇× curl operator
∇hσ horizontal gradient on constant σ-surface: ∇hσ = x̂ (∂/∂x)σ + ŷ (∂/∂y)σ
∂/∂σ vertical partial derivative with general vertical coordinate:

∂σ = ∂/∂σ = ∂/∂σ = (∂z/∂σ) ∂/∂z
∂/∂t Eulerian time derivative acting at a fixed spatial position, x, also

written as ∂t
[∂/∂t]σ time derivative computed on constant σ-surface
D/Dt material, Lagrangian, or substantial time derivative following a fluid

particle
Dr/Dt time derivative following a ray (integral lines of the group velocity):

Dr/Dt = ∂/∂t+ cg · ∇
Dg/Dt time derivative following the horizontal geostrophic flow

Dg/Dt = ∂/∂t+ ug · ∇h

d̄ inexact differential operator commonly found in thermodynamics
δ virtual displacement (also the variation) for Lagrangian mechanics and

Hamilton’s principle
δ differential increment that signals an object following the fluid flow
δ(x) one-dimensional Dirac delta with dimensions of inverse length

δ(2)(x) two-dimensional Dirac delta with dimensions of inverse area
δ(x) three-dimensional Dirac delta with dimensions of inverse volume
δ(t) temporal Dirac delta with dimensions of inverse time
∆ finite difference increment in space: ∆x,∆y,∆z,∆σ

dA infinitesimal horizontal area element: dA = dxdy
d3a infinitesimal region of material space: d3a = dadb dc
dS infinitesimal area element on a surface
dV infinitesimal volume element, sometimes written dV = dx
dx infinitesimal volume element, with Cartesian expression

dx = dV = dxdy dz
δV infinitesimal volume for a region moving with the fluid (Lagrangian

region)´
R
dV volume integral over an arbitrary region, R´

R(v)
dV volume integral over a region following the fluid flow (Lagrangian

integral)´
S
dS surface integral over an arbitrary surface S¸

∂R
dS surface integral over a closed surface ∂R that bounds the volume R¸

dℓ closed line integral over a periodic domain
∂S

dℓ counter-clockwise closed line integral over the boundary of a surface,
∂S

∼ “similar to” or “scales as”
≈ approximately equal to

Ψ̇ time derivative following a trajectory; for fluid particle trajectories
then, Ψ̇ = DΨ/Dt
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A. Biastoch, C. W. Böning, A. Bozec, C. Cassou, E. Chassignet, G. Danabasoglu, S. Danilov,
C. Domingues, H. Drange, R. Farneti, E. Fernandez, R. J. Greatbatch, D. M. Holland, M. Ilicak,
J. Lu, S. J. Marsland, A. Mishra, W. G. Large, K. Lorbacher, A. G. Nurser, D. Salas y Mélia,
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velocity
Eulerian, 1339

AABW, 2041
absolute circulation, 1148
absolute momentum, 353, 1678
absolute salinity, 573, 825, 2026
absolute simultaneity, 262
absolute temperature, 409
absolute vorticity, 1056, 1085

impermeability, 1207
absolute vorticity invariance, 1067
acceleration, 265

centrifugal, 331, 332, 335, 336
centripetal, 331, 332
Coriolis, 331, 332, 335
inertial, 274, 332
inertial frame, 327
planetary Cartesian, 331
reference frame induced, 273
spherical, 333
spherical metric, 335

acoustic wave
density, 1434
pressure, 1433
temperature, 1434
velocity, 1433

acoustic waves, 131, 707, 1319, 1425, 1432
Boussinesq ocean, 776
density, 1435
energetics, 1437
Eulerian, 1430
Lagrangian, 1427
piston wavemaker, 1442
pressure, 1435
radiation, 1442
speed, 1429, 1432
velocity, 1435

action, xiii, 249, 299, 1414

phase averaged, 1415

variation, 1334

action/reaction law, 627

active tracer, 126, 1936

active transformation, 1330, 1352

adiabatic, 557

adiabatic flow, 1936

adiabatic invariant, 381, 383, 1415

adiabatic lapse rate, 589, 836, 1434

adjoint diffusion equation, 216

adjoint operator, 217, 219

advection, 1924

maths, 1920

reversible, 687

advection equation, 126, 949, 1373, 1919

geometric, 1920

advection of velocity vector identity, 45

advection operator, 428

advection-diffusion equation, 525, 1940

advective boundary transport, 2031

advective flux, 2027

advective time, 654

advective time scale, 1229

advective tracer flux, 511, 512, 1922, 1995

affine tensor algebra, 7

ageostrophic components, 1286

ageostrophic overturning, 1698

ageostrophic secondary circulation, 1694,
1698

ageostrophic velocity, 902, 1237

ageostrophic vertical velocity, 1293

air-water interface, 661

analytical mechanics, 286

anelastic approximation, 532, 776

angular momentum, 272, 350, 356, 635, 1039,
1041, 1087, 1093, 1138, 1670

and strain, 1039, 1042

and vorticity, 1039, 1042
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axial, 366
barotropic model, 1080
conservation, 357
free vortex, 1030
shalllow water, 1014

angular velocity, 269, 320
anisotropic Gent-McWilliams, 2013
anisotropic neutral diffusion, 2009
ansatz, 141, 1371, 1380
anti-cyclonic, 354, 864
anticipated potential vorticity, 1081
antiderivative, 141
arc length, 46, 116, 121, 534
Archimedean buoyancy, 770, 821, 823
Archimedes’ Principle, 823
area

evolution, 472, 474, 541
of a surface, 120

arrested Ekman layer, 921
aspect ratio, 723, 778, 779, 861, 1229, 1230
association versus causation, xii, 784
asymptotic methods, 1236
atmospheric form stress, 744, 747
atmospheric pressure torque, 1108, 1159,

1164
atomic bomb, 2036
available potential energy, 807, 1606, 1622,

1996
approximate, 813
exact, 811
QG fluid, 1306

averaging, 1877
Reynolds, 1877
thickness equation, 1879
thickness weighted, 1878
thickness weighted tracer, 1880

Avogadro’s number, 409
axial angular momentum, 272, 330, 621

atmosphere, 623
depth integrated, 761
ocean, 760
ring of air, 622
steady state, 763
zonal acceleration, 362

axial vector, 20, 359
axisymmetric flow, 1669

back-reaction, 821
backward diffusion equation, 216
balanced model, 1283
balances, xii

baroclinic, 724, 871, 1138
pressure gradient, 726

baroclinic instability, 879, 1763, 1782
heat transport, 1792
necessary condition, 1787

baroclinic mode, 1565, 1601, 1770, 1771
baroclinic Rossby waves, 1770
baroclinic velocity, 754, 992, 1569
baroclinicity, 807, 865, 874, 1055, 1129, 1138,

1160, 1183
Boussinesq, 1156
generalized vertical coordinates, 1855
ideal gas, 1131, 1173
seawater, 1186
solenoid, 1139

barodiffusion, 699
barometric law, 599
barotropic, 724, 1138

pressure gradient, 726
barotropic instability, 1723
barotropic mode, 1565, 1601, 1770, 1771
barotropic model, 1049, 1522
barotropic Rossby waves, 1770
barotropic velocity, 754, 874, 992, 1131, 1569
barotropization, 868
barycenter, 510
barycentric velocity, 422, 424, 507, 509, 512,

520, 630, 1129, 1919, 2027
barystatic sea level changes, 2037
base manifold, 451, 486
basis one-forms, 81, 324
basis vectors, 70, 80, 324

operator notation, 70
rotation, 322

Batchelor scale, 1987
Beltrami flow, 59
Bernoulli

equation of motion, 1460
function, 1209
head, 696
potential, 691, 1459, 1862
potential for Boussinesq hydrostatic,

1197
principle, 692
theorem, 692, 693, 1719
theorem for hydraulic control, 695
theorem for pipe flow, 693

Bernoulli theorem
shallow water, 998

Bessel-Parseval relation, 172
beta
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effective, 1560
beta drift, 1070
beta effect, 336, 359, 1055, 1068, 1089, 1102,

1106, 1149, 1164, 1267
topographic, 1096, 1240
two-dimensional example, 1151

beta gyre, 1071
beta plume, 1075, 1107
beta-plane approximation, 617, 619, 1055
bi-orthogonality relation, 81
Bianchi identities, 1352
Bianchi identity, 1333
Biot-Savart law, 1060
Bjerknes circulation theorem, 1149
body forces, xviii, 556, 557, 610, 627

homogeneous layer, 1101
boldface notation, 72
Boltzmann constant, 596
bolus velocity, 1873, 1876, 1880, 1881, 1980
bottom

drag, 796
following coordinates, 1804
geostrophic velocity, 1164
kinematic boundary condition, 946
pressure torque, 1108, 1140, 1159, 1160,

1164, 1268
vertical velocity, 1268, 1269
water mass transformation, 2057

bottom drag
shallow water, 969

boundary
conditions, 131, 1941
Green’s function, 200, 202
layers, 660, 901, 902, 909
propagator, 202, 225, 227, 1950
stress, 796
velocity, 520
water mass transformation, 2062

boundary condition
natural, 1910
Neumann, 1910

Boussinesq approximation, 532
traditional, 776

Boussinesq ocean, 531, 767, 769, 837, 860,
1427

density evolution, 776
dynamic enthalpy, 801, 802
energetics, 791, 816
equations, 773
generalized, 815
Hamilton, 1361

internal energy, 806
mass, 775
mass continuity, 772
momentum equation, 770
non-dimensional, 1250, 1257
reference density, 533, 772
weight, 775

brachistochrone, 255
Brownian motion, 1900, 1989
Buckingham-Π theorem, 1226
budget analysis, xi, 515
bulk viscosity, 646, 648
buoyancy, 727, 821, 1012, 2017, 2031

boundary condition, 2031
coordinates, 68, 1804
effective, 850, 851
force, 825
frequency, 834, 956
frequency for ideal gas, 836
globally referenced, 830, 953
helium balloon, 846
homogeneous fluid, 776
relation to height, 810
sorting, 813
stratification, 830
surface ocean budget, 2032
work, 792

buoyancy oscillations, 1606
buoyancy work

shallow water, 996
Burger function, 1285
Burger number, 1232, 1254, 1285, 1307

slope, 1254

cabbeling, 773, 2021, 2023, 2024
cabbeling parameter, 2024
calculus of variations, 249
caloric equation of state, 580
canonical momentum density, 1325
capillary

capillary-gravity waves, 656
pressure, 662, 664
tube, 660
waves, 660, 1455, 1491

carrier wave, 1380
Cartesian coordinates, 7, 68, 99

summary, 100
Cartesian tensor algebra, 7
Cartesian tensors, 7, 75
Cartesian unit vectors

rotation, 322
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catenary, 258
catenoid, 258
Cauchy

equation of motion, 613
fundamental lemma, 630
solution, 461, 462
stress principle, 629
theorem, 633

Cauchy problem
hyperbolic, 138
parabolic, 135

Cauchy stress tensor, 627
Cauchy stress vector, 627
Cauchy-Green deformation tensor, 459
Cauchy-Green strain tensor, 459
Cauchy-Stokes decomposition, 242, 469
causal free space Green’s function, 214
causal Green’s function, 214, 234
causal relations, xi
causality, 1589
causality condition, 214
causation versus association, 784
center of mass motion, 502
center of mass velocity, 510, 2027
central forces, 279
centrifugal acceleration, 276, 277, 343, 392,

736, 849, 886–888, 1064
Cartesian, 332
particle, 337
particle motion, 354
planetary, 332, 336, 337
planetary orbital, 930
planetary rotation, 930
spherical, 336

centrifugal instability, 1665, 1667, 1669, 1671
centrifugal oscillations, 1675
centrifuge, 849
centripetal acceleration, 343, 886–888
centripital acceleration

planetary, 332
channel, 1005
channel flow, 877
Chapman-Kolmogorov relation, 219, 221
characteristic curve, 126
characteristic curves, 128

advection equation, 129
wave equation, 138

chemical energy flux, 686
chemical potential, 567, 573, 579
chemical reactions, 507
chemical work, 569

Christoffel symbols, 30, 93, 431
metric connection, 94
related to metric, 95

circuit, 48, 114
reducible, 114

circulation, 48, 57, 1027
absolute, 1148
around a streamline, 1101
free vortex, 1030
friction effects, 1100
Kelvin’s theorem and work, 1130
Rayleigh drag, 1101
rigid-body rotation, 1032
rotating fluids, 1147
shallow water, 1100
tornado, 1034
wind stress, 1101

circulation induction, 1150
circulation theorem, 1100
classical field theory, 1313, 1316, 1468
co-tangent space, 81
coarse graining, 1961
cofactor, 87
cold core eddy, 979
column vorticity, 1112
compatibility

total mass + tracer mass, 512, 1920
complex numbers

absolute value, 164
modulus, 164
phase, 164

composition property
Green’s function, 219, 1947

compression, 478, 1432
concentration equation, 216
configuration space, 297
conjugate anti-symmetry, 1383
conjugate symmetry, 171, 174, 175, 1383,

1489
connection coefficients, 94
conservation

global, 1358
local, 1358

conservation equation
flux-form, 516
material form, 516

conservation law, 516
material, 707
non-material, 707

conservation laws, 265, 349, 350, 372, 417,
706
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conservation of indices, 71
conservation of wave crests, 1408
conservative force, 267
conservative forces, 297
Conservative Temperature, 592, 702, 704,

826, 2017
conservative tracers, 507, 1892, 1896, 1917,

1918
conservative vector field, 59
constitutive relation, 644, 645
constrained motion, 288
constraint

dynamic, 287, 349
forces, 288
reactive forces, 287, 288

constraints
dynamical, 288, 289
holonomic, 288
integrable, 289

contact forces, xviii, 557, 610, 627
contact pressure force, 631, 982, 985
continuity, 532
continuity equation, 484, 507
continuum approximation, 403, 405, 420
continuum hypothesis, 403
continuum limit, 1314
continuum mechanics, 403
contour, 114
contraction, 15, 20, 32
contrapositive proposition, 838
contravariant, 13, 71
contravariant index placement, 7, 8, 10
contravariant tensor index, 17, 67, 324
convective time derivative, 428
converging flow

PV constraints, 1099
converse proposition, 838
coordinate

buoyancy, 68
Cartesian, 68, 99
cylindrical, 68
cylindrical-polar, 101
general vertical, 427
geopotential, 343
invariance, 64
isopycnal, 68
Lagrangian, 69
material, 69, 425–427, 452
non-orthogonal, 69
oblique, 83
planetary Cartesian, 328

position, 425
quasi-Lagrangian, 69
representation, 9
spatial, 452
spherical, 68, 105, 328
time, 67
tracer, 69

coordinate covariance, 1333
coordinate representation, 9
Coriolis acceleration, 276, 277, 331, 358

Cartesian, 332
large-scale motion, 337
planetary, 332
shallow atmosphere, 337
spherical, 336

Coriolis parameter, 337
Couette flow, 644, 658
Coulomb electrostatic force, 279
Coulomb gauge, 240, 1925
couplet, 640
covariance, 64, 1352

coordinate, 1333
covariant, 13, 64, 71
covariant curl, 98
covariant derivative, 66, 92

metric tensor, 95
one-form, 95
scalar, 92
vector, 92, 431

covariant divergence, 96, 1898
second order tensor, 97

covariant index placement, 7, 8, 10
covariant Laplacian, 97
covariant tensor index, 17, 67, 324
critical height theorem, 1754, 1755
critical latitude theorem, 1734
critical levels, 1643
critical reflection, 1626
Crocco’s theorem, 713
cross product, 19
cross-diffusion, 515, 1990
curl integrated over a closed surface, 53
curl of a curl, 44
curl of cross product, 44
curl of vector, 41
curl-free vector, 42
current, 1334
curvature, 663

circle, 118
curve, 118
Gaussian, 121
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surface, 120
curves on a surface, 121
cyclic coordinates, 315, 317, 1327
cyclonic, 354, 864
cyclonic eddy, 979
cyclostrophic balance, 896, 1667, 1669
cylindrical-polar coordinates, 68, 101

D’Alembert
paradox, 645
theorem, 645
wave solution, 139, 1591

d’Alembert’s principle, 288, 291, 381
Deborah number, 408
decibel scale, 1436
deformation matrix, 447, 454, 461, 1338

discrete algorithm, 456
deformation radius, 1255, 1307, 1598, 1771

internal, 1285
shallow water, 1231, 1242, 1558, 1574,

1596
deformation rate, 478
deformation rate tensor, 447, 466
deformational flow, 477
degrees of freedom, 288
delta sheets, 1300
delta sheets of potential vorticity, 808
density, 826

evolution, 1990, 2018
depth of no motion, 872
determinant, 96
developing flow, 428
deviator, 32, 647
deviatoric friction tensor, 647
deviatoric strain rate tensor, 647, 677
deviatoric stress, 611, 645
dia-surface flow, 1936
dia-surface transport, 526, 1821, 1825

non-divergent, 1829
shallow water, 964

dia-surface velocity, 1828
compared to vertical, 1832

diabatic process, 557, 1936
diagnostic equation, xii, 432
dianeutral direction, 833, 1992
diapycnal transport velocity, 499
diapycnal velocity component, 1860
diffeomorphism, 1338
differentiable manifold, 558, 2044
differential forms, 75
diffusion, 1900, 2020, 2027

dissipation functional, 1910
Fick’s law, 1901
fine scale, 1990
horizontal, 1907
isotropic, 1907
molecular, 1900, 1990
momentum, 1903
neutral, 1907, 1911, 2022
operator, 1904, 1906, 1909
skew, 1923
temperature, 1903
tensor, 1906
tracer moments, 1908, 1909
tracer powers, 1907
tracer variance, 1909
turbulent, 1901

diffusion equation, 135, 213
diffusion operator, 2004
diffusion tensor, 1974, 1991, 2027
diffusion tensor transformation, 2010
diffusive tracer flux, 511, 512, 520
diffusively driven flow, 1264
diffusivity, 2027

air, 1901
dynamic, 1901
eddy, 794
kinematic, 1901
molecular, 1901
temperature, 1903
turbulent, 1901

dilatation, 263, 475
dilation, 469
dimensional analysis, xiv
dimensionless numbers, 1226
Dirac delta, 149, 150, 183, 187, 1299, 1300,

1911, 2057, 2068
Cartesian, 159
cylindrical, 159
Fourier transform, 183
normalization property, 150
sifting property, 150, 151
spherical, 159

Dirac delta sheet, 210, 225
direct stress, 645
direction cosine matrix, 27
Dirichlet boundary condition, 133, 134, 195,

783, 1942
dispersion, 1386
dispersion relation, 1366, 1369, 1373

acoustic, 1435
inertia-gravity waves, 1574
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inertial waves, 1508
interacting Eady waves, 1783
shallow water gravity wave, 1562
variational principle, 1418

dispersion tensor, 1387
dissipation, 611, 677
distance, 14
distance to polar axis, 330
distribution, 150
divergence, 650
divergence of cross product, 44
divergence of curl, 43
divergence operator

Cartesian, 39
divergence theorem, 51, 483

scalar fields, 52
diverging flow, 477
domain of influence, 140, 1384
Doppler shift, 1530, 1591, 1643

Rossby waves, 1529
Doppler-shifted frequency, 1531
dot product, 13, 15
double integral identity, 146
downscale cascade, 1987
drag coefficient, 796
dual form stress, 747, 755, 764, 985, 990
dual pressure form stress, 1884
duality

Eulerian and Lagrangian, 460
one-form and vector, 80, 81

duality condition, 13, 81
Dufour effect, 699
Duhamel’s integral

heat equation, 136
wave equation, 141

dynamic enthalpy, 801
dynamic topography, 724
dynamic viscosity, 646
dynamical constraints, 288, 350, 372, 417
dynamical pressure, 727, 891, 963
dynamical pressure gradient, 615
dynamics, 263

Eötvös correction, 337
Eady edge waves, 1763
Eady growth rate, 1785
Eady model, 1763
Eady waves, 1767, 1776
earth

angular rotation, 320
angular velocity, 320

equatorial radius, 343
geopotential, 341
gravitational acceleration, 340
gravitational potential, 340
mass, 339, 340
planetary centrifugal, 341
polar radius, 343
radius, 320, 339, 340, 926
rigid-body speed, 320

eddy diffusivity, 794
eddy kinetic energy, 1726
eddy tracer fluxes, 1969
eddy viscosity, 795, 902

Ekman layer, 909
eddy-induced

mass flux, 1922
mass streamfunction, 1922
velocity, 794, 818, 1922, 1991

edge waves, 1521, 1529, 1539, 1723, 1763,
1767

edge waves interactions, 1737
effective beta, 1097, 1241, 1560
effective buoyancy, 821, 829, 850, 851, 1607
effective free surface height, 942
effective gravity, 618
effective sea level, 942
eikonal approximation, 1405
eikonal equation, 1410
eikonal wave ansatz, 1405, 1445, 1448
Einstein summation convention, 10, 71
Ekman

arrested, 921
balance, 902
bottom layer, 916
boundary layers, 660, 901, 902
downwelling, 914
generalized Ekman velocity, 1220
horizontal transport, 910
layer thickness, 909
mass transport, 909
mechanics, 901
natural coordinates, 904
number, 908
ocean surface layer, 909
pumping, 913, 914
Rayleigh drag, 905
spiral motion, 906
suction, 913, 914
transport, 912
upwelling, 914
velocity, 1269
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velocity profile, 916
Eliassen-Palm

flux, 990, 992, 1873, 1884, 1886
flux tensor, 984, 1884, 1886

elliptic PDE
classification, 130
geostrophic adjustment, 1596
properties, 131

emergent scales, xiv
energetic stability analysis, 1665, 1680
energetics

shallow water, 993
shallow water kinetic, 995–997
shallow water mechanical, 998
shallow water potential, 994

energy
dissipation of kinetic, 677
dissipation of mechanical, 677
gravitational potential, 671–674
internal, 687
internal budget, 688
mechanical, 675, 678
mechanical energy flux, 678
total, 687
total energy conservation, 700

energy equipartition
acoustic, 1439
oscillator, 399, 1439

ensemble average, 1877, 1961
ensemble averaging

ensemble, 1877
enthalpy, 576, 702

budget, 685, 688, 700
capacity, 580

entrain, 499
entropy, 560, 563, 565, 576

budget, 697
flux, 698
maximum, 566
perfect fluid, 687
source, 698, 700

epineutral diffusion, 2003
epsilon product identity, 25, 44
equation of motion, 612

Cartesian, 342
particle, 341
rotating, 613
spherical, 342, 614

equation of state, 575–578, 595, 825, 2021
Boussinesq ocean, 774
linear, 773

equilibrium tide, 927
equipartition of energy, 307
equivalent barotropic depth, 1060
equivalent barotropic flow, 1060
Ertel potential vorticity, 1179, 1181, 1203,

1357
Euclidean

isomorphism to R3, 7
metric, 7, 14
norm, 7
space, 63
space E3, 7

Euclidean space, 4
Euler equation, 249, 613, 649, 1430

time symmetry, 652
Euler form, 568
Euler identity, 164, 1374
Euler’s equation, 253

second form, 254
Euler’s theorem, 143, 305
Euler-Lagrange equation, 253, 287
Euler-Lagrange equations, 302, 1319, 1343

continum, 1315
Euler-Lagrange field equation, 1414
Euler-Lagrange field equations, 1310, 1313
Eulerian

duality with Lagrangian, 460
mean, 1962
reference frame, 416, 421
region, 517
time derivative, 67, 428

Eulerian average, 1961
Eulerian velocity, 1339
evanescence, 1517, 1657
evanescent gravity waves, 1649
evanescent waves, 1654
evolution equation, 143
evolving flow, 428
exact differential, 55, 267, 535, 563, 569

hiker analogy, 57
exact geostrophic balance, 891
exact hydrostatic balance, 619
Exner function, 600, 602, 1131
extensive property, 507, 515, 558, 563
exterior calculus, 75
exterior derivative, 826
exterior moment of λ, 2053
external

moment, 2053
pressure, 750
pressure gradient, 726

page 2136 of 2158 geophysical fluid mechanics



INDEX

tracer mass, 2077
velocity, 754, 992

external forces, 627
external scales, xiv, 1226
extrinsic frequency, 1531

f-plane approximation, 353, 385, 395, 617,
618

Ferrel Cell, 546
fetch, 1010
Feynman’s trick, 193
Fick’s law, 1901
Fick’s law of diffusion, 699
field point, 187, 190
field theory, 1316

local, 1311
fine scale mixing, 1989, 1990
first kinematic viscosity, 646
first law of thermodynamics, 57, 560, 561,

573, 688
moving fluid, 684
potential temperature, 686

Fjørtoft’s theorem, 1733
flat space, 63
flow lines, 439
flow map, 439, 447, 449, 486, 1338
flow versus fluid property, 531, 767
fluid

dynamics, xviii
element, 424, 508, 509, 512, 821
kinematics, xviii
material region, 424
parcel, 422, 508
particle, 422
particle trajectory, 425, 439
region, 424

fluid versus flow property, 531, 767
flux, 60
flux-form conservation law, 482, 706, 1189
force

inertial, 274
reference frame induced, 273

force couplet, 640
force potential, 267
forces

body, 556, 557, 610
central, 279
contact, 610
external, 278
internal, 278

forces of constraint, 287, 288, 307

form stress, 631, 755, 764, 982, 985, 987, 988,
997, 1999

dual, 985, 990
geostrophic eddies, 877
isopycnal layer, 880
isopycnal surface, 878
mathematical expression, 745

formation, 2061
Foucault pendulum, 384
Fourier

complementarity, 183
conjugate symmetry, 171, 174, 175
cosine transform, 176
Dirac delta, 183
exponential series, 171
Gaussian, 184
integral theorem, 173
integrals, 173
inverse transform, 174
Parseval’s identity, 172, 178
position space, 163
reality condition series, 171
reduced wavenumber, 178
series, 168
sine transform, 177
sine/cosine series, 168
time domain, 181
transform, 174
transform pairs, 174
transforms, 173
wavenumber, 168
wavevector space, 163

Fourier analysis, 1366, 1379, 1476
fourier analysis, 163
Fourier’s heat law, 526
Fourier’s law, 686, 1903
Fourier’s law of conduction, 699
Fréchet derivative, 252, 1911
free

falling particle, 369
space Green’s function, 189
vortex, 1028, 1044

free particle, 372
f -plane, 353

free particle motion, 288, 310
planetary scale, 390

free shear layer, 1738
free surface patterns, 1117
frequency, 181

extrinsic, 1531
ground-based, 1531
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intrinsic, 1531
freshwater

boundary condition, 2027, 2029
budget, 2026
velocity, 2027

Fresnal integral, 1401
friction

dissipation, 677, 688
driven velocity, 902
force, 648
shallow water, 968
torque, 1272
vertical shear, 651

frictional
stress tensor, 645

frontal equations, 1698
Froude number, 778, 779, 1228, 1229, 1232,

1563, 1590, 1644, 1646
functional degrees of freedom, 532
functional derivative, 252, 1911
functional variations, 1910
functionals, 249
fundamental

solution for Laplace operator, 189
theorem of calculus, 48
thermodyanamic relation, 563

Galilean
boost, 266
invariance, 266, 268, 432, 646, 1081
invariance of kinetic energy, 365
relativity, 266
space-time, 4
transformation, 4, 266, 433, 434, 516,

1587, 1642
Galilean relativity, 7, 262, 324
Galilean space-time, 7, 64, 422
gauge

freedom, 1191, 1194, 1221, 1246, 1291
function, 689, 1096, 1191, 1433, 1459
invariance, 240, 1925
symmetry, 535, 537, 612, 689, 1922
transformation, 1460

gauge function, 1147
gauge theory, 1336
Gauss’s divergence theorem, 51, 98, 1850
Gaussian

Fourier transform, 184
Gaussian curvature, 121
general covariance, 64
general orthogonal coordinates, 111

general vertical coordinates, 427, 521
basis one-forms, 1806
basis vectors, 1804
circulation, 1819
common confusion, 1803
contravariant velocity, 1811
covariant velocity, 1811
diffusion operator, 1817
divergence, 1816
divergence theorem, 1816
examples, 1822
Jacobian, 1812
layer integrated diffusion, 1818
Levi-Civita tensor, 1813
material time derivative, 1816
metric tensor, 1812
partial derivatives, 1814
position vector, 1808
related to Cartesian, 1802
specific thickness, 1812
triple product identity, 1807
vector, 1810
vector cross product, 1814
velocity, 1810
volume element, 1813
vorticity, 1819

generalized coordinate, 67
generalized coordinates, 287, 290, 325
generalized force, 294
generalized function, 150
generalized Lagrangian mean, 1959, 1965

isopycnal, 1976
kinematics, 1962
tracers, 1967

generalized momenta, 315
generalized momentum density, 1325, 1414
generalized vertical coordinates, 4, 69, 1798
Gent-McWilliams

anisotropic, 2013
available potential energy, 1996
boundary value problems, 2002
effect, 1996
form stress, 1999
parameterization, 1994
secondary circulation, 1996
thickness diffusion, 2000, 2001

geometric optics, 1405, 1410
geopotential, 267, 341, 392, 774

coordinates, 343
height, 598
height in ideal gas, 725
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reference, 672
thickness, 598

geostrophic
adjustment, 1594, 1596
advection, 1302
balance, xii, 859, 862
contours, 1097, 1937, 1956
eddies, 877, 979
exact balance, 891
momentum, 1123
number, 1253
streamfunction, 1237, 1240
Sverdrup balance, 870, 1274
transport, 978

geostrophic coordinates, 1700
geostrophic eddies, 879
geostrophic flow, 732
geostrophic momentum approximation, 1698
geostrophic streamfunction, 864
geostrophy

isopycnal models, 1862
pressure coordinates, 865
shallow water, 976

geothermal heating, 526
Gibbs potential, 570, 578, 586, 684
Gibbs relation, 563
Gibbs-Duhem, 569
global conservation, 707, 1358
global conservation law, 1189
global instability, xx, 1662, 1668
global mean sea level, 2034
Godfrey’s island rule, 1115
gradient

generalized vertical, 1815
horizontal, 100
notation, 100

gradient operator, 36
Cartesian, 1814
general vertical coordinate, 1814

gradient Richardson number, 1722, 1723,
1752, 1753

gradient tensor theorem, 55
gradient wind balance, 897

barotropic flow, 1062
regular high, 899

gravest mode, 1488
gravest vertical mode, 868
gravitational acceleration, 338, 928

approximate, 340
effective, 341

gravitational force, 267

gravitational mass, 775

gravitational potential, 926

earth-moon, 931

general case, 926

gravitational potential energy, 340, 671, 1342

finite volume, 679

mixing, 674

regional, 672

stratification, 673

gravitational stability, 834

gravitational work, 586, 694

gravity waves, 1026, 1554

non-rotating, 1595

polarized, 1577

speed, 1562

two layers, 1564

Green’s function, 239

advection-diffusion equation, 1943

causal, 214

composition, 219, 1947

diffusion, 214

diffusion adjoint, 216

diffusion equation, 213

diffusion free space, 214

for wave equation, 227, 1384

free space, 188

free space for Laplace, 189

method, 187, 1075

modified, 207

non-closed reciprocity, 1946

one-dimensional Poisson, 204, 212

passive tracers, 1940

pressure equation, 783

reciprocity, 198, 217, 1944

wave free space, 230

Green’s identities, 53

group velocity, 1410

growth rate, 1697, 1714, 1729

Eady waves, 1784

gyre circulation, 1105

gyres and channels, 1012

Hadley circulation, 623

haline, 826

contraction coefficient, 581, 826, 828

halosteric sea level, 2037

Hamilton’s equations for rays, 1410, 1413

Hamilton’s equations of motion, 316

Hamilton’s Principle, 1310

fluid mechanics, 1310
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Hamilton’s principle, xiii, 249, 285, 287, 299,
606, 1313, 1337, 1342, 1361, 1414,
1468

continuum, 1316
Hamiltonian, 313, 314, 398
Hamiltonian continuity equation, 1326
Hamiltonian density, 1325, 1414
Hamiltonian mechanics, 285, 286, 314
Hankel function, 1076
harmonic function, 40, 42, 131, 241, 536,

1027, 1459
mean value property, 132
mean-value property, 203

harmonic oscillator
simple, 131, 396

Haynes-McIntyre PV flux, 1205
heat capacity, 580
heat equation, 135, 213
heat flow direction, 566
heat function, 576
heating, 561
Heaviside step function, 153, 214, 230, 1300,

1594
height and buoyancy relation, 810
Heisenberg uncertainty principle, 1393
helicity, 1175
Helmholtz

decomposition, 239, 536, 786
decomposition of Coriolis, 147
equation, 141, 233, 1442
first theorem, 1034
free energy, 577
second theorem, 1035
third theorem, 1035

Helmholtz-Hodge decomposition, 239, 242
heuristics, 149
holonomic constraints, 288
homentropic fluid, 687
homogeneous

fluid, 558
function, 143, 304
solution, 130
tensor, 30

homogeneous function, 567
Euler’s theorem, 567
thermodynamics, 567

Hooke’s Law, 646
Hooke’s law, 396
Howard’s semi-circle theorem, 1754, 1756
Hughes gyre model, 1111
hydraulic control, 1564, 1590

hydraulic jump, 695, 1564, 1590
hydrodynamics, ix, 767
hydrostatic, 364

approximate balance, 619, 715, 716, 720,
774, 844, 950

approximate balance for ocean, 773
background state, 724
exact balance, 619, 638
exact versus approximate, 620
number, 1252
pressure, 720, 824, 940
pressure evolution, 721, 781
pressure forces, 638
primitive equations, 715, 716
scaling, 723, 777
torque balance, 640
vertical motion, 716, 725

hyperbolic PDE, 138, 1373
classification, 130
domain of influence, 140, 1384

hypsometric equation, 598

ice skater, 1087
ideal fluid, 422
ideal gas, 594

adiabatic lapse rate, 598
baroclinicity, 1131
buoyancy frequency, 836
compressibility, 597
enthalpy, 597
equation of state, 595
geopotential thickness, 598
heat capacity, 596
internal energy, 595
lapse rate, 836
law, 409
potential temperature, 600
sound speed, 598
thermal expansion coefficient, 597

ignorable coordinates, 317
impermeability

compare to material invariance, 1208
impermeability theorem, 1095, 1203, 1205,

1217, 1304
absolute vorticity components, 1207
confusions, 1208
kinematics, 1207
planetary geostrophy, 1265
seawater, 1208

impulse, 160
impulse response function, 160, 234, 1951
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in situ density, 828
in situ temperature, 591, 702

evolution, 702
incompressible, 531
incompressible flow, 532
incropping, 962
incropping buoyancy, 808
induction vector, 1304
inertia-gravity waves, 1554, 1557, 1573, 1574,

1586
inertia-vorticity oscillations, 1693
inertial

frequency, 861
motion, 893
near inertial waves, 1513
oscillation, 894
oscillation in ocean, 355
oscillations, 1255
reference frame, 265, 273, 416
velocity, 333
waves dispersion relation, 1508
waves group velocity, 1510

inertial frame
acceleration, 327
velocity, 326

inertial instability, 1665, 1668, 1679
inertial mass, 775
inertial oscillations, 355
inertial period, 1598
inertial waves, 1632
inexact differential, 56, 561, 563, 569

integrating factor, 57
information entropy, 1914
initial value problem, 234, 1594
injection work, 691
inner product, 13, 15, 245
instabilities

normal modes, 1662, 1707
instability

baroclinic, 1763, 1782
barotropic, 1723
centrifugal, 1665, 1667, 1669
critical height, 1754, 1755
critical latitude, 1734
Fjørtoft’s theorem, 1733
global, xx, 1662, 1668
inertial, 1665, 1668, 1679
interfaces, 1707
isentropic inertial, 1685
Kelvin-Helmholtz, 1707
local, 1665, 1667

necessary conditions, 1732
phase tilt, 1731
Rayleigh-Kuo theorem, 1732
Rayleigh-Taylor, 1707, 1712
stratified shear, 1723
sufficient conditions, 1732
symmetric, 1665, 1668, 1685, 1689, 1692
wave, xx, 1662, 1668

integral curve, 422, 439
integral surface, 128
integrating factor, 57, 563, 569
integration in λ-space, 2048
intensive property, 507, 515, 558, 563, 680
interfacial form stress, 744, 750, 985, 987,

1882
interior moment of λ, 2053
interior water mass transformation, 2057
intermolecular forces, 661
internal

energy, 554, 559, 575, 687
energy and Boussinesq, 806
energy budget, 688
energy capacity, 580
forces, 610, 627
moment, 2053
pressure, 750
pressure gradient, 726
tracer mass, 2077
velocity, 754, 992

internal energy, 1343
internal gravity waves, 834, 1601, 1639

stationary, 1640
internal scales, 1226
internal symmetry, 1330, 1336
internal tides, 1640
intrinsic coordinates, 885
intrinsic frequency, 1531, 1780
inverse barometer sea level, 731, 942
inverse energy cascade, 1061
inverse proposition, 838
inversion, 1594
invertibility, 1283
irreducible tensorial parts, 32
irreversible process, ix, 558, 565
irreversible thermodynamics, 680
irrotational, 1025, 1459

flow, 537, 1026, 1037
vector, 42

island rule, 1115
isobar, 620
isolated system, 557
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isopycnal, 499

coordinates, 68, 1804

ensemble, 1975

layer transport, 1975

mean, 1975

primitive equations, 1858

isotropic tensor, 30

Jacobian

evolution, 476

of transformation, 79, 85

on a curve, 122, 1956

operator, 122, 1302, 1956

Jacobian operator, 1057

JEBAR, 1279

jets, 1070

Joule heating, 688

Joule unit of energy, 410

Kelvin waves, 1570

Kelvin’s circulation theorem, 1129, 1140,
1180, 1184

Kelvin’s minimum kinetic energy, 1466

Kelvin-Helmholtz instability, 1253, 1707

Kepler’s third law, 306

kinematic

free surface equation, 500, 547

two-dimensional flow, 476

viscosity, 646

water mass transformation, 2056

kinematic boundary condition, 492, 946,
2027

buoyancy surface, 499

geometric derivation, 495

material interface, 494

moving material, 493

non-divergent flow, 533

ocean free surface, 499

permeable surface, 496

static material, 492

surface waves, 1472

kinematically admissable, 292

kinematics, 263

Eulerian, 419

Lagrangian, 419

motion field, 449, 1338

reference manifold, 451

referential description, 447, 451

relative description, 447

spatial manifold, 451

kinetic energy, 266, 365, 398, 675, 1342

axial angular momentum, 366
Boussinesq, 791
cartesian coordinates, 366
dissipation, 677
geopotential coordinates, 367
hydrostatic Boussinesq, 816
spherical coordinates, 366

kinetic stress, 642, 753, 981, 1881
kinetic stress tensor, 1054
kinetic theory, 409
Klein Gordon equation, 1320
Knudsen number, 406, 602
Kronecker tensor, 11, 14, 77, 81, 324, 1897

L2 inner product, 245
laboratory reference frame, 273, 421
Lagrange multipliers, 288, 307
Lagrange’s equation of motion, 293
Lagrangian, 249

coordinates, 69
density, 1344
mean, 1963
phase averaged, 1415
reference frame, 416, 421
region, 512
time derivative, 67, 428

Lagrangian acoustic wave equation, 1431
Lagrangian density, 1315, 1317, 1344, 1414
Lagrangian function, 297
Lagrangian mechanics, 285, 286

continuum, 1316
Lagrangian velocity, 1339
laminar subregion, 660
LaPlace transform, 193
Laplace’s equation, 131, 1027

properties, 131
Laplace-Beltrami operator, 1899
Laplacian friction, 907
Laplacian operator, 40, 131
law of atmospheres, 599
law of cosines, 931
law of inertia, 263, 265, 310
layer mass continuity, 1837

compressible, 1838
pressure coordinates, 1840

lee waves, 1654
Legendre transformation, 315, 574, 576–578
Leibniz’s rule, 500, 517, 1158
Leibniz-Reynolds transport theorem, 420,

517, 523, 1216
length scale
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gradient, 408
macroscopic, 405
mean free path, 405, 410
measurement, 407
molecular, 405
simulation, 407

level of no motion, 729–732, 950
Levi-Civita tensor, 20, 25, 86, 1063

general coordinates, 88
volume element, 89

lid pressure, 961, 1049, 1061
linear equation of state, 828
linear momentum, 265, 1040

conservation, 265
finite volume, 643
Lagrangian volume, 643

linear momentum conservation, 311
local conservation, 706, 1358
local instability, 1665, 1667
local Rossby number, 890
local thermodynamic equilibrium, 404, 408,

559, 669, 680, 682
locally referenced potential density, 835
long range forces, 610
long waves, 1547, 1585
longitudinal waves, 1315, 1319, 1425, 1426,

1432, 1435, 1561
longwave radiation, 2031
Lorentz force, 263
Lorentzian, 1653
Lorenz convention, 808
Luke’s variational principle, 1468

Möbius strip, 49
MacDonald’s function, 1076
Mach number, 767, 1425, 1426, 1430, 1436
macro-turbulence, 979
macroscopically small, 404
macrostate, 554
macrostates, 556
Magnus acceleration, 616, 891, 963
mapping the continuum, 449
Margules’ relation, 959, 977, 980
Marshall potential vorticity flux, 1209
mass

λ-layer, 2048
gravitational, 775
inertial, 775

mass budget, 520
λ-layer, 2061
fluid column, 501, 502

weak formulation, 509
mass conservation, 416, 486, 507

arbitrary Eulerian region, 483
Eulerian, 482
finite Eulerian region, 482
Jacobian derivation, 488
Lagrangian, 484, 1427
Lagrangian derivation, 489
multi-components, 509

mass continuity
generalized vertical coordinates, 1836
layer integrated, 1837

mass density, 825
mass distribution function, 2049
mass equation

general vertical coordinates, 1848
mass flux, 482
mass flux through a surface, 496
mass-labeling coordinates, 1342
mass-Sverdrup, 2045
material

area evolution, 471
closed system, 557, 561
constant, 430, 516
coordinate choices, 427
coordinates, 69, 426, 452
curve, 460
curve evolution, 462
fluid parcel, 422, 557
invariance, 430, 432, 1089
invariant, 516
invariant volume, 532
line elements, 1142
open system, 557
surface, 430
thickness evolution, 475
volume evolution, 474

material time derivative, 67, 428
general vertical coordinates, 1831
invariance, 435, 436
isopycnal models, 1860
space-time, 438

material tracers, 507, 1917
mathematically rigorous, 149, 150
matrices, 29
matter

concentration, 573
conservation, 706
flow direction, 572

Maxwell relations, 570, 581
mean free path, 405, 1901
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mean tracer equation, 1983
mean value property, 132
mean value theorem, 1427
mean-value property, 203
mechanical

pressure, 644, 647
stress, 642
work, 266, 365, 398, 562
work from geopotential, 586

mechanical energy, 267, 314, 675, 678
Boussinesq, 791, 792, 801, 802
conservation, 367
dissipation, 655, 677
finite volume, 679
particle, 365

mechanical equivalence, 1324, 1329
mechanical similarity, 305
membranes, 660
meridional

overturning circulation, 543, 1843
overturning transport, 1998
transport, 1267

mesoscale eddies, 1987, 1991
mesoscale eddy mixing, 1989
mesoscale ocean, 1763
method of characteristics, 128
method of images, 1444
metric acceleration, 327, 335, 615
metric tensor, 14, 77, 457, 458, 1897

Cartesian coordinates, 77
coordinate representation, 78
coordinate transformation, 78
determinant, 85
general, 78
inverse, 81, 82
relating vectors and one-forms, 81

metricity condition, 95
microscopically large, 404
microstates, 556
mixed boundary condition, 1942
mixing, 1991

surface boundary, 2029
tensor, 1991

mixing length, 1901
modal stability analysis, 1665
modified mean, 1976
modulation function, 1380
molar mass, 569
mole, 409
molecular

composition of air, 409

composition of water, 409
diffusion, 1989, 1990
viscosity, 655

moment arm, 330, 621
moment of inertia, 272, 1043, 1045, 1087
moment-arm, 356, 364
moments of λ, 2053
momentum

absolute, 1678
angular, 272
approximate axial angular, 364
axial angular, 330, 356, 373, 621, 739
axial angular and Coriolis, 358
geostrophic, 1678
linear, 372
potential, 342, 352, 373, 1668, 1676

momentum argument, 1527
momentum equation, 980

flux form, 642, 1849
general vertical coordinates, 1848
horizontal, 1848
natural coordinates, 889
spherical, 614
vertical, 1849

momentum flux, 482
momentum-based, xii
Monge gauge, 113
monochromatic patterns, 1374
monochromatic waves, 1374
Montgomery potential, 880, 1859

shallow water, 958
motion field, 422, 447, 449, 486, 1338
motional forces, 850
mountain drag, 1648
mountain waves, 1639, 1640, 1644
Munk gyre model, 1111

NADW, 2041
natural boundary condition, 1910
natural boundary conditions, 1322, 1344,

1468
natural coordinates, 885, 886

isobars, 903
vorticity, 1036

Navier-Stokes equation, 613, 649, 654
non-dimensional, 654
time asymmetric, 652

near inertial wave, 1632
near inertial waves, 1513
nearly horizontal motion, 364
net stress tensor, 651
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Neumann boundary condition, 133, 135, 205,
526, 782, 1910, 1942

neutral
anisotropic neutral diffusion, 2009
density, 2045
diffusion, 2003
directions, 829, 831, 2003
helicity, 838
slope, 1992
surface, 839
tangent plane, 2003
tangent plane coordinates, 2010

neutral diffusion, 842, 1911, 2022
neutral direction, 843
neutral directions, 830
neutral trajectories, 841
neutral trajectory velocity, 841
neutrality condition, 833, 2006, 2011
neutrally buoyant, 821, 825
Newton’s

equation of motion, 612
first law, 263, 310
gravitational constant, 338
gravitational law, 338
second law, 263, 265
third law, 263, 627, 630, 656, 744, 988,

1610
third law and pressure, 630
third law strong form, 279
third law weak form, 279

Newtonian
fluid, 645, 646
gravity, 150
gravity field, 931
time, 63, 67
universal time, 7

Newtonian friction, 1903
Newtonian relativity, 266
Newtonian time, 7, 262
no normal flow boundary condition, 492
no-flux boundary condition, 526, 921
no-slip boundary condition, 650, 658
Noether’s first theorem, 1330, 1352
Noether’s second theorem, 1333, 1352
Noether’s Theorem, 417
Noether’s theorem, 287, 310, 349, 350, 352,

398, 1310, 1313, 1325–1327, 1352
non-advective

flux, 2027
transport, 2031

non-advective tracer flux, 511, 512

non-Boussinesq, 767, 837
non-Boussinesq steric effect, 501
non-conservative

forces, 268
process, 706

non-dimensionalization, xiv, 1232
Ekman balance, 908
hydrostatic approximation, 778

non-dispersive waves, 1562
non-divergent

barotropic model, 1049, 1051, 1522
velocity field, 532

non-hydrostatic
pressure, 943
primitive equations, 720

non-inertial acceleration, 847
non-inertial force, 847
non-inertial reference frame, 273
non-Newtonian constitutive relations, 653
non-orthogonal coordinates, 69
normal

derivative, 38
direction, 38, 114, 492
evolution equation, 473
solid-earth bottom, 493
stress, 645
vector, 534

normal direction, 21
normal mode method, 1662, 1707
normal one-form, 98
normal stress, 627
notation

slanted, 9, 1896
upright, 9, 1896

nuclear reactions, 507

obduction, 1835
oblate spheroid, 343
oblique coordinates, 83
obliquity, 320
observation point, 190
ocean

buoyancy, 2017
free surface, 1822
gyres, 1102
gyres and topographic form stress, 1107
mesoscale eddy, 979
mixed layer base, 1823
mixing processes, 1989

ocean submesoscale, 1698
oceanic form stress, 744
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omega equation, 1293
one-form, 13
one-forms, 17, 80

basis, 81
coordinate representation, 80

one-way wave equation, 138
orbital motion, 930
orientation, 19, 20, 48, 49, 114
orthogonal curvilinear coordinates, 111
oscillator equation, 354, 397
outcropping, 962
outcropping buoyancy, 808
outer product, 18, 642, 981
overturning

Southern Ocean, 546
overturning circulation, 1694
overturning streamfunction, 543, 1843

parabolic PDE, 135
classification, 130
smoothing property, 135

parameterizations, 407, 1987
parcel method, 1607
parcel stability analysis, 1665
parity, 168, 169
Parseval-Plancherel formula, 178
partial

entropy, 570
internal energy, 570
volumes, 570

partial derivatives
transformation, 92

particle displacement, 1969
particle mechanics, 265
particle relabeling, 1352
particle trajectory

fall to equatorial plane, 370
free fall to center, 369
freely falling, 371
geopotential motion, 371
spherical motion, 369

particular solution, 130
passive

tracer, 126, 512, 1917, 1940
tracer source, 1942

passive transformation, 1330, 1333, 1352
path, 114

orientable, 114
simple, 114

path integral
arc length, 46

path dependent, 561
scalar function, 45
vector function, 47

pathlines, 439
analog to car flow, 439

pendulum
adiabatic invariant, 381
Foucault, 384
simple, 376
variable length, 381

perfect fluid, ix, 422, 557, 1919
periodic channel, 1005
periodic function, 168
permutation symbol, 20, 86, 1063

product identity, 25
phase

averaging, 1961
phase averaged action, 383, 1415
phase averaged Lagrangian, 1415
phase averaging, 166
phase locked, 1738
phase space, 315
phase speed, 1408, 1728
phase velocity, 1728
Phillip’s layering instability, 1914
physical dimensions, 9, 72
physically formal, 149, 150
physics as geometry, 64
Pitot tube, 615
planar curves, 116
plane wave, 1375, 1376
planetary

beta effect, 869
Cartesian coordinates, 328
centrifugal acceleration, 331, 343
centripetal acceleration, 331
induction, 1150
spherical coordinates, 328
vorticity, xix, 869

planetary geostrophy, 866, 1166, 1234
continuously stratified, 1261
energetics, 1263
equations, 1262
potential vorticity, 1097, 1103, 1104,

1234, 1264
vorticity equation, 867

planetary Rossby waves, 1522, 1558, 1763,
1770

planetary vorticity, 869
planetary waves

dispersion relation, 1529

page 2146 of 2158 geophysical fluid mechanics



INDEX

plumb line, 346, 371
Poincaré waves, 1573
point, 9

mass, 150
point jet, 1541
point vortex, 1059
Poiseuille flow, 1735
Poisson equation, 131, 133, 189, 240, 338,

1058, 1062
Dirichlet boundaries, 200
Green’s function, 195, 205
max-min principle, 134
Neumann boundaries, 209
pressure, 850

polar coordinates, 101
polar materials, 635
polar unit vectors

rotation, 322
poleward buoyancy transport, 879
poleward heat transport, 1792
Pontryagin duality, 163
position, 9, 265
position vector, 12

Cartesian representation, 328
spherical representation, 328

postulate of total energy conservation, 700
potential

enthalpy, 592, 704
momentum, 342, 373
property, 591, 592, 825
scalar properties, 708

potential density, 827
locally referenced, 835

potential energy, 267, 297
Boussinesq, 792
shallow water layer, 1884

potential enstrophy, 1183
potential flow, 1026, 1455, 1457
potential momentum, 1668, 1676
potential temperature, 590, 591, 600, 702,

826
evolution, 703
specific entropy, 593

potential vorticity, 1819
substance, 1190
baroclinic fluid, 1183
barotropic fluid, 1180
Bernoulli potential, 1197
Boussinesq, 1856
concentration, 1211
cylinder, 1086

delta sheet, 808
derivation, 1194
dynamical tracer, 1185
Ertel, 1056, 1083, 1179, 1181, 1203, 1295,

1357
flux, 1095, 1190, 1194, 1197, 1203, 1205,

1209
flux-form budget, 1189
flux-form equation, 1095
gauge choice, 1197
generalized vertical coordinates, 1853
Haynes-McIntyre PV flux, 1205
hydrostatic Boussinesq, 1193
impermeability, 1203, 1265
impermeability kinematics, 1207
induction vector, 1304
inertia-gravity waves, 1630
integrated substance, 1211
inversion, 1224, 1594
isopycnal coordinates, 1864
iterated, 1184
Kelvin circulation theorem, 1091
kinematic derivation, 1195
layer budget, 1216
Marshall PV flux, 1209
material invariance, 1203
name, 1090, 1184
non-conservative processes, 1094, 1188
non-divergent barotropic flow, 1056,

1185
ocean layer, 1215
pancake, 1198
perfect fluid, 1180
planetary geostrophy, 1097, 1103, 1104,

1234, 1242, 1264
potential density, 1186
preferred flux forms, 1221
quasi-geostrophy, 1239, 1240, 1242, 1295
relative, 1241
Rossby, 1056, 1083, 1089, 1090
seawater, 1208
seawater equation of state, 1186
shallow water, 1089
stuff, 1095
substance, 1203, 1205
symmetric instability, 1221, 1697
thickness weighted average, 1887
two-dimensional non-divergent, 1056

potential vorticity flux
air-sea boundary, 1219
land-sea boundary, 1218
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steady state constraints, 1210
potential vorticity inversion, 1243
power, 365
practical salinity, 2026
Prandtl number, 1903
Prandtl ratio, 1255, 1303
precession, 387
pressure

boundary conditions, 782
contact force, 982, 985, 1852
contact stress, 629, 1850
coordinates, 1803
driven velocity, 902
dynamical pressure, 769
external, 750
gradient force, 1850
internal, 750
Lagrange multiplier, xi, 1362
lid, 961, 1049, 1061
mechanical, 644, 647
non-hydrostatic, 1504
Pascal unit, 410
Poisson equation, 781, 1062
shallow water dynamic, 958
stagnation, 692
standard atmosphere, 409
thermodynamic, 644
thermodynamical, 647
time derivative, 2019
total, 692
total head, 615
transport, 707
two-dimensional flow, 1064
work, 562, 694

pressure form stress, 631, 982, 985, 997
dual, 1884
interfacial stress, 1852
shallow water, 987

pressure gradient
baroclinic, 726
barotropic, 726
bottom, 730
external, 726, 727, 730, 1012
hydrostatic, 727, 730, 780, 864
ideal gas, 725
internal, 726, 727, 730, 780, 1012

pressure gradient work
shallow water, 995

pressure scale
dynamical, 654, 778
geostrophy, 1253

pressure source, 784

Coriolis, 1066

friction, 1067

irrotational flow, 1066

rigid-body flow, 1064

rotation, 1063

self-advection, 1063

strain, 1063

pressure torque, 991, 1163, 1268

atmosphere, 1272

bottom, 1272

primitive equations, 715, 716, 860

nomenclature, 720

principle of equivalence, 775, 848, 1361

process water mass transformation, 2056

prognostic equation, xi, 143, 432

projection operator, 33

pseudo angular momentum, 353

pseudo vector, 20, 1024

pseudo-westward phase, 1532, 1543

pulling back, 45

pycnocline, 979

Pythagoras’ theorem, 7, 14, 255

quasi-equilibrium thermodynamics, 680

quasi-geostrophy, 1235, 1283, 1558

potential vorticity, 1239, 1240

quasi-Lagrangian coordinates, 69

quasi-static process, 559, 565

quasi-Stokes transport, 1978, 1981, 1983

quotient rule, 635

radius of curvature, 118, 120, 887, 894, 1036

rarefaction, 1432

rarefied gas, 406

ray equations, 1413

ray theory, 1405

Rayleigh drag, 268, 646, 904, 1101, 1119,
1161

Rayleigh equation, 1723, 1729, 1738

Rayleigh inflection-point theorem, 1732

Rayleigh waves, 1539

Rayleigh-Kuo equation, 1540, 1729, 1730

Rayleigh-Kuo theorem, 1732

Rayleigh-Taylor instability, 1707, 1712, 1714

re-entrant channel, 1005

reactive forces, 288

real fluid, ix

real numbers R3, 7

reciprocity, 1944

reciprocity condition
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diffusion equation, 217
Poisson equation, 198

rectification, 1874, 1959
reduced gravity, 950, 952, 953, 956, 977, 1713

model, 724, 950, 972, 979, 1567
reduced variational principle, 1415
reductio ad absurdum, 1938
reference

density, 533
geopotential, 672
pressure, 828
shallow water density, 956

reference frames, 266
inertial, 266
non-inertial, 273

reference manifold, 451
referential description, 449
reflection

non-specular, 1624
specular, 1624

refraction, 1411, 1486
region following the flow, 485
relative chemical potential, 573
representation, 9
rescaled geopotential coordinate, 1841
residual mean

transport, 1992
velocity, 1992

resonance, 1738
response function, 160, 234, 580
reversibility, 351
reversible process, 558, 565
Reynolds

average, 1877
decomposition, 1961
stress, 642, 1881

Reynolds number, 407, 654, 908, 923
atmosphere, 655
Gulf Stream rings, 655
turbulence, 655

Reynolds transport theorem, 485, 490, 1908
linear momentum, 643
multi-component fluid, 521

Richardson number, 779, 1253, 1722, 1723,
1752, 1753

balanced, 1785
Riemann-Legesque lemma, 1400
Riemannian differential geometry, 64, 75
right hand rule, 20
rigid body, 291
rigid body motion, 263

rigid body rotation, 469
rigid lid, 783, 1049, 1061

approximation, 870, 961, 1279
rigid lid ocean models, 1067
rigid-body

rotation, 58, 270, 1030, 1044
spherical velocity, 330

rigid-body motion, 1671
rigid-body rotations, 268
rigid-body velocity, 269
Robin boundary condition, 1942
Rossby

deformation radius, 1255
effect, 625, 1070
potential vorticity, 1094

Rossby height, 1775
Rossby number, 860, 923, 1229, 1231, 1252

Gulf Stream ring, 862
kitchen sink, 862
local, 890

Rossby waves, 619, 1522, 1554
baroclinic, 1771
barotropic, 1771
dispersion circle, 1534, 1581
dispersion relation, 1529
group velocity, 1533
stationary, 1533
topographic, 1773

rotating hydraulics, 1564
rotating tank, 736, 849, 870, 1014, 1065

parabolic free surface, 738
rigid-body motion, 738

rotation, 447
rotation matrix, 27, 2010
rotation tensor, 466, 468, 478, 646, 785, 1025,

1042, 1063, 1142, 1431
rotational

flow, 478
fluxes, 1970
tracer flux, 1922, 1995

row vector, 29

salinity, 573, 825, 2017
salt

boundary condition, 2027, 2029
budget, 2026
concentration, 2026
velocity, 2027

scalar
field, 17
general tensor scalar product, 82
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mechanics, 1892
potential, 42, 1459
potential harmonic, 1459
product, 13–15
scalar product invariance, 28
streamfunction, 538

scalar field theory, 1457
scalar product, 13
scale analysis, xiv, 777, 1226
scale height, 598, 767
scale selectivity, 1904
scales

emergent, xiv
external, xiv, 1226
internal, 1226

screened Poisson equation, 194
sea breeze, 1173
sea level, 2034

thermal expansion, 548
Boussinesq ocean, 2037
budget, 2035
steric, 2036
thermosteric, 2036

sea level pressure, 744
seawater

chemical potential, 573, 579
equation of state, 1186
mass distribution, 2049

second kinematic viscosity, 646, 648
second law of thermodynamics, 561, 563, 565
secondary circulation, 1071, 1698
seiche mode, 1488
self-adjoint operator, 198, 217, 232, 1909,

1944
self-advection, 1063
self-attraction and loading (SAL), 935
semi-geostrophy, 1235, 1665, 1698
separation of variables, 1476
sgn function, 153
shallow fluid approximation, 112, 361, 364,

717
shallow water

N -layer equations, 985
columns, 950
cross-layer flow, 964
deformation radius, 1558
gravity wave dispersion, 1574
gravity wave speed, 1560
gravity waves, 1560
hydrostatic approximation, 950
inertia-gravity waves, 1573

linearized equations, 1550
model formulation, 940
momentum, 944
momentum equation, 980
non-dimensional, 1232
planetary geostrophy, 1234
potential vorticity, 1089
potential vorticity invariance, 1090
pressure, 940
quasi-geostrophy, 1235, 1558
reference density, 952
stacked model, 954
subgrid scale, 964
Sverdrup balance, 1103
thickness, 944
two-layer, 954
vertical velocity, 948
vorticity, 1084, 1146
wave equation, 1553
waves, 1548

shear
flow, 815
strain, 478
stress, 645

shear instability, 1723
stratified, 1748

shear production, 1791, 1792
shearing stress, 627
shortwave radiation, 2031
sign-function, 1594
simple ideal gas, 594, 595
simple pendulum, 376
simply closed volume, 52
simply connected, 239
sine-Gordon equation, 1320
singular limit, 909
skew

diffusion, 1923, 1991, 2020
diffusion tensor, 1923
skew diffusion and skewsion, 1924
symmetric stiring tensor, 1974
symmetric tracer fluxes, 1969
tracer flux, 1922, 1995

slippery Ekman layer, 921
slope Burger number, 1254
slope of a surface, 498
smooth velocity field, 439
Snell’s law, 1486
solenoid, 1139
solenoidal velocity, 531
soliton, 1484

page 2150 of 2158 geophysical fluid mechanics



INDEX

Sorret effect, 699
sorting buoyancy, 813
sound pressure level, 1436
sound speed, 581, 804, 826, 1429, 1432

ideal gas, 598
ocean, 1187

sound waves, 1425
source point, 187, 190
Southern Ocean, 1012

channel, 1005
Southern Ocean overturning, 546
space

Euclidean, 4
space homogeneity, 310
space increments

Eulerian, 460
Lagrangian, 460

space isotropy, 310
space-time symmetry, 1335
space-time tensors, 73, 438
spatial coordinates, 452
spatial homogeneity, 311
spatial manifold, 451, 486
specific

entropy, 593
gas constant for air, 595, 598
thickness, 1824, 1977, 1979
volume, 684

specific volume, 573
spectral decomposition, 158, 163
specular reflection, 1538
spherical coordinates, 68, 105, 325

basis one-forms, 108
basis vectors, 107
differential operators, 110
Levi-Civita tensor, 109
metric, 108
position, 108
summary, 110
transformation from Cartesian, 106
vector components, 109
vector cross product, 109
velocity, 108
volume element, 109

spherical unit vectors
rotation, 322

spin, 785
splat, 785, 1063
Squire’s theorem, 1725, 1749, 1794
St. Andrew’s cross, 1620
stability analysis

energetic, 1665, 1672, 1680
modal, 1665, 1692
parcel, 1665, 1673, 1682, 1686

stagnation pressure, 615
standard

atmosphere, 409
pressure, 405
temperature, 405, 409

state function, 561
static

equilibrium sea level, 926, 927
forces, 821, 850
pressure, 724

static stability, 834
stationary phase, 1399
stationary waves, 1589, 1644
steady flow, 428, 429
steady state, 131, 428, 432, 516, 556, 1011
steepest descent, 37
step response function, 235
steric sea level, 724

changes, 2036
steric setup, 733
stirring, 1991

reversible, 687
Stokes

correction, 1494
drift, 1481, 1494, 1873, 1874, 1962, 1965,

1967, 1973
drift and surfing, 1495
drift for surface prototypical waves, 1497
mean, 1962, 1965
theorem, 49, 99, 537, 838, 1028

Stokes drift, 1366
Stokesian fluid, 645
Stommel gyre model, 1111
Stommel model, 1105
storage, 2061
strain rate tensor, 447, 466, 467, 477, 646,

677, 785, 1025, 1042, 1063, 1431
vorticity source, 1142

stratification, 830
stratified shear instability, 1748
streaklines, 439, 441
streamfunction, 535, 1051

meridional-σ, 1843
meridional-depth, 543
quasi-geostrophy, 1240
streamlines, 534
transport, 534, 537, 538, 540
two-dimensional flow, 533
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vector, 537
vertical gauge, 540

streamlines, 439, 440, 492, 534
compared to pathlines, 441

streamtubes, 440
stress

boundary, 796
contact, 610
deviatoric, 611, 645
direct, 645
friction, 611
local equilibrium, 630, 656
normal, 403, 627, 645
on an interface, 656
pressure, 611
shallow water, 968
shear, 403, 627, 645

stress boundary condition
Lagrangian interface, 658
permeable interface, 659
solid boundary, 657

stress tensor, 610, 627, 633
net, 651
symmetry, 635

stress-energy-momentum, 1415
acoustic, 1447

stress-energy-momentum tensor, 1327
stress-strain relation, 644
stretched vertical coordinate, 1303
stretching, 1143, 1507

material lines, 467
strong formulation, 420, 523, 638, 641
Sturm-Liouville, 1771
sub-inertial wave, 1530, 1558
subduction, 1835
subgrid scale transport, 965
subgrid scales, 1987
subgrid-scale parameterizations, 867
subharmonic function, 134
substantial time derivative, 428
super-inertial waves, 1557
superposition principle, 187, 202, 209, 1366,

1375, 1379, 1435, 1476
surface

derivative operator, 472
gravity waves, 943, 1455, 1471
orientable, 114
velocity, 493

surface area, 120
horizontal projection, 497, 498, 524

surface gravity waves, 1374

dispersion relation, 1478
kinematic boundary condition, 1472
longwave limit, 1484
shortwave limit, 1484
wave breaking, 1484

surface quasi-geostrophy, 1299
surface tension, 563, 627, 630, 656, 660, 1491,

1710
gas bubbles, 665

surface water mass transformation, 2057,
2066

buoyancy, 2068
circulation, 2066

Sverdrup, 2045
Sverdrup balance, xii, 870, 1103, 1167, 1272,

1274
geostrophic, 1274
topographic, 1167, 1276

symmetric
mixing tensor, 1974
tracer fluxes, 1969

symmetric instability, 1665, 1668, 1685, 1689,
1692

symmetry, 266, 310, 349, 350, 417
condition, 2007
internal, 1336
particle relabeling, 1352
space-time, 1335
spatial, 372

synoptic scale atmosphere, 1763

tangent
bundle, 71
Cartesian for tangent plane, 328
direction, 37, 114
plane approximation, 323, 617
space, 71, 81, 94
vector, 46, 534

tangential stress, 627
Taylor

columns, 868, 950
curtains, 870

Taylor-Bretherton identity, 1057, 1873, 1887
Taylor-Goldstein, 1723, 1760
Taylor-Goldstein equation, 1751
Taylor-Proudman effect, 868, 870, 1104, 1503,

1515
teleological, 304
temperature, 591, 826
tensile force, 662
tension strain, 478
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tensor, 10, 72
(1, 1) representation, 19, 30, 1897
(2, 0) representation, 19, 1897
0, 2) representation, 19, 1897
anti-symmetric, 32
deviatoric, 32
first order, 12
flat representation, 19, 1897
homogeneous, 30
index, 69
irreducible parts, 32
isotropic, 30
musical nomenclature, 19, 1897
natural representation, 19, 30, 1897
sharp representation, 19, 1897
skew symmetric, 32
symmetric, 32
trace, 31, 32

tensor analysis
algebra summarized, 323
contraction of indices, 66
contravariant, 324
covariant, 324
covariant differentiation, 66
operations, 65, 66
outer product, 66
permissible operations, 65
quotient rule, 65, 66
tensor fields, 17
tensor product, 66
tensors, 17
tensors and matrices, 29
uses for GFM, 3

tensor field, 17
tensor index

contravariant, 17, 67
convention, 10
covariant, 17, 67
gymnastics, 25, 71
raising and lowering, 81

tensor product, 18, 19, 55, 981
tensors, 2, 7, 11

contraction, 32
terminology

inertial forces, 274
terrain following coordinates, 1804
test

charges, 422
fluid element, 424, 821, 829, 846, 1607,

1617
paddle wheel, 1024

particles, 422
tetrahedron fluid region, 633
theorem of stress means, 625
thermal

energy, 559
equation of state, 595, 825
expansion coefficient, 581, 826, 828

thermal wind balance, 859, 865, 871, 980,
1287

Antarctic Circumpolar Current, 872
atmosphere, 873
diagnostics, 872
ocean, 875
potential density, 875
shallow water, 959, 977

thermal wind shear production, 1792
thermobaricity, 773, 2021, 2023, 2025
thermobaricity parameter, 2024
thermodynamic

configuration space, 558, 802
integrating factor, 57
laws, 560
moving fluid, 682
postulates, 560
potential, 561, 574
pressure, 644
pressure in non-divergent flow, 644
specific relations, 573
state, 556
systems exchanges, 557
temperature, 560

thermodynamic equilibrium, 556, 560, 566,
571, 588, 591, 689

fluid elements, 690
macroscopic motion, 690
salinity, 588, 699
with geopotential, 586

thermodynamical
pressure, 647

thermohaline circulation, 769, 776
thermosteric sea level, 2039
thickness, 1979

diffusion, 881
equation, 1841
isopycnal thickness equation, 1860
specific, 1824, 1848
specific thickness, 1860
weighted average, 1878, 1983
weighted velocity, 1862
weighting, 1977

third law of thermodynamics, 560
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tidal acceleration, 928
tides

earth-moon system, 928
realistic effects, 934
semi-diurnal, 928

tilting, 1143, 1507
material lines, 467

time
averages, 143
coordinate, 67
mean, 1961
Newtonian, 2–4, 63, 64, 66, 90, 92, 265,

422, 425
notation for derivative, 491
parameter, 67
proper, 66
reversal symmetry, 351, 652
scale for molecular collisions, 411
tendency, xi, 143, 428
variety of derivatives, 523

time homogeneity, 310, 313
topographic beta, 1096, 1240, 1241, 1776
topographic form stress, 744, 747, 1108

components, 750
gravity waves, 1648
gyres, 1107
zonal ridge, 748

topographic nonlinear balance, 1167
topographic Rossby waves, 1554, 1558, 1763,

1773
topographic Sverdrup balance, 1167
topographic waves, 1554
topography forcing, 1640
tornado, 897, 1034
torque, 272, 1138, 1266

density, 637
torsion, 95
total

energy, 559, 687
pressure, 615
time derivative, 428

trace of a tensor, 31
tracer

active, 1936
budget, 520, 525
concentration, 510, 573
mass flux, 510
material, 1917
mechanics, xx, 416
parameterization, 1987
passive, 512, 1917

transport tensor, 1984
variance, 1909

tracer boundary condition, 525
air-sea boundary, 527
bottom, 526
no-normal derivative, 526

tracer equation, 507, 508, 510
derived, 510
Eulerian and Lagrangian forms, 511
general vertical coordinates, 1848
layer integrated, 1842
mean, 1983
shallow water, 949

tracer fluxes
rotational, 1970
skew symmetric, 1969
symmetric, 1969

tracer mass
external, 2077
internal, 2077

tracer mass analysis, 2041, 2071
external, 2077
internal, 2077
special cases, 2075

tracer moments, 1908, 1957
tracers

conservative, 507, 1892, 1896, 1917, 1918
material, 507

traction, 610
traditional approximation, 618, 717
trajectory, 66, 263, 265, 425, 439

fluid particle, 1339
generalized vertical coordinates, 1834

transformation
active, 1330, 1352
between material and spatial, 452
Cartesian, 28
Cartesian coordinates, 26
geometric, 27
inverse, 26
Jacobian, 454
of vectors, 325
orthogonal, 27
passive, 1330, 1333, 1352
rotation, 27
tensor, 29

transformation matrix, 79, 325, 454
Cartesian, 26
determinant, 86, 91
general vertical coordinates, 1802
inverse, 91
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Jacobian, 79, 85

space-time components, 90

transformed residual mean, 1977

velocity, 1979

transforming Cartesian to spherical, 330, 334

transition to turbulence, 655

translation, 469

translation motion, 1030

transport, 60

streamfunction, 534, 759

theorem for mechanical energy, 679

theorem for scalar fields, 520

transpose operation, 19

transverse waves, 1319, 1432, 1508

trapped gravity waves, 1649

traveling wave, 1376

turbulence, 649, 655

turbulence closure, 407

turbulent

cascade, 655

turbulent cascade, 1147

vortex stretching, 1147

vorticity, 1027

turbulent transport, 1991, 2031

turning level, 1658

two-dimensional

flow, 1049

flow kinematics, 476

non-divergent flow, 1151

turbulence, 1061

ultraviolet catastrophe, 655

uncertainty relation, 1369, 1391, 1393, 1398

unimodular coordinates, 1342

uniqueness

diffusion equation, 224

Dirichlet problem, 196

Neumann problem, 206

unit normal one-form, 21

unit tensor, 11

unit vector, 14

rotation, 38

universal gas constant, 409, 595

upwind tracer flux, 966

vanishing layers, 1863

variation, 292, 1467

action, 1318, 1468

field, 1317

of the action, 300

of the trajectory, 300

total, 1334
variation operator, 251
variational calculus, 249
vector

general coordinate product, 90
geometry of product, 21
invariant velocity equation, 891, 962,

1134
product, 19
rotation, 270
streamfunction, 537

vector calculus, 35
vectors, 12
velocity, 265

angular, 269
basis vectors, 327
circulation, 1027
coordinate, 326
external, 754
gradient tensor, 466, 1042
harmonic potential, 539
internal, 754
Lagrangian, 1339
molecular rms speed, 411
particle motion, 326
potential, 536, 539
rigid-body, 269
self-advection, 1064, 1134
spherical, 333
surface, 493
tensorially Lagrangian, 1339

velocity equation, 615
vector-invariant, 615, 1169, 1849, 1862

velocity potential, 1433
velocity vector, 70

generalized vertical coordinates, 1834
planetary Cartesian, 328
spherical, 329

vertical
Ekman transport, 912
energetics with stratification, 673
flow induced acceleration, 852
gauge, 540, 1925
shear, 467
stiffness, 868, 870, 1104, 1503
stratification, 834

vertical velocity, 1832, 1880
decomposed, 1832
shallow water, 948
two-dimensional non-divergent, 1053

Virial theorem, 143
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virial theorem, 306, 399, 1439
virtual displacement, 292
viscosity, 645, 1903

air, 407
bulk, 646, 648
dynamic, 407, 646
eddy, 795
first, 646
kinematic, 407, 646
molecular, 1903
second, 646, 648
water, 407

viscosity tensor, 645, 647
viscous

dissipation, 677
flux, 677
stress tensor, 645

volume
n-space, 24
between isosurfaces, 1181
defined by vectors, 23
element for integration, 24
evolution, 474

volume budget
column of water, 500
material region, 485

volume element
covariant, 86
general coordinates, 89
invariant, 86

volume evolution, 485, 520, 541
volume-Sverdrup, 2045
vortex

filament, 1032
force, 616
line, 1032, 1143
lines, 467
point, 1059
sheet, 1718
stretching, 1090, 1267
tilting, 1090
tube, 1032, 1143

vortex line, 1142
vortex tubes

shallow water, 1090
vortical flow, 536, 1224
vortical mode, 1521
vortical waves, 1527
vorticity, 57, 468, 476, 478, 650, 693, 1024,

1042, 1055
absolute, 1031, 1056, 1085

acoustic waves, 1433

baroclinicity, 1129

barotropic flow, 1131

beta effect, 1267

bottom boundary, 1160

Boussinesq, 1153

curvature, 1037, 1067

depth averaged velocity, 1278

depth integrated, 1158

depth integrated velocity, 1275

dynamics, 1084, 1133

flux vector, 1158

free vortex, 1028, 1037

frozen-in, 1143

Gaussian jet, 1038

general vertical coordinate, 1849, 1853

hydrostatic, 1153

isopycnal coordinates, 1864

isopycnal models, 1862

line element rotation, 1025

meridional transport, 1271

natural coordinates, 1036

non-divergent, 1026

of a column, 1112

orbital, 1037, 1067

planetary, 1031

planetary geostrophic, 867

quasi-geostrophy, 1239

relative, 1031, 1849

rigid-body, 1037

rigid-body rotation, 1032

rotating fluids, 1147

rotating reference frame, 1025

shallow water, 1084, 1146

shear, 1037, 1067

stretching, 1143, 1267, 1507

surface boundary, 1162

thickness weighted average, 1887

tilting, 1143, 1507

torques, 1138

turbulent cascade, 1027

two-dimensional non-divergent, 1055

vertical component, 1157

vorticity budget

depth integrated, 1266

flux-form, 1135

normal component, 1137

vorticity equation, 1134

hydrostatic, 1154

planetary geostrophy, 1158
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warm core eddy, 979
water mass, 591, 2041
water mass analysis

mathematics, 2048
tracers, 2071

water mass configuration space, 2043
water mass formation, 2044, 2061

buoyancy, 2045
water mass transformation, 2041, 2043, 2044,

2054
boundary, 2062
buoyancy, 2045, 2068
dia-surface flux, 2055
interior, 2055
kinematic, 2056
kinematic method, 2056, 2057
process, 2056
process method, 2056, 2057
processes, 2046, 2065
surface, 2066

wave
acoustic, 776, 1425, 1432
action, 1405, 1415, 1420, 1452
amplitude, 1376
angular frequency, 1375
anisotropic, 1532
baroclinic mode, 1565, 1601
barotropic mode, 1565, 1601
barotropic vorticity, 1521
capillary, 1455, 1491
carrier, 1380
deep water waves, 1479
discrete wavenumber, 168
dispersion relation, 1366, 1369, 1373,

1380, 1434
dispersive, 142
dispersive packet, 1396
Eady, 1767, 1776
edge, 1521, 1529, 1539, 1723, 1737, 1763,

1767
eikonal ansatz, 1405
energy, 1405
equation, 1373
evanescent, 1657
function, 1374
gravity, 1557
gravity wave critical reflection, 1625,

1626
group velocity, 1380
guide, 1658
harmonic, 1371, 1372

inertia-gravity, 1631
inertia-gravity dispersion, 1631
inertial, 1503, 1632
inertial polarization, 1511
inertial radial, 1514
interfacial, 1455
interference, 1366
internal gravity, 834, 1601
internal gravity energetics, 1622
internal gravity polarization, 1612
internal gravity reflection, 1624
internal inertia-gravity, 1628
Kelvin, 1570
kinematics, 1369
length, 1376
longitudinal, 1315, 1425, 1426, 1561
maker, 1380
mathematics, 1369
mechanics, 1366
monochromatic, 1371, 1372, 1374
narrow band packet, 1391
near inertial, 1632
non-dispersive, 142, 1435, 1562
non-dispersive packet, 1395
nonlinear, 1484
number, 1369, 1376
packet, 1379, 1380
period, 1376
phase, 1369, 1376, 1406
phase averaging, 166
phase distance, 1378
phase speed, 1377, 1408
phase velocity, 1373, 1377, 1408
plane, 1375, 1376
planetary Rossby, 1763, 1770
polarization relation, 1577
pseudo-west phase, 1532, 1543
ray, 1410
reduced wavelength, 1378
reduced wavenumber, 178, 1378
refraction, 1486
resonance, 1662, 1723, 1738, 1763
Rossby, 1521, 1558
Rossby phase velocity, 1531
Rossby reflection, 1536
Rossby shallow water, 1580
seiche, 1488
shallow water, 1548
shallow water gravity, 1554
shallow water inertia-gravity, 1554
shallow water Rossby, 1554
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shallow water topographic, 1554

shallow water waves, 1479

sound, 1425

spatial frequency, 1378

standard phase, 1376

standing, 1371, 1372, 1487

standing packet, 1389

stationary, 1371, 1372, 1640

stationary phase, 1399

sub-inertial, 1508, 1558, 1574

super-inertial, 1557, 1574

superposition, 1379

surface, 1455

topographic Rossby, 1763, 1773

trains, 1380

transverse, 1523

traveling, 1371, 1372, 1376, 1476

turning level, 1658

uncertainty, 1391

uncertainty relation, 1393, 1398

vector, 1369, 1376

vortical and divergent motions, 1630

vorticity, 1521

wave packet, 1391, 1488

wavenumber, 1375, 1378

wavevector, 1375

WKBJ ansatz, 1405

wave equation, 138, 1315

domain of influence, 140, 1384

Lagrangian, 1431

wave instability, xx, 1662, 1668

wave packet

surface gravity waves, 1488

waves

capillary, 660

polarized, 1970

Rayleigh, 1539
stationary, 1517, 1589, 1644

weak formulation, 420, 509, 523, 638, 641
wedge of instability, 1794

symmetric, 1668, 1688–1690
weir, 1563
well-defined surface, 838
western boundary layer, 1069
western intensification, 1102, 1105
Whitham’s variational principle, 1405, 1415,

1445, 1452
wind driven circulation, 914
wind stress

homogeneous layer, 1101
shallow water, 969

wing flow, 692
WKBJ approximation, 1405, 1656

gravity waves, 1654
WKBJ asymptotic method, 1445
WKBJ wave ansatz, 1405, 1656
work, 365

by gravity, 267
on circulation, 1130

work-energy theorem, 266, 398, 693
working, 561
world line, 422

Young-Laplace formula, 662, 664, 1491, 1710
derivation, 663

zero buoyancy layer thickness, 808
zeroth law of thermodynamics, 560
zonal

mean, 1961
re-entrant, 1005
ridge and topographic form stress, 748
vorticity constraints on zonal flow, 1067
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